Red Hat Enterprise Linux 8

Managing systems using the RHEL 8 web console

A guide to using the web console for managing systems in Red Hat Enterprise Linux 8
Red Hat Enterprise Linux 8 Managing systems using the RHEL 8 web console

A guide to using the web console for managing systems in Red Hat Enterprise Linux 8
Abstract
This document describes how to manage physical and virtual Linux-based systems using the RHEL 8 web console. The instructions assume that the server used for management is running in Red Hat Enterprise Linux 8.
Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ... 5

CHAPTER 1. GETTING STARTED USING THE RHEL WEB CONSOLE 6
 1.1. WHAT IS THE RHEL WEB CONSOLE ... 6
 1.2. INSTALLING THE WEB CONSOLE ... 7
 1.3. LOGGING IN TO THE WEB CONSOLE ... 7
 1.4. CONNECTING TO THE WEB CONSOLE FROM A REMOTE MACHINE 9
 1.5. LOGGING IN TO THE WEB CONSOLE USING A ONE-TIME PASSWORD 9

CHAPTER 2. RED HAT WEB CONSOLE ADD-ONS .. 11
 2.1. INSTALLING ADD-ONS ... 11
 2.2. ADD-ONS FOR THE RHEL 8 WEB CONSOLE .. 11

CHAPTER 3. PERFORMING BASIC SYSTEM ADMINISTRATION TASKS IN THE WEB CONSOLE 12
 3.1. WHAT THE RHEL 8 WEB CONSOLE IS AND WHICH TASKS IT CAN BE USED FOR .. 12
 3.2. RESTARTING THE SYSTEM USING THE WEB CONSOLE 12
 3.3. SHUTTING DOWN THE SYSTEM USING THE WEB CONSOLE 13
 3.4. CONFIGURING THE HOST NAME IN THE WEB CONSOLE 14
 3.4.1. Host name ... 14
 3.4.2. Pretty host name in the web console ... 14
 3.4.3. Setting the host name using the web console 15
 3.5. JOINING A RHEL 8 SYSTEM TO AN IDM DOMAIN USING THE WEB CONSOLE ... 17
 3.6. CONFIGURING TIME SETTINGS USING THE WEB CONSOLE 19
 3.7. OPTIMIZING THE SYSTEM PERFORMANCE USING THE WEB CONSOLE 21
 3.7.1. Performance tuning options in the web console 21
 3.7.2. Setting a performance profile in the web console 21
 3.8. DISABLING SMT TO PREVENT CPU SECURITY ISSUES USING THE WEB CONSOLE .. 22

CHAPTER 4. REVIEWING LOGS IN THE WEB CONSOLE .. 25
 4.1. REVIEWING LOGS IN THE WEB CONSOLE ... 25
 4.2. FILTERING LOGS IN THE WEB CONSOLE ... 25

CHAPTER 5. MANAGING USER ACCOUNTS IN THE WEB CONSOLE 27
 5.1. SYSTEM USER ACCOUNTS MANAGED IN THE WEB CONSOLE 27
 5.2. ADDING NEW ACCOUNTS USING THE WEB CONSOLE 27
 5.3. ENFORCING PASSWORD EXPIRATION IN THE WEB CONSOLE 29
 5.4. TERMINATING USER SESSIONS IN THE WEB CONSOLE 30

CHAPTER 6. MANAGING SERVICES IN THE WEB CONSOLE 32
 6.1. ACTIVATING OR DEACTIVATING SYSTEM SERVICES IN THE WEB CONSOLE 32
 6.2. RESTARTING SYSTEM SERVICES IN THE WEB CONSOLE 33

CHAPTER 7. MANAGING NETWORKING IN THE WEB CONSOLE 35
 7.1. CONFIGURING NETWORK BONDS USING THE WEB CONSOLE 35
 7.1.1. Understanding network bonding ... 35
 7.1.2. Bond modes ... 36
 7.1.3. Adding a new bond using the web console 36
 7.1.4. Adding interfaces to the bond using the web console 38
 7.1.5. Removing or disabling an interface from the bond using the web console .. 39
 7.1.6. Removing or disabling a bond using the web console 40
 7.2. CONFIGURING NETWORK TEAMS USING THE WEB CONSOLE 40
 7.2.1. Understanding network teaming ... 41
 7.2.2. Comparison of network teaming and bonding features 41
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5.1</td>
<td>Adding physical drives to volume groups in the web console</td>
<td>98</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Removing physical drives from volume groups in the web console</td>
<td>99</td>
</tr>
<tr>
<td>10.6.1</td>
<td>VDO volumes in the web console</td>
<td>100</td>
</tr>
<tr>
<td>10.6.2</td>
<td>Creating VDO volumes in the web console</td>
<td>100</td>
</tr>
<tr>
<td>10.6.3</td>
<td>Formatting VDO volumes in the web console</td>
<td>102</td>
</tr>
<tr>
<td>10.6.4</td>
<td>Extending VDO volumes in the web console</td>
<td>104</td>
</tr>
<tr>
<td>10.7.1</td>
<td>LUKS disk encryption</td>
<td>106</td>
</tr>
<tr>
<td>10.7.2</td>
<td>Configuring the LUKS passphrase in the web console</td>
<td>107</td>
</tr>
<tr>
<td>10.7.3</td>
<td>Changing the LUKS passphrase in the web console</td>
<td>108</td>
</tr>
<tr>
<td>10.8</td>
<td>Configuring automated unlocking using a TANG key in the web console</td>
<td>109</td>
</tr>
<tr>
<td>11.1</td>
<td>Managing manual software updates in the web console</td>
<td>113</td>
</tr>
<tr>
<td>11.2</td>
<td>Managing automatic software updates in the web console</td>
<td>113</td>
</tr>
<tr>
<td>12.1</td>
<td>Subscription management in the web console</td>
<td>115</td>
</tr>
<tr>
<td>12.2</td>
<td>Registering subscriptions with credentials in the web console</td>
<td>115</td>
</tr>
<tr>
<td>12.3</td>
<td>Registering subscriptions with activation keys in the web console</td>
<td>118</td>
</tr>
<tr>
<td>13.1</td>
<td>Configuring KDUMP memory usage and target location in web console</td>
<td>122</td>
</tr>
<tr>
<td>14.1</td>
<td>Overview of virtual machine management using the web console</td>
<td>125</td>
</tr>
<tr>
<td>14.2</td>
<td>Setting up the web console to manage virtual machines</td>
<td>125</td>
</tr>
<tr>
<td>14.3</td>
<td>Virtual machine management features available in the web console</td>
<td>126</td>
</tr>
<tr>
<td>14.4</td>
<td>Differences between virtualization features in Virtual Machine Manager and the web console</td>
<td>127</td>
</tr>
<tr>
<td>15.1</td>
<td>Remote system manager in the web console</td>
<td>129</td>
</tr>
<tr>
<td>15.2</td>
<td>Adding remote hosts to the web console</td>
<td>130</td>
</tr>
<tr>
<td>15.3</td>
<td>Removing remote hosts from the web console</td>
<td>132</td>
</tr>
<tr>
<td>15.4</td>
<td>Setting up SSH for remote management in the web console</td>
<td>133</td>
</tr>
<tr>
<td>16.1</td>
<td>Joining a RHEL 8 system to an IDM domain using the web console</td>
<td>138</td>
</tr>
<tr>
<td>16.2</td>
<td>Logging in to the web console using Kerberos authentication</td>
<td>140</td>
</tr>
<tr>
<td>16.3</td>
<td>Enabling admin sudo access to domain administrators on the IDM server</td>
<td>141</td>
</tr>
<tr>
<td>17.1</td>
<td>Smart card authentication for centrally managed users</td>
<td>143</td>
</tr>
<tr>
<td>17.2</td>
<td>Installing tools for managing and using smart cards</td>
<td>144</td>
</tr>
<tr>
<td>17.3</td>
<td>Storing a certificate on a smart card</td>
<td>144</td>
</tr>
<tr>
<td>17.4</td>
<td>Enabling smart card authentication for the web console</td>
<td>146</td>
</tr>
<tr>
<td>17.5</td>
<td>Logging in to the web console with smart cards</td>
<td>147</td>
</tr>
<tr>
<td>17.6</td>
<td>Limiting user sessions and memory to prevent a DOS attack</td>
<td>147</td>
</tr>
<tr>
<td>17.7</td>
<td>Additional resources</td>
<td>148</td>
</tr>
</tbody>
</table>
We appreciate your input on our documentation. Please let us know how we could make it better. To do so:

- For simple comments on specific passages:
 1. Make sure you are viewing the documentation in the *Multi-page HTML* format. In addition, ensure you see the **Feedback** button in the upper right corner of the document.
 2. Use your mouse cursor to highlight the part of text that you want to comment on.
 3. Click the **Add Feedback** pop-up that appears below the highlighted text.
 4. Follow the displayed instructions.

- For submitting more complex feedback, create a Bugzilla ticket:
 1. Go to the [Bugzilla](https://bugzilla.redhat.com) website.
 2. As the Component, use **Documentation**.
 3. Fill in the **Description** field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
 4. Click **Submit Bug**.
CHAPTER 1. GETTING STARTED USING THE RHEL WEB CONSOLE

The following sections aim to help you install the web console in Red Hat Enterprise Linux 8 and open the web console in your browser. You will also learn how to add remote hosts and monitor them in the RHEL 8 web console.

Prerequisites

- Installed Red Hat Enterprise Linux 8.
- Enabled networking.
- Registered system with appropriate subscription attached.
 To obtain a subscription, see Managing subscriptions in the web console.

1.1. WHAT IS THE RHEL WEB CONSOLE

The RHEL web console is a Red Hat Enterprise Linux 8 web-based interface designed for managing and monitoring your local system, as well as Linux servers located in your network environment.

The RHEL web console enables you a wide range of administration tasks, including:

- Managing services
- Managing user accounts
- Managing and monitoring system services
- Configuring network interfaces and firewall

![RHEL Web Console Screenshot](image-url)
Reviewing system logs
Managing virtual machines
Creating diagnostic reports
Setting kernel dump configuration
Configuring SELinux
Updating software
Managing system subscriptions

The RHEL web console uses the same system APIs as you would in a terminal, and actions performed in a terminal are immediately reflected in the RHEL web console.

You can monitor the logs of systems in the network environment, as well as their performance, displayed as graphs. In addition, you can change the settings directly in the web console or through the terminal.

1.2. INSTALLING THE WEB CONSOLE

Red Hat Enterprise Linux 8 includes the RHEL 8 web console installed by default in many installation variants.

If this is not the case on your system, install the **cockpit** package and set up the **cockpit.socket** service to enable the RHEL 8 web console.

Procedure

1. Install the **cockpit** package:

   ```
   # yum install cockpit
   ```

2. Enable and start the **cockpit.socket** service, which runs a web server:

   ```
   # systemctl enable --now cockpit.socket
   ```

3. If you are using a custom firewall profile, add the **cockpit** service to **firewalld** to open port 9090 in the firewall:

   ```
   # firewall-cmd --add-service=cockpit --permanent
   # firewall-cmd --reload
   ```

Verification steps

1. To verify the previous installation and configuration, you open the web console.

1.3. LOGGING IN TO THE WEB CONSOLE

Use the steps in this procedure for the first login to the RHEL web console using a system user name and password.
Prerequisites

- Use one of the following browsers for opening the web console:
 - Mozilla Firefox 52 and later
 - Google Chrome 57 and later
 - Microsoft Edge 16 and later

- System user account credentials
 The RHEL web console uses a specific PAM stack located at `/etc/pam.d/cockpit`. Authentication with PAM allows you to log in with the user name and password of any local account on the system.

Procedure

1. Open the web console in your web browser:

 - Locally: https://localhost:9090
 - Remotely with the server’s hostname: https://example.com:9090
 - Remotely with the server’s IP address: https://192.0.2.2:9090

 If you use a self-signed certificate, the browser issues a warning. Check the certificate and accept the security exception to proceed with the login.

 The console loads a certificate from the `/etc/cockpit/ws-certs.d` directory and uses the last file with a `.cert` extension in alphabetical order. To avoid having to grant security exceptions, install a certificate signed by a certificate authority (CA).

2. In the login screen, enter your system user name and password.

3. Optionally, click the **Reuse my password for privileged tasks** option.
If the user account you are using to log in has sudo privileges, this makes it possible to perform privileged tasks in the web console, such as installing software or configuring SELinux.

4. Click Log In.

After successful authentication, the RHEL web console interface opens.

1.4. CONNECTING TO THE WEB CONSOLE FROM A REMOTE MACHINE

It is possible to connect to your web console interface from any client operating system and also from mobile phones or tablets. The following procedure shows how to do it.

Prerequisites

- Device with a supported internet browser, such as:
 - Mozilla Firefox 52 and later
 - Google Chrome 57 and later
 - Microsoft Edge 16 and later
- RHEL 8 server you want to access with an installed and accessible web console. For more information about the installation of the web console see Installing the web console.

Procedure

1. Open your web browser.

2. Type the remote server’s address in one of the following formats:
 a. With the server’s host name: server.hostname.example.com:port_number
 b. With the server’s IP address: server.IP_address:port_number

3. After the login interface opens, log in with your RHEL machine credentials.

1.5. LOGGING IN TO THE WEB CONSOLE USING A ONE-TIME PASSWORD

Complete this procedure to login into the RHEL web console using a one-time password (OTP).

IMPORTANT

It is possible to log in using a one-time password only if your system is part of an Identity Management (IdM) domain with enabled OTP configuration. For more information about OTP in IdM, see One-time password in Identity Management.

Prerequisites

- The RHEL web console has been installed. For details, see Installing the web console.
- An Identity Management server with enabled OTP configuration.
A configured hardware or software device generating OTP tokens.

Procedure

1. Open the RHEL web console in your browser:
 - Locally: https://localhost:PORT_NUMBER
 - Remotely with the server hostname: https://example.com:PORT_NUMBER
 - Remotely with the server IP address: https://EXAMPLE.SERVER.IP.ADDR:PORT_NUMBER

 If you use a self-signed certificate, the browser issues a warning. Check the certificate and accept the security exception to proceed with the login.

 The console loads a certificate from the /etc/cockpit/ws-certs.d directory and uses the last file with a .cert extension in alphabetical order. To avoid having to grant security exceptions, install a certificate signed by a certificate authority (CA).

2. The Login window opens. In the Login window, enter your system user name and password.

3. Generate a one-time password on your device.

4. Enter the one-time password into a new field that appears in the web console interface after you confirm your password.

5. Click Log in.

6. Successful login takes you to the Overview page of the web console interface.
CHAPTER 2. RED HAT WEB CONSOLE ADD-ONS

2.1. INSTALLING ADD-ONS

The *cockpit* package is a part of Red Hat Enterprise Linux 8 by default. To be able to use add-on applications you must install them separately.

Prerequisites

- Installed and enabled *cockpit* package. If you need to install web console first, check the installation section.

Procedure

- Install an add-on.

  ```
  # yum install <add-on>
  ```

2.2. ADD-ONS FOR THE RHEL 8 WEB CONSOLE

The following table lists available add-on applications for the RHEL 8 web console.

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Package name</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composer</td>
<td>cockpit-composer</td>
<td>Building custom OS images</td>
</tr>
<tr>
<td>Dashboard</td>
<td>cockpit-dashboard</td>
<td>Managing multiple servers in one UI</td>
</tr>
<tr>
<td>Machines</td>
<td>cockpit-machines</td>
<td>Managing libvirt virtual machines</td>
</tr>
<tr>
<td>PackageKit</td>
<td>cockpit-packagekit</td>
<td>Software updates and application installation (usually installed by default)</td>
</tr>
<tr>
<td>PCP</td>
<td>cockpit-pcp</td>
<td>Persistent and more fine-grained performance data (installed on demand from the UI)</td>
</tr>
<tr>
<td>podman</td>
<td>cockpit-podman</td>
<td>Managing podman containers (available from RHEL 8.1)</td>
</tr>
<tr>
<td>Session Recording</td>
<td>cockpit-session-recording</td>
<td>Recording and managing user sessions</td>
</tr>
</tbody>
</table>
CHAPTER 3. PERFORMING BASIC SYSTEM ADMINISTRATION TASKS IN THE WEB CONSOLE

In this chapter, you will learn how to perform basic system administration tasks, such as restart, shutdown, or basic configuration, using the web console.

3.1. WHAT THE RHEL 8 WEB CONSOLE IS AND WHICH TASKS IT CAN BE USED FOR

The RHEL 8 web console is an interactive server administration interface. It interacts directly with the operating system from a real Linux session in a browser.

The web console enables to perform these tasks:

- Monitoring basic system features, such as hardware information, time configuration, performance profiles, connection to the realm domain
- Inspecting system log files
- Managing network interfaces and configuring firewall
- Handling docker images
- Managing virtual machines
- Managing user accounts
- Monitoring and configuring system services
- Creating diagnostic reports
- Setting kernel dump configuration
- Managing packages
- Configuring SELinux
- Updating software
- Managing system subscriptions
- Accessing the terminal

For more information on installing and using the RHEL 8 web console, see Managing systems using the RHEL 8 web console.

3.2. RESTARTING THE SYSTEM USING THE WEB CONSOLE

This procedure uses the web console to restart a RHEL system that the web console is attached to.

Prerequisites

- The web console is installed and accessible.
 For details, see Installing the web console.
Procedure

1. Log into the RHEL 8 web console.
 For details, see Logging in to the web console.

2. Click Overview.

3. Click the Restart restart button.

4. If any users are logged into the system, write a reason for the restart in the Restart dialog box.

5. Optional: In the Delay drop down list, select a time interval.

6. Click Restart.

3.3. SHUTTING DOWN THE SYSTEM USING THE WEB CONSOLE

This procedure uses the web console to shut down a RHEL system that the web console is attached to.

Prerequisites

- The web console is installed and accessible.
 For details, see Installing the web console.

Procedure
1. Log into the RHEL 8 web console. For details, see Logging in to the web console.

2. Click Overview.

3. In the Restart drop down list, select Shut Down.

4. If any users are logged in to the system, write a reason for the shutdown in the Shut Down dialog box.

5. Optional: In the Delay drop down list, select a time interval.

6. Click Shut Down.

3.4. CONFIGURING THE HOST NAME IN THE WEB CONSOLE

You can use the web console to configure different forms of the host name on the system that the web console is attached to.

3.4.1. Host name

The host name identifies the system. By default, the host name is set to localhost, but you can change it.

A host name consists of two parts:

Host name
 It is a unique name which identifies a system.

Domain
 Add the domain as a suffix behind the host name when using a system in a network and when using names instead of just IP addresses.

A host name with an attached domain name is called a fully qualified domain name (FQDN). For example: mymachine.example.com.

Host names are stored in the /etc/hostname file.

3.4.2. Pretty host name in the web console

You can configure a pretty host name in the RHEL web console. The pretty host name is a host name with capital letters, spaces, and so on.
The pretty host name displays in the web console, but it does not have to correspond with the host name.

Example 3.1. Host name formats in the web console

Pretty host name
 My Machine
Host name
 mymachine
Real host name - fully qualified domain name (FQDN)
 mymachine.idm.company.com

3.4.3. Setting the host name using the web console

This procedure sets the real host name or the pretty host name in the web console.

Prerequisites

- The web console is installed and accessible.
 For details, see Installing the web console.

Procedure

1. Log into the RHEL 8 web console.
 For details, see Logging in to the web console.

2. Click Overview.

3. Click edit next to the current host name.
4. In the **Change Host Name** dialog box, enter the host name in the **Pretty Host Name** field.

5. The **Real Host Name** field attaches a domain name to the pretty name. You can change the real host name manually if it does not correspond with the pretty host name.

6. Click **Change**.

Verification steps

1. Log out from the web console.

2. Reopen the web console by entering an address with the new host name in the address bar of your browser.
3.5. JOINING A RHEL 8 SYSTEM TO AN IDM DOMAIN USING THE WEB CONSOLE

This procedure uses the web console to join the Red Hat Enterprise Linux 8 system to the Identity Management (IdM) domain.

Prerequisites

- The IdM domain is running and reachable from the client you want to join.
- You have the IdM domain administrator credentials.

Procedure

1. Log into the RHEL web console. For details, see Logging in to the web console.
2. Open the System tab.
3. Click Join Domain.
4. In the **Join a Domain** dialog box, enter the host name of the IdM server in the **Domain Address** field.

5. In the **Authentication** drop down list, select if you want to use a password or a one-time password for authentication.

![Join a Domain dialog box](image)

6. In the **Domain Administrator Name** field, enter the user name of the IdM administration account.

7. In the password field, add the password or one-time password according to what you selected in the **Authentication** drop down list earlier.

8. Click **Join**.
Verification steps

1. If the RHEL 8 web console did not display an error, the system has been joined to the IdM domain and you can see the domain name in the System screen.

2. To verify that the user is a member of the domain, click the Terminal page and type the `id` command:

   ```
   $ id
   euid=548800004(example_user) gid=548800004(example_user)
   groups=548800004(example_user) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
   ```

Additional resources

- Planning Identity Management
- Installing Identity Management
- Configuring and managing Identity Management

3.6. CONFIGURING TIME SETTINGS USING THE WEB CONSOLE

This procedure sets a time zone and synchronizes the system time with a Network Time Protocol (NTP) server.

Prerequisites

- The web console is installed and accessible.
 For details, see Installing the web console.

Procedure

1. Log in to the RHEL 8 web console.
 For details, see Logging in to the web console.
2. Click the current system time in **Overview**.

3. In the **Change System Time** dialog box, change the time zone if necessary.

4. In the **Set Time** drop down menu, select one of the following:

 Manually

 Use this option if you need to set the time manually, without an NTP server.

 Automatically using NTP server

 This is a default option, which synchronizes time automatically with the preset NTP servers.

 Automatically using specific NTP servers

 Use this option only if you need to synchronize the system with a specific NTP server.
 Specify the DNS name or the IP address of the server.

5. Click **Change**.

Verification steps

- Check the system time displayed in the **System** tab.

Additional resources

- [Using the Chrony suite to configure NTP](#)
3.7. OPTIMIZING THE SYSTEM PERFORMANCE USING THE WEB CONSOLE

In the web console, you can set a performance profile to optimize the performance of the system for a selected task.

3.7.1. Performance tuning options in the web console

Red Hat Enterprise Linux 8 provides several performance profiles that optimize the system for the following tasks:

- Systems using the desktop
- Throughput performance
- Latency performance
- Network performance
- Low power consumption
- Virtual machines

The tuned service optimizes system options to match the selected profile.

In the web console, you can set which performance profile your system uses.

Additional resources

- For details about the tuned service, see Monitoring and managing system status and performance.

3.7.2. Setting a performance profile in the web console

This procedure uses the web console to optimize the system performance for a selected task.

Prerequisites

- The web console is installed and accessible. For details, see Installing the web console.

Procedure

1. Log into the RHEL 8 web console. For details, see Logging in to the web console.
2. Click Overview.
3. In the Performance Profile field, click the current performance profile.
4. In the Change Performance Profile dialog box, change the profile if necessary.

5. Click Change Profile.

Verification steps

- The Overview tab now shows the selected performance profile.

3.8. DISABLING SMT TO PREVENT CPU SECURITY ISSUES USING THE WEB CONSOLE

This section describes how to disable Simultaneous Multi Threading (SMT) in case of attacks that misuse CPU SMT. Disabling SMT can mitigate security vulnerabilities, such as L1TF or MDS.

IMPORTANT

Disabling SMT might lower the system performance.

Prerequisites
The web console must be installed and accessible. For details, see Installing the web console.

Procedure

1. Log in to the RHEL 8 web console. For details, see Logging in to the web console.

2. Click System.

3. In the Hardware item, click the hardware information.

4. In the CPU Security item, click Mitigations. If this link is not present, it means that your system does not support SMT, and therefore is not vulnerable.

5. In the CPU Security Toggles, switch on the Disable simultaneous multithreading (nosmt) option.

6. Click on the Save and reboot button.

After the system restart, the CPU no longer uses SMT.
Additional resources
For more details on security attacks that you can prevent by disabling SMT, see:

CHAPTER 4. REVIEWING LOGS IN THE WEB CONSOLE

4.1. REVIEWING LOGS IN THE WEB CONSOLE

The RHEL 8 web console Logs section is a UI for the journalctl utility. This section describes how to access system logs in the web console interface.

Prerequisites

- The RHEL 8 web console has been installed.
 For details, see Installing the web console.

Procedure

1. Log in to the RHEL web console.
 For details, see Logging in to the web console.

2. Click Logs.

3. Open log entry details by clicking on your selected log entry in the list.

You can filter the logs by date, severity or service. For more information, see Filtering logs in the web console.

4.2. FILTERING LOGS IN THE WEB CONSOLE

This section shows how to filter log entries in the web console.

Prerequisites

- The web console interface must be installed and accessible.
 For details, see Installing the web console.

Procedure

1. Log in to the RHEL 8 web console.
 For details, see Logging in to the web console.

2. Click Logs.

3. By default, web console shows logs from your current boot. To filter by a different time range, click on the drop down menu with your current date and choose a preferred option.
4. **Error and above** severity logs list is shown by default. To filter by different severity, click on the **Error and above** drop-down menu and choose a preferred severity.

5. By default, web console shows logs for all services. To filter logs for a particular service, click on the **All** drop-down menu and select a service name.

6. To open a log entry, click on a selected log.
CHAPTER 5. MANAGING USER ACCOUNTS IN THE WEB CONSOLE

The RHEL web console offers an interface for adding, editing, and removing system user accounts. After reading this section, you will know:

- From where the existing accounts come from.
- How to add new accounts.
- How to set password expiration.
- How and when to terminate user sessions.

Prerequisites

- Being logged into the RHEL web console with an account that has administrator permissions assigned. For details, see Logging in to the RHEL web console.

5.1. SYSTEM USER ACCOUNTS MANAGED IN THE WEB CONSOLE

With user accounts displayed in the RHEL web console you can:

- Authenticate users when accessing the system.
- Set them access rights to the system.

The RHEL web console displays all user accounts located in the system. Therefore, you can see at least one user account just after the first login to the web console.

After logging into the RHEL web console, you can perform the following operations:

- Create new users accounts.
- Change their parameters.
- Lock accounts.
- Terminate user sessions.

5.2. ADDING NEW ACCOUNTS USING THE WEB CONSOLE

Use the following steps for adding user accounts to the system and setting administration rights to the accounts through the RHEL web console.

Prerequisites

- The RHEL web console must be installed and accessible. For details, see Installing the web console.

Procedure

1. Log in to the RHEL web console.
2. Click **Accounts**.

3. Click **Create New Account**.

![Create New Account](image)

4. In the **Full Name** field, enter the full name of the user. The RHEL web console automatically suggests a user name from the full name and fills it in the **User Name** field. If you do not want to use the original naming convention consisting of the first letter of the first name and the whole surname, update the suggestion.

5. In the **Password/Confirm** fields, enter the password and retype it for verification that your password is correct. The color bar placed below the fields shows you security level of the entered password, which does not allow you to create a user with a weak password.

![Create New Account](image)

6. Click **Create** to save the settings and close the dialog box.

7. Select the newly created account.

8. Select **Server Administrator** in the **Roles** item.
Now you can see the new account in the Accounts settings and you can use the credentials to connect to the system.

5.3. ENFORCING PASSWORD EXPIRATION IN THE WEB CONSOLE

By default, user accounts have set passwords to never expire. To enforce password expiration, as administrator, set system passwords to expire after a defined number of days.

When the password expires, the next login attempt will prompt for a password change.

Procedure

1. Log in to the RHEL 8 web console interface.
2. Click Accounts.
3. Select the user account for which to enforce password expiration.
4. In the user account settings, click Never expire password.
5. In the Password Expiration dialog box, select Require password change every ... days and enter a positive whole number representing the number of days when the password expires.
6. Click Change.

To verify the settings, open the account settings. The RHEL 8 web console displays a link with the date of expiration.

5.4. TERMINATING USER SESSIONS IN THE WEB CONSOLE

A user creates user sessions when logging into the system. Terminating user sessions means to log the user out from the system.

It can be helpful if you need to perform administrative tasks sensitive to configuration changes, for example, system upgrades.

In each user account in the RHEL 8 web console, you can terminate all sessions for the account except for the web console session you are currently using. This prevents you from cutting yourself off the system.

Procedure

1. Log in to the RHEL 8 web console.
2. Click Accounts.

3. Click the user account for which you want to terminate the session.

4. Click the Terminate Session button.

If the Terminate Session button is inactive, the user is not logged in to the system.

The RHEL web console terminates the sessions.
CHAPTER 6. MANAGING SERVICES IN THE WEB CONSOLE

This document describes how to manage system services in the web console interface. You can activate or deactivate services, restart or reload them or manage their automatic startup.

6.1. ACTIVATING OR DEACTIVATING SYSTEM SERVICES IN THE WEB CONSOLE

This procedure activates or deactivates system services using the web console interface.

Prerequisites

- The RHEL 8 web console has been installed. For details, see Installing the web console.

PROCEDURE

You can filter the services by name or description and also by Enabled, Disabled, or Static automatic startup. The interface shows the current state of the service and its recent logs.

1. Log in to the RHEL web console with administrator privileges. For details, see Logging in to the web console.

2. Click Services in the web console menu on the left.

3. The default tab for Services is System Services. If you want to manage targets, sockets, timers, or paths, switch to the respective tab in the menu on top.

4. To open service settings, click on a selected service from the list. You can tell which services are active or inactive by checking the State column.

5. Activate or deactivate a service:
 - To activate an inactive service, click the Start button.
To deactivate an active service, click the **Stop** button.

6.2. RESTARTING SYSTEM SERVICES IN THE WEB CONSOLE

This procedure restarts system services using the web console interface.

Prerequisites

- The RHEL 8 web console has been installed.
 For details, see [Installing the web console](#).

PROCEDURE

You can filter the services by name or description and also by Enabled, Disabled, or Static automatic startup. The interface shows the current state of the service and its recent logs.

1. Log in to the RHEL web console with administrator privileges.
 For details, see [Logging in to the web console](#).
2. Click **Services** in the web console menu on the left.

3. The default tab for **Services** is **System Services**. If you want to manage targets, sockets, timers, or paths, switch to the respective tab in the menu on top.

4. To open service settings, click on a selected service from the list.

5. To restart a service, click the **Restart** button.
CHAPTER 7. MANAGING NETWORKING IN THE WEB CONSOLE

The RHEL 8 web console supports basic network configuration. You can:

- Configure IPv4/IPv6 network settings
- Manage Bonds
- Manage network bridges
- Manage VLANs
- Manage Teams
- Inspect a network log

NOTE

The RHEL 8 web console is built on top of the NetworkManager service.

For details, see Getting started with NetworkManager for managing networking.

Prerequisites

- The RHEL 8 web console installed and enabled.
 For details, see Installing the web console.

7.1. CONFIGURING NETWORK BONDS USING THE WEB CONSOLE

This chapter helps you to understand how network bonding works and what all can configure in the web console. Additionally, you also find in this chapter the following guidelines:

- Adding a new bond
- Removing a bond
- Adding interfaces to a bond
- Removing interfaces from a bond

7.1.1. Understanding network bonding

Network bonding is a method to combine or aggregate network interfaces to provide a logical interface with higher throughput or redundancy.

The active-backup, balance-tlb, and balance-alb modes do not require any specific configuration of the network switch. However, other bonding modes require configuring the switch to aggregate the links. For example, Cisco switches require EtherChannel for modes 0, 2, and 3, but for mode 4, the Link Aggregation Control Protocol (LACP) and EtherChannel are required.

For further details, see the documentation of your switch and https://www.kernel.org/doc/Documentation/networking/bonding.txt.
7.1.2. Bond modes

The behavior of the bonded interfaces depends upon the mode. The bonding modes provide fault tolerance, load balancing or both.

Load balancing modes

- **Round Robin**: Sequentially transmit packets from the first available interface to the last one.

Fault tolerance modes

- **Active Backup**: Only when the primary interface fails, one of a backup interfaces replaces it. Only a MAC address used by active interface is visible.

- **Broadcast**: All transmissions are sent on all interfaces.

NOTE

Broadcasting significantly increases network traffic on all the bonded interfaces.

Fault tolerance and load balancing modes

- **XOR**: The destination MAC addresses are distributed equally between interfaces with a modulo hash. Each interface then serves the same group of MAC addresses.

- **802.3ad**: Sets an IEEE 802.3ad dynamic link aggregation policy. Creates aggregation groups that share the same speed and duplex settings. Transmits and receives on all interfaces in the active aggregator.

NOTE

This mode requires a switch that is 802.3ad compliant.

- **Adaptive transmit load balancing**: The outgoing traffic is distributed according to the current load on each interface. Incoming traffic is received by the current interface. If the receiving interface fails, another interface takes over the MAC address of the failed one.

- **Adaptive load balancing**: Includes transmit and receive load balancing for IPv4 traffic. Receive load balancing is achieved through Address Resolution Protocol (ARP) negotiation, therefore, it is necessary to set **Link Monitoring** to **ARP** in the bond’s configuration.

7.1.3. Adding a new bond using the web console

This section describes how to configure an active-backup bond on two or more network interfaces using the web console.

Other network bond modes can be configured similarly.
Prerequisites

- Two or more network cards are installed in the server.
- The network cards are connected to a switch.

Procedure

1. Log in to the web console. For details, see Logging in to the web console.

2. Open Networking.

3. Click the Add Bond button.

4. In the Bond Settings dialog box, enter a name for the new bond.

5. In the Members field, select interfaces which should be a member of the bond.

6. [Optional] In the MAC drop down list, select a MAC address which will be used for this interface. If you leave the MAC field empty, the bond will get one of the addresses that are listed in the drop down list.

7. In the Mode drop down list, select the mode. For details, see Section 7.1.2, “Bond modes”.

8. If you select Active Backup, select the primary interface.

<table>
<thead>
<tr>
<th>MAC</th>
<th>E8:6A:64:04:9A:C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Active Backup</td>
</tr>
<tr>
<td>Primary</td>
<td>enp0s31f6</td>
</tr>
</tbody>
</table>

9. In the Link Monitoring drop down menu, leave here the MII option. Only the adaptive load balancing mode requires to switch this option to ARP.

10. The Monitoring Interval, Link up delay, and Link down delay fields, which contain values in milliseconds, leave as they are. Change it only for a troubleshooting purpose.

11. Click Apply.
To verify that the bond works correctly, go to the Networking section and check if the Sending and Receiving columns in the Interfaces table display a network activity.

7.1.4. Adding interfaces to the bond using the web console

Network bonds can include multiple interfaces and you can add or remove any of them any time.

This section describes adding a network interface to an existing bond.

Prerequisites
Having a bond with multiple interfaces configured as described in Section 7.1.3, “Adding a new bond using the web console”.

Procedure

1. Log in to the web console.
 For details, see Logging in to the web console.

2. Open Networking.

3. In the Interfaces table, click on the bond you want to configure.

4. In the bond settings screen, scroll down to the table of members (interfaces).

5. Click the + icon.

6. Select the interface in the drop down list and click it.

The RHEL 8 web console adds the interface to the bond.

7.1.5. Removing or disabling an interface from the bond using the web console

Network bonds can include multiple interfaces. If you need to change a device, you can remove or disable particular interfaces from the bond, which will work with the rest of the active interfaces.

Basically, you have two options, how to stop using an interface included in a bond. You can:

- Remove the interface from the bond.
- Disable the interface temporarily. The interface stays a part of the bond, but the bond will not use it until you enable it again.

Prerequisites

- Having a bond with multiple interfaces configured as described in Section 7.1.3, “Adding a new bond using the web console”.

Procedure

1. Log in to the RHEL web console.
 For details, see Logging in to the web console.

2. Open Networking.

3. Click the bond you want to configure.

4. In the bond settings screen, scroll down to the table of ports (interfaces).

5. Select the interface and remove or disable it:
Click the - icon to remove the interface.

Switch the ON/OFF button to Off.

Based on your choice, the web console either removes or disables the interface from the bond and you can see it back in the Networking section as standalone interface.

7.1.6. Removing or disabling a bond using the web console

This section describes how to remove or disable a network bond using the web console. If you disable the bond, the interfaces stay in the bond, but the bond will not be used for network traffic.

Prerequisites

- There is an existing bond in the web console.

Procedure

1. Log in to the web console.

 For details, see Logging in to the web console.

2. Open Networking.

3. Click the bond you want to remove.

4. In the bond settings screen, you can disable the bond with the ON/OFF button or click the Delete button to remove the bond permanently.

You can go back to Networking and verify that all the interfaces from the bond are now standalone interfaces.

7.2. CONFIGURING NETWORK TEAMS USING THE WEB CONSOLE

This section describes how network bonding works, what are the differences between network teams and network bonds, and what are the possibilities of configuration in the web console. Additionally you can find guidelines for:
● Adding a new network team
● Adding new interfaces to an existing network team
● Removing interfaces from an existing network team
● Removing a network team

7.2.1. Understanding network teaming

Network teaming is a feature that combines or aggregates network interfaces to provide a logical interface with higher throughput or redundancy.

Network teaming uses a kernel driver to implement fast handling of packet flows, as well as user-space libraries and services for other tasks. This way, network teaming is an easily extensible and scalable solution for load-balancing and redundancy requirements.

Note that in the context of network teaming, the term **port** is also known as **slave**. In the **teamd** service, the term **port** is preferred while in the **NetworkManager** service, the term **slave** refers to interfaces which create a team.

IMPORTANT

Certain network teaming features, such as the fail-over mechanism, do not support direct cable connections without a network switch. For further details, see Is bonding supported with direct connection using crossover cables?

7.2.2. Comparison of network teaming and bonding features

The following table compares features supported in network teams and network bonds:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Network bond</th>
<th>Network team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast Tx policy</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Round-robin Tx policy</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Active-backup Tx policy</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LACP (802.3ad) support</td>
<td>Yes (active only)</td>
<td>Yes</td>
</tr>
<tr>
<td>Hash-based Tx policy</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>User can set hash function</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Tx load-balancing support (TLB)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LACP hash port select</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Load-balancing for LACP support</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Feature</td>
<td>Network bond</td>
<td>Network team</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Ethtool link monitoring</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ARP link monitoring</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NS/NA (IPv6) link monitoring</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Ports up/down delays</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Port priorities and stickiness ("primary" option enhancement)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Separate per-port link monitoring setup</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiple link monitoring setup</td>
<td>Limited</td>
<td>Yes</td>
</tr>
<tr>
<td>Lockless Tx/Rx path</td>
<td>No (rwlock)</td>
<td>Yes (RCU)</td>
</tr>
<tr>
<td>VLAN support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>User-space runtime control</td>
<td>Limited</td>
<td>Yes</td>
</tr>
<tr>
<td>Logic in user-space</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Extensibility</td>
<td>Hard</td>
<td>Easy</td>
</tr>
<tr>
<td>Modular design</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Performance overhead</td>
<td>Low</td>
<td>Very low</td>
</tr>
<tr>
<td>D-Bus interface</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiple device stacking</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Zero config using LLDP</td>
<td>No</td>
<td>(in planning)</td>
</tr>
<tr>
<td>NetworkManager support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

7.2.3. Adding a new team using the web console

This procedure describes how to configure a new active backup network team on two or more network interfaces using the web console.

Prerequisites

- Two or more network cards installed on the server.
The network cards are connected to a switch.

Procedure

1. Log in to the web console. For details, see Logging in to the web console.

2. Go to the Networking tab.

3. Click the Add Team button.

4. In the Team Settings area, configure parameters for the new team:
 a. Add a name for your team device to the Name field.
 b. In the Ports field, select all network interfaces you want to add to the team.
 c. In the Runner drop down menu, select the runner.
 d. In the Link Watch drop down menu select a link watcher.
 i. If you select Ethtool, additionally, set a link up delay and a link down delay.
 ii. If you select ARP Ping or NSNA Ping, additionally, set a ping interval and ping target.

5. Click Apply

Verification steps
1. Go to the **Networking** tab and check if the **Sending** and **Receiving** columns in the Interfaces table display a network activity.

![Networking tab and Interfaces table](image)

Additional resources

- Network team runners

7.2.4. Adding new interfaces to the team using the web console

Network teams can include multiple interfaces and it is possible to add or remove any of them at any time. The following section describes how to add a new network interface to an existing team.

Prerequisites

- A network team with is configured.

Procedure

1. Log in to the web console. For details, see [Logging in to the web console](#).
2. Switch to the **Networking** tab.
3. In the **Interfaces** table, click on the team you want to configure.
4. In the team settings window, scroll down to the **Ports** table.
5. Click on the + icon.
6. Select the interface you wish to add from the drop down list.

![Ports table](image)

The RHEL 8 web console adds the interface to the team.

7.2.5. Removing or disabling an interface from the team using the web console
Network teams can include multiple interfaces. If you need to change a device, you can remove or disable particular interfaces from the network team, which will work together with the rest of active interfaces.

There are two options how to stop using an interface included in a team:

- Removing the interface from the team
- Temporarily disabling the interface. The interface then stays a part of the team, but the team will not use it until you enable it again.

Prerequisites

- A network team with multiple interfaces exists on the host.

Procedure

1. Log in to the RHEL web console. For details, see Logging in to the web console.
2. Switch to the Networking tab.
3. Click the team you want to configure.
4. In the team settings window, scroll down to the table of ports (interfaces).
5. Select an interface and remove or disable it.
 a. Switch the ON/OFF button to Off to disable the interface.
 b. Click the - icon to remove the interface.

Based on your choice, the web console either removes or disables the interface. If you remove the interface, it will be available in Networking as a standalone interface.

7.2.6. Removing or disabling a team using the web console

This section describes how to remove or disable a network team using the web console. If you only disable the team, interfaces in the team will stay in it but the team will not be used for network traffic.

Prerequisites

- A network team is configured on the host.

Procedure
1. Log in to the web console.
 For details, see Logging in to the web console.

2. Switch to the Networking tab.

3. Click the team you wish to remove or disable.

4. Remove or disable the selected team.
 a. You can remove the team by clicking the Delete button.
 b. You can disable the team by moving the ON/OFF switch to a disabled position.

Verification steps

- If you removed the team, go to Networking, and verify that all the interfaces from your team are now listed as standalone interfaces.

7.3. CONFIGURING NETWORK BRIDGES IN THE WEB CONSOLE

Network bridges are used to connect multiple interfaces to the one subnet with the same range of IP addresses.

7.3.1. Adding bridges in the web console

This section describes creating a software bridge on multiple network interfaces using the web console.

Procedure

1. Log in to the RHEL web console.
 For details, see Logging in to the web console.

2. Open Networking.

3. Click the Add Bridge button.

4. In the Bridge Settings dialog box, enter a name for the new bridge.

5. In the Port field, select interfaces which you want to put to the one subnet.
6. Optionally, you can select the **Spanning Tree protocol (STP)** to avoid bridge loops and broadcast radiation. If you do not have a strong preference, leave the predefined values as they are.

![Bridge Settings](image)

7. Click **Create**.

If the bridge is successfully created, the web console displays the new bridge in the **Networking** section. Check values in the **Sending** and **Receiving** columns in the new bridge row.

If you can see that zero bytes are sent and received through the bridge, the connection does not work correctly and you need to adjust the network settings.

7.3.2. Configuring a static IP address in the web console

IP address for your system can be assigned from the pool automatically by the DHCP server or you can configure the IP address manually. The IP address will not be influenced by the DHCP server settings.
This section describes configuring static IPv4 addresses of a network bridge using the RHEL web console.

Procedure

1. Log in to the RHEL web console.
 For details, see [Logging in to the web console](#).

2. Open the **Networking** section.

3. Click the interface where you want to set the static IP address.

4. In the interface details screen, click the **IPv4** configuration.

5. In the **IPv4 Settings** dialog box, select **Manual** in the **Addresses** drop down list.
6. Click **Apply**.

7. In the **Addresses** field, enter the desired IP address, netmask and gateway.

8. Click **Apply**.

At this point, the IP address has been configured and the interface uses the new static IP address.
7.3.3. Removing interfaces from the bridge using the web console

Network bridges can include multiple interfaces. You can remove them from the bridge. Each removed interface will be automatically changed to the standalone interface.

This section describes removing a network interface from a software bridge created in the RHEL 8 system.

Prerequisites
- Having a bridge with multiple interfaces in your system.

Procedure

1. Log in to the RHEL web console. For details, see [Logging in to the web console](#).
2. Open **Networking**.
3. Click the bridge you want to configure.
4. In the bridge settings screen, scroll down to the table of ports (interfaces).
5. Select the interface and click the - icon.

The RHEL 8 web console removes the interface from the bridge and you can see it back in the Networking section as standalone interface.

7.3.4. Deleting bridges in the web console

You can delete a software network bridge in the RHEL web console. All network interfaces included in the bridge will be changed automatically to standalone interfaces.

Prerequisites

- Having a bridge in your system.

Procedure

1. Log in to the RHEL web console.
 For details, see Logging in to the web console.

2. Open the Networking section.

3. Click the bridge you want to configure.

4. In the bridge settings screen, scroll down to the table of ports.

5. Click Delete.

At this stage, go back to Networking and verify that all the network interfaces are displayed on the Interfaces tab. Interfaces which were part of the bridge can be inactive now. Therefore, you may need to activate them and set network parameters manually.
7.4. CONFIGURING VLANS IN THE WEB CONSOLE

VLANs (Virtual LANs) are virtual networks created on a single physical Ethernet interface.

Each VLAN is defined by an ID which represents a unique positive integer and works as a standalone interface.

The following procedure describes creating VLANs in the RHEL web console.

Prerequisites

- Having a network interface in your system.

Procedure

1. Log in to the RHEL web console. For details, see Logging in to the web console.

2. Open Networking.

3. Click Add VLAN button.

4. In the VLAN Settings dialog box, select the physical interface for which you want to create a VLAN.

5. Enter the VLAN Id or just use the predefined number.

6. In the Name field, you can see a predefined name consisted of the parent interface and VLAN Id. If it is not necessary, leave the name as it is.
7. Click Apply.

The new VLAN has been created and you need to click at the VLAN and configure the network settings.

Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>IP Address</th>
<th>Sending</th>
<th>Receiving</th>
</tr>
</thead>
<tbody>
<tr>
<td>enp0s31f6</td>
<td>10.253.16.25/24</td>
<td>7.66 Kbps</td>
<td>5.47 Kbps</td>
</tr>
<tr>
<td>enp0s31f6.1</td>
<td></td>
<td>Configuring IP</td>
<td></td>
</tr>
<tr>
<td>tun0</td>
<td>10.40.204.27/22</td>
<td>0 bps</td>
<td>0 bps</td>
</tr>
<tr>
<td>virbr0</td>
<td>192.168.122.1/24</td>
<td>0 bps</td>
<td>0 bps</td>
</tr>
<tr>
<td>wlp61s0</td>
<td>10.253.16.39/24</td>
<td>0 bps</td>
<td>0 bps</td>
</tr>
</tbody>
</table>

7.5. CONFIGURING THE WEB CONSOLE LISTENING PORT

Following sections provide information on how to:

- Allow a new port with if you have active SELinux.
- Allow a new port on a firewall in the web console.
- Change the web console port.

7.5.1. Allowing a new port on a system with active SELinux

This procedure enables the web console to listen on a selected port.

Prerequisites

- The web console must be installed and accessible. For details, see Installing the web console.

Procedure

- For ports that are not defined by any other part of SELinux, run:

  ```bash
  $ sudo semanage port -a -t websm_port_t -p tcp PORT_NUMBER
  ```

- For ports that already are defined by other part of SELinux, run:
$ sudo semanage port -m -t websm_port_t -p tcp PORT_NUMBER

The changes should take effect immediately.

7.5.2. Allowing a new port on a system with firewalld

This procedure enables the web console to receive connections on a new port.

Prerequisites

- The web console must be installed and accessible. For details, see Installing the web console.
- The `firewalld` service must be running.

Procedure

1. To add a new port number, run the following command:

 $ sudo firewall-cmd --permanent --service cockpit --add-port=PORT_NUMBER/tcp

2. To remove the old port number from the `cockpit` service, run:

 $ sudo firewall-cmd --permanent --service cockpit --remove-port=OLD_PORT_NUMBER/tcp

 IMPORTANT

 If you only run the `firewall-cmd --service cockpit --add-port=PORT_NUMBER/tcp` without the `--permanent` option, your change will be canceled with the next reload of `firewalld` or a system reboot.

7.5.3. Changing the web console port

The following procedure shows how to change default transmission control protocol (TCP) on port 9090 to a different one.

Prerequisites

- The web console must be installed and accessible. For details, see Installing the web console.
- If you have SELinux protecting your system, you need to set it to allow Cockpit to listen on a new port. For more information, see Allowing a new port on a system with active SELinux.
- If you have `firewalld` configured as your firewall, you need to set it to allow Cockpit receive connections on a new port, for more information, see Allowing a new port on a system with `firewalld`.

Procedure

1. Change the listening port with one of the following methods:

 a. Using the `systemctl edit cockpit.socket` command:

 i. Run the following command:
$ sudo systemctl edit cockpit.socket

This will open the `/etc/systemd/system/cockpit.socket.d/override.conf` file.

ii. Modify the content of `override.conf` or add a new content in the following format:

```
[Socket]
ListenStream=
ListenStream=PORT_NUMBER
```

b. Alternatively, add the above mentioned content to the `/etc/systemd/system/cockpit.socket.d/listen.conf` file.

Create the `cockpit.socket.d` directory and the `listen.conf` file if they do not exist yet.

2. Run the following commands for changes to take effect:

```
$ sudo systemctl daemon-reload
$ sudo systemctl restart cockpit.socket
```

If you used `systemctl edit cockpit.socket` in the previous step, running `systemctl daemon-reload` is not necessary.

Verification steps

- To verify that the change was successful, try to connect to the web console with the new port.
CHAPTER 8. MANAGING FIREWALL USING THE WEB CONSOLE

A firewall is a way to protect machines from any unwanted traffic from outside. It enables users to control incoming network traffic on host machines by defining a set of firewall rules. These rules are used to sort the incoming traffic and either block it or allow through.

Prerequisites

- The RHEL 8 web console configures the `firewalld` service. For details about the `firewalld` service, see Getting started with `firewalld`.

8.1. RUNNING FIREWALL USING THE WEB CONSOLE

This section describes where and how to run the RHEL 8 system firewall in the web console.

NOTE

The RHEL 8 web console configures the `firewalld` service.

Procedure

1. Log in to the RHEL 8 web console. For details, see Logging in to the web console.
2. Open the Networking section.
3. In the Firewall section, click ON to run the firewall.

If you do not see the Firewall box, log in to the web console with the administration privileges.

At this stage, your firewall is running.

To configure firewall rules, see Section 8.7, “Enabling services on the firewall using the web console”.

8.2. STOPPING FIREWALL USING THE WEB CONSOLE

This section describes where and how to stop the RHEL 8 system firewall in the web console.

NOTE

The RHEL 8 web console configures the `firewalld` service.
Procedure

1. Log in to the RHEL 8 web console.
 For details, see Logging in to the web console.

2. Open the Networking section.

3. In the Firewall section, click OFF to stop it.

If you do not see the Firewall box, log in to the web console with the administration privileges.

At this stage, the firewall has been stopped and does not secure your system.

8.3. FIREWALLD

firewalld is a firewall service daemon that provides a dynamic customizable host-based firewall with a D-Bus interface. Being dynamic, it enables creating, changing, and deleting the rules without the necessity to restart the firewall daemon each time the rules are changed.

firewalld uses the concepts of zones and services, that simplify the traffic management. Zones are predefined sets of rules. Network interfaces and sources can be assigned to a zone. The traffic allowed depends on the network your computer is connected to and the security level this network is assigned. Firewall services are predefined rules that cover all necessary settings to allow incoming traffic for a specific service and they apply within a zone.

Services use one or more ports or addresses for network communication. Firewalls filter communication based on ports. To allow network traffic for a service, its ports must be open. firewalld blocks all traffic on ports that are not explicitly set as open. Some zones, such as trusted, allow all traffic by default.

Additional resources

- firewalld(1) man page

8.4. ZONES

firewalld can be used to separate networks into different zones according to the level of trust that the user has decided to place on the interfaces and traffic within that network. A connection can only be part of one zone, but a zone can be used for many network connections.

NetworkManager notifies firewalld of the zone of an interface. You can assign zones to interfaces with:

- NetworkManager
- firewall-config tool
- firewall-cmd command-line tool
The RHEL web console

The latter three can only edit the appropriate NetworkManager configuration files. If you change the zone of the interface using the web console, firewall-cmd or firewall-config, the request is forwarded to NetworkManager and is not handled by firewalld.

The predefined zones are stored in the /usr/lib/firewalld/zones/ directory and can be instantly applied to any available network interface. These files are copied to the /etc/firewalld/zones/ directory only after they are modified. The default settings of the predefined zones are as follows:

block

Any incoming network connections are rejected with an icmp-host-prohibited message for IPv4 and icmp6-adm-prohibited for IPv6. Only network connections initiated from within the system are possible.

dmz

For computers in your demilitarized zone that are publicly-accessible with limited access to your internal network. Only selected incoming connections are accepted.

drop

Any incoming network packets are dropped without any notification. Only outgoing network connections are possible.

external

For use on external networks with masquerading enabled, especially for routers. You do not trust the other computers on the network to not harm your computer. Only selected incoming connections are accepted.

home

For use at home when you mostly trust the other computers on the network. Only selected incoming connections are accepted.

internal

For use on internal networks when you mostly trust the other computers on the network. Only selected incoming connections are accepted.

public

For use in public areas where you do not trust other computers on the network. Only selected incoming connections are accepted.

trusted

All network connections are accepted.

work

For use at work where you mostly trust the other computers on the network. Only selected incoming connections are accepted.

One of these zones is set as the default zone. When interface connections are added to NetworkManager, they are assigned to the default zone. On installation, the default zone in firewalld is set to be the public zone. The default zone can be changed.

NOTE

The network zone names should be self-explanatory and to allow users to quickly make a reasonable decision. To avoid any security problems, review the default zone configuration and disable any unnecessary services according to your needs and risk assessments.
8.5. ZONES IN THE WEB CONSOLE

IMPORTANT

Firewall zones are new in the RHEL 8.1.0 Beta.

The Red Hat Enterprise Linux web console implements major features of the firewalld service and enables you to:

- Add predefined firewall zones to a particular interface or range of IP addresses
- Configure zones with selecting services into the list of enabled services
- Disable a service by removing this service from the list of enabled service
- Remove a zone from an interface

8.6. ENABLING ZONES USING THE WEB CONSOLE

The web console enables you to apply predefined and existing firewall zones on a particular interface or a range of IP addresses. This section describes how to enable a zone on an interface.

Prerequisites

- The RHEL 8 web console has been installed.
 For details, see Installing the web console.

- The firewall must be enabled.
 For details, see Section 8.1, “Running firewall using the web console”.

Procedure

1. Log in to the RHEL web console with administration privileges.
 For details, see Logging in to the web console.

2. Click Networking.

3. Click on the Firewall box title.

 ![Firewall]

 If you do not see the Firewall box, log in to the web console with the administrator privileges.
4. In the **Firewall** section, click **Add Services**.

5. Click on the **Add Zone** button.

6. In the **Add Zone** dialog box, select a zone from the **Trust level** scale. You can see here all zones predefined in the firewalld service.

7. In the **Interfaces** part, select an interface or interfaces on which the selected zone is applied.

8. In the **Allowed Addresses** part, you can select whether the zone is applied on:
 - the whole subnet
 - or a range of IP addresses in the following format:
 - 192.168.1.0
 - 192.168.1.0/24
 - 192.168.1.0/24, 192.168.1.0

9. Click on the **Add zone** button.

 ![Add Zone dialog box](image)

Verify the configuration in **Active zones**.

![Active zones table](image)
8.7. ENABLING SERVICES ON THE FIREWALL USING THE WEB CONSOLE

By default, services are added to the default firewall zone. If you use more firewall zones on more network interfaces, you must select a zone first and then add the service with port.

The RHEL 8 web console displays predefined firewalld services and you can add them to active firewall zones.

IMPORTANT

The RHEL 8 web console configures the firewalld service.

The web console does not allow generic firewalld rules which are not listed in the web console.

Prerequisites

- The RHEL 8 web console has been installed. For details, see *Installing the web console*.
- The firewall must be enabled. For details, see *Section 8.1, “Running firewall using the web console”*.

Procedure

1. Log in to the RHEL web console with administrator privileges. For details, see *Logging in to the web console*.

2. Click **Networking**.

3. Click on the **Firewall** box title.

 ![Firewall box](image)

 If you do not see the Firewall box, log in to the web console with the administrator privileges.

4. In the Firewall section, click **Add Services**.
5. In the **Add Services** dialog box, select a zone for which you want to add the service. The **Add Services** dialog box includes a list of active firewall zones only if the system includes multiple active zones.

 If the system uses just one (the default) zone, the dialog does not include zone settings.

6. In the **Add Services** dialog box, find the service you want to enable on the firewall.

7. Enable desired services.
8. Click Add Services.

At this point, the RHEL 8 web console displays the service in the list of Allowed Services.

8.8. CONFIGURING CUSTOM PORTS USING THE WEB CONSOLE

The web console allows you to add:

- Services listening on standard ports: Section 8.7, “Enabling services on the firewall using the web console”
- Services listening on custom ports.

This section describes how to add services with custom ports configured.

Prerequisites

- The RHEL 8 web console has been installed. For details, see Installing the web console.
- The firewall must be enabled. For details, see Section 8.1, “Running firewall using the web console”.

Procedure
1. Log in to the RHEL web console with administrator privileges. For details, see Logging in to the web console.

2. Click Networking.

3. Click on the Firewall box title.

If you do not see the Firewall box, log in to the web console with the administration privileges.

4. In the Firewall section, click Add Services.

5. In the Add Services dialog box, select a zone for which you want to add the service. The Add Services dialog box includes a list of active firewall zones only if the system includes multiple active zones.

 If the system uses just one (the default) zone, the dialog does not include zone settings.

6. In the Add Ports dialog box, click on the Custom Ports radio button.

7. In the TCP and UDP fields, add ports according to examples. You can add ports in the following formats:

 - Port numbers such as 22
 - Range of port numbers such as 5900-5910
 - Aliases such as nfs, rsync
NOTE
You can add multiple values into each field. Values must be separated with the comma and without the space, for example: 8080,8081,http

8. After adding the port number in the **TCP** and/or **UDP** fields, verify the service name in the **Name** field.

The **Name** field displays the name of the service for which is this port reserved. You can rewrite the name if you are sure that this port is free to use and no server needs to communicate on this port.

9. In the **Name** field, add a name for the service including defined ports.

10. Click on the **Add Ports** button.

To verify the settings, go to the **Firewall** page and find the service in the list of **Allowed Services**.

8.9. DISABLING ZONES USING THE WEB CONSOLE
This section describes how to disable a firewall zone in your firewall configuration using the web console.

Prerequisites

- The RHEL 8 web console has been installed. For details, see [Installing the web console](#).

Procedure

1. Log in to the RHEL web console with administrator privileges. For details, see [Logging in to the web console](#).
2. Click **Networking**.
3. Click on the **Firewall** box title.
4. On the **Active zones** table, click on the **Delete** icon at the zone you want to remove.

If you do not see the **Firewall** box, log in to the web console with the administrator privileges.

The zone is now disabled and the interface does not include opened services and ports which were configured in the zone.
CHAPTER 9. MANAGING PARTITIONS USING THE WEB CONSOLE

The web console enables you to manage file systems on RHEL 8 systems.

For details about the available file systems, see the Overview of available file systems.

This chapter describes the following file system configurations:

- Displaying partitions
- Creating partitions
- Deleting partitions
- Mounting and unmounting file systems

9.1. DISPLAYING PARTITIONS FORMATTED WITH FILE SYSTEMS IN THE WEB CONSOLE

The Storage section in the web console displays all available file systems in the Filesystems table.

This section navigates you to get to the list of partitions formatted with file systems displayed in the web console.

Prerequisites

- The cockpit-storaged package is installed on your system.
- The web console must be installed and accessible.
 For details, see Installing the web console.

Procedure

1. Log in to the RHEL web console.
 For details, see Logging in to the web console.

2. Click on the Storage tab.

In the Filesystems table, you can see all available partitions formatted with file systems, its name, size and how much space is available on each partition.
9.2. CREATING PARTITIONS IN THE WEB CONSOLE

To create a new partition:

- Use an existing partition table
- Create a partition

Prerequisites

- The `cockpit-storaged` package is installed on your system.
- The web console must be installed and accessible. For details, see Installing the web console.
- An unformatted volume connected to the system visible in the Other Devices table of the Storage tab.

Procedure

1. Log in to the RHEL web console. For details, see Logging in to the web console.
2. Click the Storage tab.
3. In the **Other Devices** table, click a volume in which you want to create the partition.

4. In the **Content** section, click the **Create Partition** button.

5. In the **Create partition** dialog box, select the size of the new partition.

6. In the **Erase** drop down menu, select:
 - **Don’t overwrite existing data**— the RHEL web console rewrites only the disk header. Advantage of this option is speed of formatting.
 - **Overwrite existing data with zeros**— the RHEL web console rewrites the whole disk with zeros. This option is slower because the program has to go through the whole disk, but it is more secure. Use this option if the disk includes any data and you need to overwrite it.

7. In the **Type** drop down menu, select a file system:
 - **XFS** file system supports large logical volumes, switching physical drives online without outage, and growing an existing file system. Leave this file system selected if you do not have a different strong preference.
 - **ext4** file system supports:
 - Logical volumes
 - Switching physical drives online without outage
 - Growing a file system
 - Shrinking a file system

 Additional option is to enable encryption of partition done by LUKS (Linux Unified Key Setup), which allows you to encrypt the volume with a passphrase.

8. In the **Name** field, enter the logical volume name.

9. In the **Mounting** drop down menu, select **Custom**. The **Default** option does not ensure that the file system will be mounted on the next boot.

10. In the **Mount Point** field, add the mount path.

11. Select **Mount at boot**.

12. Click the **Create partition** button.
Formatting can take several minutes depending on the volume size and which formatting options are selected.

After the formatting has completed successfully, you can see the details of the formatted logical volume on the **Filesystem** tab.

To verify that the partition has been successfully added, switch to the **Storage** tab and check the **Filesystems** table.

9.3. DELETING PARTITIONS IN THE WEB CONSOLE

This paragraph is the procedure module introduction: a short description of the procedure.

Prerequisites

- The **cockpit-storaged** package is installed on your system.

- The web console must be installed and accessible. For details, see [Installing the web console](#).

- Unmount the partition’s file system. For details about mounting and unmounting partitions, see [Section 9.4, “Mounting and unmounting file systems in the web console”](#).
Procedure

1. Log in to the RHEL web console. For details, see Logging in to the web console.

2. Click on the Storage tab.

3. In the Filesystems table, select a volume in which you want to delete the partition.

4. In the Content section, click on the partition you want to delete.

```
<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>UUID</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>512 MiB ext4 File System</td>
<td>/dev/nvme0n1p1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 GiB Encrypted data</td>
<td>/dev/nvme0n1p2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.0 GiB ext4 File System</td>
<td>/dev/mapper/luks-20bca9d6-0fb1-4bb8-8643-5f915415dea8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.00 GiB Encrypted data</td>
<td>/dev/nvme0n1p3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 GiB Swap Space</td>
<td>/dev/mapper/luks-01afe0d46-ab21-4037-8927-6c01a7ae1d0c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>198 GiB Extended Partition</td>
<td>/dev/nvme0n1p4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>198 GiB Encrypted data</td>
<td>/dev/nvme0n1p5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>198 GiB ext4 File System</td>
<td>/dev/mapper/luks-913540eb-284e-4e56-8f58-572e6f4a8cfe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

5. The partition rolls down and you can click on the Delete button.

The partition must not be mounted and used.

To verify that the partition has been successfully removed, switch to the Storage tab and check the Content table.

9.4. MOUNTING AND UNMOUNTING FILE SYSTEMS IN THE WEB CONSOLE

To be able to use partitions on RHEL systems, you need to mount a filesystem on the partition as a device.
NOTE

You also can unmount a file system and the RHEL system will stop using it. Unmounting the file system enables you to delete, remove, or re-format devices.

Prerequisites

- The cockpit-storaged package is installed on your system.
- The web console must be installed and accessible. For details, see Installing the web console.
- If you want to unmount a file system, ensure that the system does not use any file, service, or application stored in the partition.

Procedure

1. Log in to the RHEL web console. For details, see Logging in to the web console.
2. Click on the Storage tab.
3. In the Filesystems table, select a volume in which you want to delete the partition.
4. In the Content section, click on the partition whose file system you want to mount or unmount.
5. Click on the Mount or Unmount button.

At this point, the file system has been mounted or unmounted according to your action.
CHAPTER 10. MANAGING STORAGE DEVICES IN THE WEB CONSOLE

You can use the RHEL 8 web console to configure physical and virtual storage devices. This chapter provides instructions for these devices:

- Mounted NFS
- Logical Volumes
- RAID
- VDO

Prerequisites

- The RHEL 8 web console has been installed. For details, see Installing the web console.
- The **cockpit-storaged** package is installed on your system.

10.1. MANAGING NFS MOUNTS IN THE WEB CONSOLE

The RHEL 8 web console enables you to mount remote directories using the Network File System (NFS) protocol.

NFS makes it possible to reach and mount remote directories located on the network and work with the files as if the directory was located on your physical drive.

Prerequisites

- NFS server name or IP address.
- Path to the directory on the remote server.

10.1.1. Connecting NFS mounts in the web console

The following steps aim to help you with connecting a remote directory to your file system using NFS.

Prerequisites

- The **cockpit-storaged** package is installed on your system.
- NFS server name or IP address.
- Path to the directory on the remote server.

Procedure

1. Log in to the RHEL 8 web console. For details, see Logging in to the web console.
2. Click Storage.
3. Click + in the **NFS mounts** section.

4. In the **New NFS Mount** dialog box, enter the server or IP address of the remote server.

5. In the **Path on Server** field, enter the path to the directory you want to mount.

6. In the **Local Mount Point** field, enter the path where you want to find the directory in your local system.

7. Select **Mount at boot**. This ensures that the directory will be reachable also after the restart of the local system.

8. Optionally, select **Mount read only** if you do not want to change the content.

9. Click **Add**.

At this point, you can open the mounted directory and verify that the content is accessible.

To troubleshoot the connection, you can adjust it with the **Custom Mount Options**.

10.1.2. Customizing NFS mount options in the web console

The following section provides you with information on how to edit an existing NFS mount and shows you where to add custom mount options.

Custom mount options can help you to troubleshoot the connection or change parameters of the NFS mount such as changing timeout limits or configuring authentication.
Prerequisites

- The **cockpit-storaged** package is installed on your system.
- NFS mount added.

Procedure

1. Log in to the RHEL 8 web console.
 For details, see [Logging in to the web console](#).

2. Click **Storage**.

3. Click on the NFS mount you want to adjust.

4. If the remote directory is mounted, click **Unmount**.
 The directory must not be mounted during the custom mount options configuration. Otherwise, the web console does not save the configuration and this will cause an error.

5. Click **Edit**.

6. In the **NFS Mount** dialog box, select **Custom mount option**.

7. Enter mount options separated by a comma. For example:
 - **nfsvers=4** – the NFS protocol version number
 - **soft** – type of recovery after an NFS request times out
 - **sec=krb5** – files on the NFS server can be secured by Kerberos authentication. Both the NFS client and server have to support Kerberos authentication.
For a complete list of the NFS mount options, enter `man nfs` in the command line.

8. Click **Apply**.

9. Click **Mount**.

Now you can open the mounted directory and verify that the content is accessible.

10.2. MANAGING REDUNDANT ARRAYS OF INDEPENDENT DISKS IN THE WEB CONSOLE

Redundant Arrays of Independent Disks (RAID) represents a way how to arrange more disks into one storage.

RAID protects data stored in the disks against disk failure with the following data distribution strategies:

- **Mirroring** – data are copied to two different locations. If one disk fails, you have a copy and your data is not lost.
- **Striping** – data are evenly distributed among disks.

Level of protection depends on the RAID level.

The RHEL web console supports the following RAID levels:

- RAID 0 (Stripe)
- RAID 1 (Mirror)
- RAID 4 (Dedicated parity)
• RAID 5 (Distributed parity)
• RAID 6 (Double Distributed Parity)
• RAID 10 (Stripe of Mirrors)

Before you can use disks in RAID, you need to:

• Create a RAID.
• Format it with file system.
• Mount the RAID to the server.

Prerequisites

• The RHEL 8 web console is running and accessible. For details, see Installing the web console.

10.2.1. Creating RAID in the web console

This procedure aims to help you with configuring RAID in the RHEL 8 web console.

Prerequisites

• The cockpit-storaged package is installed on your system.
• Physical disks connected to the system. Each RAID level requires different amount of disks.

Procedure

1. Open the RHEL 8 web console.
2. Click Storage.
3. Click the + icon in the RAID Devices box.

```
<table>
<thead>
<tr>
<th>RAID Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>No storage set up as RAID</td>
</tr>
</tbody>
</table>
```

4. In the Create RAID Device dialog box, enter a name for a new RAID.
5. In the RAID Level drop-down list, select a level of RAID you want to use.
6. In the Chunk Size drop-down list, leave the predefined value as it is.
 The Chunk Size value specifies how large is each block for data writing. If the chunk size is 512 KiB, the system writes the first 512 KiB to the first disk, the second 512 KiB is written to the second disk, and the third chunk will be written to the third disk. If you have three disks in your RAID, the fourth 512 KiB will be written to the first disk again.
7. Select disks you want to use for RAID.
8. Click **Create**.

In the **Storage** section, you can see the new RAID in the **RAID devices** box and format it.

Now you have the following options how to format and mount the new RAID in the web console:

- Formatting RAID
- Creating partitions on partition table
- Creating a volume group on top of RAID

10.2.2. Formatting RAID in the web console

This section describes formatting procedure of the new software RAID device which is created in the RHEL 8 web interface.

Prerequisites

- The **cockpit-storaged** package is installed on your system.
- Physical disks are connected and visible by RHEL 8.
- RAID is created.
- Consider the file system which will be used for the RAID.
- Consider creating of a partitioning table.

Procedure
1. Open the RHEL 8 web console.

2. Click **Storage**.

3. In the **RAID devices** box, choose the RAID you want to format by clicking on it.

4. In the RAID details screen, scroll down to the **Content** part.

5. Click to the newly created RAID.

6. Click the **Format** button.

7. In the **Erase** drop-down list, select:
 - **Don’t overwrite existing data**— the RHEL web console rewrites only the disk header. Advantage of this option is speed of formatting.
 - **Overwrite existing data with zeros**— the RHEL web console rewrites the whole disk with zeros. This option is slower because the program has to go through the whole disk. Use this option if the RAID includes any data and you need to rewrite it.

8. In the **Type** drop-down list, select a XFS file system, if you do not have another strong preference.

9. Enter a name of the file system.

10. In the **Mounting** drop down list, select **Custom**. The **Default** option does not ensure that the file system will be mounted on the next boot.

11. In the **Mount Point** field, add the mount path.

12. Select **Mount at boot**.
12. Select Mount at boot.

Format /dev/md/myraid5

<table>
<thead>
<tr>
<th>Erase</th>
<th>Don't overwrite existing data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>XFS - Red Hat Enterprise Linux 7 default</td>
</tr>
<tr>
<td>Name</td>
<td>myraidfs</td>
</tr>
<tr>
<td>Mounting</td>
<td>Custom</td>
</tr>
<tr>
<td>Mount Point</td>
<td>/media</td>
</tr>
<tr>
<td>Mount options</td>
<td></td>
</tr>
</tbody>
</table>
 - Mount at boot
 - Mount read only
 - Custom mount options |

Formatting a storage device will erase all data on it.

13. Click the Format button.

Formatting can take several minutes depending on the used formatting options and size of RAID.

After successful finish, you can see the details of the formatted RAID on the Filesystem tab.

14. To use the RAID, click Mount.

At this point, the system uses mounted and formatted RAID.

10.2.3. Using the web console for creating a partition table on RAID

RAID requires formatting as any other storage device. You have two options:

- Format the RAID device without partitions
- Create a partition table with partitions
This section describes formatting RAID with the partition table on the new software RAID device created in the RHEL 8 web interface.

Prerequisites

- The `cockpit-storaged` package is installed on your system.
- Physical disks are connected and visible by RHEL 8.
- RAID is created.
- Consider the file system used for the RAID.
- Consider creating a partitioning table.

Procedure

1. Open the RHEL 8 web console.
2. Click Storage.
3. In the RAID devices box, select the RAID you want to edit.
4. In the RAID details screen, scroll down to the Content part.
5. Click to the newly created RAID.
6. Click the Create partition table button.
7. In the Erase drop-down list, select:
 - Don’t overwrite existing data— the RHEL web console rewrites only the disk header. Advantage of this option is speed of formatting.
 - Overwrite existing data with zeros— the RHEL web console rewrites the whole RAID with zeros. This option is slower because the program has to go through the whole RAID. Use this option if RAID includes any data and you need to rewrite it.
8. In the Partitioning drop-down list, select:
 - Compatible with modern system and hard disks > 2TB (GPT) – GUID Partition Table is a modern recommended partitioning system for large RAIDs with more than four partitions.
 - Compatible with all systems and devices (MBR) – Master Boot Record works with disks up to 2 TB in size. MBR also support four primary partitions max.
At this point, the partitioning table has been created and you can create partitions.

For creating partitions, see Using the web console for creating partitions on RAID.

10.2.4. Using the web console for creating partitions on RAID

This section describes creating a partition in the existing partition table.

Prerequisites

- The `cockpit-storaged` package is installed on your system.
- Partition table is created.
 - For details, see Section 10.2.3, “Using the web console for creating a partition table on RAID”

Procedure

1. Open the RHEL 8 web console.
2. Click Storage.
3. In the RAID devices box, click to the RAID you want to edit.
4. In the RAID details screen, scroll down to the Content part.
5. Click to the newly created RAID.
6. Click Create Partition.
7. In the Create partition dialog box, set up the size of the first partition.
8. In the Erase drop-down list, select:
 - Don’t overwrite existing data— the RHEL web console rewrites only the disk header. Advantage of this option is speed of formatting.
 - Overwrite existing data with zeros— the RHEL web console rewrites the whole RAID with zeros. This option is slower because the program have to go through the whole RAID. Use this option if RAID includes any data and you need to rewrite it.
9. In the Type drop-down list, select a XFS file system, if you do not have another strong preference.
10. Enter any name for the file system. Do not use spaces in the name.

11. In the **Mounting** drop down list, select **Custom**. The **Default** option does not ensure that the file system will be mounted on the next boot.

12. In the **Mount Point** field, add the mount path.

13. Select **Mount at boot**.

14. Click **Create partition**.

![Create partition on /dev/md/myraid5](image)

Formatting can take several minutes depending on used formatting options and size of RAID.

After successful finish, you can continue with creating other partitions.

At this point, the system uses mounted and formatted RAID.

10.2.5. Using the web console for creating a volume group on top of RAID

This section shows you how to build a volume group from software RAID.

Prerequisites

- The *cockpit-storaged* package is installed on your system.
- RAID device, which is not formatted and mounted.

Procedure

1. Open the RHEL 8 web console.
2. Click **Storage**.
3. Click the + icon in the **Volume Groups** box.
4. In the **Create Volume Group** dialog box, enter a name for the new volume group.

5. In the **Disks** list, select a RAID device.
 If you do not see the RAID in the list, unmount the RAID from the system. The RAID device must not be used by the RHEL 8 system.

![Create Volume Group dialog box](image)

6. Click **Create**.

The new volume group has been created and you can continue with creating a logical volume.

![Volume Groups](image)

10.3. USING THE WEB CONSOLE FOR CONFIGURING LVM LOGICAL VOLUMES

Red Hat Enterprise Linux 8 supports the LVM logical volume manager. When you install a Red Hat Enterprise Linux 8, it will be installed on LVM automatically created during the installation.
The screenshot shows you a clean installation of the RHEL 8 system with two logical volumes in the RHEL 8 web console automatically created during the installation.

To find out more about logical volumes, follow the sections describing:

- What is logical volume manager and when to use it.
- What are volume groups and how to create them.
- What are logical volumes and how to create them.
- How to format logical volumes.
- How to resize logical volumes.

Prerequisites

- Physical drives, RAID devices, or any other type of block device from which you can create the logical volume.

10.3.1. Logical Volume Manager in the web console

The RHEL 8 web console provides a graphical interface to create LVM volume groups and logical volumes.

Volume groups create a layer between physical and logical volumes. It makes you possible to add or remove physical volumes without influencing logical volume itself. Volume groups appear as one drive with capacity consisting of capacities of all physical drives included in the group.

You can join physical drives into volume groups in the web console.

Logical volumes act as a single physical drive and it is built on top of a volume group in your system.

Main advantages of logical volumes are:
Better flexibility than the partitioning system used on your physical drive.

Ability to connect more physical drives into one volume.

Possibility of expanding (growing) or reducing (shrinking) capacity of the volume on-line, without restart.

Ability to create snapshots.

Additional resources

For details, see Configuring and managing logical volumes.

10.3.2. Creating volume groups in the web console

The following describes creating volume groups from one or more physical drives or other storage devices. Logical volumes are created from volume groups.

Each volume group can include multiple logical volumes.

For details, see Volume groups.

Prerequisites

- Physical drives or other types of storage devices from which you want to create volume groups.

Procedure

1. Log in to the RHEL 8 web console.

2. Click Storage.

3. Click the + icon in the Volume Groups box.

4. In the Name field, enter a name of a group without spaces.

5. Select the drives you want to combine to create the volume group.
It might happen that you cannot see devices as you expected. The RHEL web console displays only unused block devices. Used devices means, for example:

- Devices formatted with a file system
- Physical volumes in another volume group
- Physical volumes being a member of another software RAID device
 If you do not see the device, format it to be empty and unused.

6. Click Create.

The web console adds the volume group in the Volume Groups section. After clicking the group, you can create logical volumes that are allocated from that volume group.

10.3.3. Creating logical volumes in the web console

The following steps describe how to create LVM logical volumes.

Prerequisites

- The cockpit-storaged package is installed on your system.
- Volume group created. For details, see Creating volume groups in the web console.

Procedure

1. Log in to the RHEL 8 web console.
2. Click Storage.
3. Click the volume group in which you want to create logical volumes.

4. Click **Create new Logical Volume**

5. In the **Name** field, enter a name for the new logical volume without spaces.

6. In the **Purpose** drop down menu, select **Block device for filesystems**. This configuration enables you to create a logical volume with the maximum volume size which is equal to the sum of the capacities of all drives included in the volume group.

7. Define the size of the logical volume. Consider:
 - How much space the system using this logical volume will need.
 - How many logical volumes you want to create.

 You do not have to use the whole space. If necessary, you can grow the logical volume later.

8. Click **Create**.

 To verify the settings, click your logical volume and check the details.
At this stage, the logical volume has been created and you need to create and mount a file system with the formatting process.

10.3.4. Formatting logical volumes in the web console

Logical volumes act as physical drives. To use them, you need to format them with a file system.

WARNING

Formatting logical volumes will erase all data on the volume.

The file system you select determines the configuration parameters you can use for logical volumes. For example, some the XFS file system does not support shrinking volumes. For details, see [Resizing logical volumes in the web console](#).

The following steps describe the procedure to format logical volumes.

Prerequisites

- The **cockpit-storaged** package is installed on your system.
- Logical volume created. For details, see [Creating volume groups in the web console](#).

Procedure

1. Log in to the RHEL web console.
2. Click **Storage**.
3. Click the volume group in which the logical volume is placed.
4. Click the logical volume.
5. Click on the **Unrecognized Data** tab.
Logical Volumes

6. Click **Format**.

7. In the **Erase** drop down menu, select:
 - **Don’t overwrite existing data**— the RHEL web console rewrites only the disk header. Advantage of this option is speed of formatting.
 - **Overwrite existing data with zeros**— the RHEL web console rewrites the whole disk with zeros. This option is slower because the program have to go through the whole disk. Use this option if the disk includes any data and you need to overwrite it.

8. In the **Type** drop down menu, select a file system:
 - **XFS** file system supports large logical volumes, switching physical drives online without outage, and growing an existing file system. Leave this file system selected if you do not have a different strong preference.
 XFS does not support reducing the size of a volume formatted with an XFS file system
 - **ext4** file system supports:
 - Logical volumes
 - Switching physical drives online without outage
 - Growing a file system
 - Shrinking a file system

 You can also select a version with the LUKS (Linux Unified Key Setup) encryption, which allows you to encrypt the volume with a passphrase.

9. In the **Name** field, enter the logical volume name.

10. In the **Mounting** drop down menu, select **Custom**.
 The **Default** option does not ensure that the file system will be mounted on the next boot.

11. In the **Mount Point** field, add the mount path.

12. Select **Mount at boot**.
13. Click **Format**.
Formatting can take several minutes depending on the volume size and which formatting options are selected.

After the formatting has completed successfully, you can see the details of the formatted logical volume on the **Filesystem** tab.

14. To use the logical volume, click **Mount**.

At this point, the system can use mounted and formatted logical volume.

10.3.5. Resizing logical volumes in the web console

This section describes how to resize logical volumes. You can extend or even reduce logical volumes. Whether you can resize a logical volume depends on which file system you are using. Most file systems enable you to extend (grow) the volume online (without outage).

You can also reduce (shrink) the size of logical volumes, if the logical volume contains a file system which supports shrinking. It should be available, for example, in the ext3/ext4 file systems.
WARNING

You cannot reduce volumes that contains GFS2 or XFS filesystem.

Prerequisites

- The `cockpit-storaged` package is installed on your system.
- Existing logical volume containing a file system which supports resizing logical volumes.

Procedure

The following steps provide the procedure for growing a logical volume without taking the volume offline:

1. Log in to the RHEL web console.
2. Click Storage.
3. Click the volume group in which the logical volume is placed.
4. Click the logical volume.
5. On the Volume tab, click Grow.
6. In the Grow Logical Volume dialog box, adjust volume space.
7. Click Grow.

LVM grows the logical volume without system outage.

10.3.6. Related information

- For more details on creating logical volumes, see Configuring and managing logical volumes.

10.4. USING THE WEB CONSOLE FOR CONFIGURING THIN LOGICAL VOLUMES

Thinline-provisioned logical volumes enables you to allocate more space for designated applications or servers than how much space logical volumes actually contain.
For details, see *Thinly-provisioned logical volumes (thin volumes)*.

The following sections describe:

- Creating pools for the thinly provisioned logical volumes.
- Creating thin logical volumes.
- Formatting thin logical volumes.

Prerequisites

- Physical drives or other types of storage devices from which you want to create volume groups.

10.4.1. Creating pools for thin logical volumes in the web console

The following steps show you how to create a pool for thinly provisioned volumes:

Prerequisites

- The `cockpit-storaged` package is installed on your system.
- Volume group created.

Procedure

1. Log in to the RHEL 8 web console.
2. Click *Storage*.
3. Click the volume group in which you want to create thin volumes.
4. Click *Create new Logical Volume*.
5. In the *Name* field, enter a name for the new pool of thin volumes without spaces.
6. In the *Purpose* drop down menu, select *Pool for thinly provisioned volumes* This configuration enables you to create the thin volume.

 ![Create Logical Volume](image)

7. Define the size of the pool of thin volumes. Consider:
 - How many thin volumes you will need in this pool?
• What is the expected size of each thin volume?

You do not have to use the whole space. If necessary, you can grow the pool later.

```
Create Logical Volume
```

<table>
<thead>
<tr>
<th>Name</th>
<th>mypoolforthinvolumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Pool for thinly provisioned volumes</td>
</tr>
<tr>
<td>Size</td>
<td>60 GiB</td>
</tr>
</tbody>
</table>

8. Click **Create**.

The pool for thin volumes has been created and you can add thin volumes.

10.4.2. Creating thin logical volumes in the web console

The following text describes creating a thin logical volume in the pool. The pool can include multiple thin volumes and each thin volume can be as large as the pool for thin volumes itself.

IMPORTANT

Using thin volumes requires regular checkup of actual free physical space of the logical volume.

Prerequisites

- The **cockpit-storaged** package is installed on your system.
- Pool for thin volumes created. For details, see [Creating volume groups in the web console](#).

Procedure

1. Log in to the RHEL 8 web console.
2. Click **Storage**.
3. Click the volume group in which you want to create thin volumes.
4. Click the desired pool.
5. Click **Create Thin Volume**.
6. In the **Create Thin Volume** dialog box, enter a name for the thin volume without spaces.

7. Define the size of the thin volume.

![Create Thin Volume dialog box](image)

8. Click **Create**.

At this stage, the thin logical volume has been created and you need to format it.

10.4.3. Formatting logical volumes in the web console

Logical volumes act as physical drives. To use them, you need to format them with a file system.

WARNING

Formatting logical volumes will erase all data on the volume.

The file system you select determines the configuration parameters you can use for logical volumes. For example, some the XFS file system does not support shrinking volumes. For details, see [Resizing logical volumes in the web console](#).

The following steps describe the procedure to format logical volumes.

Prerequisites

- The `cockpit-storaged` package is installed on your system.
Logical volume created. For details, see Creating volume groups in the web console.

Procedure

1. Log in to the RHEL web console.
2. Click Storage.
3. Click the volume group in which the logical volume is placed.
4. Click the logical volume.
5. Click on the Unrecognized Data tab.

6. Click Format.

7. In the Erase drop down menu, select:
 - **Don't overwrite existing data**— the RHEL web console rewrites only the disk header. Advantage of this option is speed of formatting.
 - **Overwrite existing data with zeros**— the RHEL web console rewrites the whole disk with zeros. This option is slower because the program have to go through the whole disk. Use this option if the disk includes any data and you need to overwrite it.

8. In the Type drop down menu, select a file system:
 - **XFS** file system supports large logical volumes, switching physical drives online without outage, and growing an existing file system. Leave this file system selected if you do not have a different strong preference. XFS does not support reducing the size of a volume formatted with an XFS file system
 - **ext4** file system supports:
 - Logical volumes
 - Switching physical drives online without outage
 - Growing a file system
 - Shrinking a file system

You can also select a version with the LUKS (Linux Unified Key Setup) encryption, which allows you to encrypt the volume with a passphrase.
9. In the **Name** field, enter the logical volume name.

10. In the **Mounting** drop down menu, select **Custom**.
 The **Default** option does not ensure that the file system will be mounted on the next boot.

11. In the **Mount Point** field, add the mount path.

12. Select **Mount at boot**.

13. Click **Format**.
 Formatting can take several minutes depending on the volume size and which formatting options are selected.

 After the formatting has completed successfully, you can see the details of the formatted logical volume on the **Filesystem** tab.

14. To use the logical volume, click **Mount**.

At this point, the system can use mounted and formatted logical volume.

10.5. USING THE WEB CONSOLE FOR CHANGING PHYSICAL DRIVES IN VOLUME GROUPS

The following text describes how to change the drive in a volume group using the RHEL 8 web console.

The change of physical drives consists of the following procedures:
- Adding physical drives from logical volumes.
- Removing physical drives from logical volumes.

Prerequisites

- A new physical drive for replacing the old or broken one.
- The configuration expects that physical drives are organized in a volume group.

10.5.1. Adding physical drives to volume groups in the web console

The RHEL 8 web console enables you to add a new physical drive or other type of volume to the existing logical volume.

Prerequisites

- The `cockpit-storaged` package is installed on your system.
- A volume group must be created.
- A new drive connected to the machine.

Procedure

1. Log in to the RHEL 8 web console.
2. Click **Storage**.
3. In the **Volume Groups** box, click the volume group in which you want to add a physical volume.
4. In the **Physical Volumes** box, click the + icon.
5. In the **Add Disks** dialog box, select the preferred drive and click **Add**.

As a result, the RHEL 8 web console adds the physical volume. You can see it in the **Physical Volumes** section, and the logical volume can immediately start to write on the drive.
10.5.2. Removing physical drives from volume groups in the web console

If a logical volume includes multiple physical drives, you can remove one of the physical drives online.

The system moves automatically all data from the drive to be removed to other drives during the removal process. Notice that it can take some time.

The web console also verifies, if there is enough space for removing the physical drive.

Prerequisites

- The cockpit-storaged package is installed on your system.
- A volume group with more than one physical drive connected.

Procedure

The following steps describe how to remove a drive from the volume group without causing outage in the RHEL web console.

1. Log in to the RHEL 8 web console.
2. Click Storage.
3. Click the volume group in which you have the logical volume.
4. In the Physical Volumes section, locate the preferred volume.
5. Click the - icon.

The RHEL 8 web console verifies, if the logical volume has enough free space for removing the disk. If not, you cannot remove the disk and it is necessary to add another disk first. For details, see Adding physical drives to logical volumes in the web console.

As results, the RHEL 8 web console removes the physical volume from the created logical volume without causing an outage.

10.6. USING THE WEB CONSOLE FOR MANAGING VIRTUAL DATA OPTIMIZER VOLUMES

This chapter describes the Virtual Data Optimizer (VDO) configuration using the RHEL 8 web console. After reading it, you will be able to:

- Create VDO volumes
- Format VDO volumes
Extend VDO volumes

Prerequisites

- The RHEL 8 web console is installed and accessible.
 For details, see Installing the web console.

10.6.1. VDO volumes in the web console

Red Hat Enterprise Linux 8 supports Virtual Data Optimizer (VDO). VDO is a block virtualization technology that combines:

Compression
 For details, see Enabling or disabling compression in VDO.

Deduplication
 For details, see Enabling or disabling deduplication in VDO.

Thin provisioning
 For details, see Thinly-provisioned logical volumes (thin volumes).

Using these technologies, VDO:

- Saves storage space inline
- Compresses files
- Eliminates duplications
- Enables you to allocate more virtual space than how much the physical or logical storage provides
- Enables you to extend the virtual storage by growing

VDO can be created on top of many types of storage. In the RHEL 8 web console, you can configure VDO on top of:

- LVM

 NOTE

 It is not possible to configure VDO on top of thinly-provisioned volumes.

- Physical volume
- Software RAID

For details about placement of VDO in the Storage Stack, see System Requirements.

Additional resources

- For details about VDO, see Deduplicating and compressing storage.

10.6.2. Creating VDO volumes in the web console
This section helps you to create a VDO volume in the RHEL web console.

Prerequisites

- The **cockpit-storaged** package is installed on your system.
- Physical drives, LVMs, or RAID from which you want to create VDO.

Procedure

1. Log in to the RHEL 8 web console. For details, see [Logging in to the web console](#).
2. Click **Storage**.
3. Click the + icon in the **VDO Devices** box.
4. In the **Name** field, enter a name of a VDO volume without spaces.
5. Select the drive that you want to use.
6. In the **Logical Size** bar, set up the size of the VDO volume. You can extend it more than ten times, but consider for what purpose you are creating the VDO volume:
 - For active VMs or container storage, use logical size that is ten times the physical size of the volume.
 - For object storage, use logical size that is three times the physical size of the volume.
 For details, see [Deploying VDO](#).
7. In the **Index Memory** bar, allocate memory for the VDO volume. For details about VDO system requirements, see [System Requirements](#).
8. Select the **Compression** option. This option can efficiently reduce various file formats. For details, see [Enabling or disabling compression in VDO](#).
9. Select the **Deduplication** option. This option reduces the consumption of storage resources by eliminating multiple copies of duplicate blocks. For details, see [Enabling or disabling deduplication in VDO](#).
10. [Optional] If you want to use the VDO volume with applications that need a 512 bytes block size, select **Use 512 Byte emulation**. This reduces the performance of the VDO volume, but should be very rarely needed. If in doubt, leave it off.
11. Click **Create**.
If the process of creating the VDO volume succeeds, you can see the new VDO volume in the Storage section and format it with a file system.

10.6.3. Formatting VDO volumes in the web console

VDO volumes act as physical drives. To use them, you need to format them with a file system.

WARNING

Formatting VDO will erase all data on the volume.

The following steps describe the procedure to format VDO volumes.

Prerequisites

- The cockpit-storaged package is installed on your system.
A VDO volume is created. For details, see Section 10.6.2, "Creating VDO volumes in the web console".

Procedure

1. Log in to the RHEL 8 web console. For details, see Logging in to the web console.

2. Click Storage.

3. Click the VDO volume.

4. Click on the Unrecognized Data tab.

5. Click Format.

6. In the Erase drop down menu, select:

 Don’t overwrite existing data

 The RHEL web console rewrites only the disk header. The advantage of this option is the speed of formatting.

 Overwrite existing data with zeros

 The RHEL web console rewrites the whole disk with zeros. This option is slower because the program has to go through the whole disk. Use this option if the disk includes any data and you need to rewrite them.

7. In the Type drop down menu, select a filesystem:

 - The XFS file system supports large logical volumes, switching physical drives online without outage, and growing. Leave this file system selected if you do not have a different strong preference.
 XFS does not support shrinking volumes. Therefore, you will not be able to reduce volume formatted with XFS.

 - The ext4 file system supports logical volumes, switching physical drives online without outage, growing, and shrinking.

 You can also select a version with the LUKS (Linux Unified Key Setup) encryption, which allows you to encrypt the volume with a passphrase.

8. In the Name field, enter the logical volume name.

9. In the Mounting drop down menu, select Custom. The Default option does not ensure that the file system will be mounted on the next boot.

10. In the Mount Point field, add the mount path.
11. Select **Mount at boot**

12. Click **Format**.

 Formatting can take several minutes depending on the used formatting options and the volume size.

 After a successful finish, you can see the details of the formatted VDO volume on the **Filesystem** tab.

13. To use the VDO volume, click **Mount**.

 At this point, the system uses the mounted and formatted VDO volume.

10.6.4. Extending VDO volumes in the web console

This section describes extending VDO volumes in the RHEL 8 web console.

Prerequisites

- The **cockpit-storaged** package is installed on your system.
- The VDO volume created.
Procedure

1. Log in to the RHEL 8 web console. For details, see Logging in to the web console.

2. Click Storage.

3. Click your VDO volume in the VDO Devices box.

4. In the VDO volume details, click the Grow button.

5. In the Grow logical size of VDO dialog box, extend the logical size of the VDO volume.

Original size of the logical volume from the screenshot was 6 GB. As you can see, the RHEL web console enables you to grow the volume to more than ten times the size and it works correctly because of the compression and deduplication.

6. Click Grow.

If the process of growing VDO succeeds, you can see the new size in the VDO volume details.
10.7. LOCKING DATA WITH LUKS PASSWORD IN THE RHEL WEB CONSOLE

In the web console’s Storage tab, you can now create, lock, unlock, resize, and otherwise configure encrypted devices using the LUKS (Linux Unified Key Setup) version 2 format.

This new version of LUKS offers:

- More flexible unlocking policies
- Stronger cryptography
- Better compatibility with future changes

10.7.1. LUKS disk encryption

The Linux Unified Key Setup-on-disk-format (LUKS) enables you to encrypt block devices and it provides a set of tools that simplifies managing the encrypted devices. LUKS allows multiple user keys to decrypt a master key, which is used for the bulk encryption of the partition.

RHEL utilizes LUKS to perform block device encryption. By default, the option to encrypt the block device is unchecked during the installation. If you select the option to encrypt your disk, the system prompts you for a passphrase every time you boot the computer. This passphrase “unlocks” the bulk encryption key that decrypts your partition. If you choose to modify the default partition table, you can choose which partitions you want to encrypt. This is set in the partition table settings.

What LUKS does

- LUKS encrypts entire block devices and is therefore well-suited for protecting contents of mobile devices such as removable storage media or laptop disk drives.
The underlying contents of the encrypted block device are arbitrary, which makes it useful for encrypting swap devices. This can also be useful with certain databases that use specially formatted block devices for data storage.

- LUKS uses the existing device mapper kernel subsystem.
- LUKS provides passphrase strengthening which protects against dictionary attacks.
- LUKS devices contain multiple key slots, allowing users to add backup keys or passphrases.

What LUKS does not do

- Disk-encryption solutions like LUKS protect the data only when your system is off. Once the system is on and LUKS has decrypted the disk, the files on that disk are available to anyone who would normally have access to them.
- LUKS is not well-suited for scenarios that require many users to have distinct access keys to the same device. The LUKS1 format provides eight key slots, LUKS2 up to 32 key slots.
- LUKS is not well-suited for applications requiring file-level encryption.

Ciphers

The default cipher used for LUKS is `aes-xts-plain64`. The default key size for LUKS is 512 bits. The default key size for LUKS with Anaconda (XTS mode) is 512 bits. Ciphers that are available are:

- Twofish (a 128-bit block cipher)
- Serpent

Additional resources

- [LUKS Project Home Page](https://www.linux-encrypted-filesystems.org/)
- [LUKS On-Disk Format Specification](https://luk-archive.linux-foundation.org/luk-archive/luk-archive/)

10.7.2. Configuring the LUKS passphrase in the web console

If you want to add encryption to an existing logical volume on your system, you can only do so through formatting the volume.

Prerequisites

- The web console must be installed and accessible. For details, see [Installing the web console](https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/package_management_and_yum#package-management-overview).
- The `cockpit-storaged` package is installed on your system.
- Available existing logical volume without encryption.

Procedure

1. Log in to the RHEL 8 web console. For details, see [Logging in to the web console](https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/using_the_web_console#logging-in-to-the-web-console).
2. Click **Storage**.

3. Select the storage device you want to format.

4. Click the menu icon and select **Format** option.

5. Select the **Encrypt data** box to activate encryption on your storage device.

 ![Encrypt data](image)

 - **Passphrase**
 - **Confirm**
 - **Store passphrase**
 - **Unlock at boot**
 - **Unlock read only**
 - **Custom encryption options**

6. Set and confirm your new passphrase.

8. Finalize formatting settings.

9. Click **Format**.

10.7.3. Changing the LUKS passphrase in the web console

This procedure describes how to change a LUKS passphrase on an encrypted disk or partition in the web console.

Prerequisites

- The web console must be installed and accessible. For details, see [Installing the web console](#).

- The **cockpit-storaged** package is installed on your system.

Procedure

1. Log in to the web console. For details, see [Logging in to the web console](#).

2. Click **Storage**

3. In the Drives table, select the disk with encrypted data.
4. In Content, select the encrypted partition.

5. Click Encryption.

6. In the Keys table, click the pen icon.

7. In the Change passphrase dialog window:
 a. Enter your current passphrase.
 b. Enter your new passphrase.
 c. Confirm your new passphrase.

8. Click Save

10.8. CONFIGURING AUTOMATED UNLOCKING USING A TANG KEY IN THE WEB CONSOLE

Use the following steps to configure automated unlocking of a LUKS-encrypted storage device using a key provided by a Tang server.

Prerequisites

- The cockpit and cockpit-storaged packages are present.
- The cockpit.socket service is running at port 9090.
- The clevis, tang, and clevis-dracut packages are installed.
- A Tang server is running.

Procedure

1. Open the RHEL web console by entering the following address in a web browser:
https://localhost:9090

Replace the localhost part by the remote server’s host name or IP address when you connect to a remote system.

2. Provide your credentials and click Storage. Select an encrypted device and click Encryption in the Content part:

3. Click + in the Keys section to add a Tang key:

4. Provide the address of your Tang server and a password that unlocks the LUKS-encrypted device. Click Add to confirm:

Add Key

Key source
- Passphrase
- Tang keyserver

Keyserver address example.com:80

Disk passphrase

Saving a new passphrase requires unlocking the disk. Please provide a current disk passphrase.
5. The following dialog window provides a command to verify that the key hash matches. RHEL 8.2 introduced the `tang-show-keys` script, and you can obtain the key hash using the following command on the Tang server running on the port 7500:

```
# tang-show-keys 7500
3ZWS6-cDrCG61UPJS2BMmPU4I54
```

On RHEL 8.1 and earlier, obtain the key hash using the following command:

```
# curl -s localhost:7500/adv | jose fmt -j -g payload -y -o- | jose jwk use -i- -r -u verify -o- | jose jwk thp -i-
3ZWS6-cDrCG61UPJS2BMmPU4I54
```

6. Click **Trust key** when the key hashes in the web console and in the output of previously listed commands are the same:

Verify key

Make sure the key hash from the Tang server matches:

3ZWS6-cDrCG61UPJS2BMmPU4I54

Manually check with SSH: `ssh localhost tang-show-keys 7500`

If `tang-show-keys` is not available, run the following:

```
ssh localhost "curl -s localhost:7500/adv |
  jose fmt -j -g payload -y -o- |
  jose jwk use -i- -r -u verify -o- |
  jose jwk thp -i-"
```

7. To enable the early boot system to process the disk binding, click **Terminal** at the bottom of the left navigation bar and enter the following commands:

```
# yum install clevis-dracut
# dracut -fv --regenerate-all
```

Verification steps

1. Check that the newly added Tang key is now listed in the **Keys** section with the **Keyserver** type:
2. Verify that the bindings are available for the early boot, for example:

```
# lsinitrd | grep clevis
clevis
clevis-pin-sss
 clevis-pin-tang
clevis-pin-tpm2
-rwxr-xr-x   1 root     root         1600 Feb 11 16:30 usr/bin/clevis
-rwxr-xr-x   1 root     root         1654 Feb 11 16:30 usr/bin/clevis-decrypt
...
-rwxr-xr-x   2 root     root         1600 Feb 11 16:30 usr/lib/dracut/hooks/initqueue/settled/60-clevis-hook.sh
-rwxr-xr-x   1 root     root         1600 Feb 11 16:30 usr/libexec/clevis-luks-askpass
```

Additional resources

- For more details on automated unlocking of LUKS-encrypted volumes using Clevis and Tang, see the Configuring automated unlocking of encrypted volumes using policy-based decryption chapter.
CHAPTER 11. MANAGING SOFTWARE UPDATES IN THE WEB CONSOLE

The Software Updates module in the web console is based on the `yum` utility. For more information about updating software with `yum`, see the Checking for updates and updating packages section in the Configuring basic system settings title.

11.1. MANAGING MANUAL SOFTWARE UPDATES IN THE WEB CONSOLE

This section describes how to manually update your software using the web console.

Prerequisites

- The web console must be installed and accessible.
 For details, see Installing the web console.

Procedure

1. Log in to the RHEL 8 web console.
 For details, see Logging in to the web console.

2. Click Software Updates.
 The list of available updates refreshes automatically if the last check happened more than 24 hours ago. To trigger a refresh, click the Check for Updates button.

3. Apply updates.
 a. To install all available updates, click the Install all updates button.

 ![Install All Updates]

 You can watch the update log while the update is running.

4. After the system applies updates, you get a recommendation to restart your system.
 We recommend this especially if the update included a new kernel or system services that you do not want to restart individually.

5. Click Ignore to cancel the restart, or Restart Now to proceed with restarting your system.
 After the system restart, log in to the web console and go to the Software Updates page to verify that the update has been successful.

11.2. MANAGING AUTOMATIC SOFTWARE UPDATES IN THE WEB CONSOLE
In the web console, you can choose to apply all updates, or security updates and also manage periodicity and time of your automatic updates.

Prerequisites

- The web console must be installed and accessible. For details, see Installing the web console.

Procedure

1. Log in to RHEL 8 web console. For details, see Logging in to the web console.
2. Click Software Updates.
3. If you want to automatically apply only security updates, click on the Apply all updates drop-down menu and select Apply security updates.
4. To modify day of the automatic update, click on the every day drop-down menu and select a specific day.
5. To modify time of the automatic update, click on the 6:00 drop-down menu and select a specific time.
6. If you want to disable automatic software updates, click on switch next to Automatic Updates to move it to disabled position.
CHAPTER 12. MANAGING SUBSCRIPTIONS IN THE WEB CONSOLE

The RHEL 8 web console can help you to register and manage your subscription for Red Hat Enterprise Linux 8.

To get a subscription for your Red Hat Enterprise Linux, you need to have an account in the Red Hat Customer Portal or an activation key.

This chapter covers:

- Subscription management in the RHEL 8 web console.
- Registering subscriptions for your system in the web console with the Red Hat user name and password.
- Registering subscriptions with the activation key.

Prerequisites

- Purchased subscriptions.
- The system subjected to subscription has to be connected to the Internet because the web console needs to communicate with the Red Hat Customer Portal.

12.1. SUBSCRIPTION MANAGEMENT IN THE WEB CONSOLE

The RHEL 8 web console provides an interface for using Red Hat Subscription Manager installed on your local system. The Subscription Manager connects to the Red Hat Customer Portal and verifies all available:

- Active subscriptions
- Expired subscriptions
- Renewed subscriptions

If you want to renew the subscription or get a different one in Red Hat Customer Portal, you do not have to update the Subscription Manager data manually. The Subscription Manager synchronizes data with Red Hat Customer Portal automatically.

12.2. REGISTERING SUBSCRIPTIONS WITH CREDENTIALS IN THE WEB CONSOLE

Use the following steps to register a newly installed Red Hat Enterprise Linux using the RHEL 8 web console.

Prerequisites

- A valid user account on the Red Hat Customer Portal. See the Create a Red Hat Login page.
- Active subscription for your RHEL system.
Procedure

1. Type subscription in the search field and press the Enter key.

Alternatively, you can log in to the RHEL 8 web console. For details, see Logging in to the web console.

2. In the polkit authentication dialog for privileged tasks, add the password belonging to the user name displayed in the dialog.

3. Click Authenticate.

4. In the Subscriptions dialog box, click Register.
5. Enter your Customer Portal credentials.

![Register System](image)

6. Enter the name of your organization.
 If you have more than one account on the Red Hat Customer Portal, you have to add the organization name or organization ID. To get the org ID, go to your Red Hat contact point.

7. Click the **Register** button.

At this point, your Red Hat Enterprise Linux 8 system has been successfully registered.
12.3. REGISTERING SUBSCRIPTIONS WITH ACTIVATION KEYS IN THE WEB CONSOLE

To register a subscription for Red Hat Enterprise Linux,

Prerequisites

- If you do not have a user account in the portal, your vendor provides you with the activation key.

Procedure

1. Type subscription in the search field and press the `Enter` key.
Alternatively, you can log in to the RHEL 8 web console. For details, see Logging in to the web console.

2. In the authentication dialog, add the system username and password you created during the system installation.

3. Click Authenticate.

4. In the Subscriptions dialog box, click Register.

5. Enter the activation key in the registration form.
6. Enter the name of your organization. You need to add the organization name or organization ID, if you have more than one account in the Red Hat Customer Portal.

To get the org ID, go to your Red Hat contact point.

<table>
<thead>
<tr>
<th>Register System</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL</td>
</tr>
<tr>
<td>Proxy</td>
</tr>
<tr>
<td>Login</td>
</tr>
<tr>
<td>Password</td>
</tr>
<tr>
<td>Activation Key</td>
</tr>
<tr>
<td>Organization</td>
</tr>
</tbody>
</table>

7. Click the **Register** button.

At this point, your RHEL 8 system has been successfully registered.
Subscriptions

Status: Current

System Purpose

Status: Unknown
Usage: Development/Test
Role: Red Hat Enterprise Linux Workstation

Installed products

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Red Hat Enterprise Linux for x86_64 High Touch Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product ID</td>
<td>230</td>
</tr>
<tr>
<td>Version</td>
<td>8.0 HTB</td>
</tr>
<tr>
<td>Arch</td>
<td>x86_64</td>
</tr>
<tr>
<td>Status</td>
<td>Subscribed</td>
</tr>
<tr>
<td>Starts</td>
<td>10/07/2018</td>
</tr>
<tr>
<td>Ends</td>
<td>10/06/2019</td>
</tr>
</tbody>
</table>
CHAPTER 13. CONFIGURING KDUMP IN THE WEB CONSOLE

The following sections provide an overview of how to setup and test the **kdump** configuration through the Red Hat Enterprise Linux web console. The web console is part of a default installation of Red Hat Enterprise Linux 8 and enables or disables the **kdump** service at boot time. Further, the web console conveniently enables you to configure the reserved memory for **kdump**; or to select the **vmcore** saving location in an uncompressed or compressed format.

Prerequisites

- See *Red Hat Enterprise Linux web console* for further details.

13.1. CONFIGURING KDUMP MEMORY USAGE AND TARGET LOCATION IN WEB CONSOLE

The procedure below shows you how to use the **Kernel Dump** tab in the Red Hat Enterprise Linux web console interface to configure the amount of memory that is reserved for the kdump kernel. The procedure also describes how to specify the target location of the vmcore dump file and how to test your configuration.

Prerequisites

- Introduction to operating the **web console**

Procedure

1. Open the **Kernel Dump** tab and start the **kdump** service.
2. Configure the **kdump** memory usage through the **command line**.
3. Click the link next to the **Crash dump location** option.
4. Select the **Local Filesystem** option from the drop-down and specify the directory you want to save the dump in.
Alternatively, select the Remote over SSH option from the drop-down to send the vmcore to a remote machine using the SSH protocol. Fill the Server, ssh key, and Directory fields with the remote machine address, ssh key location, and a target directory.

Another choice is to select the Remote over NFS option from the drop-down and fill the Mount field to send the vmcore to a remote machine using the NFS protocol.

NOTE

Tick the Compression check box to reduce the size of the vmcore file.

5. Test your configuration by crashing the kernel.

WARNING

This step disrupts execution of the kernel and results in a system crash and loss of data.
Additional resources

- For a complete list of currently supported targets for \texttt{kdump}, see \textit{Supported kdump targets}.

- For information on how to configure an SSH server and set up a key-based authentication, see \textit{Using secure communications between two systems with OpenSSH}.
CHAPTER 14. MANAGING VIRTUAL MACHINES IN THE WEB CONSOLE

To manage virtual machines in a graphical interface on a RHEL 8 host, you can use the Virtual Machines pane in the RHEL 8 web console.

The following sections describe the web console’s virtualization management capabilities and provide instructions for using them.

14.1. OVERVIEW OF VIRTUAL MACHINE MANAGEMENT USING THE WEB CONSOLE

The RHEL 8 web console is a web-based interface for system administration. With the installation of a web console plug-in, the web console can be used to manage virtual machines (VMs) on connected servers. It provides a graphical view of VMs on a host system to which the web console can connect, and allows monitoring system resources and adjusting configuration with ease.

For a comprehensive list of VM management actions that the web console provides, see Section 14.3, “Virtual machine management features available in the web console”.

NOTE

The Virtual Machine Manager (virt-manager) application is still supported in RHEL 8 but has been deprecated. The web console is intended to become its replacement in a subsequent release. It is, therefore, recommended that you get familiar with the web console for managing virtualization in a GUI.

However, in RHEL 8, some features may only be accessible from either virt-manager or the command line. For details, see Section 14.4, “Differences between virtualization features in Virtual Machine Manager and the web console”.

For more information on the Virtual Machine Manager, see RHEL 7 documentation.

14.2. SETTING UP THE WEB CONSOLE TO MANAGE VIRTUAL MACHINES

The following sections describe the web console’s virtualization management capabilities and provide instructions for using them.

14.1. OVERVIEW OF VIRTUAL MACHINE MANAGEMENT USING THE WEB CONSOLE

The RHEL 8 web console is a web-based interface for system administration. With the installation of a web console plug-in, the web console can be used to manage virtual machines (VMs) on connected servers. It provides a graphical view of VMs on a host system to which the web console can connect, and allows monitoring system resources and adjusting configuration with ease.

For a comprehensive list of VM management actions that the web console provides, see Section 14.3, “Virtual machine management features available in the web console”.

NOTE

The Virtual Machine Manager (virt-manager) application is still supported in RHEL 8 but has been deprecated. The web console is intended to become its replacement in a subsequent release. It is, therefore, recommended that you get familiar with the web console for managing virtualization in a GUI.

However, in RHEL 8, some features may only be accessible from either virt-manager or the command line. For details, see Section 14.4, “Differences between virtualization features in Virtual Machine Manager and the web console”.

For more information on the Virtual Machine Manager, see RHEL 7 documentation.
Before using the RHEL 8 web console to manage VMs, you must install the web console virtual machine plug-in.

Prerequisites

- Ensure that the web console is installed on your machine.

```bash
$ yum info cockpit
Installed Packages
Name : cockpit
 [...] 
```

If the web console is not installed, see the Managing systems using the web console guide for more information about installing the web console.

Procedure

- Install the `cockpit-machines` plug-in.

```bash
# yum install cockpit-machines
```

If the installation is successful, **Virtual Machines** appears in the web console side menu.

Additional resources

- For instructions on connecting to the web console, as well as other information on using the web console, see the Managing systems using the RHEL 8 web console document.

14.3. VIRTUAL MACHINE MANAGEMENT FEATURES AVAILABLE IN THE WEB CONSOLE

Using the RHEL 8 web console, you can perform the following actions to manage the virtual machines (VMs) on your system.

- Create a VM and install it with a guest operating system. For details, see Creating virtual machines and installing guest operating systems using the web console.
Delete a VM. For details, see Deleting virtual machines using the web console.

Start, shut down, and restart the VM. For details, see Starting virtual machines using the web console and Shutting down and restarting virtual machines using the web console.

Connect to and interact with a VM using a variety of consoles. For details, see Interacting with virtual machines using the web console.

View a variety of information about the VM. For details, see Viewing virtual machine information using the web console.

Adjust the host memory allocated to a VM. For details, see Adding and removing virtual machine memory using the web console.

Manage network connections for the VM. For details, see Using the web console for managing virtual machine network interfaces.

Manage the VM storage available on the host and attach virtual disks to the VM. For details, see Managing storage for virtual machines using the web console.

Configure the virtual CPU settings of the VM. For details, see Managing virtual CPUs using the web console.

14.4. DIFFERENCES BETWEEN VIRTUALIZATION FEATURES IN VIRTUAL MACHINE MANAGER AND THE WEB CONSOLE

The deprecated Virtual Machine Manager (virt-manager) application and its replacement, the RHEL 8 web console, do not have the same functionality. The following table highlights the features that are available in virt-manager but not available in the RHEL 8.0 web console.

If a feature is available in a later version of RHEL 8, the minimum RHEL 8 version appears in the Web console column.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Web console</th>
<th>Alternative method using CLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting a virtual machine to start when the host boots</td>
<td>8.1</td>
<td>virsh autostart</td>
</tr>
<tr>
<td>Suspending a virtual machine</td>
<td>8.1</td>
<td>virsh suspend</td>
</tr>
<tr>
<td>Resuming a suspended virtual machine</td>
<td>8.1</td>
<td>virsh resume</td>
</tr>
<tr>
<td>Task</td>
<td>Version</td>
<td>Command(s)</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Creating new storage pools of the following types:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Filesystem Directory</td>
<td></td>
<td>virsh pool-define</td>
</tr>
<tr>
<td>• Network File System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• iSCSI Target</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Physical Disk Device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• LVM Volume Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creating new storage pools of the following types:</td>
<td>UNAVAIL</td>
<td>virsh pool-define</td>
</tr>
<tr>
<td>• Partition-based</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• GlusterFS-based</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• vHBA-based with SCSI devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Multipath-based</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• RBD-based</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creating a new storage volume</td>
<td>8.1</td>
<td>virsh vol-create</td>
</tr>
<tr>
<td>Adding a new virtual network</td>
<td>8.1</td>
<td>virsh net-create or virsh net-define</td>
</tr>
<tr>
<td>Deleting a virtual network</td>
<td>8.1</td>
<td>virsh net-undefine</td>
</tr>
<tr>
<td>Creating a bridge from a host machine’s interface to a virtual machine</td>
<td>UNAVAIL</td>
<td>virsh iface-bridge</td>
</tr>
<tr>
<td>Creating a snapshot</td>
<td>UNAVAIL</td>
<td>virsh snapshot-create-as</td>
</tr>
<tr>
<td>Reverting to a snapshot</td>
<td>UNAVAIL</td>
<td>virsh snapshot-revert</td>
</tr>
<tr>
<td>Deleting a snapshot</td>
<td>UNAVAIL</td>
<td>virsh snapshot-delete</td>
</tr>
<tr>
<td>Cloning a virtual machine</td>
<td>UNAVAIL</td>
<td>virt-clone</td>
</tr>
<tr>
<td>Migrating a virtual machine to another host machine</td>
<td>UNAVAIL</td>
<td>virsh migrate</td>
</tr>
</tbody>
</table>
CHAPTER 15. MANAGING REMOTE SYSTEMS IN THE WEB CONSOLE

The RHEL 8 web console can connect to remote systems and manage them through the user-friendly web interface. The following chapter describes:

- The optimal topology of connected systems.
- What is the Dashboard.
- How to add and remove remote systems.
- When, why and how to use SSH keys for remote system authentication.

Prerequisites

- Opened the SSH service on remote systems.

15.1. REMOTE SYSTEM MANAGER IN THE WEB CONSOLE

Using the RHEL 8 web console to manage remote systems in the network requires considering the topology of connected servers.

For optimal security, Red Hat recommends the following connection setup:

- Use one system with the web console as a bastion host. The bastion host is a system with opened HTTPS port.
- All other systems communicate through SSH.

With the web interface running on the bastion host, you can reach all other systems through the SSH protocol using port 22 in the default configuration.
15.2. ADDING REMOTE HOSTS TO THE WEB CONSOLE

This section helps you to connect other systems with a user name and password to the Dashboard located in the web console.

The Dashboard is a tool designed for remote server management, where you can add, connect, or remove remote systems.

The Dashboard displays graphs and status for each of the remote systems.

You can add up to 20 remote systems in the Dashboard.
Prerequisites

- The cockpit-dashboard package installed in the system where the web interface is running:

 $ sudo yum install cockpit-dashboard

 The cockpit-dashboard package extends the RHEL 8 web console with the remote system management.

- You need to be logged into the web console with administration privileges.
 For details, see Logging in to the web console.

Procedure

1. In the RHEL 8 web console, go to Dashboard.

2. In the Dashboard, click the Add Server icon.

3. In the Add Machine to Dashboard dialog box, enter the host name or IP address of the remote system.
4. (Optional) Click the **Color** field to change the color of the system in Dashboard.

5. Click **Add**.

6. In the Log in to `<servername>` dialog box, enter the credentials for the remote system. You can use any user account of the remote system. However, if you use credentials of a user account without administration privileges, you will not be able to perform administration tasks.

If you use the same credentials as for your local system, the web console will authenticate remote systems automatically every time you log in. However, using the same credentials on more machines could be a potential security risk.

```
<table>
<thead>
<tr>
<th>Log in to 192.168.122.101</th>
</tr>
</thead>
</table>

Cockpit was unable to log into 192.168.122.101. You can change your authentication credentials below. You may prefer to synchronize accounts and passwords.

<table>
<thead>
<tr>
<th>User name</th>
<th>example.user</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication</td>
<td>Type a password</td>
</tr>
<tr>
<td>Password</td>
<td>***********************</td>
</tr>
</tbody>
</table>

[Log In] [Cancel]
```

7. Click **Log In**.

If the login succeeds the Dashboard adds a new item in the list. To verify the connection, click the system to see all the details in the web console.

NOTE

The web console does not save passwords used to log in to remote systems which means that you have to log in again after each system restart. To open the login dialog, click the **Troubleshoot** button placed on the main screen of the disconnected remote system.

15.3. REMOVING REMOTE HOSTS FROM THE WEB CONSOLE

This section guides you on removing other systems from a dashboard located in the web console.
Prerequisites

- The **cockpit-dashboard** package installed in the system where the web interface is running.
- Remote systems added.
 For details, see [Using the web console to add remote systems](#).
- You must be logged into the web console with administrator privileges.
 For details, see [Logging in to the web console](#).

Procedure

1. Log in to the RHEL 8 web console.
2. Click Dashboard.
3. Click the **Edit Server** icon.
4. To remove the server from the **Dashboard**, click the red **Remove** icon.

As a result, the server is removed from **Dashboard**.

15.4. SETTING UP SSH FOR REMOTE MANAGEMENT IN THE WEB CONSOLE

The RHEL 8 web console supports authentication with SSH keys. This has the following advantages:

- Increasing security of the communication between servers.
Avoiding entering credentials repeatedly.

IMPORTANT

Using SSH keys works only for read only access or for password-less sudo because the authentication happens without a password. To perform administrative tasks, use your system account credentials with administrative privileges.

To configure authentication with SSH keys in the web console:

- Copy the public key into the connected remote system.
- Set the path to the private key in the system, on which the RHEL 8 web console is running.
- Log out from the web console and log in again to ensure the authentication change.

Prerequisites

- SSH key stored in the system with running web console. If you do not have any, use the following command:

  ```bash
  $ ssh-keygen
  ```

- Password to the generated SSH key.
- The contents of the `~/.ssh/id_rsa.pub` file copied in the clipboard.

Procedure

To copy the public SSH key into a remote system:

1. Open the web console.
2. Click Dashboard.
3. Select the remote system where you want to add the public key.
4. In the system settings, go to Accounts.
5. Select the user account to which you want to assign the public key.
6. In the Authorized Public SSH Keys settings, click the + button.
7. In the **Add public key** dialog box, paste the public key you have in the clipboard.

8. Click **Add key**.

At this point, you can see the new public key assigned to the user account.

To set the path to the private SSH key:

1. Go to upper right corner settings.

2. In the drop down menu, select **Authentication**.
3. Verify that the web console uses the correct path to the private key you want to use. By default, the web console uses the following paths for private keys:

```
~/.ssh/id_rsa
~/.ssh/id_dsa
~/.ssh/id_ed25519
~/.ssh/id_ecdsa
```

To use a different key, add the path manually.

4. Enable the key with the On/Off button. Enabling the key opens a password dialog.

5. Enter the SSH key password.

![Authentication](image)
6. Click **Unlock Key**.
 On **Details** tab, you can verify the certificate owner and the fingerprint.

7. Click **Close**.

The RHEL 8 web console uses now SSH keys on both sides. However, systems still use the original credentials.

To change the authentication settings:

1. Log out yourself from the web console.
 After the logging back in the web console, red triangle icon appears before the remote system.

2. Click the system trying to connect to the web console.
 You can see two buttons in the screen. **Reconnect** and **Troubleshoot**.

3. Click the **Troubleshoot** button.
 Login dialog appears.

   ```
   Log in to 192.168.122.11
   x
   
   Cockpit was unable to log into 192.168.122.11. You can change your authentication credentials below. You may prefer to synchronize accounts and passwords.
   
   User name: exampleuser
   Authentication: Type a password
   Password: Type a password
   Using available credentials
   
   Cancel  Log In
   ```

4. In the **Authentication** drop down menu, select **Using available credentials**.

 The web console creates a new connection secured with SSH keys. It works for the web console login as well as for a terminal access.
CHAPTER 16. CONFIGURING SINGLE SIGN-ON FOR THE RHEL 8 WEB CONSOLE IN THE IDM DOMAIN

The RHEL 8 web console supports Single Sign-on (SSO) authentication provided by Identity Management (IdM).

Advantages:

- IdM domain administrators can use the RHEL 8 web console to manage local machines.
- Users with a Kerberos ticket in the IdM domain do not need to provide login credentials to access the web console.
- All hosts known to the IdM domain are accessible via SSH from the local instance of the RHEL 8 web console.
- Certificate configuration is not necessary. The console’s web server automatically switches to a certificate issued by the IdM certificate authority and accepted by browsers.

This chapter covers the following steps to configure SSO for logging into the the RHEL web console:

1. Add machines to the IdM domain using the RHEL 8 web console.
 For details, see Joining the RHEL 8 system to the IdM domain using the web console

2. If you want to use Kerberos for authentication, you need to obtain a Kerberos ticket on your machine.
 For details, see Logging in to the web console using a Kerberos ticket

3. Allow administrators on the IdM master server to run any command on any host.
 For details, see Enabling admin sudo access on the IdM server.

Prerequisites

- The RHEL web console installed on RHEL 8 systems.
 For details, see Installing the web console.

- IdM client installed on systems with the RHEL web console.
 For details, see IdM client installation.

16.1. JOINING A RHEL 8 SYSTEM TO AN IDM DOMAIN USING THE WEB CONSOLE

This procedure uses the web console to join the Red Hat Enterprise Linux 8 system to the Identity Management (IdM) domain.

Prerequisites

- The IdM domain is running and reachable from the client you want to join.

- You have the IdM domain administrator credentials.

Procedure

1. Log into the RHEL web console.
For details, see Logging in to the web console.

2. Open the System tab.

3. Click Join Domain.

4. In the Join a Domain dialog box, enter the host name of the IdM server in the Domain Address field.

5. In the Authentication drop down list, select if you want to use a password or a one-time password for authentication.

![Join a Domain dialog box]

6. In the Domain Administrator Name field, enter the user name of the IdM administration account.

7. In the password field, add the password or one-time password according to what you selected in the Authentication drop down list earlier.

8. Click Join.
Verification steps

1. If the RHEL 8 web console did not display an error, the system has been joined to the IdM domain and you can see the domain name in the System screen.

2. To verify that the user is a member of the domain, click the Terminal page and type the `id` command:

```
$ id
uid=548800004(example_user) gid=548800004(example_user)
groups=548800004(example_user) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
```

Additional resources

- Planning Identity Management
- Installing Identity Management
- Configuring and managing Identity Management

16.2. LOGGING IN TO THE WEB CONSOLE USING KERBEROS AUTHENTICATION

The following procedure describes steps on how to set up the RHEL 8 system to use Kerberos authentication.

IMPORTANT

With SSO you usually do not have any administrative privileges in the web console. This only works if you configured passwordless sudo. The web console does not interactively ask for a sudo password.
IdM domain running and reachable in your company environment.
For details, see Joining the RHEL 8 system to the IdM domain using the web console

Enable the `cockpit.socket` service on remote systems to which you want to connect and manage them with the RHEL web console.
For details, see Installing the web console.

If the system does not use a Kerberos ticket managed by the SSSD client, try to request the ticket with the `kinit` utility manually.

Procedure

Log in to the RHEL web console with the following address: `https://dns_name:9090`.

At this point, you are successfully connected to the RHEL web console and you can start with configuration.

16.3. ENABLING ADMIN SUDO ACCESS TO DOMAIN ADMINISTRATORS ON THE IDM SERVER

The following procedure describes steps on how to allow domain administrators to run any command on any host in the Identity Management (IdM) domain.

To accomplish this, enable sudo access to the `admins` user group created automatically during the IdM server installation.

All users added to the `admins` group will have sudo access if you run `ipa-advise` script on the group.

Prerequisites

- The server runs IdM 4.7.1 or later.

Procedure
1. Connect to the IdM server.

2. Run the ipa-advise script:

 $ ipa-advise enable-admins-sudo | sh -ex

If the console did not display an error, the **admins** group have admin permissions on all machines in the IdM domain.
CHAPTER 17. CONFIGURING SMART CARD AUTHENTICATION WITH THE WEB CONSOLE FOR CENTRALLY MANAGED USERS

This chapter helps you to configure smart card authentication for users who are centrally managed by:

- Identity Management
- Active Directory which is connected in the cross-forest trust with Identity Management

The following sections include:

- What smart cards are and how the authentication works
- Storing the IdM or ADCS certificate to the smart card
- Enabling smart card authentication in the web console
- Authenticating a user with the smart card while accessing the web console
- Protecting the connection against DoS attacks

IMPORTANT

- Smart card authentication does not elevate administrative privileges yet and the web console opens in the web browser in the read-only mode.
- You can run administrative commands in the built-in terminal with `sudo`.

Prerequisites

- The system for which you want to use the smart card authentication must be a member of an Active Directory or Identity Management domain.
 For details about joining the RHEL 8 system into a domain using the web console, see Joining a RHEL 8 system to an IdM domain using the web console.

- The certificate used for the smart card authentication must be associated with a particular user in Identity Management or Active Directory.
 For more details about associating a certificate with the user in Identity Management, see Adding a certificate to a user entry in IdM.

17.1. SMART CARD AUTHENTICATION FOR CENTRALLY MANAGED USERS

A smart card is a physical device, which can provide personal authentication using certificates stored on the card. Personal authentication means that you can use smart cards in the same way as user passwords.

You can store user credentials on the smart card in the form of a private key and a certificate. Special software and hardware is used to access them. You insert the smart card into a reader or a USB socket and supply the PIN code for the smart card instead of providing your password.

Identity Management (IdM) supports smart card authentication with:
• User certificates issued by the IdM certificate authority. For details, see Configuring Identity Management for smart card authentication.

• User certificates issued by the Active Directory Certificate Service (ADCS) certificate authority. For details, see Configuring certificates issued by ADCS for smart card authentication in IdM.

NOTE

If you want to start to use smart card authentication, see the hardware requirements: Smart Card support in RHEL8.

17.2. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS

To configure your smart card, you need tools which can generate certificates and store them on a smart card.

You must:

• Install the gnutls-utils package which helps you to manage certificates.

• Install the opensc package which provides a set of libraries and utilities to work with smart cards.

• Start the pcscd service which communicates with the smart card reader.

Procedure

1. Install the opensc and gnutls-utils packages:

 # dnf -y install opensc gnutls-utils

2. Start the pcscd service.

 # systemctl start pcscd

Verify that the pcscd service is up and running.

17.3. STORING A CERTIFICATE ON A SMART CARD

This section describes smart card configuration with the pkcs15-init tool, which helps you to configure:

• Erasing your smart card

• Setting new PINs and optional PIN Unblocking Keys (PUKs)

• Creating a new slot on the smart card

• Storing the certificate, private key, and public key in the slot

• Locking the smart card settings (some smart cards require this type of finalization)

Prerequisites

• The opensc package, which includes the pkcs15-init tool is installed.
For details, see Installing tools for managing and using smart cards.

- The card is inserted in the reader and connected to the computer.
- You have the private key, public key, and certificate to store on the smart card. In this procedure, testuser.key, testuserpublic.key, and testuser.crt are the names used for the private key, public key, and the certificate.
- Your current smart card user PIN and Security Officer PIN (SO-PIN)

Procedure

1. Erase your smart card and authenticate yourself with your PIN:

 $ pkcs15-init --erase-card --use-default-transport-keys
 Using reader with a card: Reader name
 PIN [Security Officer PIN] required.
 Please enter PIN [Security Officer PIN]:

 The card has been erased.

2. Initialize your smart card, set your user PIN and PUK, and your Security Officer PIN and PUK:

 $ pkcs15-init --create-pkcs15 --use-default-transport-keys
 --pin 963214 --puk 321478 --so-pin 65498714 --so-puk 784123
 Using reader with a card: Reader name

 The pkcs15-init tool creates a new slot on the smart card.

3. Set the label and the authentication ID for the slot:

 $ pkcs15-init --store-pin --label testuser
 --auth-id 01 --so-pin 65498714 --pin 963214 --puk 321478
 Using reader with a card: Reader name

 The label is set to a human-readable value, in this case, testuser. The auth-id must be two hexadecimal values, in this case it is set to 01.

4. Store and label the private key in the new slot on the smart card:

 $ pkcs15-init --store-private-key testuser.key --label testuser_key
 --auth-id 01 --id 01 --pin 963214
 Using reader with a card: Reader name

 NOTE
 The value you specify for --id must be the same when storing your private key, and certificate. If you do not specify a value for --id, a more complicated value is calculated by the tool and it is therefore easier to define your own value.

5. Store and label the certificate in the new slot on the smart card:
$ pkcs15-init --store-certificate testuser.crt --label testuser_crt \
 --auth-id 01 --id 01 --format pem --pin 963214
Using reader with a card: Reader name

6. (Optional) Store and label the public key in the new slot on the smart card:

$ pkcs15-init --store-public-key testuserpublic.key
 --label testuserpublic_key --auth-id 01 --id 01 --pin 963214
Using reader with a card: Reader name

NOTE

If the public key corresponds to a private key and/or certificate, you should specify the same ID as that private key and/or certificate.

7. (Optional) Some smart cards require you to finalize the card by locking the settings:

$ pkcs15-init -F

At this stage, your smart card includes the certificate, private key, and public key in the newly created slot. You have also created your user PIN and PUK and the Security Officer PIN and PUK.

17.4. ENABLING SMART CARD AUTHENTICATION FOR THE WEB CONSOLE

To be able to use smart card authentication in the web console, enable smart card authentication in the `cockpit.conf` file.

Additionally, you can disable password authentication in the same file.

Prerequisites

- The RHEL 8 web console has been installed.
 For details, see [Installing the web console](#).

Procedure

1. Log in to the RHEL web console with administrator privileges.
 For details, see [Logging in to the web console](#).

2. Click Terminal.

3. In the `/etc/cockpit/cockpit.conf`, set the `ClientCertAuthentication` to `yes`:

   ```
   [WebService]
   ClientCertAuthentication = yes
   ```

4. Optionally, disable password based authentication in `cockpit.conf` with:

   ```
   [Basic]
   action = none
   ```
This configuration disables password authentication and you must always use the smart card.

5. Restart the web console to make sure that the `cockpit.service` accepts the change:

   ```bash
   # systemctl restart cockpit
   ```

17.5. LOGGING IN TO THE WEB CONSOLE WITH SMART CARDS

This section provides information about using smart cards for logging in to the web console.

Prerequisites

- A valid certificate stored in your smart card that is associated to a user account created in a
 Active Directory or Identity Management domain.
- PIN to unlock the smart card.
- The smart card has been put into the reader.

Procedure

1. Open your web browser and add the web console's address in the address bar. The browser asks you to add the PIN protecting the certificate stored on the smart card.

2. In the **Password Required** dialog box, enter PIN and click **OK**.

3. In the **User Identification Request** dialog box, select the certificate stored in the smart card.

4. Select **Remember this decision**. The system does not open this window next time.

5. Click **OK**.

You are now connected and the web console displays its content.

17.6. LIMITING USER SESSIONS AND MEMORY TO PREVENT A DOS ATTACK

Certificate authentication is protected by separating and isolating instances of the `cockpit-ws` web server against attackers who wants to impersonate another user. However, this introduces a potential Denial of Service (DoS) attack: A remote attacker could create a large number of certificates and send a large number of HTTPS requests to `cockpit-ws` each using a different certificate.

To prevent this DoS, the collective resources of these web server instances are limited. By default, limits to the number of connections and to memory usage are set to 200 threads and a 75% (soft) / 90% (hard) memory limit.

The following procedure describes resource protection by limiting the number of connections and memory.

Procedure

1. In the terminal, open the `system-cockpithttps.slice` configuration file:
systemctl edit system-cockpithttps.slice

2. Limit the **TasksMax** to 100 and **CPUQuota** to 30%:

```
[Slice]
# change existing value
TasksMax=100
# add new restriction
CPUQuota=30%
```

3. To apply the changes, restart the system:

```
# systemctl daemon-reload
# systemctl stop cockpit
```

Now, the new memory and user session limits protect the `cockpit-ws` web server from DoS attacks.

17.7. ADDITIONAL RESOURCES

- For more details on configuring certificates issued by IdM for smart card authentication, see the [Configuring Identity Management for smart card authentication](#).

- For more details on configuring certificates issued by ADCS for smart card authentication, see the [Configuring certificates issued by ADCS for smart card authentication in IdM](#).

- For more details on configuring certificates issued by local CA for smart card authentication, see the [Configuring and importing local certificates to a smart card](#).