
Red Hat Enterprise Linux 8

Configuring GFS2 file systems

A guide to the configuration and management of GFS2 file systems

Last Updated: 2019-05-07

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

A guide to the configuration and management of GFS2 file systems

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides information about configuring and managing GFS2 file systems for Red Hat
Enterprise Linux 8.

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. PLANNING A GFS2 FILE SYSTEM DEPLOYMENT
1.1. KEY GFS2 PARAMETERS TO DETERMINE
1.2. GFS2 SUPPORT CONSIDERATIONS
1.3. GFS2 FORMATTING CONSIDERATIONS

File System Size: Smaller Is Better
Block Size: Default (4K) Blocks Are Preferred
Journal Size: Default (128MB) Is Usually Optimal
Size and Number of Resource Groups

1.4. BLOCK ALLOCATION ISSUES
1.4.1. Leave free space in the file system
1.4.2. Have each node allocate its own files, if possible
1.4.3. Preallocate, if possible

1.5. CLUSTER CONSIDERATIONS
1.6. HARDWARE CONSIDERATIONS

CHAPTER 2. RECOMMENDATIONS FOR GFS2 USAGE
2.1. MOUNT OPTIONS: NOATIME AND NODIRATIME
2.2. CONFIGURING ATIME UPDATES

Mount with relatime
Mount with noatime

2.3. VFS TUNING OPTIONS: RESEARCH AND EXPERIMENT
2.4. SELINUX ON GFS2
2.5. SETTING UP NFS OVER GFS2
2.6. SAMBA (SMB OR WINDOWS) FILE SERVING OVER GFS2
2.7. CONFIGURING VIRTUAL MACHINES FOR GFS2

CHAPTER 3. GFS2 FILE SYSTEMS
3.1. GFS2 FILE SYSTEM CREATION

3.1.1. The GFS2 mkfs command
3.1.2. Creating a GFS2 file system

3.2. MOUNTING A GFS2 FILE SYSTEM
3.2.1. Mounting a GFS2 file system with no options specified
3.2.2. Unmounting a GFS2 file system

3.3. BACKING UP A GFS2 FILE SYSTEM
3.4. SUSPENDING ACTIVITY ON A GFS2 FILE SYSTEM
3.5. GROWING A GFS2 FILE SYSTEM
3.6. ADDING JOURNALS TO A GFS2 FILE SYSTEM

CHAPTER 4. GFS2 QUOTA MANAGEMENT
4.1. CONFIGURING GFS2 DISK QUOTAS

4.1.1. Setting up quotas in enforcement or accounting mode
4.1.2. Creating the quota database files
4.1.3. Assigning quotas per user
4.1.4. Assigning quotas per group

4.2. MANAGING GFS2 DISK QUOTAS
4.3. KEEPING GFS2 DISK QUOTAS ACCURATE WITH THE QUOTACHECK COMMAND
4.4. SYNCHRONIZING QUOTAS WITH THE QUOTASYNC COMMAND

CHAPTER 5. GFS2 FILE SYSTEM REPAIR
5.1. DETERMING REQUIRED MEMORY FOR RUNNING FSCK.GFS2

4

5
5
6
7
7
7
8
8
9
9
9
9
9

10

11
11
11
11
11

12
12
13
14
14

15
15
15
18
18
19
21
22
23
23
24

26
26
26
27
27
28
28
29
29

31
31

Table of Contents

1

. .

. .

5.2. REPAIRING A GFS2 FILESYSTEM

CHAPTER 6. IMPROVING GFS2 PERFORMANCE
6.1. GFS2 FILE SYSTEM DEFRAGMENTATION
6.2. GFS2 NODE LOCKING
6.3. ISSUES WITH POSIX LOCKING
6.4. PERFORMANCE TUNING WITH GFS2
6.5. TROUBLESHOOTING GFS2 PERFORMANCE WITH THE GFS2 LOCK DUMP
6.6. ENABLING DATA JOURNALING

CHAPTER 7. DIAGNOSING AND CORRECTING PROBLEMS WITH GFS2 FILE SYSTEMS
7.1. GFS2 FILESYSTEM UNAVAILABLE TO A NODE (THE GFS2 WITHDRAW FUNCTION)
7.2. GFS2 FILE SYSTEM HANGS AND REQUIRES REBOOT OF ONE NODE
7.3. GFS2 FILE SYSTEM HANGS AND REQUIRES REBOOT OF ALL NODES
7.4. GFS2 FILE SYSTEM DOES NOT MOUNT ON NEWLY ADDED CLUSTER NODE
7.5. SPACE INDICATED AS USED IN EMPTY FILE SYSTEM
7.6. GATHERING GFS2 DATA FOR TROUBLESHOOTING

31

33
33
33
34
34
35
39

41
41

42
42
43
44
44

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

2

Table of Contents

3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Please let us know how we could make it better. To do
so:

For simple comments on specific passages, make sure you are viewing the documentation in the
Multi-page HTML format. Highlight the part of text that you want to comment on. Then, click
the Add Feedback pop-up that appears below the highlighted text, and follow the displayed
instructions.

For submitting more complex feedback, create a Bugzilla ticket:

1. Go to the Bugzilla website.

2. As the Component, use Documentation.

3. Fill in the Description field with your suggestion for improvement. Include a link to the
relevant part(s) of documentation.

4. Click Submit Bug.

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

4

https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Enterprise Linux 8

CHAPTER 1. PLANNING A GFS2 FILE SYSTEM DEPLOYMENT
The Red Hat GFS2 file system is a 64-bit symmetric cluster file system which provides a shared
namespace and manages coherency between multiple nodes sharing a common block device. A GFS2
file system is intended to provide a feature set which is as close as possible to a local file system, while at
the same time enforcing full cluster coherency between nodes. In a few cases, the Linux file system API
does not allow the clustered nature of GFS2 to be totally transparent; for example, programs using Posix
locks in GFS2 should avoid using the GETLK function since, in a clustered environment, the process ID
may be for a different node in the cluster. In most cases however, the functionality of a GFS2 file system
is identical to that of a local file system.

The Red Hat Enterprise Linux (RHEL) Resilient Storage Add-On provides GFS2, and it depends on the
RHEL High Availability Add-On to provide the cluster management required by GFS2.

The gfs2.ko kernel module implements the GFS2 file system and is loaded on GFS2 cluster nodes.

To get the best performance from GFS2, it is important to take into account the performance
considerations which stem from the underlying design. Just like a local file system, GFS2 relies on the
page cache in order to improve performance by local caching of frequently used data. In order to
maintain coherency across the nodes in the cluster, cache control is provided by the glock state
machine.

IMPORTANT

Make sure that your deployment of the Red Hat High Availability Add-On meets your
needs and can be supported. Consult with an authorized Red Hat representative to verify
your configuration prior to deployment.

1.1. KEY GFS2 PARAMETERS TO DETERMINE

Before you install and set up GFS2, note the following key characteristics of your GFS2 file systems:

GFS2 nodes

Determine which nodes in the cluster will mount the GFS2 file systems.

Number of file systems

Determine how many GFS2 file systems to create initially. (More file systems can be added later.)

File system name

Determine a unique name for each file system. The name must be unique for all lock_dlm file
systems over the cluster. Each file system name is required in the form of a parameter variable. For
example, this book uses file system names mydata1 and mydata2 in some example procedures.

Journals

Determine the number of journals for your GFS2 file systems. GFS2 requires one journal for each
node in the cluster that needs to mount the file system. For example, if you have a 16-node cluster
but need to mount only the file system from two nodes, you need only two journals. GFS2 allows you
to add journals dynamically at a later point with the gfs2_jadd command as additional servers mount
a file system.

Storage devices and partitions

Determine the storage devices and partitions to be used for creating logical volumes (using CLVM)
in the file systems.

Time protocol

Make sure that the clocks on the GFS2 nodes are synchronized. It is recommended that you use the

CHAPTER 1. PLANNING A GFS2 FILE SYSTEM DEPLOYMENT

5

Make sure that the clocks on the GFS2 nodes are synchronized. It is recommended that you use the
Precision Time Protocol (PTP) or, if necessary for your configuration, the Network Time Protocol
(NTP) software provided with your Red Hat Enterprise Linux distribution.

NOTE

The system clocks in GFS2 nodes must be within a few minutes of each other to
prevent unnecessary inode time stamp updating. Unnecessary inode time stamp
updating severely impacts cluster performance.

NOTE

You may see performance problems with GFS2 when many create and delete operations
are issued from more than one node in the same directory at the same time. If this causes
performance problems in your system, you should localize file creation and deletions by a
node to directories specific to that node as much as possible.

1.2. GFS2 SUPPORT CONSIDERATIONS

Table 1.1, “GFS2 Support Limits” summarizes the current maximum file system size and number of nodes
that GFS2 supports.

Table 1.1. GFS2 Support Limits

Maximum number of node 16 (x86, Power8 on PowerVM) 4 (s390x under
z/VM)

Maximum file system size 100G on all supported architectures

GFS2 is based on a 64-bit architecture, which can theoretically accommodate an 8 EB file system. If
your system requires larger GFS2 file systems than are currently supported, contact your Red Hat
service representative.

NOTE

Although a GFS2 file system can be implemented in a standalone system or as part of a
cluster configuration, Red Hat does not support the use of GFS2 as a single-node file
system. Red Hat does support a number of high-performance single node file systems
which are optimized for single node and thus have generally lower overhead than a
cluster file system. Red Hat recommends using these file systems in preference to GFS2
in cases where only a single node needs to mount the file system.

Red Hat will continue to support single-node GFS2 file systems for mounting snapshots
of cluster file systems (for example, for backup purposes).

When determining the size of your file system, you should consider your recovery needs. Running the
fsck.gfs2 command on a very large file system can take a long time and consume a large amount of
memory. Additionally, in the event of a disk or disk subsystem failure, recovery time is limited by the
speed of your backup media. For information on the amount of memory the fsck.gfs2 command
requires, see Determing required memory for running fsck.gfs2.

While a GFS2 file system may be used outside of LVM, Red Hat supports only GFS2 file systems that

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

6

While a GFS2 file system may be used outside of LVM, Red Hat supports only GFS2 file systems that
are created on a shared LVM logical volume.

NOTE

When you configure a GFS2 file system as a cluster file system, you must ensure that all
nodes in the cluster have access to the shared storage. Asymmetric cluster
configurations in which some nodes have access to the shared storage and others do not
are not supported. This does not require that all nodes actually mount the GFS2 file
system itself.

1.3. GFS2 FORMATTING CONSIDERATIONS

The Global File System 2 (GFS2) file system allows several computers (“nodes”) in a cluster to
cooperatively share the same storage. To achieve this cooperation and maintain data consistency
among the nodes, the nodes employ a cluster-wide locking scheme for file system resources. This
locking scheme uses communication protocols such as TCP/IP to exchange locking information.

This section provides recommendations for how to format your GFS2 file system to optimize
performance.

IMPORTANT

Make sure that your deployment of the Red Hat High Availability Add-On meets your
needs and can be supported. Consult with an authorized Red Hat representative to verify
your configuration prior to deployment.

File System Size: Smaller Is Better
GFS2 is based on a 64-bit architecture, which can theoretically accommodate an 8 EB file system.
However, the current supported maximum size of a GFS2 file system for 64-bit hardware is 100TB and
the current supported maximum size of a GFS2 file system for 32-bit hardware is 16TB.

Note that even though GFS2 large file systems are possible, that does not mean they are
recommended. The rule of thumb with GFS2 is that smaller is better: it is better to have 10 1TB file
systems than one 10TB file system.

There are several reasons why you should keep your GFS2 file systems small:

Less time is required to back up each file system.

Less time is required if you need to check the file system with the fsck.gfs2 command.

Less memory is required if you need to check the file system with the fsck.gfs2 command.

In addition, fewer resource groups to maintain mean better performance.

Of course, if you make your GFS2 file system too small, you might run out of space, and that has its own
consequences. You should consider your own use cases before deciding on a size.

Block Size: Default (4K) Blocks Are Preferred
The mkfs.gfs2 command attempts to estimate an optimal block size based on device topology. In
general, 4K blocks are the preferred block size because 4K is the default page size (memory) for Linux.
Unlike some other file systems, GFS2 does most of its operations using 4K kernel buffers. If your block
size is 4K, the kernel has to do less work to manipulate the buffers.

CHAPTER 1. PLANNING A GFS2 FILE SYSTEM DEPLOYMENT

7

It is recommended that you use the default block size, which should yield the highest performance. You
may need to use a different block size only if you require efficient storage of many very small files.

Journal Size: Default (128MB) Is Usually Optimal
When you run the mkfs.gfs2 command to create a GFS2 file system, you may specify the size of the
journals. If you do not specify a size, it will default to 128MB, which should be optimal for most
applications.

Some system administrators might think that 128MB is excessive and be tempted to reduce the size of
the journal to the minimum of 8MB or a more conservative 32MB. While that might work, it can severely
impact performance. Like many journaling file systems, every time GFS2 writes metadata, the metadata
is committed to the journal before it is put into place. This ensures that if the system crashes or loses
power, you will recover all of the metadata when the journal is automatically replayed at mount time.
However, it does not take much file system activity to fill an 8MB journal, and when the journal is full,
performance slows because GFS2 has to wait for writes to the storage.

It is generally recommended to use the default journal size of 128MB. If your file system is very small (for
example, 5GB), having a 128MB journal might be impractical. If you have a larger file system and can
afford the space, using 256MB journals might improve performance.

Size and Number of Resource Groups
When a GFS2 file system is created with the mkfs.gfs2 command, it divides the storage into uniform
slices known as resource groups. It attempts to estimate an optimal resource group size (ranging from
32MB to 2GB). You can override the default with the -r option of the mkfs.gfs2 command.

Your optimal resource group size depends on how you will use the file system. Consider how full it will be
and whether or not it will be severely fragmented.

You should experiment with different resource group sizes to see which results in optimal performance.
It is a best practice to experiment with a test cluster before deploying GFS2 into full production.

If your file system has too many resource groups (each of which is too small), block allocations can
waste too much time searching tens of thousands (or hundreds of thousands) of resource groups for a
free block. The more full your file system, the more resource groups that will be searched, and every one
of them requires a cluster-wide lock. This leads to slow performance.

If, however, your file system has too few resource groups (each of which is too big), block allocations
might contend more often for the same resource group lock, which also impacts performance. For
example, if you have a 10GB file system that is carved up into five resource groups of 2GB, the nodes in
your cluster will fight over those five resource groups more often than if the same file system were
carved into 320 resource groups of 32MB. The problem is exacerbated if your file system is nearly full
because every block allocation might have to look through several resource groups before it finds one
with a free block. GFS2 tries to mitigate this problem in two ways:

First, when a resource group is completely full, it remembers that and tries to avoid checking it
for future allocations (until a block is freed from it). If you never delete files, contention will be
less severe. However, if your application is constantly deleting blocks and allocating new blocks
on a file system that is mostly full, contention will be very high and this will severely impact
performance.

Second, when new blocks are added to an existing file (for example, appending) GFS2 will
attempt to group the new blocks together in the same resource group as the file. This is done to
increase performance: on a spinning disk, seeks take less time when they are physically close
together.

The worst case scenario is when there is a central directory in which all the nodes create files because all
of the nodes will constantly fight to lock the same resource group.

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

8

1.4. BLOCK ALLOCATION ISSUES

This section provides a summary of issues related to block allocation in GFS2 file systems. Even though
applications that only write data typically do not care how or where a block is allocated, some knowledge
of how block allocation works can help you optimize performance.

1.4.1. Leave free space in the file system

When a GFS2 file system is nearly full, the block allocator starts to have a difficult time finding space for
new blocks to be allocated. As a result, blocks given out by the allocator tend to be squeezed into the
end of a resource group or in tiny slices where file fragmentation is much more likely. This file
fragmentation can cause performance problems. In addition, when a GFS2 file system is nearly full, the
GFS2 block allocator spends more time searching through multiple resource groups, and that adds lock
contention that would not necessarily be there on a file system that has ample free space. This also can
cause performance problems.

For these reasons, it is recommended that you not run a file system that is more than 85 percent full,
although this figure may vary depending on workload.

1.4.2. Have each node allocate its own files, if possible

Due to the way the distributed lock manager (DLM) works, there will be more lock contention if all files
are allocated by one node and other nodes need to add blocks to those files.

In GFS (version 1), all locks were managed by a central lock manager whose job was to control locking
throughout the cluster. This grand unified lock manager (GULM) was problematic because it was a
single point of failure. GFS2’s replacement locking scheme, DLM, spreads the locks throughout the
cluster. If any node in the cluster goes down, its locks are recovered by the other nodes.

With DLM, the first node to lock a resource (like a file) becomes the “lock master” for that lock. Other
nodes may lock that resource, but they have to ask permission from the lock master first. Each node
knows which locks for which it is the lock master, and each node knows which node it has lent a lock to.
Locking a lock on the master node is much faster than locking one on another node that has to stop and
ask permission from the lock’s master.

As in many file systems, the GFS2 allocator tries to keep blocks in the same file close to one another to
reduce the movement of disk heads and boost performance. A node that allocates blocks to a file will
likely need to use and lock the same resource groups for the new blocks (unless all the blocks in that
resource group are in use). The file system will run faster if the lock master for the resource group
containing the file allocates its data blocks (it is faster to have the node that first opened the file do all
the writing of new blocks).

1.4.3. Preallocate, if possible

If files are preallocated, block allocations can be avoided altogether and the file system can run more
efficiently. GFS2 includes the fallocate(1) system call, which you can use to preallocate blocks of data.

1.5. CLUSTER CONSIDERATIONS

When determining the number of nodes that your system will contain, note that there is a trade-off
between high availability and performance. With a larger number of nodes, it becomes increasingly
difficult to make workloads scale. For that reason, Red Hat does not support using GFS2 for cluster file
system deployments greater than 16 nodes.

Deploying a cluster file system is not a "drop in" replacement for a single node deployment. Red Hat

CHAPTER 1. PLANNING A GFS2 FILE SYSTEM DEPLOYMENT

9

recommends that you allow a period of around 8-12 weeks of testing on new installations in order to test
the system and ensure that it is working at the required performance level. During this period any
performance or functional issues can be worked out and any queries should be directed to the Red Hat
support team.

Red Hat recommends that customers considering deploying clusters have their configurations reviewed
by Red Hat support before deployment to avoid any possible support issues later on.

1.6. HARDWARE CONSIDERATIONS

You should take the following hardware considerations into account when deploying a GFS2 file system.

Use higher quality storage options
GFS2 can operate on cheaper shared storage options, such as iSCSI or Fibre Channel over
Ethernet (FCoE), but you will get better performance if you buy higher quality storage with
larger caching capacity. Red Hat performs most quality, sanity, and performance tests on SAN
storage with Fibre Channel interconnect. As a general rule, it is always better to deploy
something that has been tested first.

Test network equipment before deploying
Higher quality, faster network equipment makes cluster communications and GFS2 run faster
with better reliability. However, you do not have to purchase the most expensive hardware.
Some of the most expensive network switches have problems passing multicast packets, which
are used for passing fcntl locks (flocks), whereas cheaper commodity network switches are
sometimes faster and more reliable. Red Hat recommends trying equipment before deploying it
into full production.

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

10

CHAPTER 2. RECOMMENDATIONS FOR GFS2 USAGE
This section provides general recommendations about GFS2 usage.

2.1. MOUNT OPTIONS: NOATIME AND NODIRATIME

It is generally recommended to mount GFS2 file systems with the noatime and nodiratime arguments.
This allows GFS2 to spend less time updating disk inodes for every access. For more information on the
effect of these arguments on GFS2 file system performance, see GFS2 Node Locking.

2.2. CONFIGURING ATIME UPDATES

Each file inode and directory inode has three time stamps associated with it:

ctime — The last time the inode status was changed

mtime — The last time the file (or directory) data was modified

atime — The last time the file (or directory) data was accessed

If atime updates are enabled as they are by default on GFS2 and other Linux file systems then every
time a file is read, its inode needs to be updated.

Because few applications use the information provided by atime, those updates can require a significant
amount of unnecessary write traffic and file locking traffic. That traffic can degrade performance;
therefore, it may be preferable to turn off or reduce the frequency of atime updates.

Two methods of reducing the effects of atime updating are available:

Mount with relatime (relative atime), which updates the atime if the previous atime update is
older than the mtime or ctime update.

Mount with noatime, which disables atime updates on that file system.

Mount with relatime
The relatime (relative atime) Linux mount option can be specified when the file system is mounted. This
specifies that the atime is updated if the previous atime update is older than the mtime or ctime
update. Usage

mount BlockDevice MountPoint -o relatime

BlockDevice

Specifies the block device where the GFS2 file system resides.

MountPoint

Specifies the directory where the GFS2 file system should be mounted.

Example In this example, the GFS2 file system resides on /dev/vg01/lvol0 and is mounted on directory
/mygfs2. The atime updates take place only if the previous atime update is older than the mtime or
ctime update.

mount /dev/vg01/lvol0 /mygfs2 -o relatime

Mount with noatime

The noatime Linux mount option can be specified when the file system is mounted, which disables

CHAPTER 2. RECOMMENDATIONS FOR GFS2 USAGE

11

The noatime Linux mount option can be specified when the file system is mounted, which disables
atime updates on that file system. Usage

mount BlockDevice MountPoint -o noatime

BlockDevice

Specifies the block device where the GFS2 file system resides.

MountPoint

Specifies the directory where the GFS2 file system should be mounted.

Example In this example, the GFS2 file system resides on /dev/vg01/lvol0 and is mounted on directory
/mygfs2 with atime updates turned off.

mount /dev/vg01/lvol0 /mygfs2 -o noatime

2.3. VFS TUNING OPTIONS: RESEARCH AND EXPERIMENT

Like all Linux file systems, GFS2 sits on top of a layer called the virtual file system (VFS). You can tune
the VFS layer to improve underlying GFS2 performance by using the sysctl(8) command. For example,
the values for dirty_background_ratio and vfs_cache_pressure may be adjusted depending on your
situation. To fetch the current values, use the following commands:

sysctl -n vm.dirty_background_ratio
sysctl -n vm.vfs_cache_pressure

The following commands adjust the values:

sysctl -w vm.dirty_background_ratio=20
sysctl -w vm.vfs_cache_pressure=500

You can permanently change the values of these parameters by editing the /etc/sysctl.conf file.

To find the optimal values for your use cases, research the various VFS options and experiment on a test
cluster before deploying into full production.

2.4. SELINUX ON GFS2

Use of Security Enhanced Linux (SELinux) with GFS2 incurs a small performance penalty. To avoid this
overhead, you may choose not to use SELinux with GFS2 even on a system with SELinux in enforcing
mode. When mounting a GFS2 file system, you can ensure that SELinux will not attempt to read the
seclabel element on each file system object by using one of the context options as described on the
mount(8) man page; SELinux will assume that all content in the file system is labeled with the seclabel
element provided in the context mount options. This will also speed up processing as it avoids another
disk read of the extended attribute block that could contain seclabel elements.

For example, on a system with SELinux in enforcing mode, you can use the following mount command
to mount the GFS2 file system if the file system is going to contain Apache content. This label will apply
to the entire file system; it remains in memory and is not written to disk.

mount -t gfs2 -o context=system_u:object_r:httpd_sys_content_t:s0
/dev/mapper/xyz/mnt/gfs2

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

12

If you are not sure whether the file system will contain Apache content, you can use the labels
public_content_rw_t or public_content_t, or you could define a new label altogether and define a
policy around it.

Note that in a Pacemaker cluster you should always use Pacemaker to manage a GFS2 file system. You
can specify the mount options when you create a GFS2 file system resource.

2.5. SETTING UP NFS OVER GFS2

Due to the added complexity of the GFS2 locking subsystem and its clustered nature, setting up NFS
over GFS2 requires taking many precautions and careful configuration. This section describes the
caveats you should take into account when configuring an NFS service over a GFS2 file system.

WARNING

If the GFS2 file system is NFS exported, and NFS client applications use POSIX
locks, then you must mount the file system with the localflocks option. The effect
of this is to force both POSIX locks and flocks from each server to be local: non-
clustered, independent of each other. This is necessary because a number of
problems exist if GFS2 attempts to implement POSIX locks from NFS across the
nodes of a cluster. For applications running on NFS clients, localized POSIX locks
means that two clients can hold the same lock concurrently if the two clients are
mounting from different servers. For this reason, when using NFS over GFS2, it is
always safest to specify the -o localflocks mount option so that NFS can
coordinate both POSIX locks and the flocks among all clients mounting NFS.

For all other (non-NFS) GFS2 applications, do not mount your file system using
localflocks, so that GFS2 will manage the POSIX locks and flocks between all the
nodes in the cluster (on a cluster-wide basis). If you specify localflocks and do not
use NFS, the other nodes in the cluster will not have knowledge of each other’s
POSIX locks and flocks, thus making them unsafe in a clustered environment

In addition to the locking considerations, you should take the following into account when configuring an
NFS service over a GFS2 file system.

Red Hat supports only Red Hat High Availability Add-On configurations using NFSv3 with
locking in an active/passive configuration with the following characteristics:

The back-end file system is a GFS2 file system running on a 2 to 16 node cluster.

An NFSv3 server is defined as a service exporting the entire GFS2 file system from a single
cluster node at a time.

The NFS server can fail over from one cluster node to another (active/passive
configuration).

No access to the GFS2 file system is allowed except through the NFS server. This includes
both local GFS2 file system access as well as access through Samba or Clustered Samba.

There is no NFS quota support on the system.

This configuration provides High Availability (HA) for the file system and reduces system

CHAPTER 2. RECOMMENDATIONS FOR GFS2 USAGE

13

This configuration provides High Availability (HA) for the file system and reduces system
downtime since a failed node does not result in the requirement to execute the fsck
command when failing the NFS server from one node to another.

The fsid= NFS option is mandatory for NFS exports of GFS2.

If problems arise with your cluster (for example, the cluster becomes inquorate and fencing is
not successful), the clustered logical volumes and the GFS2 file system will be frozen and no
access is possible until the cluster is quorate. You should consider this possibility when
determining whether a simple failover solution such as the one defined in this procedure is the
most appropriate for your system.

2.6. SAMBA (SMB OR WINDOWS) FILE SERVING OVER GFS2

You can use Samba (SMB or Windows) file serving from a GFS2 file system with CTDB, which allows
active/active configurations.

Simultaneous access to the data in the Samba share from outside of Samba is not supported. There is
currently no support for GFS2 cluster leases, which slows Samba file serving.

2.7. CONFIGURING VIRTUAL MACHINES FOR GFS2

When using a GFS2 file system with a virtual machine, it is important that your VM storage settings on
each node be configured properly in order to force the cache off. For example, including these settings
for cache and io in the libvirt domain should allow GFS2 to behave as expected.

<driver name='qemu' type='raw' cache='none' io='native'/>

Alternately, you can configure the shareable attribute within the device element. This indicates that the
device is expected to be shared between domains (as long as hypervisor and OS support this). If
shareable is used, cache='no' should be used for that device.

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

14

CHAPTER 3. GFS2 FILE SYSTEMS
This section provides information on the commands and options you use to create, mount, and grow
GFS2 file systems.

3.1. GFS2 FILE SYSTEM CREATION

You create a GFS2 file system with the mkfs.gfs2 command. A file system is created on an activated
LVM volume.

3.1.1. The GFS2 mkfs command

The following information is required to run the mkfs.gfs2 command to create a clustered GFS2 file
system:

Lock protocol/module name, which is lock_dlm for a cluster

Cluster name

Number of journals (one journal required for each node that may be mounting the file system)

NOTE

Once you have created a GFS2 file system with the mkfs.gfs2 command, you cannot
decrease the size of the file system. You can, however, increase the size of an existing file
system with the gfs2_grow command.

The format for creating a clustered GFS2 file system is as follows. Note that Red Hat does not support
the use of GFS2 as a single-node file system.

mkfs.gfs2 -p lock_dlm -t ClusterName:FSName -j NumberJournals BlockDevice

If you prefer, you can create a GFS2 file system by using the mkfs command with the -t parameter
specifying a file system of type gfs2, followed by the GFS2 file system options.

mkfs -t gfs2 -p lock_dlm -t ClusterName:FSName -j NumberJournals BlockDevice

WARNING

Improperly specifying the ClusterName:FSName parameter may cause file system
or lock space corruption.

ClusterName

The name of the cluster for which the GFS2 file system is being created.

FSName

The file system name, which can be 1 to 16 characters long. The name must be unique for all
lock_dlm file systems over the cluster.

CHAPTER 3. GFS2 FILE SYSTEMS

15

NumberJournals

Specifies the number of journals to be created by the mkfs.gfs2 command. One journal is required
for each node that mounts the file system. For GFS2 file systems, more journals can be added later
without growing the file system.

BlockDevice

Specifies a logical or other block device

Table 3.1, “Command Options: mkfs.gfs2” describes the mkfs.gfs2 command options (flags and
parameters).

Table 3.1. Command Options: mkfs.gfs2

Flag Parameter Description

-c Megabytes Sets the initial size of each
journal’s quota change file to
Megabytes.

-D Enables debugging output.

-h Help. Displays available options.

-J Megabytes Specifies the size of the journal in
megabytes. Default journal size is
128 megabytes. The minimum size
is 8 megabytes. Larger journals
improve performance, although
they use more memory than
smaller journals.

-j Number Specifies the number of journals
to be created by the mkfs.gfs2
command. One journal is required
for each node that mounts the file
system. If this option is not
specified, one journal will be
created. For GFS2 file systems,
you can add additional journals at
a later time without growing the
file system.

-O Prevents the mkfs.gfs2
command from asking for
confirmation before writing the
file system.

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

16

-p LockProtoName * Specifies the name of the
locking protocol to use.
Recognized locking protocols
include:

* lock_dlm — The standard
locking module, required for a
clustered file system.

* lock_nolock — Used when
GFS2 is acting as a local file
system (one node only).

-q Quiet. Do not display anything.

-r Megabytes Specifies the size of the resource
groups in megabytes. The
minimum resource group size is
32 megabytes. The maximum
resource group size is 2048
megabytes. A large resource
group size may increase
performance on very large file
systems. If this is not specified,
mkfs.gfs2 chooses the resource
group size based on the size of
the file system: average size file
systems will have 256 megabyte
resource groups, and bigger file
systems will have bigger RGs for
better performance.

Flag Parameter Description

CHAPTER 3. GFS2 FILE SYSTEMS

17

-t LockTableName * A unique identifier that specifies
the lock table field when you use
the lock_dlm protocol; the
lock_nolock protocol does not
use this parameter.

* This parameter has two parts
separated by a colon (no spaces)
as follows:
ClusterName:FSName.

* ClusterName is the name of
the cluster for which the GFS2 file
system is being created; only
members of this cluster are
permitted to use this file system.

* FSName, the file system name,
can be 1 to 16 characters in length,
and the name must be unique
among all file systems in the
cluster.

-V Displays command version
information.

Flag Parameter Description

3.1.2. Creating a GFS2 file system

The following example creates two GFS2 file systems. For both of these file systems, lock_dlm` is the
locking protocol that the file system uses, since this is a clustered file system. Both file systems can be
used in the cluster named alpha.

For the first file system, file system name is mydata1. it contains eight journals and is created on
/dev/vg01/lvol0. For the second file system, the file system name is mydata2. It contains eight journals
and is created on /dev/vg01/lvol1.

mkfs.gfs2 -p lock_dlm -t alpha:mydata1 -j 8 /dev/vg01/lvol0
mkfs.gfs2 -p lock_dlm -t alpha:mydata2 -j 8 /dev/vg01/lvol1

3.2. MOUNTING A GFS2 FILE SYSTEM

NOTE

You should always use Pacemaker to manage the GFS2 file system in a production
environment rather than manually mounting the file system with a mount command, as
this may cause issues at system shutdown as described in Unmounting a GFS2 file
system.

Before you can mount a GFS2 file system, the file system must exist, the volume where the file system

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

18

Before you can mount a GFS2 file system, the file system must exist, the volume where the file system
exists must be activated, and the supporting clustering and locking systems must be started. After those
requirements have been met, you can mount the GFS2 file system as you would any Linux file system.

To manipulate file ACLs, you must mount the file system with the -o acl mount option. If a file system is
mounted without the -o acl mount option, users are allowed to view ACLs (with getfacl), but are not
allowed to set them (with setfacl).

3.2.1. Mounting a GFS2 file system with no options specified

In this example, the GFS2 file system on /dev/vg01/lvol0 is mounted on the /mygfs2 directory.

mount /dev/vg01/lvol0 /mygfs2

The following is the format for the command to mount a GFS2 file system that specifies mount options.

mount BlockDevice MountPoint -o option

BlockDevice

Specifies the block device where the GFS2 file system resides.

MountPoint

Specifies the directory where the GFS2 file system should be mounted.

The -o option argument consists of GFS2-specific options (see Table 3.2, “GFS2-Specific Mount
Options”) or acceptable standard Linux mount -o options, or a combination of both. Multiple option
parameters are separated by a comma and no spaces.

NOTE

The mount command is a Linux system command. In addition to using GFS2-specific
options described in this section, you can use other, standard, mount command options
(for example, -r). For information about other Linux mount command options, see the
Linux mount man page.

Table 3.2, “GFS2-Specific Mount Options” describes the available GFS2-specific -o option values that
can be passed to GFS2 at mount time.

NOTE

This table includes descriptions of options that are used with local file systems only. Note,
however, that Red Hat does not support the use of GFS2 as a single-node file system.
Red Hat will continue to support single-node GFS2 file systems for mounting snapshots
of cluster file systems (for example, for backup purposes).

Table 3.2. GFS2-Specific Mount Options

Option Description

CHAPTER 3. GFS2 FILE SYSTEMS

19

acl Allows manipulating file ACLs. If a file system is
mounted without the acl mount option, users are
allowed to view ACLs (with getfacl), but are not
allowed to set them (with setfacl).

data=[ordered|writeback] When data=ordered is set, the user data modified
by a transaction is flushed to the disk before the
transaction is committed to disk. This should prevent
the user from seeing uninitialized blocks in a file after
a crash. When data=writeback mode is set, the user
data is written to the disk at any time after it is dirtied;
this does not provide the same consistency
guarantee as ordered mode, but it should be slightly
faster for some workloads. The default value is
ordered mode.

* ignore_local_fs

* Caution: This option should not be used when
GFS2 file systems are shared.

Forces GFS2 to treat the file system as a multi-host
file system. By default, using lock_nolock
automatically turns on the localflocks flag.

* localflocks

* Caution: This option should not be used when
GFS2 file systems are shared.

Tells GFS2 to let the VFS (virtual file system) layer
do all flock and fcntl. The localflocks flag is
automatically turned on by lock_nolock.

lockproto=LockModuleName Allows the user to specify which locking protocol to
use with the file system. If LockModuleName is not
specified, the locking protocol name is read from the
file system superblock.

locktable=LockTableName Allows the user to specify which locking table to use
with the file system.

quota=[off/account/on] Turns quotas on or off for a file system. Setting the
quotas to be in the account state causes the per
UID/GID usage statistics to be correctly maintained
by the file system; limit and warn values are ignored.
The default value is off.

errors=panic|withdraw When errors=panic is specified, file system errors
will cause a kernel panic. When errors=withdraw is
specified, which is the default behavior, file system
errors will cause the system to withdraw from the file
system and make it inaccessible until the next reboot;
in some cases the system may remain running.

Option Description

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

20

discard/nodiscard Causes GFS2 to generate "discard" I/O requests for
blocks that have been freed. These can be used by
suitable hardware to implement thin provisioning and
similar schemes.

barrier/nobarrier Causes GFS2 to send I/O barriers when flushing the
journal. The default value is on. This option is
automatically turned off if the underlying device
does not support I/O barriers. Use of I/O barriers
with GFS2 is highly recommended at all times unless
the block device is designed so that it cannot lose its
write cache content (for example, if it is on a UPS or
it does not have a write cache).

quota_quantum=secs Sets the number of seconds for which a change in
the quota information may sit on one node before
being written to the quota file. This is the preferred
way to set this parameter. The value is an integer
number of seconds greater than zero. The default is
60 seconds. Shorter settings result in faster updates
of the lazy quota information and less likelihood of
someone exceeding their quota. Longer settings
make file system operations involving quotas faster
and more efficient.

statfs_quantum=secs Setting statfs_quantum to 0 is the preferred way
to set the slow version of statfs. The default value is
30 secs which sets the maximum time period before
statfs changes will be synced to the master statfs
file. This can be adjusted to allow for faster, less
accurate statfs values or slower more accurate
values. When this option is set to 0, statfs will always
report the true values.

statfs_percent=value Provides a bound on the maximum percentage
change in the statfs information on a local basis
before it is synced back to the master statfs file,
even if the time period has not expired. If the setting
of statfs_quantum is 0, then this setting is ignored.

Option Description

3.2.2. Unmounting a GFS2 file system

GFS2 file systems that have been mounted manually rather than automatically through Pacemaker will
not be known to the system when file systems are unmounted at system shutdown. As a result, the
GFS2 resource agent will not unmount the GFS2 file system. After the GFS2 resource agent is shut
down, the standard shutdown process kills off all remaining user processes, including the cluster
infrastructure, and tries to unmount the file system. This unmount will fail without the cluster
infrastructure and the system will hang.

To prevent the system from hanging when the GFS2 file systems are unmounted, you should do one of

CHAPTER 3. GFS2 FILE SYSTEMS

21

To prevent the system from hanging when the GFS2 file systems are unmounted, you should do one of
the following:

Always use Pacemaker to manage the GFS2 file system.

If a GFS2 file system has been mounted manually with the mount command, be sure to
unmount the file system manually with the umount command before rebooting or shutting
down the system.

If your file system hangs while it is being unmounted during system shutdown under these
circumstances, perform a hardware reboot. It is unlikely that any data will be lost since the file system is
synced earlier in the shutdown process.

The GFS2 file system can be unmounted the same way as any Linux file system, by using the umount
command.

NOTE

The umount command is a Linux system command. Information about this command can
be found in the Linux umount command man pages.

Usage

umount MountPoint

MountPoint

Specifies the directory where the GFS2 file system is currently mounted.

3.3. BACKING UP A GFS2 FILE SYSTEM

It is important to make regular backups of your GFS2 file system in case of emergency, regardless of the
size of your file system. Many system administrators feel safe because they are protected by RAID,
multipath, mirroring, snapshots, and other forms of redundancy, but there is no such thing as safe
enough.

It can be a problem to create a backup since the process of backing up a node or set of nodes usually
involves reading the entire file system in sequence. If this is done from a single node, that node will
retain all the information in cache until other nodes in the cluster start requesting locks. Running this
type of backup program while the cluster is in operation will negatively impact performance.

Dropping the caches once the backup is complete reduces the time required by other nodes to regain
ownership of their cluster locks/caches. This is still not ideal, however, because the other nodes will have
stopped caching the data that they were caching before the backup process began. You can drop
caches using the following command after the backup is complete:

echo -n 3 > /proc/sys/vm/drop_caches

It is faster if each node in the cluster backs up its own files so that the task is split between the nodes.
You might be able to accomplish this with a script that uses the rsync command on node-specific
directories.

Red Hat recommends making a GFS2 backup by creating a hardware snapshot on the SAN, presenting
the snapshot to another system, and backing it up there. The backup system should mount the snapshot
with -o lockproto=lock_nolock since it will not be in a cluster.

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

22

3.4. SUSPENDING ACTIVITY ON A GFS2 FILE SYSTEM

You can suspend write activity to a file system by using the dmsetup suspend command. Suspending
write activity allows hardware-based device snapshots to be used to capture the file system in a
consistent state. The dmsetup resume command ends the suspension.

The format for the command to suspend activity on a GFS2 file system is as follows.

dmsetup suspend MountPoint

This example suspends writes to file system /mygfs2.

dmsetup suspend /mygfs2

The format for the command to end suspension of activity on a GFS2 file system is as follows.

dmsetup resume MountPoint

This example ends suspension of writes to file system /mygfs2.

dmsetup resume /mygfs2

3.5. GROWING A GFS2 FILE SYSTEM

The gfs2_grow command is used to expand a GFS2 file system after the device where the file system
resides has been expanded. Running the gfs2_grow command on an existing GFS2 file system fills all
spare space between the current end of the file system and the end of the device with a newly initialized
GFS2 file system extension. All nodes in the cluster can then use the extra storage space that has been
added.

NOTE

You cannot decrease the size of a GFS2 file system.

The gfs2_grow command must be run on a mounted file system. The following procedure increases the
size of the GFS2 file system in a cluster that is mounted on the logical volume shared_vg/shared_lv1
with a mount point of /mnt/gfs2.

1. Perform a backup of the data on the file system.

2. If you do not know the logical volume that is used by the file system to be expanded, you can
determine this by running the df mountpoint command. This will display the device name in the
following format:
/dev/mapper/vg-lv

For example, the device name /dev/mapper/shared_vg-shared_lv1 indicates that the logical
volume is shared_vg/shared_lv1.

3. On one node of the cluster, expand the underlying cluster volume with the lvextend command,
using the --lockopt skiplv option to override normal logical volume locking.

lvextend --lockopt skiplv -L+1G shared_vg/shared_lv1
WARNING: skipping LV lock in lvmlockd.

CHAPTER 3. GFS2 FILE SYSTEMS

23

Size of logical volume shared_vg/shared_lv1 changed from 5.00 GiB (1280 extents) to 6.00
GiB (1536 extents).
Logical volume shared_vg/shared_lv1 successfully resized.

4. On every additional node of the cluster, refresh the logical volume to update the active logical
volume on that node.

NOTE

Failing to perform this step on each additional cluster node could make your data
unavailable throughout the cluster.

lvchange --refresh shared_vg/shared_lv1

5. One one node of the cluster, increase the size of the GFS2 file system.

gfs2_grow /mnt/gfs2
FS: Mount point: /mnt/gfs2
FS: Device: /dev/mapper/shared_vg-shared_lv1
FS: Size: 1310719 (0x13ffff)
DEV: Length: 1572864 (0x180000)
The file system will grow by 1024MB.
gfs2_grow complete.

6. Run the df command on all nodes to check that the new space is now available in the file system.
Note that it may take up to 30 seconds for the the df command on all nodes to show the same
file system size

df -h /mnt/gfs2
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/shared_vg-shared_lv1 6.0G 4.5G 1.6G 75% /mnt/gfs2

3.6. ADDING JOURNALS TO A GFS2 FILE SYSTEM

GFS2 requires one journal for each node in a cluster that needs to mount the file system. If you add
additional nodes to the cluster, you can add journals to a GFS2 file system with the gfs2_jadd
command. You can add journals to a GFS2 file system dynamically at any point without expanding the
underlying logical volume. The gfs2_jadd command must be run on a mounted file system, but it needs
to be run on only one node in the cluster. All the other nodes sense that the expansion has occurred.

NOTE

If a GFS2 file system is full, the gfs2_jadd command will fail, even if the logical volume
containing the file system has been extended and is larger than the file system. This is
because in a GFS2 file system, journals are plain files rather than embedded metadata, so
simply extending the underlying logical volume will not provide space for the journals.

Before adding journals to a GFS2 file system, you can find out how many journals the GFS2 file system
currently contains with the gfs2_edit -p jindex command, as in the following example:

gfs2_edit -p jindex /dev/sasdrives/scratch|grep journal
 3/3 [fc7745eb] 4/25 (0x4/0x19): File journal0

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

24

 4/4 [8b70757d] 5/32859 (0x5/0x805b): File journal1
 5/5 [127924c7] 6/65701 (0x6/0x100a5): File journal2

The format for the basic command to add journals to a GFS2 file system is as follows.

gfs2_jadd -j Number MountPoint

Number

Specifies the number of new journals to be added.

MountPoint

Specifies the directory where the GFS2 file system is mounted.

In this example, one journal is added to the file system on the /mygfs2 directory.

gfs2_jadd -j 1 /mygfs2

CHAPTER 3. GFS2 FILE SYSTEMS

25

CHAPTER 4. GFS2 QUOTA MANAGEMENT
File system quotas are used to limit the amount of file system space a user or group can use. A user or
group does not have a quota limit until one is set. When a GFS2 file system is mounted with the
quota=on or quota=account option, GFS2 keeps track of the space used by each user and group even
when there are no limits in place. GFS2 updates quota information in a transactional way so system
crashes do not require quota usages to be reconstructed.

To prevent a performance slowdown, a GFS2 node synchronizes updates to the quota file only
periodically. The fuzzy quota accounting can allow users or groups to slightly exceed the set limit. To
minimize this, GFS2 dynamically reduces the synchronization period as a hard quota limit is approached.

NOTE

GFS2 supports the standard Linux quota facilities. In order to use this you will need to
install the quota RPM. This is the preferred way to administer quotas on GFS2 and should
be used for all new deployments of GFS2 using quotas. This section documents GFS2
quota management using these facilities.

For more information on disk quotas, see the man pages of the following commands:

quotacheck

edquota

repquota

quota

4.1. CONFIGURING GFS2 DISK QUOTAS

To implement disk quotas, use the following steps:

1. Set up quotas in enforcement or accounting mode.

2. Initialize the quota database file with current block usage information.

3. Assign quota policies. (In accounting mode, these policies are not enforced.)

Each of these steps is discussed in detail in the following sections.

4.1.1. Setting up quotas in enforcement or accounting mode

In GFS2 file systems, quotas are disabled by default. To enable quotas for a file system, mount the file
system with the quota=on option specified.

To mount a file system with quotas enabled, specify quota=on for the options argument when creating
the GFS2 file system resource in a cluster. For example, the following command specifies that the GFS2
Filesystem resource being created will be mounted with quotas enabled.

pcs resource create gfs2mount Filesystem options="quota=on" device=BLOCKDEVICE
directory=MOUNTPOINT fstype=gfs2 clone

It is possible to keep track of disk usage and maintain quota accounting for every user and group

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

26

It is possible to keep track of disk usage and maintain quota accounting for every user and group
without enforcing the limit and warn values. To do this, mount the file system with the quota=account
option specified.

To mount a file system with quotas disabled, specify quota=off for the options argument when creating
the GFS2 file system resource in a cluster.

4.1.2. Creating the quota database files

After each quota-enabled file system is mounted, the system is capable of working with disk quotas.
However, the file system itself is not yet ready to support quotas. The next step is to run the
quotacheck command.

The quotacheck command examines quota-enabled file systems and builds a table of the current disk
usage per file system. The table is then used to update the operating system’s copy of disk usage. In
addition, the file system’s disk quota files are updated.

To create the quota files on the file system, use the -u and the -g options of the quotacheck command;
both of these options must be specified for user and group quotas to be initialized. For example, if
quotas are enabled for the /home file system, create the files in the /home directory:

quotacheck -ug /home

4.1.3. Assigning quotas per user

The last step is assigning the disk quotas with the edquota command. Note that if you have mounted
your file system in accounting mode (with the quota=account option specified), the quotas are not
enforced.

To configure the quota for a user, as root in a shell prompt, execute the command:

edquota username

Perform this step for each user who needs a quota. For example, if a quota is enabled for the /home
partition (/dev/VolGroup00/LogVol02 in the example below) and the command edquota testuser is
executed, the following is shown in the editor configured as the default for the system:

Disk quotas for user testuser (uid 501):
Filesystem blocks soft hard inodes soft hard
/dev/VolGroup00/LogVol02 440436 0 0

NOTE

The text editor defined by the EDITOR environment variable is used by edquota. To
change the editor, set the EDITOR environment variable in your ~/.bash_profile file to
the full path of the editor of your choice.

The first column is the name of the file system that has a quota enabled for it. The second column shows
how many blocks the user is currently using. The next two columns are used to set soft and hard block
limits for the user on the file system.

The soft block limit defines the maximum amount of disk space that can be used.

The hard block limit is the absolute maximum amount of disk space that a user or group can use. Once

CHAPTER 4. GFS2 QUOTA MANAGEMENT

27

The hard block limit is the absolute maximum amount of disk space that a user or group can use. Once
this limit is reached, no further disk space can be used.

The GFS2 file system does not maintain quotas for inodes, so these columns do not apply to GFS2 file
systems and will be blank.

If any of the values are set to 0, that limit is not set. In the text editor, change the limits. For example:

Disk quotas for user testuser (uid 501):
Filesystem blocks soft hard inodes soft hard
/dev/VolGroup00/LogVol02 440436 500000 550000

To verify that the quota for the user has been set, use the following command:

quota testuser

You can also set quotas from the command line with the setquota command. For information on the
setquota command, see the setquota(8) man page.

4.1.4. Assigning quotas per group

Quotas can also be assigned on a per-group basis. Note that if you have mounted your file system in
accounting mode (with the account=on option specified), the quotas are not enforced.

To set a group quota for the devel group (the group must exist prior to setting the group quota), use
the following command:

edquota -g devel

This command displays the existing quota for the group in the text editor:

Disk quotas for group devel (gid 505):
Filesystem blocks soft hard inodes soft hard
/dev/VolGroup00/LogVol02 440400 0 0

The GFS2 file system does not maintain quotas for inodes, so these columns do not apply to GFS2 file
systems and will be blank. Modify the limits, then save the file.

To verify that the group quota has been set, use the following command:

$ quota -g devel

4.2. MANAGING GFS2 DISK QUOTAS

If quotas are implemented, they need some maintenance, mostly in the form of watching to see if the
quotas are exceeded and making sure the quotas are accurate.

If users repeatedly exceed their quotas or consistently reach their soft limits, a system administrator has
a few choices to make depending on what type of users they are and how much disk space impacts their
work. The administrator can either help the user determine how to use less disk space or increase the
user’s disk quota.

You can create a disk usage report by running the repquota utility. For example, the command

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

28

You can create a disk usage report by running the repquota utility. For example, the command
repquota /home produces this output:

* Report for user quotas on device /dev/mapper/VolGroup00-LogVol02
Block grace time: 7days; Inode grace time: 7days
 Block limits File limits
User used soft hard grace used soft hard grace
--
root -- 36 0 0 4 0 0
kristin -- 540 0 0 125 0 0
testuser -- 440400 500000 550000 37418 0 0

To view the disk usage report for all (option -a) quota-enabled file systems, use the command:

repquota -a

The -- displayed after each user is a quick way to determine whether the block limits have been
exceeded. If the block soft limit is exceeded, a + appears in place of the first - in the output. The second
- indicates the inode limit, but GFS2 file systems do not support inode limits so that character will
remain as -. GFS2 file systems do not support a grace period, so the grace column will remain blank.

Note that the repquota command is not supported over NFS, irrespective of the underlying file system.

4.3. KEEPING GFS2 DISK QUOTAS ACCURATE WITH THE
QUOTACHECK COMMAND

If you enable quotas on your file system after a period of time when you have been running with quotas
disabled, you should run the quotacheck command to create, check, and repair quota files. Additionally,
you may want to run the quotacheck command if you think your quota files may not be accurate, as may
occur when a file system is not unmounted cleanly after a system crash.

For more information about the quotacheck command, see the quotacheck man page.

NOTE

Run quotacheck when the file system is relatively idle on all nodes because disk activity
may affect the computed quota values.

4.4. SYNCHRONIZING QUOTAS WITH THE QUOTASYNC COMMAND

GFS2 stores all quota information in its own internal file on disk. A GFS2 node does not update this
quota file for every file system write; rather, by default it updates the quota file once every 60 seconds.
This is necessary to avoid contention among nodes writing to the quota file, which would cause a
slowdown in performance.

As a user or group approaches their quota limit, GFS2 dynamically reduces the time between its quota-
file updates to prevent the limit from being exceeded. The normal time period between quota
synchronizations is a tunable parameter, quota_quantum. You can change this from its default value of
60 seconds using the quota_quantum= mount option. Table 25.2. GFS2-Specific Mount Options . The
quota_quantum parameter must be set on each node and each time the file system is mounted.
Changes to the quota_quantum parameter are not persistent across unmounts. You can update the
quota_quantum value with the mount -o remount.

You can use the quotasync command to synchronize the quota information from a node to the on-disk

CHAPTER 4. GFS2 QUOTA MANAGEMENT

29

You can use the quotasync command to synchronize the quota information from a node to the on-disk
quota file between the automatic updates performed by GFS2. Usage Synchronizing Quota
Information

`quotasync [-ug -a|mountpoint..a`].

u

Sync the user quota files.

g

Sync the group quota files

a

Sync all file systems that are currently quota-enabled and support sync. When -a is absent, a file
system mountpoint should be specified.

mountpoint

Specifies the GFS2 file system to which the actions apply.

You can tune the time between synchronizations by specifying a quota-quantum mount option.

mount -o quota_quantum=secs,remount BlockDevice MountPoint

MountPoint

Specifies the GFS2 file system to which the actions apply.

secs

Specifies the new time period between regular quota-file synchronizations by GFS2. Smaller values
may increase contention and slow down performance.

The following example synchronizes all the cached dirty quotas from the node it is run on to the on-disk
quota file for the file system /mnt/mygfs2.

quotasync -ug /mnt/mygfs2

This following example changes the default time period between regular quota-file updates to one hour
(3600 seconds) for file system /mnt/mygfs2 when remounting that file system on logical volume
/dev/volgroup/logical_volume.

mount -o quota_quantum=3600,remount /dev/volgroup/logical_volume /mnt/mygfs2

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

30

CHAPTER 5. GFS2 FILE SYSTEM REPAIR
When nodes fail with the file system mounted, file system journaling allows fast recovery. However, if a
storage device loses power or is physically disconnected, file system corruption may occur. (Journaling
cannot be used to recover from storage subsystem failures.) When that type of corruption occurs, you
can recover the GFS2 file system by using the fsck.gfs2 command.

IMPORTANT

The fsck.gfs2 command must be run only on a file system that is unmounted from all
nodes. When the file system is being managed as a Pacemaker cluster resource, you can
disable the file system resource, which unmounts the file system. After running the
fsck.gfs2 command, you enable the file system resource again. The timeout value
specified with the --wait option of the pcs resource disable indicates a value in seconds.

pcs resource disable --wait=timeoutvalue resource_id
[fsck.gfs2]
pcs resource enable resource_id

To ensure that fsck.gfs2 command does not run on a GFS2 file system at boot time, you can set the
run_fsck parameter of the options argument when creating the GFS2 file system resource in a cluster.
Specifying "run_fsck=no" will indicate that you should not run the fsck command.

5.1. DETERMING REQUIRED MEMORY FOR RUNNING FSCK.GFS2

Running the fsck.gfs2 command may require system memory above and beyond the memory used for
the operating system and kernel. Larger file systems in particular may require additional memory to run
this command.

The following table shows approximate values of memory that may be required to run fsck.gfs2 file
systems on GFS2 file systems that are 1TB, 10TB, and 100TB in size with a block size of 4K.

GFS2 file system size Approximate memory required to run fsck.gfs2

1 TB 0.16 GB

10 TB 1.6 GB

100 TB 16 GB

Note that a smaller block size for the file system would require a larger amount of memory. For example,
GFS2 file systems with a block size of 1K would require four times the amount of memory indicated in
this table.

5.2. REPAIRING A GFS2 FILESYSTEM

The following shows the format of the fsck.gfs2 command to repair a GFS2 filesystem.

fsck.gfs2 -y BlockDevice

CHAPTER 5. GFS2 FILE SYSTEM REPAIR

31

-y

The -y flag causes all questions to be answered with yes. With the -y flag specified, the fsck.gfs2
command does not prompt you for an answer before making changes.

BlockDevice

Specifies the block device where the GFS2 file system resides.

In this example, the GFS2 file system residing on block device /dev/testvg/testlv is repaired. All queries
to repair are automatically answered with yes.

fsck.gfs2 -y /dev/testvg/testlv
Initializing fsck
Validating Resource Group index.
Level 1 RG check.
(level 1 passed)
Clearing journals (this may take a while)...
Journals cleared.
Starting pass1
Pass1 complete
Starting pass1b
Pass1b complete
Starting pass1c
Pass1c complete
Starting pass2
Pass2 complete
Starting pass3
Pass3 complete
Starting pass4
Pass4 complete
Starting pass5
Pass5 complete
Writing changes to disk
fsck.gfs2 complete

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

32

CHAPTER 6. IMPROVING GFS2 PERFORMANCE
This section provides advice for improving GFS2 peformance.

For general recommendations for deploying and upgrading Red Hat Enterprise Linux clusters using the
High Availability Add-On and Red Hat Global File System 2 (GFS2) see the article "Red Hat Enterprise
Linux Cluster, High Availability, and GFS Deployment Best Practices" on the Red Hat Customer Portal
at https://access.redhat.com/kb/docs/DOC-40821.

6.1. GFS2 FILE SYSTEM DEFRAGMENTATION

While there is no defragmentation tool for GFS2 on Red Hat Enterprise Linux, you can defragment
individual files by identifying them with the filefrag tool, copying them to temporary files, and renaming
the temporary files to replace the originals.

6.2. GFS2 NODE LOCKING

In order to get the best performance from a GFS2 file system, it is important to understand some of the
basic theory of its operation. A single node file system is implemented alongside a cache, the purpose of
which is to eliminate latency of disk accesses when using frequently requested data. In Linux the page
cache (and historically the buffer cache) provide this caching function.

With GFS2, each node has its own page cache which may contain some portion of the on-disk data.
GFS2 uses a locking mechanism called glocks (pronounced gee-locks) to maintain the integrity of the
cache between nodes. The glock subsystem provides a cache management function which is
implemented using the distributed lock manager (DLM) as the underlying communication layer.

The glocks provide protection for the cache on a per-inode basis, so there is one lock per inode which is
used for controlling the caching layer. If that glock is granted in shared mode (DLM lock mode: PR) then
the data under that glock may be cached upon one or more nodes at the same time, so that all the
nodes may have local access to the data.

If the glock is granted in exclusive mode (DLM lock mode: EX) then only a single node may cache the
data under that glock. This mode is used by all operations which modify the data (such as the write
system call).

If another node requests a glock which cannot be granted immediately, then the DLM sends a message
to the node or nodes which currently hold the glocks blocking the new request to ask them to drop their
locks. Dropping glocks can be (by the standards of most file system operations) a long process.
Dropping a shared glock requires only that the cache be invalidated, which is relatively quick and
proportional to the amount of cached data.

Dropping an exclusive glock requires a log flush, and writing back any changed data to disk, followed by
the invalidation as per the shared glock.

The difference between a single node file system and GFS2, then, is that a single node file system has a
single cache and GFS2 has a separate cache on each node. In both cases, latency to access cached data
is of a similar order of magnitude, but the latency to access uncached data is much greater in GFS2 if
another node has previously cached that same data.

Operations such as read (buffered), stat, and readdir only require a shared glock. Operations such as
write (buffered), mkdir, rmdir, and unlink require an exclusive glock. Direct I/O read/write operations
require a deferred glock if no allocation is taking place, or an exclusive glock if the write requires an
allocation (that is, extending the file, or hole filling).

There are two main performance considerations which follow from this. First, read-only operations

CHAPTER 6. IMPROVING GFS2 PERFORMANCE

33

https://access.redhat.com/kb/docs/DOC-40821

There are two main performance considerations which follow from this. First, read-only operations
parallelize extremely well across a cluster, since they can run independently on every node. Second,
operations requiring an exclusive glock can reduce performance, if there are multiple nodes contending
for access to the same inode(s). Consideration of the working set on each node is thus an important
factor in GFS2 file system performance such as when, for example, you perform a file system backup, as
described in Backing up a GFS2 file system .

A further consequence of this is that we recommend the use of the noatime and nodiratime mount
options with GFS2 whenever possible. This prevents reads from requiring exclusive locks to update the
atime timestamp.

For users who are concerned about the working set or caching efficiency, GFS2 provides tools that
allow you to monitor the performance of a GFS2 file system: Performance Co-Pilot and GFS2
tracepoints.

NOTE

Due to the way in which GFS2’s caching is implemented the best performance is obtained
when either of the following takes place:

An inode is used in a read-only fashion across all nodes.

An inode is written or modified from a single node only.

Note that inserting and removing entries from a directory during file creation and
deletion counts as writing to the directory inode.

It is possible to break this rule provided that it is broken relatively infrequently. Ignoring
this rule too often will result in a severe performance penalty.

If you mmap() a file on GFS2 with a read/write mapping, but only read from it, this only
counts as a read.

If you do not set the noatime mount parameter, then reads will also result in writes to
update the file timestamps. We recommend that all GFS2 users should mount with
noatime unless they have a specific requirement for atime.

6.3. ISSUES WITH POSIX LOCKING

When using Posix locking, you should take the following into account:

Use of Flocks will yield faster processing than use of Posix locks.

Programs using Posix locks in GFS2 should avoid using the GETLK function since, in a clustered
environment, the process ID may be for a different node in the cluster.

6.4. PERFORMANCE TUNING WITH GFS2

It is usually possible to alter the way in which a troublesome application stores its data in order to gain a
considerable performance advantage.

A typical example of a troublesome application is an email server. These are often laid out with a spool
directory containing files for each user (mbox), or with a directory for each user containing a file for
each message (maildir). When requests arrive over IMAP, the ideal arrangement is to give each user an

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

34

affinity to a particular node. That way their requests to view and delete email messages will tend to be
served from the cache on that one node. Obviously if that node fails, then the session can be restarted
on a different node.

When mail arrives by means of SMTP, then again the individual nodes can be set up so as to pass a
certain user’s mail to a particular node by default. If the default node is not up, then the message can be
saved directly into the user’s mail spool by the receiving node. Again this design is intended to keep
particular sets of files cached on just one node in the normal case, but to allow direct access in the case
of node failure.

This setup allows the best use of GFS2’s page cache and also makes failures transparent to the
application, whether imap or smtp.

Backup is often another tricky area. Again, if it is possible it is greatly preferable to back up the working
set of each node directly from the node which is caching that particular set of inodes. If you have a
backup script which runs at a regular point in time, and that seems to coincide with a spike in the
response time of an application running on GFS2, then there is a good chance that the cluster may not
be making the most efficient use of the page cache.

Obviously, if you are in the position of being able to stop the application in order to perform a backup,
then this will not be a problem. On the other hand, if a backup is run from just one node, then after it has
completed a large portion of the file system will be cached on that node, with a performance penalty for
subsequent accesses from other nodes. This can be mitigated to a certain extent by dropping the VFS
page cache on the backup node after the backup has completed with following command:

echo -n 3 >/proc/sys/vm/drop_caches

However this is not as good a solution as taking care to ensure the working set on each node is either
shared, mostly read-only across the cluster, or accessed largely from a single node.

6.5. TROUBLESHOOTING GFS2 PERFORMANCE WITH THE GFS2
LOCK DUMP

If your cluster performance is suffering because of inefficient use of GFS2 caching, you may see large
and increasing I/O wait times. You can make use of GFS2’s lock dump information to determine the
cause of the problem.

This section provides an overview of the GFS2 lock dump.

The GFS2 lock dump information can be gathered from the debugfs file which can be found at the
following path name, assuming that debugfs is mounted on /sys/kernel/debug/:

/sys/kernel/debug/gfs2/fsname/glocks

The content of the file is a series of lines. Each line starting with G: represents one glock, and the
following lines, indented by a single space, represent an item of information relating to the glock
immediately before them in the file.

The best way to use the debugfs file is to use the cat command to take a copy of the complete content
of the file (it might take a long time if you have a large amount of RAM and a lot of cached inodes) while
the application is experiencing problems, and then looking through the resulting data at a later date.

NOTE

CHAPTER 6. IMPROVING GFS2 PERFORMANCE

35

NOTE

It can be useful to make two copies of the debugfs file, one a few seconds or even a
minute or two after the other. By comparing the holder information in the two traces
relating to the same glock number, you can tell whether the workload is making progress
(it is just slow) or whether it has become stuck (which is always a bug and should be
reported to Red Hat support immediately).

Lines in the debugfs file starting with H: (holders) represent lock requests either granted or waiting to
be granted. The flags field on the holders line f: shows which: The 'W' flag refers to a waiting request,
the 'H' flag refers to a granted request. The glocks which have large numbers of waiting requests are
likely to be those which are experiencing particular contention.

Table 6.1, “Glock flags” shows the meanings of the different glock flags and Table 6.2, “Glock holder
flags” shows the meanings of the different glock holder flags.

Table 6.1. Glock flags

Flag Name Meaning

b Blocking Valid when the locked flag is set,
and indicates that the operation
that has been requested from the
DLM may block. This flag is
cleared for demotion operations
and for "try" locks. The purpose of
this flag is to allow gathering of
stats of the DLM response time
independent from the time taken
by other nodes to demote locks.

d Pending demote A deferred (remote) demote
request

D Demote A demote request (local or
remote)

f Log flush The log needs to be committed
before releasing this glock

F Frozen Replies from remote nodes
ignored - recovery is in progress.
This flag is not related to file
system freeze, which uses a
different mechanism, but is used
only in recovery.

i Invalidate in progress In the process of invalidating
pages under this glock

I Initial Set when DLM lock is associated
with this glock

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

36

l Locked The glock is in the process of
changing state

L LRU Set when the glock is on the LRU
list

o Object Set when the glock is associated
with an object (that is, an inode
for type 2 glocks, and a resource
group for type 3 glocks)

p Demote in progress The glock is in the process of
responding to a demote request

q Queued Set when a holder is queued to a
glock, and cleared when the glock
is held, but there are no remaining
holders. Used as part of the
algorithm the calculates the
minimum hold time for a glock.

r Reply pending Reply received from remote node
is awaiting processing

y Dirty Data needs flushing to disk before
releasing this glock

Flag Name Meaning

Table 6.2. Glock holder flags

Flag Name Meaning

a Async Do not wait for glock result (will
poll for result later)

A Any Any compatible lock mode is
acceptable

c No cache When unlocked, demote DLM lock
immediately

e No expire Ignore subsequent lock cancel
requests

E exact Must have exact lock mode

F First Set when holder is the first to be
granted for this lock

CHAPTER 6. IMPROVING GFS2 PERFORMANCE

37

H Holder Indicates that requested lock is
granted

p Priority Enqueue holder at the head of the
queue

t Try A "try" lock

T Try 1CB A "try" lock that sends a callback

W Wait Set while waiting for request to
complete

Flag Name Meaning

Having identified a glock which is causing a problem, the next step is to find out which inode it relates to.
The glock number (n: on the G: line) indicates this. It is of the form type/number and if type is 2, then the
glock is an inode glock and the number is an inode number. To track down the inode, you can then run
find -inum number where number is the inode number converted from the hex format in the glocks file
into decimal.

WARNING

If you run the find command on a file system when it is experiencing lock
contention, you are likely to make the problem worse. It is a good idea to stop the
application before running the find command when you are looking for contended
inodes.

Table 6.3, “Glock types” shows the meanings of the different glock types.

Table 6.3. Glock types

Type number Lock type Use

1 Trans Transaction lock

2 Inode Inode metadata and data

3 Rgrp Resource group metadata

4 Meta The superblock

5 Iopen Inode last closer detection

6 Flock flock(2) syscall

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

38

8 Quota Quota operations

9 Journal Journal mutex

Type number Lock type Use

If the glock that was identified was of a different type, then it is most likely to be of type 3: (resource
group). If you see significant numbers of processes waiting for other types of glock under normal loads,
report this to Red Hat support.

If you do see a number of waiting requests queued on a resource group lock there may be a number of
reasons for this. One is that there are a large number of nodes compared to the number of resource
groups in the file system. Another is that the file system may be very nearly full (requiring, on average,
longer searches for free blocks). The situation in both cases can be improved by adding more storage
and using the gfs2_grow command to expand the file system.

6.6. ENABLING DATA JOURNALING

Ordinarily, GFS2 writes only metadata to its journal. File contents are subsequently written to disk by the
kernel’s periodic sync that flushes file system buffers. An fsync() call on a file causes the file’s data to be
written to disk immediately. The call returns when the disk reports that all data is safely written.

Data journaling can result in a reduced fsync() time for very small files because the file data is written to
the journal in addition to the metadata. This advantage rapidly reduces as the file size increases. Writing
to medium and larger files will be much slower with data journaling turned on.

Applications that rely on fsync() to sync file data may see improved performance by using data
journaling. Data journaling can be enabled automatically for any GFS2 files created in a flagged directory
(and all its subdirectories). Existing files with zero length can also have data journaling turned on or off.

Enabling data journaling on a directory sets the directory to "inherit jdata", which indicates that all files
and directories subsequently created in that directory are journaled. You can enable and disable data
journaling on a file with the chattr command.

The following commands enable data journaling on the /mnt/gfs2/gfs2_dir/newfile file and then check
whether the flag has been set properly.

chattr +j /mnt/gfs2/gfs2_dir/newfile
lsattr /mnt/gfs2/gfs2_dir
---------j--- /mnt/gfs2/gfs2_dir/newfile

The following commands disable data journaling on the /mnt/gfs2/gfs2_dir/newfile file and then check
whether the flag has been set properly.

chattr -j /mnt/gfs2/gfs2_dir/newfile
lsattr /mnt/gfs2/gfs2_dir
------------- /mnt/gfs2/gfs2_dir/newfile

You can also use the chattr command to set the j flag on a directory. When you set this flag for a
directory, all files and directories subsequently created in that directory are journaled. The following set
of commands sets the j flag on the gfs2_dir directory, then checks whether the flag has been set

CHAPTER 6. IMPROVING GFS2 PERFORMANCE

39

properly. After this, the commands create a new file called newfile in the /mnt/gfs2/gfs2_dir directory
and then check whether the j flag has been set for the file. Since the j flag is set for the directory, then
newfile should also have journaling enabled.

chattr -j /mnt/gfs2/gfs2_dir
lsattr /mnt/gfs2
---------j--- /mnt/gfs2/gfs2_dir
touch /mnt/gfs2/gfs2_dir/newfile
lsattr /mnt/gfs2/gfs2_dir
---------j--- /mnt/gfs2/gfs2_dir/newfile

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

40

CHAPTER 7. DIAGNOSING AND CORRECTING PROBLEMS
WITH GFS2 FILE SYSTEMS

This section provides information about some common GFS2 issues and how to address them.

7.1. GFS2 FILESYSTEM UNAVAILABLE TO A NODE (THE GFS2
WITHDRAW FUNCTION)

The GFS2 withdraw function is a data integrity feature of the GFS2 file system that prevents potential
file system damage due to faulty hardware or kernel software. If the GFS2 kernel module detects an
inconsistency while using a GFS2 file system on any given cluster node, it withdraws from the file
system, leaving it unavailable to that node until it is unmounted and remounted (or the machine
detecting the problem is rebooted). All other mounted GFS2 file systems remain fully functional on that
node. (The GFS2 withdraw function is less severe than a kernel panic, which causes the node to be
fenced.)

The main categories of inconsistency that can cause a GFS2 withdraw are as follows:

Inode consistency error

Resource group consistency error

Journal consistency error

Magic number metadata consistency error

Metadata type consistency error

An example of an inconsistency that would cause a GFS2 withdraw is an incorrect block count for a file’s
inode. When GFS2 deletes a file, it systematically removes all the data and metadata blocks referenced
by that file. When done, it checks the inode’s block count. If the block count is not 1 (meaning all that is
left is the disk inode itself), that indicates a file system inconsistency, since the inode’s block count did
not match the actual blocks used for the file.

In many cases, the problem may have been caused by faulty hardware (faulty memory, motherboard,
HBA, disk drives, cables, and so forth). It may also have been caused by a kernel bug (another kernel
module accidentally overwriting GFS2’s memory), or actual file system damage (caused by a GFS2 bug).

In most cases, the best way to recover from a withdrawn GFS2 file system is to reboot or fence the
node. The withdrawn GFS2 file system will give you an opportunity to relocate services to another node
in the cluster. After services are relocated you can reboot the node or force a fence with this command.

pcs stonith fence node

WARNING

Do not try to unmount and remount the file system manually with the umount and
mount commands. You must use the pcs command, otherwise Pacemaker will
detect the file system service has disappeared and fence the node.

CHAPTER 7. DIAGNOSING AND CORRECTING PROBLEMS WITH GFS2 FILE SYSTEMS

41

The consistency problem that caused the withdraw may make stopping the file system service
impossible as it may cause the system to hang.

If the problem persists after a remount, you should stop the file system service to unmount the file
system from all nodes in the cluster, then perform a file system check with the fsck.gfs2 command
before restarting the service with the following procedure.

1. Reboot the affected node.

2. Disable the non-clone file system service in Pacemaker to unmount the file system from every
node in the cluster.

pcs resource disable --wait=100 mydata_fs

3. From one node of the cluster, run the fsck.gfs2 command on the file system device to check
for and repair any file system damage.

fsck.gfs2 -y /dev/vg_mydata/mydata > /tmp/fsck.out

4. Remount the GFS2 file system from all nodes by re-enabling the file system service:

pcs resource enable --wait=100 mydata_fs

You can override the GFS2 withdraw function by mounting the file system with the -o errors=panic
option specified in the file system service.

pcs resource update mydata_fs “options=noatime,errors=panic”

When this option is specified, any errors that would normally cause the system to withdraw force a
kernel panic instead. This stops the node’s communications, which causes the node to be fenced. This is
especially useful for clusters that are left unattended for long periods of time without monitoring or
intervention.

Internally, the GFS2 withdraw function works by disconnecting the locking protocol to ensure that all
further file system operations result in I/O errors. As a result, when the withdraw occurs, it is normal to
see a number of I/O errors from the device mapper device reported in the system logs.

7.2. GFS2 FILE SYSTEM HANGS AND REQUIRES REBOOT OF ONE
NODE

If your GFS2 file system hangs and does not return commands run against it, but rebooting one specific
node returns the system to normal, this may be indicative of a locking problem or bug. Should this occur,
gather GFS2 data during one of these occurences and open a support ticket with Red Hat Support, as
described in Gathering GFS2 data for troubleshooting.

7.3. GFS2 FILE SYSTEM HANGS AND REQUIRES REBOOT OF ALL
NODES

If your GFS2 file system hangs and does not return commands run against it, requiring that you reboot
all nodes in the cluster before using it, check for the following issues.

You may have had a failed fence. GFS2 file systems will freeze to ensure data integrity in the

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

42

You may have had a failed fence. GFS2 file systems will freeze to ensure data integrity in the
event of a failed fence. Check the messages logs to see if there are any failed fences at the
time of the hang. Ensure that fencing is configured correctly.

The GFS2 file system may have withdrawn. Check through the messages logs for the word
withdraw and check for any messages and call traces from GFS2 indicating that the file system
has been withdrawn. A withdraw is indicative of file system corruption, a storage failure, or a bug.
At the earliest time when it is convenient to unmount the file system, you should perform the
following procedure:

a. Reboot the node on which the withdraw occurred.

/sbin/reboot

b. Stop the file system resource to unmount the GFS2 file system on all nodes.

pcs resource disable --wait=100 mydata_fs

c. Capture the metadata with the gfs2_edit savemeta… command. You should ensure that
there is sufficient space for the file, which in some cases may be large. In this example, the
metadata is saved to a file in the /root directory.

gfs2_edit savemeta /dev/vg_mydata/mydata /root/gfs2metadata.gz

d. Update the gfs2-utils package.

sudo yum update gfs2-utils

e. On one node, run the fsck.gfs2 command on the file system to ensure file system integrity
and repair any damage.

fsck.gfs2 -y /dev/vg_mydata/mydata > /tmp/fsck.out

f. After the fsck.gfs2 command has completed, re-enable the file system resource to return
it to service:

pcs resource enable --wait=100 mydata_fs

g. Open a support ticket with Red Hat Support. Inform them you experienced a GFS2
withdraw and provide logs and the debugging information generated by the sosreports
and gfs2_edit savemeta commands.
In some instances of a GFS2 withdraw, commands can hang that are trying to access the file
system or its block device. In these cases a hard reboot is required to reboot the cluster.

For information on the GFS2 withdraw function, see GFS2 filesystem unavailable to a node
(the GFS2 withdraw function).

This error may be indicative of a locking problem or bug. Gather data during one of these
occurrences and open a support ticket with Red Hat Support, as described in Gathering GFS2
data for troubleshooting.

7.4. GFS2 FILE SYSTEM DOES NOT MOUNT ON NEWLY ADDED
CLUSTER NODE

CHAPTER 7. DIAGNOSING AND CORRECTING PROBLEMS WITH GFS2 FILE SYSTEMS

43

If you add a new node to a cluster and find that you cannot mount your GFS2 file system on that node,
you may have fewer journals on the GFS2 file system than nodes attempting to access the GFS2 file
system. You must have one journal per GFS2 host you intend to mount the file system on (with the
exception of GFS2 file systems mounted with the spectator mount option set, since these do not
require a journal). You can add journals to a GFS2 file system with the gfs2_jadd command. Adding
journals to a GFS2 file system.

7.5. SPACE INDICATED AS USED IN EMPTY FILE SYSTEM

If you have an empty GFS2 file system, the df command will show that there is space being taken up.
This is because GFS2 file system journals consume space (number of journals * journal size) on disk. If
you created a GFS2 file system with a large number of journals or specified a large journal size then you
will be see (number of journals * journal size) as already in use when you execute the df command. Even
if you did not specify a large number of journals or large journals, small GFS2 file systems (in the 1GB or
less range) will show a large amount of space as being in use with the default GFS2 journal size.

7.6. GATHERING GFS2 DATA FOR TROUBLESHOOTING

If your GFS2 file system hangs and does not return commands run against it and you find that you need
to open a ticket with Red Hat Support, you should first gather the following data:

The GFS2 lock dump for the file system on each node:

cat /sys/kernel/debug/gfs2/fsname/glocks >glocks.fsname.nodename

The DLM lock dump for the file system on each node: You can get this information with the
dlm_tool:

dlm_tool lockdebug -sv lsname.

In this command, lsname is the lockspace name used by DLM for the file system in question.
You can find this value in the output from the group_tool command.

The output from the sysrq -t command.

The contents of the /var/log/messages file.

Once you have gathered that data, you can open a ticket with Red Hat Support and provide the data
you have collected.

Red Hat Enterprise Linux 8 Configuring GFS2 file systems

44

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. PLANNING A GFS2 FILE SYSTEM DEPLOYMENT
	1.1. KEY GFS2 PARAMETERS TO DETERMINE
	1.2. GFS2 SUPPORT CONSIDERATIONS
	1.3. GFS2 FORMATTING CONSIDERATIONS
	File System Size: Smaller Is Better
	Block Size: Default (4K) Blocks Are Preferred
	Journal Size: Default (128MB) Is Usually Optimal
	Size and Number of Resource Groups

	1.4. BLOCK ALLOCATION ISSUES
	1.4.1. Leave free space in the file system
	1.4.2. Have each node allocate its own files, if possible
	1.4.3. Preallocate, if possible

	1.5. CLUSTER CONSIDERATIONS
	1.6. HARDWARE CONSIDERATIONS

	CHAPTER 2. RECOMMENDATIONS FOR GFS2 USAGE
	2.1. MOUNT OPTIONS: NOATIME AND NODIRATIME
	2.2. CONFIGURING ATIME UPDATES
	Mount with relatime
	Mount with noatime

	2.3. VFS TUNING OPTIONS: RESEARCH AND EXPERIMENT
	2.4. SELINUX ON GFS2
	2.5. SETTING UP NFS OVER GFS2
	2.6. SAMBA (SMB OR WINDOWS) FILE SERVING OVER GFS2
	2.7. CONFIGURING VIRTUAL MACHINES FOR GFS2

	CHAPTER 3. GFS2 FILE SYSTEMS
	3.1. GFS2 FILE SYSTEM CREATION
	3.1.1. The GFS2 mkfs command
	3.1.2. Creating a GFS2 file system

	3.2. MOUNTING A GFS2 FILE SYSTEM
	3.2.1. Mounting a GFS2 file system with no options specified
	3.2.2. Unmounting a GFS2 file system

	3.3. BACKING UP A GFS2 FILE SYSTEM
	3.4. SUSPENDING ACTIVITY ON A GFS2 FILE SYSTEM
	3.5. GROWING A GFS2 FILE SYSTEM
	3.6. ADDING JOURNALS TO A GFS2 FILE SYSTEM

	CHAPTER 4. GFS2 QUOTA MANAGEMENT
	4.1. CONFIGURING GFS2 DISK QUOTAS
	4.1.1. Setting up quotas in enforcement or accounting mode
	4.1.2. Creating the quota database files
	4.1.3. Assigning quotas per user
	4.1.4. Assigning quotas per group

	4.2. MANAGING GFS2 DISK QUOTAS
	4.3. KEEPING GFS2 DISK QUOTAS ACCURATE WITH THE QUOTACHECK COMMAND
	4.4. SYNCHRONIZING QUOTAS WITH THE QUOTASYNC COMMAND

	CHAPTER 5. GFS2 FILE SYSTEM REPAIR
	5.1. DETERMING REQUIRED MEMORY FOR RUNNING FSCK.GFS2
	5.2. REPAIRING A GFS2 FILESYSTEM

	CHAPTER 6. IMPROVING GFS2 PERFORMANCE
	6.1. GFS2 FILE SYSTEM DEFRAGMENTATION
	6.2. GFS2 NODE LOCKING
	6.3. ISSUES WITH POSIX LOCKING
	6.4. PERFORMANCE TUNING WITH GFS2
	6.5. TROUBLESHOOTING GFS2 PERFORMANCE WITH THE GFS2 LOCK DUMP
	6.6. ENABLING DATA JOURNALING

	CHAPTER 7. DIAGNOSING AND CORRECTING PROBLEMS WITH GFS2 FILE SYSTEMS
	7.1. GFS2 FILESYSTEM UNAVAILABLE TO A NODE (THE GFS2 WITHDRAW FUNCTION)
	7.2. GFS2 FILE SYSTEM HANGS AND REQUIRES REBOOT OF ONE NODE
	7.3. GFS2 FILE SYSTEM HANGS AND REQUIRES REBOOT OF ALL NODES
	7.4. GFS2 FILE SYSTEM DOES NOT MOUNT ON NEWLY ADDED CLUSTER NODE
	7.5. SPACE INDICATED AS USED IN EMPTY FILE SYSTEM
	7.6. GATHERING GFS2 DATA FOR TROUBLESHOOTING

