Red Hat Enterprise Linux 8 Configuring and managing networking

A guide to configuring and managing networking in Red Hat Enterprise Linux 8
Abstract

This document describes how to manage networking on Red Hat Enterprise Linux 8.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE .. 10

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION 11

CHAPTER 1. GENERAL RHEL NETWORKING TOPICS 12
1.1. THE DIFFERENCE BETWEEN IP AND NON-IP NETWORKS 12
1.2. THE DIFFERENCE BETWEEN STATIC AND DYNAMIC IP ADDRESSING 12
1.3. DHCP TRANSACTION PHASES
 - Discovery
 - Offer
 - Request
 - Acknowledgment
1.4. INFINIBAND AND RDMA NETWORKS ... 13
1.5. LEGACY NETWORK SCRIPTS SUPPORT IN RHEL 13
1.6. SELECTING NETWORK CONFIGURATION METHODS 13

CHAPTER 2. CONSISTENT NETWORK INTERFACE DEVICE NAMING 15
2.1. NETWORK INTERFACE DEVICE NAMING HIERARCHY 15
2.2. HOW THE NETWORK DEVICE RENAMING WORKS 16
2.3. PREDICTABLE NETWORK INTERFACE DEVICE NAMES ON THE X86_64 PLATFORM EXPLAINED ... 17
2.4. PREDICTABLE NETWORK INTERFACE DEVICE NAMES ON THE SYSTEM Z PLATFORM EXPLAINED ... 17
2.5. DISABLING CONSISTENT INTERFACE DEVICE NAMING DURING THE INSTALLATION ... 18
2.6. DISABLING CONSISTENT INTERFACE DEVICE NAMING ON AN INSTALLED SYSTEM ... 18
2.7. USING PREFIXDEVNAME FOR NAMING OF ETHERNET NETWORK INTERFACES ... 19
 - 2.7.1. Introduction to prefixdevname
 - 2.7.2. Limitations of prefixdevname
 - 2.7.3. Setting prefixdevname
2.8. RELATED INFORMATION .. 19

CHAPTER 3. USING NETCONSOLE TO LOG KERNEL MESSAGES OVER A NETWORK 21
3.1. CONFIGURING THE NETCONSOLE SERVICE TO LOG KERNEL MESSAGES TO A REMOTE HOST .. 21

CHAPTER 4. SYSTEMD NETWORK TARGETS AND SERVICES 22
4.1. DIFFERENCES BETWEEN THE NETWORK AND NETWORK-ONLINE SYSTEMD TARGET .. 22
4.2. OVERVIEW OF NETWORKMANAGER-WAIT-ONLINE 22
4.3. CONFIGURING A SYSTEMD SERVICE TO START AFTER THE NETWORK HAS BEEN STARTED .. 23

CHAPTER 5. GETTING STARTED WITH NETWORKMANAGER 24
5.1. BENEFITS OF USING NETWORKMANAGER ... 24
5.2. AN OVERVIEW OF UTILITIES AND APPLICATIONS YOU CAN USE TO MANAGE NETWORKMANAGER CONNECTIONS 24
5.3. USING NETWORKMANAGER DISPATCHER SCRIPTS 25
5.4. LOADING MANUALLY-CREATED IFCFG FILES INTO NETWORKMANAGER 25

CHAPTER 6. CONFIGURING NETWORKMANAGER TO IGNORE CERTAIN DEVICES 27
6.1. PERMANENTLY CONFIGURING A DEVICE AS UNMANAGED IN NETWORKMANAGER ... 27
6.2. TEMPORARILY CONFIGURING A DEVICE AS UNMANAGED IN NETWORKMANAGER ... 28

CHAPTER 7. LINUX TRAFFIC CONTROL .. 29
7.1. OVERVIEW OF QUEUING DISCIPLINES
 - Classful qdiscs
 - Classless qdiscs
7.2. AVAILABLE QDISCS IN RHEL ... 29
7.3. INSPECTING QDISC COUNTERS ... 31
Red Hat Enterprise Linux 8 Configuring and managing networking

CHAPTER 34. GETTING STARTED WITH IPVLAN

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.1</td>
<td>IPVLAN OVERVIEW</td>
</tr>
<tr>
<td>34.2</td>
<td>IPVLAN MODES</td>
</tr>
<tr>
<td>34.3</td>
<td>OVERVIEW OF MACVLAN</td>
</tr>
<tr>
<td>34.4</td>
<td>COMPARISON OF IPVLAN AND MACVLAN</td>
</tr>
<tr>
<td>34.5</td>
<td>CREATING AND CONFIGURING THE IPVLAN DEVICE USING IPROUTE2</td>
</tr>
</tbody>
</table>

CHAPTER 35. CONFIGURING VIRTUAL ROUTING AND FORWARDING (VRF)

<table>
<thead>
<tr>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.1</td>
</tr>
<tr>
<td>35.2</td>
</tr>
<tr>
<td>35.3</td>
</tr>
<tr>
<td>35.4</td>
</tr>
<tr>
<td>35.5</td>
</tr>
<tr>
<td>35.6</td>
</tr>
</tbody>
</table>

Valid DNS priority values:

- 0 (highest priority)
- 5 (lowest priority)

Default values of DNS priority parameters:

- 0: Never use this server
- 5: Always use this server

Related information:

- Additional resources for configuring and managing networking in Red Hat Enterprise Linux 8.
35.1. PERMANENTLY REUSING THE SAME IP ADDRESS ON DIFFERENT INTERFACES 183
35.2. TEMPORARILY REUSING THE SAME IP ADDRESS ON DIFFERENT INTERFACES 184
35.3. RELATED INFORMATION 186

CHAPTER 36. SETTING THE ROUTING PROTOCOLS FOR YOUR SYSTEM 187
36.1. INTRODUCTION TO FRR ROUTING 187
36.2. SETTING UP FRR ROUTING 188
36.3. MODIFYING THE CONFIGURATION OF FRR
 Enabling an additional daemon 189
 Disabling a daemon 189
36.4. MODIFYING A CONFIGURATION OF A PARTICULAR DAEMON 189

CHAPTER 37. MONITORING AND TUNING THE RX RING BUFFER .. 191
37.1. DISPLAYING THE NUMBER OF DROPPED PACKETS 191
37.2. INCREASING THE RX RING BUFFER TO REDUCE A HIGH PACKET DROP RATE 191

CHAPTER 38. TESTING BASIC NETWORK SETTINGS ... 193
38.1. USING THE PING UTILITY TO VERIFY THE IP CONNECTION TO OTHER HOSTS 193
38.2. USING THE HOST UTILITY TO VERIFY NAME RESOLUTION 193

CHAPTER 39. INTRODUCTION TO NETWORKMANAGER DEBUGGING 194
39.1. DEBUGGING LEVELS AND DOMAINS 194
39.2. SETTING THE NETWORKMANAGER LOG LEVEL 194
39.3. TEMPORARILY SETTING LOG LEVELS AT RUN TIME USING NMCLI 195
39.4. VIEWING NETWORKMANAGER LOGS 196

CHAPTER 40. CAPTURING NETWORK PACKETS .. 197
40.1. USING XDPDUMP TO CAPTURE NETWORK PACKETS INCLUDING PACKETS DROPPED BY XDP
 PROGRAMS 197
40.2. ADDITIONAL RESOURCES 197

CHAPTER 41. INSTALLING AND UPDATING THE KERNEL ... 199
41.1. INSTALLING THE KERNEL 199
41.2. UPDATING THE KERNEL 199
41.3. STARTING RHEL USING A PREVIOUS KERNEL VERSION 199

CHAPTER 42. PROVIDING DHCP SERVICES .. 201
42.1. THE DIFFERENCES WHEN USING DHCPD FOR DHCPV4 AND DHCPV6 201
42.2. THE LEASE DATABASE OF THE DHCPD SERVICE 201
42.3. COMPARISON OF DHCPV6 TO RADVD 202
42.4. CONFIGURING THE RADVD SERVICE FOR IPV6 ROUTERS 202
42.5. SETTING NETWORK INTERFACES FOR THE DHCP SERVERS 203
42.6. SETTING UP THE DHCP SERVICE FOR SUBNETS DIRECTLY CONNECTED TO THE DHCP SERVER 205
42.7. SETTING UP THE DHCP SERVICE FOR SUBNETS THAT ARE NOT DIRECTLY CONNECTED TO THE DHCP SERVER 207
42.8. ASSIGNING A STATIC ADDRESS TO A HOST USING DHCP 211
42.9. USING A GROUP DECLARATION TO APPLY PARAMETERS TO MULTIPLE HOSTS, SUBNETS, AND
 SHARED NETWORKS AT THE SAME TIME 212
42.10. RESTORING A CORRUPT LEASE DATABASE 214
42.11. SETTING UP A DHCP RELAY AGENT 216

CHAPTER 43. USING AND CONFIGURING FIREWALLD .. 219
43.1. WHEN TO USE FIREWALLD, NFTABLES, OR IPTABLES 219
43.2. GETTING STARTED WITH FIREWALLD
 43.2.1. firewalld 219
 43.2.2. Zones 219
43.2.3. Predefined services

43.3. INSTALLING THE FIREWALL-CONFIG GUI CONFIGURATION TOOL

43.4. VIEWING THE CURRENT STATUS AND SETTINGS OF FIREWALLD
 43.4.1. Viewing the current status of firewalld
 43.4.2. Viewing current firewalld settings
 43.4.2.1. Viewing allowed services using GUI
 43.4.2.2. Viewing firewalld settings using CLI

43.5. STARTING FIREWALLD

43.6. STOPPING FIREWALLD

43.7. RUNTIME AND PERMANENT SETTINGS

43.8. VERIFYING THE PERMANENT FIREWALLD CONFIGURATION

43.9. CONTROLLING NETWORK TRAFFIC USING FIREWALLD
 43.9.1. Disabling all traffic in case of emergency using CLI
 43.9.2. Controlling traffic with predefined services using CLI
 43.9.3. Controlling traffic with predefined services using GUI
 43.9.4. Adding new services
 43.9.5. Controlling ports using CLI
 43.9.5.1. Opening a port
 43.9.5.2. Closing a port
 43.9.6. Opening ports using GUI
 43.9.7. Controlling traffic with protocols using GUI
 43.9.8. Opening source ports using GUI

43.10. WORKING WITH FIREWALLD ZONES
 43.10.1. Listing zones
 43.10.2. Modifying firewalld settings for a certain zone
 43.10.3. Changing the default zone
 43.10.4. Assigning a network interface to a zone
 43.10.5. Assigning a zone to a connection using nmcli
 43.10.6. Manually assigning a zone to a network connection in an ifcfg file
 43.10.7. Creating a new zone
 43.10.8. Zone configuration files
 43.10.9. Using zone targets to set default behavior for incoming traffic

43.11. USING ZONES TO MANAGE INCOMING TRAFFIC DEPENDING ON A SOURCE
 43.11.1. Using zones to manage incoming traffic depending on a source
 43.11.2. Adding a source
 43.11.3. Removing a source
 43.11.4. Adding a source port
 43.11.5. Removing a source port
 43.11.6. Using zones and sources to allow a service for only a specific domain
 43.11.7. Configuring traffic accepted by a zone based on a protocol
 43.11.7.1. Adding a protocol to a zone
 43.11.7.2. Removing a protocol from a zone

43.12. CONFIGURING IP ADDRESS MASQUERADING

43.13. PORT FORWARDING
 43.13.1. Adding a port to redirect
 43.13.2. Redirecting TCP port 80 to port 88 on the same machine
 43.13.3. Removing a redirected port
 43.13.4. Removing TCP port 80 forwarded to port 88 on the same machine

43.14. MANAGING ICMP REQUESTS
 43.14.1. Listing and blocking ICMP requests
 43.14.2. Configuring the ICMP filter using GUI

43.15. SETTING AND CONTROLLING IP SETS USING FIREWALLD
 43.15.1. Configuring IP set options using CLI
43.16. PRIORITIZING RICH RULES
43.16.1. How the priority parameter organizes rules into different chains
43.16.2. Setting the priority of a rich rule
43.17. CONFIGURING FIREWALL LOCKDOWN
43.17.1. Configuring lockdown with using CLI
43.17.2. Configuring lockdown whitelist options using CLI
43.17.3. Configuring lockdown whitelist options using configuration files
43.18. LOG FOR DENIED PACKETS
43.19. RELATED INFORMATION
 Installed documentation
 Online documentation

CHAPTER 44. GETTING STARTED WITH NFTABLES

44.1. MIGRATING FROM IPTABLES TO NFTABLES
44.1.1. When to use firewalld, nftables, or iptables
44.1.2. Converting iptables rules to nftables rules

44.2. WRITING AND EXECUTING NFTABLES SCRIPTS
44.2.1. The required script header in nftables script
44.2.2. Supported nftables script formats
44.2.3. Running nftables scripts
44.2.4. Using comments in nftables scripts
44.2.5. Using variables in an nftables script
 Variables with a single value
 Variables that contain an anonymous set
44.2.6. Including files in an nftables script
44.2.7. Automatically loading nftables rules when the system boots

44.3. CREATING AND MANAGING NFTABLES TABLES, CHAINS, AND RULES
44.3.1. Standard chain priority values and textual names
44.3.2. Displaying nftables rule sets
44.3.3. Creating an nftables table
44.3.4. Creating an nftables chain
44.3.5. Adding a rule to an nftables chain
44.3.6. Inserting a rule into an nftables chain

44.4. CONFIGURING NAT USING NFTABLES
44.4.1. The different NAT types: masquerading, source NAT, and destination NAT
44.4.2. Configuring masquerading using nftables
44.4.3. Configuring source NAT using nftables
44.4.4. Configuring destination NAT using nftables

44.5. USING SETS IN NFTABLES COMMANDS
44.5.1. Using anonymous sets in nftables
44.5.2. Using named sets in nftables
44.5.3. Related information

44.6. USING VERDICT MAPS IN NFTABLES COMMANDS
44.6.1. Using literal maps in nftables
44.6.2. Using mutable verdict maps in nftables
44.6.3. Related information

44.7. CONFIGURING PORT FORWARDING USING NFTABLES
44.7.1. Forwarding incoming packets to a different local port
44.7.2. Forwarding incoming packets on a specific local port to a different host

44.8. USING NFTABLES TO LIMIT THE AMOUNT OF CONNECTIONS
44.8.1. Limiting the number of connections using nftables
44.8.2. Blocking IP addresses that attempt more than ten new incoming TCP connections within one minute
44.9. DEBUGGING NFTABLES RULES
44.9.1. Creating a rule with a counter
44.9.2. Adding a counter to an existing rule
44.9.3. Monitoring packets that match an existing rule
44.10. BACKING UP AND RESTORING NFTABLES RULE SETS
44.10.1. Backing up nftables rule sets to a file
44.10.2. Restoring nftables rule sets from a file
44.11. RELATED INFORMATION

CHAPTER 45. USING XDP-FILTER FOR HIGH-PERFORMANCE TRAFFIC FILTERING TO PREVENT DDOS ATTACKS
45.1. DROPPING NETWORK PACKETS THAT MATCH AN XDP-FILTER RULE
45.2. DROPPING ALL NETWORK PACKETS EXCEPT THE ONES THAT MATCH AN XDP-FILTER RULE

CHAPTER 46. GETTING STARTED WITH DPDK
46.1. INSTALLING THE DPDK PACKAGE
46.2. RELATED INFORMATION

CHAPTER 47. UNDERSTANDING THE EBPF NETWORKING FEATURES IN RHEL
47.1. OVERVIEW OF NETWORKING EBPF FEATURES IN RHEL
 XDP
 AF_XDP
 Traffic Control
 Socket filter
 Control Groups
 Stream Parser
 SO_REUSEPORT socket selection
 Flow dissector
 TCP Congestion Control
 Routes with encapsulation

CHAPTER 48. NETWORK TRACING USING THE BPF COMPILER COLLECTION
48.1. AN INTRODUCTION TO BCC
48.2. INSTALLING THE BCC-TOOLS PACKAGE
48.3. DISPLAYING TCP CONNECTIONS ADDED TO THE KERNEL’S ACCEPT QUEUE
48.4. TRACING OUTGOING TCP CONNECTION ATTEMPTS
48.5. MEASURING THE LATENCY OF OUTGOING TCP CONNECTIONS
48.6. DISPLAYING DETAILS ABOUT TCP PACKETS AND SEGMENTS THAT WERE DROPPED BY THE KERNEL
48.7. TRACING TCP SESSIONS
48.8. TRACING TCP RETRANSMISSIONS
48.9. DISPLAYING TCP STATE CHANGE INFORMATION
48.10. SUMMARIZING AND AGGREGATING TCP TRAFFIC SENT TO SPECIFIC SUBNETS
48.11. DISPLAYING THE NETWORK THROUGHPUT BY IP ADDRESS AND PORT
48.12. TRACING ESTABLISHED TCP CONNECTIONS
48.13. TRACING IPV4 AND IPV6 LISTEN ATTEMPTS
48.14. SUMMARIZING THE SERVICE TIME OF SOFT INTERRUPTS
48.15. ADDITIONAL RESOURCES

CHAPTER 49. GETTING STARTED WITH TIPC
49.1. THE ARCHITECTURE OF TIPC
49.2. LOADING THE TIPC MODULE WHEN THE SYSTEM BOOTS
49.3. CREATING A TIPC NETWORK
49.4. ADDITIONAL RESOURCES
MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Please let us know how we could make it better. To do so:

- For simple comments on specific passages:
 1. Make sure you are viewing the documentation in the Multi-page HTML format. In addition, ensure you see the Feedback button in the upper right corner of the document.
 2. Use your mouse cursor to highlight the part of text that you want to comment on.
 3. Click the Add Feedback pop-up that appears below the highlighted text.
 4. Follow the displayed instructions.

- For submitting more complex feedback, create a Bugzilla ticket:
 1. Go to the Bugzilla website.
 2. As the Component, use Documentation.
 3. Fill in the Description field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
 4. Click Submit Bug.
CHAPTER 1. GENERAL RHEL NETWORKING TOPICS

This section provides details about general networking topics.

1.1. THE DIFFERENCE BETWEEN IP AND NON-IP NETWORKS

A network is a system of interconnected devices that can communicate sharing information and resources, such as files, printers, applications, and Internet connection. Each of these devices has a unique IP address to send and receive messages between two or more devices using a set of rules called protocol.

Categories of network communication:

IP networks
Networks that communicate through IP addresses. An IP network is implemented in the Internet and most internal networks. Ethernet, wireless networks, and VPN connections are typical examples.

Non-IP networks
Networks that are used to communicate through a lower layer rather than the transport layer. Note that these networks are rarely used. For example, InfiniBand is a non-IP network.

1.2. THE DIFFERENCE BETWEEN STATIC AND DYNAMIC IP ADDRESSING

Static IP addressing
When you assign a static IP address to a device, the address does not change over time unless you change it manually. Use static IP addressing if you want:

- To ensure network address consistency for servers such as DNS, and authentication servers.
- To use out-of-band management devices that work independently of other network infrastructure.

Dynamic IP addressing
When you configure a device to use a dynamic IP address, the address can change over time. For this reason, dynamic addresses are typically used for devices that connect to the network occasionally because the IP address can be different after rebooting the host.

Dynamic IP addresses are more flexible, easier to set up, and administer. The Dynamic Host Control Protocol (DHCP) is a traditional method of dynamically assigning network configurations to hosts.

NOTE

There is no strict rule defining when to use static or dynamic IP addresses. It depends on user's needs, preferences, and the network environment.

Additional resources

For details about setting up a DHCP server, see Chapter 42, Providing DHCP services.

1.3. DHCP TRANSACTION PHASES
The DHCP works in four phases: Discovery, Offer, Request, Acknowledgement, also called the DORA process. DHCP uses this process to provide IP addresses to clients.

Discovery
The DHCP client sends a message to discover the DHCP server in the network. This message is broadcasted at the network and data link layer.

Offer
The DHCP server receives messages from the client and offers an IP address to the DHCP client. This message is unicast at the data link layer but broadcast at the network layer.

Request
The DHCP client requests the DHCP server for the offered IP address. This message is unicast at the data link layer but broadcast at the network layer.

Acknowledgment
The DHCP server sends an acknowledgment to the DHCP client. This message is unicast at the data link layer but broadcast at the network layer. It is the final message of the DHCP DORA process.

1.4. INFINIBAND AND RDMA NETWORKS

For details about InfiniBand and Remote Direct Memory Access (RDMA) networks, see the Configuring InfiniBand and RDMA networks documentation.

1.5. LEGACY NETWORK SCRIPTS SUPPORT IN RHEL

By default, RHEL uses NetworkManager to configure and manage network connections, and the /usr/sbin/ifup and /usr/sbin/ifdown scripts use NetworkManager to process ifcfg files in the /etc/sysconfig/network-scripts/ directory.

However, if you require the deprecated network scripts that processes the network configuration without using NetworkManager, you can install them:

```bash
# yum install network-scripts
```

After you have installed the legacy network scripts, the /usr/sbin/ifup and /usr/sbin/ifdown scripts link to to the deprecated shell scripts that manage the network configuration.

 IMPORTANT

The legacy scripts are deprecated in RHEL 8 and will be removed in a future major version of RHEL. If you still use the legacy network scripts, for example, because you upgraded from an earlier version to RHEL 8, Red Hat recommends that you migrate your configuration to NetworkManager.

1.6. SELECTING NETWORK CONFIGURATION METHODS

- To configure a network interface using NetworkManager, use one of the following tools:
 - the text user interface, nmtui.
 - the command-line utility, nmcli.
 - the graphical user interface tools, GNOME GUI.
To configure a network interface without using NetworkManager tools and applications:

- edit the `ifcfg` files manually. Note that even if you edit the files directly, NetworkManager is the default on RHEL and processes these files. Only if you installed and enabled the deprecated legacy networking scripts, then these scripts process the `ifcfg` files.

- To configure the network settings when the root file system is not local:
 - use the kernel command-line.

Additional resources

- Chapter 8, *Getting started with nmtui*
- Chapter 9, *Getting started with nmcli*
- Chapter 10, *Getting started with configuring networking using the GNOME GUI*
- Section 1.5, “Legacy network scripts support in RHEL”
CHAPTER 2. CONSISTENT NETWORK INTERFACE DEVICE NAMING

Red Hat Enterprise Linux 8 provides methods for consistent and predictable device naming for network interfaces. These features help locating and differentiating network interfaces.

The kernel assigns names to network interfaces by concatenating a fixed prefix and a number that increases as the kernel initialize the network devices. For instance, eth0 would represent the first device being probed on start-up. However, these names do not necessarily correspond to labels on the chassis. Modern server platforms with multiple network adapters can encounter non-deterministic and counter-intuitive naming of these interfaces. This affects both network adapters embedded on the system board and add-in adapters.

In Red Hat Enterprise Linux 8, the udev device manager supports a number of different naming schemes. By default, udev assigns fixed names based on firmware, topology, and location information. This has the following advantages:

- Device names are fully predictable.
- Device names stay fixed even if you add or remove hardware, because no re-enumeration takes places.
- Defective hardware can be seamlessly replaced.

2.1. NETWORK INTERFACE DEVICE NAMING HIERARCHY

If consistent device naming is enabled, which is the default in Red Hat Enterprise Linux 8, the udev device manager generates device names based on the following schemes:

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Device names incorporate firmware or BIOS-provided index numbers for onboard devices. If this information is not available or applicable, udev uses scheme 2.</td>
<td>eno1</td>
</tr>
<tr>
<td>2</td>
<td>Device names incorporate firmware or BIOS-provided PCI Express (PCIe) hot plug slot index numbers. If this information is not available or applicable, udev uses scheme 3.</td>
<td>ens1</td>
</tr>
<tr>
<td>3</td>
<td>Device names incorporate the physical location of the connector of the hardware. If this information is not available or applicable, udev uses scheme 5.</td>
<td>enp2s0</td>
</tr>
<tr>
<td>4</td>
<td>Device names incorporate the MAC address. Red Hat Enterprise Linux does not use this scheme by default, but administrators can optionally use it.</td>
<td>enx525400d5e0fb</td>
</tr>
<tr>
<td>5</td>
<td>The traditional unpredictable kernel naming scheme. If udev cannot apply any of the other schemes, the device manager uses this scheme.</td>
<td>eth0</td>
</tr>
</tbody>
</table>

By default, Red Hat Enterprise Linux selects the device name based on the NamePolicy setting in the /usr/lib/systemd/network/99-default.link file. The order of the values in NamePolicy is important.
Red Hat Enterprise Linux uses the first device name that is both specified in the file and that udev generated.

If you manually configured udev rules to change the name of kernel devices, those rules take precedence.

2.2. HOW THE NETWORK DEVICE RENAMING WORKS

By default, consistent device naming is enabled in Red Hat Enterprise Linux 8. The udev device manager processes different rules to rename the devices. The following list describes the order in which udev processes these rules and what actions these rules are responsible for:

1. The /usr/lib/udev/rules.d/60-net.rules file defines that the /lib/udev/rename_device helper utility searches for the HWADDR parameter in /etc/sysconfig/network-scripts/ifcfg-* files. If the value set in the variable matches the MAC address of an interface, the helper utility renames the interface to the name set in the DEVICE parameter of the file.

2. The /usr/lib/udev/rules.d/71-biosdevname.rules file defines that the biosdevname utility renames the interface according to its naming policy, provided that it was not renamed in the previous step.

3. The /usr/lib/udev/rules.d/75-net-description.rules file defines that udev examines the network interface device and sets the properties in udev-internal variables, that will be processed in the next step. Note that some of these properties might be undefined.

4. The /usr/lib/udev/rules.d/80-net-setup-link.rules file calls the net_setup_link udev built-in which then applies the policy. The following is the default policy that is stored in the /usr/lib/systemd/network/99-default.link file:

 [Link]
 NamePolicy=kernel database onboard slot path
 MACAddressPolicy=persistent

 With this policy, if the kernel uses a persistent name, udev does not rename the interface. If the kernel does not use a persistent name, udev renames the interface to the name provided by the hardware database of udev. If this database is not available, Red Hat Enterprise Linux falls back to the mechanisms described above.

 Alternatively, set the NamePolicy parameter in this file to mac for media access control (MAC) address-based interface names.

5. The /usr/lib/udev/rules.d/80-net-setup-link.rules file defines that udev renames the interface based on the udev-internal parameters in the following order:

 a. ID_NET_NAME_ONBOARD
 b. ID_NET_NAME_SLOT
 c. ID_NET_NAME_PATH

 If one parameter is not set, udev uses the next one. If none of the parameters are set, the interface is not renamed.

Steps 3 and 4 implement the naming schemes 1 to 4 described in Section 2.1, “Network interface device naming hierarchy”.

Additional resources
Red Hat Enterprise Linux 8 Configuring and managing networking
2.3. PREDICTABLE NETWORK INTERFACE DEVICE NAMES ON THE X86_64 PLATFORM EXPLAINED

When the consistent network device name feature is enabled, the udev device manager creates the names of devices based on different criteria. This section describes the naming scheme when Red Hat Enterprise Linux 8 is installed on a x86_64 platform.

The interface name starts with a two-character prefix based on the type of interface:

- **en** for Ethernet
- **wl** for wireless LAN (WLAN)
- **ww** for wireless wide area network (WWAN)

Additionally, one of the following is appended to one of the above-mentioned prefix based on the schema the udev device manager applies:

- **o<on-board_index_number>**
- **s<hot_plug_slot_index_number>[f<function>][d<device_id>]**

 Note that all multi-function PCI devices have the [f<function>] number in the device name, including the function 0 device.

- **x<MAC_address>**
- **[P<domain_number>][p<bus>s<slot>[f<function>][d<device_id>]]**

 The [P<domain_number>] part defines the PCI geographical location. This part is only set if the domain number is not 0.

- **[P<domain_number>][p<bus>s<slot>[f<function>][u<usb_port>][...][c<config>][i<interface>]]**

 For USB devices, the full chain of port numbers of hubs is composed. If the name is longer than the maximum (15 characters), the name is not exported. If there are multiple USB devices in the chain, udev suppresses the default values for USB configuration descriptors (c1) and USB interface descriptors (i0).

2.4. PREDICTABLE NETWORK INTERFACE DEVICE NAMES ON THE SYSTEM Z PLATFORM EXPLAINED

When the consistent network device name feature is enabled, the udev device manager on the System z platform creates the names of devices based on the bus ID. The bus ID identifies a device in the s390 channel subsystem.

For a channel command word (CCW) device, the bus ID is the device number with a leading 0.n prefix where n is the subchannel set ID.

Ethernet interfaces are named, for example, **enccw0.0.1234**. Serial Line Internet Protocol (SLIP) channel-to-channel (CTC) network devices are named, for example, **slccw0.0.1234**.
Use the `znetconf -c` or the `lscss -a` commands to display available network devices and their bus IDs.

2.5. Disabling Consistent Interface Device Naming During the Installation

This section describes how to disable consistent interface device naming during the installation.

WARNING

Red Hat recommends not to disable consistent device naming. Disabling consistent device naming can cause different kind of problems. For example, if you add another network interface card to the system, the assignment of the kernel device names, such as `eth0`, is no longer fixed. Consequently, after a reboot, the Kernel can name the device differently.

Procedure

1. Boot the Red Hat Enterprise Linux 8 installation media.

2. In the boot manager, select Install Red Hat Enterprise Linux 8, and press the Tab key to edit the entry.

3. Append the `net.ifnames=0` parameter to the kernel command line:

   ```
   vmlinuz... net.ifnames=0
   ```

4. Press **Enter** to start the installation.

Additional resources

- Is it safe to set `net.ifnames=0` in RHEL 7 and RHEL 8?
- How to perform an in-place upgrade to RHEL 8 when using kernel NIC names on RHEL 7

2.6. Disabling Consistent Interface Device Naming on an Installed System

This section describes how to disable consistent interface device naming on a system that is already installed.
WARNING
Red Hat recommends not to disable consistent device naming. Disabling consistent device naming can cause different kind of problems. For example, if you add another network interface card to the system, the assignment of the kernel device names, such as **eth0**, is no longer fixed. Consequently, after a reboot, the Kernel can name the device differently.

Prerequisites
- The system uses consistent interface device naming, which is the default.

Procedure
1. Edit the `/etc/default/grub` file and append the `net.ifnames=0` parameter to the `GRUB_CMDLINE_LINUX` variable:

   ```
   GRUB_CMDLINE_LINUX="... *net.ifnames=0
   ```

2. Rebuild the `grub.cfg` file:
 - On a system with UEFI boot mode:
     ```
     # grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg
     ```
 - On a system with legacy boot mode:
     ```
     # grub2-mkconfig -o /boot/grub2/grub.cfg
     ```

3. If you use interface names in configuration files or scripts, you must manually update them.

4. Reboot the host:
   ```
   # reboot
   ```

2.7. USING PREFIXDEVNAME FOR NAMING OF ETHERNET NETWORK INTERFACES

This documentation describes how to set the prefixes for consistent naming of Ethernet network interfaces in case that you do not want to use the default naming scheme of such interfaces. However, Red Hat recommends to use the default naming scheme. For more details about this scheme, see Chapter 2, Consistent network interface device naming.

2.7.1. Introduction to prefixdevname

The **prefixdevname** tool is a udev helper utility that enables you to define your own prefix used for naming of the Ethernet network interfaces.
2.7.2. Limitations of prefixdevname

There are certain limitations for prefixes of Ethernet network interfaces.

The prefix that you choose must meet the following requirements:

- Be ASCII string
- Be alphanumeric string
- Be shorter than 16 characters

WARNING

The prefix cannot conflict with any other well-known prefix used for network interface naming on Linux. Specifically, you cannot use these prefixes: `eth`, `eno`, `ens`, `em`.

2.7.3. Setting prefixdevname

The setting of the prefix with `prefixdevname` is done during system installation.

To set and activate the required prefix for your Ethernet network interfaces, use the following procedure.

Procedure

- Add the following string on the kernel command line:

  ```
  net.ifnames.prefix=<required prefix>
  ```

WARNING

Red Hat does not support the use of `prefixdevname` on already deployed systems.

After the prefix was once set, and the operating system was rebooted, the prefix is effective every time when a new network interface appears. The new device is assigned a name in the form of `<PREFIX><INDEX>`. For example, if your selected prefix is `net`, and the interfaces with `net0` and `net1` prefixes already exist on the system, the new interface is named `net2`. The `prefixdevname` utility then generates the new `.link` file in the `/etc/systemd/network` directory that applies the name to the interface with the MAC address that just appeared. The configuration is persistent across reboots.

2.8. RELATED INFORMATION

- See the `udev(7)` man page for details about the `udev` device manager.
CHAPTER 3. USING NETCONSOLE TO LOG KERNEL MESSAGES OVER A NETWORK

Using the netconsole kernel module and the same-named service, you can log kernel messages over a network to debug the kernel when logging to disk fails or when using a serial console is not possible.

3.1. CONFIGURING THE NETCONSOLE SERVICE TO LOG KERNEL MESSAGES TO A REMOTE HOST

Using the netconsole kernel module, you can log kernel messages to a remote system log service.

Prerequisites

- A system log service, such as rsyslog is installed on the remote host.
- The remote system log service is configured to receive incoming log entries from this host.

Procedure

1. Install the netconsole-service package:

   ```
   # yum install netconsole-service
   ```

2. Edit the /etc/sysconfig/netconsole file and set the SYSLOGADDR parameter to the IP address of the remote host:

   ```
   # SYSLOGADDR=192.0.2.1
   ```

3. Enable and start the netconsole service:

   ```
   # systemctl enable --now netconsole
   ```

Verification steps

- Display the /var/log/messages file on the remote system log server.

Additional resources

- For details about enabling the remote host to receive the log messages, see the Configuring a remote logging solution section in the Configuring basic system settings documentation.
CHAPTER 4. SYSTEMD NETWORK TARGETS AND SERVICES

NetworkManager configures the network during the system boot process. However, when booting with a remote root (/), such as if the root directory is stored on an iSCSI device, the network settings are applied in the initial RAM disk (initrd) before RHEL is started. For example, if the network configuration is specified on the kernel command line using `rd.neednet=1` or a configuration is specified to mount remote file systems, then the network settings are applied on initrd.

This section describes different targets such as network, network-online, and NetworkManager-wait-online service that are used while applying network settings, and how to configure the systemd service to start after the network-online service is started.

4.1. DIFFERENCES BETWEEN THE NETWORK AND NETWORK-ONLINE SYSTEMD TARGET

Systemd maintains the network and network-online target units. The special units such as NetworkManager-wait-online.service, have WantedBy=network-online.target and Before=network-online.target parameters. If enabled, these units get started with network-online.target and delay the target to be reached until some form of network connectivity is established. They delay the network-online target until the network is connected.

The network-online target starts a service, which adds substantial delays to further execution. Systemd automatically adds dependencies with Wants and After parameters for this target unit to all the System V (SysV) init script service units with a Linux Standard Base (LSB) header referring to the $network facility. The LSB header is metadata for init scripts. You can use it to specify dependencies. This is similar to the systemd target.

The network target does not significantly delay the execution of the boot process. Reaching the network target means that the service that is responsible for setting up the network has started. However, it does not mean that a network device was configured. This target is important during the shutdown of the system. For example, if you have a service that was ordered after the network target during bootup, then this dependency is reversed during the shutdown. The network does not get disconnected until your service has been stopped. All mount units for remote network file systems automatically start the network-online target unit and order themselves after it.

NOTE

The network-online target unit is only useful during the system starts. After the system has completed booting up, this target does not track the online state of the network. Therefore, you cannot use network-online to monitor the network connection. This target provides a one-time system startup concept.

4.2. OVERVIEW OF NETWORKMANAGER-WAIT-ONLINE

The synchronous legacy network scripts iterate through all configuration files to set up devices. They apply all network-related configurations and ensure that the network is online.

The NetworkManager-wait-online service waits with a timeout for the network to be configured. This network configuration involves plugging-in an Ethernet device, scanning for a Wi-Fi device, and so forth. NetworkManager automatically activates suitable profiles that are configured to start automatically. The failure of the automatic activation process due to a DHCP timeout or similar event might keep NetworkManager busy for an extended period of time. Depending on the configuration, NetworkManager retries activating the same profile or a different profile.
When the startup completes, either all profiles are in a disconnected state or are successfully activated. You can configure profiles to auto-connect. The following are a few examples of parameters that set timeouts or define when the connection is considered active:

- **connection.wait-device-timeout** - sets the timeout for the driver to detect the device
- **ipv4.may-fail** and **ipv6.may-fail** - sets activation with one IP address family ready, or whether a particular address family must have completed configuration.
- **ipv4.gateway-ping-timeout** - delays activation.

Additional resources

- The `nm-settings(5)` man page

4.3. Configuring a Systemd Service to Start After the Network Has Been Started

Red Hat Enterprise Linux installs systemd service files in the `/usr/lib/systemd/system/` directory. This procedure creates a drop-in snippet for a service file in `/etc/systemd/system/service_name.service.d/` that is used together with the service file in `/usr/lib/systemd/system/` to start a particular service after the network is online. It has a higher priority if settings in the drop-in snippet overlap with the ones in the service file in `/usr/lib/systemd/system/`.

Procedure

1. To open the service file in the editor, enter:
   ```bash
   # systemctl edit service_name
   ```

2. Enter the following, and save the changes:

   ```ini
   [Unit]
   After=network-online.target
   ```

3. Reload the systemd service.
   ```bash
   # systemctl daemon-reload
   ```
CHAPTER 5. GETTING STARTED WITH NETWORKMANAGER

By default, RHEL 8 uses NetworkManager to manage the network configuration and connections.

5.1. BENEFITS OF USING NETWORKMANAGER

The main benefits of using NetworkManager are:

- Offering an API through D-Bus which allows to query and control network configuration and state. In this way, networking can be checked and configured by multiple applications ensuring a synced and up-to-date networking status. For example, the RHEL web console, which monitors and configures servers through a web browser, uses the NetworkManager D-BUS interface to configure networking, as well as the Gnome GUI, the nmcli and the nm-connection-editor tools. Each change made in one of these tools is detected by all the others.

- Making Network management easier: NetworkManager ensures that network connectivity works. When it detects that there is no network configuration in a system but there are network devices, NetworkManager creates temporary connections to provide connectivity.

- Providing easy setup of connection to the user: NetworkManager offers management through different tools — GUI, nmtui, nmcli.

- Supporting configuration flexibility. For example, configuring a WiFi interface, NetworkManager scans and shows the available wifi networks. You can select an interface, and NetworkManager displays the required credentials providing automatic connection after the reboot process. NetworkManager can configure network aliases, IP addresses, static routes, DNS information, and VPN connections, as well as many connection-specific parameters. You can modify the configuration options to reflect your needs.

- Maintaining the state of devices after the reboot process and taking over interfaces which are set into managed mode during restart.

- Handling devices which are not explicitly set unmanaged but controlled manually by the user or another network service.

Additional resources

- For more information on installing and using the RHEL 8 web console, see Managing systems using the RHEL 8 web console.

5.2. AN OVERVIEW OF UTILITIES AND APPLICATIONS YOU CAN USE TO MANAGE NETWORKMANAGER CONNECTIONS

You can use the following utilities and applications to manage NetworkManager connections:

- nmcli: A command-line utility to manage connections.

- nmtui: A curses-based text user interface (TUI). To use this application, install the NetworkManager-tui package.

- nm-connection-editor: A graphical user interface (GUI) for NetworkManager-related tasks. To start this application, enter nm-connection-editor in a terminal of a GNOME session.

- control-center: A GUI provided by the GNOME shell for desktop users. Note that this application supports less features than nm-connection-editor.
The network connection icon in the GNOME shell: This icon represents network connection states and serves as visual indicator for the type of connection you are using.

Additional resources

- Chapter 8, Getting started with nmtui
- Chapter 9, Getting started with nmcli
- Chapter 10, Getting started with configuring networking using the GNOME GUI

5.3. USING NETWORKMANAGER DISPATCHER SCRIPTS

By default, the `/etc/NetworkManager/dispatcher.d/` directory exists and NetworkManager runs scripts there, in alphabetical order. Each script must be an executable file owned by root and must have write permission only for the file owner.

NOTE

NetworkManager executes dispatcher scripts in `/etc/NetworkManager/dispatcher.d/` in alphabetical order.

Additional resources

- For an example of a dispatcher script, see the How to write a NetworkManager dispatcher script to apply ethtool commands solution.

5.4. LOADING MANUALLY-CREATED IFCFG FILES INTO NETWORKMANAGER

In Red Hat Enterprise Linux 8, if you edit an ifcfg file, NetworkManager is not automatically aware of the change and has to be prompted to notice the change. If you use one of the tools to update NetworkManager profile settings, NetworkManager does not implement those changes until you reconnect using that profile. For example, if configuration files have been changed using an editor, NetworkManager must read the configuration files again.

The `/etc/sysconfig/` directory is a location for configuration files and scripts. Most network configuration information is stored there, with the exception of VPN, mobile broadband and PPPoE configuration, which are stored in the `/etc/NetworkManager/` subdirectories. For example, interface-specific information is stored in the ifcfg files in the `/etc/sysconfig/network-scripts/` directory.

Information for VPNs, mobile broadband and PPPoE connections is stored in `/etc/NetworkManager/system-connections/`

NOTE

By default, RHEL uses NetworkManager to configure and manage network connections, and the `/usr/sbin/ifup` and `/usr/sbin/ifdown` scripts use NetworkManager to process ifcfg files in the `/etc/sysconfig/network-scripts/` directory.

If you need the legacy network scripts to manage your network settings, you can manually install them. For details, see Section 1.5, “Legacy network scripts support in RHEL”. However, note that the legacy network scripts are deprecated and will be removed in a future version of RHEL.
Procedure

1. To load a new configuration file:

 # nmcli connection load /etc/sysconfig/network-scripts/ifcfg-connection_name

2. If you updated a connection file that has already been loaded into NetworkManager, enter:

 # nmcli connection up connection_name

Additional resources

- NetworkManager(8) man page — Describes the network management daemon.

- NetworkManager.conf(5) man page — Describes the NetworkManager configuration file.

- /usr/share/doc/initscripts/sysconfig.txt — Describes ifcfg configuration files and their directives as understood by the legacy network service.

- ifcfg(8) man page — Describes briefly the ifcfg command.
CHAPTER 6. CONFIGURING NETWORKMANAGER TO IGNORE CERTAIN DEVICES

By default, NetworkManager manages all devices except the lo (loopback) device. However, you can set certain devices as unmanaged to configure that NetworkManager ignores these devices. With this setting, you can manually manage these devices, for example, using a script.

6.1. PERMANENTLY CONFIGURING A DEVICE AS UNMANAGED IN NETWORKMANAGER

You can configure devices as unmanaged based on several criteria, such as the interface name, MAC address, or device type. This procedure describes how to permanently set the enp1s0 interface as unmanaged in NetworkManager.

To temporarily configure network devices as unmanaged, see Section 6.2, “Temporarily configuring a device as unmanaged in NetworkManager”.

Procedure

1. Optional: Display the list of devices to identify the device you want to set as unmanaged:

   ```
   # nmcli device status
   DEVICE TYPE      STATE       CONNECTION
   enp1s0 ethernet disconnected --
   ...
   ```

2. Create the `/etc/NetworkManager/conf.d/99-unmanaged-devices.conf` file with the following content:

   ```
   [keyfile]
   unmanaged-devices=interface-name:enp1s0
   ```

 To set multiple devices as unmanaged, separate the entries in the `unmanaged-devices` parameter with semicolon:

   ```
   [keyfile]
   unmanaged-devices=interface-name:interface_1;interface-name:interface_2;...
   ```

3. Reload the NetworkManager service:

   ```
   # systemctl reload NetworkManager
   ```

Verification steps

- Display the list of devices:

  ```
  # nmcli device status
  DEVICE TYPE      STATE       CONNECTION
  enp1s0 ethernet unmanaged --
  ...
  ```
The **unmanaged** state next to the **enp1s0** device indicates that NetworkManager does not manage this device.

Additional resources

- For a list of criteria you can use to configure devices as unmanaged and the corresponding syntax, see the **Device List Format** section in the **NetworkManager.conf(5)** man page.

6.2. TEMPORARILY CONFIGURING A DEVICE AS UNMANAGED IN NETWORKMANAGER

You can configure devices as **unmanaged** based on several criteria, such as the interface name, MAC address, or device type. This procedure describes how to temporarily set the **enp1s0** interface as **unmanaged** in NetworkManager.

Use this method, for example, for testing purposes. To permanently configure network devices as **unmanaged**, see Section 6.1, **"Permanently configuring a device as unmanaged in NetworkManager"**.

Use this method, for example, for testing purposes. To permanently configure network devices as **unmanaged**, see the **Permanently configuring a device as unmanaged in NetworkManager** section in the **Configuring and managing networking** documentation.

Procedure

1. Optional: Display the list of devices to identify the device you want to set as **unmanaged**:
   ```bash
   # nmcli device status
   DEVICE  TYPE      STATE         CONNECTION
   enp1s0  ethernet  disconnected  --
   ...
   ```

2. Set the **enp1s0** device to the **unmanaged** state:
   ```bash
   # nmcli device set enp1s0 managed no
   ```

Verification steps

- Display the list of devices:
  ```bash
  # nmcli device status
  DEVICE  TYPE      STATE         CONNECTION
  enp1s0  ethernet  unmanaged     --
  ...
  ```

 The **unmanaged** state next to the **enp1s0** device indicates that NetworkManager does not manage this device.

Additional resources

- For a list of criteria you can use to configure devices as unmanaged and the corresponding syntax, see the **Device List Format** section in the **NetworkManager.conf(5)** man page.
CHAPTER 7. LINUX TRAFFIC CONTROL

Linux offers tools for managing and manipulating the transmission of packets. The Linux Traffic Control (TC) subsystem helps in policing, classifying, shaping, and scheduling network traffic. TC also mangles the packet content during classification by using filters and actions. The TC subsystem achieves this by using queuing disciplines (qdisc), a fundamental element of the TC architecture.

The scheduling mechanism arranges or rearranges the packets before they enter or exit different queues. The most common scheduler is the First-In-First-Out (FIFO) scheduler.

This section explains queuing disciplines and describes how to update the default qdiscs in RHEL.

7.1. OVERVIEW OF QUEUING DISCIPLINES

Queuing disciplines (qdiscs) help with queuing up and, later, scheduling of traffic transmission by a network interface. A qdisc has two operations:

- enqueue requests so that a packet can be queued up for later transmission and
- dequeue requests so that one of the queued-up packets can be chosen for immediate transmission.

Every qdisc has a 16-bit hexadecimal identification number called a handle, with an attached colon, such as 1: or abcd:. This number is called the qdisc major number. If a qdisc has classes, then the identifiers are formed as a pair of two numbers with the major number before the minor, <major>:<minor>, for example abcd:1. The numbering scheme for the minor numbers depends on the qdisc type. Sometimes the numbering is systematic, where the first-class has the ID <major>:1, the second one <major>:2, and so on. Some qdiscs allow the user to set class minor numbers arbitrarily when creating the class.

Classful qdiscs
Different types of qdiscs exist and help in the transfer of packets to and from a networking interface. You can configure qdiscs with root, parent, or child classes. The point where children can be attached are called classes. Classes in qdisc are flexible and can always contain either multiple children classes or a single child, qdisc. There is no prohibition against a class containing a classful qdisc itself, this facilitates complex traffic control scenarios. Classful qdiscs do not store any packets themselves. Instead, they enqueue and dequeue requests down to one of their children according to criteria specific to the qdisc. Eventually, this recursive packet passing ends up where the packets are stored (or picked up from in the case of dequeuing).

Classless qdiscs
Some qdiscs contain no child classes and they are called classless qdiscs. Classless qdiscs require less customization compared to classful qdiscs. It is usually enough to attach them to an interface.

Additional resources
- For detailed information about classless and classful qdiscs, refer to the tc(8) man page.
- For detailed information about actions, refer to the actions and tc-actions.8 man pages.

7.2. AVAILABLE QDISCS IN RHEL

Each qdisc addresses unique networking-related issues. The following is the list of qdiscs available in RHEL. You can use any of the following qdisc to shape network traffic based on your networking requirements.
Table 7.1. Available schedulers in RHEL

<table>
<thead>
<tr>
<th>qdisc name</th>
<th>Included in</th>
<th>Offload support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous Transfer Mode (ATM)</td>
<td>kernel-modules-extra</td>
<td></td>
</tr>
<tr>
<td>Class-Based Queueing</td>
<td>kernel-modules-extra</td>
<td></td>
</tr>
<tr>
<td>Credit-Based Shaper</td>
<td>kernel-modules-extra</td>
<td>Yes</td>
</tr>
<tr>
<td>CHOose and Keep for responsive flows, CHOose and Kill for unresponsive flows (CHOKE)</td>
<td>kernel-modules-extra</td>
<td></td>
</tr>
<tr>
<td>Controlled Delay (CoDel)</td>
<td>kernel-core</td>
<td></td>
</tr>
<tr>
<td>Deficit Round Robin (DRR)</td>
<td>kernel-modules-extra</td>
<td></td>
</tr>
<tr>
<td>Differentiated Services marker (DSMARK)</td>
<td>kernel-modules-extra</td>
<td></td>
</tr>
<tr>
<td>Enhanced Transmission Selection (ETS)</td>
<td>kernel-modules-extra</td>
<td>Yes</td>
</tr>
<tr>
<td>Fair Queue (FQ)</td>
<td>kernel-core</td>
<td></td>
</tr>
<tr>
<td>Fair Queuing Controlled Delay (FQ_CODel)</td>
<td>kernel-core</td>
<td></td>
</tr>
<tr>
<td>Generalized Random Early Detection (GRED)</td>
<td>kernel-modules-extra</td>
<td></td>
</tr>
<tr>
<td>Hierarchical Fair Service Curve (HSFC)</td>
<td>kernel-core</td>
<td></td>
</tr>
<tr>
<td>Heavy-Hitter Filter (HHF)</td>
<td>kernel-core</td>
<td></td>
</tr>
<tr>
<td>Hierarchy Token Bucket (HTB)</td>
<td>kernel-core</td>
<td></td>
</tr>
<tr>
<td>INGRESS</td>
<td>kernel-core</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi Queue Priority (MQPRIO)</td>
<td>kernel-modules-extra</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiqueue (MULTIQ)</td>
<td>kernel-modules-extra</td>
<td>Yes</td>
</tr>
<tr>
<td>Network Emulator (NETEM)</td>
<td>kernel-modules-extra</td>
<td></td>
</tr>
</tbody>
</table>
The **qdiss** offload requires hardware and driver support on NIC.

Additional resources

- For complete information of parameters and filters used to configure the **qdiss**, refer to the `tc(8), cbq, cbs, choke, CoDel, drr, fq, htb, mqprio, netem, pie, sfb, pfifo, tc-red, sfq, tbf, and prio` man pages.

7.3. INSPECTING QDISC COUNTERS

By default, Red Hat Enterprise Linux systems use **fq_codel qdisc**. This procedure describes how to inspect **qdiss** counters.

Procedure

1. Optional: View your current **qdiss**.

   ```
   # tc qdisc show dev enp0s1
   ```

2. Inspect the current **qdiss** counters.

   ```
   # tc -s qdisc show dev enp0s1
   qdisc fq_codel 0: root refcnt 10240p flows 1024 quantum 1514 target 5.0ms interval 100.0ms memory_limit 32Mb ecn
   Sent 1008193 bytes 5559 pkt (dropped 233, overlimits 55 requeues 77)
   backlog 0b 0p requeues 0...
   ```

 - **dropped** - the number of times a packet is dropped because all queues are full
- **overlimits** - the number of times the configured link capacity is filled
- **sent** - the number of dequeues

7.4. UPDATING THE DEFAULT QDISC

If you observe networking packet losses with the current qdisc, you can change the qdisc based on your network-requirements. You can select the qdisc, which meets your network requirements. This procedure describes how to change the default qdisc in Red Hat Enterprise Linux.

Procedure

1. View the current default qdisc.

   ```
   # sysctl -a | grep qdisc
   net.core.default_qdisc = fq_codel
   ```

2. View the qdisc of current Ethernet connection.

   ```
   # tc -s qdisc show dev enp0s1
   qdisc fq_codel 0: root refcnt 2 limit 10240p flows 1024 quantum 1514 target 5.0ms interval 100.0ms memory_limit 32Mb ecn
   Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)
   backlog 0b 0p requeues 0
   maxpacket 0 drop_overlimit 0 new_flow_count 0 ecn_mark 0
   new_flows_len 0 old_flows_len 0
   ```

3. Update the existing qdisc.

   ```
   # sysctl -w net.core.default_qdisc=pfifo_fast
   ```

4. To apply the changes, reload the network driver.

   ```
   # rmmod NETWORKDRIVERNAME
   # modprobe NETWORKDRIVERNAME
   ```

5. Start the network interface.

   ```
   # ip link set enp0s1 up
   ```

Verification steps

- View the qdisc of the Ethernet connection.

  ```
  # tc -s qdisc show dev enp0s1
  qdisc pfifo_fast 0: root refcnt 2 bands 3 priomap 1 2 2 1 2 0 0 1 1 1 1 1 1 1 1 1
  Sent 373186 bytes 5333 pkt (dropped 0, overlimits 0 requeues 0)
  backlog 0b 0p requeues 0
  ....
  ```

Additional resources

- For further information about making these changes persistent, see [How to set sysctl variables on Red Hat Enterprise Linux](artikel).
7.5. UPDATING THE CURRENT QDISC

You can update the current qdisc without changing the default one. This procedure describes how to change the current qdisc in Red Hat Enterprise Linux.

Procedure

1. Optional: View the current qdisc.

   ```
   # tc -s qdisc show dev enp0s1
   ```

2. Update the current qdisc.

   ```
   # tc qdisc replace dev enp0s1 root htb
   ```

Verification step

- View the updated current qdisc.

```
# tc -s qdisc show dev enp0s1
qdisc htb 8001: root refcnt 2 r2q 10 default 0 direct_packets_stat 0 direct_qlen 1000
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b 0p requeues 0
```
CHAPTER 8. GETTING STARTED WITH NMTUI

The `nmtui` application is a text user interface (TUI) for `NetworkManager`. The following section provides how you can configure a network interface using `nmtui`.

NOTE

The `nmtui` application does not support all connection types. In particular, you cannot add or modify VPN connections or Ethernet connections that require 802.1X authentication.

8.1. STARTING THE NMTUI UTILITY

This procedure describes how to start the NetworkManager text user interface, `nmtui`.

Prerequisites

- The `NetworkManager-tui` package is installed.

Procedure

1. To start `nmtui`, enter:

   ```
   # nmtui
   ```

2. To navigate:

 - Use the cursors or press `Tab` to step forwards and press `Shift+Tab` to step back through the options.
 - Use `Enter` to select an option.
 - Use the `Space` bar to toggle the status of check boxes.

8.2. ADDING A CONNECTION PROFILE USING NMTUI

The `nmtui` application provides a text user interface to NetworkManager. This procedure describes how to add a new connection profile.
Prerequisites

- The **NetworkManager-tui** package is installed.

Procedure

1. Start the NetworkManager text user interface utility:

```
# nmtui
```

2. Select the **Edit a connection** menu entry, and press **Enter**.

3. Select the **Add** button, and press **Enter**.

4. Select **Ethernet**, and press **Enter**.

5. Fill the fields with the connection details.
1. Display the status of the devices and connections:
nmcli device status

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>TYPE</th>
<th>STATE</th>
<th>CONNECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>enp1s0</td>
<td>ethernet</td>
<td>connected</td>
<td>Example-Connection</td>
</tr>
</tbody>
</table>

2. To display all settings of the connection profile:

```shell
# nmcli connection show Example-Connection
```

<table>
<thead>
<tr>
<th>connection.id:</th>
<th>Example-Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>connection.uuid:</td>
<td>b6cdfa1c-e4ad-46e5-af8b-a75f06b79f76</td>
</tr>
<tr>
<td>connection.stable-id:</td>
<td>--</td>
</tr>
<tr>
<td>connection.type:</td>
<td>802-3-ethernet</td>
</tr>
<tr>
<td>connection.interface-name:</td>
<td>enp1s0</td>
</tr>
</tbody>
</table>

Additional resources

- For more information on testing connections, see [Chapter 38, Testing basic network settings](#).
- For further details about the `nmtui` application, see the [nmtui(1) man page](#).
- If the configuration on the disk does not match the configuration on the device, starting or restarting NetworkManager creates an in-memory connection that reflects the configuration of the device. For further details and how to avoid this problem, see [NetworkManager duplicates a connection after restart of NetworkManager service](#).

8.3. APPLYING CHANGES TO A MODIFIED CONNECTION USING NMTUI

After you modified a connection in `nmtui`, you must reactivate the connection. Note that reactivating a connection in `nmtui` temporarily deactivates the connection.

Procedure

1. In the main menu, select the **Activate a connection** menu entry:

 ![NetworkManager TUI](image)

2. Select the modified connection.

3. On the right, select the **Deactivate** button, and press **Enter**.
4. Select the connection again.

5. On the right, select the **Activate** button, and press **Enter**.
CHAPTER 9. GETTING STARTED WITH NMCLI

This section describes general information about the `nmcli` utility.

9.1. THE DIFFERENT OUTPUT FORMATS OF NMCLI

The `nmcli` utility supports different options to modify the output of `nmcli` commands. Using these options, you can display only the required information. This simplifies processing the output in scripts.

By default, the `nmcli` utility displays its output in a table-like format:

```
# nmcli device
DEVICE  TYPE      STATE      CONNECTION
enp1s0  ethernet  connected  enp1s0
lo      loopback  unmanaged  --
```

Using the `-f` option, you can display specific columns in a custom order. For example, to display only the `DEVICE` and `STATE` column, enter:

```
# nmcli -f DEVICE,STATE device
DEVICE  STATE
enp1s0  connected
lo      unmanaged
```

The `-t` option enables you to display the individual fields of the output in a colon-separated format:

```
# nmcli -t device
enp1s0:ethernet:connected:enp1s0
lo:loopback:unmanaged:
```

Combining the `-f` and `-t` to display only specific fields in colon-separated format can be helpful when you process the output in scripts:

```
# nmcli -f DEVICE,STATE -t device
enp1s0:connected
lo:unmanaged
```

9.2. USING TAB COMPLETION IN NMCLI

If the `bash-completion` package is installed on your host, the `nmcli` utility supports tab completion. This enables you to auto-complete option names and to identify possible options and values.

For example, if you type `nmcli con` and press Tab, then the shell automatically completes the command to `nmcli connection`.

For the completion, the options or value you have typed must be unique. If it is not unique, then `nmcli` displays all possibilities. For example, if you type `nmcli connection d` and press Tab, then the command shows command `delete` and `down` as possible options.

You can also use tab completion to display all properties you can set in a connection profile. For example, if you type `nmcli connection modify connection_name` and press Tab, the command shows the full list of available properties.
9.3. FREQUENT NMCLI COMMANDS

The following is an overview about frequently-used `nmcli` commands.

- To display the list connection profiles, enter:

  ```
  # nmcli connection show
  NAME    UUID                                  TYPE      DEVICE
  enp1s0  45224a39-606f-4bf7-b3dc-d088236c15ee  ethernet  enp1s0
  ```

- To display the settings of a specific connection profile, enter:

  ```
  # nmcli connection show connection_name
  connection.id:             enp1s0
  connection.uuid:           45224a39-606f-4bf7-b3dc-d088236c15ee
  connection.stable-id:      --
  connection.type:           802-3-ethernet
  ```

- To modify properties of a connection, enter:

  ```
  # nmcli connection modify connection_name property value
  ```

 You can modify multiple properties using a single command if you pass multiple `property value` combinations to the command.

- To display the list of network devices, their state, and which connection profiles use the device, enter:

  ```
  # nmcli device
  DEVICE  TYPE      STATE         CONNECTION
  enp1s0  ethernet  connected     enp1s0
  enp8s0  ethernet  disconnected  --
  enp7s0  ethernet  unmanaged    --
  ```

- To activate a connection, enter:

  ```
  # nmcli connection up connection_name
  ```

- To deactivate a connection, enter:

  ```
  # nmcli connection down connection_name
  ```
CHAPTER 10. GETTING STARTED WITH CONFIGURING NETWORKING USING THE GNOME GUI

You can manage and configure network connections using the following ways on GNOME:

- the GNOME Shell network connection icon on the top right of the desktop
- the GNOME control-center application
- the GNOME nm-connection-editor application

10.1. CONNECTING TO A NETWORK USING THE GNOME SHELL NETWORK CONNECTION ICON

If you use the GNOME GUI, you can use the GNOME Shell network connection icon to connect to a network.

Prerequisites

- The GNOME package group is installed.
- You are logged in to GNOME.
- If the network requires a specific configuration, such as a static IP address or an 802.1x configuration, a connection profile has already been created.

Procedure

1. Click the network connection icon in the top right corner of your desktop.

2. Depending on the connection type, select the Wired or Wi-Fi entry.
For a wired connection, select **Connect** to connect to the network.

For a Wi-Fi connection, click **Select network**, select the network to which you want to connect, and enter the password.
CHAPTER 11. CONFIGURING AN ETHERNET CONNECTION

This section describes different ways how to configure an Ethernet connection with static and dynamic IP addresses.

11.1. CONFIGURING A STATIC ETHERNET CONNECTION USING NMCLI

This procedure describes adding an Ethernet connection with the following settings using the `nmcli` utility:

- A static IPv4 address - \texttt{192.0.2.1} with a /24 subnet mask
- A static IPv6 address - \texttt{2001:db8:1::1} with a /64 subnet mask
- An IPv4 default gateway - \texttt{192.0.2.254}
- An IPv6 default gateway - \texttt{2001:db8:1::fffe}
- An IPv4 DNS server - \texttt{192.0.2.200}
- An IPv6 DNS server - \texttt{2001:db8:1::ffbb}
- A DNS search domain - \texttt{example.com}

Procedure

1. Add a new NetworkManager connection profile for the Ethernet connection:

   ```
   # nmcli connection add con-name Example-Connection ifname enp7s0 type ethernet
   ```

 The further steps modify the \texttt{Example-Connection} connection profile you created.

2. Set the IPv4 address:

   ```
   # nmcli connection modify Example-Connection ipv4.addresses 192.0.2.1/24
   ```

3. Set the IPv6 address:

   ```
   # nmcli connection modify Example-Connection ipv6.addresses 2001:db8:1::1/64
   ```

4. Set the IPv4 and IPv6 connection method to manual:

   ```
   # nmcli connection modify Example-Connection ipv4.method manual
   # nmcli connection modify Example-Connection ipv6.method manual
   ```

5. Set the IPv4 and IPv6 default gateways:

   ```
   # nmcli connection modify Example-Connection ipv4.gateway 192.0.2.254
   # nmcli connection modify Example-Connection ipv6.gateway 2001:db8:1::fffe
   ```

6. Set the IPv4 and IPv6 DNS server addresses:
To set multiple DNS servers, specify them space-separated and enclosed in quotes.

7. Set the DNS search domain for the IPv4 and IPv6 connection:

```bash
# nmcli connection modify Example-Connection ipv4.dns-search example.com
# nmcli connection modify Example-Connection ipv6.dns-search example.com
```

8. Activate the connection profile:

```bash
# nmcli connection up Example-Connection
Connection successfully activated (D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/13)
```

Verification steps

1. Display the status of the devices and connections:

```bash
# nmcli device status
DEVICE      TYPE      STATE      CONNECTION
enp7s0       ethernet  connected  Example-Connection
```

2. To display all settings of the connection profile:

```bash
# nmcli connection show Example-Connection
connection.id:             Example-Connection
connection.uuid:           b6cdfa1c-e4ad-46e5-af8b-a75f06b79f76
connection.stable-id:      --
connection.type:           802-3-ethernet
connection.interface-name: enp7s0
```

3. Use the `ping` utility to verify that this host can send packets to other hosts.

 - Ping an IP address in the same subnet.
 For IPv4:
     ```bash
     # ping 192.0.2.3
     ```
 For IPv6:
     ```bash
     # ping 2001:db8:2::1
     ```

 - If the command fails, verify the IP and subnet settings.

 - Ping an IP address in a remote subnet.
 For IPv4:
     ```bash
     # ping 198.162.3.1
     ```
 For IPv6:
If the command fails, ping the default gateway to verify settings.

For IPv4:

ping 192.0.2.254

For IPv6:

ping 2001:db8:1::ffe

4. Use the host utility to verify that name resolution works. For example:

host client.example.com

If the command returns any error, such as connection timed out or no servers could be reached, verify your DNS settings.

Troubleshooting steps

1. If the connection fails or if the network interface switches between an up and down status:

 • Make sure that the network cable is plugged-in to the host and a switch.

 • Check whether the link failure exists only on this host or also on other hosts connected to the same switch the server is connected to.

 • Verify that the network cable and the network interface are working as expected. Perform hardware diagnosis steps and replace defect cables and network interface cards.

Additional resources

• See the nm-settings(5) man page for more information on connection profile properties and their settings.

• For further details about the nmcli utility, see the nmcli(1) man page.

• If the configuration on the disk does not match the configuration on the device, starting or restarting NetworkManager creates an in-memory connection that reflects the configuration of the device. For further details and how to avoid this problem, see NetworkManager duplicates a connection after restart of NetworkManager service.

11.2. CONFIGURING A STATIC ETHERNET CONNECTION USING THE NMCLI INTERACTIVE EDITOR

This procedure describes adding an Ethernet connection with the following settings using the nmcli interactive mode:

• A static IPv4 address - 192.0.2.1 with a /24 subnet mask

• A static IPv6 address - 2001:db8:1::1 with a /64 subnet mask

• An IPv4 default gateway - 192.0.2.254
- An IPv6 default gateway - 2001:db8:1::fffe
- An IPv4 DNS server - 192.0.2.200
- An IPv6 DNS server - 2001:db8:1::ffbb
- A DNS search domain - example.com

Procedure

1. To add a new NetworkManager connection profile for the Ethernet connection, and starting the interactive mode, enter:

   ```bash
   # nmcli connection edit type ethernet con-name Example-Connection
   ```

2. Set the network interface:

   ```
   nmcli> set connection.interface-name enp7s0
   ```

3. Set the IPv4 address:

   ```
   nmcli> set ipv4.addresses 192.0.2.1/24
   ```

4. Set the IPv6 address:

   ```
   nmcli> set ipv6.addresses 2001:db8:1::1/64
   ```

5. Set the IPv4 and IPv6 connection method to manual:

   ```
   nmcli> set ipv4.method manual
   nmcli> set ipv6.method manual
   ```

6. Set the IPv4 and IPv6 default gateways:

   ```
   nmcli> set ipv4.gateway 192.0.2.254
   nmcli> set ipv6.gateway 2001:db8:1::fffe
   ```

7. Set the IPv4 and IPv6 DNS server addresses:

   ```
   nmcli> set ipv4.dns 192.0.2.200
   nmcli> set ipv6.dns 2001:db8:1::ffbb
   ```
 To set multiple DNS servers, specify them space-separated and enclosed in quotes.

8. Set the DNS search domain for the IPv4 and IPv6 connection:

   ```
   nmcli> set ipv4.dns-search example.com
   nmcli> set ipv6.dns-search example.com
   ```

9. Save and activate the connection:

   ```
   nmcli> save persistent
   ```
 Saving the connection with `autoconnect=yes`. That might result in an immediate activation of
the connection.
Do you still want to save? (yes/no) [yes] yes

10. Leave the interactive mode:

nmcli> quit

Verification steps

1. Display the status of the devices and connections:

```
# nmcli device status
DEVICE   TYPE      STATE      CONNECTION
enp7s0    ethernet  connected  Example-Connection
```

2. To display all settings of the connection profile:

```
# nmcli connection show Example-Connection
connection.id:       Example-Connection
connection.uuid:     b6cdfa1c-e4ad-46e5-af8b-a75f06b79f76
connection.stable-id: --
connection.type:      802-3-ethernet
connection.interface-name: enp7s0
...```

3. Use the ping utility to verify that this host can send packets to other hosts.

- Ping an IP address in the same subnet.
  For IPv4:

  ```
 # ping 192.0.2.3
  ```

  For IPv6:

  ```
 # ping 2001:db8:2::1
  ```

  If the command fails, verify the IP and subnet settings.

- Ping an IP address in a remote subnet.
  For IPv4:

  ```
 # ping 198.162.3.1
  ```

  For IPv6:

  ```
 # ping 2001:db8:2::1
  ```

  If the command fails, ping the default gateway to verify settings.
  For IPv4:

  ```
 # ping 192.0.2.254
  ```
For IPv6:

```bash
ping 2001:db8:1::fffe
```

4. Use the `host` utility to verify that name resolution works. For example:

```bash
host client.example.com
```

If the command returns any error, such as `connection timed out` or `no servers could be reached`, verify your DNS settings.

**Troubleshooting steps**

1. If the connection fails or if the network interface switches between an up and down status:
   - Make sure that the network cable is plugged-in to the host and a switch.
   - Check whether the link failure exists only on this host or also on other hosts connected to the same switch the server is connected to.
   - Verify that the network cable and the network interface are working as expected. Perform hardware diagnosis steps and replace defect cables and network interface cards.

**Additional resources**

- See the `nm-settings(5)` man page for more information on connection profile properties and their settings.
- For further details about the `nmcli` utility, see the `nmcli(1)` man page.
- If the configuration on the disk does not match the configuration on the device, starting or restarting NetworkManager creates an in-memory connection that reflects the configuration of the device. For further details and how to avoid this problem, see `NetworkManager duplicates a connection after restart of NetworkManager service`.

**11.3. CONFIGURING A STATIC ETHERNET CONNECTION USING RHEL SYSTEM ROLES**

This procedure describes how to use RHEL System roles to remotely add an Ethernet connection for the `enp7s0` interface with the following settings by running an Ansible playbook:

- A static IPv4 address - `192.0.2.1` with a `/24` subnet mask
- A static IPv6 address - `2001:db8:1::1` with a `/64` subnet mask
- An IPv4 default gateway - `192.0.2.254`
- An IPv6 default gateway - `2001:db8:1::fffe`
- An IPv4 DNS server - `192.0.2.200`
- An IPv6 DNS server - `2001:db8:1::ffbb`
- A DNS search domain - `example.com`
Run this procedure on the Ansible control node.

Prerequisites

- The **ansible** and **rhel-system-roles** packages are installed on the control node.

- If you use a different remote user than **root** when you run the playbook, this user has appropriate **sudo** permissions on the managed node.

- The host uses NetworkManager to configure the network.

Procedure

1. If the host on which you want to execute the instructions in the playbook is not inventoried yet, add the IP or name of this host to the **/etc/ansible/hosts** Ansible inventory file:

   ```
 node.example.com
   ```

2. Create the **~/ethernet-static-IP.yml** playbook with the following content:

   ```yaml

 - name: Configure an Ethernet connection with static IP
 hosts: node.example.com
 become: true
 tasks:
 - include_role:
 name: linux-system-roles.network

 vars:
 network_connections:
 - name: enp7s0
 type: ethernet
 autoconnect: yes
 ip:
 address:
 - 192.0.2.1/24
 - 2001:db8:1::1/64
 gateway4: 192.0.2.254
 gateway6: 2001:db8:1::fffe
 dns:
 - 192.0.2.200
 - 2001:db8:1::ffbb
 dns_search:
 - example.com
 state: up
   ```

3. Run the playbook:

   - To connect as **root** user to the managed host, enter:

     ```
 # ansible-playbook -u root ~/ethernet-static-IP.yml
     ```

   - To connect as a user to the managed host, enter:

     ```
 # ansible-playbook -u user_name --ask-become-pass ~/ethernet-static-IP.yml
     ```
The `--ask-become-pass` option defines that `ansible-playbook` command prompts for the `sudo` password of the user defined in the `-u user_name` option.

If you do not specify the `-u user_name` option, `ansible-playbook` connects to the managed host as the user that is currently logged in to the control node.

**Additional resources**

- For details about the parameters used in `network_connections` and additional information about the `network` system role, see the `/usr/share/ansible/roles/rhel-system-roles.network/README.md` file.

- For details about the `ansible-playbook` command, see the `ansible-playbook(1)` man page.

### 11.4. CONFIGURING A DYNAMIC ETHERNET CONNECTION USING NMCLI

This procedure describes adding an dynamic Ethernet connection using the `nmcli` utility. With this setting, NetworkManager requests the IP settings for this connection from a DHCP server.

**Prerequisites**

- A DHCP server is available in the network.

**Procedure**

1. Add a new NetworkManager connection profile for the Ethernet connection:

   ```bash
 # nmcli connection add con-name Example-Connection ifname enp7s0 type ethernet
   ```

2. Optionally, change the host name NetworkManager sends to the DHCP server when using the `Example-Connection` profile:

   ```bash
 # nmcli connection modify Example-Connection ipv4.dhcp-hostname Example
 ipv6.dhcp-hostname Example
   ```

3. Optionally, change the client ID NetworkManager sends to an IPv4 DHCP server when using the `Example-Connection` profile:

   ```bash
 # nmcli connection modify Example-Connection ipv4.dhcp-client-id client-ID
   ```

   Note that there is no `dhcp-client-id` parameter for IPv6. To create an identifier for IPv6, configure the `dhclient` service.

**Verification steps**

1. Display the status of the devices and connections:

   ```bash
 # nmcli device status
 DEVICE TYPE STATE CONNECTION
 enp7s0 ethernet connected Example-Connection
   ```
2. To display all settings of the connection profile:

```bash
nmcli connection show Example-Connection
connection.id: Example-Connection
connection.uuid: b6cdfa1c-e4ad-46e5-af8b-a75f06b79f76
connection.stable-id: --
connection.type: 802-3-ethernet
connection.interface-name: enp7s0
...
```

3. Use the `ping` utility to verify that this host can send packets to other hosts.

   - Ping an IP address in the same subnet.
     For IPv4:
     ```bash
 # ping 192.0.2.3
     ```
     For IPv6:
     ```bash
 # ping 2001:db8:2::1
     ```
     If the command fails, verify the IP and subnet settings.

   - Ping an IP address in a remote subnet.
     For IPv4:
     ```bash
 # ping 198.162.3.1
     ```
     For IPv6:
     ```bash
 # ping 2001:db8:2::1
     ```
     - If the command fails, ping the default gateway to verify settings.
       For IPv4:
       ```bash
 # ping 192.0.2.254
       ```
       For IPv6:
       ```bash
 # ping 2001:db8:1::ffe
       ```

4. Use the `host` utility to verify that name resolution works. For example:

   ```bash
 # host client.example.com
   ```
   If the command returns any error, such as `connection timed out` or `no servers could be reached`, verify your DNS settings.

Additional resources

- For details about setting a client identifier for IPv6, see the `dhclient(8)` man page.
See the `nm-settings(5)` man page for more information on connection profile properties and their settings.

For further details about the `nmcli` utility, see the `nmcli(1)` man page.

If the configuration on the disk does not match the configuration on the device, starting or restarting NetworkManager creates an in-memory connection that reflects the configuration of the device. For further details and how to avoid this problem, see NetworkManager duplicates a connection after restart of NetworkManager service.

11.5. CONFIGURING A DYNAMIC ETHERNET CONNECTION USING THE NMCLI INTERACTIVE EDITOR

This procedure describes adding an dynamic Ethernet connection using the interactive editor of the `nmcli` utility. With this setting, NetworkManager requests the IP settings for this connection from a DHCP server.

**Prerequisites**

- A DHCP server is available in the network.

**Procedure**

1. To add a new NetworkManager connection profile for the Ethernet connection, and starting the interactive mode, enter:

   ```
 # nmcli connection edit type ethernet con-name Example-Connection
   ```

2. Set the network interface:

   ```
 nmcli> set connection.interface-name enp7s0
   ```

3. Optionally, change the host name NetworkManager sends to the DHCP server when using the `Example-Connection` profile:

   ```
 nmcli> set ipv4.dhcp-hostname Example
 nmcli> set ipv6.dhcp-hostname Example
   ```

4. Optionally, change the client ID NetworkManager sends to an IPv4 DHCP server when using the `Example-Connection` profile:

   ```
 nmcli> set ipv4.dhcp-client-id client-ID
   ```

   Note that there is no `dhclient-client-id` parameter for IPv6. To create an identifier for IPv6, configure the `dhclient` service.

5. Save and activate the connection:

   ```
 nmcli> save persistent
   ```

   Saving the connection with 'autoconnect=yes'. That might result in an immediate activation of the connection.

   Do you still want to save? (yes/no) [yes] yes
6. Leave the interactive mode:

   ```
 nmcli> quit
   ```

Verification steps

1. Display the status of the devices and connections:

   ```
 # nmcli device status
 DEVICE TYPE STATE CONNECTION
 enp7s0 ethernet connected Example-Connection
   ```

2. To display all settings of the connection profile:

   ```
 # nmcli connection show Example-Connection
 connection.id: Example-Connection
 connection.uuid: b6cdfa1c-e4ad-46e5-af8b-a75f06b79f76
 connection.stable-id: --
 connection.type: 802-3-ethernet
 connection.interface-name: enp7s0
   ```

3. Use the **ping** utility to verify that this host can send packets to other hosts.

   - Ping an IP address in the same subnet.
     For IPv4:
     ```
 # ping 192.0.2.3
     ```
     For IPv6:
     ```
 # ping 2001:db8:2::1
     ```
     If the command fails, verify the IP and subnet settings.

   - Ping an IP address in a remote subnet.
     For IPv4:
     ```
 # ping 198.162.3.1
     ```
     For IPv6:
     ```
 # ping 2001:db8:2::1
     ```

     - If the command fails, ping the default gateway to verify settings.
     For IPv4:
     ```
 # ping 192.0.2.254
     ```
     For IPv6:
     ```
 # ping 2001:db8:1::fffe
     ```
4. Use the `host` utility to verify that name resolution works. For example:

```
host client.example.com
```

If the command returns any error, such as `connection timed out` or `no servers could be reached`, verify your DNS settings.

**Additional resources**

- For details about setting a client identifier for IPv6, see the `dhclient(8)` man page.
- See the `nm-settings(5)` man page for more information on connection profile properties and their settings.
- For further details about the `nmcli` utility, see the `nmcli(1)` man page.
- If the configuration on the disk does not match the configuration on the device, starting or restarting NetworkManager creates an in-memory connection that reflects the configuration of the device. For further details and how to avoid this problem, see NetworkManager duplicates a connection after restart of NetworkManager service.

### 11.6. CONFIGURING A DYNAMIC ETHERNET CONNECTION USING RHEL SYSTEM ROLES

This procedure describes how to use RHEL System Roles to remotely add a dynamic Ethernet connection for the `enp7s0` interface by running an Ansible playbook. With this setting, the network connection requests the IP settings for this connection from a DHCP server. Run this procedure on the Ansible control node.

**Prerequisites**

- A DHCP server is available in the network.
- The `ansible` and `rhel-system-roles` packages are installed on the control node.
- If you use a different remote user than `root` when you run the playbook, this user has appropriate `sudo` permissions on the managed node.
- The host uses NetworkManager to configure the network.

**Procedure**

1. If the host on which you want to execute the instructions in the playbook is not inventoried yet, add the IP or name of this host to the `/etc/ansible/hosts` Ansible inventory file:

   ```
 node.example.com
   ```

2. Create the `~/ethernet-dynamic-IP.yml` playbook with the following content:

   ```yaml

 - name: Configure an Ethernet connection with dynamic IP
 hosts: node.example.com
 become: true
 tasks:
   ```
3. Run the playbook:

- To connect as `root` user to the managed host, enter:

  ```
 # ansible-playbook -u root ~/ethernet-dynamic-IP.yml
  ```

- To connect as a user to the managed host, enter:

  ```
 # ansible-playbook -u user_name --ask-become-pass ~/ethernet-dynamic-IP.yml
  ```

  The `--ask-become-pass` option defines that `ansible-playbook` command prompts for the `sudo` password of the user defined in the `-u user_name` option.

  If you do not specify the `-u user_name` option, `ansible-playbook` connects to the managed host as the user that is currently logged in to the control node.

Additional resources

- For details about the parameters used in `network_connections` and additional information about the `network` system role, see the `/usr/share/ansible/roles/rhel-system-roles.network/README.md` file.

- For details about the `ansible-playbook` command, see the `ansible-playbook(1)` man page.

### 11.7. CONFIGURING AN ETHERNET CONNECTION USING CONTROL-CENTER

Ethernet connections are the most frequently used connections types in physical or virtual machines. This section describes how to configure this connection type in the GNOME control-center:

Note that `control-center` does not support as many configuration options as the `nm-connection-editor` application or the `nmcli` utility.

Prerequisites

- A physical or virtual Ethernet device exists in the server’s configuration.

- GNOME is installed.

Procedure
1. Press the Super key, enter Settings, and press Enter.

2. Select Network in the navigation on the left.

3. Click the + button next to the Wired entry to create a new profile.

4. Optional: Set a name for the connection on the Identity tab.

5. On the IPv4 tab, configure the IPv4 settings. For example, select method Manual, set a static IPv4 address, network mask, default gateway, and DNS server:

6. On the IPv6 tab, configure the IPv6 settings. For example, select method Manual, set a static IPv6 address, network mask, default gateway, and DNS server:
Click the Add button to save the connection. The GNOME control-center automatically activates the connection.

Verification steps

1. Display the status of the devices and connections:
   
   ```
 # nmcli device status
 DEVICE TYPE STATE CONNECTION
 enp7s0 ethernet connected Example-Connection
   ```

2. To display all settings of the connection profile:
   
   ```
 # nmcli connection show Example-Connection
 connection.id: Example-Connection
 connection.uuid: b6cdfa1c-e4ad-46e5-af8b-a75f06b79f76
 connection.stable-id: --
 connection.type: 802-3-ethernet
 connection.interface-name: enp7s0
 ...
   ```

3. Use the ping utility to verify that this host can send packets to other hosts.

   • Ping an IP address in the same subnet.
   
   For IPv4:
   
   ```
 # ping 192.0.2.3
   ```
For IPv6:

```
ping 2001:db8:2::1
```

If the command fails, verify the IP and subnet settings.

- Ping an IP address in a remote subnet.
  - For IPv4:
    ```
 # ping 198.162.3.1
    ```
  - For IPv6:
    ```
 # ping 2001:db8:2::1
    ```

- If the command fails, ping the default gateway to verify settings.
  - For IPv4:
    ```
 # ping 192.0.2.254
    ```
  - For IPv6:
    ```
 # ping 2001:db8:1::fffe
    ```

4. Use the `host` utility to verify that name resolution works. For example:

```
host client.example.com
```

If the command returns any error, such as `connection timed out` or `no servers could be reached`, verify your DNS settings.

**Troubleshooting steps**

1. If the connection fails or if the network interface switches between an up and down status:
   - Make sure that the network cable is plugged-in to the host and a switch.
   - Check whether the link failure exists only on this host or also on other hosts connected to the same switch the server is connected to.
   - Verify that the network cable and the network interface are working as expected. Perform hardware diagnosis steps and replace defect cables and network interface cards.

**11.8. CONFIGURING AN ETHERNET CONNECTION USING NM-CONNECTION-EDITOR**

Ethernet connections are the most frequently used connection types in physical or virtual servers. This section describes how to configure this connection type using the `nm-connection-editor` application.

**Prerequisites**

- A physical or virtual Ethernet device exists in the server’s configuration.
GNOME is installed.

Procedure

1. Open a terminal, and enter:

   $ nm-connection-editor

2. Click the + button to add a new connection.

3. Select the **Ethernet** connection type, and click **Create**.

4. On the **General** tab:

   a. To automatically enable this connection when the system boots or when you restart the **NetworkManager** service:

      i. Select **Connect automatically with priority**.

      ii. Optional: Change the priority value next to **Connect automatically with priority**.

      If multiple connection profiles exist for the same device, NetworkManager enables only one profile. By default, NetworkManager activates the last-used profile that has auto-connect enabled. However, if you set priority values in the profiles, NetworkManager activates the profile with the highest priority.

   b. Clear the **All users may connect to this network** check box if the profile should be available only to the user that created the connection profile.

5. On the **Ethernet** tab, select a device and, optionally, further Ethernet-related settings.

   ![Editing Example connection 1](image)
5. On the **Ethernet** tab, select a device and, optionally, further Ethernet-related settings.

6. On the **IPv4 Settings** tab, configure the IPv4 settings. For example, set a static IPv4 address, network mask, default gateway, and DNS server:

7. On the **IPv6 Settings** tab, configure the IPv6 settings. For example, set a static IPv6 address, network mask, default gateway, and DNS server:

8. Save the connection.

**Verification steps**

1. Use the `ping` utility to verify that this host can send packets to other hosts.
   - Ping an IP address in the same subnet.
     - For IPv4:
       ```
 # ping 192.0.2.3
       ```
     - For IPv6:
       ```
 # ping 2001:db8:2::1
       ```
     If the command fails, verify the IP and subnet settings.
   - Ping an IP address in a remote subnet.
     - For IPv4:
       ```
 # ping 198.162.3.1
       ```
     - For IPv6:
       ```
 # ping 2001:db8:2::1
       ```
     - If the command fails, ping the default gateway to verify settings.
       - For IPv4:
         ```
 # ping 192.0.2.254
         ```
       - For IPv6:
         ```
 # ping 2001:db8:1::fff3
         ```
   - Use the `host` utility to verify that name resolution works. For example:
     ```
 # host client.example.com
     ```
     If the command returns any error, such as `connection timed out` or `no servers could be reached`, verify your DNS settings.

**11.9. CONFIGURING THE DHCP BEHAVIOR OF A NETWORKMANAGER CONNECTION**

A Dynamic Host Configuration Protocol (DHCP) client requests the dynamic IP address and corresponding configuration information from a DHCP server each time a client connects to the network.

When you configured a connection to retrieve an IP address from a DHCP server, the NetworkManager requests an IP address from a DHCP server. By default, the client waits 45 seconds for this request to be completed. When a **DHCP** connection is started, a dhcp client requests an IP address from a **DHCP**
server.

Prerequisites

- A connection that uses DHCP is configured on the host.

Procedure

1. Set the `ipv4.dhcp-timeout` and `ipv6.dhcp-timeout` properties. For example, to set both options to 30 seconds, enter:

   ```
 # nmcli connection modify connection_name ipv4.dhcp-timeout 30 ipv6.dhcp-timeout 30
   ```

   Alternatively, set the parameters to `infinity` to configure that NetworkManager does not stop trying to request and renew an IP address until it is successful.

2. Optional: Configure the behavior if NetworkManager does not receive an IPv4 address before the timeout:

   ```
 # nmcli connection modify connection_name ipv4.may-fail value
   ```

   If you set the `ipv4.may-fail` option to:

   - **yes**, the status of the connection depends on the IPv6 configuration:
     - If the IPv6 configuration is enabled and successful, NetworkManager activates the IPv6 connection and no longer tries to activate the IPv4 connection.
     - If the IPv6 configuration is disabled or not configured, the connection fails.
   - **no**, the connection is deactivated. In this case:
     - If the `autoconnect` property of the connection is enabled, NetworkManager retries to activate the connection as many times as set in the `autoconnect-retries` property. The default is 4.
     - If the connection still cannot acquire a DHCP address, auto-activation fails. Note that after 5 minutes, the auto-connection process starts again to acquire an IP address from the DHCP server.

3. Optional: Configure the behavior if NetworkManager does not receive an IPv6 address before the timeout:

   ```
 # nmcli connection modify connection_name ipv6.may-fail value
   ```

Additional resources

- For further details about the properties described in this section, see the `nm-settings(5)` man page.
CHAPTER 12. MANAGING WI-FI CONNECTIONS

This section describes how to configure and manage Wi-Fi connections.

12.1. SETTING THE WIRELESS REGULATORY DOMAIN

In Red Hat Enterprise Linux, the crda package contains the Central Regulatory Domain Agent that provides the kernel with the wireless regulatory rules for a given jurisdiction. It is used by certain udev scripts and should not be run manually unless debugging udev scripts. The kernel runs crda by sending a udev event upon a new regulatory domain change. Regulatory domain changes are triggered by the Linux wireless subsystem (IEEE-802.11). This subsystem uses the regulatory.bin file to keep its regulatory database information.

The setregdomain utility sets the regulatory domain for your system. Setregdomain takes no arguments and is usually called through system script such as udev rather than manually by the administrator. If a country code look-up fails, the system administrator can define the COUNTRY environment variable in the /etc/sysconfig/regdomain file.

Additional resources

See the following man pages for more information about the regulatory domain:

- setregdomain(1) man page — Sets regulatory domain based on country code.
- crda(8) man page — Sends to the kernel a wireless regulatory domain for a given ISO or IEC 3166 alpha2.
- regulatory.bin(5) man page — Shows the Linux wireless regulatory database.
- iw(8) man page — Shows or manipulates wireless devices and their configuration.

12.2. CONFIGURING A WI-FI CONNECTION USING NMCLI

This procedure describes how to configure a Wi-fi connection profile using nmcli.

Prerequisites

- The nmcli utility to be installed.
- Make sure that the WiFi radio is on (default):

 ～]$ nmcli radio wifi on

Procedure

1. To create a Wi-Fi connection profile with static IP configuration:

 ～]$ nmcli con add con-name MyCafe ifname wlan0 type wifi ssid MyCafe ` `ip4 192.168.100.1/24 gw4 192.168.100.1

2. Set a DNS server. For example, to set 192.160.100.1 as the DNS server:

 ～]$ nmcli con modify con-name MyCafe ipv4.dns "192.160.100.1"
3. Optionally, set a DNS search domain. For example, to set the search domain to `example.com`:

   ~$ nmcli con modify con-name MyCafe ipv4.dns-search "example.com"

4. To check a specific property, for example `mtu`:

   ~$ nmcli connection show id MyCafe | grep mtu
   802-11-wireless.mtu: auto

5. To change the property of a setting:

   ~$ nmcli connection modify id MyCafe 802-11-wireless.mtu 1350

6. To verify the change:

   ~$ nmcli connection show id MyCafe | grep mtu
   802-11-wireless.mtu: 1350

Verification steps

1. Use the `ping` utility to verify that this host can send packets to other hosts.
   - Ping an IP address in the same subnet. For example:
     
     # ping 192.168.100.103

     If the command fails, verify the IP and subnet settings.
   - Ping an IP address in a remote subnet. For example:
     
     # ping 198.51.16.3

     If the command fails, ping the default gateway to verify settings.

   # ping 192.168.100.1

2. Use the `host` utility to verify that name resolution works. For example:

   # host client.example.com

   If the command returns any error, such as `connection timed out` or `no servers could be reached`, verify your DNS settings.

Additional resources

- See the `nm-settings(5)` man page for more information on properties and their settings.
- If the configuration on the disk does not match the configuration on the device, starting or restarting NetworkManager creates an in-memory connection that reflects the configuration of the device. For further details and how to avoid this problem, see `NetworkManager duplicates a connection after restart of NetworkManager service`.  
12.3. CONFIGURING A WI-FI CONNECTION USING CONTROL-CENTER

When you connect to a Wi-Fi, the network settings are prefilled depending on the current network connection. This means that the settings will be detected automatically when the interface connects to a network.

This procedure describes how to use control-center to manually configure the Wi-Fi settings.

Procedure

1. Press the Super key to enter the Activities Overview, type Wi-Fi and press Enter. In the left-hand-side menu entry you see the list of available networks.

2. Select the gear wheel icon to the right of the Wi-Fi connection name that you want to edit, and the editing connection dialog appears. The Details menu window shows the connection details where you can make further configuration.

   Options

   a. If you select Connect automatically, NetworkManager auto-connects to this connection whenever NetworkManager detects that it is available. If you do not want NetworkManager to connect automatically, clear the check box. Note that when the check box is clear, you have to select that connection manually in the network connection icon’s menu to cause it to connect.

   b. To make a connection available to other users, select the Make available to other users check box.

   c. You can also control the background data usage. If you leave Restrict background data usage unspecified (default), then NetworkManager tries to download data that you are actively using. Otherwise, select the check box and NetworkManager sets the connection as metered, and applies restriction on the background data usage.

   NOTE

   To delete a Wi-Fi connection, click the Forget Connection red box.

3. Select the Identity menu entry to see the basic configuration options.

   SSID — The Service Set Identifier (SSID) of the access point (AP).

   BSSID — The Basic Service Set Identifier (BSSID) is the MAC address, also known as a hardware address, of the specific wireless access point you are connecting to when in Infrastructure mode. This field is blank by default, and you are able to connect to a wireless access point by SSID without having to specify its BSSID. If the BSSID is specified, it will force the system to associate to a specific access point only. For ad-hoc networks, the BSSID is generated randomly by the mac80211 subsystem when the ad-hoc network is created. It is not displayed by NetworkManager.

   MAC address — The MAC address allows you to associate a specific wireless adapter with a specific connection (or connections).

   Cloned Address — A cloned MAC address to use in place of the real hardware address. Leave blank unless required.

4. For further IP address configuration, select the IPv4 and IPv6 menu entries.

   By default, both IPv4 and IPv6 are set to automatic configuration depending on current
network settings. This means that addresses such as the local IP address, DNS address, and other settings will be detected automatically when the interface connects to a network. If a DHCP server assigns the IP configuration in this network, this is sufficient, but you can also provide static configuration in the IPv4 and IPv6 Settings. In the IPv4 and IPv6 menu entries, you can see the following settings:

- **IPv4 Method**
  - **Automatic (DHCP)** – Choose this option if the network you are connecting to uses Router Advertisements (RA) or a DHCP server to assign dynamic IP addresses. You can see the assigned IP address in the Details menu entry.
  - **Link-Local Only** – Choose this option if the network you are connecting to does not have a DHCP server and you do not want to assign IP addresses manually. Random addresses will be assigned as per RFC 3927 with prefix 169.254/16.
  - **Manual** – Choose this option if you want to assign IP addresses manually.
  - **Disable** – IPv4 is disabled for this connection.

- **DNS**
  If Automatic is ON, and no DHCP server is available that assigns DNS servers to this connection, switch it to OFF to enter the IP address of a DNS server separating the IPs by comma.

- **Routes**
  Note that in the Routes section, when Automatic is ON, routes from Router Advertisements (RA) or DHCP are used, but you can also add additional static routes. When OFF, only static routes are used.
  - **Address** – Enter the IP address of a remote network, sub-net, or host.
  - **Netmask** – The netmask or prefix length of the IP address entered above.
  - **Gateway** – The IP address of the gateway leading to the remote network, sub-net, or host entered above.
  - **Metric** – A network cost, a preference value to give to this route. Lower values will be preferred over higher values.

- **Use this connection only for resources on its network**
  Select this check box to prevent the connection from becoming the default route.

Alternatively, to configure IPv6 settings in a Wi-Fi connection, select the IPv6 menu entry:

- **IPv6 Method**
  - **Automatic** – Choose this option to use IPv6 Stateless Address AutoConfiguration (SLAAC) to create an automatic, stateless configuration based on the hardware address and Router Advertisements (RA).
  - **Automatic, DHCP only** – Choose this option to not use RA, but request information from DHCPv6 directly to create a stateful configuration.
  - **Link-Local Only** – Choose this option if the network you are connecting to does not have a DHCP server and you do not want to assign IP addresses manually. Random addresses will be assigned as per RFC 4862 with prefix FE80::/64.
• **Manual** — Choose this option if you want to assign IP addresses manually.

• **Disable** — IPv6 is disabled for this connection.

• The DNS, Routes, **Use this connection only for resources on its network** fields are common to IPv4 settings.

5. To configure **Security** settings in a **Wi-Fi** connection, select the **Security** menu entry. The following configuration options are available:

• **Security**

  • **None** — Do not encrypt the Wi-Fi connection.

  • **WEP 40/128-bit Key** — Wired Equivalent Privacy (WEP), from the IEEE 802.11 standard. Uses a single pre-shared key (PSK).

  • **WEP 128-bit Passphrase** — An MD5 hash of the passphrase to derive a WEP key.

  **WARNING**

  If the Wi-Fi use no encryption, WEP, or WPA, do not use the network because it is insecure and everyone can read the data you send over this network.

  • **LEAP** — Lightweight Extensible Authentication Protocol, from Cisco Systems.

  • **Dynamic WEP (802.1X)** — WEP keys are changed dynamically.

  • **WPA & WPA2 Personal** — Wi-Fi Protected Access (WPA), from the draft IEEE 802.11i standard. A replacement for WEP. Wi-Fi Protected Access II (WPA2), from the 802.11i-2004 standard. Personal mode uses a pre-shared key (WPA-PSK).

  • **WPA & WPA2 Enterprise** — WPA for use with a RADIUS authentication server to provide IEEE 802.1X network access control.

  • **Password** — Enter the password to be used in the authentication process.

6. Once you have finished the configuration, click the **Apply** button to save it.

**NOTE**

When you add a new connection by clicking the **plus** button, **NetworkManager** creates a new configuration file for that connection and then opens the same dialog that is used for editing an existing connection. The difference between these dialogs is that an existing connection profile has a **Details** menu entry.

**12.4. CONNECTING TO A WI-FI NETWORK WITH NMCLI**

This procedure describes how to connect to a **wireless** connection using the **nmcli** utility.
Prerequisites

- The `nmcli` utility to be installed.
- Make sure that the WiFi radio is on (default):

  ```
 ~]$ nmcli radio wifi on
  ```

Procedure

1. To refresh the available Wi-Fi connection list:

  ```
 ~]$ nmcli device wifi rescan
  ```

2. To view the available Wi-Fi access points:

  ```
 ~]$ nmcli dev wifi list

 IN-USE SSID MODE CHAN RATE SIGNAL BARS SECURITY
 ... MyCafe Infra 3 405 Mbit/s 85 ▂▄▆▆▆ WPA1 WPA2
  ```

3. To connect to a Wi-Fi connection using `nmcli`:

  ```
 ~]$ nmcli dev wifi connect SSID-Name password wireless-password
  ```

  For example:

  ```
 ~]$ nmcli dev wifi connect MyCafe password wireless-password
  ```

  Note that if you want to disable the Wi-Fi state:

  ```
 ~]$ nmcli radio wifi off
  ```

12.5. CONNECTING TO A HIDDEN WI-FI NETWORK USING NMCLI

All access points have a Service Set Identifier (SSID) to identify them. However, an access point may be configured not to broadcast its SSID, in which case it is hidden, and will not show up in NetworkManager’s list of Available networks.

This procedure shows how you can connect to a hidden network using the `nmcli` tool.

Prerequisites

- The `nmcli` utility to be installed.
- To know the SSID, and password of the Wi-Fi connection.
- Make sure that the WiFi radio is on (default):

  ```
 ~]$ nmcli radio wifi on
  ```
Procedure

- Connect to the SSID that is hidden:

  ```
 ~]$ nmcli dev wifi connect SSID_Name password wireless_password hidden yes
  ```

12.6. CONNECTING TO A WI-FI NETWORK USING THE GNOME GUI

This procedure describes how you can connect to a wireless network to get access to the Internet.

Procedure

1. Open the GNOME Shell network connection icon menu from the top right-hand corner of the screen.
2. Select Wi-Fi Not Connected.
3. Click the Select Network option.
4. Click the name of the network to which you want to connect, and then click Connect.
   Note that if you do not see the network, the network might be hidden.
5. If the network is protected by a password or encryption keys are required, enter the password and click Connect.
   Note that if you do not know the password, contact the administrator of the Wi-Fi network.
6. If the connection is successful, the name of the network is visible in the connection icon menu and the wireless indicator is on the top right-hand corner of the screen.

Additional resources

- Configuring a Wi-Fi connection using control center.
CHAPTER 13. AUTHENTICATING A RHEL CLIENT TO THE NETWORK USING THE 802.1X STANDARD

Administrators frequently use port-based Network Access Control (NAC) based on the IEEE 802.1X standard to protect a network from unauthorized LAN and Wi-Fi clients. The procedures in this section describe different options to configure network authentication.

13.1. CONFIGURING 802.1X NETWORK AUTHENTICATION ON AN EXISTING ETHERNET CONNECTION USING NMCLI

Using the `nmcli` utility, you can configure the client to authenticate itself to the network. This procedure describes how to configure Protected Extensible Authentication Protocol (PEAP) authentication with the Microsoft Challenge-Handshake Authentication Protocol version 2 (MSCHAPv2) in an existing NetworkManager Ethernet connection profile named `enp1s0`.

**Prerequisites**

1. The network must have 802.1X network authentication.
2. The Ethernet connection profile exists in NetworkManager and has a valid IP configuration.
3. If the client is required to verify the certificate of the authenticator, the Certificate Authority (CA) certificate must be stored in the `/etc/pki/ca-trust/source/anchors/` directory.
4. The `wpa_supplicant` package is installed.

**Procedure**

1. Set the Extensible Authentication Protocol (EAP) to `peap`, the inner authentication protocol to `mschapv2`, and the user name:

   ```
 # nmcli connection modify enp1s0 802-1x.eap peap 802-1x.phase2-auth mschapv2 802-1x.identity user_name
   ```

   Note that you must set the `802-1x.eap`, `802-1x.phase2-auth`, and `802-1x.identity` parameters in a single command.

2. Optionally, store the password in the configuration:

   ```
 # nmcli connection modify enp1s0 802-1x.password password
   ```

   **IMPORTANT**

   By default, NetworkManager stores the password in clear text in the `/etc/sysconfig/network-scripts/keys-connection_name` file, that is readable only by the root user. However, clear text passwords in a configuration file can be a security risk.

   To increase the security, set the `802-1x.password-flags` parameter to `0x1`. With this setting, on servers with the GNOME desktop environment or the `nm-applet` running, NetworkManager retrieves the password from these services. In other cases, NetworkManager prompts for the password.
3. If the client is required to verify the certificate of the authenticator, set the `802-1x.ca-cert` parameter in the connection profile to the path of the CA certificate:

```bash
nmcli connection modify enp1s0 802-1x.ca-cert /etc/pki/ca-trust/source/anchors/ca.crt
```

**NOTE**

For security reasons, Red Hat recommends using the certificate of the authenticator to enable clients to validate the identity of the authenticator.

4. Activate the connection profile:

```bash
nmcli connection up enp1s0
```

**Verification steps**

- Access resources on the network that require network authentication.

**Additional resources**

- For details about adding a NetworkManager Ethernet connection profile, see Chapter 11, *Configuring an Ethernet connection*.

- For further 802.1X-related parameters and their descriptions, see the `802-1x settings` section in the `nm-settings(5)` man page.

- For further details about the `nmcli` utility, see the `nmcli(1)` man page.

### 13.2. CONFIGURING A STATIC ETHERNET CONNECTION WITH 802.1X NETWORK AUTHENTICATION USING RHEL SYSTEM ROLES

Using RHEL System Roles, you can automate the creation of an Ethernet connection that uses the 802.1X standard to authenticate the client. This procedure describes how to remotely add an Ethernet connection for the `enp1s0` interface with the following settings by running an Ansible playbook:

- A static IPv4 address - `192.0.2.1` with a `/24` subnet mask
- A static IPv6 address - `2001:db8:1::1` with a `/64` subnet mask
- An IPv4 default gateway - `192.0.2.254`
- An IPv6 default gateway - `2001:db8:1::fff`
- An IPv4 DNS server - `192.0.2.200`
- An IPv6 DNS server - `2001:db8:1::ffbb`
- A DNS search domain - `example.com`
- 802.1X network authentication using the TLS Extensible Authentication Protocol (EAP)

Run this procedure on the Ansible control node.
Prerequisites

- The **ansible** and **rhel-system-roles** packages are installed on the control node.

- If you use a different remote user than **root** when you run the playbook, you must have appropriate **sudo** permissions on the managed node.

- The network supports 802.1X network authentication.

- The managed node uses NetworkManager.

- The following files required for TLS authentication exist on the control node:
  - The client key stored in the `/srv/data/client.key` file.
  - The client certificate stored in the `/srv/data/client.crt` file.
  - The Certificate Authority (CA) certificate stored in the `/srv/data/ca.crt` file.

Procedure

1. If the host on which you want to execute the instructions in the playbook is not inventoried yet, add the IP address or name of the host to the `/etc/ansible/hosts` Ansible inventory file:

   ```
 node.example.com
   ```

2. Create the `~/.enable-802.1x.yml` playbook with the following content:

   ```yaml

 - name: Configure an Ethernet connection with 802.1X authentication
 hosts: node.example.com
 become: true
 tasks:
 - name: Copy client key for 802.1X authentication
 copy:
 src: "/srv/data/client.key"
 dest: "/etc/pki/tls/private/client.key"
 mode: 0600

 - name: Copy client certificate for 802.1X authentication
 copy:
 src: "/srv/data/client.crt"
 dest: "/etc/pki/tls/certs/client.crt"

 - name: Copy CA certificate for 802.1X authentication
 copy:
 src: "/srv/data/ca.crt"
 dest: "/etc/pki/ca-trust/source/anchors/ca.crt"

 - include_role:
 name: linux-system-roles.network
 vars:
 network_connections:
 - name: enp1s0
 type: ethernet
 autoconnect: yes
   ```
3. Run the playbook:

- To connect as root user to the managed host, enter:

```bash
ansible-playbook -u root ~/enable-802.1x.yml
```

- To connect as a user to the managed host, enter:

```bash
ansible-playbook -u user_name --ask-become-pass ~/ethernet-static-IP.yml
```

The --ask-become-pass option defines that ansible-playbook command prompts for the sudo password of the user defined by the -u user_name option.

If you do not specify the -u user_name option, ansible-playbook connects to the managed host as the user that is currently logged in to the control node.

**Additional resources**

- For details about the parameters used in network_connections and additional information about the network system role, see the /usr/share/ansible/roles/rhel-system-roles.network/README.md file.

- For details about the 802.1X parameters, see the ieee802_1x section in the /usr/share/ansible/roles/rhel-system-roles.network/README.md file.

- For details about the ansible-playbook command, see the ansible-playbook(1) man page.

### 13.3. CONFIGURING 802.1X NETWORK AUTHENTICATION ON AN EXISTING WI-FI CONNECTION USING NMCLI

Using the nmcli utility, you can configure the client to authenticate itself to the network. This procedure describes how to configure Protected Extensible Authentication Protocol (PEAP) authentication with the Microsoft Challenge-Handshake Authentication Protocol version 2 (MSCHAPv2) in an existing
NetworkManager Wi-Fi connection profile named `wlp1s0`.

**Prerequisites**

1. The network must have 802.1X network authentication.
2. The Wi-Fi connection profile exists in NetworkManager and has a valid IP configuration.
3. If the client is required to verify the certificate of the authenticator, the Certificate Authority (CA) certificate must be stored in the `/etc/pki/ca-trust/source/anchors/` directory.
4. The `wpa_supplicant` package is installed.

**Procedure**

1. Set the Wi-Fi security mode to `wpa-eap`, the Extensible Authentication Protocol (EAP) to `peap`, the inner authentication protocol to `mschapv2`, and the user name:

```
nmcli connection modify wlp1s0 802-11-wireless-security.key-mgmt wpa-eap 802-1x.eap peap 802-1x.phase2-auth mschapv2 802-1x.identity user_name
```

Note that you must set the `802-11-wireless-security.key-mgmt`, `802-1x.eap`, `802-1x.phase2-auth`, and `802-1x.identity` parameters in a single command.

2. Optionally, store the password in the configuration:

```
nmcli connection modify wlp1s0 802-1x.password password
```

**IMPORTANT**

By default, NetworkManager stores the password in clear text in the `/etc/sysconfig/network-scripts/keys-connection_name` file, that is readable only by the `root` user. However, clear text passwords in a configuration file can be a security risk.

To increase the security, set the `802-1x.password-flags` parameter to `0x1`. With this setting, on servers with the GNOME desktop environment or the `nm-applet` running, NetworkManager retrieves the password from these services. In other cases, NetworkManager prompts for the password.

3. If the client is required to verify the certificate of the authenticator, set the `802-1x.ca-cert` parameter in the connection profile to the path of the CA certificate:

```
nmcli connection modify wlp1s0 802-1x.ca-cert /etc/pki/ca-trust/source/anchors/ca.crt
```

**NOTE**

For security reasons, Red Hat recommends using the certificate of the authenticator to enable clients to validate the identity of the authenticator.

4. Activate the connection profile:
# nmcli connection up wpl1s0

**Verification steps**

- Access resources on the network that require network authentication.

**Additional resources**

- For details about adding a NetworkManager Ethernet connection profile, see Chapter 12, *Managing Wi-Fi connections*.

- For further 802.1X-related parameters and their descriptions, see the 802-1x settings section in the nm-settings(5) man page.

- For further details about the nmcli utility, see the nmcli(1) man page.
CHAPTER 14. SETTING A DEFAULT GATEWAY OF AN EXISTING CONNECTION

In most situations, administrators set the default gateway when they create a connection. However, you can also set the default gateway after creating the connection.

This section describes how to set the default gateway of an existing network connection.

14.1. SETTING THE DEFAULT GATEWAY ON AN EXISTING CONNECTION USING NMCLI

In most situations, administrators set the default gateway when they create a connection as explained in, for example, Section 11.1, “Configuring a static Ethernet connection using nmcli”.

This section describes how to set or update the default gateway on a previously created connection using the nmcli utility.

Prerequisites

- At least one static IP address must be configured on the connection on which the default gateway will be set.
- If the user is logged in on a physical console, user permissions are sufficient. Otherwise, user must have root permissions.

Procedure

1. Set the IP address of the default gateway.
   For example, to set the IPv4 address of the default gateway on the example connection to 192.0.2.1:

   ```
 $ sudo nmcli connection modify example ipv4.gateway "192.0.2.1"
   ```

   For example, to set the IPv6 address of the default gateway on the example connection to 2001:db8:1::1:

   ```
 $ sudo nmcli connection modify example ipv6.gateway "2001:db8:1::1"
   ```

2. Restart the network connection for changes to take effect. For example, to restart the example connection using the command line:

   ```
 $ sudo nmcli connection up example
   ```

   WARNING

   All connections currently using this network connection are temporarily interrupted during the restart.
3. Optionally, verify that the route is active.
   To display the IPv4 default gateway:

   ```
 $ ip -4 route
default via 192.0.2.1 dev example proto static metric 100
   ```

   To display the IPv6 default gateway:

   ```
 $ ip -6 route
default via 2001:db8:1::1 dev example proto static metric 100 pref medium
   ```

Additional resources

- Section 11.1, “Configuring a static Ethernet connection using nmcli”

### 14.2. SETTING THE DEFAULT GATEWAY ON AN EXISTING CONNECTION USING THE NMCLI INTERACTIVE MODE

In most situations, administrators set the default gateway when they create a connection as explained in, for example, Section 11.5, “Configuring a dynamic Ethernet connection using the nmcli interactive editor”.

This section describes how to set or update the default gateway on a previously created connection using the interactive mode of the **nmcli** utility.

**Prerequisites**

- At least one static IP address must be configured on the connection on which the default gateway will be set.
- If the user is logged in on a physical console, user permissions are sufficient. Otherwise, the user must have **root** permissions.

**Procedure**

1. Open the **nmcli** interactive mode for the required connection. For example, to open the **nmcli** interactive mode for the *example* connection:

   ```
 $ sudo nmcli connection edit example
   ```

2. Set the default gateway.
   For example, to set the IPv4 address of the default gateway on the *example* connection to 192.0.2.1:

   ```
 nmcli> set ipv4.gateway 192.0.2.1
   ```
   For example, to set the IPv6 address of the default gateway on the *example* connection to 2001:db8:1::1:

   ```
 nmcli> set ipv6.gateway 2001:db8:1::1
   ```

3. Optionally, verify that the default gateway was set correctly:
4. Save the configuration:

   ```
 nmcli> save persistent
   ```

5. Restart the network connection for changes to take effect:

   ```
 nmcli> activate example
   ```

   **WARNING**
   All connections currently using this network connection are temporarily interrupted during the restart.

6. Leave the `nmcli` interactive mode:

   ```
 nmcli> quit
   ```

7. Optionally, verify that the route is active.
   To display the IPv4 default gateway:

   ```
 $ ip -4 route
 default via 192.0.2.1 dev example proto static metric 100
   ```

   To display the IPv6 default gateway:

   ```
 $ ip -6 route
 default via 2001:db8:1::1 dev example proto static metric 100 pref medium
   ```

Additional resources

- Section 11.2, “Configuring a static Ethernet connection using the nmcli interactive editor”

### 14.3. SETTING THE DEFAULT GATEWAY ON AN EXISTING CONNECTION USING NM-CONNECTION-EDITOR

In most situations, administrators set the default gateway when they create a connection. This section describes how to set or update the default gateway on a previously created connection using the `nm-connection-editor` application.
Prerequisites

- At least one static IP address must be configured on the connection on which the default gateway will be set.

Procedure

1. Open a terminal, and enter `nm-connection-editor`:

   ```
 $ nm-connection-editor
   ```

2. Select the connection to modify, and click the gear wheel icon to edit the existing connection.

3. Set the IPv4 default gateway. For example, to set the IPv4 address of the default gateway on the connection to `192.0.2.1`:
   a. Open the IPv4 Settings tab.
   b. Enter the address in the gateway field next to the IP range the gateway’s address is within:

<table>
<thead>
<tr>
<th>Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>192.0.2.123</td>
</tr>
</tbody>
</table>

4. Set the IPv6 default gateway. For example, to set the IPv6 address of the default gateway on the connection to `2001:db8:1::1`:
   a. Open the IPv6 tab.
   b. Enter the address in the gateway field next to the IP range the gateway’s address is within:

<table>
<thead>
<tr>
<th>Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>2001:db8:1:5</td>
</tr>
</tbody>
</table>

5. Click OK.

6. Click Save.

7. Restart the network connection for changes to take effect. For example, to restart the `example` connection using the command line:

   ```
 $ sudo nmcli connection up example
   ```

WARNING

All connections currently using this network connection are temporarily interrupted during the restart.
8. Optionally, verify that the route is active. To display the IPv4 default gateway:

```
$ ip -4 route
default via 192.0.2.1 dev example proto static metric 100
```

To display the IPv6 default gateway:

```
$ ip -6 route
default via 2001:db8:1::1 dev example proto static metric 100 pref medium
```

Additional resources

- Section 11.8, “Configuring an Ethernet connection using nm-connection-editor”

### 14.4. SETTING THE DEFAULT GATEWAY ON AN EXISTING CONNECTION USING CONTROL-CENTER

In most situations, administrators set the default gateway when they create a connection. This section describes how to set or update the default gateway on a previously created connection using the control-center application.

**Prerequisites**

- At least one static IP address must be configured on the connection on which the default gateway will be set.

- The network configuration of the connection is open in the control-center application.

**Procedure**

1. Set the IPv4 default gateway. For example, to set the IPv4 address of the default gateway on the connection to **192.0.2.1**:
   a. Open the IPv4 tab.
   b. Enter the address in the **gateway** field next to the IP range the gateway’s address is within:

<table>
<thead>
<tr>
<th>Addresses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Netmask</td>
</tr>
<tr>
<td>192.0.2.123</td>
<td>255.255.255.0</td>
</tr>
</tbody>
</table>

2. Set the IPv6 default gateway. For example, to set the IPv6 address of the default gateway on the connection to **2001:db8:1::1**:
   a. Open the IPv6 tab.
   b. Enter the address in the **gateway** field next to the IP range the gateway’s address is within:

<table>
<thead>
<tr>
<th>Addresses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Prefix</td>
</tr>
<tr>
<td>2001:db8:1::5</td>
<td>64</td>
</tr>
<tr>
<td>2001:db8:1::1</td>
<td></td>
</tr>
</tbody>
</table>
3. Click **Apply**.

4. Back in the **Network** window, disable and re-enable the connection by switching the button for the connection to **Off** and back to **On** for changes to take effect.

![WARNING]

All connections currently using this network connection are temporarily interrupted during the restart.

5. Optionally, verify that the route is active.

   To display the IPv4 default gateway:

   ```bash
 $ ip -4 route
default via 192.0.2.1 dev example proto static metric 100
   ```

   To display the IPv6 default gateway:

   ```bash
 $ ip -6 route
default via 2001:db8:1::1 dev example proto static metric 100 pref medium
   ```

**Additional resources**

- Section 11.8, “Configuring an Ethernet connection using nm-connection-editor”

### 14.5. SETTING THE DEFAULT GATEWAY ON AN EXISTING CONNECTION WHEN USING THE LEGACY NETWORK SCRIPTS

This procedure describes how to configure a default gateway when you use the legacy network scripts. The example sets the default gateway to **192.0.2.1** that is reachable via the **enp1s0** interface.

**Prerequisites**

- The **NetworkManager** package is not installed, or the **NetworkManager** service is disabled.
- The **network-scripts** package is installed.

**Procedure**

1. Set the **GATEWAY** parameter in the `/etc/sysconfig/network-scripts/ifcfg-enp1s0` file to **192.0.2.1**:

   ```
 GATEWAY=192.0.2.1
   ```

2. Add the **default** entry in the `/etc/sysconfig/network-scripts/route-enp0s1` file:

   ```
 default via 192.0.2.1
   ```
3. Restart the network:

```bash
systemctl restart network
```
CHAPTER 15. CONFIGURING STATIC ROUTES

By default, and if a default gateway is configured, Red Hat Enterprise Linux forwards traffic for networks that are not directly connected to the host to the default gateway. Using a static route, you can configure that Red Hat Enterprise Linux forwards the traffic for a specific host or network to a different router than the default gateway. This section describes different options how to configure static routes.

15.1. HOW TO USE THE NMCLI COMMAND TO CONFIGURE A STATIC ROUTE

To configure a static route, use the **nmcli** utility with the following syntax:

```
$ nmcli connection modify connection_name ipv4.routes "ip[/prefix] [next_hop] [metric] [attribute=value] [attribute=value] ...
```

The command supports the following route attributes:

- `table=n`
- `src=address`
- `tos=n`
- `onlink=true|false`
- `window=n`
- `cwnd=n`
- `mtu=n`
- `lock-window=true|false`
- `lock-cwnd=true|false`
- `lock-mtu=true|false`

If you use the `ipv4.routes` sub-command, **nmcli** overrides all current settings of this parameter. To add an additional route, use the **nmcli connection modify connection_name +ipv4.routes "..."** command. In a similar way, you can use **nmcli connection modify connection_name -ipv4.routes "..."** to remove a specific route.

15.2. CONFIGURING A STATIC ROUTE USING AN NMCLI COMMAND

You can add a static route to the configuration of a network connection using the **nmcli connection modify** command.

The procedure in this section describes how to add a route to the **192.0.2.0/24** network that uses the gateway running on **198.51.100.1**, which is reachable through the **example** connection.

Prerequisites

- The network is configured
The gateway for the static route must be directly reachable on the interface.

- If the user is logged in on a physical console, user permissions are sufficient. Otherwise, the command requires root permissions.

Procedure

1. Add the static route to the example connection:

   ```
 $ sudo nmcli connection modify example +ipv4.routes "192.0.2.0/24 198.51.100.1"
   ```

   To set multiple routes in one step, pass the individual routes comma-separated to the command. For example, to add a route to the 192.0.2.0/24 and 203.0.113.0/24 networks, both routed through the 198.51.100.1 gateway, enter:

   ```
 $ sudo nmcli connection modify example +ipv4.routes "192.0.2.0/24 198.51.100.1, 203.0.113.0/24 198.51.100.1"
   ```

2. Optionally, verify that the routes were added correctly to the configuration:

   ```
 $ nmcli connection show example
 ...
 ipv4.routes: { ip = 192.0.2.1/24, nh = 198.51.100.1 }
 ...
   ```

3. Restart the network connection:

   ```
 $ sudo nmcli connection up example
   ```

   **WARNING**

   Restarting the connection briefly disrupts connectivity on that interface.

4. Optionally, verify that the route is active:

   ```
 $ ip route
 ...
 192.0.2.0/24 via 198.51.100.1 dev example proto static metric 100
   ```

Additional resources

- For further details about nmcli, see the nmcli(1) man page.

### 15.3. Configuring a Static Route Using Control-Center

You can use control-center in GNOME to add a static route to the configuration of a network connection.
The procedure in this section describes how to add a route to the 192.0.2.0/24 network that uses the gateway running on 198.51.100.1.

Prerequisites

- The network is configured.
- The gateway for the static route must be directly reachable on the interface.
- The network configuration of the connection is opened in the control-center application. See Section 11.8, “Configuring an Ethernet connection using nm-connection-editor”.

Procedure

1. Open the IPv4 tab.

2. Optionally, disable automatic routes by clicking the On button in the Routes section of the IPv4 tab to use only static routes. If automatic routes are enabled, Red Hat Enterprise Linux uses static routes and routes received from a DHCP server.

3. Enter the address, netmask, gateway, and optionally a metric value:

<table>
<thead>
<tr>
<th>Address</th>
<th>Netmask</th>
<th>Gateway</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.0.2.0</td>
<td>24</td>
<td>198.51.100.1</td>
<td></td>
</tr>
</tbody>
</table>

4. Click Apply.

5. Back in the Network window, disable and re-enable the connection by switching the button for the connection to Off and back to On for changes to take effect.

   **WARNING**
   
   Restarting the connection briefly disrupts connectivity on that interface.

6. Optionally, verify that the route is active:

   ```
 $ ip route
 ...
 192.0.2.0/24 via 198.51.100.1 dev example proto static metric 100
   ```

15.4. CONFIGURING A STATIC ROUTE USING NM-CONNECTION-EDITOR

You can use the nm-connection-editor application to add a static route to the configuration of a network connection.
The procedure in this section describes how to add a route to the 192.0.2.0/24 network that uses the gateway running on 198.51.100.1, which is reachable through the example connection.

**Prerequisites**

- The network is configured.
- The gateway for the static route must be directly reachable on the interface.

**Procedure**

1. Open a terminal and enter `nm-connection-editor`:
   ```bash
 $ nm-connection-editor
   ```

2. Select the example connection and click the gear wheel icon to edit the existing connection.

3. Open the IPv4 tab.

4. Click the Routes button.

5. Click the Add button and enter the address, netmask, gateway, and optionally a metric value.

6. Click OK.

7. Click Save.

8. Restart the network connection for changes to take effect. For example, to restart the example connection using the command line:
   ```bash
 $ sudo nmcli connection up example
   ```

9. Optionally, verify that the route is active:
   ```bash
 $ ip route
 ... 192.0.2.0/24 via 198.51.100.1 dev example proto static metric 100
   ```

**15.5. CONFIGURING A STATIC ROUTE USING THE NMCLI INTERACTIVE MODE**

You can use the interactive mode of the nmcli utility to add a static route to the configuration of a network connection.
The procedure in this section describes how to add a route to the 192.0.2.0/24 network that uses the gateway running on 198.51.100.1, which is reachable through the example connection.

Prerequisites

- The network is configured
- The gateway for the static route must be directly reachable on the interface.
- If the user is logged in on a physical console, user permissions are sufficient. Otherwise, the command requires root permissions.

Procedure

1. Open the nmcli interactive mode for the example connection:
   
   ```
 $ sudo nmcli connection edit example
   ```

2. Add the static route:
   
   ```
 nmcli> set ipv4.routes 192.0.2.0/24 198.51.100.1
   ```

3. Optionally, verify that the routes were added correctly to the configuration:
   
   ```
 nmcli> print
 ...
 ipv4.routes: { ip = 192.0.2.1/24, nh = 198.51.100.1 }
 ...
   ```

   The ip attribute displays the network to route and the nh attribute the gateway (next hop).

4. Save the configuration:
   
   ```
 nmcli> save persistent
   ```

5. Restart the network connection:
   
   ```
 nmcli> activate example
   ```

   **WARNING**

   When you restart the connection, all connections currently using this connection will be temporarily interrupted.

6. Leave the nmcli interactive mode:
   
   ```
 nmcli> quit
   ```
7. Optionally, verify that the route is active:

```
$ ip route
... 192.0.2.0/24 via 198.51.100.1 dev example proto static metric 100
```

Additional resources

- For the list of commands available in the interactive mode, enter `help` in the interactive shell.

## 15.6. CREATING STATIC ROUTES CONFIGURATION FILES IN KEY-VALUE-FORMAT WHEN USING THE LEGACY NETWORK SCRIPTS

This procedure describes how to manually create a routing configuration file for an IPv4 route to the 192.0.2.0/24 network when you use the legacy network scripts instead of NetworkManager. In this example, the corresponding gateway with the IP address 198.51.100.1 is reachable via the `enp1s0` interface.

The example in this procedure uses configuration entries in key-value-format.

**NOTE**

The legacy network scripts support the key-value-format only for static IPv4 routes. For IPv6 routes, use the `ip`-command-format. See Section 15.7, "Creating static routes configuration files in ip-command-format when using the legacy network scripts".

**Prerequisites**

- The gateway for the static route must be directly reachable on the interface.
- The `NetworkManager` package is not installed, or the `NetworkManager` service is disabled.
- The `network-scripts` package is installed.

**Procedure**

1. Add the static IPv4 route to the `/etc/sysconfig/network-scripts/route-enp0s1` file:

   ```
 ADDRESS0=192.0.2.0
 NETMASK0=255.255.255.0
 GATEWAY0=198.51.100.1
   ```

   - The `ADDRESS0` variable defines the network of the first routing entry.
   - The `NETMASK0` variable defines the netmask of the first routing entry.
   - The `GATEWAY0` variable defines the IP address of the gateway to the remote network or host for the first routing entry.
   
   If you add multiple static routes, increase the number in the variable names. Note that the variables for each route must be numbered sequentially. For example, `ADDRESS0`, `ADDRESS1`, `ADDRESS3`, and so on.

2. Restart the network:
# systemctl restart network

Additional resources

- For further details about configuring legacy network scripts, see the `/usr/share/doc/network-scripts/sysconfig.txt` file.

15.7. CREATING STATIC ROUTES CONFIGURATION FILES IN IP-COMMAND-FORMAT WHEN USING THE LEGACY NETWORK SCRIPTS

This procedure describes how to manually create a routing configuration file for the following static routes when you use legacy network scripts:

- An IPv4 route to the 192.0.2.0/24 network. The corresponding gateway with the IP address 198.51.100.1 is reachable via the `enp1s0` interface.

- An IPv6 route to the 2001:db8:1::/64 network. The corresponding gateway with the IP address 2001:db8:2::1 is reachable via the `enp1s0` interface.

The example in this procedure uses configuration entries in `ip-command-format`.

Prerequisites

- The gateway for the static route must be directly reachable on the interface.

- The `NetworkManager` package is not installed, or the `NetworkManager` service is disabled.

- The `network-scripts` package is installed.

Procedure

1. Add the static IPv4 route to the `/etc/sysconfig/network-scripts/route-enp0s1` file:

   ```
 192.0.2.0/24 via 198.51.100.1 dev enp0s1
   ```

2. Add the static IPv6 route to the `/etc/sysconfig/network-scripts/route6-enp0s1` file:

   ```
 2001:db8:1::/64 via 2001:db8:2::1 dev enp0s1
   ```

3. Restart the network:

   ```
 # systemctl restart network
   ```

Additional Resources

- For further details about configuring legacy network scripts, see the `/usr/share/doc/network-scripts/sysconfig.txt` file.
CHAPTER 16. CONFIGURING POLICY-BASED ROUTING TO DEFINE ALTERNATIVE ROUTES

By default, the kernel in RHEL decides where to forward network packets based on the destination address using a routing table. Policy-based routing enables you to configure complex routing scenarios. For example, you can route packets based on various criteria, such as the source address, packet metadata, or protocol.

This section describes of how to configure policy-based routing using NetworkManager.

NOTE
On systems that use NetworkManager, only the nmcli utility supports setting routing rules and assigning routes to specific tables.

16.1. ROUTING TRAFFIC FROM A SPECIFIC SUBNET TO A DIFFERENT DEFAULT GATEWAY USING NETWORKMANAGER

This section describes how to configure RHEL as a router that, by default, routes all traffic to Internet provider A using the default route. Using policy-based routing, RHEL routes traffic received from the internal workstations subnet to provider B.

The procedure assumes the following network topology:

Prerequisites
- The system uses NetworkManager to configure the network, which is the default on RHEL 8.
- The RHEL router you want to set up in the procedure has four network interfaces:
  - The enp7s0 interface is connected to the network of provider A. The gateway IP in the provider’s network is 198.51.100.1, and the network uses a /30 network mask.
  - The enp1s0 interface is connected to the network of provider B. The gateway IP in the provider’s network is 192.0.2.1, and the network uses a /30 network mask.
- The enp8s0 interface is connected to the 10.0.0.0/24 subnet with internal workstations.
- The enp9s0 interface is connected to the 203.0.113.0/24 subnet with the company’s servers.

- Hosts in the internal workstations subnet use 10.0.0.1 as the default gateway. In the procedure, you assign this IP address to the enp8s0 network interface of the router.
- Hosts in the server subnet use 203.0.113.1 as the default gateway. In the procedure, you assign this IP address to the enp9s0 network interface of the router.
- The firewalld service is enabled and active.

Procedure

1. Configure the network interface to provider A:

```sh
nmcli connection add type ethernet con-name Provider-A ifname enp7s0 ipv4.method manual ipv4.addresses 198.51.100.1/30 ipv4.gateway 198.51.100.2 ipv4.dns 198.51.100.200 connection.zone external
```

The `nmcli connection add` command creates a NetworkManager connection profile. The following list describes the options of the command:

- **type ethernet**: Defines that the connection type is Ethernet.
- **con-name connection_name**: Sets the name of the profile. Use a meaningful name to avoid confusion.
- **ifname network_device**: Sets the network interface.
- **ipv4.method manual**: Enables to configure a static IP address.
- **ipv4.addresses IP_address/subnet_mask**: Sets the IPv4 addresses and subnet mask.
- **ipv4.gateway IP_address**: Sets the default gateway address.
- **ipv4.dns IP_of_DNS_server**: Sets the IPv4 address of the DNS server.
- **connection.zone firewalld_zone**: Assigns the network interface to the defined firewalld zone. Note that firewalld automatically enables masquerading for interfaces assigned to the external zone.

2. Configure the network interface to provider B:

```sh
nmcli connection add type ethernet con-name Provider-B ifname enp1s0 ipv4.method manual ipv4.addresses 192.0.2.1/30 ipv4.routes "0.0.0.0/1 192.0.2.2 table=5000, 128.0.0.0/1 192.0.2.2 table=5000" connection.zone external
```

This command uses the **ipv4.routes** parameter instead of **ipv4.gateway** to set the default gateway. This is required to assign the default gateway for this connection to a different routing table (5000) than the default. NetworkManager automatically creates this new routing table when the connection is activated.
NOTE
The `nmcli` utility does not support using `0.0.0.0/0` for the default gateway in `ipv4.gateway`. To work around this problem, the command creates separate routes for both the `0.0.0.0/1` and `128.0.0.0/1` subnets, which covers also the full IPv4 address space.

3. Configure the network interface to the internal workstations subnet:

   ```bash
 # nmcli connection add type ethernet con-name Internal-Workstations ifname enp8s0 ipv4.method manual ipv4.addresses 10.0.0.1/24 ipv4.routes "10.0.0.0/24 src=192.0.2.1 table=5000" ipv4.routing-rules "priority 5 from 10.0.0.0/24 table 5000" connection.zone internal
   ```

   This command uses the `ipv4.routes` parameter to add a static route to the routing table with ID 5000. This static route for the `10.0.0.0/24` subnet uses the IP of the local network interface to provider B (192.0.2.1) as next hop.

   Additionally, the command uses the `ipv4.routing-rules` parameter to add a routing rule with priority 5 that routes traffic from the `10.0.0.0/24` subnet to table 5000. Low values have a high priority.

   Note that the syntax in the `ipv4.routing-rules` parameter is the same as in an `ip route add` command, except that `ipv4.routing-rules` always requires specifying a priority.

4. Configure the network interface to the server subnet:

   ```bash
 # nmcli connection add type ethernet con-name Servers ifname enp9s0 ipv4.method manual ipv4.addresses 203.0.113.1/24 connection.zone internal
   ```

Verification steps

1. On a RHEL host in the internal workstation subnet:
   a. Install the `traceroute` package:
      ```bash
 # yum install traceroute
      ```
   b. Use the `traceroute` utility to display the route to a host on the Internet:
      ```bash
 # traceroute redhat.com
 traceroute to redhat.com (209.132.183.105), 30 hops max, 60 byte packets
 1 10.0.0.1 (10.0.0.1) 0.337 ms 0.260 ms 0.223 ms
 2 192.0.2.1 (192.0.2.1) 0.884 ms 1.066 ms 1.248 ms
 ...
      ```
      The output of the command displays that the router sends packets over `192.0.2.1`, which is the network of provider B.

2. On a RHEL host in the server subnet:
   a. Install the `traceroute` package:
      ```bash
 # yum install traceroute
      ```
b. Use the `traceroute` utility to display the route to a host on the Internet:

```
traceroute redhat.com
traceroute to redhat.com (209.132.183.105), 30 hops max, 60 byte packets
 1 203.0.113.1 (203.0.113.1) 2.179 ms 2.073 ms 1.944 ms
 2 198.51.100.2 (198.51.100.2) 1.868 ms 1.798 ms 1.549 ms
...```

The output of the command displays that the router sends packets over `198.51.100.2`, which is the network of provider A.

Troubleshooting steps

On the RHEL router:

1. Display the rule list:

```
# ip rule list
0: from all lookup local
5: from 10.0.0.0/24 lookup 5000
  32766: from all lookup main
  32767: from all lookup default
```

By default, RHEL contains rules for the tables `local`, `main`, and `default`.

2. Display the routes in table `5000`:

```
# ip route list table 5000
0.0.0.0/1 via 192.0.2.2 dev enp1s0 proto static metric 100
10.0.0.0/24 dev enp8s0 proto static scope link src 192.0.2.1 metric 102
128.0.0.0/1 via 192.0.2.2 dev enp1s0 proto static metric 100
```

3. Display the interfaces and firewall zones:

```
# firewall-cmd --get-active-zones
external interfaces: enp1s0 enp7s0
internal interfaces: enp8s0 enp9s0
```

4. Verify that the `external` zone has masquerading enabled:

```
# firewall-cmd --info-zone=external
external (active)
target: default
icmp-block-inversion: no
interfaces: enp1s0 enp7s0
sources:
services: ssh
ports:
protocols:
  masquerade: yes
```

Additional resources
• For further details about the `ipv4.*` parameters you can set in the `nmcli connection add` command, see the IPv4 settings section in the `nm-settings(5)` man page.

• For further details about the `connection.*` parameters you can set in the `nmcli connection add` command, see the Connection settings section in the `nm-settings(5)` man page.

• For further details about managing NetworkManager connections using `nmcli`, see the Connection management commands section in the `nmcli(1)` man page.

16.2. OVERVIEW OF CONFIGURATION FILES INVOLVED IN POLICY-BASED ROUTING WHEN USING THE LEGACY NETWORK SCRIPTS

If you use the legacy network scripts instead of NetworkManager to configure your network, you can also configure policy-based routing.

NOTE

Configuring the network using the legacy network scripts provided by the `network-scripts` package is deprecated in RHEL 8. Red Hat recommends that you use NetworkManager to configure policy-based routing. For an example, see Section 16.1, “Routing traffic from a specific subnet to a different default gateway using NetworkManager”.

The following configuration files are involved in policy-based routing when you use the legacy network scripts:

- **/etc/sysconfig/network-scripts/route-interface**: This file defines the IPv4 routes. Use the `table` option to specify the routing table. For example:

  ```
  192.0.2.0/24 via 198.51.100.1 table 1
  203.0.113.0/24 via 198.51.100.2 table 2
  ```

- **/etc/sysconfig/network-scripts/route6-interface**: This file defines the IPv6 routes.

- **/etc/sysconfig/network-scripts/rule-interface**: This file defines the rules for IPv4 source networks for which the kernel routes traffic to specific routing tables. For example:

  ```
  from 192.0.2.0/24 lookup 1
  from 203.0.113.0/24 lookup 2
  ```

- **/etc/sysconfig/network-scripts/rule6-interface**: This file defines the rules for IPv6 source networks for which the kernel routes traffic to specific routing tables.

- **/etc/iproute2/rt_tables**: This file defines the mappings if you want to use names instead of numbers to refer to specific routing tables. For example:

  ```
  1 Provider_A
  2 Provider_B
  ```

Additional resources

- For further details about IP routing, see the `ip-route(8)` man page.
For further details about routing rules, see the `ip-rule(8)` man page.

16.3. Routing Traffic from a Specific Subnet to a Different Default Gateway Using the Legacy Network Scripts

This section describes how to configure RHEL as a router that, by default, routes all traffic to internet provider A using the default route. Using policy-based routing, RHEL routes traffic received from the internal workstations subnet to provider B.

IMPORTANT

Configuring the network using the legacy network scripts provided by the `network-scripts` package is deprecated in RHEL 8. Follow the procedure in this section only if you use the legacy network scripts instead of NetworkManager on your host. If you use NetworkManager to manage your network settings, see Section 16.1, “Routing traffic from a specific subnet to a different default gateway using NetworkManager”.

The procedure assumes the following network topology:

NOTE

The legacy network scripts process configuration files in alphabetical order. Therefore, you must name the configuration files in a way that ensures that an interface, that is used in rules and routes of other interfaces, are up when a depending interface requires it. To accomplish the correct order, this procedure uses numbers in the `ifcfg-*`, `route-*`, and `rules-*` files.

Prerequisites

- The `NetworkManager` package is not installed, or the `NetworkManager` service is disabled.
- The `network-scripts` package is installed.
- The RHEL router you want to set up in the procedure has four network interfaces:
 - The `enp7s0` interface is connected to the network of provider A. The gateway IP in the provider's network is `198.51.100.2` and the network uses a `/30` network mask.
The provider's network is 198.51.100.2, and the network uses a /30 network mask.

- The enp1s0 interface is connected to the network of provider B. The gateway IP in the provider's network is 192.0.2.2, and the network uses a /30 network mask.
- The enp8s0 interface is connected to the 10.0.0.0/24 subnet with internal workstations.
- The enp9s0 interface is connected to the 203.0.113.0/24 subnet with the company's servers.

- Hosts in the internal workstations subnet use 10.0.0.1 as the default gateway. In the procedure, you assign this IP address to the enp8s0 network interface of the router.
- Hosts in the server subnet use 203.0.113.1 as the default gateway. In the procedure, you assign this IP address to the enp9s0 network interface of the router.
- The firewall service is enabled and active.

Procedure

1. Add the configuration for the network interface to provider A by creating the /etc/sysconfig/network-scripts/ifcfg-1_Provider-A file with the following content:

   ```
   TYPE=Ethernet
   IPADDR=198.51.100.1
   PREFIX=30
   GATEWAY=198.51.100.2
   DNS1=198.51.100.200
   DEFROUTE=yes
   NAME=1_Provider-A
   DEVICE=enp7s0
   ONBOOT=yes
   ZONE=external
   ```

 The following list describes the parameters used in the configuration file:

 - **TYPE=Ethernet**: Defines that the connection type is Ethernet.
 - **IPADDR=IP_address**: Sets the IPv4 address.
 - **PREFIX=subnet_mask**: Sets the subnet mask.
 - **GATEWAY=IP_address**: Sets the default gateway address.
 - **DNS1=IP_of_DNS_server**: Sets the IPv4 address of the DNS server.
 - **DEFROUTE=yes/no**: Defines whether the connection is a default route or not.
 - **NAME=connection_name**: Sets the name of the connection profile. Use a meaningful name to avoid confusion.
 - **DEVICE=network_device**: Sets the network interface.
 - **ONBOOT=yes**: Defines that RHEL starts this connection when the system boots.
• **ZONE=firewalld_zone**: Assigns the network interface to the defined firewalld zone. Note that firewalld automatically enables masquerading for interfaces assigned to the external zone.

2. Add the configuration for the network interface to provider B:
 a. Create the /etc/sysconfig/network-scripts/ifcfg-2_Provider-B file with the following content:

```
TYPE=Ethernet
IPADDR=192.0.2.1
PREFIX=30
DEFROUTE=no
NAME=2_Provider-B
DEVICE=enp1s0
ONBOOT=yes
ZONE=external
```

Note that the configuration file for this interface does not contain a default gateway setting.

b. Assign the gateway for the 2_Provider-B connection to a separate routing table. Therefore, create the /etc/sysconfig/network-scripts/route-2_Provider-B file with the following content:

```
0.0.0.0/0 via 192.0.2.2 table 5000
```

This entry assigns the gateway and traffic from all subnets routed through this gateway to table 5000.

3. Create the configuration for the network interface to the internal workstations subnet:
 a. Create the /etc/sysconfig/network-scripts/ifcfg-3_Internal-Workstations file with the following content:

```
TYPE=Ethernet
IPADDR=10.0.0.1
PREFIX=24
DEFROUTE=no
NAME=3_Internal-Workstations
DEVICE=enp8s0
ONBOOT=yes
ZONE=internal
```

b. Add the routing rule configuration for the internal workstation subnet. Therefore, create the /etc/sysconfig/network-scripts/rule-3_Internal-Workstations file with the following content:

```
pri 5 from 10.0.0.0/24 table 5000
```

This configuration defines a routing rule with priority 5 that routes all traffic from the 10.0.0.0/24 subnet to table 5000. Low values have a high priority.

c. Create the /etc/sysconfig/network-scripts/route-3_Internal-Workstations file with the following content to add a static route to the routing table with ID 5000:
This static route defines that RHEL sends traffic from the 10.0.0.0/24 subnet to the IP of the local network interface to provider B (192.0.2.1). This interface is to routing table 5000 and used as the next hop.

4. Add the configuration for the network interface to the server subnet by creating the /etc/sysconfig/network-scripts/ifcfg-4_Servers file with the following content:

 - TYPE=Ethernet
 - IPADDR=203.0.113.1
 - PREFIX=24
 - DEFROUTE=no
 - NAME=4_Servers
 - DEVICE=enp9s0
 - ONBOOT=yes
 - ZONE=internal

5. Restart the network:

 # systemctl restart network

Verification steps

1. On a RHEL host in the internal workstation subnet:
 a. Install the traceroute package:

 # yum install traceroute

 b. Use the traceroute utility to display the route to a host on the internet:

 # traceroute redhat.com
 traceroute to redhat.com (209.132.183.105), 30 hops max, 60 byte packets
 1 10.0.0.1 (10.0.0.1) 0.337 ms 0.260 ms 0.223 ms
 2 192.0.2.1 (192.0.2.1) 0.884 ms 1.066 ms 1.248 ms
 ...

 The output of the command displays that the router sends packets over 192.0.2.1, which is the network of provider B.

2. On a RHEL host in the server subnet:
 a. Install the traceroute package:

 # yum install traceroute

 b. Use the traceroute utility to display the route to a host on the internet:

 # traceroute redhat.com
 traceroute to redhat.com (209.132.183.105), 30 hops max, 60 byte packets
 1 203.0.113.1 (203.0.113.1) 2.179 ms 2.073 ms 1.944 ms
 2 198.51.100.2 (198.51.100.2) 1.868 ms 1.066 ms 1.248 ms
 ...

 The output of the command displays that the router sends packets over 192.0.2.1, which is the network of provider B.
The output of the command displays that the router sends packets over **198.51.100.2**, which is the network of provider A.

Troubleshooting steps

On the RHEL router:

1. Display the rule list:
   ```
   # ip rule list
   0: from all lookup local
   5: from 10.0.0.0/24 lookup 5000
   32766: from all lookup main
   32767: from all lookup default
   ```
 By default, RHEL contains rules for the tables **local**, **main**, and **default**.

2. Display the routes in table **5000**:
   ```
   # ip route list table 5000
   default via 192.0.2.2 dev enp1s0
   10.0.0.0/24 via 192.0.2.1 dev enp1s0
   ```

3. Display the interfaces and firewall zones:
   ```
   # firewall-cmd --get-active-zones
   external interfaces: enp1s0 enp7s0
   internal interfaces: enp8s0 enp9s0
   ```

4. Verify that the **external** zone has masquerading enabled:
   ```
   # firewall-cmd --info-zone=external
   external (active)
   target: default
   icmp-block-inversion: no
   interfaces: enp1s0 enp7s0
   sources:
   services: ssh
   ports:
   protocols:
   masquerade: yes
   ```

Additional resources

- Section 16.2, “Overview of configuration files involved in policy-based routing when using the legacy network scripts”

- The `ip-route(8)` man page

- The `ip-rule(8)` man page
For further details about the legacy networking scripts, see the \texttt{/usr/share/doc/network-scripts/sysconfig.txt} file.
CHAPTER 17. CONFIGURING VLAN TAGGING

This section describes how to configure Virtual Local Area Network (VLAN). A VLAN is a logical network within a physical network. The VLAN interface tags packets with the VLAN ID as they pass through the interface, and removes tags of returning packets.

You create a VLAN interface on top of another interface, such as an Ethernet, bond, team, or bridge device. This interface is called the parent interface.

17.1. CONFIGURING VLAN TAGGING USING NMCLI COMMANDS

This section describes how to configure Virtual Local Area Network (VLAN) tagging using the nmcli utility.

Prerequisites

- The interface you plan to use as a parent to the virtual VLAN interface supports VLAN tags.
- If you configure the VLAN on top of a bond interface:
 - The slaves of the bond are up.
 - The bond is not configured with the fail_over_mac=follow option. A VLAN virtual device cannot change its MAC address to match the parent’s new MAC address. In such a case, the traffic would still be sent with the then incorrect source MAC address.
 - The switch the host is connected to is configured to support VLAN tags. For details, see the documentation of your switch.

Procedure

1. Display the network interfaces:

```bash
# nmcli device status
DEVICE   TYPE      STATE         CONNECTION
enp1s0   ethernet  disconnected  enp1s0
bridge0  bridge    connected     bridge0
bond0    bond      connected     bond0
...```

2. Create the VLAN interface. For example, to create a VLAN interface named vlan10 that uses enp1s0 as its parent interface and that tags packets with VLAN ID 10, enter:

```bash
nmcli connection add type vlan con-name vlan10 ifname enp1s0 vlan.parent enp1s0 vlan.id 10
```

Note that the VLAN must be within the range from 0 to 4094.

3. By default, the VLAN connection inherits the maximum transmission unit (MTU) from the parent interface. Optionally, set a different MTU value:

```bash
nmcli connection modify vlan10 802-3-ethernet.mtu 2000
```
4. Configure the IP settings of the VLAN device. Skip this step if you want to use this VLAN device as a slave of other devices.

   a. Configure the IPv4 settings. For example, to set a static IPv4 address, network mask, default gateway, and DNS server to the `vlan10` connection, enter:

   ```
 # nmcli connection modify vlan10 ipv4.addresses '192.0.2.1/24'
 # nmcli connection modify vlan10 ipv4.gateway '192.0.2.254'
 # nmcli connection modify vlan10 ipv4.dns '192.0.2.253'
 # nmcli connection modify vlan10 ipv4.method manual
   ```

   b. Configure the IPv6 settings. For example, to set a static IPv6 address, network mask, default gateway, and DNS server to the `vlan10` connection, enter:

   ```
 # nmcli connection modify vlan10 ipv6.addresses '2001:db8:1::1/32'
 # nmcli connection modify vlan10 ipv6.gateway '2001:db8:1::fffe'
 # nmcli connection modify vlan10 ipv6.dns '2001:db8:1::fffd'
 # nmcli connection modify vlan10 ipv6.method manual
   ```

5. Activate the connection:

   ```
 # nmcli connection up vlan10
   ```

Verification steps

1. Verify the settings:

   ```
 # ip -d addr show vlan10
 4: vlan10@enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
 link/ether 52:54:00:d5:e0:fb brd ff:ff:ff:ff:ff:ff promiscuity 0
 vlan protocol 802.1Q id 10 <REORDER_HDR> numtxqueues 1 numrxqueues 1
 gso_max_size 65536 gso_max_segs 65535
 inet 192.0.2.1/24 brd 192.0.2.255 scope global noprefixroute vlan10
 valid_lft forever preferred_lft forever
 inet6 fe80::8dd7:9030:6f8e:89e6/64 scope link noprefixroute
 valid_lft forever preferred_lft forever
   ```

Additional resources

- For more information on testing connections, see Chapter 38, Testing basic network settings.
- For `nmcli` examples, see the `nmcli-examples(7)` man page.
- For all vlan properties you can set, see the `vlan setting` section in the `nm-settings(5)` man page.

17.2. CONFIGURING VLAN TAGGING USING NM-CONNECTION-EDITOR

This section describes how to configure Virtual Local Area Network (VLAN) tagging using the `nm-connection-editor` application.
Prerequisites

- The interface you plan to use as a parent to the virtual VLAN interface supports VLAN tags.
- If you configure the VLAN on top of a bond interface:
  - The slaves of the bond are up.
  - The bond is not configured with the `fail_over_mac=follow` option. A VLAN virtual device cannot change its MAC address to match the parent's new MAC address. In such a case, the traffic would still be sent with the then incorrect source MAC address.
- The switch the host is connected to is configured to support VLAN tags. For details, see the documentation of your switch.

Procedure

1. Open a terminal, and enter `nm-connection-editor`:

   ```
 $ nm-connection-editor
   ```

2. Click the + button to add a new connection.

3. Select the VLAN connection type, and click Create.

4. On the VLAN tab:
   a. Select the parent interface.
   b. Select the VLAN id. Note that the VLAN must be within the range from 0 to 4094.
   c. By default, the VLAN connection inherits the maximum transmission unit (MTU) from the parent interface. Optionally, set a different MTU value.
   d. Optionally, set the name of the VLAN interface and further VLAN-specific options.

5. Configure the IP settings of the VLAN device. Skip this step if you want to use this VLAN device as a slave of other devices.
a. On the **IPv4 Settings** tab, configure the IPv4 settings. For example, set a static IPv4 address, network mask, default gateway, and DNS server:

![IPv4 Settings](image1.png)

- Address: 192.0.2.1
- Netmask: 24
- Gateway: 192.0.2.254
- DNS servers: 192.0.2.253

b. On the **IPv6 Settings** tab, configure the IPv6 settings. For example, set a static IPv6 address, network mask, default gateway, and DNS server:

![IPv6 Settings](image2.png)

- Address: 2001:db8:1::1
- Prefix: 64
- Gateway: 2001:db8:1::ff3
- DNS servers: 2001:db8:1::fffd

6. Click **Save** to save the VLAN connection.


**Verification steps**

1. Verify the settings:

```
ip -d addr show vlan10
4: vlan10@enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue
 state UP group default qlen 1000
```

Red Hat Enterprise Linux 8 Configuring and managing networking
link/ether 52:54:00:d5:e0:fb brd ff:ff:ff:ff:ff:ff promiscuity 0
vlans protocol 802.1Q id 10 <REORDER_HDR> numtxqueues 1 numrxqueues 1
gso_max_size 65536 gso_max_segs 65535
inet 192.0.2.1/24 brd 192.0.2.255 scope global noprefixroute vlan10
  valid_lft forever preferred_lft forever
inet6 2001:db8:1::1/32 scope global noprefixroute
  valid_lft forever preferred_lft forever
inet6 fe80::8dd7:9030:6f8e:89e6/64 scope link noprefixroute
  valid_lft forever preferred_lft forever

Additional resources

- For more information on testing connections, see Chapter 38, *Testing basic network settings*.
CHAPTER 18. CONFIGURING A NETWORK BRIDGE

A network bridge is a link-layer device which forwards traffic between networks based on a table of MAC addresses. The bridge builds the MAC addresses table by listening to network traffic and thereby learning what hosts are connected to each network. For example, you can use a software bridge on a Red Hat Enterprise Linux 8 host to emulate a hardware bridge or in virtualization environments, to integrate virtual machines (VM) to the same network as the host.

A bridge requires a network device in each network the bridge should connect. When you configure a bridge, the bridge is called master and the devices it uses slave devices.

You can create bridges on different types of slave devices, such as:

- Physical and virtual Ethernet devices
- Network bonds
- Network teams
- VLAN devices

Due to the IEEE 802.11 standard which specifies the use of 3-address frames in Wi-Fi for the efficient use of airtime, you cannot configure a bridge over Wi-Fi networks operating in Ad-Hoc or Infrastructure modes.

18.1. CONFIGURING A NETWORK BRIDGE USING NMCLI COMMANDS

This section explains how to configure a network bridge using the nmcli utility.

Prerequisites

- Two or more physical or virtual network devices are installed on the server.
- To use Ethernet devices as slaves of the bridge, the physical or virtual Ethernet devices must be installed on the server.
- To use team, bond, or VLAN devices as slaves of the bridge, you can either create these devices while you create the bridge or you can create them in advance as described in:
  - Section 20.5, “Configuring a network bond using nmcli commands”
  - Section 19.6, “Configuring a network team using nmcli commands”
  - Section 17.1, "Configuring VLAN tagging using nmcli commands"

Procedure

1. Create a bridge interface:

   ```
 # nmcli connection add type bridge con-name bridge0 ifname bridge0
   ```

   This command creates a bridge named bridge0, enter:

2. Display the network interfaces, and note the names of the interfaces you want to add to the bridge:

   ```
   ```
# nmcli device status

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>TYPE</th>
<th>STATE</th>
<th>CONNECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>enp7s0</td>
<td>ethernet</td>
<td>disconnected</td>
<td>--</td>
</tr>
<tr>
<td>enp8s0</td>
<td>ethernet</td>
<td>disconnected</td>
<td>--</td>
</tr>
<tr>
<td>bond0</td>
<td>bond</td>
<td>connected</td>
<td>bond0</td>
</tr>
<tr>
<td>bond1</td>
<td>bond</td>
<td>connected</td>
<td>bond1</td>
</tr>
</tbody>
</table>

In this example:

- **enp7s0** and **enp8s0** are not configured. To use these devices as slaves, add connection profiles in the next step.

- **bond0** and **bond1** have existing connection profiles. To use these devices as slaves, modify their profiles in the next step.

3. Assign the interfaces to the bridge.

   a. If the interfaces you want to assign to the bridge are not configured, create new connection profiles for them:

   ```
 # nmcli connection add type ethernet slave-type bridge con-name bridge0-port1
 ifname enp7s0 master bridge0
 # nmcli connection add type ethernet slave-type bridge con-name bridge0-port2
 ifname enp8s0 master bridge0
   ```

   These commands create profiles for **enp7s0** and **enp8s0**, and add them to the **bridge0** connection.

   b. To assign an existing connection profile to the bridge, set the `master` parameter of these connections to **bridge0**:

   ```
 # nmcli connection modify bond0 master bridge0
 # nmcli connection modify bond1 master bridge0
   ```

   These commands assign the existing connection profiles named **bond0** and **bond1** to the **bridge0** connection.

4. Configure the IP settings of the bridge. Skip this step if you want to use this bridge as a slave of other devices.

   a. Configure the IPv4 settings. For example, to set a static IPv4 address, network mask, default gateway, DNS server, and DNS search domain of the **bridge0** connection, enter:

   ```
 # nmcli connection modify bridge0 ipv4.addresses '192.0.2.1/24'
 # nmcli connection modify bridge0 ipv4.gateway '192.0.2.254'
 # nmcli connection modify bridge0 ipv4.dns '192.0.2.253'
 # nmcli connection modify bridge0 ipv4.dns-search 'example.com'
 # nmcli connection modify bridge0 ipv4.method manual
   ```

   b. Configure the IPv6 settings. For example, to set a static IPv6 address, network mask, default gateway, DNS server, and DNS search domain of the **bridge0** connection, enter:

   ```
 # nmcli connection modify bridge0 ipv6.addresses '2001:db8:1::1/64'
 # nmcli connection modify bridge0 ipv6.gateway '2001:db8:1::ffe'
 # nmcli connection modify bridge0 ipv6.dns '2001:db8:1::fffd'
   ```
5. Optional: Configure further properties of the bridge. For example, to set the Spanning Tree Protocol (STP) priority of bridge0 to 16384, enter:

```
nmcli connection modify bridge0 bridge.priority '16384'
```

By default, STP is enabled.

6. Activate the connection:

```
nmcli connection up bridge0
```

7. Verify that the slave devices are connected, and the CONNECTION column displays the slave’s connection name:

```
nmcli device
DEVICE TYPE STATE CONNECTION
...
enp7s0 ethernet connected bridge0-port1
enp8s0 ethernet connected bridge0-port2
```

Red Hat Enterprise Linux activates master and slave devices when the system boots. By activating any slave connection, the master is also activated. However, in this case, only one slave connection is activated. By default, activating the master does not automatically activate the slaves. However, you can enable this behavior by setting:

a. Enable the connection.autoconnect-slaves parameter of the bridge connection:

```
nmcli connection modify bridge0 connection.autoconnect-slaves 1
```

b. Reactivate the bridge:

```
nmcli connection up bridge0
```

Verification steps

- Display the link status of Ethernet devices that are slaves of a specific bridge:

```
ip link show master bridge0
3: enp7s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel master bridge0 state UP mode DEFAULT group default qlen 1000
 link/ether 52:54:00:62:61:0e brd ff:ff:ff:ff:ff:ff
4: enp8s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel master bridge0 state UP mode DEFAULT group default qlen 1000
 link/ether 52:54:00:9e:f1:ce brd ff:ff:ff:ff:ff:ff
```

- Display the status of Ethernet devices that are slaves to any bridge device:

```
bridge link show
3: enp7s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 master bridge0 state forwarding priority 32 cost 100
```
To display the status for a specific Ethernet device, use the `bridge link show dev ethernet_device_name` command.

**Additional resources**

- For more information on testing connections, see Chapter 38, *Testing basic network settings*.
- For `nmcli` examples, see the `nmcli-examples(7)` man page.
- For all bridge properties you can set, see the `bridge settings` section in the `nm-settings(5)` man page.
- For all bridge port properties you can set, see the `bridge-port settings` section in the `nm-settings(5)` man page.
- For details about the `bridge` utility, see the `bridge(8)` man page.
- If the configuration on the disk does not match the configuration on the device, starting or restarting NetworkManager creates an in-memory connection that reflects the configuration of the device. For further details and how to avoid this problem, see *NetworkManager duplicates a connection after restart of NetworkManager service*.

### 18.2. CONFIGURING A NETWORK BRIDGE USING NM-CONNECTION-EDITOR

This section explains how to configure a network bridge using the `nm-connection-editor` application.

Note that `nm-connection-editor` can add only new slave devices to a bridge. To use an existing connection profile as a slave, create the bridge using the `nmcli` utility as described in *Section 18.1, “Configuring a network bridge using `nmcli` commands”*.

**Prerequisites**

- Two or more physical or virtual network devices are installed on the server.
- To use Ethernet devices as slaves of the bridge, the physical or virtual Ethernet devices must be installed on the server.
- To use team, bond, or VLAN devices as slaves of the bridge, ensure that these devices are not already configured.

**Procedure**

1. Open a terminal, and enter `nm-connection-editor`:

   ```bash
 $ nm-connection-editor
   ```
2. Click the + button to add a new connection.

3. Select the **Bridge** connection type, and click **Create**.

4. In the **Bridge** tab:
   a. Optional: Set the name of the bridge interface in the **Interface name** field.
   b. Click the **Add** button to create a new connection profile for a network interface and adding the profile as a slave to the bridge.
      i. Select the connection type of the interface. For example, select **Ethernet** for a wired connection.
      ii. Optionally, set a connection name for the slave device.
      iii. If you create a connection profile for an Ethernet device, open the **Ethernet** tab, and select in the **Device** field the network interface you want to add as a slave to the bridge. If you selected a different device type, configure it accordingly.
      iv. Click **Save**.
   c. Repeat the previous step for each interface you want to add to the bridge.

5. Optional: Configure further bridge settings, such as Spanning Tree Protocol (STP) options.

6. Configure the IP settings of the bridge. Skip this step if you want to use this bridge as a slave of other devices.
   a. In the **IPv4 Settings** tab, configure the IPv4 settings. For example, set a static IPv4 address, network mask, default gateway, DNS server, and DNS search domain:
b. In the IPv6 Settings tab, configure the IPv6 settings. For example, set a static IPv6 address, network mask, default gateway, DNS server, and DNS search domain:

7. Save the bridge connection.


Verification steps
• Display the link status of Ethernet devices that are slaves of a specific bridge.

```
ip link show master bridge0
3: enp7s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel master
 bridge0 state UP mode DEFAULT group default qlen 1000
 link/ether 52:54:00:62:61:0e brd ff:ff:ff:ff:ff:ff
4: enp8s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel master
 bridge0 state UP mode DEFAULT group default qlen 1000
 link/ether 52:54:00:9e:f1:ce brd ff:ff:ff:ff:ff:ff
```

• Display the status of Ethernet devices that are slaves to any bridge device:

```
bridge link show
3: enp7s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 master bridge0 state
 forwarding priority 32 cost 100
4: enp8s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 master bridge0 state
 listening priority 32 cost 100
5: enp9s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 master bridge1 state
 forwarding priority 32 cost 100
6: enp11s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 master bridge1 state
 blocking priority 32 cost 100
...
```

To display the status for a specific Ethernet device, use the `bridge link show dev ethernet_device_name` command.

Additional resources

- Section 20.6, "Configuring a network bond using nm-connection-editor"
- Section 19.7, "Configuring a network team using nm-connection-editor"
- Section 17.2, "Configuring VLAN tagging using nm-connection-editor"
- For more information on testing connections, see Chapter 38, *Testing basic network settings*.
CHAPTER 19. CONFIGURING NETWORK TEAMING

This section describes the basics of network teaming, the differences between bonding and teaming, and how to configure a network team on Red Hat Enterprise Linux 8.

You can create network teams on different types of slave devices, such as:

- Physical and virtual Ethernet devices
- Network bonds
- Network bridges
- VLAN devices

19.1. UNDERSTANDING NETWORK TEAMING

Network teaming is a feature that combines or aggregates network interfaces to provide a logical interface with higher throughput or redundancy.

Network teaming uses a kernel driver to implement fast handling of packet flows, as well as user-space libraries and services for other tasks. This way, network teaming is an easily extensible and scalable solution for load-balancing and redundancy requirements.

Note that in the context of network teaming, the term **port** is also known as **slave**. In the **teamd** service, the term **port** is preferred while in the **NetworkManager** service, the term **slave** refers to interfaces which create a team.

**IMPORTANT**

Certain network teaming features, such as the fail-over mechanism, do not support direct cable connections without a network switch. For further details, see Is bonding supported with direct connection using crossover cables?

19.2. UNDERSTANDING THE DEFAULT BEHAVIOR OF MASTER AND SLAVE INTERFACES

Consider the following default behavior of, when managing or troubleshooting team or bond port interfaces using the **NetworkManager** service:

- Starting the master interface does not automatically start the port interfaces.
- Starting a port interface always starts the master interface.
- Stopping the master interface also stops the port interface.
- A master without ports can start static IP connections.
- A master without ports waits for ports when starting DHCP connections.
- A master with a DHCP connection waiting for ports completes when you add a port with a carrier.
- A master with a DHCP connection waiting for ports continues waiting when you add a port without carrier.
### 19.3. COMPARISON OF NETWORK TEAMING AND BONDING FEATURES

Learn about the features supported in network teams and network bonds:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Network bond</th>
<th>Network team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast Tx policy</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Round-robin Tx policy</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Active-backup Tx policy</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LACP (802.3ad) support</td>
<td>Yes (active only)</td>
<td>Yes</td>
</tr>
<tr>
<td>Hash-based Tx policy</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>User can set hash function</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Tx load-balancing support (TLB)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LACP hash port select</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Load-balancing for LACP support</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Ethtool link monitoring</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ARP link monitoring</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NS/NA (IPv6) link monitoring</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Ports up/down delays</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Port priorities and stickiness (&quot;primary&quot; option enhancement)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Separate per-port link monitoring setup</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiple link monitoring setup</td>
<td>Limited</td>
<td>Yes</td>
</tr>
<tr>
<td>Lockless Tx/Rx path</td>
<td>No (rwlock)</td>
<td>Yes (RCU)</td>
</tr>
<tr>
<td>VLAN support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>User-space runtime control</td>
<td>Limited</td>
<td>Yes</td>
</tr>
<tr>
<td>Logic in user-space</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Feature</td>
<td>Network bond</td>
<td>Network team</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Extensibility</td>
<td>Hard</td>
<td>Easy</td>
</tr>
<tr>
<td>Modular design</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Performance overhead</td>
<td>Low</td>
<td>Very low</td>
</tr>
<tr>
<td>D-Bus interface</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiple device stacking</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Zero config using LLDP</td>
<td>No</td>
<td>(in planning)</td>
</tr>
<tr>
<td>NetworkManager support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

### 19.4. UNDERSTANDING THE TEAMD SERVICE, RUNNERS, AND LINK-WATCHERS

The team service, teamd, controls one instance of the team driver. This instance of the driver adds instances of a hardware device driver to form a team of network interfaces. The team driver presents a network interface, for example team0, to the kernel.

The teamd service implements the common logic to all methods of teaming. Those functions are unique to the different load sharing and backup methods, such as round-robin, and implemented by separate units of code referred to as runners. Administrators specify runners in JavaScript Object Notation (JSON) format, and the JSON code is compiled into an instance of teamd when the instance is created. Alternatively, when using NetworkManager, you can set the runner in the team.runner parameter, and NetworkManager auto-creates the corresponding JSON code.

The following runners are available:

- **broadcast**: Transmits data over all ports.
- **roundrobin**: Transmits data over all ports in turn.
- **activebackup**: Transmits data over one port while the others are kept as a backup.
- **loadbalance**: Transmits data over all ports with active Tx load balancing and Berkeley Packet Filter (BPF)-based Tx port selectors.
- **random**: Transmits data on a randomly selected port.
- **lacp**: Implements the 802.3ad Link Aggregation Control Protocol (LACP).

The teamd services uses a link watcher to monitor the state of subordinate devices. The following link-watchers are available:

- **ethtool**: The libteam library uses the ethtool utility to watch for link state changes. This is the default link-watcher.
arp_ping: The libteam library uses the arp_ping utility to monitor the presence of a far-end hardware address using Address Resolution Protocol (ARP).

nsna_ping: On IPv6 connections, the libteam library uses the Neighbor Advertisement and Neighbor Solicitation features from the IPv6 Neighbor Discovery protocol to monitor the presence of a neighbor’s interface.

Each runner can use any link watcher, with the exception of lACP. This runner can only use the ethtool link watcher.

19.5. INSTALLING THE TEAMD SERVICE

To configure a network team in NetworkManager, you require the teamd service and the team plug-in for NetworkManager. Both are installed on Red Hat Enterprise Linux 8 by default. This section describes how you install the required packages in case that you remove them.

Prerequisites

- An active Red Hat subscription is assigned to the host.

Procedure

1. Install the teamd and NetworkManager-team packages:

   # yum install teamd NetworkManager-team

19.6. CONFIGURING A NETWORK TEAM USING NMCLI COMMANDS

This section describes how to configure a network team using nmcli utility.

Prerequisites

- Two or more physical or virtual network devices are installed on the server.
- To use Ethernet devices as slaves of the team, the physical or virtual Ethernet devices must be installed on the server and connected to a switch.
- To use bond, bridge, or VLAN devices as slaves of the team, you can either create these devices while you create the team or you can create them in advance as described in:
  - Section 20.5, “Configuring a network bond using nmcli commands”
  - Section 18.1, “Configuring a network bridge using nmcli commands”
  - Section 17.1, “Configuring VLAN tagging using nmcli commands”

Procedure

1. Create a team interface:

   # nmcli connection add type team con-name team0 ifname team0 team.runner activebackup

   This command creates a network team named team0 that uses the activebackup runner.
2. Optionally, set a link watcher. For example, to set the **ethtool** link watcher in the **team0** connection profile:

   ```
 # nmcli connection modify team0 team.link-watchers "name=ethtool"
   ```

   Link watchers support different parameters. To set parameters for a link watcher, specify them space-separated in the **name** property. Note that the name property must be surrounded by quotes. For example, to use the **ethtool** link watcher and set its **delay-up** parameter to 2500 milliseconds (2.5 seconds):

   ```
 # nmcli connection modify team0 team.link-watchers "name=ethtool delay-up=2500"
   ```

   To set multiple link watchers and each of them with specific parameters, the link watchers must be separated by a comma. The following example sets the **ethtool** link watcher with the **delay-up** parameter and the **arp_ping** link watcher with the **source-host** and **target-host** parameter:

   ```
 # nmcli connection modify team0 team.link-watchers "name=ethtool delay-up=2, name=arp_ping source-host=192.0.2.1 target-host=192.0.2.2"
   ```

3. Display the network interfaces, and note the names of the interfaces you want to add to the team:

   ```
 # nmcli device status
 DEVICE TYPE STATE CONNECTION
 enp7s0 ethernet disconnected --
 enp8s0 ethernet disconnected --
 bond0 bond connected bond0
 bond1 bond connected bond1
 ...
   ```

   In this example:

   - **enp7s0** and **enp8s0** are not configured. To use these devices as slaves, add connection profiles in the next step. Note that you can only use Ethernet interfaces in a team that are not assigned to any connection.

    - **bond0** and **bond1** have existing connection profiles. To use these devices as slaves, modify their profiles in the next step.

4. Assign the port interfaces to the team:

   a. If the interfaces you want to assign to the team are not configured, create new connection profiles for them:

   ```
 # nmcli connection add type ethernet slave-type team con-name team0-port1
 ifname enp7s0 master team0
 # nmcli connection add type ethernet slave-type team con-name team0-port2
 ifname enp8s0 master team0
   ```

   These commands create profiles for **enp7s0** and **enp8s0**, and add them to the **team0** connection.

   b. To assign an existing connection profile to the team, set the **master** parameter of these connections to **team0**:
# nmcli connection modify bond0 master team0
# nmcli connection modify bond1 master team0

These commands assign the existing connection profiles named bond0 and bond1 to the team0 connection.

5. Configure the IP settings of the team. Skip this step if you want to use this team as a slave of other devices.

a. Configure the IPv4 settings. For example, to set a static IPv4 address, network mask, default gateway, DNS server, and DNS search domain the team0 connection, enter:

```
nmcli connection modify team0 ipv4.addresses '192.0.2.1/24'
nmcli connection modify team0 ipv4.gateway '192.0.2.254'
nmcli connection modify team0 ipv4.dns '192.0.2.253'
nmcli connection modify team0 ipv4.dns-search 'example.com'
nmcli connection modify team0 ipv4.method manual
```

b. Configure the IPv6 settings. For example, to set a static IPv6 address, network mask, default gateway, DNS server, and DNS search domain of the team0 connection, enter:

```
nmcli connection modify team0 ipv6.addresses '2001:db8:1::1/64'
nmcli connection modify team0 ipv6.gateway '2001:db8:1::ffe'
nmcli connection modify team0 ipv6.dns '2001:db8:1::fffd'
nmcli connection modify team0 ipv6.dns-search 'example.com'
nmcli connection modify team0 ipv6.method manual
```

6. Activate the connection:

```
nmcli connection up team0
```

Verification steps

- Display the status of the team:

```
teamdctl team0 state
setup:
 runner: activebackup
ports:
 enp7s0
 link watches:
 link summary: up
 instance[link_watch_0):
 name: ethtool
 link: up
 down count: 0
enp8s0
 link watches:
 link summary: up
 instance[link_watch_0):
 name: ethtool
 link: up
```
In this example, both ports are up.

Additional resources

- For more information on testing connections, see Chapter 38, *Testing basic network settings*.
- Section 19.4, “Understanding the teamd service, runners, and link-watchers”.
- For `nmcli` examples, see the `nmcli-examples(7)` man page.
- For all team properties you can set, see the `team` section in the `nm-settings(5)` man page.
- For parameters you can set in the JSON configuration, as well as JSON examples, see the `teamd.conf(5)` man page.

19.7. CONFIGURING A NETWORK TEAM USING NM-CONNECTION-EDITOR

This section describes how you configure a network team using the `nm-connection-editor` application.

Note that `nm-connection-editor` can add only new slave devices to a team. To use an existing connection profile as a slave, create the team using the `nmcli` utility as described in Section 19.6, “Configuring a network team using nmcli commands”.

Prerequisites

- Two or more physical or virtual network devices are installed on the server.
- To use Ethernet devices as slaves of the team, the physical or virtual Ethernet devices must be installed on the server.
- To use team, bond, or VLAN devices as slaves of the team, ensure that these devices are not already configured.

Procedure

1. Open a terminal, and enter `nm-connection-editor`:

   $ nm-connection-editor

2. Click the + button to add a new connection.

3. Select the Team connection type, and click Create.

4. In the Team tab:
   - Optional: Set the name of the team interface in the Interface name field.
   - Click the Add button to add a new connection profile for a network interface and adding the profile as a slave to the team.
i. Select the connection type of the interface. For example, select Ethernet for a wired connection.

ii. Optional: Set a connection name for the slave device.

iii. If you create a connection profile for an Ethernet device, open the Ethernet tab, and select in the Device field the network interface you want to add as a slave to the team. If you selected a different device type, configure it accordingly. Note that you can only use Ethernet interfaces in a team that are not assigned to any connection.

iv. Click Save.

c. Repeat the previous step for each interface you want to add to the team.

d. Click the Advanced button to set advanced options to the team connection.

i. In the Runner tab, select the runner.

ii. In the Link Watcher tab, set the link watcher and its optional settings.

iii. Click OK.

5. Configure the IP settings of the team. Skip this step if you want to use this team as a slave of other devices.
a. In the **IPv4 Settings** tab, configure the IPv4 settings. For example, set a static IPv4 address, network mask, default gateway, DNS server, and DNS search domain:

![IPv4 Settings Tab](image)

b. In the **IPv6 Settings** tab, configure the IPv6 settings. For example, set a static IPv6 address, network mask, default gateway, DNS server, and DNS search domain:

![IPv6 Settings Tab](image)

6. Save the team connection.

Verification steps

- Display the status of the team:

```
teamdctl team0 state
setup:
 runner: activebackup
ports:
 enp7s0
 link watches:
 link summary: up
 instance[link_watch_0]:
 name: ethtool
 link: up
 down count: 0
 enp8s0
 link watches:
 link summary: up
 instance[link_watch_0]:
 name: ethtool
 link: up
 down count: 0
runner:
 active port: enp7s0
```

Additional resources

- Section 20.6, “Configuring a network bond using nm-connection-editor”
- Section 18.2, “Configuring a network bridge using nm-connection-editor”
- Section 17.2, “Configuring VLAN tagging using nm-connection-editor”
- For more information on testing connections, see Chapter 38, Testing basic network settings.
- Section 19.4, “Understanding the teamd service, runners, and link-watchers”.
- If the configuration on the disk does not match the configuration on the device, starting or restarting NetworkManager creates an in-memory connection that reflects the configuration of the device. For further details and how to avoid this problem, see NetworkManager duplicates a connection after restart of NetworkManager service.
CHAPTER 20. CONFIGURING NETWORK BONDING

This section describes the basics of network bonding, the differences between bonding and teaming, and how to configure a network bond on Red Hat Enterprise Linux 8.

You can create bonds on different types of slave devices, such as:

- Physical and virtual Ethernet devices
- Network bridges
- Network teams
- VLAN devices

20.1. UNDERSTANDING NETWORK BONDING

Network bonding is a method to combine or aggregate network interfaces to provide a logical interface with higher throughput or redundancy.

The active-backup, balance-tlb, and balance-alb modes do not require any specific configuration of the network switch. However, other bonding modes require configuring the switch to aggregate the links. For example, Cisco switches require EtherChannel for modes 0, 2, and 3, but for mode 4, the Link Aggregation Control Protocol (LACP) and EtherChannel are required.

For further details, see the documentation of your switch and Linux Ethernet Bonding Driver HOWTO.

IMPORTANT

Certain network bonding features, such as the fail-over mechanism, do not support direct cable connections without a network switch. For further details, see the Is bonding supported with direct connection using crossover cables? KCS solution.

20.2. UNDERSTANDING THE DEFAULT BEHAVIOR OF MASTER AND SLAVE INTERFACES

Consider the following default behavior of, when managing or troubleshooting team or bond port interfaces using the NetworkManager service:

- Starting the master interface does not automatically start the port interfaces.
- Starting a port interface always starts the master interface.
- Stopping the master interface also stops the port interface.
- A master without ports can start static IP connections.
- A master without ports waits for ports when starting DHCP connections.
- A master with a DHCP connection waiting for ports completes when you add a port with a carrier.
- A master with a DHCP connection waiting for ports continues waiting when you add a port without carrier.
## 20.3. COMPARISON OF NETWORK TEAMING AND BONDING FEATURES

Learn about the features supported in network teams and network bonds:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Network bond</th>
<th>Network team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast Tx policy</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Round-robin Tx policy</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Active-backup Tx policy</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LACP (802.3ad) support</td>
<td>Yes (active only)</td>
<td>Yes</td>
</tr>
<tr>
<td>Hash-based Tx policy</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>User can set hash function</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Tx load-balancing support (TLB)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>LACP hash port select</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Load-balancing for LACP support</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Ethtool link monitoring</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ARP link monitoring</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NS/NA (IPv6) link monitoring</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Ports up/down delays</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Port priorities and stickiness (&quot;primary&quot; option enhancement)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Separate per-port link monitoring setup</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiple link monitoring setup</td>
<td>Limited</td>
<td>Yes</td>
</tr>
<tr>
<td>Lockless Tx/Rx path</td>
<td>No (rwlock)</td>
<td>Yes (RCU)</td>
</tr>
<tr>
<td>VLAN support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>User-space runtime control</td>
<td>Limited</td>
<td>Yes</td>
</tr>
<tr>
<td>Logic in user-space</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
### Extensibility
- **Network bond**: Hard
- **Network team**: Easy

### Modular design
- **Network bond**: No
- **Network team**: Yes

### Performance overhead
- **Network bond**: Low
- **Network team**: Very low

### D-Bus interface
- **Network bond**: No
- **Network team**: Yes

### Multiple device stacking
- **Network bond**: Yes
- **Network team**: Yes

### Zero config using LLDP
- **Network bond**: No
- **Network team**: (in planning)

### NetworkManager support
- **Network bond**: Yes
- **Network team**: Yes

## 20.4. UPSTREAM SWITCH CONFIGURATION DEPENDING ON THE BONDING MODES

The following table describes which settings you must apply to the upstream switch depending on the bonding mode:

<table>
<thead>
<tr>
<th>Bonding mode</th>
<th>Configuration on the switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - balance-rr</td>
<td>Requires static Etherchannel enabled (not LACP-negotiated)</td>
</tr>
<tr>
<td>1 - active-backup</td>
<td>Requires autonomous ports</td>
</tr>
<tr>
<td>2 - balance-xor</td>
<td>Requires static Etherchannel enabled (not LACP-negotiated)</td>
</tr>
<tr>
<td>3 - broadcast</td>
<td>Requires static Etherchannel enabled (not LACP-negotiated)</td>
</tr>
<tr>
<td>4 - 802.3ad</td>
<td>Requires LACP-negotiated Etherchannel enabled</td>
</tr>
<tr>
<td>5 - balance-tlb</td>
<td>Requires autonomous ports</td>
</tr>
<tr>
<td>6 - balance-alb</td>
<td>Requires autonomous ports</td>
</tr>
</tbody>
</table>

For configuring these settings on your switch, see the switch documentation.

## 20.5. CONFIGURING A NETWORK BOND USING NMCLI COMMANDS

This section describes how to configure a network bond using **nmcli** commands.

**Prerequisites**
Two or more physical or virtual network devices are installed on the server.

To use Ethernet devices as slaves of the bond, the physical or virtual Ethernet devices must be installed on the server.

To use team, bridge, or VLAN devices as slaves of the bond, you can either create these devices while you create the bond or you can create them in advance as described in:

- Section 19.6, “Configuring a network team using nmcli commands”
- Section 18.1, “Configuring a network bridge using nmcli commands”
- Section 17.1, “Configuring VLAN tagging using nmcli commands”

Procedure

1. Create a bond interface:

   ```
 # nmcli connection add type bond con-name bond0 ifname bond0 bond.options "mode=active-backup"
   ```

   This command creates a bond named `bond0` that uses the `active-backup` mode.

   To additionally set a Media Independent Interface (MII) monitoring interval, add the `miimon=interval` option to the `bond.options` property. For example, to use the same command but, additionally, set the MII monitoring interval to 1000 milliseconds (1 second), enter:

   ```
 # nmcli connection add type bond con-name bond0 ifname bond0 bond.options "mode=active-backup,miimon=1000"
   ```

2. Display the network interfaces, and note names of interfaces you plan to add to the bond:

   ```
 # nmcli device status
 DEVICE TYPE STATE CONNECTION
 enp7s0 ethernet disconnected --
 enp8s0 ethernet disconnected --
 bridge0 bridge connected bridge0
 bridge1 bridge connected bridge1
 ...
   ```

   In this example:

   - `enp7s0` and `enp8s0` are not configured. To use these devices as slaves, add connection profiles in the next step.
   - `bridge0` and `bridge1` have existing connection profiles. To use these devices as slaves, modify their profiles in the next step.

3. Assign interfaces to the bond:

   a. If the interfaces you want to assign to the bond are not configured, create new connection profiles for them:

   ```
 # nmcli connection add type ethernet slave-type bond con-name bond0-port1
 ifname enp7s0 master bond0
 # nmcli connection add type ethernet slave-type bond con-name bond0-port2
   ```
ifname enp8s0 master bond0

These commands create profiles for **enp7s0** and **enp8s0**, and add them to the **bond0** connection.

b. To assign an existing connection profile to the bond, set the **master** parameter of these connections to **bond0**:

```bash
nmcli connection modify bridge0 master bond0
nmcli connection modify bridge1 master bond0
```

These commands assign the existing connection profiles named **bridge0** and **bridge1** to the **bond0** connection.

4. Configure the IP settings of the bond. Skip this step if you want to use this bond as a slave of other devices.

a. Configure the IPv4 settings. For example, to set a static IPv4 address, network mask, default gateway, DNS server, and DNS search domain to the **bond0** connection, enter:

```bash
nmcli connection modify bond0 ipv4.addresses '192.0.2.1/24'
nmcli connection modify bond0 ipv4.gateway '192.0.2.254'
nmcli connection modify bond0 ipv4.dns '192.0.2.253'
nmcli connection modify bond0 ipv4.dns-search 'example.com'
nmcli connection modify bond0 ipv4.method manual
```

b. Configure the IPv6 settings. For example, to set a static IPv6 address, network mask, default gateway, DNS server, and DNS search domain to the **bond0** connection, enter:

```bash
nmcli connection modify bond0 ipv6.addresses '2001:db8:1::1/64'
nmcli connection modify bond0 ipv6.gateway '2001:db8:1::ffe'
nmcli connection modify bond0 ipv6.dns '2001:db8:1::fffd'
nmcli connection modify bond0 ipv6.dns-search 'example.com'
nmcli connection modify bond0 ipv6.method manual
```

5. Activate the connection:

```bash
nmcli connection up bond0
```

6. Verify that the slave devices are connected, and the **CONNECTION** column displays the slave’s connection name:

```bash
nmcli device
DEVICE TYPE STATE CONNECTION
... enp7s0 ethernet connected bond0-port1
 enp8s0 ethernet connected bond0-port2
```

Red Hat Enterprise Linux activates master and slave devices when the system boots. By activating any slave connection, the master is also activated. However, in this case, only one slave connection is activated. By default, activating the master does not automatically activate the slaves. However, you can enable this behavior by setting:

a. Enable the **connection.autoconnect-slaves** parameter of the bond’s connection:
# nmcli connection modify bond0 connection.autoconnect-slaves 1

b. Reactivate the bridge:

# nmcli connection up bond0

Verification steps

1. Display the status of the bond:

```
cat /proc/net/bonding/bond0
Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011)

Bonding Mode: fault-tolerance (active-backup)
Primary Slave: None
Currently Active Slave: enp7s0
MII Status: up
MII Polling Interval (ms): 100
Up Delay (ms): 0
Down Delay (ms): 0

Slave Interface: enp7s0
MII Status: up
Speed: Unknown
Duplex: Unknown
Link Failure Count: 0
Permanent HW addr: 52:54:00:d5:e0:fb
Slave queue ID: 0

Slave Interface: enp8s0
MII Status: up
Speed: Unknown
Duplex: Unknown
Link Failure Count: 0
Permanent HW addr: 52:54:00:b2:e2:63
Slave queue ID: 0
```

In this example, both ports are up.

2. To verify that bonding failover works:

a. Temporarily remove the network cable from the host. Note that there is no method to properly test link failure events using the command line.

b. Display the status of the bond:

```
cat /proc/net/bonding/bond0
```

Additional resources

- For more information on testing connections, see Chapter 38, Testing basic network settings.
- For nmcli examples, see the nmcli-examples(7) man page.
For a list of options you can set in the `bond.options` parameter of the `nmcli` command when you create a bond, see [https://www.kernel.org/doc/Documentation/networking/bonding.txt](https://www.kernel.org/doc/Documentation/networking/bonding.txt).

### 20.6. CONFIGURING A NETWORK BOND USING NM-CONNECTION-EDITOR

This section describes how to configure a network bond using the `nm-connection-editor` application.

Note that `nm-connection-editor` can add only new slave devices to a bond. To use an existing connection profile as a slave, create the bond using the `nmcli` utility as described in Section 20.5, “Configuring a network bond using nmcli commands”.

#### Prerequisites

- Two or more physical or virtual network devices are installed on the server.
- To use Ethernet devices as slaves of the bond, the physical or virtual Ethernet devices must be installed on the server.
- To use team, bond, or VLAN devices as slaves of the bond, ensure that these devices are not already configured.

#### Procedure

1. Open a terminal, and enter `nm-connection-editor`:

   ```
 $ nm-connection-editor
   ```

2. Click the + button to add a new connection.

3. Select the Bond connection type, and click Create.

4. In the Bond tab:
   a. Optional: Set the name of the bond interface in the Interface name field.
   b. Click the Add button to add a network interface as a slave to the bond.
      i. Select the connection type of the interface. For example, select Ethernet for a wired connection.
      ii. Optional: Set a connection name for the slave device.
      iii. If you create a connection profile for an Ethernet device, open the Ethernet tab, and select in the Device field the network interface you want to add as a slave to the bond. If you selected a different device type, configure it accordingly. Note that you can only use Ethernet interfaces in a bond that are not configured.
      iv. Click Save.
   c. Repeat the previous step for each interface you want to add to the bond:
d. Optional: Set other options, such as the Media Independent Interface (MII) monitoring interval.

5. Configure the IP settings of the bond. Skip this step if you want to use this bond as a slave of other devices.

   a. In the IPv4 Settings tab, configure the IPv4 settings. For example, set a static IPv4 address, network mask, default gateway, DNS server, and DNS search domain:

   b. In the IPv6 Settings tab, configure the IPv6 settings. For example, set a static IPv6 address, network mask, default gateway, DNS server, and DNS search domain:
6. Click **Save** to save the bond connection.

7. Close **nm-connection-editor**.

**Verification steps**

- View the status of the bond:

  ```
 $ cat /proc/net/bonding/bond0
 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011)

 Bonding Mode: fault-tolerance (active-backup)
 Primary Slave: None
 Currently Active Slave: enp7s0
 MII Status: up
 MII Polling Interval (ms): 100
 Up Delay (ms): 0
 Down Delay (ms): 0

 Slave Interface: enp7s0
 MII Status: up
 Speed: Unknown
 Duplex: Unknown
 Link Failure Count: 0
 Permanent HW addr: 52:54:00:d5:e0:fb
 Slave queue ID: 0

 Slave Interface: enp8s0
 MII Status: up
 Speed: Unknown
 Duplex: Unknown
  ```
In this example, both ports are up.

Additional resources

- Section 19.7, “Configuring a network team using nm-connection-editor”
- Section 18.2, “Configuring a network bridge using nm-connection-editor”
- Section 17.2, “Configuring VLAN tagging using nm-connection-editor”
- For more information on testing connections, see Chapter 38, Testing basic network settings.

20.7. CREATING A NETWORK BOND TO ENABLE SWITCHING BETWEEN AN ETHERNET AND WIRELESS CONNECTION WITHOUT INTERRUPTING THE VPN

RHEL users who connect their workstation to their company’s network typically use a VPN to access remote resources. However, if the workstation switches between an Ethernet and Wi-Fi connection, for example, if you release a laptop from a docking station with an Ethernet connection, the VPN connection is interrupted. To avoid this problem, you can create a network bond that uses the Ethernet and Wi-Fi connection in active-backup mode.

Prerequisites

- The host contains an Ethernet and a Wi-Fi device.
- An Ethernet and Wi-Fi NetworkManager connection profile has been created and both connections work independently.
  This procedure uses the following connection profiles to create a network bond named bond0:
    - Docking_station associated with the enp1s0u1 Ethernet device
    - Wi-Fi associated with the wlp61s0 Wi-Fi device

Procedure

1. Create a bond interface in active-backup mode:

   ```
 # nmcli connection add type bond con-name bond0 ifname bond0 bond.options "mode=active-backup"
   ```

   This command names both the interface and connection profile bond0.

2. Configure the IPv4 settings of the bond:

   - If a DHCP server in your network assigns IPv4 addresses to hosts, no action is required.
   - If your local network requires static IPv4 addresses, set the address, network mask, default gateway, DNS server, and DNS search domain to the bond0 connection:
3. Configure the IPv4 settings of the bond:
   
   - If your router or a DHCP server in your network assigns IPv4 addresses to hosts, no action is required.
   
   - If your local network requires static IPv4 addresses, set the address, network mask, default gateway, DNS server, and DNS search domain to the `bond0` connection:

```
nmcli connection modify bond0 ipv4.addresses '192.0.2.1/24'
nmcli connection modify bond0 ipv4.gateway '192.0.2.254'
nmcli connection modify bond0 ipv4.dns '192.0.2.253'
nmcli connection modify bond0 ipv4.dns-search 'example.com'
nmcli connection modify bond0 ipv4.method manual
```

4. Display the connection profiles:

```
nmcli connection show
NAME UUID TYPE DEVICE
Docking_station 256dd073-fecc-339d-91ae-9834a00407f9 ethernet enp11s0u1
Wi-Fi 1f1531c7-8737-4c60-91af-2d21164417e8 wifi wlp61s0
...
```

You require the names of the connection profiles and the Ethernet device name in the next steps.

5. Assign the connection profile of the Ethernet connection to the bond:

```
nmcli connection modify Docking_station master bond0
```

6. Assign the connection profile of the Wi-Fi connection to the bond:

```
nmcli connection modify Wi-Fi master bond0
```

7. If your Wi-Fi network uses MAC filtering to allow only MAC addresses on a white list to access the network, configure that NetworkManager dynamically assigns the MAC address of the active slave device to the bond:

```
nmcli connection modify bond0 +bond.options fail_over_mac=1
```

With this setting, you must set only the MAC address of the Wi-Fi device to the white list instead of the MAC address of both the Ethernet and Wi-Fi device.

8. Set the device associated with the Ethernet connection as primary device of the bond:

```
nmcli con modify bond0 +bond.options "primary=enp11s0u1"
```

With this setting, the bond always uses the Ethernet connection if it is available.
9. Configure that NetworkManager automatically activates slave devices when the `bond0` device is activated:

```
nmcli connection modify bond0 connection.autoconnect-slaves 1
```

10. Activate the `bond0` connection:

```
nmcli connection up bond0
```

**Verification steps**

- Display the currently active device, the status of the bond and its slave devices:

```
cat /proc/net/bonding/bond0
Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011)

Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active)
Primary Slave: enp11s0u1 (primary_reselect always)
Currently Active Slave: enp11s0u1
MII Status: up
MII Polling Interval (ms): 1
Up Delay (ms): 0
Down Delay (ms): 0
Peer Notification Delay (ms): 0

Slave Interface: enp11s0u1
MII Status: up
Speed: 1000 Mbps
Duplex: full
Link Failure Count: 0
Permanent HW addr: 00:53:00:59:da:b7
Slave queue ID: 0

Slave Interface: wlp61s0
MII Status: up
Speed: Unknown
Duplex: Unknown
Link Failure Count: 2
Permanent HW addr: 00:53:00:b3:22:ba
Slave queue ID: 0
```

**Additional resources**

- Chapter 11, *Configuring an Ethernet connection*
- Chapter 12, *Managing Wi-Fi connections*
- Chapter 20, *Configuring network bonding*
CHAPTER 21. CONFIGURING FIBRE CHANNEL OVER ETHERNET

Based on the IEEE T11 FC-BB-5 standard, Fibre Channel over Ethernet (FCoE) is a protocol to transmit Fibre Channel frames over Ethernet networks. Typically, data centers have a dedicated LAN and Storage Area Network (SAN) that are separated from each other with their own specific configuration. FCoE combines these networks into a single and converged network structure. Benefits of FCoE are, for example, lower hardware and energy costs.

21.1. USING HARDWARE FCOE HBAS IN RHEL

In Red Hat Enterprise Linux you can use hardware FCoE Host Bus Adapter (HBA) supported by the following drivers:

- qedf
- bnx2fc
- fnic

If you use such a HBA, you configure the FCoE settings in the setup of the HBA. For details, see the documentation of the adapter.

After you configured the HBA in its setup, the exported Logical Unit Numbers (LUN) from the Storage Area Network (SAN) are automatically available to RHEL as /dev/sd* devices. You can use these devices similar to local storage devices.

21.2. SETTING UP A SOFTWARE FCOE DEVICE

A software FCoE device enables you to access Logical Unit Numbers (LUN) over FCoE using an Ethernet adapter that partially supports FCoE offload.

IMPORTANT

RHEL does not support software FCoE devices that require the fcoe.ko kernel module. For details, see FCoE software removal in the Considerations in adopting RHEL 8 documentation.

After you complete this procedure, the exported LUNs from the Storage Area Network (SAN) are automatically available to RHEL as /dev/sd* devices. You can use these devices similar to local storage devices.

Prerequisites

- The Host Bus Adapter (HBA) uses the qedf, bnx2fc, or fnic driver and does not require the fcoe.ko kernel module.
- The SAN uses a VLAN to separate the storage traffic from normal Ethernet traffic.
- The network switch has been configured to support the VLAN.
- The HBA of the server is configured in its BIOS. For details, see the documentation of your HBA.
- The HBA is connected to the network and the link is up.
Procedure

1. Install the `fcoe-utils` package:

   ```sh
 # yum install fcoe-utils
   ```

2. Copy the `/etc/fcoe/cfg-ethx` template file to `/etc/fcoe/cfg-interface_name`. For example, if you want to configure the `enp1s0` interface to use FCoE, enter:

   ```sh
 # cp /etc/fcoe/cfg-ethx /etc/fcoe/cfg-enp1s0
   ```

3. Enable and start the `fcoe` service:

   ```sh
 # systemctl enable --now fcoe
   ```

4. Discover the FCoE VLAN ID, start the initiator, and create a network device for the discovered VLAN:

   ```sh
 # fipvlan -s -c enp1s0
 Created VLAN device enp1s0.200
 Starting FCoE on interface enp1s0.200
 Fibre Channel Forwarders Discovered
 interface | VLAN | FCF MAC
 --
 enp1s0 | 200 | 00:53:00:a7:e7:1b
   ```

5. Optional: To display details about the discovered targets, the LUNs, and the devices associated with the LUNs, enter:

   ```sh
 # fcoeadm -t
 Interface: enp1s0.200
 Roles: FCP Target
 Node Name: 0x500a0980824acd15
 Port Name: 0x500a0982824acd15
 Target ID: 0
 MaxFrameSize: 2048 bytes
 OS Device Name: rport-11:0-1
 FC-ID (Port ID): 0xba00a0
 State: Online

 LUN ID Device Name Capacity Block Size Description
 ------ ----------- ---------- ---------- ---------------------
 0 sdb 28.38 GiB 512 NETAPP LUN (rev 820a)
   ```

This example shows that LUN 0 from the SAN has been attached to the host as the `/dev/sdb` device.

Verification steps

- Use the `fcoeadm -i` command to display information about all active FCoE interfaces:

  ```sh
 # fcoeadm -i
 Description: BCM57840 NetXtreme II 10 Gigabit Ethernet
  ```
Revision: 11
Manufacturer: Broadcom Inc. and subsidiaries
Serial Number: 000AG703A9B7

Driver: bnx2x Unknown
Number of Ports: 1

Symbolic Name: bnx2fc (QLogic BCM57840) v2.12.13 over enp1s0.200
OS Device Name: host11
Node Name: 0x2000000af70ae935
Port Name: 0x2001000af70ae935
Fabric Name: 0x20c8002a6aa7e701
Speed: 10 Gbit
Supported Speed: 1 Gbit, 10 Gbit
MaxFrameSize: 2048 bytes
FC-ID (Port ID): 0xba02c0
State: Online

Additional resources

- For further details about the fcoeadm utility, see the fcoeadm(8) man page.
- For details about how to mount storage connected through a software FCoE when the system boots, see the /usr/share/doc/fcoe-utils/README file.

21.3. ADDITIONAL RESOURCES

- For details about using Fibre Channel devices, see the Using Fibre Channel devices section in the Managing storage devices guide.
CHAPTER 22. CONFIGURING A VPN CONNECTION

This section explains how to configure a virtual private network (VPN) connection.

A VPN is a way of connecting to a local network over the Internet. **IPsec** provided by **Libreswan** is the preferred method for creating a VPN. **Libreswan** is an user-space **IPsec** implementation for VPN. A VPN enables the communication between your LAN, and another, remote LAN by setting up a tunnel across an intermediate network such as the Internet. For security reasons, a VPN tunnel always uses authentication and encryption. For cryptographic operations, **Libreswan** uses the **NSS** library.

22.1. CONFIGURING A VPN CONNECTION WITH CONTROL-CENTER

This procedure describes how to configure a VPN connection using **control-center**.

**Prerequisites**

- The **NetworkManager-libreswan-gnome** package is installed.

**Procedure**

1. Press the **Super** key, type **Settings**, and press **Enter** to open the **control-center** application.

2. Select the **Network** entry on the left.

3. Click the + icon.

4. Select **VPN**.

5. Select the **Identity** menu entry to see the basic configuration options:

   **General**

   - **Gateway** – The name or IP address of the remote VPN gateway.

   **Authentication**

   **Type**

   - **IKEv2 (Certificate)** – client is authenticated by certificate. It is more secure (default).

   - **IKEv1 (XAUTH)** – client is authenticated by user name and password, or a pre-shared key (PSK).

   The following configuration settings are available under the **Advanced** section:
Figure 22.1. Advanced options of a VPN connection

![Advanced options of a VPN connection](image)

**Identification**
- Domain: [Blank]

**Security**
- Phase 1 Algorithms: [Blank]
- Phase 2 Algorithms: [Blank]
- Disable PFS
- Phase 1 Lifetime: [Blank]
- Phase 2 Lifetime: [Blank]
- Disable rekeying

**Connectivity**
- Remote Network: [Blank]
- Narrowing
- Enable fragmentation: yes
- Enable MOBIKE: no

[Apply button]
WARNING

When configuring an IPsec-based VPN connection using the `gnome-control-center` application, the Advanced dialog displays the configuration, but it does not allow any changes. As a consequence, users cannot change any advanced IPsec options. Use the `nm-connection-editor` or `nmcli` tools instead to perform configuration of the advanced properties.

Identification

- **Domain** – If required, enter the Domain Name.

Security

- **Phase1 Algorithms** – corresponds to the `ike` Libreswan parameter – enter the algorithms to be used to authenticate and set up an encrypted channel.

- **Phase2 Algorithms** – corresponds to the `esp` Libreswan parameter – enter the algorithms to be used for the IPsec negotiations.
  
  Check the **Disable PFS** field to turn off Perfect Forward Secrecy (PFS) to ensure compatibility with old servers that do not support PFS.

- **Phase1 Lifetime** – corresponds to the `ikelifetime` Libreswan parameter – how long the key used to encrypt the traffic will be valid.

- **Phase2 Lifetime** – corresponds to the `salifetime` Libreswan parameter – how long a particular instance of a connection should last before expiring.

  Note that the encryption key should be changed from time to time for security reasons.

- **Remote network** – corresponds to the `rightsubnet` Libreswan parameter – the destination private remote network that should be reached through the VPN.

  Check the **narrowing** field to enable narrowing. Note that it is only effective in IKEv2 negotiation.

- **Enable fragmentation** – corresponds to the `fragmentation` Libreswan parameter – whether or not to allow IKE fragmentation. Valid values are `yes` (default) or `no`.

- **Enable Mobike** – corresponds to the `mobike` Libreswan parameter – whether to allow Mobility and Multihoming Protocol (MOBIKE, RFC 4555) to enable a connection to migrate its endpoint without needing to restart the connection from scratch. This is used on mobile devices that switch between wired, wireless, or mobile data connections. The values are `no` (default) or `yes`.

6. Select the IPv4 menu entry:

   **IPv4 Method**

   - **Automatic (DHCP)** – Choose this option if the network you are connecting to uses Router Advertisements (RA) or a DHCP server to assign dynamic IP addresses.

   - **Link-Local Only** – Choose this option if the network you are connecting to does not have a DHCP server and you do not want to assign IP addresses manually. Random addresses will be assigned as per RFC 3927 with prefix 169.254/16.
- **Manual** – Choose this option if you want to assign IP addresses manually.
- **Disable** – IPv4 is disabled for this connection.

**DNS**

In the DNS section, when **Automatic** is ON, switch it to OFF to enter the IP address of a DNS server you want to use separating the IPs by comma.

**Routes**

Note that in the Routes section, when **Automatic** is ON, routes from DHCP are used, but you can also add additional static routes. When OFF, only static routes are used.

- **Address** – Enter the IP address of a remote network or host.
- **Netmask** – The netmask or prefix length of the IP address entered above.
- **Gateway** – The IP address of the gateway leading to the remote network or host entered above.
- **Metric** – A network cost, a preference value to give to this route. Lower values will be preferred over higher values.

**Use this connection only for resources on its network**

Select this check box to prevent the connection from becoming the default route. Selecting this option means that only traffic specifically destined for routes learned automatically over the connection or entered here manually is routed over the connection.

7. To configure IPv6 settings in a VPN connection, select the IPv6 menu entry:

**IPv6 Method**

- **Automatic** – Choose this option to use IPv6 Stateless Address AutoConfiguration (SLAAC) to create an automatic, stateless configuration based on the hardware address and Router Advertisements (RA).
- **Automatic, DHCP only** – Choose this option to not use RA, but request information from DHCPv6 directly to create a stateful configuration.
- **Link-Local Only** – Choose this option if the network you are connecting to does not have a DHCP server and you do not want to assign IP addresses manually. Random addresses will be assigned as per RFC 4862 with prefix FE80::0.
- **Manual** – Choose this option if you want to assign IP addresses manually.
- **Disable** – IPv6 is disabled for this connection.

**Note that DNS, Routes, Use this connection only for resources on its network** are common to IPv4 settings.

8. Once you have finished editing the VPN connection, click the **Add** button to customize the configuration or the **Apply** button to save it for the existing one.

9. Switch the profile to **ON** to active the VPN connection.

**Additional resources**

- For more details on the supported Libreswan parameters, see the *nm-settings-libreswan*(5) man page.
22.2. CONFIGURING A VPN CONNECTION USING NM-CONNECTION-EDITOR

This procedure describes how to configure a VPN connection using `nm-connection-editor`.

Prerequisites

- The `NetworkManager-libreswan-gnome` package is installed.
- If you configure an Internet Key Exchange version 2 (IKEv2) connection:
  - The certificate is imported into the IPsec network security services (NSS) database.
  - The nickname of the certificate in the NSS database is known.

Procedure

1. Open a terminal, and enter:
   
   ```
 $ nm-connection-editor
   ```

2. Click the + button to add a new connection.

3. Select the IPsec based VPN connection type, and click **Create**.

4. On the **VPN** tab:
   
   a. Enter the host name or IP address of the VPN gateway into the **Gateway** field, and select an authentication type. Based on the authentication type, you must enter different additional information:

      - **IKEv2 (Certificate)** authenticates the client by using a certificate, which is more secure. This setting requires the nickname of the certificate in the IPsec NSS database
      - **IKEv1 (XAUTH)** authenticates the user by using a user name and password (pre-shared key). This setting requires that you enter the following values:
        - User name
        - Password
        - Group name
        - Secret

   b. If the remote server specifies a local identifier for the IKE exchange, enter the exact string in the **Remote ID** field. In the remote server runs Libreswan, this value is set in the server’s `leftid` parameter.
c. Optionally, configure additional settings by clicking the Advanced button. You can configure the following settings:

- Identification
  - **Domain** – If required, enter the domain name.

- Security
  - **Phase 1 Algorithms** corresponds to the `ike` Libreswan parameter. Enter the algorithms to be used to authenticate and set up an encrypted channel.
  - **Phase 2 Algorithms** corresponds to the `esp` Libreswan parameter. Enter the algorithms to be used for the IPsec negotiations. Check the Disable PFS field to turn off Perfect Forward Secrecy (PFS) to ensure compatibility with old servers that do not support PFS.
  - **Phase 1 Lifetime** corresponds to the `ikelifetime` Libreswan parameter. This parameter defines how long the key used to encrypt the traffic is valid.
  - **Phase 2 Lifetime** corresponds to the `salifetime` Libreswan parameter. This parameter defines how long a security association is valid.

- Connectivity
- **Remote network** corresponds to the `rightsubnet` Libreswan parameter and defines the destination private remote network that should be reached through the VPN. Check the **narrowing** field to enable narrowing. Note that it is only effective in the IKEv2 negotiation.

- **Enable fragmentation** corresponds to the `fragmentation` Libreswan parameter and defines whether or not to allow IKE fragmentation. Valid values are **yes** (default) or **no**.

- **Enable Mobike** corresponds to the `mobike` Libreswan parameter. The parameter defines whether to allow Mobility and Multihoming Protocol (MOBIKE) (RFC 4555) to enable a connection to migrate its endpoint without needing to restart the connection from scratch. This is used on mobile devices that switch between wired, wireless or mobile data connections. The values are **no** (default) or **yes**.

5. On the **IPv4 Settings** tab, select the IP assignment method and, optionally, set additional static addresses, DNS servers, search domains, and routes.

6. Save the connection.

7. Close **nm-connection-editor**.

**NOTE**

When you add a new connection by clicking the ++ button, **NetworkManager** creates a new configuration file for that connection and then opens the same dialog that is used for editing an existing connection. The difference between these dialogs is that an existing connection profile has a **Details** menu entry.

**Additional resources**
For further details on the supported IPsec parameters, see the `nm-settings-libreswan(5)` man page.

### 22.3. RELATED INFORMATION

- For more information on configuring VPNs using IPsec, see the Configuring a VPN with IPsec chapter in the Securing networks document.
CHAPTER 23. CREATING A DUMMY INTERFACE

As a Red Hat Enterprise Linux user, you can create and use dummy network interfaces for debugging and testing purposes. A dummy interface provides a device to route packets without actually transmitting them. It enables you to create additional loopback-like devices managed by NetworkManager and makes an inactive SLIP (Serial Line Internet Protocol) address look like a real address for local programs.

23.1. CREATING A DUMMY INTERFACE WITH BOTH AN IPV4 AND IPV6 ADDRESS USING NMCLI

You can create a dummy interface with various settings. This procedure describes how to create a dummy interface with both an IPv4 and IPv6 address. After creating the dummy interface, NetworkManager automatically assigns it to the default public firewall zone.

NOTE

To configure a dummy interface without IPv4 or IPv6 address, set the ipv4.method and ipv6.method parameters to disabled. Otherwise, IP auto-configuration fails, and NetworkManager deactivates the connection and removes the dummy device.

Procedure

1. To create a dummy interface named dummy0 with static IPv4 and IPv6 addresses, enter:

   ```
 # nmcli connection add type dummy ifname dummy0 ipv4.method manual ipv4.addresses 192.0.2.1/24 ipv6.method manual ipv6.addresses 2001:db8:2::1/64
   ```

2. Optional: To view the dummy interface, enter:

   ```
 # nmcli connection show
 NAME UUID TYPE DEVICE
 enp1s0 db1060e9-c164-476f-b2b5-caec62dc1b05 ethernet ens3
 dummy-dummy0 aaf6eb56-73e5-4746-9037-ee42ca8a65 dummy dummy0
   ```

Additional resources

- The nm-settings(5) man page
CHAPTER 24. CONFIGURING IP TUNNELS

Similar to a VPN, an IP tunnel directly connects two networks over a third network, such as the Internet. However, not all tunnel protocols support encryption.

The routers in both networks that establish the tunnel requires at least two interfaces:

- One interface that is connected to the local network
- One interface that is connected to the network through which the tunnel is established.

To establish the tunnel, you create a virtual interface on both routers with an IP address from the remote subnet.

NetworkManager supports the following IP tunnels:

- Generic Routing Encapsulation (GRE)
- Generic Routing Encapsulation over IPv6 (IP6GRE)
- Generic Routing Encapsulation Terminal Access Point (GRETAP)
- Generic Routing Encapsulation Terminal Access Point over IPv6 (IP6GRETAP)
- IPv4 over IPv4 (IPIP)
- IPv4 over IPv6 (IP6P)
- IPv6 over IPv6 (IP6IP6)
- Simple Internet Transition (SIT)

Depending on the type, these tunnels act either on layer 2 or 3 of the Open Systems Interconnection (OSI) model.

24.1. CONFIGURING AN IPIP TUNNEL USING NMCLI TO ENCAPSULATE IPv4 TRAFFIC IN IPv4 PACKETS

An IP over IP (IPIP) tunnel operates on OSI layer 3 and encapsulates IPv4 traffic in IPv4 packets as described in RFC 2003.

**IMPORTANT**

Data sent through an IPIP tunnel is not encrypted. For security reasons, use the tunnel only for data that is already encrypted, for example, by other protocols, such as HTTPS.

Note that IPIP tunnels support only unicast packets. If you require an IPv4 tunnel that supports multicast, see Section 24.2, “Configuring a GRE tunnel using nmcli to encapsulate layer-3 traffic in IPv4 packets”.

This procedure describes how to create an IPIP tunnel between two RHEL routers to connect two internal subnets over the Internet as shown in the following diagram:
Prerequisites

- Each RHEL router has a network interface that is connected to its local subnet.
- Each RHEL router has a network interface that is connected to the Internet.
- The traffic you want to send through the tunnel is IPv4 unicast.

Procedure

1. On the RHEL router in network A:
   a. Create an IPIP tunnel interface named `tun0`:
      ```
 # nmcli connection add type ip-tunnel ip-tunnel.mode ipip con-name tun0 ifname tun0 remote 198.51.100.5 local 203.0.113.10
      ```
      The `remote` and `local` parameters set the public IP addresses of the remote and the local routers.
   b. Set the IPv4 address to the `tun0` device:
      ```
 # nmcli connection modify tun0 ipv4.addresses '10.0.1.1/30'
      ```
      Note that a /30 subnet with two usable IP addresses is sufficient for the tunnel.
   c. Configure the `tun0` connection to use a manual IPv4 configuration:
      ```
 # nmcli connection modify tun0 ipv4.method manual
      ```
   d. Add a static route that routes traffic to the `172.16.0.0/24` network to the tunnel IP on router B:
      ```
 # nmcli connection modify tun0 +ipv4.routes "172.16.0.0/24 10.0.1.2"
      ```
   e. Enable the `tun0` connection.
# nmcli connection up tun0

f. Enable packet forwarding:

```
echo "net.ipv4.ip_forward=1" > /etc/sysctl.d/95-IPv4-forwarding.conf
sysctl -p /etc/sysctl.d/95-IPv4-forwarding.conf
```

2. On the RHEL router in network B:

a. Create an IPIP tunnel interface named **tun0**:

```
nmcli connection add type ip-tunnel ip-tunnel.mode ipip con-name tun0 ifname tun0 remote 203.0.113.10 local 198.51.100.5
```

The `remote` and `local` parameters set the public IP addresses of the remote and local routers.

b. Set the IPv4 address to the **tun0** device:

```
nmcli connection modify tun0 ipv4.addresses '10.0.1.2/30'
```

c. Configure the **tun0** connection to use a manual IPv4 configuration:

```
nmcli connection modify tun0 ipv4.method manual
```

d. Add a static route that routes traffic to the **192.0.2.0/24** network to the tunnel IP on router A:

```
nmcli connection modify tun0 +ipv4.routes "192.0.2.0/24 10.0.1.1"
```

e. Enable the **tun0** connection.

```
nmcli connection up tun0
```

f. Enable packet forwarding:

```
echo "net.ipv4.ip_forward=1" > /etc/sysctl.d/95-IPv4-forwarding.conf
sysctl -p /etc/sysctl.d/95-IPv4-forwarding.conf
```

**Verification steps**

1. From each RHEL router, ping the IP address of the internal interface of the other router:

   a. On Router A, ping **172.16.0.1**:

```
ping 172.16.0.1
```

   b. On Router B, ping **192.0.2.1**:

```
ping 192.0.2.1
```

**Additional resources**
For further details about using `nmcli`, see the `nmcli` man page.

For details about the tunnel settings you can set with `nmcli`, see the `ip-tunnel settings` section in the `nm-settings(5)` man page.

### 24.2. Configuring a GRE Tunnel Using NMCLI to Encapsulate Layer-3 Traffic in IPv4 Packets

A Generic Routing Encapsulation (GRE) tunnel encapsulates layer-3 traffic in IPv4 packets as described in RFC 2784. A GRE tunnel can encapsulate any layer 3 protocol with a valid Ethernet type.

**IMPORTANT**

Data sent through a GRE tunnel is not encrypted. For security reasons, use the tunnel only for data that is already encrypted, for example, by other protocols, such as HTTPS.

This procedure describes how to create a GRE tunnel between two RHEL routers to connect two internal subnets over the Internet as shown in the following diagram:

**NOTE**

The `gre0` device name is reserved. Use `gre1` or a different name for the device.

**Prerequisites**

- Each RHEL router has a network interface that is connected to its local subnet.
- Each RHEL router has a network interface that is connected to the Internet.

**Procedure**

1. On the RHEL router in network A:
   a. Create a GRE tunnel interface named `gre1`:
# nmcli connection add type ip-tunnel ip-tunnel.mode gre con-name gre1 ifname gre1 remote 198.51.100.5 local 203.0.113.10

The `remote` and `local` parameters set the public IP addresses of the remote and the local routers.

b. Set the IPv4 address to the `gre1` device:

```bash
nmcli connection modify gre1 ipv4.addresses '10.0.1.1/30'
```

Note that a `/30` subnet with two usable IP addresses is sufficient for the tunnel.

c. Configure the `gre1` connection to use a manual IPv4 configuration:

```bash
nmcli connection modify gre1 ipv4.method manual
```

d. Add a static route that routes traffic to the `172.16.0.0/24` network to the tunnel IP on router B:

```bash
nmcli connection modify tun0 +ipv4.routes "172.16.0.0/24 10.0.1.2"
```

e. Enable the `gre1` connection.

```bash
nmcli connection up gre1
```

f. Enable packet forwarding:

```bash
echo "net.ipv4.ip_forward=1" > /etc/sysctl.d/95-IPv4-forwarding.conf
sysctl -p /etc/sysctl.d/95-IPv4-forwarding.conf
```

2. On the RHEL router in network B:

a. Create a GRE tunnel interface named `gre1`:

```bash
nmcli connection add type ip-tunnel ip-tunnel.mode ipip con-name gre1 ifname gre1 remote 203.0.113.10 local 198.51.100.5
```

The `remote` and `local` parameters sets the public IP addresses of the remote and the local routers.

b. Set the IPv4 address to the `gre1` device:

```bash
nmcli connection modify gre1 ipv4.addresses '10.0.1.2/30'
```

c. Configure the `gre1` connection to use a manual IPv4 configuration:

```bash
nmcli connection modify gre1 ipv4.method manual
```

d. Add a static route that routes traffic to the `192.0.2.0/24` network to the tunnel IP on router A:

```bash
nmcli connection modify tun0 +ipv4.routes "192.0.2.0/24 10.0.1.1"
```
e. Enable the **gre1** connection.

    # nmcli connection up gre1

f. Enable packet forwarding:

    # echo "net.ipv4.ip_forward=1" > /etc/sysctl.d/95-IPv4-forwarding.conf
    # sysctl -p /etc/sysctl.d/95-IPv4-forwarding.conf

### Verification steps

1. From each RHEL router, ping the IP address of the internal interface of the other router:
   
   a. On Router A, ping **172.16.0.1**:

      # ping 172.16.0.1

   
   b. On Router B, ping **192.0.2.1**:

      # ping 192.0.2.1

### Additional resources

- For further details about using **nmcli**, see the **nmcli** man page.
- For details about the tunnel settings you can set with **nmcli**, see the **ip-tunnel settings** section in the **nm-settings(5)** man page.

### 24.3. CONFIGURING A GRETAP TUNNEL TO TRANSFER ETHERNET FRAMES OVER IPv4

A Generic Routing Encapsulation Terminal Access Point (GRETAP) tunnel operates on OSI level 2 and encapsulates Ethernet traffic in IPv4 packets as described in **RFC 2784**.

**IMPORTANT**

Data sent through a GRETAP tunnel is not encrypted. For security reasons, establish the tunnel over a VPN or a different encrypted connection.

This procedure describes how to create a GRETAP tunnel between two RHEL routers to connect two networks using a bridge as shown in the following diagram:
NOTE

The `gretap0` device name is reserved. Use `gretap1` or a different name for the device.

Prerequisites

- Each RHEL router has a network interface that is connected to its local network, and the interface has no IP configuration assigned.
- Each RHEL router has a network interface that is connected to the Internet.

Procedure

1. On the RHEL router in network A:
   a. Create a bridge interface named `bridge0`:
      
      ```
 # nmcli connection add type bridge con-name bridge0 ifname bridge0
      ```
   
   b. Configure the IP settings of the bridge:
      
      ```
 # nmcli connection modify bridge0 ipv4.addresses '192.0.2.1/24'
 # nmcli connection modify bridge0 ipv4.method manual
      ```
   
   c. Add a new connection profile for the interface that is connected to local network to the bridge:
      
      ```
 # nmcli connection add type ethernet slave-type bridge con-name bridge0-port1 ifname enp1s0 master bridge0
      ```
   
   d. Add a new connection profile for the GRETAP tunnel interface to the bridge:
# nmcli connection add type ip-tunnel ip-tunnel.mode gretap slave-type bridge
con-name bridge0-port2 ifname gretap1 remote 198.51.100.5 local 203.0.113.10
master bridge0

The `remote` and `local` parameters set the public IP addresses of the remote and the local routers.

e. Optional: Disable the Spanning Tree Protocol (STP) if you do not need it:

```
nmcli connection modify bridge0 bridge.stp no
```

By default, STP is enabled and causes a delay before you can use the connection.

f. Configure that activating the `bridge0` connection automatically activates the slaves of the bridge:

```
nmcli connection modify bridge0 connection.autoconnect-slaves 1
```

g. Active the `bridge0` connection:

```
nmcli connection up bridge0
```

2. On the RHEL router in network B:

a. Create a bridge interface named `bridge0`:

```
nmcli connection add type bridge con-name bridge0 ifname bridge0
```

b. Configure the IP settings of the bridge:

```
nmcli connection modify bridge0 ipv4.addresses '192.0.2.2/24'
nmcli connection modify bridge0 ipv4.method manual
```

c. Add a new connection profile for the interface that is connected to local network to the bridge:

```
nmcli connection add type ethernet slave-type bridge con-name bridge0-port1
ifname enp1s0 master bridge0
```

d. Add a new connection profile for the GRETAP tunnel interface to the bridge:

```
nmcli connection add type ip-tunnel ip-tunnel.mode gretap slave-type bridge
con-name bridge0-port2 ifname gretap1 remote 203.0.113.10 local 198.51.100.5
master bridge0
```

The `remote` and `local` parameters set the public IP addresses of the remote and the local routers.

e. Optional: Disable the Spanning Tree Protocol (STP) if you do not need it:

```
nmcli connection modify bridge0 bridge.stp no
```

Red Hat Enterprise Linux 8 Configuring and managing networking

154
f. Configure that activating the `bridge0` connection automatically activates the slaves of the bridge:

```
nmcli connection modify bridge0 connection.autoconnect-slaves 1
```

g. Active the `bridge0` connection:

```
nmcli connection up bridge0
```

**Verification steps**

1. On both routers, verify that the `enp1s0` and `gretap1` connections are connected and that the `CONNECTION` column displays the connection name of the slave:

```
nmcli device
nmcli device
DEVICE TYPE STATE CONNECTION
... bridge0 bridge connected bridge0
 enp1s0 ethernet connected bridge0-port1
 gretap1 iptunnel connected bridge0-port2
```

2. From each RHEL router, ping the IP address of the internal interface of the other router:
   a. On Router A, ping `192.0.2.2`:

```
ping 192.0.2.2
```
   b. On Router B, ping `192.0.2.1`:

```
ping 192.0.2.1
```

**Additional resources**

- For further details about using `nmcli`, see the `nmcli` man page.
- For details about the tunnel settings you can set with `nmcli`, see the `ip-tunnel settings` section in the `nm-settings(5)` man page.

**24.4. ADDITIONAL RESOURCES**

- For a list of tunnel interfaces and on temporarily configuring tunnels using the `ip` utility, see the `ip-link(8)` man page.
CHAPTER 25. GETTING STARTED WITH MULTIPATH TCP

IMPORTANT

The Multipath TCP is provided as a Technology Preview only. Technology Preview features are not supported with Red Hat production Service Level Agreements (SLAs), might not be functionally complete, and Red Hat does not recommend using them for production. These previews provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

See Technology Preview Features Support Scope on the Red Hat Customer Portal for information about the support scope for Technology Preview features.

Multipath TCP (MPTCP) is an extension to the Transmission Control Protocol (TCP). Using Internet Protocol (IP), a host can send packets to a destination. TCP ensures reliable delivery of the data through the Internet and automatically adjusts its bandwidth in response to network load.

The following are the advantages of MPTCP:

- It enables TCP for use on devices equipped with two or more network interfaces.
- It allows users to simultaneously use different network interfaces or switch seamlessly from one connection to another.
- It improves resource usage within the network and resilience to network failure.

This section describes how to:

- create a new MPTCP connection,
- use `iproute2` to add new subflows and IP addresses to the MPTCP connections, and
- disable MPTCP in the kernel to avoid applications using MPTCP connections.

25.1. PREPARING RHEL TO ENABLE MPTCP SUPPORT

Few applications natively support MPTCP. Mostly, the connection and stream-oriented sockets request TCP protocol in the `socket()` call to the operating system. You can enable MPTCP support in RHEL using the `sysctl` tool for natively MPTCP-supported programs. The MPTCP implementation is also designed to allow usage of MPTCP protocol for applications requesting `IPPROTO_TCP` call to the kernel.

This procedure describes how to enable MPTCP support and prepare RHEL for enabling MPTCP system-wide using a SystemTap script.

Prerequisites

The following packages are installed:

- `kernel-debuginfo`
- `kernel-debuginfo-common`
- `systemtap`
- `systemtap-devel`
Procedure

1. Enable MPTCP sockets in the kernel:

   # echo "net.mptcp.enabled=1" > /etc/sysctl.d/90-enable-MPTCP.conf
   # sysctl -p /etc/sysctl.d/90-enable-MPTCP.conf

2. Create a `mptcp.stap` file with the following content:

   ```
 #!/usr/bin/env stap

 %{
 #include <linux/in.h>
 #include <linux/ip.h>
 %}

 /* according to [1], RSI contains 'type' and RDX
 * contains 'protocol'.
 * [1] https://github.com/torvalds/linux/blob/master/arch/x86/entry/entry_64.S#L79
 */

 function mptcpify() %{
 if (CONTEXT->kregs->si == SOCK_STREAM &&
 (CONTEXT->kregs->dx == IPPROTO_TCP ||
 CONTEXT->kregs->dx == 0)) {
 CONTEXT->kregs->dx = IPPROTO_MPTCP;
 STAP_RETVALUE = 1;
 } else {
 STAP_RETVALUE = 0;
 }
 %}

 probe kernel.function("__sys_socket") {
 if (mptcpify() == 1) {
 printf("command %16s mptcpified\n", execname());
 }
 }
   ```

3. Replace the TCP socket with MPTCP:

   # stap -vg mptcp.stap

   Note: Use Ctrl+C to convert the connection back to TCP from MPTCP.

4. Start a server that listens to TCP port 4321:

   # ncat -4 -l 4321

5. Connect to the server and exchange traffic. For example, the client here writes “Hello world” to the server 5 times, then it terminates the connection.

   # ncat -4 192.0.2.1 4321
   Hello world 1
Verification steps

1. Verify that MPTCP is enabled in the kernel:

   ```bash
 # sysctl -a | grep mptcp.enabled
 net.mptcp.enabled = 1
   ```

2. After the `mptcp.stap` script installs the kernel probe, the following warnings appear in the kernel `dmesg` output

   ```bash
 # dmesg
 ...
 [1752.694072] Kprobes globally unoptimized
 [1752.730147] stap_1ade3b3356f3e68765322e26dec00c3d_1476: module_layout: kernel tainted.
 [1752.732162] Disabling lock debugging due to kernel taint
 [1752.733468] stap_1ade3b3356f3e68765322e26dec00c3d_1476: loading out-of-tree module taints kernel.
 [1752.737219] stap_1ade3b3356f3e68765322e26dec00c3d_1476: module verification failed: signature and/or required key missing - tainting kernel
   ```

3. After the connection is established, verify the `ss` output to see the subflow-specific status:

   ```bash
 # ss -nti `(dport :4321)' dst 192.0.2.1
 State Recv-Q Send-Q Local Address:Port Peer Address:Port Process
 ESTAB 0 0 192.0.2.2:60874 192.0.2.1:4321
 cubic wscale:7,7 rto:201 rtt:0.042/0.017 mss:1448 pmtu:1500 rcvmss:536 advmss:1448
cwnd:10 bytes_sent:64 bytes_scked:65 segs_out:6 segs_in:5 data_segs_out:4 send
275895238bps lastsnd:57 lastrcv:3054 lastack:57 pacing_rate 540361516$bps
delivery_rate 413714280bps delivered:5 rcv_space:29200 rcv_ssthresh:29200
minrtt:0.009
tcp-ulp-mptcp flags:Mmec token:0000(id:0)/4bffe73d(id:0) seq:c11f40d65337463 sfseq:1
ssnoff:f7455705 maplen:0
   ```

4. Capture traffic using `tcpdump` and check for MPTCP sub-option usage:

   ```bash
 # tcpdump -nni interface tcp port 4321
 client Out IP 192.0.2.2.60802 > 192.0.2.1.4321: Flags [S], seq 3420255622, win 29200,
options [mss 1460,sackOK,TS val 411 4539945 ecr 0,nop,wscale 7,mptcp capable v1],
length 0
client In IP 192.0.2.1.4321 > 192.0.2.2.60802: Flags [S], seq 2613915374, ack 3420255623,
win 28960, options [mss 1460 sackOK,TS val 3241564233 ecr 4114539945,nop,wscale
7,mptcp capable v1 {0xab68dc721aae7f6a}], length 0
client Out IP 192.0.2.2.60802 > 192.0.2.1.4321: Flags [,], ack 1, win 229, options [nop,nop,TS
val 4114539945 ecr 3241564 233,mptcp capable v1
{0xccc58d5632a32d13,0xb6f8dc721aae7f64}], length 0
client Out IP 192.0.2.2.60802 > 192.0.2.1.4321: Flags [P.], seq 1:17, ack 1, win 229, options
```
The `tcpdump` package is required to run this command.

**Additional resources**
- For more information see, [How can I download or install debuginfo packages for RHEL systems?](https://example.com) article.
- For more information on `IPPROTO_TCP`, refer to the `tcp(7)` man pages.

### 25.2. USING IPROUTE2 TO NOTIFY APPLICATIONS ABOUT MULTIPLE AVAILABLE PATHS

By default, the MPTCP socket starts with a single subflow but you can add new subflows and IP addresses to the connection once you create it for the first time. This procedure describes how to update per connection limits for subflows and IP addresses, and add new IP addresses (endpoints) to the MPTCP connection.

Note that MPTCP does not yet support mixed IPv6 and IPv4 endpoints for the same socket. Use endpoints belonging to the same address family.

**Procedure**

1. Set the per connection and IP address limits to 1 on the server:
   ```bash
 # ip mptcp limits set subflow 1
 ``
2. Set the per connection and IP address limits to 1 on the client:
   ```bash
   # ip mptcp limits set subflow 1 add_addr_accepted 1
   ``
3. Add IP address `198.51.100.1` as a new MPTCP endpoint on the server:
   ```bash
 # ip mptcp endpoint add 198.51.100.1 dev enp1s0 signal
 ``

IMPORTANT

You can set the following values for flags to `subflow, backup, signal`. Setting the flag to:

- `signal`, sends an `ADD_ADDR` packet after the three-way-handshake is completed
- `subflow`, sends an `MP_JOIN SYN` by the client
- `backup`, sets the endpoint as a backup address

4. Start the server binding to 0.0.0.0 with the `-k` argument to prevent `[systemitem]`ncat` from closing the listening socket after accepting the first connection and making the server reject `MP_JOIN SYN` done by the client.
Start the client and connect to the server to exchange traffic. For example, the client here writes “Hello world” to the server 5 times, then it terminates the connection.

```
# ncat -4 0.0.0.0 -k -l 4321
```

Press `Ctrl+D` to quit.

Verification steps

1. Verify the connection and IP address limit:
   ```
   # ip mptcp limit show
   ```

2. Verify the newly added endpoint:
   ```
   # ip mptcp endpoint show
   ```

3. Capture traffic using `tcpdump` and check for MPTCP sub-option usage:
   ```
   # tcpdump -tnni interface tcp port 4321
   ```

The `tcpdump` package is required to run this command.
25.3. DISABLING MULTIPATH TCP IN THE KERNEL

This procedure describes how to disable the MPTCP option in the kernel.

Procedure

- Disable the `mptcp.enabled` option.

  ```
  # echo "net.mptcp.enabled=0" > /etc/sysctl.d/90-enable-MPTCP.conf
  # sysctl -p /etc/sysctl.d/90-enable-MPTCP.conf
  ```

Verification steps

- Verify whether the `mptcp.enabled` is disabled in the kernel.

  ```
  # sysctl -a | grep mptcp.enabled
  net.mptcp.enabled = 0
  ```
CHAPTER 26. CONFIGURING THE ORDER OF DNS SERVERS

Most applications use the `getaddrinfo()` function of the `glibc` library to resolve DNS requests. By default, `glibc` sends all DNS requests to the first DNS server specified in the `/etc/resolv.conf` file. If this server does not reply, Red Hat Enterprise Linux uses the next server in this file.

This section describes how to customize the order of DNS servers.

26.1. HOW NETWORKMANAGER ORDERS DNS SERVERS IN /ETC/RESOLV.CONF

NetworkManager orders DNS servers in the `/etc/resolv.conf` file based on the following rules:

- If only one connection profile exists, NetworkManager uses the order of IPv4 and IPv6 DNS server specified in that connection.

- If multiple connection profiles are activated, NetworkManager orders DNS servers based on a DNS priority value. If you set DNS priorities, the behavior of NetworkManager depends on the value set in the `dns` parameter. You can set this parameter in the `[main]` section in the `/etc/NetworkManager/NetworkManager.conf` file:
 - `dns=default` or if the `dns` parameter is not set:
 NetworkManager orders the DNS servers from different connections based on the `ipv4.dns-priority` and `ipv6.dns-priority` parameter in each connection.
 If you set no value or you set `ipv4.dns-priority` and `ipv6.dns-priority` to 0, NetworkManager uses the global default value. See the section called “Default values of DNS priority parameters”.
 - `dns=dnsmasq` or `dns=systemd-resolved`:
 When you use one of these settings, NetworkManager sets either `127.0.0.1` for `dnsmasq` or `127.0.0.53` as `nameserver` entry in the `/etc/resolv.conf` file.
 Both the `dnsmasq` and `systemd-resolved` services forward queries for the search domain set in a NetworkManager connection to the DNS server specified in that connection, and forwards queries to other domains to the connection with the default route. When multiple connections have the same search domain set, `dnsmasq` and `systemd-resolved` forward queries for this domain to the DNS server set in the connection with the lowest priority value.

Default values of DNS priority parameters

NetworkManager uses the following default values for connections:

- **50** for VPN connections
- **100** for other connections

Valid DNS priority values:

You can set both the global default and connection-specific `ipv4.dns-priority` and `ipv6.dns-priority` parameters to a value between -2147483647 and 2147483647.

- A lower value has a higher priority.
- Negative values have the special effect of excluding other configurations with a greater value. For example, if at least one connection with a negative priority value exists, NetworkManager uses only the DNS servers specified in the connection profile with the lowest priority.
If multiple connections have the same DNS priority, NetworkManager prioritizes the DNS in the following order:

- VPN connections
- Connection with an active default route. The active default route is the default route the lowest metric.

Additional resources

- For further details about how NetworkManager orders DNS server entries in the /etc/resolv.conf file, see the dns-priority parameter description in the ipv4 and ipv6 sections in the nm-settings(5) man page.
- For details about using systemd-resolved to use different DNS servers for different domains, see Chapter 33, Using different DNS servers for different domains.

26.2. SETTING A NETWORKMANAGER-WIDE DEFAULT DNS SERVER PRIORITY VALUE

NetworkManager uses the following DNS priority default values for connections:

- **50** for VPN connections
- **100** for other connections

This section describes how to override these system-wide defaults with a custom default value for IPv4 and IPv6 connections.

Procedure

1. Edit the /etc/NetworkManager/NetworkManager.conf file:
 a. Add the [connection] section, if it does not exist:

   ```
   [connection]
   ```

 b. Add the custom default values to the [connection] section. For example, to set the new default for both IPv4 and IPv6 to **200**, add:

   ```
   ipv4.dns-priority=200
   ipv6.dns-priority=200
   ```

 You can set the parameters to a value between **-2147483647** and **2147483647**. Note that setting the parameters to **0** enables the built-in defaults (50 for VPN connections and 100 for other connections).

2. Reload the NetworkManager service:

   ```
   # systemctl reload NetworkManager
   ```

Additional resources
26.3. SETTING THE DNS PRIORITY OF A NETWORKMANAGER CONNECTION

This section describes how to define the order of DNS servers when NetworkManager creates or updates the /etc/resolv.conf file.

Note that setting DNS priorities makes only sense if you have multiple connections with different DNS servers configured. If you have only one connection with multiple DNS servers configured, manually set the DNS servers in the preferred order in the connection profile.

Prerequisites

- The system has multiple NetworkManager connections configured.
- The system either has no dns parameter set in the /etc/NetworkManager/NetworkManager.conf file or the parameter is set to default.

Procedure

1. Optionally, display the available connections:

   ```bash
   # nmcli connection show
   NAME          UUID                                  TYPE      DEVICE
   Example_con_1 d17ee488-4665-4de2-b28a-48befab0cd43  ethernet  enp1s0
   Example_con_2 916e4f67-7145-3ffa-9f7b-e7cada8f6bf7  ethernet  enp7s0
   ...
   ```

2. Set the ipv4.dns-priority and ipv6.dns-priority parameters. For example, to set both parameters to 10 for the Example_con_1 connection:

   ```bash
   # nmcli connection modify Example_con_1 ipv4.dns-priority 10 ipv6.dns-priority 10
   ```

3. Optionally, repeat the previous step for other connections.

4. Re-activate the connection you updated:

   ```bash
   # nmcli connection up Example_con_1
   ```

Verification steps

- Display the contents of the /etc/resolv.conf file to verify that the DNS server order is correct:

  ```bash
  # cat /etc/resolv.conf
  ```
CHAPTER 27. CONFIGURING IP NETWORKING WITH IFCFG FILES

This section describes how to configure a network interface manually by editing the ifcfg files.

Interface configuration (ifcfg) files control the software interfaces for individual network devices. As the system boots, it uses these files to determine what interfaces to bring up and how to configure them. These files are usually named ifcfg-name, where the suffix name refers to the name of the device that the configuration file controls. By convention, the ifcfg file’s suffix is the same as the string given by the DEVICE directive in the configuration file itself.

27.1. CONFIGURING AN INTERFACE WITH STATIC NETWORK SETTINGS USING IFCFG FILES

This procedure describes how to configure a network interface using ifcfg files.

Procedure

- To configure an interface with static network settings using ifcfg files, for an interface with the name enp1s0, create a file with the name ifcfg-enp1s0 in the /etc/sysconfig/network-scripts/ directory that contains:

 For IPv4 configuration:

  ```
  DEVICE=enp1s0
  BOOTPROTO=none
  ONBOOT=yes
  PREFIX=24
  IPADDR=10.0.1.27
  GATEWAY=10.0.1.1
  ```

 For IPv6 configuration:

  ```
  DEVICE=enp1s0
  BOOTPROTO=none
  ONBOOT=yes
  IPV6INIT=yes
  IPV6ADDR=2001:db8:1::2/64
  ```

Additional resources

- For more information on testing connections, see Chapter 38, Testing basic network settings.
- For more IPv6 ifcfg configuration options, see nm-settings-ifcfg-rh(5) man page.

27.2. CONFIGURING AN INTERFACE WITH DYNAMIC NETWORK SETTINGS USING IFCFG FILES

This procedure describes how to configure a network interface with dynamic network settings using ifcfg files.

Procedure
1. To configure an interface named `em1` with dynamic network settings using `ifcfg` files, create a file with the name `ifcfg-em1` in the `/etc/sysconfig/network-scripts/` directory that contains:

   ```
   DEVICE=em1
   BOOTPROTO= dhcp
   ONBOOT=yes
   ```

2. To configure an interface to send a different host name to the DHCP server, add the following line to the `ifcfg` file:

   ```
   DHCP_HOSTNAME=hostname
   ```

3. To configure an interface to send a different fully qualified domain name (FQDN) to the DHCP server, add the following line to the `ifcfg` file:

   ```
   DHCP_FQDN=fully.qualified.domain.name
   ```

 NOTE

 Only one directive, either `DHCP_HOSTNAME` or `DHCP_FQDN`, should be used in a given `ifcfg` file. In case both `DHCP_HOSTNAME` and `DHCP_FQDN` are specified, only the latter is used.

4. To configure an interface to use particular DNS servers, add the following lines to the `ifcfg` file:

   ```
   PEERDNS=no
   DNS1=ip-address
   DNS2=ip-address
   ```

 where `ip-address` is the address of a DNS server. This will cause the network service to update `/etc/resolv.conf` with the specified DNS servers specified. Only one DNS server address is necessary, the other is optional.

27.3. MANAGING SYSTEM-WIDE AND PRIVATE CONNECTION PROFILES WITH IFCFG FILES

This procedure describes how to configure `ifcfg` files to manage the system-wide and private connection profiles.

Procedure

The permissions correspond to the `USERS` directive in the `ifcfg` files. If the `USERS` directive is not present, the network profile will be available to all users.

1. As an example, modify the `ifcfg` file with the following row, which will make the connection available only to the users listed:

   ```
   USERS=“joe bob alice”
   ```
CHAPTER 28. USING NETWORKMANAGER TO DISABLE IPV6 FOR A SPECIFIC CONNECTION

This section describes how to disable the IPv6 protocol on a system that uses NetworkManager to manage network interfaces. If you disable IPv6, NetworkManager automatically sets the corresponding `sysctl` values in the Kernel.

NOTE

The NetworkManager service sets certain `sysctl` values when it starts a connection. To avoid unexpected behavior, do not manually set `sysctl` values to disable IPv6.

Prerequisites

- The system uses NetworkManager to manage network interfaces, which is the default on Red Hat Enterprise Linux 8.
- The system runs Red Hat Enterprise Linux 8.1 or later.

28.1. DISABLING IPV6 ON A CONNECTION USING NMCLI

Use this section to disable the IPv6 protocol using the `nmcli` utility.

Procedure

1. Optionally, display the list of network connections:

   ```
   # nmcli connection show
   NAME  UUID                                  TYPE      DEVICE
   Example 7a7e0151-9c18-4e6f-89ee-65bb2d64d365  ethernet  enp1s0
   ...
   ```

2. Set the `ipv6.method` parameter of the connection to `disabled`:

   ```
   # nmcli connection modify Example ipv6.method "disabled"
   ```

3. Restart the network connection:

   ```
   # nmcli connection up Example
   ```

Verification steps

1. Enter the `ip address show` command to display the IP settings of the device:

   ```
   # ip address show enp1s0
   2: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP
   link/ether 52:54:00:6b:74:be brd ff:ff:ff:ff:ff:ff
   inet 192.0.2.1/24 brd 192.10.2.255 scope global noprefixroute
   valid_lft forever preferred_lft forever
   ```

 If no `inet6` entry is displayed, IPv6 is disabled on the device.
2. Verify that the `/proc/sys/net/ipv6/conf/enp1s0/disable_ipv6` file now contains the value `1`:

```
# cat /proc/sys/net/ipv6/conf/enp1s0/disable_ipv6
1
```

The value `1` means that IPv6 is disabled for the device.
CHAPTER 29. MANUALLY CONFIGURING THE /ETC/RESOLV.CONF FILE

By default, NetworkManager on Red Hat Enterprise Linux (RHEL) 8 dynamically updates the /etc/resolv.conf file with the DNS settings from active NetworkManager connection profiles. This section describes different options on how to disable this feature to manually configure DNS settings in /etc/resolv.conf.

29.1. DISABLING DNS PROCESSING IN THE NETWORKMANAGER CONFIGURATION

This section describes how to disable DNS processing in the NetworkManager configuration to manually configure the /etc/resolv.conf file.

Procedure

1. Create the /etc/NetworkManager/conf.d/90-dns-none.conf file with the following content:

 [main]
dns=none

2. Reload the NetworkManager service:

 # systemctl reload NetworkManager

 NOTE

 After you reload the service, NetworkManager no longer updates the /etc/resolv.conf file. However, the last contents of the file are preserved.

3. Optionally, remove the Generated by NetworkManager comment from /etc/resolv.conf to avoid confusion.

Verification steps

1. Edit the /etc/resolv.conf file and manually update the configuration.

2. Reload the NetworkManager service:

 # systemctl reload NetworkManager

3. Display the /etc/resolv.conf file:

 # cat /etc/resolv.conf

 If you successfully disabled DNS processing, NetworkManager did not override the manually configured settings.

Additional resources
For further details, see the description of the `dns` parameter in the `NetworkManager.conf(5)` man page.

29.2. REPLACING /ETC/RESOLV.CONF WITH A SYMBOLIC LINK TO MANUALLY CONFIGURE DNS SETTINGS

NetworkManager does not automatically update the DNS configuration if `/etc/resolv.conf` is a symbolic link. This section describes how to replace `/etc/resolv.conf` with a symbolic link to an alternative file with the DNS configuration.

Prerequisites

- The `rc-manager` option is not set to `file`. To verify, use the `NetworkManager --print-config` command.

Procedure

1. Create a file, such as `/etc/resolv.conf.manually-configured`, and add the DNS configuration for your environment to it. Use the same parameters and syntax as in the original `/etc/resolv.conf`.

2. Remove the `/etc/resolv.conf` file:

   ```bash
   # rm /etc/resolv.conf
   ```

3. Create a symbolic link named `/etc/resolv.conf` that refers to `/etc/resolv.conf.manually-configured`:

   ```bash
   # ln -s /etc/resolv.conf.manually-configured /etc/resolv.conf
   ```

Additional resources

- For details about parameters you can set in `/etc/resolv.conf`, see the `resolv.conf(5)` man page.

- For further details about why NetworkManager does not process DNS settings if `/etc/resolv.conf` is a symbolic link, see the description of the `rc-manager` parameter in the `NetworkManager.conf(5)` man page.
CHAPTER 30. CONFIGURING 802.3 LINK SETTINGS

You can configure the 802.3 link settings of an Ethernet connection by modifying the following configuration parameters:

- `802-3-ethernet.auto-negotiate`
- `802-3-ethernet.speed`
- `802-3-ethernet.duplex`

You can configure the 802.3 link settings to the following main modes:

- Ignore link negotiation
- Enforce the auto-negotiation activation
- Manually set the `speed` and `duplex` link settings

30.1. CONFIGURING 802.3 LINK SETTINGS WITH NMCLI TOOL

This procedure describes how to configure 802.3 link settings using the `nmcli` tool.

Prerequisites

- The `NetworkManager` must be installed and running.

Procedure

1. To ignore link negotiation, set the following parameters:

```
~]# nmcli connection modify connection_name 802-3-ethernet.auto-negotiate no 802-3-ethernet.speed 0 802-3-ethernet.duplex ""
```

Note, that the auto-negotiation parameter is not disabled even if the speed and duplex parameters are not set and the auto-negotiation parameter is set to no.

2. To enforce the auto-negotiation activation, enter the following command:

```
~]# nmcli connection modify connection_name 802-3-ethernet.auto-negotiate yes 802-3-ethernet.speed 0 802-3-ethernet.duplex ""
```

That allows to negotiate all the available speed and duplex modes supported by the NIC.

You can also enable auto-negotiation while advertising and allowing only one speed/duplex mode. This can be useful if you want to enforce 1000BASE-T and 10GBASE-T Ethernet link configuration, as these standards mandate auto-negotiation enabled. To enforce 1000BASE-T standard:

```
~]# nmcli connection modify connection_name 802-3-ethernet.auto-negotiate yes 802-3-ethernet.speed 1000 802-3-ethernet.duplex full
```

3. To manually set the speed and duplex link settings, enter the following command:
~]# nmcli connection modify connection_name 802-3-ethernet.auto-negotiate no 802-3-ethernet.speed [speed in Mbit/s] 802-3-ethernet.duplex [full|half]
CHAPTER 31. CONFIGURING ETHTOOL OFFLOAD FEATURES USING NETWORKMANAGER

Network interface cards can use the TCP offload engine (TOE) to offload processing certain operations to the network controller to improve the network throughput.

This section describes what offload features NetworkManager supports and how to set them.

31.1. OFFLOAD FEATURES SUPPORTED BY NETWORKMANAGER

You can set the following `ethtool` offload features using NetworkManager:

- `ethtool.feature-esp-hw-offload`
- `ethtool.feature-esp-tx-csum-hw-offload`
- `ethtool.feature-fcoe-mtu`
- `ethtool.feature-gro`
- `ethtool.feature-gso`
- `ethtool.feature-highdma`
- `ethtool.feature-hw-tc-offload`
- `ethtool.feature-l2-fwd-offload`
- `ethtool.feature-loopback`
- `ethtool.feature-lro`
- `ethtool.feature-ntuple`
- `ethtool.feature-rx`
- `ethtool.feature-rx-all`
- `ethtool.feature-rx-fcs`
- `ethtool.feature-rx-gro-hw`
- `ethtool.feature-rx-udp_tunnel-port-offload`
- `ethtool.feature-rx-vlan-filter`
- `ethtool.feature-rx-vlan-stag-filter`
- `ethtool.feature-rx-vlan-stag-hw-parse`
- `ethtool.feature-rxhash`
- `ethtool.feature-rxvlan`
- `ethtool.feature-sg`
- ethtool.feature-tls-hw-record
- ethtool.feature-tls-hw-tx-offload
- ethtool.feature-tso
- ethtool.feature-tx
- ethtool.feature-tx-checksum-fcoe-crc
- ethtool.feature-tx-checksum-ip-generic
- ethtool.feature-tx-checksum-ipv4
- ethtool.feature-tx-checksum-ipv6
- ethtool.feature-tx-checksum-sctp
- ethtool.feature-tx-esp-segmentation
- ethtool.feature-tx-fcoe-segmentation
- ethtool.feature-tx-gre-csum-segmentation
- ethtool.feature-tx-gre-segmentation
- ethtool.feature-tx-gso-partial
- ethtool.feature-tx-gso-robust
- ethtool.feature-tx-ipxip4-segmentation
- ethtool.feature-tx-ipxip6-segmentation
- ethtool.feature-tx-nocache-copy
- ethtool.feature-tx-scatter-gather
- ethtool.feature-tx-scatter-gather-fraglist
- ethtool.feature-tx-sctp-segmentation
- ethtool.feature-tx-tcp-ecn-segmentation
- ethtool.feature-tx-tcp-mangleid-segmentation
- ethtool.feature-tx-tcp-segmentation
- ethtool.feature-tx-tcp6-segmentation
- ethtool.feature-tx-udp-segmentation
- ethtool.feature-tx-udp_tnl-csum-segmentation
- ethtool.feature-tx-udp_tnl-segmentation
- ethtool.feature-tx-vlan-stag-hw-insert
ethtool.feature-txvlan

For details about the individual offload features, see the documentation of the ethtool utility and the kernel documentation.

31.2. Configuring an Ethtool Offload Feature Using NetworkManager

This section describes how you enable and disable ethtool offload features using NetworkManager, as well as how you remove the setting for a feature from a NetworkManager connection profile.

Procedure

1. For example, to enable the RX offload feature and disable TX offload in the **enp0s1** connection profile, enter:

   ```bash
   # nmcli con modify enp0s1 ethtool.feature-rx on ethtool.feature-tx off
   ```

 This command explicitly enables RX offload and disables TX offload.

2. To remove the setting of an offload feature that you previously enabled or disabled, set the feature's parameter to **ignore**. For example, to remove the configuration for TX offload, enter:

   ```bash
   # nmcli con modify enp0s1 ethtool.feature-tx ignore
   ```

3. Reactivate the network profile:

   ```bash
   # nmcli connection up enp0s1
   ```

Verification steps

1. Use the **ethtool -k** command to display the current offload features of a network device:

   ```bash
   # ethtool -k network_device
   ```

Additional resources

- For a list of ethtool offload features NetworkManager supports, see Section 31.1, “Offload features supported by NetworkManager”.
CHAPTER 32. CONFIGURING MACSEC

The following section provides information on how to configure **Media Control Access Security (MACsec)**, which is an 802.1AE IEEE standard security technology for secure communication in all traffic on Ethernet links.

32.1. INTRODUCTION TO MACSEC

Media Access Control Security (MACsec, IEEE 802.1AE) encrypts and authenticates all traffic in LANs with the GCM-AES-128 algorithm. **MACsec** can protect not only IP but also Address Resolution Protocol (ARP), Neighbor Discovery (ND), or DHCP. While **IPsec** operates on the network layer (layer 3) and **SSL** or **TLS** on the application layer (layer 7), **MACsec** operates in the data link layer (layer 2). Combine **MACsec** with security protocols for other networking layers to take advantage of different security features that these standards provide.

32.2. USING MACSEC WITH NMCLI TOOL

This procedure shows how to configure **MACsec** with **nmcli** tool.

Prerequisites

- The **NetworkManager** must be running.
- You already have a 16-byte hexadecimal CAK (**$MKA_CAK**) and a 32-byte hexadecimal CKN (**$MKA_CKN**).

Procedure

1. To add new connection using **nmcli**, enter:

   ```
   ~\# nmcli connection add type macsec \n   con-name test-macsec+ ifname macsec0 \n   connection.autoconnect no \n   macsec.parent enp1s0 macsec.mode psk \n   macsec.mka-cak $MKA_CAK \n   macsec.mka-ckn $MKA_CKN
   ```

 Replace **macsec0** with the device name you want to configure.

2. To activate the connection, enter:

   ```
   ~\# nmcli connection up test-macsec+
   ```

 After this step, the **macsec0** device is configured and can be used for networking.

32.3. USING MACSEC WITH WPA_SUPPLICANT

This procedure shows how to enable **MACsec** with a switch that performs authentication using a pre-shared Connectivity Association Key/CAK Name (CAK/CKN) pair.

Procedure
1. Create a CAK/CKN pair. For example, the following command generates a 16-byte key in hexadecimal notation:

```
~$ dd if=/dev/urandom count=16 bs=1 2> /dev/null | hexdump -e '1/2 "%02x"'
```

2. Create the `wpa_supplicant.conf` configuration file and add the following lines to it:

```
ctrl_interface=/var/run/wpa_supplicant
eapol_version=3
ap_scan=0
fast_reauth=1

network=
  key_mgmt=NONE
eapol_flags=0
macsec_policy=1

  mka_cak=0011...
  mka_ckn=2233...
}
```

Use the values from the previous step to complete the `mka_cak` and `mka_ckn` lines in the `wpa_supplicant.conf` configuration file.

For more information, see the `wpa_supplicant.conf(5)` man page.

3. Assuming you are using `wlp61s0` to connect to your network, start `wpa_supplicant` using the following command:

```
~$ wpa_supplicant -i wlp61s0 -Dmacsec_linux -c wpa_supplicant.conf
```

32.4. RELATED INFORMATION

For more details, see the What’s new in MACsec: setting up MACsec using wpa_supplicant and (optionally) NetworkManager article. In addition, see the MACsec: a different solution to encrypt network traffic article for more information about the architecture of a MACsec network, use case scenarios, and configuration examples.
CHAPTER 33. USING DIFFERENT DNS SERVERS FOR DIFFERENT DOMAINS

By default, Red Hat Enterprise Linux (RHEL) sends all DNS requests to the first DNS server specified in the `/etc/resolv.conf` file. If this server does not reply, RHEL uses the next server in this file.

In environments where one DNS server cannot resolve all domains, administrators can configure RHEL to send DNS requests for a specific domain to a selected DNS server. For example, you can configure one DNS server to resolve queries for `example.com` and another DNS server to resolve queries for `example.net`. For all other DNS requests, RHEL uses the DNS server configured in the connection with the default gateway.

IMPORTANT

In RHEL 8, Red Hat provides `systemd-resolved` as an unsupported Technology Preview.

33.1. SENDING DNS REQUESTS FOR A SPECIFIC DOMAIN TO A SELECTED DNS SERVER

This section configures `systemd-resolved` service and NetworkManager to send DNS queries for a specific domain to a selected DNS server.

If you complete the procedure in this section, RHEL uses the DNS service provided by `systemd-resolved` in the `/etc/resolv.conf` file. The `systemd-resolved` service starts a DNS service that listens on port 53 IP address `127.0.0.53`. The service dynamically routes DNS requests to the corresponding DNS servers specified in NetworkManager.

NOTE

The `127.0.0.53` address is only reachable from the local system and not from the network.

Prerequisites

- The system has multiple NetworkManager connections configured.
- A DNS server and search domain are configured in the NetworkManager connections that are responsible for resolving a specific domain

 For example, if the DNS server specified in a VPN connection should resolve queries for the `example.com` domain, the VPN connection profile must have:

 - Configured a DNS server that can resolve `example.com`
 - Configured the search domain to `example.com` in the `ipv4.dns-search` and `ipv6.dns-search` parameters

Procedure

1. Start and enable the `systemd-resolved` service:

   ```bash
   # systemctl --now enable systemd-resolved
   ```

2. Edit the `/etc/NetworkManager/NetworkManager.conf` file, and set the following entry in the `[main]` section:

   ```conf
   [main]
   ```
3. Reload the **NetworkManager** service:

```
# systemctl reload NetworkManager
```

Verification steps

1. Verify that the **nameserver** entry in the `/etc/resolv.conf` file refers to **127.0.0.53**:

```
# cat /etc/resolv.conf
nameserver 127.0.0.53
```

2. Verify that the **systemd-resolved** service listens on port **53** on the local IP address **127.0.0.53**:

```
# netstat -tulpn | grep "127.0.0.53:53"
tcp 0 0 127.0.0.53:53 0.0.0.0:* LISTEN 1050/systemd-resolv
udp 0 0 127.0.0.53:53 0.0.0.0:* 1050/systemd-resolv
```

Additional resources

- For further details, see the description of the **dns** parameter in the **NetworkManager.conf(5)** man page.
CHAPTER 34. GETTING STARTED WITH IPVLAN

This document describes the IPVLAN driver.

34.1. IPVLAN OVERVIEW

IPVLAN is a driver for a virtual network device that can be used in container environment to access the host network. IPVLAN exposes a single MAC address to the external network regardless the number of IPVLAN device created inside the host network. This means that a user can have multiple IPVLAN devices in multiple containers and the corresponding switch reads a single MAC address. IPVLAN driver is useful when the local switch imposes constraints on the total number of MAC addresses that it can manage.

34.2. IPVLAN MODES

The following modes are available for IPVLAN:

- **L2 mode**
 In IPVLAN L2 mode, virtual devices receive and respond to Address Resolution Protocol (ARP) requests. The netfilter framework runs only inside the container that owns the virtual device. No netfilter chains are executed in the default namespace on the containerized traffic. Using **L2 mode** provides good performance, but less control on the network traffic.

- **L3 mode**
 In L3 mode, virtual devices process only **L3** traffic and above. Virtual devices do not respond to ARP request and users must configure the neighbour entries for the IPVLAN IP addresses on the relevant peers manually. The egress traffic of a relevant container is landed on the netfilter POSTROUTING and OUTPUT chains in the default namespace while the ingress traffic is threaded in the same way as **L2 mode**. Using **L3 mode** provides good control but decreases the network traffic performance.

- **L3S mode**
 In L3S mode, virtual devices process the same way as in **L3 mode**, except that both egress and ingress traffics of a relevant container are landed on netfilter chain in the default namespace. **L3S mode** behaves in a similar way to **L3 mode** but provides greater control of the network.

 NOTE

 The IPVLAN virtual device does not receive broadcast and multicast traffic in case of **L3** and **L3S modes**.

34.3. OVERVIEW OF MACVLAN

The MACVLAN driver allows to create multiple virtual network devices on top of a single NIC, each of them identified by its own unique MAC address. Packets which land on the physical NIC are demultiplexed towards the relevant MACVLAN device via MAC address of the destination. MACVLAN devices do not add any level of encapsulation.

34.4. COMPARISON OF IPVLAN AND MACVLAN

The following table shows the major differences between MACVLAN and IPVLAN.
MACVLAN vs. IPVLAN

<table>
<thead>
<tr>
<th>MACVLAN</th>
<th>IPVLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uses MAC address for each MACVLAN device. The overlimit of MAC addresses of MAC table in switch might cause loosing the connectivity.</td>
<td>Uses single MAC address which does not limit the number of IPVLAN devices.</td>
</tr>
<tr>
<td>Netfilter rules for global namespace cannot affect traffic to or from MACVLAN device in a child namespace.</td>
<td>It is possible to control traffic to or from IPVLAN device in L3 mode and L3S mode.</td>
</tr>
</tbody>
</table>

Note that both IPVLAN and MACVLAN do not require any level of incapsulation.

34.5. CREATING AND CONFIGURING THE IPVLAN DEVICE USING IPROUTE2

This procedure shows how to set up the IPVLAN device using iproute2.

Procedure

1. To create an IPVLAN device, enter the following command:

   ```
   ~]# ip link add link real_NIC_device name IPVLAN_device type ipvlan mode l2
   ```

 Note that network interface controller (NIC) is a hardware component which connects a computer to a network.

 Example 34.1. Creating an IPVLAN device

   ```
   ~]# ip link add link enp0s31f6 name my_ipvlan type ipvlan mode l2
   ~]# ip link
   47: my_ipvlan@enp0s31f6: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000 link/ether e8:6a:6e:8a:a2:44 brd ff:ff:ff:ff:ff:ff
   ```

2. To assign an **IPv4** or **IPv6** address to the interface, enter the following command:

   ```
   ~]# ip addr add dev IPVLAN_device IP_address/subnet_mask_prefix
   ```

3. In case of configuring an IPVLAN device in **L3 mode** or **L3S mode**, make the following setups:

 a. Configure the neighbor setup for the remote peer on the remote host:

      ```
      ~]# ip neigh add dev peer_device IPVLAN_device IP_address lladdr MAC_address
      ```

 where **MAC_address** is the MAC address of the real NIC on which an IPVLAN device is based on.

 b. Configure an IPVLAN device for **L3 mode** with the following command:

      ```
      ~]# ip neigh add dev real_NIC_device peer_IP_address lladdr peer_MAC_address
      ```
For **L3S mode**:

```bash
~]# ip route dev add real_NIC_device peer_IP_address/32
```

where IP-address represents the address of the remote peer.

4. To set an IPVLAN device active, enter the following command:

```bash
~]# ip link set dev IPVLAN_device up
```

5. To check if the IPVLAN device is active, execute the following command on the remote host:

```bash
~]# ping IP_address
```

where the *IP_address* uses the IP address of the IPVLAN device.
CHAPTER 35. CONFIGURING VIRTUAL ROUTING AND FORWARDING (VRF)

With Virtual routing and forwarding (VRF), Administrators can use multiple routing tables simultaneously on the same host. For that, VRF partitions a network at layer 3. This enables the administrator to isolate traffic using separate and independent route tables per VRF domain. This technique is similar to virtual LANs (VLAN), which partitions a network at layer 2, where the operating system uses different VLAN tags to isolate traffic sharing the same physical medium.

One benefit of VRF over partitioning on layer 2 is that routing scales better considering the number of peers involved.

Red Hat Enterprise Linux uses a virtual vrt device for each VRF domain and adds routes to a VRF domain by enslaving existing network devices to a VRF device. Addresses and routes previously attached to the enslaved device will be moved inside the VRF domain.

Note that each VRF domain is isolated from each other.

35.1. PERMANENTLY REUSING THE SAME IP ADDRESS ON DIFFERENT INTERFACES

This procedure describes how to permanently use the same IP address on different interfaces in one server by using the VRF feature.

IMPORTANT

To enable remote peers to contact both VRF interfaces while reusing the same IP address, the network interfaces must belong to different broadcasting domains. A broadcast domain in a network is a set of nodes, which receive broadcast traffic sent by any of them. In most configurations, all nodes connected to the same switch belong to the same broadcasting domain.

Prerequisites

- You are logged in as the root user.
- The network interfaces are not configured.

Procedure

1. Create and configure the first VRF device:

 a. Create a connection for the VRF device and assign it to a routing table. For example, to create a VRF device named vrf0 that is assigned to the 1001 routing table:

      ```
      # nmcli connection add type vrf ifname vrf0 con-name vrf0 table 1001 ipv4.method disabled ipv6.method disabled
      ```

 b. Enable the vrf0 device:

      ```
      # nmcli connection up vrf0
      ```
c. Assign a network device to the VRF just created. For example, to add the enp1s0 Ethernet device to the vrf0 VRF device and assign an IP address and the subnet mask to enp1s0, enter:

```
# nmcli connection add type ethernet con-name vrf.enp1s0 ifname enp1s0 master vrf0
ipv4.method manual ipv4.address 192.0.2.1/24
```

d. Activate the vrf.enp1s0 connection:

```
# nmcli connection up vrf.enp1s0
```

2. Create and configure the next VRF device:

a. Create the VRF device and assign it to a routing table. For example, to create a VRF device named vrf1 that is assigned to the 1002 routing table, enter:

```
# nmcli connection add type vrf ifname vrf1 con-name vrf1 table 1002 ipv4.method disabled ipv6.method disabled
```

b. Activate the vrf1 device:

```
# nmcli connection up vrf1
```

c. Assign a network device to the VRF just created. For example, to add the enp7s0 Ethernet device to the vrf1 VRF device and assign an IP address and the subnet mask to enp7s0, enter:

```
# nmcli connection add type ethernet con-name vrf.enp7s0 ifname enp7s0 master vrf1
ipv4.method manual ipv4.address 192.0.2.1/24
```

d. Activate the vrf.enp7s0 device:

```
# nmcli connection up vrf.enp7s0
```

35.2. TEMPORARILY REUSING THE SAME IP ADDRESS ON DIFFERENT INTERFACES

The procedure in this section describes how to temporarily use the same IP address on different interfaces in one server by using the virtual routing and forwarding (VRF) feature. Use this procedure only for testing purposes, because the configuration is temporary and lost after you reboot the system.

IMPORTANT

To enable remote peers to contact both VRF interfaces while reusing the same IP address, the network interfaces must belong to different broadcasting domains. A broadcast domain in a network is a set of nodes which receive broadcast traffic sent by any of them. In most configurations, all nodes connected to the same switch belong to the same broadcasting domain.

Prerequisites

- You are logged in as the root user.
The network interfaces are not configured.

Procedure

1. Create and configure the first VRF device:
 a. Create the VRF device and assign it to a routing table. For example, to create a VRF device named blue that is assigned to the 1001 routing table:
      ```
      # ip link add dev blue type vrf table 1001
      ```
 b. Enable the blue device:
      ```
      # ip link set dev blue up
      ```
 c. Assign a network device to the VRF device. For example, to add the enp1s0 Ethernet device to the blue VRF device:
      ```
      # ip link set dev enp1s0 master blue
      ```
 d. Enable the enp1s0 device:
      ```
      # ip link set dev enp1s0 up
      ```
 e. Assign an IP address and subnet mask to the enp1s0 device. For example, to set it to 192.0.2.1/24:
      ```
      # ip addr add dev enp1s0 192.0.2.1/24
      ```
2. Create and configure the next VRF device:
 a. Create the VRF device and assign it to a routing table. For example, to create a VRF device named red that is assigned to the 1002 routing table:
      ```
      # ip link add dev red type vrf table 1002
      ```
 b. Enable the red device:
      ```
      # ip link set dev red up
      ```
 c. Assign a network device to the VRF device. For example, to add the enp7s0 Ethernet device to the red VRF device:
      ```
      # ip link set dev enp7s0 master red
      ```
 d. Enable the enp7s0 device:
      ```
      # ip link set dev enp7s0 up
      ```
 e. Assign the same IP address and subnet mask to the enp7s0 device as you used for enp1s0 in the blue VRF domain:
ip addr add dev enp7s0 192.0.2.1/24

3. Optionally, create further VRF devices as described above.

35.3. RELATED INFORMATION

CHAPTER 36. SETTING THE ROUTING PROTOCOLS FOR YOUR SYSTEM

This section describes how to use the Free Range Routing (FRRouting, or FRR) feature to enable and set the required routing protocols for your system.

36.1. INTRODUCTION TO FRROUTING

Free Range Routing (FRRouting, or FRR) is a routing protocol stack, which is provided by the frr package available in the AppStream repository.

FRR replaces Quagga that was used on previous RHEL versions. As such, FRR provides TCP/IP-based routing services with support for multiple IPv4 and IPv6 routing protocols.

The supported protocols are:

- Border Gateway Protocol (BGP)
- Intermediate System to Intermediate System (IS-IS)
- Open Shortest Path First (OSPF)
- Protocol-Independent Multicast (PIM)
- Routing Information Protocol (RIP)
- Routing Information Protocol next generation (RIPng)
- Enhanced Interior Gateway Routing Protocol (EIGRP)
- Next Hop Resolution Protocol (NHRP)
- Bidirectional Forwarding Detection (BFD)
- Policy-based Routing (PBR)

FRR is a collection of the following services:

- zebra
- bgpd
- isisd
- ospfd
- ospf6d
- pimd
- ripd
- ripngd
- eigrpd
If \textit{frr} is installed, the system can act as a dedicated router, which exchanges routing information with other routers in either internal or external network using the routing protocols.

\section*{36.2. SETTING UP FRROUTING}

\subsection*{Prerequisites}
- Make sure that the \textit{frr} package is installed on your system:

\begin{verbatim}
yum install frr
\end{verbatim}

\subsection*{Procedure}
1. Edit the \texttt{/etc/frr/daemons} configuration file, and enable the required daemons for your system. For example, to enable the \texttt{ripd} daemon, include the following line:

\begin{verbatim}
ripd=yes
\end{verbatim}

\begin{warning}
The \texttt{zebra} daemon must always be enabled, so that you must set \texttt{zebra=yes} to be able to use FRR.
\end{warning}

\begin{important}
By default, \texttt{/etc/frr/daemons} contains \texttt{[daemon_name]=no} entries for all daemons. Therefore, all daemons are disabled, and starting \texttt{FRR} after a new installation of the system has no effect.
\end{important}

2. Start the \texttt{frr} service:

\begin{verbatim}
systemctl start frr
\end{verbatim}

3. Optionally, you can also set \texttt{FRR} to start automatically on boot:

\begin{verbatim}
systemctl enable frr
\end{verbatim}
36.3. MODIFYING THE CONFIGURATION OF FRR

This section describes:

- How to enable an additional daemon after you set up FRR
- How to disable a daemon after you set up FRR

Enabling an additional daemon

Prerequisites

- FRR is set up as described in Section 36.2, “Setting up FRRouting”.

Procedure

To enable one or more additional daemons:

1. Edit the `/etc/frr/daemons` configuration file, and modify the line for the required daemons to state `yes` instead of `no`.
 For example, to enable the `ripd` daemon:

   ```
   ripd=yes
   ```

2. Reload the frr service:

   ```
   # systemctl reload frr
   ```

Disabling a daemon

Prerequisites

- FRR is set up as described in Section 36.2, “Setting up FRRouting”.

Procedure

To disable one or more daemons:

1. Edit the `/etc/frr/daemons` configuration file, and modify the line for the required daemons to state `no` instead of `yes`.
 For example, to disable the `ripd` daemon:

   ```
   ripd=no
   ```

2. Reload the frr service:

   ```
   # systemctl reload frr
   ```

36.4. MODIFYING A CONFIGURATION OF A PARTICULAR DAEMON

With the default configuration, every routing daemon in FRR can only act as a plain router.

For any additional configuration of a daemon, use the following procedure.
Procedure

1. Within the `/etc/frr` directory, create a configuration file for the required daemon, and name the file as follows:

 `[daemon_name].conf`

 For example, to further configure the `eigrpd` daemon, create the `eigrpd.conf` file in the mentioned directory.

2. Populate the new file with the required content.
 For configuration examples of particular FRR daemons, see the `/usr/share/doc/frr` directory.

3. Reload the `frr` service:

 `# systemctl reload frr`
CHAPTER 37. MONITORING AND TUNING THE RX RING BUFFER

Receive (RX) ring buffers are shared buffers between the device driver and Network Interface Card (NIC), and store incoming packets until the device driver can process them.

You can increase the size of the Ethernet device RX ring buffer if the packet drop rate causes applications to report:

- a loss of data,
- cluster fence,
- slow performance,
- timeouts, and
- failed backups.

This section describes how to identify the number of dropped packets and increase the RX ring buffer to reduce a high packet drop rate.

37.1. DISPLAYING THE NUMBER OF DROPPED PACKETS

The `ethtool` utility enables administrators to query, configure, or control network driver settings.

The exhaustion of the RX ring buffer causes an increment in the counters, such as "discard" or "drop" in the output of `ethtool -S interface_name`. The discarded packets indicate that the available buffer is filling up faster than the kernel can process the packets.

This procedure describes how to display drop counters using `ethtool`.

Procedure

To display drop counters for the `enp1s0` interface, enter:

```
$ ethtool -S enp1s0
```

37.2. INCREASING THE RX RING BUFFER TO REDUCE A HIGH PACKET DROP RATE

The `ethtool` utility helps to increase the RX buffer to reduce a high packet drop rate.

Procedure

1. To view the maximum RX ring buffer size:

```
# ethtool -g enp1s0
Ring parameters for enp1s0:
Pre-set maximums:
RX: 4080
RX Mini: 0
RX Jumbo: 16320
```
Current hardware settings:

TX: 255
RX: 255
RX Mini: 0
RX Jumbo: 0
TX: 255

2. If the values in the **Pre-set maximums** section are higher than in the **Current hardware settings** section, increase RX ring buffer:

- To temporary change the RX ring buffer of the **enp1s0** device to **4080**, enter:

  ```
  # ethtool -G enp1s0 rx 4080
  ```

- To permanently change the RX ring buffer create a NetworkManager dispatcher script. For details, see the [How to make NIC ethtool settings persistent (apply automatically at boot)](article) article and create a dispatcher script.

IMPORTANT

Depending on the driver your network interface card uses, changing in the ring buffer can shortly interrupt the network connection.

Additional resources

- For further information about statistics that cover more reasons for discards of unwanted packets, see the [ifconfig and ip commands report packet drops in RHEL7](article) article.

- **Should I be concerned about a 0.05% packet drop rate?**

- The **ethtool(8)** man page.
CHAPTER 38. TESTING BASIC NETWORK SETTINGS

This section describes how to perform basic network testing.

38.1. USING THE PING UTILITY TO VERIFY THE IP CONNECTION TO OTHER HOSTS

The `ping` utility sends ICMP packets to a remote host. You can use this functionality to test if the IP connection to a different host works.

Procedure

- Ping the IP address of a host in the same subnet, such as your default gateway:

  ```
  # ping 192.0.2.3
  ```

 If the command fails, verify the default gateway settings.

- Ping an IP address of a host in a remote subnet:

  ```
  # ping 198.162.3.1
  ```

 If the command fails, verify the default gateway settings, and ensure that the gateway forwards packets between the connected networks.

38.2. USING THE HOST UTILITY TO VERIFY NAME RESOLUTION

This procedure describes how to verify name resolution in Red Hat Enterprise Linux 8.

Procedure

- Use the `host` utility to verify that name resolution works. For example, to resolve the `client.example.com` hostname to an IP address, enter:

  ```
  # host client.example.com
  ```

 If the command returns an error, such as `connection timed out` or `no servers could be reached`, verify your DNS settings.
Increasing the log levels for all or certain domains helps to log more details of the operations NetworkManager performs. Administrators can use this information to troubleshoot problems. NetworkManager provides different levels and domains to produce logging information. The `/etc/NetworkManager/NetworkManager.conf` file is the main configuration file for NetworkManager. The logs are stored in the journal.

This section provides information on enabling debug logging for NetworkManager and using different logging levels and domains to configure the amount of logging details.

39.1. DEBUGGING LEVELS AND DOMAINS

You can use the `levels` and `domains` parameters to manage the debugging for NetworkManager. The level defines the verbosity level, whereas the domains define the category of the messages to record the logs with given severity (level).

<table>
<thead>
<tr>
<th>Log levels</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Does not log any messages about NetworkManager</td>
</tr>
<tr>
<td>ERR</td>
<td>Logs only critical errors</td>
</tr>
<tr>
<td>WARN</td>
<td>Logs warnings that can reflect the operation</td>
</tr>
<tr>
<td>INFO</td>
<td>Logs various informational messages that are useful for tracking state and operations</td>
</tr>
<tr>
<td>DEBUG</td>
<td>Enables verbose logging for debugging purposes</td>
</tr>
<tr>
<td>TRACE</td>
<td>Enables more verbose logging than the DEBUG level</td>
</tr>
</tbody>
</table>

Note that subsequent levels log all messages from earlier levels. For example, setting the log level to `INFO` also logs messages contained in the `ERR` and `WARN` log level.

Additional resources

- For details on `domains`, refer to the `NetworkManager.conf(5)` man page.

39.2. SETTING THE NETWORKMANAGER LOG LEVEL

By default, all the log domains are set to record the `INFO` log level. Disable rate-limiting before collecting debug logs. With rate-limiting, `systemd-journald` drops messages if there are too many of them in a short time. This can occur when the log level is `TRACE`.

This procedure disables rate-limiting and enables recording debug logs for the all (ALL) domains.

Procedure

1. To disable rate-limiting, edit the `/etc/systemd/journald.conf` file, uncomment the...
1. To disable rate-limiting, edit the `/etc/systemd/journald.conf` file, uncomment the `RateLimitBurst` parameter in the `[Journal]` section, and set its value as `0`:

   ```bash
   RateLimitBurst=0
   ```

2. Restart the `systemd-journald` service.

   ```bash
   # systemctl restart systemd-journald
   ```

3. Create the `/etc/NetworkManager/conf.d/95-nm-debug.conf` file with the following content:

   ```
   [logging]
   domains=ALL:DEBUG
   ```

 The `domains` parameter can contain multiple comma-separated `domain:level` pairs.

4. Restart the NetworkManager service.

   ```bash
   # systemctl restart NetworkManager
   ```

39.3. TEMPORARILY SETTING LOG LEVELS AT RUN TIME USING NMCLI

You can change the log level at run time using `nmcli`. However, Red Hat recommends to enable debugging using configuration files and restart NetworkManager. Updating debugging levels and domains using the `.conf` file helps to debug boot issues and captures all the logs from the initial state.

Procedure

1. Optional: Display the current logging settings:

   ```bash
   # nmcli general logging
   LEVEL   DOMAINS
   INFO
   PLATFORM,RFKILL,ETHER,WIFI,BT,MB,DHCP4,DHCP6,PPP,WIFI_SCAN,IP4,IP6,AUTOIP4,DNS,VPN,SHARING,SUPPLICANT,AGENTS,SETTINGS,SUSPEND,CORE,DEVICE,OLPC,
   WIMAX,INFINIBAND,FIREWALL,ADSL,BOND,VLAN,BRIDGE,DBUS_PROPS,TEAM,CONNECTION
   ```

2. To modify the logging level and domains, use the following options:

 - To set the log level for all domains to the same `LEVEL`, enter:

     ```bash
     # nmcli general logging level LEVEL domains ALL
     ```

 - To change the level for specific domains, enter:

     ```bash
     # nmcli general logging level LEVEL domains DOMAINS
     ```

 Note that updating the logging level using this command disables logging for all the other domains.
To change the level of specific domains and preserve the level of all other domains, enter:

```
# nmcli general logging level KEEP domains DOMAIN:LEVEL,DOMAIN:LEVEL
```

39.4. VIEWING NETWORKMANAGER LOGS

You can view the NetworkManager logs for troubleshooting.

Procedure

- To view the logs, enter:

```
# journalctl -u NetworkManager -b
```

Additional resources

- The `NetworkManager.conf(5)` man page
- The `journalctl` man page
CHAPTER 40. CAPTURING NETWORK PACKETS

To debug network issues and communications, you can capture network packets. The following sections provide instructions and additional information about capturing network packets.

40.1. USING XDPDUMP TO CAPTURE NETWORK PACKETS INCLUDING PACKETS DROPPED BY XDP PROGRAMS

The `xdpdump` utility captures network packets. Unlike the `tcpdump` utility, `xdpdump` uses an extended Berkeley Packet Filter (eBPF) program for this task. This enables `xdpdump` to also capture packets dropped by Express Data Path (XDP) programs. User-space utilities, such as `tcpdump`, are not able to capture these dropped packages, as well as original packets modified by an XDP program.

You can use `xdpdump` to debug XDP programs that are already attached to an interface. Therefore, the utility can capture packets before an XDP program is started and after it has finished. In the latter case, `xdpdump` also captures the XDP action. By default, `xdpdump` captures incoming packets at the entry of the XDP program.

IMPORTANT

Red Hat provides `xdpdump` as an unsupported Technology Preview.

Note that `xdpdump` has no packet filter or decode capabilities. However, you can use it in combination with `tcpdump` for packet decoding.

The procedure describes how to capture all packets on the `enp1s0` interface and write them to the `/root/capture.pcap` file.

Prerequisites

- A network driver that supports XDP programs.
- An XDP program is loaded to the `enp1s0` interface. If no program is loaded, `xdpdump` captures packets in a similar way `tcpdump` does, for backward compatibility.

Procedure

1. To capture packets on the `enp1s0` interface and write them to the `/root/capture.pcap` file, enter:

   ```
   # xdpdump -i enp1s0 -w /root/capture.pcap
   ```

2. To stop capturing packets, press **Ctrl+C**.

Additional resources

- For further details about `xdpdump`, see the `xdpdump(8)` man page.
- If you are a developer and you are interested in the source code of `xdpdump`, download and install the corresponding source RPM (SRPM) from the Red Hat Customer Portal.

40.2. ADDITIONAL RESOURCES
- The How to capture network packets with tcpdump? knowledge base solution.
The kernel is a core part of a Linux operating system that manages the system resources, and provides the interface between hardware and software applications. The Red Hat kernel is a custom-built kernel based on the upstream Linux mainline kernel that Red Hat engineers further develop and harden with a focus on stability and compatibility with the latest technologies and hardware.

This section describes how to install, update, and select a kernel in the GRUB boot loader.

41.1. INSTALLING THE KERNEL

The following procedure describes how to install new kernels using the `yum` package manager.

Procedure

- To install a specific kernel version, use the following:

  ```bash
  # yum install kernel-{version}
  ```

Additional resources

- For a list of available kernels, refer to [Red Hat Code Browser](#).
- For a list of release dates of specific kernel versions, see [this article](#).

41.2. UPDATING THE KERNEL

The following procedure describes how to update the kernel using the `yum` package manager.

Procedure

1. To update the kernel, use the following:

   ```bash
   # yum update kernel
   ```

 This command updates the kernel along with all dependencies to the latest available version.

2. Reboot your system for the changes to take effect.

NOTE

When upgrading from Red Hat Enterprise Linux 7 to Red Hat Enterprise Linux 8, follow relevant sections of the [Upgrading from RHEL 7 to RHEL 8](#) document.

41.3. STARTING RHEL USING A PREVIOUS KERNEL VERSION

By default, after you update, the system boots the latest version of the kernel. Red Hat Enterprise Linux allows to have three kernel versions installed at the same time. This is defined in the `/etc/dnf/dnf.conf` file (`installonly_limit=3`).

If you observe any issues when the system is loaded with the new kernel, you can reboot it with the previous kernel and restore the production machine. Contact support for troubleshooting the issue.
Procedure

1. Start the system.

2. In the GRUB boot loader, you see the installed kernels. Use the ↑ and ↓ keys to select a kernel, and press Enter to boot it.

Additional resources

- Changing the default kernel to boot using the grubby tool.
CHAPTER 42. PROVIDING DHCP SERVICES

The Dynamic Host Configuration Protocol (DHCP) is a network protocol that automatically assigns IP information to clients.

This section explains general information on the `dhcpd` service, as well as how to set up a DHCP server and DHCP relay.

If a procedure requires different steps for providing DHCP in IPv4 and IPv6 networks, the sections in this chapter contain procedures for both protocols.

42.1. THE DIFFERENCES WHEN USING DHCPD FOR DHCPV4 AND DHCPV6

The `dhcpd` service supports providing both DHCPv4 and DHCPv6 on one server. However, you need a separate instance of `dhcpd` with separate configuration files to provide DHCP for each protocol.

DHCPv4

- Configuration file: `/etc/dhcp/dhcpd.conf`
- Systemd service name: `dhcpd`

DHCPv6

- Configuration file: `/etc/dhcp/dhcpd6.conf`
- Systemd service name: `dhcpd6`

42.2. THE LEASE DATABASE OF THE DHCPD SERVICE

A DHCP lease is the time period for which the `dhcpd` service allocates a network address to a client. The `dhcpd` service stores the DHCP leases in the following databases:

- For DHCPv4: `/var/lib/dhcp/dhcpd.leases`
- For DHCPv6: `/var/lib/dhcp/dhcpd6.leases`

WARNING

Manually updating the database files can corrupt the databases.

The lease databases contain information about the allocated leases, such as the IP address assigned to a media access control (MAC) address or the time stamp when the lease expires. Note that all time stamps in the lease databases are in Coordinated Universal Time (UTC).

The `dhcpd` service recreates the databases periodically:

1. The service renames the existing files:
2. The service writes all known leases to the newly created /var/lib/dhcpd/dhcpd.leases and /var/lib/dhcpd/dhcpd6.leases files.

Additional resources

- For further details about what is stored in the lease database, see the dhcpd.leases(5) man page.

- Section 42.10, "Restoring a corrupt lease database"

42.3. COMPARISON OF DHCPV6 TO RADVD

In an IPv6 network, only router advertisement messages provide information on an IPv6 default gateway. As a consequence, if you want to use DHCPv6 in subnets that require a default gateway setting, you must additionally configure a router advertisement service, such as Router Advertisement Daemon (radvd).

The radvd service uses flags in router advertisement packets to announce the availability of a DHCPv6 server.

This section compares DHCPv6 and radvd, and provides information about configuring radvd.

<table>
<thead>
<tr>
<th></th>
<th>DHCPv6</th>
<th>radvd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides information on the default gateway</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Guarantees random addresses to protect privacy</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Sends further network configuration options</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Maps media access control (MAC) addresses to IPv6 addresses</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

42.4. CONFIGURING THE RADVD SERVICE FOR IPV6 ROUTERS

The router advertisement daemon (radvd) sends router advertisement messages that are required for IPv6 stateless autoconfiguration. This enables users to automatically configure their addresses, settings, routes, and to choose a default router based on these advertisements.

The procedure in this section explains how to configure radvd.

Prerequisites

- You are logged in as the root user.

Procedure

1. Install the radvd package:
yum install radvd

2. Edit the `/etc/radvd.conf` file, and add the following configuration:

```plaintext
interface enp1s0
{
  AdvSendAdvert on;
  AdvManagedFlag on;
  AdvOtherConfigFlag on;

  prefix 2001:db8:0:1::/64 {
  }
};
```

These settings configure `radvd` to send router advertisement messages on the `enp1s0` device for the `2001:db8:0:1::/64` subnet. The `AdvManagedFlag on` setting defines that the client should receive the IP address from a DHCP server, and the `AdvOtherConfigFlag` parameter set to `on` defines that clients should receive non-address information from the DHCP server as well.

3. Optionally, configure that `radvd` automatically starts when the system boots:

```
# systemctl enable radvd
```

4. Start the `radvd` service:

```
# systemctl start radvd
```

5. Optionally, display the content of router advertisement packages and the configured values `radvd` sends:

```
# radvdump
```

Additional resources

- For further details about configuring `radvd`, see the `radvd.conf(5)` man page.
- For an example configuration of `radvd`, see the `/usr/share/doc/radvd/radvd.conf.example` file.

42.5. SETTING NETWORK INTERFACES FOR THE DHCP SERVERS

By default, the `dhcpd` service processes requests only on network interfaces that have an IP address in the subnet defined in the configuration file of the service.

For example, in the following scenario, `dhcpd` listens only on the `enp0s1` network interface:

- You have only a `subnet` definition for the `192.0.2.0/24` network in the `/etc/dhcp/dhcpd.conf` file.
- The `enp0s1` network interface is connected to the `192.0.2.0/24` subnet.
- The `enp7s0` interface is connected to a different subnet.

Only follow the procedure in this section if the DHCP server contains multiple network interfaces connected to the same network but the service should listen only on specific interfaces.
Depending on whether you want to provide DHCP for IPv4, IPv6, or both protocols, see the procedure for:

- IPv4 networks
- IPv6 networks

Prerequisites

- You are logged in as the `root` user.
- The `dhcp-server` package is installed.

Procedure

- For IPv4 networks:
 1. Copy the `/usr/lib/systemd/system/dhcpd.service` file to the `/etc/systemd/system/` directory:

         ```
         # cp /usr/lib/systemd/system/dhcpd.service /etc/systemd/system/
         ```

 Do not edit the `/usr/lib/systemd/system/dhcpd.service` file. Future updates of the `dhcp-server` package can override the changes.

 2. Edit the `/etc/systemd/system/dhcpd.service` file, and append the names of the interface, that `dhcpd` should listen on to the command in the `ExecStart` parameter:

         ```
         ExecStart=/usr/sbin/dhcpd -f -cf /etc/dhcp/dhcpd.conf -user dhcpd -group dhcpd --no-pid
         $DHCPDARGS
         ```

 This example configures that `dhcpd` listens only on the `enp0s1` and `enp7s0` interfaces.

 3. Reload the `systemd` manager configuration:

         ```
         # systemctl daemon-reload
         ```

 4. Restart the `dhcpd` service:

         ```
         # systemctl restart dhcpd.service
         ```

- For IPv6 networks:
 1. Copy the `/usr/lib/systemd/system/dhcpd6.service` file to the `/etc/systemd/system/` directory:

         ```
         # cp /usr/lib/systemd/system/dhcpd6.service /etc/systemd/system/
         ```

 Do not edit the `/usr/lib/systemd/system/dhcpd6.service` file. Future updates of the `dhcp-server` package can override the changes.

 2. Edit the `/etc/systemd/system/dhcpd6.service` file, and append the names of the interface, that `dhcpd` should listen on to the command in the `ExecStart` parameter:
This example configures that `dhcpd` listens only on the `enp0s1` and `enp7s0` interfaces.

3. Reload the `systemd` manager configuration:
   ```
   # systemctl daemon-reload
   ```

4. Restart the `dhcpd6` service:
   ```
   # systemctl restart dhcpd6.service
   ```

42.6. SETTING UP THE DHCP SERVICE FOR SUBNETS DIRECTLY CONNECTED TO THE DHCP SERVER

Use the following procedure if the DHCP server is directly connected to the subnet for which the server should answer DHCP requests. This is the case if a network interface of the server has an IP address of this subnet assigned.

Depending on whether you want to provide DHCP for IPv4, IPv6, or both protocols, see the procedure for:

- IPv4 networks
- IPv6 networks

Prerequisites
- You are logged in as the **root** user.
- The `dhcpd-server` package is installed.

Procedure
- For IPv4 networks:
 1. Edit the `/etc/dhcp/dhcpd.conf` file:
 a. Optionally, add global parameters that `dhcpd` uses as default if no other directives contain these settings:
        ```
        option domain-name "example.com";
        default-lease-time 86400;
        ```
 This example sets the default domain name for the connection to `example.com`, and the default lease time to **86400** seconds (1 day).
 b. Add the `authoritative` statement on a new line:
        ```
        authoritative;
        ```
IMPORTANT

Without the authoritative statement, the dhcpd service does not answer DHCPREQUEST messages with DHCPNAK if a client asks for an address that is outside of the pool.

c. For each IPv4 subnet directly connected to an interface of the server, add a subnet declaration:

```plaintext
subnet 192.0.2.0 netmask 255.255.255.0 {
    range 192.0.2.20 192.0.2.100;
    option domain-name-servers 192.0.2.1;
    option routers 192.0.2.1;
    option broadcast-address 192.0.2.255;
    max-lease-time 172800;
}
```

This example adds a subnet declaration for the 192.0.2.0/24 network. With this configuration, the DHCP server assigns the following settings to a client that sends a DHCP request from this subnet:

- A free IPv4 address from the range defined in the range parameter
- IP of the DNS server for this subnet: 192.0.2.1
- Default gateway for this subnet: 192.0.2.1
- Broadcast address for this subnet: 192.0.2.255
- The maximum lease time, after which clients in this subnet release the IP and send a new request to the server: 172800 seconds (2 days)

2. Optionally, configure that dhcpd starts automatically when the system boots:

```plaintext
# systemctl enable dhcpd
```

3. Start the dhcpd service:

```plaintext
# systemctl start dhcpd
```

- For IPv6 networks:

1. Edit the /etc/dhcp/dhcpd6.conf file:

 a. Optionally, add global parameters that dhcpd uses as default if no other directives contain these settings:

```plaintext
option dhcp6.domain-search "example.com";
default-lease-time 86400;
```

 This example sets the default domain name for the connection to example.com, and the default lease time to 86400 seconds (1 day).

b. Add the authoritative statement on a new line:
c. For each IPv6 subnet directly connected to an interface of the server, add a subnet declaration:

```
subnet6 2001:db8:0:1::/64 {
    range6 2001:db8:0:1::20 2001:db8:0:1::100;
    option dhcp6.name-servers 2001:db8:0:1::1;
    max-lease-time 172800;
}
```

This example adds a subnet declaration for the 2001:db8:0:1::/64 network. With this configuration, the DHCP server assigns the following settings to a client that sends a DHCP request from this subnet:

- A free IPv6 address from the range defined in the range6 parameter.
- The IP of the DNS server for this subnet is 2001:db8:0:1::1.
- The maximum lease time, after which clients in this subnet release the IP and send a new request to the server is 172800 seconds (2 days).

Note that IPv6 requires uses router advertisement messages to identify the default gateway.

2. Optionally, configure that dhcpd6 starts automatically when the system boots:

```
# systemctl enable dhcpd6
```

3. Start the dhcpd6 service:

```
# systemctl start dhcpd6
```

Additional resources

- For a list of all parameters you can set in /etc/dhcp/dhcpd.conf and /etc/dhcp/dhcpd6.conf, see the dhcp-options(5) man page.

- For further details about the authoritative statement, see The authoritative statement section in the dhcpd.conf(5) man page.

- For example configurations, see the /usr/share/doc/dhcp-server/dhcpd.conf.example and /usr/share/doc/dhcp-server/dhcpd6.conf.example files.

42.7. Setting Up the DHCP Service for Subnets That Are Not Directly Connected to the DHCP Server

Use the following procedure if the DHCP server is not directly connected to the subnet for which the
server should answer DHCP requests. This is the case if a DHCP relay agent forwards requests to the DHCP server, because none of the DHCP server’s interfaces is directly connected to the subnet the server should serve.

Depending on whether you want to provide DHCP for IPv4, IPv6, or both protocols, see the procedure for:

- IPv4 networks
- IPv6 networks

Prerequisites

- You are logged in as the root user.
- The dhcpd-server package is installed.

Procedure

- For IPv4 networks:
 1. Edit the /etc/dhcp/dhcpd.conf file:
 a. Optionally, add global parameters that dhcpd uses as default if no other directives contain these settings:

        ```
        option domain-name "example.com";
        default-lease-time 86400;
        ```

 This example sets the default domain name for the connection to example.com, and the default lease time to 86400 seconds (1 day).

 b. Add the authoritative statement on a new line:

        ```
        authoritative;
        ```

 IMPORTANT

 Without the authoritative statement, the dhcpd service does not answer DHCPREQUEST messages with DHCPNAK if a client asks for an address that is outside of the pool.

 c. Add a shared-network declaration, such as the following, for IPv4 subnets that are not directly connected to an interface of the server:

        ```
        shared-network example {
          option domain-name-servers 192.0.2.1;
          ...
        }
        subnet 192.0.2.0 netmask 255.255.255.0 {
          range 192.0.2.20 192.0.2.100;
          option routers 192.0.2.1;
        }
        subnet 198.51.100.0 netmask 255.255.255.0 {
        ```
This example adds a shared network declaration, that contains a subnet declaration for both the 192.0.2.0/24 and 198.51.100.0/24 networks. With this configuration, the DHCP server assigns the following settings to a client that sends a DHCP request from one of these subnets:

- The IP of the DNS server for clients from both subnets is: **192.0.2.1**.
- A free IPv4 address from the range defined in the range parameter, depending on from which subnet the client sent the request.
- The default gateway is either **192.0.2.1** or **198.51.100.1** depending on from which subnet the client sent the request.

d. Add a subnet declaration for the subnet the server is directly connected to and that is used to reach the remote subnets specified in shared-network above:

```
subnet 203.0.113.0 netmask 255.255.255.0 {
}
```

NOTE

If the server does not provide DHCP service to this subnet, the subnet declaration must be empty as shown in the example. Without a declaration for the directly connected subnet, dhcpd does not start.

2. Optionally, configure that dhcpd starts automatically when the system boots:

```
# systemctl enable dhcpd
```

3. Start the dhcpd service:

```
# systemctl start dhcpd
```

- For IPv6 networks:

1. Edit the `/etc/dhcp/dhcpd6.conf` file:
 a. Optionally, add global parameters that dhcpd uses as default if no other directives contain these settings:

```
option dhcp6.domain-search "example.com";
default-lease-time 86400;
```

 This example sets the default domain name for the connection to example.com, and the default lease time to 86400 seconds (1 day).

 b. Add the authoritative statement on a new line:
IMPORTANT

Without the authoritative statement, the dhcpd service does not answer DHCPREQUEST messages with DHCPNAK if a client asks for an address that is outside of the pool.

c. Add a shared-network declaration, such as the following, for IPv6 subnets that are not directly connected to an interface of the server:

```
shared-network example {
    option domain-name-servers 2001:db8:0:1::1:1
    ...
    subnet6 2001:db8:0:1::1:0/120 {
        range6 2001:db8:0:1::1:20 2001:db8:0:1::1:100
    }
    subnet6 2001:db8:0:1::2:0/120 {
        range6 2001:db8:0:1::2:20 2001:db8:0:1::2:100
    }
    ...
}
```

This example adds a shared network declaration that contains a subnet6 declaration for both the 2001:db8:0:1::1:0/120 and 2001:db8:0:1::2:0/120 networks. With this configuration, the DHCP server assigns the following settings to a client that sends a DHCP request from one of these subnets:

- The IP of the DNS server for clients from both subnets is 2001:db8:0:1::1:1.
- A free IPv6 address from the range defined in the range6 parameter, depending on from which subnet the client sent the request.

Note that IPv6 requires uses router advertisement messages to identify the default gateway.

d. Add a subnet6 declaration for the subnet the server is directly connected to and that is used to reach the remote subnets specified in shared-network above:

```
subnet6 2001:db8:0:1::50:0/120 {
}
```

NOTE

If the server does not provide DHCP service to this subnet, the subnet6 declaration must be empty as shown in the example. Without a declaration for the directly connected subnet, dhcpd does not start.

2. Optionally, configure that dhcpd6 starts automatically when the system boots:

```
# systemctl enable dhcpd6
```
3. Start the dhcpd6 service:

```bash
# systemctl start dhcpd6
```

Additional resources

- For a list of all parameters you can set in /etc/dhcp/dhcpd.conf and /etc/dhcp/dhcpd6.conf, see the dhcp-options(5) man page.
- For further details about the authoritative statement, see The authoritative statement section in the dhcpd.conf(5) man page.
- For example configurations, see the /usr/share/doc/dhcp-server/dhcpd.conf.example and /usr/share/doc/dhcp-server/dhcpd6.conf.example files.
- Section 42.11, “Setting up a DHCP relay agent”

42.8. ASSIGNING A STATIC ADDRESS TO A HOST USING DHCP

Using a host declaration, you can configure the DHCP server to assign a fixed IP address to a media access control (MAC) address of a host. For example, use this method to always assign the same IP address to a server or network device.

IMPORTANT

If you configure a fixed IP address for a MAC address, the IP address must be outside of the address pool you specified in the fixed-address and fixed-address6 parameters.

Depending on whether you want to configure fixed addresses for IPv4, IPv6, or both protocols, see the procedure for:

- IPv4 networks
- IPv6 networks

Prerequisites

- The dhcpd service is configured and running.
- You are logged in as the root user.

Procedure

- For IPv4 networks:
 1. Edit the /etc/dhcp/dhcpd.conf file:
 a. Add a host declaration:

```bash
host server.example.com {
  hardware ethernet 52:54:00:72:2f:6e;
  fixed-address 192.0.2.130;
}
```
This example configures the DHCP server to always assigns the **192.0.2.130** IP address to the host with the **52:54:00:72:2f:6e** MAC address.

The `dhcpd` service identifies systems by the MAC address specified in the **fixed-address** parameter, and not by the name in the **host** declaration. As a consequence, you can set this name to any string that does not match other **host** declarations. To configure the same system for multiple networks, use a different name, otherwise, `dhcpd` fails to start.

b. Optionally, add further settings to the **host** declaration that are specific for this host.

2. Restart the **dhcpd** service:

   ```bash
   # systemctl start dhcpd
   ```

 • For IPv6 networks:

 1. Edit the `/etc/dhcp/dhcpd.conf` file:

 a. Add a **host** declaration:

      ```
      host server.example.com {
        hardware ethernet 52:54:00:72:2f:6e;
        fixed-address 2001:db8:0:1::20;
      }
      ```

 This example configures the DHCP server to always assign the **2001:db8:0:1::20** IP address to the host with the **52:54:00:72:2f:6e** MAC address.

 The `dhcpd` service identifies systems by the MAC address specified in the **fixed-address6** parameter, and not by the name in the **host** declaration. As a consequence, you can set this name to any string, as long as it is unique to other **host** declarations. To configure the same system for multiple networks, use a different name because, otherwise, `dhcpd` fails to start.

 b. Optionally, add further settings to the **host** declaration that are specific for this host.

2. Restart the **dhcpd6** service:

   ```bash
   # systemctl start dhcpd6
   ```

Additional resources

• For a list of all parameters you can set in `/etc/dhcp/dhcpd.conf` and `/etc/dhcp/dhcpd6.conf`, see the `dhcp-options(5)` man page.

• For example configurations, see the `/usr/share/doc/dhcp-server/dhcpd.conf.example` and `/usr/share/doc/dhcp-server/dhcpd6.conf.example` files.

42.9. USING A GROUP DECLARATION TO APPLY PARAMETERS TO MULTIPLE HOSTS, SUBNETS, AND SHARED NETWORKS AT THE SAME TIME
Using a **group** declaration, you can apply the same parameters to multiple hosts, subnets, and shared networks.

Note that the procedure in this section describes using a **group** declaration for hosts, but the steps are the same for subnets and shared networks.

Depending on whether you want to configure a group for IPv4, IPv6, or both protocols, see the procedure for:

- IPv4 networks
- IPv6 networks

Prerequisites

- The **dhcpd** service is configured and running.
- You are logged in as the **root** user.

Procedure

- For IPv4 networks:

 1. Edit the `/etc/dhcp/dhcpd.conf` file:

 a. Add a **group** declaration:

        ```
        group {
          option domain-name-servers 192.0.2.1;

          host server1.example.com {
            hardware ethernet 52:54:00:72:2f:6e;
            fixed-address 192.0.2.130;
          }

          host server2.example.com {
            hardware ethernet 52:54:00:1b:f3:cf;
            fixed-address 192.0.2.140;
          }
        }
        ```

 This **group** definition groups two **host** entries. The **dhcpd** service applies the value set in the **option domain-name-servers** parameter to both hosts in the group.

 b. Optionally, add further settings to the **group** declaration that are specific for these hosts.

 2. Restart the **dhcpd** service:

     ```
     # systemctl start dhcpcd
     ```

- For IPv6 networks:

 1. Edit the `/etc/dhcp/dhcpcd6.conf` file:

 a. Add a **group** declaration:

        ```
group {
  option dhcp6.domain-search "example.com";

  host server1.example.com {
    hardware ethernet 52:54:00:72:2f:6e;
    fixed-address 2001:db8:0:1::200;
  }

  host server2.example.com {
    hardware ethernet 52:54:00:1b:f3:cf;
    fixed-address 2001:db8:0:1::ba3;
  }
}

This **group** definition groups two **host** entries. The **dhcpd** service applies the value set in the **option dhcp6.domain-search** parameter to both hosts in the group.

b. Optionally, add further settings to the **group** declaration that are specific for these hosts.

2. Restart the **dhcpd6** service:

   ```bash
 # systemctl start dhcpd6
   ```

Additional resources

- For a list of all parameters you can set in `/etc/dhcp/dhcpd.conf` and `/etc/dhcp/dhcpd6.conf`, see the **dhcp-options(5)** man page.

- For example configurations, see the `/usr/share/doc/dhcp-server/dhcpd.conf.example` and `/usr/share/doc/dhcp-server/dhcpd6.conf.example` files.

### 42.10. RESTORING A CORRUPT LEASE DATABASE

If the DHCP server logs an error that is related to the lease database, such as **Corrupt lease file - possible data loss!**, you can restore the lease database from the copy the **dhcpd** service created. Note that this copy might not reflect the latest status of the database.

**WARNING**

If you remove the lease database instead of replacing it with a backup, you lose all information about the currently assigned leases. As a consequence, the DHCP server could assign leases to clients that have been previously assigned to other hosts and are not expired yet. This leads to IP conflicts.

Depending on whether you want to restore the DHCPv4, DHCPv6, or both databases, see the procedure for:

- **Restoring the DHCPv4 lease database**
Restoring the DHCPv6 lease database

Prerequisites

- You are logged in as the root user.
- The lease database is corrupt.

Procedure

- Restoring the DHCPv4 lease database:
  1. Stop the dhcpd service:
     
     ```
 # systemctl stop dhcpd
     ```
  2. Rename the corrupt lease database:
     
     ```
 # mv /var/lib/dhcpd/dhcpd.leases /var/lib/dhcpd/dhcpd.leases.corrupt
     ```
  3. Restore the copy of the lease database that the dhcp service created when it refreshed the lease database:
     
     ```
 # cp -p /var/lib/dhcpd/dhcpd.leases~ /var/lib/dhcpd/dhcpd.leases
     ```
     
     **IMPORTANT**
     
     If you have a more recent backup of the lease database, restore this backup instead.
  4. Start the dhcpd service:
     
     ```
 # systemctl start dhcpd
     ```

- Restoring the DHCPv6 lease database:
  1. Stop the dhcpd6 service:
     
     ```
 # systemctl stop dhcpcd6
     ```
  2. Rename the corrupt lease database:
     
     ```
 # mv /var/lib/dhcpd/dhcpd6.leases /var/lib/dhcpd/dhcpd6.leases.corrupt
     ```
  3. Restore the copy of the lease database that the dhcpcp service created when it refreshed the lease database:
     
     ```
 # cp -p /var/lib/dhcpd/dhcpd6.leases~ /var/lib/dhcpd/dhcpd6.leases
     ```
IMPORTANT

If you have a more recent backup of the lease database, restore this backup instead.

4. Start the dhcpd6 service:
   
   # systemctl start dhcpd6

Additional resources

- Section 42.2, “The lease database of the dhcpd service”

42.11. SETTING UP A DHCP RELAY AGENT

The DHCP Relay Agent (dhcrelay) enables the relay of DHCP and BOOTP requests from a subnet with no DHCP server on it to one or more DHCP servers on other subnets. When a DHCP client requests information, the DHCP Relay Agent forwards the request to the list of DHCP servers specified. When a DHCP server returns a reply, the DHCP Relay Agent forwards this request to the client.

Depending on whether you want to set up a DHCP relay for IPv4, IPv6, or both protocols, see the procedure for:

- IPv4 networks
- IPv6 networks

Prerequisites

- You are logged in as the root user.

Procedure

- For IPv4 networks:
  
  1. Install the dhcp-relay package:
     
     # yum install dhcp-relay
  
  2. Copy the /lib/systemd/system/dhcrelay.service file to the /etc/systemd/system/ directory:
     
     # cp /lib/systemd/system/dhcrelay.service /etc/systemd/system/
     
     Do not edit the /usr/lib/systemd/system/dhcrelay.service file. Future updates of the dhcp-relay package can override the changes.
  
  3. Edit the /etc/systemd/system/dhcrelay.service file, and append the -i interface parameter, together with a list of IP addresses of DHCPv4 servers that are responsible for the subnet:
     
     ExecStart=/usr/sbin/dhcrelay -d --no-pid -i enp1s0 192.0.2.1
With these additional parameters, `dhcrelay` listens for DHCPv4 requests on the `enp1s0` interface and forwards them to the DHCP server with the IP `192.0.2.1`.

4. Reload the `systemd` manager configuration:

   ```bash
 # systemctl daemon-reload
   ```

5. Optionally, configure that the `dhcrelay` service starts when the system boots:

   ```bash
 # systemctl enable dhcrelay.service
   ```

6. Start the `dhcrelay` service:

   ```bash
 # systemctl start dhcrelay.service
   ```

   For IPv6 networks:

   1. Install the `dhcp-relay` package:

      ```bash
 # yum install dhcp-relay
      ```

   2. Copy the `/lib/systemd/system/dhcrelay.service` file to the `/etc/systemd/system/` directory and name the file `dhcrelay6.service`:

      ```bash
 # cp /lib/systemd/system/dhcrelay.service /etc/systemd/system/dhcrelay6.service
      ```

      Do not edit the `/usr/lib/systemd/system/dhcrelay.service` file. Future updates of the `dhcp-relay` package can override the changes.

   3. Edit the `/etc/systemd/system/dhcrelay6.service` file, and append the `-l receiving_interface` and `-u outgoing_interface` parameters:

      ```bash
 ExecStart=/usr/sbin/dhcrelay -d --no-pid -l enp1s0 -u enp7s0
      ```

      With these additional parameters, `dhcrelay` listens for DHCPv6 requests on the `enp1s0` interface and forwards them to the network connected to the `enp7s0` interface.

    4. Reload the `systemd` manager configuration:

       ```bash
 # systemctl daemon-reload
       ```

    5. Optionally, configure that the `dhcrelay6` service starts when the system boots:

       ```bash
 # systemctl enable dhcrelay6.service
       ```

    6. Start the `dhcrelay6` service:

       ```bash
 # systemctl start dhcrelay6.service
       ```

**Additional resources**

- For further details about `dhcrelay`, see the `dhcrelay(8)` man page.
Additional resources

- Section 42.1, “The differences when using dhcpd for DHCPv4 and DHCPv6”
A firewall is a way to protect machines from any unwanted traffic from outside. It enables users to control incoming network traffic on host machines by defining a set of firewall rules. These rules are used to sort the incoming traffic and either block it or allow through.

Note that firewalld with nftables backend does not support passing custom nftables rules to firewalld, using the --direct option.

### 43.1. WHEN TO USE FIREWALLD, NFTABLES, OR IPTABLES

The following is a brief overview in which scenario you should use one of the following utilities:

- **firewalld**: Use the `firewalld` utility to configure a firewall on workstations. The utility is easy to use and covers the typical use cases for this scenario.

- **nftables**: Use the `nftables` utility to set up complex firewalls, such as for a whole network.

- **iptables**: The `iptables` utility on Red Hat Enterprise Linux 8 uses the `nf_tables` kernel API instead of the legacy back end. The `nf_tables` API provides backward compatibility so that scripts that use `iptables` commands still work on Red Hat Enterprise Linux 8. For new firewall scripts, Red Hat recommends to use `nftables`.

**IMPORTANT**

To avoid that the different firewall services influence each other, run only one of them on a RHEL host, and disable the other services.

### 43.2. GETTING STARTED WITH FIREWALLD

#### 43.2.1. `firewalld`

`firewalld` is a firewall service daemon that provides a dynamic customizable host-based firewall with a D-Bus interface. Being dynamic, it enables creating, changing, and deleting the rules without the necessity to restart the firewall daemon each time the rules are changed.

`firewalld` uses the concepts of zones and services, that simplify the traffic management. Zones are predefined sets of rules. Network interfaces and sources can be assigned to a zone. The traffic allowed depends on the network your computer is connected to and the security level this network is assigned. Firewall services are predefined rules that cover all necessary settings to allow incoming traffic for a specific service and they apply within a zone.

Services use one or more ports or addresses for network communication. Firewalls filter communication based on ports. To allow network traffic for a service, its ports must be open. `firewalld` blocks all traffic on ports that are not explicitly set as open. Some zones, such as trusted, allow all traffic by default.

**Additional resources**

- `firewalld(1)` man page

#### 43.2.2. Zones
**firewalld** can be used to separate networks into different zones according to the level of trust that the user has decided to place on the interfaces and traffic within that network. A connection can only be part of one zone, but a zone can be used for many network connections.

**NetworkManager** notifies **firewalld** of the zone of an interface. You can assign zones to interfaces with:

- **NetworkManager**
- **firewall-config** tool
- **firewall-cmd** command-line tool
- The RHEL web console

The latter three can only edit the appropriate **NetworkManager** configuration files. If you change the zone of the interface using the web console, **firewall-cmd** or **firewall-config**, the request is forwarded to **NetworkManager** and is not handled by **firewalld**.

The predefined zones are stored in the `/usr/lib/firewalld/zones/` directory and can be instantly applied to any available network interface. These files are copied to the `/etc/firewalld/zones/` directory only after they are modified. The default settings of the predefined zones are as follows:

- **block**
  Any incoming network connections are rejected with an icmp-host-prohibited message for **IPv4** and icmp6-adm-prohibited for **IPv6**. Only network connections initiated from within the system are possible.

- **dmz**
  For computers in your demilitarized zone that are publicly-accessible with limited access to your internal network. Only selected incoming connections are accepted.

- **drop**
  Any incoming network packets are dropped without any notification. Only outgoing network connections are possible.

- **external**
  For use on external networks with masquerading enabled, especially for routers. You do not trust the other computers on the network to not harm your computer. Only selected incoming connections are accepted.

- **home**
  For use at home when you mostly trust the other computers on the network. Only selected incoming connections are accepted.

- **internal**
  For use on internal networks when you mostly trust the other computers on the network. Only selected incoming connections are accepted.

- **public**
  For use in public areas where you do not trust other computers on the network. Only selected incoming connections are accepted.

- **trusted**
  All network connections are accepted.

- **work**
  For use at work where you mostly trust the other computers on the network. Only selected incoming connections are accepted.
One of these zones is set as the default zone. When interface connections are added to NetworkManager, they are assigned to the default zone. On installation, the default zone in firewalld is set to be the public zone. The default zone can be changed.

NOTE

The network zone names should be self-explanatory and to allow users to quickly make a reasonable decision. To avoid any security problems, review the default zone configuration and disable any unnecessary services according to your needs and risk assessments.

Additional resources

- firewalld.zone(5) man page

43.2.3. Predefined services

A service can be a list of local ports, protocols, source ports, and destinations, as well as a list of firewall helper modules automatically loaded if a service is enabled. Using services saves users time because they can achieve several tasks, such as opening ports, defining protocols, enabling packet forwarding and more, in a single step, rather than setting up everything one after another.

Service configuration options and generic file information are described in the firewalld.service(5) man page. The services are specified by means of individual XML configuration files, which are named in the following format: service-name.xml. Protocol names are preferred over service or application names in firewalld.

Services can be added and removed using the graphical firewall-config tool, firewall-cmd, and firewall-offline-cmd.

Alternatively, you can edit the XML files in the /etc/firewalld/services/ directory. If a service is not added or changed by the user, then no corresponding XML file is found in /etc/firewalld/services/. The files in the /usr/lib/firewalld/services/ directory can be used as templates if you want to add or change a service.

Additional resources

- firewalld.service(5) man page

43.3. INSTALLING THE FIREWALL-CONFIG GUI CONFIGURATION TOOL

To use the firewall-config GUI configuration tool, install the firewall-config package.

Procedure

1. Enter the following command as root:

   # yum install firewall-config

   Alternatively, in GNOME, use the Super key and type `Software` to launch the Software Sources application. Type firewall to the search box, which appears after selecting the search button in the top-right corner. Select the Firewall item from the search results, and click on the Install button.
To run `firewall-config`, use either the `firewall-config` command or press the Super key to enter the Activities Overview, type `firewall`, and press Enter.

### 43.4. VIEWING THE CURRENT STATUS AND SETTINGS OF FIREWALLD

#### 43.4.1. Viewing the current status of firewalld

The firewall service, `firewalld`, is installed on the system by default. Use the `firewalld` CLI interface to check that the service is running.

**Procedure**

1. To see the status of the service:

   ```bash
 # firewall-cmd --state
   ```

2. For more information about the service status, use the `systemctl status` sub-command:

   ```bash
 # systemctl status firewalld
 firewalld.service - firewalld - dynamic firewall daemon
 Loaded: loaded (/usr/lib/systemd/system/firewalld.service; enabled; vendor provided)
 Active: active (running) since Mon 2017-12-18 16:05:15 CET; 50min ago
 Docs: man:firewalld(1)
 Main PID: 705 (firewalld)
 Tasks: 2 (limit: 4915)
 CGroup: /system.slice/firewalld.service
 └─ 705 /usr/bin/python3 -Es /usr/sbin/firewalld --nofork --nopid
   ```

**Additional resources**

It is important to know how `firewalld` is set up and which rules are in force before you try to edit the settings. To display the firewall settings, see Section 43.4.2, “Viewing current firewalld settings”

#### 43.4.2. Viewing current firewalld settings

#### 43.4.2.1. Viewing allowed services using GUI

To view the list of services using the graphical `firewall-config` tool, press the Super key to enter the Activities Overview, type `firewall`, and press Enter. The `firewall-config` tool appears. You can now view the list of services under the Services tab.

Alternatively, to start the graphical firewall configuration tool using the command-line, enter the following command:

```bash
$ firewall-config
```

The Firewall Configuration window opens. Note that this command can be run as a normal user, but you are prompted for an administrator password occasionally.

#### 43.4.2.2. Viewing firewalld settings using CLI

With the CLI client, it is possible to get different views of the current firewall settings. The `--list-all` option shows a complete overview of the `firewalld` settings.
firewalld uses zones to manage the traffic. If a zone is not specified by the \texttt{--zone} option, the command is effective in the default zone assigned to the active network interface and connection.

To list all the relevant information for the default zone:

```
firewall-cmd --list-all
public
 target: default
 icmp-block-inversion: no
 interfaces:
 sources:
 services: ssh dhcpv6-client
 ports:
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:
```

To specify the zone for which to display the settings, add the \texttt{--zone=zone-name} argument to the \texttt{firewall-cmd --list-all} command, for example:

```
firewall-cmd --list-all --zone=home
home
 target: default
 icmp-block-inversion: no
 interfaces:
 sources:
 services: ssh mdns samba-client dhcpv6-client
 ... [trimmed for clarity]
```

To see the settings for particular information, such as services or ports, use a specific option. See the \texttt{firewalld} manual pages or get a list of the options using the command help:

```
firewall-cmd --help

Usage: firewall-cmd [OPTIONS...]

General Options
 -h, --help Prints a short help text and exists
 -V, --version Print the version string of firewalld
 -q, --quiet Do not print status messages

Status Options
 --state Return and print firewalld state
 --reload Reload firewall and keep state information
 ... [trimmed for clarity]
```

For example, to see which services are allowed in the current zone:

```
firewall-cmd --list-services
ssh dhcpv6-client
```
NOTE

Listing the settings for a certain subpart using the CLI tool can sometimes be difficult to interpret. For example, you allow the SSH service and firewalld opens the necessary port (22) for the service. Later, if you list the allowed services, the list shows the SSH service, but if you list open ports, it does not show any. Therefore, it is recommended to use the --list-all option to make sure you receive a complete information.

43.5. STARTING FIREWALLD

Procedure

1. To start firewalld, enter the following command as root:
   
   # systemctl unmask firewalld
   # systemctl start firewalld

2. To ensure firewalld starts automatically at system start, enter the following command as root:

   # systemctl enable firewalld

43.6. STOPPING FIREWALLD

Procedure

1. To stop firewalld, enter the following command as root:

   # systemctl stop firewalld

2. To prevent firewalld from starting automatically at system start:

   # systemctl disable firewalld

3. To make sure firewalld is not started by accessing the firewalld D-Bus interface and also if other services require firewalld:

   # systemctl mask firewalld

43.7. RUNTIME AND PERMANENT SETTINGS

Any changes committed in runtime mode only apply while firewalld is running. When firewalld is restarted, the settings revert to their permanent values.

To make the changes persistent across reboots, apply them again using the --permanent option. Alternatively, to make changes persistent while firewalld is running, use the --runtime-to-permanent firewall-cmd option.

If you set the rules while firewalld is running using only the --permanent option, they do not become effective before firewalld is restarted. However, restarting firewalld closes all open ports and stops the networking traffic.

Modifying settings in runtime and permanent configuration using CLI
Using the CLI, you do not modify the firewall settings in both modes at the same time. You only modify either runtime or permanent mode. To modify the firewall settings in the permanent mode, use the --permanent option with the firewall-cmd command.

```
firewall-cmd --permanent <other options>
```

Without this option, the command modifies runtime mode.

To change settings in both modes, you can use two methods:

1. Change runtime settings and then make them permanent as follows:
```
firewall-cmd <other options>
firewall-cmd --runtime-to-permanent
```

2. Set permanent settings and reload the settings into runtime mode:
```
firewall-cmd --permanent <other options>
firewall-cmd --reload
```

The first method allows you to test the settings before you apply them to the permanent mode.

**NOTE**

It is possible, especially on remote systems, that an incorrect setting results in a user locking themselves out of a machine. To prevent such situations, use the --timeout option. After a specified amount of time, any change reverts to its previous state. Using this options excludes the --permanent option.

For example, to add the SSH service for 15 minutes:
```
firewall-cmd --add-service=ssh --timeout 15m
```

### 43.8. VERIFYING THE PERMANENT FIREWALLD CONFIGURATION

In certain situations, for example after manually editing firewalld configuration files, administrators want to verify that the changes are correct. This section describes how to verify the permanent configuration of the firewalld service.

**Prerequisites**

- The `firewalld` service is running.

**Procedure**

1. Verify the permanent configuration of the `firewalld` service:
```
firewall-cmd --check-config
success
```

If the permanent configuration is valid, the command returns success. In other cases, the command returns an error with further details, such as the following:
43.9. CONTROLLING NETWORK TRAFFIC USING FIREWALLD

43.9.1. Disabling all traffic in case of emergency using CLI

In an emergency situation, such as a system attack, it is possible to disable all network traffic and cut off the attacker.

Procedure

1. To immediately disable networking traffic, switch panic mode on:
   
   # firewall-cmd --panic-on

   **IMPORTANT**

   Enabling panic mode stops all networking traffic. From this reason, it should be used only when you have the physical access to the machine or if you are logged in using a serial console.

   Switching off panic mode reverts the firewall to its permanent settings. To switch panic mode off:

   # firewall-cmd --panic-off

   To see whether panic mode is switched on or off, use:

   # firewall-cmd --query-panic

43.9.2. Controlling traffic with predefined services using CLI

The most straightforward method to control traffic is to add a predefined service to firewalld. This opens all necessary ports and modifies other settings according to the service definition file.

Procedure

1. Check that the service is not already allowed:

   # firewall-cmd --list-services
   ssh dhcpv6-client

2. List all predefined services:

   # firewall-cmd --get-services
   RH-Satellite-6 amanda-client amanda-k5-client bacula bacula-client bitcoin bitcoin-rpc
   bitcoin-testnet bitcoin-testnet-rpc ceph ceph-mon cfengine condor-collector ctdb dhcp dhcpv6
   dhcpv6-client dns docker-registry ...

   [trimmed for clarity]

3. Add the service to the allowed services:
# firewall-cmd --add-service=<service-name>

4. Make the new settings persistent:

# firewall-cmd --runtime-to-permanent

### 43.9.3. Controlling traffic with predefined services using GUI

To enable or disable a predefined or custom service:

1. Start the `firewall-config` tool and select the network zone whose services are to be configured.

2. Select the Services tab.

3. Select the check box for each type of service you want to trust or clear the check box to block a service.

To edit a service:

1. Start the `firewall-config` tool.

2. Select Permanent from the menu labeled Configuration. Additional icons and menu buttons appear at the bottom of the Services window.

3. Select the service you want to configure.

The Ports, Protocols, and Source Port tabs enable adding, changing, and removing of ports, protocols, and source port for the selected service. The modules tab is for configuring Netfilter helper modules. The Destination tab enables limiting traffic to a particular destination address and Internet Protocol (IPv4 or IPv6).

**NOTE**

It is not possible to alter service settings in Runtime mode.

### 43.9.4. Adding new services

Services can be added and removed using the graphical `firewall-config` tool, `firewall-cmd`, and `firewall-offline-cmd`. Alternatively, you can edit the XML files in `/etc/firewalld/services/`. If a service is not added or changed by the user, then no corresponding XML file are found in `/etc/firewalld/services/`. The files `/usr/lib/firewalld/services/` can be used as templates if you want to add or change a service.

**NOTE**

Service names must be alphanumeric and can, additionally, include only _ (underscore) and - (dash) characters.

**Procedure**

To add a new service in a terminal, use `firewall-cmd`, or `firewall-offline-cmd` in case of not active `firewalld`.

1. Enter the following command to add a new and empty service:
1. To add a new service using a local file, use the following command:

```
$ firewall-cmd --new-service-from-file=service-name.xml --permanent
```

You can change the service name with the additional `--name=service-name` option.

3. As soon as service settings are changed, an updated copy of the service is placed into `/etc/firewalld/services/`.

As `root`, you can enter the following command to copy a service manually:

```
cp /usr/lib/firewalld/services/service-name.xml /etc/firewalld/services/service-name.xml
```

`firewalld` loads files from `/usr/lib/firewalld/services` in the first place. If files are placed in `/etc/firewalld/services` and they are valid, then these will override the matching files from `/usr/lib/firewalld/services`. The overridden files in `/usr/lib/firewalld/services` are used as soon as the matching files in `/etc/firewalld/services` have been removed or if `firewalld` has been asked to load the defaults of the services. This applies to the permanent environment only. A reload is needed to get these fallbacks also in the runtime environment.

### 43.9.5. Controlling ports using CLI

Ports are logical devices that enable an operating system to receive and distinguish network traffic and forward it accordingly to system services. These are usually represented by a daemon that listens on the port, that is it waits for any traffic coming to this port.

Normally, system services listen on standard ports that are reserved for them. The `httpd` daemon, for example, listens on port 80. However, system administrators by default configure daemons to listen on different ports to enhance security or for other reasons.

#### 43.9.5.1. Opening a port

Through open ports, the system is accessible from the outside, which represents a security risk. Generally, keep ports closed and only open them if they are required for certain services.

**Procedure**

To get a list of open ports in the current zone:

1. List all allowed ports:

   ```
 # firewall-cmd --list-ports
   ```

2. Add a port to the allowed ports to open it for incoming traffic:

   ```
 # firewall-cmd --add-port=port-number/port-type
   ```

3. Make the new settings persistent:

   ```
 # firewall-cmd --runtime-to-permanent
   ```
The port types are either tcp, udp, sctp, or dccp. The type must match the type of network communication.

43.9.5.2. Closing a port

When an open port is no longer needed, close that port in firewalld. It is highly recommended to close all unnecessary ports as soon as they are not used because leaving a port open represents a security risk.

Procedure

To close a port, remove it from the list of allowed ports:

1. List all allowed ports:

   ```bash
 # firewall-cmd --list-ports
 [WARNING]
 =====
 This command will only give you a list of ports that have been opened as ports. You will not
 be able to see any open ports that have been opened as a service. Therefore, you should
 consider using the --list-all option instead of --list-ports.
 =====
   ```

2. Remove the port from the allowed ports to close it for the incoming traffic:

   ```bash
 # firewall-cmd --remove-port=port-number/port-type
   ```

3. Make the new settings persistent:

   ```bash
 # firewall-cmd --runtime-to-permanent
   ```

43.9.6. Opening ports using GUI

To permit traffic through the firewall to a certain port:

1. Start the firewall-config tool and select the network zone whose settings you want to change.

2. Select the Ports tab and click the Add button on the right-hand side. The Port and Protocol window opens.

3. Enter the port number or range of ports to permit.

4. Select tcp or udp from the list.

43.9.7. Controlling traffic with protocols using GUI

To permit traffic through the firewall using a certain protocol:

1. Start the firewall-config tool and select the network zone whose settings you want to change.

2. Select the Protocols tab and click the Add button on the right-hand side. The Protocol window opens.

3. Either select a protocol from the list or select the Other Protocol check box and enter the protocol in the field.
43.9.8. Opening source ports using GUI

To permit traffic through the firewall from a certain port:

1. Start the firewall-config tool and select the network zone whose settings you want to change.
2. Select the Source Port tab and click the Add button on the right-hand side. The Source Port window opens.
3. Enter the port number or range of ports to permit. Select tcp or udp from the list.

43.10. WORKING WITH FIREWALLD ZONES

Zones represent a concept to manage incoming traffic more transparently. The zones are connected to networking interfaces or assigned a range of source addresses. You manage firewall rules for each zone independently, which enables you to define complex firewall settings and apply them to the traffic.

43.10.1. Listing zones

Procedure

1. To see which zones are available on your system:

   # firewall-cmd --get-zones

   The firewall-cmd --get-zones command displays all zones that are available on the system, but it does not show any details for particular zones.

2. To see detailed information for all zones:

   # firewall-cmd --list-all-zones

3. To see detailed information for a specific zone:

   # firewall-cmd --zone=zone-name --list-all

43.10.2. Modifying firewalld settings for a certain zone

The Section 43.9.2, “Controlling traffic with predefined services using CLI” and Section 43.9.5, “Controlling ports using CLI” explain how to add services or modify ports in the scope of the current working zone. Sometimes, it is required to set up rules in a different zone.

Procedure

1. To work in a different zone, use the --zone=zone-name option. For example, to allow the SSH service in the zone public:

   # firewall-cmd --add-service=ssh --zone=public

43.10.3. Changing the default zone
System administrators assign a zone to a networking interface in its configuration files. If an interface is not assigned to a specific zone, it is assigned to the default zone. After each restart of the firewalld service, firewalld loads the settings for the default zone and makes it active.

Procedure
To set up the default zone:

1. Display the current default zone:
   
   # firewall-cmd --get-default-zone

2. Set the new default zone:
   
   # firewall-cmd --set-default-zone zone-name

   **NOTE**
   
   Following this procedure, the setting is a permanent setting, even without the `--permanent` option.

43.10.4. Assigning a network interface to a zone

It is possible to define different sets of rules for different zones and then change the settings quickly by changing the zone for the interface that is being used. With multiple interfaces, a specific zone can be set for each of them to distinguish traffic that is coming through them.

Procedure
To assign the zone to a specific interface:

1. List the active zones and the interfaces assigned to them:
   
   # firewall-cmd --get-active-zones

2. Assign the interface to a different zone:
   
   # firewall-cmd --zone=zone_name --change-interface=interface_name --permanent

43.10.5. Assigning a zone to a connection using nmcli

This procedure describes how to add a firewalld zone to a NetworkManager connection using the `nmcli` utility.

Procedure

1. Assign the zone to the NetworkManager connection profile:
   
   # nmcli connection profile modify connection.zone zone_name

2. Reload the connection:
   
   # nmcli connection up profile
43.10.6. Manually assigning a zone to a network connection in an ifcfg file

When the connection is managed by NetworkManager, it must be aware of a zone that it uses. For every network connection, a zone can be specified, which provides the flexibility of various firewall settings according to the location of the computer with portable devices. Thus, zones and settings can be specified for different locations, such as company or home.

Procedure

1. To set a zone for a connection, edit the `/etc/sysconfig/network-scripts/ifcfg-connection_name` file and add a line that assigns a zone to this connection:

   ```
 ZONE=zone_name
   ```

43.10.7. Creating a new zone

To use custom zones, create a new zone and use it just like a predefined zone. New zones require the `--permanent` option, otherwise the command does not work.

Procedure

To create a new zone:

1. Create a new zone:

   ```
 # firewall-cmd --new-zone=zone-name
   ```

2. Check if the new zone is added to your permanent settings:

   ```
 # firewall-cmd --get-zones
   ```

3. Make the new settings persistent:

   ```
 # firewall-cmd --runtime-to-permanent
   ```

43.10.8. Zone configuration files

Zones can also be created using a zone configuration file. This approach can be helpful when you need to create a new zone, but want to reuse the settings from a different zone and only alter them a little.

A `firewalld` zone configuration file contains the information for a zone. These are the zone description, services, ports, protocols, icmp-blocks, masquerade, forward-ports and rich language rules in an XML file format. The file name has to be `zone-name.xml` where the length of `zone-name` is currently limited to 17 chars. The zone configuration files are located in the `/usr/lib/firewalld/zones/` and `/etc/firewalld/zones/` directories.

The following example shows a configuration that allows one service (SSH) and one port range, for both the TCP and UDP protocols:

```xml
<?xml version="1.0" encoding="utf-8"?>
<zone>
 <short>My zone</short>
 <description>Here you can describe the characteristic features of the zone.</description>
 <service name="ssh"/>
```
To change settings for that zone, add or remove sections to add ports, forward ports, services, and so on.

Additional resources

- For more information, see the firewalld.zone manual pages.

### 43.10.9. Using zone targets to set default behavior for incoming traffic

For every zone, you can set a default behavior that handles incoming traffic that is not further specified. Such behaviour is defined by setting the target of the zone. There are four options - **default**, **ACCEPT**, **REJECT**, and **DROP**. By setting the target to **ACCEPT**, you accept all incoming packets except those disabled by a specific rule. If you set the target to **REJECT** or **DROP**, you disable all incoming packets except those that you have allowed in specific rules. When packets are rejected, the source machine is informed about the rejection, while there is no information sent when the packets are dropped.

**Procedure**

To set a target for a zone:

1. List the information for the specific zone to see the default target:
   ```bash
 $ firewall-cmd --zone=zone-name --list-all
   ```
2. Set a new target in the zone:
   ```bash
 # firewall-cmd --permanent --zone=zone-name --set-target=<default|ACCEPT|REJECT|DROP>
   ```

### 43.11. USING ZONES TO MANAGE INCOMING TRAFFIC DEPENDING ON A SOURCE

#### 43.11.1. Using zones to manage incoming traffic depending on a source

You can use zones to manage incoming traffic based on its source. That enables you to sort incoming traffic and route it through different zones to allow or disallow services that can be reached by that traffic.

If you add a source to a zone, the zone becomes active and any incoming traffic from that source will be directed through it. You can specify different settings for each zone, which is applied to the traffic from the given sources accordingly. You can use more zones even if you only have one network interface.

#### 43.11.2. Adding a source

To route incoming traffic into a specific source, add the source to that zone. The source can be an IP address or an IP mask in the Classless Inter-domain Routing (CIDR) notation.
NOTE

In case you add multiple zones with an overlapping network range, they are ordered alphanumerically by zone name and only the first one is considered.

- To set the source in the current zone:
  
  ```
 # firewall-cmd --add-source=<source>
  ```

- To set the source IP address for a specific zone:

  ```
 # firewall-cmd --zone=zone-name --add-source=<source>
  ```

The following procedure allows all incoming traffic from 192.168.2.15 in the trusted zone:

Procedure

1. List all available zones:

   ```
 # firewall-cmd --get-zones
   ```

2. Add the source IP to the trusted zone in the permanent mode:

   ```
 # firewall-cmd --zone=trusted --add-source=192.168.2.15
   ```

3. Make the new settings persistent:

   ```
 # firewall-cmd --runtime-to-permanent
   ```

43.11.3. Removing a source

Removing a source from the zone cuts off the traffic coming from it.

Procedure

1. List allowed sources for the required zone:

   ```
 # firewall-cmd --zone=zone-name --list-sources
   ```

2. Remove the source from the zone permanently:

   ```
 # firewall-cmd --zone=zone-name --remove-source=<source>
   ```

3. Make the new settings persistent:

   ```
 # firewall-cmd --runtime-to-permanent
   ```

43.11.4. Adding a source port

To enable sorting the traffic based on a port of origin, specify a source port using the `--add-source-port`
To enable sorting the traffic based on a port of origin, specify a source port using the `--add-source-port` option. You can also combine this with the `--add-source` option to limit the traffic to a certain IP address or IP range.

**Procedure**

1. To add a source port:

   ```bash
 # firewall-cmd --zone=zone-name --add-source-port=<port-name>/<tcp|udp|sctp|dccp>
   ```

**43.11.5. Removing a source port**

By removing a source port you disable sorting the traffic based on a port of origin.

**Procedure**

1. To remove a source port:

   ```bash
 # firewall-cmd --zone=zone-name --remove-source-port=<port-name>/<tcp|udp|sctp|dccp>
   ```

**43.11.6. Using zones and sources to allow a service for only a specific domain**

To allow traffic from a specific network to use a service on a machine, use zones and source. The following procedure allows traffic from 192.168.1.0/24 to be able to reach the HTTP service while any other traffic is blocked.

**Procedure**

1. List all available zones:

   ```bash
 # firewall-cmd --get-zones
 block dmz drop external home internal public trusted work
   ```

2. Add the source to the trusted zone to route the traffic originating from the source through the zone:

   ```bash
 # firewall-cmd --zone=trusted --add-source=192.168.1.0/24
   ```

3. Add the http service in the trusted zone:

   ```bash
 # firewall-cmd --zone=trusted --add-service=http
   ```

4. Make the new settings persistent:

   ```bash
 # firewall-cmd --runtime-to-permanent
   ```

5. Check that the trusted zone is active and that the service is allowed in it:

   ```bash
 # firewall-cmd --zone=trusted --list-all
 trusted (active)
 target: ACCEPT
   ```
**43.11.7. Configuring traffic accepted by a zone based on a protocol**

You can allow incoming traffic to be accepted by a zone based on a protocol. All traffic using the specified protocol is accepted by a zone, in which you can apply further rules and filtering.

**43.11.7.1. Adding a protocol to a zone**

By adding a protocol to a certain zone, you allow all traffic with this protocol to be accepted by this zone.

Procedure

1. To add a protocol to a zone:

   ```bash
 # firewall-cmd --zone=zone-name --add-protocol=port-name/tcp|udp|sctp|dccp|igmp
   ```

   **NOTE**

   To receive multicast traffic, use the `igmp` value with the `--add-protocol` option.

**43.11.7.2. Removing a protocol from a zone**

By removing a protocol from a certain zone, you stop accepting all traffic based on this protocol by the zone.

Procedure

1. To remove a protocol from a zone:

   ```bash
 # firewall-cmd --zone=zone-name --remove-protocol=port-name/tcp|udp|sctp|dccp|igmp
   ```

**43.12. CONFIGURING IP ADDRESS MASQUERADING**

The following procedure describes how to enable IP masquerading on your system. IP masquerading hides individual machines behind a gateway when accessing the Internet.

Procedure

1. To check if IP masquerading is enabled (for example, for the `external` zone), enter the following command as root:

   ```bash
 # firewall-cmd --zone=external --query-masquerade
   ```

   The command prints `yes` with exit status 0 if enabled. It prints `no` with exit status 1 otherwise. If `zone` is omitted, the default zone will be used.

2. To enable IP masquerading, enter the following command as root:

   ```bash
 # firewall-cmd --zone=external --add-masquerade
   ```
3. To make this setting persistent, repeat the command adding the `--permanent` option.

To disable IP masquerading, enter the following command as `root`:

```
firewall-cmd --zone=external --remove-masquerade --permanent
```

### 43.13. PORT FORWARDING

Redirecting ports using this method only works for IPv4-based traffic. For IPv6 redirecting setup, you must use rich rules.

To redirect to an external system, it is necessary to enable masquerading. For more information, see Configuring IP address masquerading.

#### 43.13.1. Adding a port to redirect

Using `firewalld`, you can set up ports redirection so that any incoming traffic that reaches a certain port on your system is delivered to another internal port of your choice or to an external port on another machine.

**Prerequisites**

- Before you redirect traffic from one port to another port, or another address, you have to know three things: which port the packets arrive at, what protocol is used, and where you want to redirect them.

**Procedure**

To redirect a port to another port:

```
firewall-cmd --add-forward-port=port=port-number:proto=tcp|udp|sctp|dccp:toport=port-number
```

To redirect a port to another port at a different IP address:

1. Add the port to be forwarded:

   ```
 # firewall-cmd --add-forward-port=port=port-number:proto=tcp|udp:toport=port-number:toaddr=IP
   ```

2. Enable masquerade:

   ```
 # firewall-cmd --add-masquerade
   ```

#### 43.13.2. Redirecting TCP port 80 to port 88 on the same machine

Follow the steps to redirect the TCP port 80 to port 88.

**Procedure**

1. Redirect the port 80 to port 88 for TCP traffic:

   ```
 # firewall-cmd --add-forward-port=port=80:proto=tcp:toport=88
   ```
2. Make the new settings persistent:
   ```bash
 # firewall-cmd --runtime-to-permanent
   ```

3. Check that the port is redirected:
   ```bash
 # firewall-cmd --list-all
   ```

### 43.13.3. Removing a redirected port

To remove a redirected port:
   ```bash
 # firewall-cmd --remove-forward-port=port=port-number:proto=<tcp|udp>:toport=port-number:toaddr=<IP>
   ```

To remove a forwarded port redirected to a different address, use the following procedure.

**Procedure**

1. Remove the forwarded port:
   ```bash
 # firewall-cmd --remove-forward-port=port=port-number:proto=<tcp|udp>:toport=port-number:toaddr=<IP>
   ```

2. Disable masquerade:
   ```bash
 # firewall-cmd --remove-masquerade
   ```

### 43.13.4. Removing TCP port 80 forwarded to port 88 on the same machine

To remove the port redirection:

**Procedure**

1. List redirected ports:
   ```bash
 ~]# firewall-cmd --list-forward-ports
 port=80:proto=tcp:toport=88:toaddr=
   ```

2. Remove the redirected port from the firewall:
   ```bash
 ~]# firewall-cmd --remove-forward-port=port=80:proto=tcp:toport=88:toaddr=
   ```

3. Make the new settings persistent:
   ```bash
 ~]# firewall-cmd --runtime-to-permanent
   ```

### 43.14. MANAGING ICMP REQUESTS

The **Internet Control Message Protocol (ICMP)** is a supporting protocol that is used by various network devices to send error messages and operational information indicating a connection problem,
for example, that a requested service is not available. **ICMP** differs from transport protocols such as TCP and UDP because it is not used to exchange data between systems.

Unfortunately, it is possible to use the **ICMP** messages, especially **echo-request** and **echo-reply**, to reveal information about your network and misuse such information for various kinds of fraudulent activities. Therefore, **firewalld** enables blocking the **ICMP** requests to protect your network information.

### 43.14.1. Listing and blocking **ICMP** requests

#### Listing **ICMP** requests

The **ICMP** requests are described in individual XML files that are located in the `/usr/lib/firewalld/icmptypes/` directory. You can read these files to see a description of the request. The **firewall-cmd** command controls the **ICMP** requests manipulation.

- To list all available **ICMP** types:

  ```
 # firewall-cmd --get-icmptypes
  ```

- The **ICMP** request can be used by IPv4, IPv6, or by both protocols. To see for which protocol the **ICMP** request is used:

  ```
 # firewall-cmd --info-icmptype=<icmptype>
  ```

- The status of an **ICMP** request shows **yes** if the request is currently blocked or **no** if it is not. To see if an **ICMP** request is currently blocked:

  ```
 # firewall-cmd --query-icmp-block=<icmptype>
  ```

#### Blocking or un-blocking **ICMP** requests

When your server blocks **ICMP** requests, it does not provide the information that it normally would. However, that does not mean that no information is given at all. The clients receive information that the particular **ICMP** request is being blocked (rejected). Blocking the **ICMP** requests should be considered carefully, because it can cause communication problems, especially with IPv6 traffic.

- To see if an **ICMP** request is currently blocked:

  ```
 # firewall-cmd --query-icmp-block=<icmptype>
  ```

- To block an **ICMP** request:

  ```
 # firewall-cmd --add-icmp-block=<icmptype>
  ```

- To remove the block for an **ICMP** request:

  ```
 # firewall-cmd --remove-icmp-block=<icmptype>
  ```

#### Blocking **ICMP** requests without providing any information at all

Normally, if you block **ICMP** requests, clients know that you are blocking it. So, a potential attacker who is sniffing for live IP addresses is still able to see that your IP address is online. To hide this information completely, you have to drop all **ICMP** requests.
To block and drop all ICMP requests:

1. Set the target of your zone to DROP:

   ```
 # firewall-cmd --permanent --set-target=DROP
   ```

Now, all traffic, including ICMP requests, is dropped, except traffic which you have explicitly allowed.

To block and drop certain ICMP requests and allow others:

1. Set the target of your zone to DROP:

   ```
 # firewall-cmd --permanent --set-target=DROP
   ```

2. Add the ICMP block inversion to block all ICMP requests at once:

   ```
 # firewall-cmd --add-icmp-block-inversion
   ```

3. Add the ICMP block for those ICMP requests that you want to allow:

   ```
 # firewall-cmd --add-icmp-block=<icmptype>
   ```

4. Make the new settings persistent:

   ```
 # firewall-cmd --runtime-to-permanent
   ```

The block inversion inverts the setting of the ICMP requests blocks, so all requests, that were not previously blocked, are blocked because of the target of your zone changes to DROP. The requests that were blocked are not blocked. This means that if you want to unblock a request, you must use the blocking command.

To revert the block inversion to a fully permissive setting:

1. Set the target of your zone to default or ACCEPT:

   ```
 # firewall-cmd --permanent --set-target=default
   ```

2. Remove all added blocks for ICMP requests:

   ```
 # firewall-cmd --remove-icmp-block=<icmptype>
   ```

3. Remove the ICMP block inversion:

   ```
 # firewall-cmd --remove-icmp-block-inversion
   ```

4. Make the new settings persistent:

   ```
 # firewall-cmd --runtime-to-permanent
   ```

43.14.2. Configuring the ICMP filter using GUI

- To enable or disable an ICMP filter, start the `firewall-config` tool and select the network zone.
whose messages are to be filtered. Select the ICMP Filter tab and select the check box for each type of ICMP message you want to filter. Clear the check box to disable a filter. This setting is per direction and the default allows everything.

- To edit an ICMP type, start the firewall-config tool and select Permanent mode from the menu labeled Configuration. Additional icons appear at the bottom of the Services window. Select Yes in the following dialog to enable masquerading and to make forwarding to another machine working.

- To enable inverting the ICMP Filter, click the Invert Filter check box on the right. Only marked ICMP types are now accepted, all other are rejected. In a zone using the DROP target, they are dropped.

43.15. SETTING AND CONTROLLING IP SETS USING FIREWALLD

To see the list of IP set types supported by firewalld, enter the following command as root.

```
~]# firewall-cmd --get-ipset-types
```

43.15.1. Configuring IP set options using CLI

IP sets can be used in firewalld zones as sources and also as sources in rich rules. In Red Hat Enterprise Linux, the preferred method is to use the IP sets created with firewalld in a direct rule.

- To list the IP sets known to firewalld in the permanent environment, use the following command as root:

  ```
 # firewall-cmd --permanent --get-ipsets
  ```

- To add a new IP set, use the following command using the permanent environment as root:

  ```
 # firewall-cmd --permanent --new-ipset=test --type=hash:net
 success
  ```

  The previous command creates a new IP set with the name test and the hash:net type for IPv4. To create an IP set for use with IPv6, add the --option=family=inet6 option. To make the new setting effective in the runtime environment, reload firewalld.

- List the new IP set with the following command as root:

  ```
 # firewall-cmd --permanent --get-ipsets
 test
  ```

- To get more information about the IP set, use the following command as root:

  ```
 # firewall-cmd --permanent --info-ipset=test
 test
 type: hash:net
 options:
 entries:
  ```
Note that the IP set does not have any entries at the moment.

- To add an entry to the test IP set, use the following command as `root`:

  ```bash
 # firewall-cmd --permanent --ipset=test --add-entry=192.168.0.1
 success
  ```

  The previous command adds the IP address `192.168.0.1` to the IP set.

- To get the list of current entries in the IP set, use the following command as `root`:

  ```bash
 # firewall-cmd --permanent --ipset=test --get-entries
 192.168.0.1
  ```

- Generate a file containing a list of IP addresses, for example:

  ```bash
 # cat > iplist.txt <<EOL
 192.168.0.2
 192.168.0.3
 192.168.1.0/24
 192.168.2.254
 EOL
  ```

  The file with the list of IP addresses for an IP set should contain an entry per line. Lines starting with a hash, a semi-colon, or empty lines are ignored.

- To add the addresses from the `iplist.txt` file, use the following command as `root`:

  ```bash
 # firewall-cmd --permanent --ipset=test --add-entries-from-file=iplist.txt
 success
  ```

- To see the extended entries list of the IP set, use the following command as `root`:

  ```bash
 # firewall-cmd --permanent --ipset=test --get-entries
 192.168.0.1
 192.168.0.2
 192.168.0.3
 192.168.1.0/24
 192.168.2.254
  ```

- To remove the addresses from the IP set and to check the updated entries list, use the following commands as `root`:

  ```bash
 # firewall-cmd --permanent --ipset=test --remove-entries-from-file=iplist.txt
 success
 # firewall-cmd --permanent --ipset=test --get-entries
 192.168.0.1
  ```

- You can add the IP set as a source to a zone to handle all traffic coming in from any of the addresses listed in the IP set with a zone. For example, to add the `test` IP set as a source to the `drop` zone to drop all packets coming from all entries listed in the `test` IP set, use the following command as `root`:
# firewall-cmd --permanent --zone=drop --add-source=ipset:test
success

The ipset: prefix in the source shows firewalld that the source is an IP set and not an IP address or an address range.

Only the creation and removal of IP sets is limited to the permanent environment, all other IP set options can be used also in the runtime environment without the --permanent option.

**WARNING**

Red Hat does not recommend using IP sets that are not managed through firewalld. To use such IP sets, a permanent direct rule is required to reference the set, and a custom service must be added to create these IP sets. This service needs to be started before firewalld starts, otherwise firewalld is not able to add the direct rules using these sets. You can add permanent direct rules with the /etc/firewalld/direct.xml file.

### 43.16. PRIORITIZING RICH RULES

By default, rich rules are organized based on their rule action. For example, deny rules have precedence over allow rules. The priority parameter in rich rules provides administrators fine-grained control over rich rules and their execution order.

#### 43.16.1. How the priority parameter organizes rules into different chains

You can set the priority parameter in a rich rule to any number between -32768 and 32767, and lower values have higher precedence.

The firewalld service organizes rules based on their priority value into different chains:

- Priority lower than 0: the rule is redirected into a chain with the _pre suffix.
- Priority higher than 0: the rule is redirected into a chain with the _post suffix.
- Priority equals 0: based on the action, the rule is redirected into a chain with the _log, _deny, or _allow the action.

Inside these sub-chains, firewalld sorts the rules based on their priority value.

#### 43.16.2. Setting the priority of a rich rule

The procedure describes an example of how to create a rich rule that uses the priority parameter to log all traffic that is not allowed or denied by other rules. You can use this rule to flag unexpected traffic.

**Procedure**

1. Add a rich rule with a very low precedence to log all traffic that has not been matched by other rules:
# firewall-cmd --add-rich-rule='rule priority=32767 log prefix="UNEXPECTED: " limit value="5/m"

The command additionally limits the number of log entries to 5 per minute.

2. Optionally, display the nftables rule that the command in the previous step created:

```bash
nft list chain inet firewalld filter_IN_public_post
table inet firewalld {
 chain filter_IN_public_post {
 log prefix "UNEXPECTED: " limit rate 5/minute
 }
}
```

## 43.17. CONFIGURING FIREWALL LOCKDOWN

Local applications or services are able to change the firewall configuration if they are running as root (for example, libvirt). With this feature, the administrator can lock the firewall configuration so that either no applications or only applications that are added to the lockdown whitelist are able to request firewall changes. The lockdown settings default to disabled. If enabled, the user can be sure that there are no unwanted configuration changes made to the firewall by local applications or services.

### 43.17.1. Configuring lockdown with using CLI

- To query whether lockdown is enabled, use the following command as root:

  ```bash
 # firewall-cmd --query-lockdown
  ```

  The command prints yes with exit status 0 if lockdown is enabled. It prints no with exit status 1 otherwise.

- To enable lockdown, enter the following command as root:

  ```bash
 # firewall-cmd --lockdown-on
  ```

- To disable lockdown, use the following command as root:

  ```bash
 # firewall-cmd --lockdown-off
  ```

### 43.17.2. Configuring lockdown whitelist options using CLI

The lockdown whitelist can contain commands, security contexts, users and user IDs. If a command entry on the whitelist ends with an asterisk "*", then all command lines starting with that command will match. If the "*" is not there then the absolute command including arguments must match.

- The context is the security (SELinux) context of a running application or service. To get the context of a running application use the following command:

  ```bash
 $ ps -e --context
  ```

  That command returns all running applications. Pipe the output through the grep tool to get the application of interest. For example:
$ ps -e --context | grep example_program

- To list all command lines that are on the whitelist, enter the following command as `root`:
  
  ```
 # firewall-cmd --list-lockdown-white-list-commands
  ```

- To add a command `command` to the whitelist, enter the following command as `root`:
  
  ```
 # firewall-cmd --add-lockdown-white-list-command='./usr/bin/python3 -Es /usr/bin/command'
  ```

- To remove a command `command` from the whitelist, enter the following command as `root`:
  
  ```
 # firewall-cmd --remove-lockdown-white-list-command='./usr/bin/python3 -Es /usr/bin/command'
  ```

- To query whether the command `command` is on the whitelist, enter the following command as `root`:
  
  ```
 # firewall-cmd --query-lockdown-white-list-command='./usr/bin/python3 -Es /usr/bin/command'
  ```

  The command prints `yes` with exit status `0` if true. It prints `no` with exit status `1` otherwise.

- To list all security contexts that are on the whitelist, enter the following command as `root`:
  
  ```
 # firewall-cmd --list-lockdown-white-list-contexts
  ```

- To add a context `context` to the whitelist, enter the following command as `root`:
  
  ```
 # firewall-cmd --add-lockdown-white-list-context=context
  ```

- To remove a context `context` from the whitelist, enter the following command as `root`:
  
  ```
 # firewall-cmd --remove-lockdown-white-list-context=context
  ```

- To query whether the context `context` is on the whitelist, enter the following command as `root`:
  
  ```
 # firewall-cmd --query-lockdown-white-list-context=context
  ```

  Prints `yes` with exit status `0`, if true, prints `no` with exit status `1` otherwise.

- To list all user IDs that are on the whitelist, enter the following command as `root`:
  
  ```
 # firewall-cmd --list-lockdown-white-list-uids
  ```

- To add a user ID `uid` to the whitelist, enter the following command as `root`:
  
  ```
 # firewall-cmd --add-lockdown-white-list-uid=uid
  ```

- To remove a user ID `uid` from the whitelist, enter the following command as `root`:
  
  ```
 # firewall-cmd --remove-lockdown-white-list-uid=uid
  ```
To query whether the user ID `uid` is on the whitelist, enter the following command:
$$
firewall-cmd --query-lockdown-whitelist-uid=uid
$$
Prints `yes` with exit status 0, if true, prints `no` with exit status 1 otherwise.

To list all user names that are on the whitelist, enter the following command as `root`:

```
firewall-cmd --list-lockdown-whitelist-users
```

To add a user name `user` to the whitelist, enter the following command as `root`:

```
firewall-cmd --add-lockdown-whitelist-user=user
```

To remove a user name `user` from the whitelist, enter the following command as `root`:

```
firewall-cmd --remove-lockdown-whitelist-user=user
```

To query whether the user name `user` is on the whitelist, enter the following command:
$$
firewall-cmd --query-lockdown-whitelist-user=user
$$
Prints `yes` with exit status 0, if true, prints `no` with exit status 1 otherwise.

### 43.17.3. Configuring lockdown whitelist options using configuration files

The default whitelist configuration file contains the NetworkManager context and the default context of `libvirt`. The user ID 0 is also on the list.

```xml
<?xml version="1.0" encoding="utf-8"?>
<whitelist>
 <selinux context="system_u:system_r:NetworkManager_t:s0"/>
 <selinux context="system_u:system_r:virtd_t:s0-s0:c0.c1023"/>
 <user id="0"/>
</whitelist>
```

Following is an example whitelist configuration file enabling all commands for the `firewall-cmd` utility, for a user called `user` whose user ID is 815:

```xml
<?xml version="1.0" encoding="utf-8"?>
<whitelist>
 <command name="/usr/libexec/platform-python -s /bin/firewall-cmd*"/>
 <selinux context="system_u:system_r:NetworkManager_t:s0"/>
 <user id="815"/>
 <user name="user"/>
</whitelist>
```

This example shows both `user id` and `user name`, but only one option is required. Python is the interpreter and is prepended to the command line. You can also use a specific command, for example:

```
/usr/bin/python3 /bin/firewall-cmd --lockdown-on
```

In that example, only the `--lockdown-on` command is allowed.
In Red Hat Enterprise Linux, all utilities are placed in the /usr/bin/ directory and the /bin/ directory is sym-linked to the /usr/bin/ directory. In other words, although the path for firewall-cmd when entered as root might resolve to /bin/firewall-cmd, /usr/bin/firewall-cmd can now be used. All new scripts should use the new location. But be aware that if scripts that run as root are written to use the /bin/firewall-cmd path, then that command path must be whitelisted in addition to the /usr/bin/firewall-cmd path traditionally used only for non-root users.

The * at the end of the name attribute of a command means that all commands that start with this string match. If the * is not there then the absolute command including arguments must match.

### 43.18. LOG FOR DENIED PACKETS

With the LogDenied option in the firewalld, it is possible to add a simple logging mechanism for denied packets. These are the packets that are rejected or dropped. To change the setting of the logging, edit the /etc/firewalld/firewalld.conf file or use the command-line or GUI configuration tool.

If LogDenied is enabled, logging rules are added right before the reject and drop rules in the INPUT, FORWARD and OUTPUT chains for the default rules and also the final reject and drop rules in zones. The possible values for this setting are: all, unicast, broadcast, multicast, and off. The default setting is off. With the unicast, broadcast, and multicast setting, the pkttype match is used to match the link-layer packet type. With all, all packets are logged.

To list the actual LogDenied setting with firewall-cmd, use the following command as root:

```bash
firewall-cmd --get-log-denied
off
```

To change the LogDenied setting, use the following command as root:

```bash
firewall-cmd --set-log-denied=all
success
```

To change the LogDenied setting with the firewalld GUI configuration tool, start firewall-config, click the Options menu and select Change Log Denied. The LogDenied window appears. Select the new LogDenied setting from the menu and click OK.

### 43.19. RELATED INFORMATION

The following sources of information provide additional resources regarding firewalld.

Installed documentation

- **firewalld(1)** man page – describes command options for firewalld.
- **firewalld.conf(5)** man page – contains information to configure firewalld.
- **firewall-cmd(1)** man page – describes command options for the firewalld command-line client.
- **firewall-config(1)** man page – describes settings for the firewall-config tool.
- **firewall-offline-cmd(1)** man page – describes command options for the firewalld offline command-line client.
- **firewalld.icmptype(5)** man page – describes XML configuration files for ICMP filtering.
- `firewalld.ipset(5)` man page – describes XML configuration files for the `firewalld` IP sets.
- `firewalld.service(5)` man page – describes XML configuration files for `firewalld` service.
- `firewalld.zone(5)` man page – describes XML configuration files for `firewalld` zone configuration.
- `firewalld.direct(5)` man page – describes the `firewalld` direct interface configuration file.
- `firewalld.lockdown-whitelist(5)` man page – describes the `firewalld` lockdown whitelist configuration file.
- `firewalld.richlanguage(5)` man page – describes the `firewalld` rich language rule syntax.
- `firewalld.zones(5)` man page – general description of what zones are and how to configure them.
- `firewalld.dbus(5)` man page – describes the D-Bus interface of `firewalld`.

Online documentation

CHAPTER 44. GETTING STARTED WITH NFTABLES

The nftables framework provides packet classification facilities and it is the designated successor to the iptables, ip6tables, arptables, and ebtables tools. It offers numerous improvements in convenience, features, and performance over previous packet-filtering tools, most notably:

- lookup tables instead of linear processing
- a single framework for both the IPv4 and IPv6 protocols
- rules all applied atomically instead of fetching, updating, and storing a complete rule set
- support for debugging and tracing in the rule set (nfrace) and monitoring trace events (in the nft tool)
- more consistent and compact syntax, no protocol-specific extensions
- a Netlink API for third-party applications

Similarly to iptables, nftables use tables for storing chains. The chains contain individual rules for performing actions. The nft tool replaces all tools from the previous packet-filtering frameworks. The libnftnl library can be used for low-level interaction with nftables Netlink API over the libmnl library.

Effect of the modules on the nftables rules set can be observed using the nft list rule set command. Since these tools add tables, chains, rules, sets, and other objects to the nftables rule set, be aware that nftables rule-set operations, such as the nft flush ruleset command, might affect rule sets installed using the formerly separate legacy commands.

44.1. MIGRATING FROM IPTABLES TO NFTABLES

If you upgraded your server to RHEL 8 or your firewall configuration still uses iptables rules, you can migrate your iptables rules to nftables.

44.1.1. When to use firewalld, nftables, or iptables

The following is a brief overview in which scenario you should use one of the following utilities:

- firewalld: Use the firewalld utility to configure a firewall on workstations. The utility is easy to use and covers the typical use cases for this scenario.

- nftables: Use the nftables utility to set up complex firewalls, such as for a whole network.

- iptables: The iptables utility on Red Hat Enterprise Linux 8 uses the nf_tables kernel API instead of the legacy back end. The nf_tables API provides backward compatibility so that scripts that use iptables commands still work on Red Hat Enterprise Linux 8. For new firewall scripts, Red Hat recommends to use nftables.

IMPORTANT

To avoid that the different firewall services influence each other, run only one of them on a RHEL host, and disable the other services.

44.1.2. Converting iptables rules to nftables rules
Red Hat Enterprise Linux 8 provides the `iptables-translate` and `ip6tables-translate` tools to convert existing `iptables` or `ip6tables` rules into the equivalent ones for `nftables`.

Note that some extensions lack translation support. If such an extension exists, the tool prints the untranslated rule prefixed with the `#` sign. For example:

```bash
iptables-translate -A INPUT -j CHECKSUM --checksum-fill
nft # -A INPUT -j CHECKSUM --checksum-fill
```

Additionally, users can use the `iptables-restore-translate` and `ip6tables-restore-translate` tools to translate a dump of rules. Note that before that, users can use the `iptables-save` or `ip6tables-save` commands to print a dump of current rules. For example:

```bash
iptables-save >/tmp/iptables.dump
iptables-restore-translate -f /tmp/iptables.dump

Translated by iptables-restore-translate v1.8.0 on Wed Oct 17 17:00:13 2018
add table ip nat
...
```

For more information and a list of possible options and values, enter the `iptables-translate --help` command.

### 44.2. WRITING AND EXECUTING NFTABLES SCRIPTS

The `nftables` framework provides a native scripting environment that brings a major benefit over using shell scripts to maintain firewall rules: the execution of scripts is atomic. This means that the system either applies the whole script or prevents the execution if an error occurs. This guarantees that the firewall is always in a consistent state.

Additionally, the `nftables` script environment enables administrators to:

- add comments
- define variables
- include other rule set files

This section explains how to use these features, as well as creating and executing `nftables` scripts.

When you install the `nftables` package, Red Hat Enterprise Linux automatically creates `*.nft` scripts in the `/etc/nftables/` directory. These scripts contain commands that create tables and empty chains for different purposes. You can either extend these files or write your scripts.

#### 44.2.1. The required script header in nftables script

Similar to other scripts, `nftables` scripts require a shebang sequence in the first line of the script that sets the interpreter directive.

An `nftables` script must always start with the following line:

```bash
#!/usr/sbin/nft -f
```
If you omit the -f parameter, the `nft` utility does not read the script and displays **Error: syntax error, unexpected newline, expecting string.**

### 44.2.2. Supported nftables script formats

The `nftables` scripting environment supports scripts in the following formats:

- You can write a script in the same format as the `nft list ruleset` command displays the rule set:

```bash
#!/usr/sbin/nft -f

Flush the rule set
flush ruleset

table inet example_table {
 chain example_chain {
 # Chain for incoming packets that drops all packets that are not explicitly allowed by any rule in this chain
type filter hook input priority 0; policy drop;

 # Accept connections to port 22 (ssh)
tcp dport ssh accept
 }
}
```

- You can use the same syntax for commands as in `nft` commands:

```bash
#!/usr/sbin/nft -f

Flush the rule set
flush ruleset

Create a table
add table inet example_table

Create a chain for incoming packets that drops all packets that are not explicitly allowed by any rule in this chain
add chain inet example_table example_chain { type filter hook input priority 0; policy drop ; }

Add a rule that accepts connections to port 22 (ssh)
add rule inet example_table example_chain tcp dport ssh accept
```

### 44.2.3. Running nftables scripts

To run an `nftables` script, the script must be executable. Only if the script is included in another script, it does not require to be executable. The procedure describes how to make a script executable and run the script.

**Prerequisites**

- The procedure of this section assumes that you stored an `nftables` script in the `/etc/nftables/example_firewall.nft` file.
Procedure

1. Steps that are required only once:
   a. Optionally, set the owner of the script to root:
      
      ```
 # chown root /etc/nftables/example_firewall.nft
      ```
   b. Make the script executable for the owner:
      
      ```
 # chmod u+x /etc/nftables/example_firewall.nft
      ```

2. Run the script:

   ```
 # /etc/nftables/example_firewall.nft
   ```

   If no output is displayed, the system executed the script successfully.

   **IMPORTANT**

   Even if `nft` executes the script successfully, incorrectly placed rules, missing parameters, or other problems in the script can cause that the firewall behaves not as expected.

Additional resources

- For details about setting the owner of a file, see the `chown(1)` man page.
- For details about setting permissions of a file, see the `chmod(1)` man page.
- Section 44.2.7, “Automatically loading nftables rules when the system boots”

44.2.4. Using comments in nftables scripts

The *nftables* scripting environment interprets everything to the right of a `#` character as a comment.

**Example 44.1. Comments in an nftables script**

Comments can start at the beginning of a line, as well as next to a command:

```
...
Flush the rule set
flush ruleset

add table inet example_table # Create a table
...
```

44.2.5. Using variables in an nftables script

To define a variable in an *nftables* script, use the `define` keyword. You can store single values and anonymous sets in a variable. For more complex scenarios, use sets or verdict maps.
Variables with a single value
The following example defines a variable named \texttt{INET\_DEV} with the value \texttt{enp1s0}:

\begin{verbatim}
define INET\_DEV = enp1s0
\end{verbatim}

You can use the variable in the script by writing the \$ sign followed by the variable name:

\begin{verbatim}
... 
add rule inet example_table example_chain iifname $INET\_DEV tcp dport ssh accept 
...
\end{verbatim}

Variables that contain an anonymous set
The following example defines a variable that contains an anonymous set:

\begin{verbatim}
define DNS\_SERVERS = \{ 192.0.2.1, 192.0.2.2 \}
\end{verbatim}

You can use the variable in the script by writing the \$ sign followed by the variable name:

\begin{verbatim}
add rule inet example_table example_chain ip daddr $DNS\_SERVERS accept 
\end{verbatim}

\textbf{NOTE}

Note that curly braces have special semantics when you use them in a rule because they indicate that the variable represents a set.

Additional resources

- For details about sets, see Section 44.5, “Using sets in nftables commands”.
- For details about verdict maps, see Section 44.6, “Using verdict maps in nftables commands”.

44.2.6. Including files in an nftables script

The \texttt{nftables} scripting environment enables administrators to include other scripts by using the \texttt{include} statement.

If you specify only a file name without an absolute or relative path, \texttt{nftables} includes files from the default search path, which is set to /etc on Red Hat Enterprise Linux.

\textbf{Example 44.2. Including files from the default search directory}

To include a file from the default search directory:

\begin{verbatim}
include "example.nft"
\end{verbatim}

\textbf{Example 44.3. Including all *.nft files from a directory}

To include all files ending in *.nft that are stored in the \texttt{/etc/nftables/rulesets} directory:

\begin{verbatim}
include "/etc/nftables/rulesets/*.nft"
\end{verbatim}
Note that the `include` statement does not match files beginning with a dot.

**Additional resources**

- For further details, see the `Include files` section in the `nft(8)` man page.

### 44.2.7. Automatically loading nftables rules when the system boots

The `nftables` systemd service loads firewall scripts that are included in the `/etc/sysconfig/nftables.conf` file. This section explains how to load firewall rules when the system boots.

**Prerequisites**

- The `nftables` scripts are stored in the `/etc/nftables/` directory.

**Procedure**

1. Edit the `/etc/sysconfig/nftables.conf` file.
   - If you enhance `*.nft` scripts created in `/etc/nftables/` when you installed the `nftables` package, uncomment the `include` statement for these scripts.
   - If you write scripts from scratch, add `include` statements to include these scripts. For example, to load the `/etc/nftables/example.nft` script when the `nftables` service starts, add:

   ```
 include "/etc/nftables/example.nft"
   ```

2. Enable the `nftables` service.

   ```
 # systemctl enable nftables
   ```

3. Optionally, start the `nftables` service to load the firewall rules without rebooting the system:

   ```
 # systemctl start nftables
   ```

**Additional resources**

- Section 44.2.2, "Supported nftables script formats"

### 44.3. CREATING AND MANAGING NFTABLES TABLES, CHAINS, AND RULES

This section explains how to display `nftables` rule sets, and how to manage them.

#### 44.3.1. Standard chain priority values and textual names

When you create a chain, the `priority` you can either set an integer value or a standard name that specifies the order in which chains with the same `hook` value traverse.

The names and values are defined based on what priorities are used by `xtables` when registering their default chains.
NOTE

The `nft list chains` command displays textual priority values by default. You can view the numeric value by passing the `-y` option to the command.

Example 44.4. Using a textual value to set the priority

The following command creates a chain named `example_chain` in `example_table` using the standard priority value `50`:

```bash
nft add chain inet example_table example_chain { type filter hook input priority 50; policy accept \; }
```

Because the priority is a standard value, you can alternatively use the textual value:

```bash
nft add chain inet example_table example_chain { type filter hook input priority security\; policy accept \; }
```

### Table 44.1. Standard priority names, family, and hook compatibility matrix

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Families</th>
<th>Hooks</th>
</tr>
</thead>
<tbody>
<tr>
<td>raw</td>
<td>-300</td>
<td>ip, ip6, inet</td>
<td>all</td>
</tr>
<tr>
<td>mangle</td>
<td>-150</td>
<td>ip, ip6, inet</td>
<td>all</td>
</tr>
<tr>
<td>dstnat</td>
<td>-100</td>
<td>ip, ip6, inet</td>
<td>prerouting</td>
</tr>
<tr>
<td>filter</td>
<td>0</td>
<td>ip, ip6, inet, arp, netdev</td>
<td>all</td>
</tr>
<tr>
<td>security</td>
<td>50</td>
<td>ip, ip6, inet</td>
<td>all</td>
</tr>
<tr>
<td>srcnat</td>
<td>100</td>
<td>ip, ip6, inet</td>
<td>postrouting</td>
</tr>
</tbody>
</table>

All families use the same values, but the `bridge` family uses following values:

### Table 44.2. Standard priority names, and hook compatibility for the bridge family

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Hooks</th>
</tr>
</thead>
<tbody>
<tr>
<td>dstnat</td>
<td>-300</td>
<td>prerouting</td>
</tr>
<tr>
<td>filter</td>
<td>-200</td>
<td>all</td>
</tr>
<tr>
<td>out</td>
<td>100</td>
<td>output</td>
</tr>
<tr>
<td>srcnat</td>
<td>300</td>
<td>postrouting</td>
</tr>
</tbody>
</table>
44.3.2. Displaying nftables rule sets

Rule sets of nftables contain tables, chains, and rules. This section explains how to display these rule sets.

Procedure

- To display all rule sets, enter:

```
nft list ruleset
table inet example_table {
 chain example_chain {
 type filter hook input priority filter; policy accept;
 tcp dport http accept
 tcp dport ssh accept
 }
}
```

NOTE

By default, nftables does not pre-create tables. As a consequence, displaying the rule set on a host without any tables, the nft list ruleset command shows no output.

44.3.3. Creating an nftables table

A table in nftables is a name space that contains a collection of chains, rules, sets, and other objects. This section explains how to create a table.

Each table must have an address family defined. The address family of a table defines what address types the table processes. You can set one of the following address families when you create a table:

- **ip**: Matches only IPv4 packets. This is the default if you do not specify an address family.
- **ip6**: Matches only IPv6 packets.
- **inet**: Matches both IPv4 and IPv6 packets.
- **arp**: Matches IPv4 address resolution protocol (ARP) packets.
- **bridge**: Matches packets that traverse a bridge device.
- **netdev**: Matches packets from ingress.

Procedure

1. Use the nft add table command to create a new table. For example, to create a table named example_table that processes IPv4 and IPv6 packets:

```
nft add table inet example_table
```
2. Optionally, list all tables in the rule set:

   ```
 # nft list tables
 table inet example_table
   ```

Additional resources

- For further details about address families, see the **Address families** section in the *nft*(8) man page.
- For details on other actions you can run on tables, see the **Tables** section in the *nft*(8) man page.

### 44.3.4. Creating an nftables chain

Chains are containers for rules. The following two rule types exists:

- **Base chain**: You can use base chains as an entry point for packets from the networking stack.
- **Regular chain**: You can use regular chains as a `jump` target and to better organize rules.

The procedure describes how to add a base chain to an existing table.

**Prerequisites**

- The table to which you want to add the new chain exists.

**Procedure**

1. Use the `nft add chain` command to create a new chain. For example, to create a chain named `example_chain` in `example_table`:

   ```
 # nft add chain inet example_table example_chain { type filter hook input priority 0; policy accept; }
   ```

   **IMPORTANT**

   To avoid that the shell interprets the semicolons as the end of the command, you must escape the semicolons with a backslash.

   This chain filters incoming packets. The `priority` parameter specifies the order in which nftables processes chains with the same hook value. A lower priority value has precedence over higher ones. The `policy` parameter sets the default action for rules in this chain. Note that if you are logged in to the server remotely and you set the default policy to `drop`, you are disconnected immediately if no other rule allows the remote access.

2. Optionally, display all chains:

   ```
 # nft list chains
 table inet example_table {
 chain example_chain {
 type filter hook input priority filter; policy accept;
 }
 }
   ```
44.3.5. Adding a rule to an nftables chain

This section explains how to add a rule to an existing nftables chain. By default, the nftables add rule command appends a new rule to the end of the chain.

If you instead want to insert a rule at the beginning of chain, see Section 44.3.6, “Inserting a rule into an nftables chain”.

Prerequisites

- The chain to which you want to add the rule exists.

Procedure

1. To add a new rule, use the nft add rule command. For example, to add a rule to the example_chain in the example_table that allows TCP traffic on port 22:

```
nft add rule inet example_table example_chain tcp dport 22 accept
```

   Instead of the port number, you can alternatively specify the name of the service. In the example, you could use ssh instead of the port number 22. Note that a service name is resolved to a port number based on its entry in the /etc/services file.

2. Optionally, display all chains and their rules in example_table:

```
nft list table inet example_table
table inet example_table {
 chain example_chain {
 type filter hook input priority filter; policy accept;
 ...tcp dport ssh accept
 }
}
```

Additional resources

- For further details about address families, see the Address families section in the nft(8) man page.
- For details on other actions you can run on rules, see the Rules section in the nft(8) man page.

44.3.6. Inserting a rule into an nftables chain

This section explains how to insert a rule at the beginning of an existing nftables chain using the Red Hat Enterprise Linux 8 Configuring and managing networking
This section explains how to insert a rule at the beginning of an existing `nftables` chain using the `nftables insert rule` command. If you instead want to add a rule to the end of a chain, see Section 44.3.5, “Adding a rule to an nftables chain”.

Prerequisites

- The chain to which you want to add the rule exists.

Procedure

1. To insert a new rule, use the `nft insert rule` command. For example, to insert a rule to the `example_chain` in the `example_table` that allows TCP traffic on port 22:

   ```bash
 # nft insert rule inet example_table example_chain tcp dport 22 accept
   ```

   You can alternatively specify the name of the service instead of the port number. In the example, you could use `ssh` instead of the port number `22`. Note that a service name is resolved to a port number based on its entry in the `/etc/services` file.

2. Optionally, display all chains and their rules in `example_table`:

   ```bash
 # nft list table inet example_table
 table inet example_table {
 chain example_chain {
 type filter hook input priority filter; policy accept;
 tcp dport ssh accept
 ...
 }
 }
   ```

Additional resources

- For further details about address families, see the Address families section in the `nft(8)` man page.

- For details on other actions you can run on rules, see the Rules section in the `nft(8)` man page.

44.4. CONFIGURING NAT USING NFTABLES

With `nftables`, you can configure the following network address translation (NAT) types:

- Masquerading
- Source NAT (SNAT)
- Destination NAT (DNAT)

44.4.1. The different NAT types: masquerading, source NAT, and destination NAT

These are the different network address translation (NAT) types:

**Masquerading and source NAT (SNAT)**

Use one of these NAT types to change the source IP address of packets. For example, Internet providers do not route reserved IP ranges, such as `10.0.0.0/8`. If you use reserved IP ranges in your
network and users should be able to reach servers on the Internet, map the source IP address of packets from these ranges to a public IP address. Both masquerading and SNAT are very similar. The differences are:

- Masquerading automatically uses the IP address of the outgoing interface. Therefore, use masquerading if the outgoing interface uses a dynamic IP address.

- SNAT sets the source IP address of packets to a specified IP and does not dynamically look up the IP of the outgoing interface. Therefore, SNAT is faster than masquerading. Use SNAT if the outgoing interface uses a fixed IP address.

**Destination NAT (DNAT)**

Use this NAT type to route incoming traffic to a different host. For example, if your web server uses an IP address from a reserved IP range and is, therefore, not directly accessible from the Internet, you can set a DNAT rule on the router to redirect incoming traffic to this server.

### 44.4.2. Configuring masquerading using nftables

Masquerading enables a router to dynamically change the source IP of packets sent through an interface to the IP address of the interface. This means that if the interface gets a new IP assigned, nftables automatically uses the new IP when replacing the source IP.

The following procedure describes how to replace the source IP of packets leaving the host through the ens3 interface to the IP set on ens3.

**Procedure**

1. Create a table:

```bash
nft add table nat
```

2. Add the `prerouting` and `postrouting` chains to the table:

```bash
nft -- add chain nat prerouting { type nat hook prerouting priority -100 ; }
nft add chain nat postrouting { type nat hook postrouting priority 100 ; }
```

**IMPORTANT**

Even if you do not add a rule to the `prerouting` chain, the nftables framework requires this chain to match incoming packet replies.

Note that you must pass the `--` option to the `nft` command to avoid that the shell interprets the negative priority value as an option of the `nft` command.

3. Add a rule to the `postrouting` chain that matches outgoing packets on the ens3 interface:

```bash
nft add rule nat postrouting ofname "ens3" masquerade
```

### 44.4.3. Configuring source NAT using nftables

On a router, Source NAT (SNAT) enables you to change the IP of packets sent through an interface to a specific IP address.
The following procedure describes how to replace the source IP of packets leaving the router through the ens3 interface to 192.0.2.1.

Procedure

1. Create a table:

```bash
nft add table nat
```

2. Add the **prerouting** and **postrouting** chains to the table:

```bash
nft -- add chain nat prerouting { type nat hook prerouting priority -100 \; }
nft add chain nat postrouting { type nat hook postrouting priority 100 \; }
```

**IMPORTANT**

Even if you do not add a rule to the **postrouting** chain, the **nftables** framework requires this chain to match outgoing packet replies.

Note that you must pass the -- option to the nft command to avoid that the shell interprets the negative priority value as an option of the nft command.

3. Add a rule to the **postrouting** chain that replaces the source IP of outgoing packets through ens3 with 192.0.2.1:

```bash
nft add rule nat postrouting oifname "ens3" snat to 192.0.2.1
```

Additional resources

- Section 44.7.2, “Forwarding incoming packets on a specific local port to a different host”

### 44.4.4. Configuring destination NAT using nftables

Destination NAT enables you to redirect traffic on a router to a host that is not directly accessible from the Internet.

The following procedure describes how to redirect incoming traffic sent to port 80 and 443 of the router to the host with the 192.0.2.1 IP address.

Procedure

1. Create a table:

```bash
nft add table nat
```

2. Add the **prerouting** and **postrouting** chains to the table:

```bash
nft -- add chain nat prerouting { type nat hook prerouting priority -100 \; }
nft add chain nat postrouting { type nat hook postrouting priority 100 \; }
```
IMPORTANT

Even if you do not add a rule to the **postrouting** chain, the **nftables** framework requires this chain to match outgoing packet replies.

Note that you must pass the -- option to the nft command to avoid that the shell interprets the negative priority value as an option of the nft command.

3. Add a rule to the **prerouting** chain that redirects incoming traffic on the **ens3** interface sent to port **80** and **443** to the host with the **192.0.2.1** IP:

   ```
 # nft add rule nat prerouting ifname ens3 tcp dport { 80, 443 } dnat to 192.0.2.1
   ```

4. Depending on your environment, add either a SNAT or masquerading rule to change the source address:

   a. If the **ens3** interface used dynamic IP addresses, add a masquerading rule:

      ```
 # nft add rule nat postrouting ofname "ens3" masquerade
      ```

   b. If the **ens3** interface uses a static IP address, add a SNAT rule. For example, if the **ens3** uses the **198.51.100.1** IP address:

      ```
 nft add rule nat postrouting ofname "ens3" snat to 198.51.100.1
      ```

Additional resources

- Section 44.4.1, “The different NAT types: masquerading, source NAT, and destination NAT”

44.5. USING SETS IN NFTABLES COMMANDS

The **nftables** framework natively supports sets. You can use sets, for example, if a rule should match multiple IP addresses, port numbers, interfaces, or any other match criteria.

44.5.1. Using anonymous sets in nftables

An anonymous set contain comma-separated values enclosed in curly brackets, such as `{ 22, 80, 443 }`, that you use directly in a rule. You can also use anonymous sets also for IP addresses or any other match criteria.

The drawback of anonymous sets is that if you want to change the set, you must replace the rule. For a dynamic solution, use named sets as described in Section 44.5.2, “Using named sets in nftables”.

Prerequisites

- The **example_chain** chain and the **example_table** table in the **inet** family exists.

Procedure

1. For example, to add a rule to **example_chain** in **example_table** that allows incoming traffic to port **22**, **80**, and **443**:

   ```
 # nft add rule inet example_table example_chain tcp dport { 22, 80, 443 } accept
   ```
2. Optionally, display all chains and their rules in \texttt{example_table}:

\begin{verbatim}
# nft list table inet example_table
table inet example_table {
  chain example_chain {
    type filter hook input priority filter; policy accept;
    tcp dport { ssh, http, https } accept
  }
}
\end{verbatim}

\section*{44.5.2. Using named sets in nftables}

The \texttt{nftables} framework supports mutable named sets. A named set is a list or range of elements that you can use in multiple rules within a table. Another benefit over anonymous sets is that you can update a named set without replacing the rules that use the set.

When you create a named set, you must specify the type of elements the set contains. You can set the following types:

- \texttt{ipv4\_addr} for a set that contains IPv4 addresses or ranges, such as \texttt{192.0.2.1} or \texttt{192.0.2.0/24}.
- \texttt{ipv6\_addr} for a set that contains IPv6 addresses or ranges, such as \texttt{2001:db8:1::1} or \texttt{2001:db8:1::1/64}.
- \texttt{ether\_addr} for a set that contains a list of media access control (MAC) addresses, such as \texttt{52:54:00:6b:66:42}.
- \texttt{inet\_proto} for a set that contains a list of Internet protocol types, such as \texttt{tcp}.
- \texttt{inet\_service} for a set that contains a list of Internet services, such as \texttt{ssh}.
- \texttt{mark} for a set that contains a list of packet marks. Packet marks can be any positive 32-bit integer value (0 to 2147483647).

\section*{Prerequisites}

- The \texttt{example\_chain} chain and the \texttt{example\_table} table exists.

\section*{Procedure}

1. Create an empty set. The following examples create a set for IPv4 addresses:

- To create a set that can store multiple individual IPv4 addresses:

\begin{verbatim}
# nft add set inet example_table example_set { type ipv4_addr \; }
\end{verbatim}

- To create a set that can store IPv4 address ranges:

\begin{verbatim}
# nft add set inet example_table example_set { type ipv4_addr \; flags interval \; }
\end{verbatim}

\section*{IMPORTANT}

To avoid that the shell interprets the semicolons as the end of the command, you must escape the semicolons with a backslash.
2. Optionally, create rules that use the set. For example, the following command adds a rule to the `example_chain` in the `example_table` that will drop all packets from IPv4 addresses in `example_set`.

```
nft add rule inet example_table example_chain ip saddr @example_set drop
```

Because `example_set` is still empty, the rule has currently no effect.

3. Add IPv4 addresses to `example_set`:
   - If you create a set that stores individual IPv4 addresses, enter:
     ```
 # nft add element inet example_table example_set { 192.0.2.1, 192.0.2.2 }
     ```
   - If you create a set that stores IPv4 ranges, enter:
     ```
 # nft add element inet example_table example_set { 192.0.2.0-192.0.2.255 }
     ```

   When you specify an IP address range, you can alternatively use the Classless Inter-Domain Routing (CIDR) notation, such as `192.0.2.0/24` in the above example.

44.5.3. Related information

- For further details about sets, see the `Sets` section in the `nft(8)` man page.

44.6. USING VERDICT MAPS IN NFTABLES COMMANDS

Verdict maps, which are also known as dictionaries, enable `nft` to perform an action based on packet information by mapping match criteria to an action.

44.6.1. Using literal maps in nftables

A literal map is a `{ match_criteria : action }` statement that you use directly in a rule. The statement can contain multiple comma-separated mappings.

The drawback of a literal map is that if you want to change the map, you must replace the rule. For a dynamic solution, use named verdict maps as described in Section 44.6.2, "Using mutable verdict maps in nftables".

The example describes how to use a literal map to route both TCP and UDP packets of the IPv4 and IPv6 protocol to different chains to count incoming TCP and UDP packets separately.

Procedure

1. Create the `example_table`:

   ```
 # nft add table inet example_table
   ```

2. Create the `tcp_packets` chain in `example_table`:

   ```
 # nft add chain inet example_table tcp_packets
   ```

3. Add a rule to `tcp_packets` that counts the traffic in this chain:
4. Create the `udp_packets` chain in `example_table`:

```
nft add chain inet example_table udp_packets
```

5. Add a rule to `udp_packets` that counts the traffic in this chain:

```
nft add rule inet example_table udp_packets counter
```

6. Create a chain for incoming traffic. For example, to create a chain named `incoming_traffic` in `example_table` that filters incoming traffic:

```
nft add chain inet example_table incoming_traffic { type filter hook input priority 0 ; }
```

7. Add a rule with a literal map to `incoming_traffic`:

```
nft add rule inet example_table incoming_traffic ip protocol vmap { tcp : jump tcp_packets, udp : jump udp_packets }
```

The literal map distinguishes the packets and sends them to the different counter chains based on their protocol.

8. To list the traffic counters, display `example_table`:

```
nft list table inet example_table
table inet example_table {
 chain tcp_packets {
 counter packets 36379 bytes 2103816
 }
 chain udp_packets {
 counter packets 10 bytes 1559
 }
 chain incoming_traffic {
 type filter hook input priority filter; policy accept;
 ip protocol vmap { tcp : jump tcp_packets, udp : jump udp_packets }
 }
}
```

The counters in the `tcp_packets` and `udp_packets` chain display both the number of received packets and bytes.

### 44.6.2. Using mutable verdict maps in nftables

The nftables framework supports mutable verdict maps. You can use these maps in multiple rules within a table. Another benefit over literal maps is that you can update a mutable map without replacing the rules that use it.

When you create a mutable verdict map, you must specify the type of elements:

- `ipv4_addr` for a map whose match part contains an IPv4 address, such as `192.0.2.1`
ipv6_addr for a map whose match part contains an IPv6 address, such as 2001:db8:1::1.
ether_addr for a map whose match part contains a media access control (MAC) address, such as 52:54:00:6b:66:42.
inet_proto for a map whose match part contains an Internet protocol type, such as tcp.
inet_service for a map whose match part contains an Internet services name port number, such as ssh or 22.
mark for a map whose match part contains a packet mark. A packet mark can be any positive 32-bit integer value (0 to 2147483647).
counter for a map whose match part contains a counter value. The counter value can be any positive 64-bit integer value.
quota for a map whose match part contains a quota value. The quota value can be any positive 64-bit integer value.

The example describes how to allow or drop incoming packets based on their source IP address. Using a mutable verdict map, you require only a single rule to configure this scenario while the IP addresses and actions are dynamically stored in the map. The procedure also describes how to add and remove entries from the map.

Procedure

1. Create a table. For example, to create a table named example_table that processes IPv4 packets:

   # nft add table ip example_table

2. Create a chain. For example, to create a chain named example_chain in example_table:

   # nft add chain ip example_table example_chain { type filter hook input priority 0 \; }

   IMPORTANT
   To avoid that the shell interprets the semicolons as the end of the command, you must escape the semicolons with a backslash.

3. Create an empty map. For example, to create a map for IPv4 addresses:

   # nft add map ip example_table example_map { type ipv4_addr : verdict \; }

4. Create rules that use the map. For example, the following command adds a rule to example_chain in example_table that applies actions to IPv4 addresses which are both defined in example_map:

   # nft add rule example_table example_chain ip saddr vmap @example_map

5. Add IPv4 addresses and corresponding actions to example_map:

   # nft add element ip example_table example_map { 192.0.2.1 : accept, 192.0.2.2 : drop }
This example defines the mappings of IPv4 addresses to actions. In combination with the rule created above, the firewall accepts packet from 192.0.2.1 and drops packets from 192.0.2.2.

6. Optionally, enhance the map by adding another IP address and action statement:

   ```
 # nft add element ip example_table example_map { 192.0.2.3 : accept }
   ```

7. Optionally, remove an entry from the map:

   ```
 # nft delete element ip example_table example_map { 192.0.2.1 }
   ```

8. Optionally, display the rule set:

   ```
 # nft list ruleset
 table ip example_table {
 map example_map {
 type ipv4_addr : verdict
 elements = { 192.0.2.2 : drop, 192.0.2.3 : accept }
 }
 chain example_chain {
 type filter hook input priority filter; policy accept;
 ip saddr vmap @example_map
 }
 }
   ```

44.6.3. Related information

- For further details about verdict maps, see the Maps section in the nft(8) man page.

44.7. CONFIGURING PORT FORWARDING USING NFTABLES

Port forwarding enables administrators to forward packets sent to a specific destination port to a different local or remote port.

For example, if your web server does not have a public IP address, you can set a port forwarding rule on your firewall that forwards incoming packets on port 80 and 443 on the firewall to the web server. With this firewall rule, users on the internet can access the web server using the IP or host name of the firewall.

44.7.1. Forwarding incoming packets to a different local port

This section describes an example of how to forward incoming IPv4 packets on port 8022 to port 22 on the local system.

Procedure

1. Create a table named nat with the ip address family:

   ```
 # nft add table ip nat
   ```

2. Add the prerouting and postrouting chains to the table:
NOTE
Pass the -- option to the nft command to avoid that the shell interprets the negative priority value as an option of the nft command.

3. Add a rule to the **prerouting** chain that redirects incoming packets on port **8022** to the local port **22**:

```
nft add rule ip nat prerouting tcp dport 8022 redirect to :22
```

### 44.7.2. Forwarding incoming packets on a specific local port to a different host

You can use a destination network address translation (DNAT) rule to forward incoming packets on a local port to a remote host. This enables users on the Internet to access a service that runs on a host with a private IP address.

The procedure describes how to forward incoming IPv4 packets on the local port **443** to the same port number on the remote system with the **192.0.2.1** IP address.

#### Prerequisite

- You are logged in as the **root** user on the system that should forward the packets.

#### Procedure

1. Create a table named **nat** with the **ip** address family:

   ```
 # nft add table ip nat
   ```

2. Add the **prerouting** and **postrouting** chains to the table:

   ```
 # nft -- add chain ip nat prerouting { type nat hook prerouting priority -100 \; }
 # nft add chain ip nat postrouting { type nat hook postrouting priority 100 \; }
   ```

   **NOTE**
   Pass the -- option to the nft command to avoid that the shell interprets the negative priority value as an option of the nft command.

3. Add a rule to the **prerouting** chain that redirects incoming packets on port **443** to the same port on **192.0.2.1**:

   ```
 # nft add rule ip nat prerouting tcp dport 443 dnat to 192.0.2.1
   ```

4. Add a rule to the **postrouting** chain to masquerade outgoing traffic:

   ```
 # nft add rule ip daddr 192.0.2.1 masquerade
   ```

5. Enable packet forwarding:
44.8. USING NFTABLES TO LIMIT THE AMOUNT OF CONNECTIONS

You can use **nftables** to limit the number of connections or to block IP addresses that attempt to establish a given amount of connections to prevent them from using too many system resources.

### 44.8.1. Limiting the number of connections using nftables

The **ct count** parameter of the **nft** utility enables administrators to limit the number of connections. The procedure describes a basic example of how to limit incoming connections.

**Prerequisites**

- The base **example_chain** in **example_table** exists.

**Procedure**

1. Add a rule that allows only two simultaneous connections to the SSH port (22) from an IPv4 address and rejects all further connections from the same IP:

   ```bash
 # nft add rule ip example_table example_chain tcp dport ssh meter example_meter { ip saddr ct count over 2 } counter reject
   ```

2. Optionally, display the meter created in the previous step:

   ```bash
 # nft list meter ip example_table example_meter
table ip example_table {
 meter example_meter {
 type ipv4_addr
 size 65535
 elements = { 192.0.2.1 : ct count over 2 , 192.0.2.2 : ct count over 2 }
 }
}
```

The **elements** entry displays addresses that currently match the rule. In this example, **elements** lists IP addresses that have active connections to the SSH port. Note that the output does not display the number of active connections or if connections were rejected.

### 44.8.2. Blocking IP addresses that attempt more than ten new incoming TCP connections within one minute

The **nftables** framework enables administrators to dynamically update sets. This section explains how you use this feature to temporarily block hosts that are establishing more than ten IPv4 TCP connections within one minute. After five minutes, **nftables** automatically removes the IP address from the blacklist.

**Procedure**

1. Create the **filter** table with the **ip** address family:

   ```bash
 # nft add table ip filter
   ```
2. Add the **input** chain to the **filter** table:

```
nft add chain ip filter input { type filter hook input priority 0 ; }
```

3. Add a set named **blacklist** to the **filter** table:

```
nft add set ip filter blacklist { type ipv4_addr ; flags dynamic, timeout ; timeout 5m ; }
```

This command creates a dynamic set for IPv4 addresses. The `timeout 5m` parameter defines that **nftables** automatically removes entries after 5 minutes from the set.

4. Add a rule that automatically adds the source IP address of hosts that attempt to establish more than ten new TCP connections within one minute to the **blacklist** set:

```
nft add rule ip filter input ip protocol tcp ct state new, untracked limit rate over 10/minute add @blacklist { ip saddr }
```

5. Add a rule that drops all connections from IP addresses in the **blacklist** set:

```
nft add rule ip filter input ip saddr @blacklist drop
```

Additional resources

- Section 44.5.2, “Using named sets in nftables”

### 44.9. DEBUGGING NFTABLES RULES

The **nftables** framework provides different options for administrators to debug rules and if packets match them. This section describes these options.

#### 44.9.1. Creating a rule with a counter

To identify if a rule is matched, you can use a counter. This section describes how to create a new rule with a counter.

For a procedure that adds a counter to an existing rule, see Section 44.9.2, “Adding a counter to an existing rule”.

**Prerequisites**

- The chain to which you want to add the rule exists.

**Procedure**

1. Add a new rule with the **counter** parameter to the chain. The following example adds a rule with a counter that allows TCP traffic on port 22 and counts the packets and traffic that match this rule:

```
nft add rule inet example_table example_chain tcp dport 22 counter accept
```

2. To display the counter values:
44.9.2. Adding a counter to an existing rule

To identify if a rule is matched, you can use a counter. This section describes how to add a counter to an existing rule.

For a procedure to add a new rule with a counter, see Section 44.9.1, “Creating a rule with a counter”.

Prerequisites

- The rule to which you want to add the counter exists.

Procedure

1. Display the rules in the chain including their handles:

   ```
 # nft --handle list chain inet example_table example_chain
 table inet example_table {
 chain example_chain { # handle 1
 type filter hook input priority filter; policy accept;
 tcp dport ssh accept # handle 4
 }
 }
   ```

2. Add the counter by replacing the rule but with the `counter` parameter. The following example replaces the rule displayed in the previous step and adds a counter:

   ```
 # nft replace rule inet example_table example_chain handle 4 tcp dport 22 counter accept
   ```

3. To display the counter values:

   ```
 # nft list ruleset
 table inet example_table {
 chain example_chain {
 type filter hook input priority filter; policy accept;
 tcp dport ssh counter packets 6872 bytes 105448565 accept
 }
 }
   ```

44.9.3. Monitoring packets that match an existing rule

The tracing feature in `nftables` in combination with the `nft monitor` command enables administrators to display packets that match a rule. The procedure describes how to enable tracing for a rule as well as monitoring packets that match this rule.

Prerequisites
The rule to which you want to add the counter exists.

Procedure

1. Display the rules in the chain including their handles:

```bash
nft --handle list chain inet example_table example_chain
table inet example_table {
 chain example_chain { # handle 1
 type filter hook input priority filter; policy accept;
tcp dport ssh accept # handle 4
 }
}
```

2. Add the tracing feature by replacing the rule but with the `meta nftrace set 1` parameters. The following example replaces the rule displayed in the previous step and enables tracing:

```bash
nft replace rule inet example_table example_chain handle 4 tcp dport 22 meta nftrace set 1 accept
```

3. Use the `nft monitor` command to display the tracing. The following example filters the output of the command to display only entries that contain `inet example_table example_chain`:

```bash
nft monitor | grep "inet example_table example_chain"
trace id 3c5eb15e inet example_table example_chain packet: iif "enp1s0" ether saddr 52:54:00:17:ff:e4 ether daddr 52:54:00:72:2f:6e ip saddr 192.0.2.1 ip daddr 192.0.2.2 ip dscp cs0 ip ecn not-ect ip ttl 64 ip id 49710 ip protocol tcp ip length 60 tcp sport 56728 tcp dport ssh tcp flags -- syn tcp window 64240
trace id 3c5eb15e inet example_table example_chain_rule tcp dport ssh nftrace set 1 accept (verdict accept)
...
```

**WARNING**

Depending on the number of rules with tracing enabled and the amount of matching traffic, the `nft monitor` command can display a lot of output. Use `grep` or other utilities to filter the output.

### 44.10. BACKING UP AND RESTORING NFTABLES RULE SETS

This section describes how to backup nftables rules to a file, as well as restoring rules from a file.

Administrators can use a file with the rules to, for example, transfer the rules to a different server.

#### 44.10.1. Backing up nftables rule sets to a file

This section describes how to back up nftables rule sets to a file.
Procedure

- To backup nftables rules:
  - In \texttt{nft list ruleset} format:
    \begin{verbatim}
    # nft list ruleset > file.nft
    \end{verbatim}
  - In JSON format:
    \begin{verbatim}
    # nft -j list ruleset > file.json
    \end{verbatim}

44.10.2. Restoring nftables rule sets from a file

This section describes how to restore nftables rule sets.

Procedure

- To restore nftables rules:
  - If the file to restore is in \texttt{nft list ruleset} format or contains \texttt{nft} commands:
    \begin{verbatim}
    # nft -f file.nft
    \end{verbatim}
  - If the file to restore is in JSON format:
    \begin{verbatim}
    # nft -j -f file.json
    \end{verbatim}

44.11. RELATED INFORMATION

- The \textit{Using nftables in Red Hat Enterprise Linux 8} blog post provides an overview about using nftables features.

- The \textit{What comes after iptables? Its successor, of course: nftables} article explains why nftables replaces iptables.

- The \textit{Firewalld: The Future is nftables} article provides additional information on nftables as a default back end for firewalld.
CHAPTER 45. USING XDP-FILTER FOR HIGH-PERFORMANCE TRAFFIC FILTERING TO PREVENT DDOS ATTACKS

Compared to packet filters, such as nftables, Express Data Path (XDP) processes and drops network packets right at the network interface. Therefore, XDP determines the next step for the package before it reaches a firewall or other applications. As a result, XDP filters require less resources and can process network packets at a much higher rate than conventional packet filters to defend against Distributed Denial of Service (DDoS) attacks. For example, during testing, Red Hat dropped 26 million network packets per second on a single core, which is significantly higher than the drop rate of nftables on the same hardware.

The xdp-filter utility allows or drops incoming network packets using XDP. You can create rules to filter traffic to or from specific:

- IP addresses
- MAC addresses
- Ports

Note that, even if xdp-filter has a significantly higher packet-processing rate, it does not have the same capabilities as, for example, nftables. Consider xdp-filter a conceptual utility to demonstrate packet filtering using XDP. Additionally, you can use the code of the utility for a better understanding of how to write your own XDP applications.

IMPORTANT

Red Hat provides the xdp-filter utility as an unsupported Technology Preview.

45.1. DROPPING NETWORK PACKETS THAT MATCH AN XDP-FILTER RULE

This section describes how to use xdp-filter to drop network packets:

- To a specific destination port
- From a specific IP address
- From a specific MAC address

The allow policy of xdp-filter defines that all traffic is allowed and the filter drops only network packets that match a particular rule. For example, use this method if you know the source IP addresses of packets you want to drop.

Prerequisites

- The xdp-tools package is installed.
- A network driver that supports XDP programs.

Procedure

1. Load xdp-filter to process incoming packets on a certain interface, such as enp1s0:
By default, `xdp-filter` uses the `allow` policy, and the utility drops only traffic that matches any rule.

Optionally, use the `-f feature` option to enable only particular features, such as `tcp`, `ipv4`, or `ethernet`. Loading only the required features instead of all of them increases the speed of package processing. To enable multiple features, separate them with a comma.

If the command fails with an error, the network driver does not support XDP programs.

2. Add rules to drop packets that match them. For example:

   - To drop incoming packets to port 22, enter:
     
     ```bash
 # xdp-filter port 22
     ```

     This command adds a rule that matches TCP and UDP traffic. To match only a particular protocol, use the `-p protocol` option.

   - To drop incoming packets from 192.0.2.1, enter:
     
     ```bash
 # xdp-filter ip 192.0.2.1 -m src
     ```

     Note that `xdp-filter` does not support IP ranges.

   - To drop incoming packets from MAC address 00:53:00:AA:07:BE, enter:
     
     ```bash
 # xdp-filter ether 00:53:00:AA:07:BE -m src
     ```

Verification steps

- Use the following command to display statistics about dropped and allowed packets:

  ```bash
 # xdp-filter status
  ```

Additional resources

- For further details about `xdp-filter`, see the `xdp-filter(8)` man page.

- If you are a developer and you are interested in the code of `xdp-filter`, download and install the corresponding source RPM (SRPM) from the Red Hat Customer Portal.

### 45.2. DROPPING ALL NETWORK PACKETS EXCEPT THE ONES THAT MATCH AN XDP-FILTER RULE

This section describes how to use `xdp-filter` to allow only network packets:

- From and to a specific destination port
- From and to a specific IP address
- From and to specific MAC address
To do so, use the **deny** policy of **xdp-filter** which defines that the filter drops all network packets except the ones that match a particular rule. For example, use this method if you do not know the source IP addresses of packets you want to drop.

**WARNING**

If you set the default policy to **deny** when you load **xdp-filter** on an interface, the kernel immediately drops all packets from this interface until you create rules that allow certain traffic. To avoid being locked out from the system, enter the commands locally or connect through a different network interface to the host.

**Prerequisites**

- The **xdp-tools** package is installed.
- You are logged in to the host either locally or using a network interface for which you do not plan to filter the traffic.
- A network driver that supports XDP programs.

**Procedure**

1. Load **xdp-filter** to process packets on a certain interface, such as `enp1s0`:

   ```bash
 # xdp-filter load enp1s0 -p deny
   ```

   Optionally, use the `-f feature` option to enable only particular features, such as `tcp, ipv4`, or `ethernet`. Loading only the required features instead of all of them increases the speed of package processing. To enable multiple features, separate them with a comma.

   If the command fails with an error, the network driver does not support XDP programs.

2. Add rules to allow packets that match them. For example:

   - To allow packets from and to port **22**, enter:

     ```bash
 # xdp-filter port 22
     ```

     This command adds a rule that matches TCP and UDP traffic. To match only a particular protocol, pass the `-p protocol` option to the command.

   - To allow packets from and to **192.0.2.1**, enter:

     ```bash
 # xdp-filter ip 192.0.2.1
     ```

     Note that **xdp-filter** does not support IP ranges.

   - To allow packets from and to MAC address **00:53:00:AA:07:BE**, enter:

     ```bash
 # xdp-filter ether 00:53:00:AA:07:BE
     ```
IMPORTANT

The `xdp-filter` utility does not support stateful packet inspection. This requires that you either do not set a mode using the `-m mode` option or you add explicit rules to allow incoming traffic that the machine receives in reply to outgoing traffic.

Verification steps

- Use the following command to display statistics about dropped and allowed packets:

  ```
 # xdp-filter status
  ```

Additional resources

- For further details about `xdp-filter`, see the `xdp-filter(8)` man page.
- If you are a developer and you are interested in the code of `xdp-filter`, download and install the corresponding source RPM (SRPM) from the Red Hat Customer Portal.
CHAPTER 46. GETTING STARTED WITH DPDK

The Data Plane Development Kit (DPDK) provides libraries and network drivers to accelerate package processing in user space.

Administrators use DPDK, for example, in virtual machines to use Single Root I/O Virtualization (SR-IOV) to reduce latencies and increase I/O throughput.

NOTE

Red Hat does not support experimental DPDK APIs.

46.1. INSTALLING THE DPDK PACKAGE

This section describes how to install the dpdk package.

Prerequisites

- Red Hat Enterprise Linux is installed.
- A valid subscription is assigned to the host.

Procedure

1. Use the yum utility to install the dpdk package:

   # yum install dpdk

46.2. RELATED INFORMATION

- For a list of network adapters that support SR-IOV on Red Hat Enterprise Linux 8, see Network Adapter Fast Datapath Feature Support Matrix.
CHAPTER 47. UNDERSTANDING THE EBPF NETWORKING FEATURES IN RHEL

The extended Berkeley Packet Filter (eBPF) is an in-kernel virtual machine that allows code execution in the kernel space. This code runs in a restricted sandbox environment with access only to a limited set of functions.

In networking, you can use eBPF to complement or replace kernel packet processing. Depending on the hook you use, eBPF programs have, for example:

- Read and write access to packet data and metadata
- Can look up sockets and routes
- Can set socket options
- Can redirect packets

47.1. OVERVIEW OF NETWORKING EBPF FEATURES IN RHEL

You can attach extended Berkeley Paket Filter (eBPF) networking programs to the following hooks in RHEL:

- eXpress Data Path (XDP): Provides early access to received packets before the kernel networking stack processes them.
- tc eBPF classifier with direct-action flag: Provides powerful packet processing on ingress and egress.
- Control Groups version 2 (cgroup v2): Enables filtering and overriding socket-based operations performed by programs in a control group.
- Socket filtering: Enables filtering of packets received from sockets. This feature was also available in the classic Berkeley Packet Filter (cBPF), but has been extended to support eBPF programs.
- Stream parser: Enables splitting up streams to individual messages, filtering, and redirecting them to sockets.
- SO_REUSEPORT socket selection: Provides a programmable selection of a receiving socket from a reuseport socket group.
- Flow dissector: Enables overriding the way the kernel parses packet headers in certain situations.
- TCP congestion control callbacks: Enables implementing a custom TCP congestion control algorithm.
- Routes with encapsulation: Enables creating custom tunnel encapsulation.

Note that Red Hat does not support all of the eBPF functionality that is available in RHEL and described here. For further details and the support status of the individual hooks, see the RHEL 8 Release Notes and the following overview.

XDP
You can attach programs of the BPF_PROG_TYPE_XDP type to a network interface. The kernel then
executes the program on received packets before the kernel network stack starts processing them. This allows fast packet forwarding in certain situations, such as fast packet dropping to prevent Distributed Denial of Service (DDoS) attacks and fast packet redirects for load balancing scenarios.

You can also use XDP for different forms of packet monitoring and sampling. The kernel allows XDP programs to modify packets and to pass them for further processing to the kernel network stack.

The following XDP modes are available:

- **Native (driver) XDP**: The kernel executes the program from the earliest possible point during packet reception. At this moment, the kernel did not parse the packet and, therefore, no metadata provided by the kernel is available. This mode requires that the network interface driver supports XDP but not all drivers support this native mode.

- **Generic XDP**: The kernel network stack executes the XDP program early in the processing. At that time, kernel data structures have been allocated, and the packet has been pre-processed. If a packet should be dropped or redirected, it requires a significant overhead compared to the native mode. However, the generic mode does not require network interface driver support and works with all network interfaces.

- **Offloaded XDP**: The kernel executes the XDP program on the network interface instead of on the host CPU. Note that this requires specific hardware, and only certain eBPF features are available in this mode.

On RHEL, load all XDP programs using the **libxdp** library. This library enables system-controlled usage of XDP.

**NOTE**

Currently, there are some system configuration limitations for XDP programs. For example, you must disable certain hardware offload features on the receiving interface. Additionally, not all features are available with all drivers that support the native mode.

In RHEL 8.3, Red Hat supports the XDP feature only if all of the following conditions apply:

- You load the XDP program on an AMD or Intel 64-bit architecture.
- You use the **libxdp** library to load the program into the kernel.
- The XDP program uses one of the following return codes: **XDP_ABORTED**, **XDP_DROP**, or **XDP_PASS**.
- The XDP program does not use the XDP hardware offloading.

Additionally, Red Hat provides the following usage of XDP features as unsupported Technology Preview:

- Loading XDP programs on architectures other than AMD and Intel 64-bit. Note that the **libxdp** library is not available for architectures other than AMD and Intel 64-bit.
- The **XDP_TX** and **XDP_REDIRECT** return codes.
- The XDP hardware offloading.
Using an XDP program that filters and redirects packets to a given AF_XDP socket, you can use one or more sockets from the AF_XDP protocol family to fast copy packets from the kernel to the user space.

In RHEL 8.3, Red Hat provides this feature as an unsupported Technology Preview.

Traffic Control
The Traffic Control (tc) subsystem offers the following types of eBPF programs:

- BPF_PROG_TYPE_SCHED_CLS
- BPF_PROG_TYPE_SCHED_ACT

These types enable you to write custom tc classifiers and tc actions in eBPF. Together with the parts of the tc ecosystem, this provides the ability for powerful packet processing and is the core part of several container networking orchestration solutions.

In most cases, only the classifier is used, as with the direct-action flag, the eBPF classifier can execute actions directly from the same eBPF program. The clsact Queueing Discipline (qdisc) has been designed to enable this on the ingress side.

Note that using a flow dissector eBPF program can influence operation of some other qdiscs and tc classifiers, such as flower.

The eBPF for tc feature is fully supported in RHEL 8.2 and later.

Socket filter
Several utilities use or have used the classic Berkeley Packet Filter (cBPF) for filtering packets received on a socket. For example, the tcpdump utility enables the user to specify expressions, which tcpdump then translates into cBPF code.

As an alternative to cBPF, the kernel allows eBPF programs of the BPF_PROG_TYPE_SOCKET_FILTER type for the same purpose.

In RHEL 8.3, Red Hat provides this feature as an unsupported Technology Preview.

Control Groups
In RHEL, you can use multiple types of eBPF programs that you can attach to a cgroup. The kernel executes these programs when a program in the given cgroup performs an operation. Note that you can use only cgroups version 2.

The following networking-related cgroup eBPF programs are available in RHEL:

- BPF_PROG_TYPE_SOCK_OPS: The kernel calls this program during a TCP connect and allows setting of TCP operations per socket.
- BPF_PROG_TYPE_CGROUP_SOCK_ADDR: The kernel calls this program during connect, bind, sendto, and recvmsg operations. This program allows changing IP addresses and ports.
- BPF_PROG_TYPE_CGROUP_SOCKOPT: The kernel calls this program during setsockopt and getsockopt operations and allows changing the options.
- BPF_PROG_TYPE_CGROUP_SOCK: The kernel calls this program during socket creation and binding to addresses. You can use these programs to allow or deny the operation, or only to inspect socket creation for statistics.
- BPF_PROG_TYPE_CGROUP_SKB: This program filters individual packets on ingress and egress, and can accept or reject packets.
- **BPF_PROG_TYPE_CGROUP_SYSCTL**: This program allows filtering of access to system controls (`sysctl`).

In RHEL 8.3, Red Hat provides this feature as an unsupported Technology Preview.

**Stream Parser**

A stream parser operates on a group of sockets that are added to a special eBPF map. The eBPF program then processes packets that the kernel receives or sends on those sockets.

The following stream parser eBPF programs are available in RHEL:

- **BPF_PROG_TYPE_SK_SKB**: An eBPF program parses packets received from the socket into individual messages, and instructs the kernel to drop those messages or send them to another socket in the group.

- **BPF_PROG_TYPE_SK MSG**: This program filters egress messages. An eBPF program parses the packets into individual messages and either approves or rejects them.

In RHEL 8.3, Red Hat provides this feature as an unsupported Technology Preview.

**SO_REUSEPORT socket selection**

Using this socket option, you can bind multiple sockets to the same IP address and port. Without eBPF, the kernel selects the receiving socket based on a connection hash. With the **BPF_PROG_TYPE_SK_REUSEPORT** program, the selection of the receiving socket is fully programmable.

In RHEL 8.3, Red Hat provides this feature as an unsupported Technology Preview.

**Flow dissector**

When the kernel needs to process packet headers without going through the full protocol decode, they are dissected. For example, this happens in the `tc` subsystem, in multipath routing, in bonding, or when calculating a packet hash. In this situation the kernel parses the packet headers and fills internal structures with the information from the packet headers. You can replace this internal parsing using the **BPF_PROG_TYPE_FLOW_DISSECTOR** program. Note that you can only dissect TCP and UDP over IPv4 and IPv6 in eBPF in RHEL.

In RHEL 8.3, Red Hat provides this feature as an unsupported Technology Preview.

**TCP Congestion Control**

You can write a custom TCP congestion control algorithm using a group of **BPF_PROG_TYPE_STRUCT_OPS** programs that implement `struct tcp_congestion_oops` callbacks. An algorithm that is implemented this way is available to the system alongside the built-in kernel algorithms.

In RHEL 8.3, Red Hat provides this feature as an unsupported Technology Preview.

**Routes with encapsulation**

You can attach one of the following eBPF program types to routes in the routing table as a tunnel encapsulation attribute:

- **BPF_PROG_TYPE_LWT_IN**
- **BPF_PROG_TYPE_LWT_OUT**
- **BPF_PROG_TYPE_LWT_XMIT**
The functionality of such an eBPF program is limited to specific tunnel configurations and does not allow creating a generic encapsulation or decapsulation solution.

In RHEL 8.3, Red Hat provides this feature as an unsupported Technology Preview.
CHAPTER 48. NETWORK TRACING USING THE BPF COMPILER COLLECTION

This section explains what the BPF Compiler Collection (BCC) is, how you install the BCC, as well as how to perform different network tracing operations using the pre-created scripts provided by the **bcc-tools** package. All of these scripts support the `--ebpf` parameter to display the eBPF code the utility uploads to the kernel. You can use the code to learn more about writing eBPF scripts.

### 48.1. AN INTRODUCTION TO BCC

BPF Compiler Collection (BCC) is a library, which facilitates the creation of the extended Berkeley Packet Filter (eBPF) programs. The main utility of eBPF programs is analyzing OS performance and network performance without experiencing overhead or security issues.

BCC removes the need for users to know deep technical details of eBPF, and provides many out-of-the-box starting points, such as the **bcc-tools** package with pre-created eBPF programs.

**NOTE**

The eBPF programs are triggered on events, such as disk I/O, TCP connections, and process creations. It is unlikely that the programs should cause the kernel to crash, loop or become unresponsive because they run in a safe virtual machine in the kernel.

### 48.2. INSTALLING THE BCC-TOOLS PACKAGE

This section describes how to install the **bcc-tools** package, which also installs the BPF Compiler Collection (BCC) library as a dependency.

**Prerequisites**

- An active *Red Hat Enterprise Linux subscription*
- An *enabled repository* containing the **bcc-tools** package
- *Updated kernel*
- *Root permissions.*

**Procedure**

1. Install **bcc-tools**:

   ```
 # yum install bcc-tools
   ```

   The BCC tools are installed in the `/usr/share/bcc/tools/` directory.

2. Optionally, inspect the tools:

   ```
 # ll /usr/share/bcc/tools/
 ...
 -rwxr-xr-x. 1 root root 4198 Dec 14 17:53 dcsnoop
 -rwxr-xr-x. 1 root root 3931 Dec 14 17:53 dcstat
 -rwxr-xr-x. 1 root root 20040 Dec 14 17:53 deadlock_detector
   ```
48.3. DISPLAYING TCP CONNECTIONS ADDED TO THE KERNEL’S ACCEPT QUEUE

After the kernel receives the ACK packet in a TCP 3-way handshake, the kernel moves the connection from the SYN queue to the accept queue after the connection’s state changes to ESTABLISHED. Therefore, only successful TCP connections are visible in this queue.

The tcpaccept utility uses eBPF features to display all connections the kernel adds to the accept queue. The utility is lightweight because it traces the accept() function of the kernel instead of capturing packets and filtering them. For example, use tcpaccept for general troubleshooting to display new connections the server has accepted.

Procedure

1. Enter the following command to start the tracing the kernel accept queue:

```
/usr/share/bcc/tools/tcpaccept
```

<table>
<thead>
<tr>
<th>PID</th>
<th>COMM</th>
<th>IP</th>
<th>RADDR</th>
<th>RPORT</th>
<th>LADDR</th>
<th>LPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>843</td>
<td>sshd</td>
<td>4</td>
<td>192.0.2.17</td>
<td>50598</td>
<td>192.0.2.1</td>
<td>22</td>
</tr>
<tr>
<td>1107</td>
<td>ns-slapd</td>
<td>4</td>
<td>198.51.100.6</td>
<td>38772</td>
<td>192.0.2.1</td>
<td>389</td>
</tr>
<tr>
<td>1107</td>
<td>ns-slapd</td>
<td>4</td>
<td>203.0.113.85</td>
<td>38774</td>
<td>192.0.2.1</td>
<td>389</td>
</tr>
</tbody>
</table>

Each time the kernel accepts a connection, tcpaccept displays the details of the connections.

2. Press Ctrl+C to stop the tracing process.

Additional resources

- For further details, see the tcpaccept(8) man page.
- For further details about tcpaccept and examples, see the /usr/share/bcc/tools/doc/tcpaccept_example.txt file.
- To display the eBPF script tcpaccept8) uploads to the kernel, use the /usr/share/bcc/tools/tcpaccept --ebpf command.

48.4. TRACING OUTGOING TCP CONNECTION ATTEMPTS

The tcpconnect utility uses eBPF features to trace outgoing TCP connection attempts. The output of the utility also includes connections that failed.

The tcpconnect utility is lightweight because it traces, for example, the connect() function of the kernel instead of capturing packets and filtering them.
Procedure

1. Enter the following command to start the tracing process that displays all outgoing connections:

```
/usr/share/bcc/tools/tcpconnect
PID COMM IP SADDR DADDR DPORT
31346 curl 4 192.0.2.1 198.51.100.16 80
31348 telnet 4 192.0.2.1 203.0.113.231 23
31361 isc-worker00 4 192.0.2.1 192.0.2.254 53
```

Each time the kernel processes an outgoing connection, `tcpconnect` displays the details of the connections.

2. Press `Ctrl+C` to stop the tracing process.

Additional resources

- For further details, see the `tcpconnect(8)` man page.
- For further details about `tcpconnect` and examples, see the `/usr/share/bcc/tools/doc/tcpconnect_example.txt` file.
- To display the eBPF script `tcpconnect(8)` uploads to the kernel, use the `/usr/share/bcc/tools/tcpconnect --ebpf` command.

48.5. MEASURING THE LATENCY OF OUTGOING TCP CONNECTIONS

The TCP connection latency is the time taken to establish a connection. This typically involves the kernel TCP/IP processing and network round trip time, and not the application runtime.

The `tcpconnlat` utility uses eBPF features to measure the time between a sent `SYN` packet and the received response packet.

Procedure

1. Start measuring the latency of outgoing connections:

```
/usr/share/bcc/tools/tcpconnlat
PID COMM IP SADDR DADDR DPORT LAT(ms)
32151 isc-worker00 4 192.0.2.1 192.0.2.254 53 0.60
32155 ssh 4 192.0.2.1 203.0.113.190 22 26.34
32319 curl 4 192.0.2.1 198.51.100.59 443 188.96
```

Each time the kernel processes an outgoing connection, `tcpconnlat` displays the details of the connection after the kernel receives the response packet.

2. Press `Ctrl+C` to stop the tracing process.

Additional resources

- For further details, see the `tcpconnlat(8)` man page.
For further details about tcpconnlat and examples, see the /
/usr/share/bcc/tools/doc/tcpconnlat_example.txt file.

To display the eBPF script tcpconnlat(8) uploads to the kernel, use the
/usr/share/bcc/tools/tcpconnlat --ebpf command.

48.6. DISPLAYING DETAILS ABOUT TCP PACKETS AND SEGMENTS
THAT WERE DROPPED BY THE KERNEL

The tcpdrop utility enables administrators to display details about TCP packets and segments that were
dropped by the kernel. Use this utility to debug high rates of dropped packets that can cause the
remote system to send timer–based retransmits. High rates of dropped packets and segments can
impact the performance of a server.

Instead of capturing and filtering packets, which is resource–intensive, the tcpdrop utility uses eBPF
features to retrieve the information directly from the kernel.

Procedure

1. Enter the following command to start displaying details about dropped TCP packets and
segments:

   # /usr/share/bcc/tools/tcpdrop
   TIME   PID   IP     SADDR:SPORT       > DADDR:DPORT   STATE (FLAGS)
   13:28:39 32253  4  192.0.2.85:51616  > 192.0.2.1:22  CLOSE_WAIT (FIN|ACK)
   b'tcp_drop+0x1'
   b'tcp_data_queue+0x2b9'
   ...
   13:28:39 1      4  192.0.2.85:51616  > 192.0.2.1:22   CLOSE (ACK)
   b'tcp_drop+0x1'
   b'tcp_rcv_state_process+0xe2'
   ...

   Each time the kernel drops TCP packets and segments, tcpdrop displays the details of the
   connection, including the kernel stack trace that led to the dropped package.

2. Press Ctrl+C to stop the tracing process.

Additional resources

- For further details, see the tcpdrop(8) man page.

- For further details about tcpdrop and examples, see the
  /usr/share/bcc/tools/doc/tcpdrop_example.txt file.

- To display the eBPF script tcpdrop(8) uploads to the kernel, use the
  /usr/share/bcc/tools/tcpdrop --ebpf command.

48.7. TRACING TCP SESSIONS

The tcplife utility uses eBPF to trace TCP sessions that open and close, and prints a line of output to
summarize each one. Administrators can use tcplife to identify connections and the amount of
transferred traffic.
The example in this section describes how to display connections to port 22 (SSH) to retrieve the following information:

- The local process ID (PID)
- The local process name
- The local IP address and port number
- The remote IP address and port number
- The amount of received and transmitted traffic in KB.
- The time in milliseconds the connection was active

**Procedure**

1. Enter the following command to start the tracing of connections to the local port 22:

   ```bash
 /usr/share/bcc/tools/tcplife -L 22
   ```

<table>
<thead>
<tr>
<th>PID</th>
<th>COMM</th>
<th>LADDR</th>
<th>LPORT</th>
<th>RADDR</th>
<th>RPORT</th>
<th>TX_KB</th>
<th>RX_KB</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>19392</td>
<td>sshd</td>
<td>192.0.2.1</td>
<td>22</td>
<td>192.0.2.17</td>
<td>43892</td>
<td>53</td>
<td>52</td>
<td>6681.95</td>
</tr>
<tr>
<td>19431</td>
<td>sshd</td>
<td>192.0.2.1</td>
<td>22</td>
<td>192.0.2.245</td>
<td>43902</td>
<td>81</td>
<td>249381</td>
<td>7585.09</td>
</tr>
<tr>
<td>19487</td>
<td>sshd</td>
<td>192.0.2.1</td>
<td>22</td>
<td>192.0.2.121</td>
<td>43970</td>
<td>6998</td>
<td>7</td>
<td>16740.35</td>
</tr>
</tbody>
</table>
   ...

   Each time a connection is closed, `tcplife` displays the details of the connections.

2. Press `Ctrl+C` to stop the tracing process.

**Additional resources**

- For further details, see the `tcplife(8)` man page.
- For further details about `tcplife` and examples, see the `/usr/share/bcc/tools/doc/tcplife_example.txt` file.
- To display the eBPF script `tcplife(8)` uploads to the kernel, use the `/usr/share/bcc/tools/tcplife --ebpf` command.

**48.8. TRACING TCP RETRANSMISSIONS**

The `tcpretrans` utility displays details about TCP retransmissions, such as the local and remote IP address and port number, as well as the TCP state at the time of the retransmissions.

The utility uses eBPF features and, therefore, has a very low overhead.

**Procedure**

1. Use the following command to start displaying TCP retransmission details:

   ```bash
 # /usr/share/bcc/tools/tcpretrans
   ```

<table>
<thead>
<tr>
<th>TIME</th>
<th>PID</th>
<th>IP LADDR:LPORT</th>
<th>T&gt; RADDR:RPORT</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:23:02</td>
<td>0</td>
<td>192.0.2.1:22</td>
<td>R&gt; 198.51.100.0:26788</td>
<td>ESTABLISHED</td>
</tr>
</tbody>
</table>
Each time the kernel calls the TCP retransmit function, tcpretrans displays the details of the connection.

2. Press Ctrl+C to stop the tracing process.

Additional resources

- For further details, see the tcpretrans(8) man page.

- For further details about tcpretrans and examples, see the /usr/share/bcc/tools/doc/tcpretrans_example.txt file.

- To display the eBPF script tcpretrans(8) uploads to the kernel, use the /usr/share/bcc/tools/tcpretrans --ebpf command.

48.9. DISPLAYING TCP STATE CHANGE INFORMATION

During a TCP session, the TCP state changes. The tcpstates utility uses eBPF functions to trace these state changes, and prints details including the duration in each state. For example, use tcpstates to identify if connections spend too much time in the initialization state.

Procedure

1. Use the following command to start to start tracing TCP state changes:

```
/usr/share/bcc/tools/tcpstates
SKADDR C-PID C-COMM LADDR LPORT RADDR RPORT OLDSTATE ->
NEWSTATE MS
ffff9cd377b3af80 0 swapper/1 0.0.0.0 22 0.0.0.0 0 LISTEN -> SYN_RECV 0.000
ffff9cd377b3af80 0 swapper/1 192.0.2.1 22 192.0.2.45 53152 SYN_RECV -> ESTABLISHED 0.067
ffff9cd377b3af80 818 sssd_nss 192.0.2.1 22 192.0.2.45 53152 ESTABLISHED -> CLOSE_WAIT 65636.773
ffff9cd377b3af80 1432 sshd 192.0.2.1 22 192.0.2.45 53152 CLOSE_WAIT -> LAST_ACK 24.409
ffff9cd377b3af80 1267 pulseaudio 192.0.2.1 22 192.0.2.45 53152 LAST_ACK -> CLOSE 0.376
```

Each time a connection changes its state, tcpstates displays a new line with updated connection details.

If multiple connections change their state at the same time, use the socket address in the first column (SKADDR) to determine which entries belong to the same connection.

2. Press Ctrl+C to stop the tracing process.

Additional resources

- For further details, see the tcpstates(8) man page.
For further details about `tcpstates` and examples, see the `/usr/share/bcc/tools/doc/tcpstates_example.txt` file.

To display the eBPF script `tcpstates(8)` uploads to the kernel, use the `/usr/share/bcc/tools/tcpstates --ebpf` command.

48.10. SUMMARIZING AND AGGREGATING TCP TRAFFIC SENT TO SPECIFIC SUBNETS

The `tcpsubnet` utility summarizes and aggregates IPv4 TCP traffic that the local host sends to subnets and displays the output on a fixed interval. The utility uses eBPF features to collect and summarize the data to reduce the overhead.

By default, `tcpsubnet` summarizes traffic for the following subnets:

- 127.0.0.1/32
- 10.0.0.0/8
- 172.16.0.0/12
- 192.0.2.0/24/16
- 0.0.0.0/0

Note that the last subnet (0.0.0.0/0) is a catch-all option. The `tcpsubnet` utility counts all traffic for subnets different than the first four in this catch-all entry.

Follow the procedure to count the traffic for the 192.0.2.0/24 and 198.51.100.0/24 subnets. Traffic to other subnets will be tracked in the 0.0.0.0/0 catch-all subnet entry.

Procedure

1. Start monitoring the amount of traffic send to the 192.0.2.0/24, 198.51.100.0/24, and other subnets:

   ```
 # /usr/share/bcc/tools/tcpsubnet 192.0.2.0/24,198.51.100.0/24,0.0.0.0/0
 Tracing... Output every 1 secs. Hit Ctrl-C to end
 [02/21/20 10:04:50] 192.0.2.0/24 856
 [02/21/20 10:04:51] 198.51.100.0/24 7467
 [02/21/20 10:04:51] 192.0.2.0/24 1200
 [02/21/20 10:04:52] 198.51.100.0/24 8763
 [02/21/20 10:04:52] 0.0.0.0/0 673
 ...
   ```

   This command displays the traffic in bytes for the specified subnets once per second.

2. Press `Ctrl+C` to stop the tracing process.

Additional resources

- For further details, see the `tcpsubnet(8)` man page.
For further details about tcpsubnet and examples, see the

To display the eBPF script tcpsubnet(8) uploads to the kernel, use the
/usr/share/bcc/tools/tcpsubnet --ebpf command.

48.11. DISPLAYING THE NETWORK THROUGHPUT BY IP ADDRESS AND PORT

The tcptop utility displays TCP traffic the host sends and receives in kilobytes. The report automatically refreshes and contains only active TCP connections. The utility uses eBPF features and, therefore, has only a very low overhead.

Procedure

1. To monitor the sent and received traffic, enter:

```
/usr/share/bcc/tools/tcptop
13:46:29 loadavg: 0.10 0.03 0.01 1/215 3875

PID COMM LADDR RADDR RX_KB TX_KB
3853 3853 192.0.2.1:22 192.0.2.165:41838 32 102626
1285 sshd 192.0.2.1:22 192.0.2.45:39240 0 0 ...
```

The output of the command includes only active TCP connections. If the local or remote system closes a connection, the connection is no longer visible in the output.

2. Press Ctrl+C to stop the tracing process.

Additional resources

- For further details, see the tcptop(8) man page.
- For further details about tcptop and examples, see the /usr/share/bcc/tools/doc/tcptop.txt file.
- To display the eBPF script tcptop(8) uploads to the kernel, use the /usr/share/bcc/tools/tcptop --ebpf command.

48.12. TRACING ESTABLISHED TCP CONNECTIONS

The tcptracer utility traces the kernel functions that connect, accept, and close TCP connections. The utility uses eBPF features and, therefore, has a very low overhead.

Procedure

1. Use the following command to start the tracing process:

```
/usr/share/bcc/tools/tcptracer
Tracing TCP established connections. Ctrl-C to end.
T PID COMM IP SADDR DADDR SPORT DPORT
A 1088 ns-slapd 4 192.0.2.153 192.0.2.1 0 65535
```
Each time the kernel connects, accepts, or closes a connection, **tcptracer** displays the details of the connections.

2. Press **Ctrl+C** to stop the tracing process.

**Additional resources**

- For further details, see the **tcptracer(8)** man page.
- For further details about **tcptracer** and examples, see the `/usr/share/bcc/tools/doc/tcptracer_example.txt` file.
- To display the eBPF script **tcptracer(8)** uploads to the kernel, use the `/usr/share/bcc/tools/tcptracer --ebpf` command.

### 48.13. TRACING IPV4 AND IPV6 LISTEN ATTEMPTS

The **solisten** utility traces all IPv4 and IPv6 listen attempts. It traces the listen attempts including that ultimately fail or the listening program that does not accept the connection. The utility traces function that the kernel calls when a program wants to listen for TCP connections.

**Procedure**

1. Enter the following command to start the tracing process that displays all listen TCP attempts:

   ```
 # /usr/share/bcc/tools/solisten
 PID COMM PROTO BACKLOG PORT ADDR
 3643 nc TCPv4 1 4242 0.0.0.0
 3659 nc TCPv6 1 4242 2001:db8:1::1
 4221 redis-server TCPv6 128 6379 ::
 4221 redis-server TCPv4 128 6379 0.0.0.0

   ```

2. Press **Ctrl+C** to stop the tracing process.

**Additional resources**

- For further details, see the **solisten** man page.
- For further details about **solisten** and examples, see the `/usr/share/bcc/tools/doc/solisten_example.txt` file.
- To display the eBPF script **solisten** uploads to the kernel, use the `/usr/share/bcc/tools/solisten --ebpf` command.

### 48.14. SUMMARIZING THE SERVICE TIME OF SOFT Interrupts

The **softirqs** utility summarizes the time spent servicing soft interrupts (soft IRQs) and shows this time as either totals or histogram distributions. This utility uses the **irq:softirq_enter** and **irq:softirq_exit** kernel tracepoints, which is a stable tracing mechanism.
Procedure

1. Enter the following command to start the tracing soft irq event time:

```
/usr/share/bcc/tools/softirqs
Tracing soft irq event time... Hit Ctrl-C to end.
^C
SOFTIRQ TOTAL_usecs
 tasklet 166
 block 9152
 net_rx 12829
 rcu 53140
 sched 182360
 timer 306256
```

2. Press `Ctrl+C` to stop the tracing process.

Additional resources

- For further details, see the `softirqs` man page.
- For further details about `softirqs` and examples, see the `/usr/share/bcc/tools/doc/softirqs_example.txt` file.
- To display the eBPF script `solisten` uploads to the kernel, use the `/usr/share/bcc/tools/softirqs --ebpf` command.
- For more details on how `mpstat` uses this information, see the `mpstat(1)` man page.

48.15. ADDITIONAL RESOURCES

- For further information about BCC, see the `/usr/share/doc/bcc/README.md` file.
CHAPTER 49. GETTING STARTED WITH TIPC

Transparent Inter-process Communication (TIPC), which is also known as Cluster Domain Sockets, is an Inter-process Communication (IPC) service for cluster-wide operation.

Applications that are running in a high-available and dynamic cluster environment have special needs. The number of nodes in a cluster can vary, routers can fail, and, due to load balancing considerations, functionality can be moved to different nodes in the cluster. TIPC minimizes the effort by application developers to deal with such situations, and maximizes the chance that they are handled in a correct and optimal way. Additionally, TIPC provides a more efficient and fault-tolerant communication than general protocols, such as TCP.

49.1. THE ARCHITECTURE OF TIPC

TIPC is a layer between applications using TIPC and a packet transport service (bearer), and spans the level of transport, network, and signalling link layers. However, TIPC can use a different transport protocol as bearer, so that, for example, a TCP connection can serve as a bearer for a TIPC signaling link.

TIPC supports the following bearers:

- Ethernet
- InfiniBand
- UDP protocol

TIPC provides a reliable transfer of messages between TIPC ports, that are the endpoints of all TIPC communication.

The following is a diagram of the TIPC architecture:

A diagram of the TIPC architecture is shown here. It illustrates the layers of transport, network, and signalling link and how TIPC spans these levels.

49.2. LOADING THE TIPC MODULE WHEN THE SYSTEM BOOTS

Before you can use the TIPC protocol, load the tipc kernel module. This section explains how to configure that RHEL loads this module automatically when the system boots.

Procedure

1. Create the /etc/modules-load.d/tipc.conf file with the following content:

   ```
 tipc
   ```

2. Restart the systemd-modules-load service to load the module without rebooting the system:
# systemctl start systemd-modules-load

**Verification steps**

1. Use the following command to verify that RHEL loaded the **tipc** module:

   ```
 # lsmod | grep tipc
 tipc 311296 0
   ```

   If the command shows no entry for the **tipc** module, RHEL failed to load it.

**Additional resources**

- For further details about loading modules when the system boots, see the *modules-load.d(5)* man page.

### 49.3. CREATING A TIPC NETWORK

This section describes how to create a TIPC network.

**IMPORTANT**

The commands configure the TIPC network only temporarily. To permanently configure TIPC on a node, use the commands of this procedure in a script, and configure RHEL to execute that script when the system boots.

**Prerequisites**

- The **tipc** module has been loaded. For details, see Section 49.2, “Loading the tipc module when the system boots”

**Procedure**

1. Optional: Set a unique node identity, such as a UUID or the node’s host name:

   ```
 # tipc node set identity *host_name*
   ```

   The identity can be any unique string consisting of maximum 16 letters and numbers.

2. Add a bearer. For example, to use Ethernet as media and **enp0s1** device as physical bearer device, enter:

   ```
 # tipc bearer enable media eth device enp0s1
   ```

3. Optional: For redundancy and better performance, attach further bearers using the command from the previous step. You can configure up to three bearers, but not more than two on the same media.

4. Repeat all previous steps on each node that should join the TIPC network.

**Verification steps**

1. Display the link status for cluster members:
2. Display the TIPC publishing table:

```
tipc nametable show
Type Lower Upper Scope Port Node
0 1795222054 1795222054 cluster 0 5254006b74be
0 3741353223 3741353223 cluster 0 525400df55d1
1 1 1 node 2399405586 5254006b74be
2 3741353223 3741353223 node 0 5254006b74be
```

- The two entries with service type 0 indicate that two nodes are members of this cluster.
- The entry with service type 1 represents the built-in topology service tracking service.
- The entry with service type 2 displays the link as seen from the issuing node. The range limit 3741353223 represents peer endpoint’s address (a unique 32-bit hash value based on the node identity) in decimal format.

Additional resources

- For details about other bearers you can use and the corresponding command-line parameters, see the `tipc-bearer(8)` man page.
- For further details about the `tipc namespace` command, see the `tipc-namespace(8)` man page.

49.4. ADDITIONAL RESOURCES

- Red Hat recommends to use other bearer level protocols to encrypt the communication between nodes based on the transport media. For example:
  - MACSec: For details, see Chapter 32, Configuring MACsec.
  - IPsec: For details, see the Configuring a VPN with IPsec section in the Securing networks guide.
- For examples of how to use TIPC, clone the upstream GIT repository using the `git clone git://git.code.sf.net/p/tipc/tipcutils` command. This repository contains the source code of demos and test programs that use TIPC features. Note that this repository is not provided by Red Hat.
- For details about the TIPC protocol, see http://tipc.io/protocol.html.
- For details about TIPC programming, see http://tipc.io/protocol.html.