
Red Hat Enterprise Linux 8

Building, running, and managing containers

Building, running, and managing Linux containers on Red Hat Enterprise Linux 8

Last Updated: 2019-06-21

Red Hat Enterprise Linux 8 Building, running, and managing containers

Building, running, and managing Linux containers on Red Hat Enterprise Linux 8

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to work with Linux containers on RHEL 8 systems using command-line
tools such as podman, buildah, skopeo and runc.

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. STARTING WITH CONTAINERS
1.1. RUNNING CONTAINERS WITHOUT DOCKER
1.2. CHOOSING A RHEL ARCHITECTURE FOR CONTAINERS
1.3. GETTING CONTAINER TOOLS
1.4. ENABLING CONTAINER SETTINGS

CHAPTER 2. WORKING WITH CONTAINER IMAGES
2.1. PULLING IMAGES FROM REGISTRIES
2.2. INVESTIGATING IMAGES

2.2.1. Listing images
2.2.2. Inspecting local images
2.2.3. Inspecting remote images

2.3. TAGGING IMAGES
2.4. SAVING AND IMPORTING IMAGES
2.5. REMOVING IMAGES

CHAPTER 3. WORKING WITH CONTAINERS
3.1. RUNNING CONTAINERS
3.2. INVESTIGATING RUNNING AND STOPPED CONTAINERS

3.2.1. Listing containers
3.2.2. Inspecting containers
3.2.3. Investigating within a container

3.3. STARTING AND STOPPING CONTAINERS
3.3.1. Starting containers
3.3.2. Stopping containers

3.4. REMOVING CONTAINERS

CHAPTER 4. USING RED HAT UNIVERSAL BASE IMAGES (STANDARD, MINIMAL, AND RUNTIMES)
4.1. WHAT ARE RED HAT BASE IMAGES?

4.1.1. Using standard Red Hat base images
4.1.2. Using minimal Red Hat base images
4.1.3. Using Init Red Hat base images

4.2. HOW ARE UBI IMAGES DIFFERENT?
4.3. GET UBI IMAGES
4.4. PULL UBI IMAGES
4.5. REDISTRIBUTING UBI IMAGES
4.6. RUN UBI IMAGES
4.7. ADD SOFTWARE TO A RUNNING UBI CONTAINER

4.7.1. Adding software to a UBI container (subscribed host)
4.7.2. Adding software inside the standard UBI container
4.7.3. Adding software inside the minimal UBI container
4.7.4. Adding software to a UBI container (unsubscribed host)
4.7.5. Build a UBI-based image
4.7.6. Using Red Hat Software Collections runtime images
4.7.7. Getting UBI Container Image Source Code
4.7.8. Tips and tricks for using UBI images
4.7.9. How to request new features in UBI?
4.7.10. How to file a support case for UBI?

4

5

6
6
7
8
9

10
10
11
11
11

13
13
14
14

16
16
18
18
18
19

20
21
21
21

23
23
23
24
24
25
25
28
29
29
29
30
30
30
31
31

33
33
34
34
34

Table of Contents

1

. .

. .

. .

. .

CHAPTER 5. BUILDING CONTAINER IMAGES WITH BUILDAH
5.1. UNDERSTANDING BUILDAH

5.1.1. Installing Buildah
5.2. GETTING IMAGES WITH BUILDAH
5.3. BUILDING AN IMAGE FROM A DOCKERFILE WITH BUILDAH

5.3.1. Running the image you built
5.3.2. Inspecting a container with Buildah

5.4. MODIFYING A CONTAINER TO CREATE A NEW IMAGE WITH BUILDAH
5.4.1. Using buildah mount to modify a container
5.4.2. Using buildah copy and buildah config to modify a container

5.5. CREATING IMAGES FROM SCRATCH WITH BUILDAH
5.6. REMOVING IMAGES OR CONTAINERS WITH BUILDAH
5.7. USING CONTAINER REGISTRIES WITH BUILDAH

5.7.1. Pushing containers to a private registry
5.7.2. Pushing containers to the Docker Hub

CHAPTER 6. RUNNING CONTAINERS AS SYSTEMD SERVICES WITH PODMAN
6.1. STARTING CONTAINERS WITH SYSTEMD
6.2. STARTING SERVICES WITHIN A CONTAINER USING SYSTEMD

CHAPTER 7. CONTAINER COMMAND-LINE REFERENCE
7.1. PODMAN

7.1.1. Using podman commands
7.1.2. Trying basic podman commands
7.1.3. Pull a container image to the local system
7.1.4. List local container images
7.1.5. Inspect a container image
7.1.6. Run a container image
7.1.7. List containers that are running or have exited
7.1.8. Remove a container or image
7.1.9. Build a container

7.2. RUNC
7.2.1. Running containers with runc

7.3. SKOPEO
7.3.1. Inspecting container images with skopeo
7.3.2. Copying container images with skopeo
7.3.3. Getting image layers with skopeo

CHAPTER 8. ADDITIONAL RESOURCES

35
35
36
36
37
37
38
38
39
39
40
42
42
42
43

45
45
46

49
49
50
51
51
52
52
52
52
52
53
53
53
54
55
56
56

57

Red Hat Enterprise Linux 8 Building, running, and managing containers

2

Table of Contents

3

PREFACE
Red Hat classifies container use cases into two distinct groups: single node and multi-node, with multi-
node sometimes called distributed systems. OpenShift was built for multi-node systems, although
single-node, all-in-one installations are supported as well. Beyond OpenShift, however, it is useful to
have a small, nimble set of tools for working with containers.

The set of container tools we are referring to can be used in a single-node use case. However, you can
also wire these tools into existing build systems, CI/CD environments, and even use them to tackle
workload-specific use cases, such as big data. To target the single-node use case, Red Hat Enterprise
Linux (RHEL) 8 offers a set of tools to find, run, build, and share individual containers.

This guide describes how to work with Linux containers on RHEL 8 systems using command-line tools
such as podman, buildah, skopeo and runc. In addition to these tools, Red Hat provides base images, to
act as the foundation for your own images. Some of these base images target use cases ranging from
business applications (such as Node.js, PHP, Java, and Python) to infrastructure (such as logging, data
collection, and authentication).

Red Hat Enterprise Linux 8 Building, running, and managing containers

4

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Please let us know how we could make it better. To do
so:

For simple comments on specific passages, make sure you are viewing the documentation in the
Multi-page HTML format. Highlight the part of text that you want to comment on. Then, click
the Add Feedback pop-up that appears below the highlighted text, and follow the displayed
instructions.

For submitting more complex feedback, create a Bugzilla ticket:

1. Go to the Bugzilla website.

2. As the Component, use Documentation.

3. Fill in the Description field with your suggestion for improvement. Include a link to the
relevant part(s) of documentation.

4. Click Submit Bug.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

5

https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Enterprise Linux 8

CHAPTER 1. STARTING WITH CONTAINERS
Linux Containers have emerged as a key open source application packaging and delivery technology,
combining lightweight application isolation with the flexibility of image-based deployment methods.

Red Hat Enterprise Linux implements Linux Containers using core technologies such as Control Groups
(Cgroups) for Resource Management, Namespaces for Process Isolation, SELinux for Security, enabling
secure multi-tenancy and reducing the potential for security exploits. All this is meant to provide you
with an environment to producing and running enterprise-quality containers.

Red Hat OpenShift provides powerful command-line and Web UI tools for building, managing and
running containers in units referred to as pods. However, there are times when you might want to build
and manage individual containers and container images outside of OpenShift. Tools provided to
perform those tasks that run directly on RHEL systems are described in this guide.

Unlike other container tools implementations, tools described here do not center around the monolithic
Docker container engine and docker command. Instead, we provide a set of command-line tools that
can operate without a container engine. These include:

podman - For directly managing pods and container images (run, stop, start, ps, attach, exec,
and so on)

buildah - For building, pushing and signing container images

skopeo - For copying, inspecting, deleting, and signing images

runc - For providing container run and build features to podman and buildah

Because these tools are compatible with the Open Container Initiative (OCI), they can be used to
manage the same Linux containers that are produced and managed by Docker and other OCI-
compatible container engines. However, they are especially suited to run directly on Red Hat Enterprise
Linux, in single-node use cases.

For a multi-node container platform, see OpenShift. Instead of relying on the single-node, daemonless
tools described in this document, OpenShift requires a daemon-based container engine. Please see
Using the CRI-O Container Engine for details.

1.1. RUNNING CONTAINERS WITHOUT DOCKER

Red Hat did not just remove the Docker container engine from OpenShift. It also removed the Docker
container engine, along with the docker command, from Red Hat Enterprise Linux 8 entirely. For RHEL
8, Docker is not included and not supported.

The removal of Docker reflects a change in Red Hat’s way of thinking about how containers are handled:

In the enterprise, the focus is not on running individual containers from the command line. The
primary venue for running containers is a Kubernetes-based platform, such as OpenShift.

By repositioning OpenShift as the project for running containers, container engines like Docker
become just another component of OpenShift with no direct access by end users.

Because the container engine in OpenShift is not meant to be used directly, it can be
implemented with a limited feature set that focuses on doing everything that OpenShift needs,
without having to implement lots of standalone features.

Although Docker is gone from RHEL 8, and OpenShift’s container engine is disconnected from single-

Red Hat Enterprise Linux 8 Building, running, and managing containers

6

https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction/#h.dqlu6589ootw
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction/#h.6yt1ex5wfo3l
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction/#h.6yt1ex5wfo3l
https://docs.openshift.com/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cri-o_runtime/

Although Docker is gone from RHEL 8, and OpenShift’s container engine is disconnected from single-
node uses, people still want to use commands to work with containers and images manually. So Red Hat
set about to create a set of tools to implement most of what the docker command does.

Tools like podman, skopeo, and buildah were developed to take over those docker command features.
Each tool in this scenario can be more light-weight and focused on a subset of features. And with no
need for a daemon process running to implement a container engine, these tools can run without the
overhead of having to work with a daemon process.

If you feel that you still want to use Docker in RHEL 8, know that you can get Docker from different
upstream projects, but that its use is unsupported in RHEL 8. Because so many docker command-line
features have been implemented exactly in podman, you can set up an alias so that typing docker
causes podman to run.

Installing the podman-docker package sets up such an alias. So every time you run a docker command
line, it actually runs podman for you. More on this package later.

1.2. CHOOSING A RHEL ARCHITECTURE FOR CONTAINERS

Red Hat provides container images and container-related software for the following computer
architectures:

AMD64 and Intel 64 (base and layered images) (no support for the 32-bit AMD and Intel
architecture)

PowerPC 8 64-bit (base image and most layered images)

PowerPC 9 64-bit (base image and most layered images)

IBM Z (base image and most layered images)

ARM 64-bit (base image only)

The following table lists container images that are available for different architectures for RHEL 8.

Table 1.1. Red Hat container images and supported architectures

Image name X86_64 PowerPC 8 & 9 s390x ARM 64

ubi8/rhel Yes Yes Yes No

ubi8/rhel-minimal Yes Yes Yes No

ubi8/rhel-init Yes Yes Yes No

ubi8/rsyslog Yes Yes Yes No

ubi8/support-
tools

Yes Yes Yes Yes

ubi8/net-snmp Yes Yes Yes No

CHAPTER 1. STARTING WITH CONTAINERS

7

ubi8/ubi8-
aarch64

No No No Yes

1.3. GETTING CONTAINER TOOLS

To get an environment where you can manipulate individual containers, you can install a Red Hat
Enterprise Linux 8 system, then add a set of container tools to find, run, build and share containers. Here
are examples of container-related tools you can install with RHEL 8:

podman - Client tool for managing containers. Can replace most features of the docker
command for working with individual containers and images.

buildah - Client tool for building OCI-compliant container images.

skopeo - Client tool for copying container images to and from container registries. Includes
features for signing and authenticating images as well.

runc - Container runtime client for running and working with Open Container Initiative (OCI)
format containers.

Using the RHEL subscription model, if you want to create container images, you must properly register
and entitle the host computer on which you build them. When you install packages, as part of the process
of building a container, the build process automatically has access to entitlements available from the
RHEL host. So it can get RPM packages from any repository enabled on that host.

1. Install RHEL: If you are ready to begin, you can start by installing a Red Hat Enterprise Linux
system.

2. Register RHEL: Once RHEL is installed, register the system. You will be prompted to enter your
user name and password. Note that the user name and password are the same as your login
credentials for Red Hat Customer Portal.

subscription-manager register
Registering to: subscription.rhsm.redhat.com:443/subscription
Username: ********
Password: **********

3. Subscribe RHEL: Either auto subscribe or determine the pool ID of a subscription that includes
Red Hat Enterprise Linux. Here is an example of auto-attaching a subscription:

subscription-manager attach --auto

4. Install packages: To start building and working with individual containers, install the container-
tools module, which pulls in the full set of container software packages:

yum module install -y container-tools

5. Install podman-docker (optional): If you are comfortable with the docker command or use
scripts that call docker directly, you can install the podman-docker package. That package
installs a link that replaces the docker command-line interface with the matching podman
commands instead. It also links the man pages together, so man docker info will show the
podman info man page.

Red Hat Enterprise Linux 8 Building, running, and managing containers

8

yum install -y podman-docker

1.4. ENABLING CONTAINER SETTINGS

No container engine (such as Docker or CRI-O) is required for you to run containers on your local
system. However, configuration settings in the /etc/containers/registries.conf file let you define access
to container registries when you work with container tools such as podman and buildah.

Here are example settings in the /etc/containers/registries.conf file:

[registries.search]
registries = ['registry.redhat.io', 'quay.io', 'docker.io']

[registries.insecure]
registries = []

[registries.block]
registries = []

By default, when you use podman search to search for images from a container registries, based on the
registries.conf file, podman looks for the requested image in registry.redhat.io, quay.io, and docker.io,
in that order.

To add access to a registry that doesn’t require authentication (an insecure registry), you must add the
name of that registry under the [registries.insecure] section. Any registries that you want to disallow
from access from your local system need to be added under the [registries.block] section.

CHAPTER 1. STARTING WITH CONTAINERS

9

CHAPTER 2. WORKING WITH CONTAINER IMAGES
Using podman, you can run, investigate, start, stop, investigate, and remove container images.

2.1. PULLING IMAGES FROM REGISTRIES

To get container images from a remote registry (such as Red Hat’s own container registry) and add
them to your local system, use the podman pull command:

podman pull <registry>[:<port>]/[<namespace>/]<name>:<tag>

The <registry> is a host that provides a container registry service on TCP <port>. Together, <namespace>
and <name> identify a particular image controlled by <namespace> at that registry. Some registries also
support raw <name>; for those, <namespace> is optional. When it is included, however, the additional
level of hierarchy that <namespace> provides is useful to distinguish between images with the same
<name>. For example:

Namespace Examples (<namespace>/<name>)

organization redhat/kubernetes, google/kubernetes

login (user name) alice/application, bob/application

role devel/database, test/database, prod/database

The registries that Red Hat supports are registry.redhat.io (requiring authentication) and
registry.access.redhat.com (requires no authentication, but is deprecated). For details on the transition
to registry.redhat.io, see Red Hat Container Registry Authentication . Before you can pull containers
from registry.redhat.io, you need to authenticate. For example:

podman login registry.redhat.io
Username: myusername
Password: ************
Login Succeeded!

Use the pull option to pull an image from a remote registry. To pull the rhel base image and rsyslog
logging image from the Red Hat registry, type:

podman pull registry.redhat.io/ubi8/ubi
podman pull registry.redhat.io/rhel8/rsyslog

An image is identified by a repository name (registry.redhat.io), a namespace name (ubi8) and the
image name (ubi). You could also add a tag (which defaults to :latest if not entered). The repository
name ubi, when passed to the podman pull command without the name of a registry preceding it, is
ambiguous and could result in the retrieval of an image that originates from an untrusted registry. If
there are multiple versions of the same image, adding a tag, such as latest to form a name such as
ubi8/ubi:latest, lets you choose the image more explicitly.

To see the images that resulted from the above podman pull command, along with any other images on
your system, type podman images:

Red Hat Enterprise Linux 8 Building, running, and managing containers

10

https://access.redhat.com/RegistryAuthentication

REPOSITORY TAG IMAGE ID CREATED SIZE
registry.redhat.io/ubi8/ubi latest eb205f07ce7d 2 weeks ago 214MB
registry.redhat.io/rhel8/rsyslog latest 85cfba5cd49c 2 weeks ago 234MB

The ubi and rsyslog images are now available on your local system for you to work with.

2.2. INVESTIGATING IMAGES

Using podman images you can see which images have been pulled to your local system. To look at the
metadata associated with an image, use podman inspect.

2.2.1. Listing images

To see which images have been pulled to your local system and are available to use, type:

podman images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
registry.redhat.io/rhel8/support-tools latest b3d6ce4e0043 2 days ago 234MB
registry.redhat.io/rhel8/rhel-init latest 779a05997856 2 days ago 225MB
registry.redhat.io/ubi8/ubi latest a80dad1c1953 3 days ago 210MB

2.2.2. Inspecting local images

After you pull an image to your local system and before you run it, it is a good idea to investigate that
image. Reasons for investigating an image before you run it include:

Understanding what the image does

Checking what software is inside the image

The podman inspect command displays basic information about what an image does. You also have the
option of mounting the image to your host system and using tools from the host to investigate what’s in
the image. Here is an example of investigating what a container image does before you run it:

1. Inspect an image: Run podman inspect to see what command is executed when you run the
container image, as well as other information. Here are examples of examining the ubi8/ubi and
rhel8/rsyslog container images (with only snippets of information shown here):

podman inspect registry.redhat.io/ubi8/rhel
...
 "Cmd": [
 "/bin/bash"
],
 "Labels": {
 "architecture": "x86_64",
 "authoritative-source-url": "registry.redhat.io",
 "build-date": "2018-10-24T16:46:08.916139",
 "com.redhat.build-host": "cpt-0009.osbs.prod.upshift.rdu2.redhat.com",
 "com.redhat.component": "rhel-server-container",
 "description": "The Red Hat Enterprise Linux Base image is designed to be a fully
supported...
...

CHAPTER 2. WORKING WITH CONTAINER IMAGES

11

podman inspect registry.redhat.io/rhel8/rsyslog
 "Cmd": [
 "/bin/rsyslog.sh"
],
 "Labels": {
 "License": "GPLv3",
 "architecture": "x86_64",
...
 "install": "docker run --rm --privileged -v /:/host -e HOST=/host \
 -e IMAGE=IMAGE -e NAME=NAME IMAGE /bin/install.sh",

...
 "run": "docker run -d --privileged --name NAME --net=host --pid=host \
 -v /etc/pki/rsyslog:/etc/pki/rsyslog -v /etc/rsyslog.conf:/etc/rsyslog.conf \
 -v /etc/sysconfig/rsyslog:/etc/sysconfig/rsyslog -v /etc/rsyslog.d:/etc/rsyslog.d \
 -v /var/log:/var/log -v /var/lib/rsyslog:/var/lib/rsyslog -v /run:/run \
 -v /etc/machine-id:/etc/machine-id -v /etc/localtime:/etc/localtime \
 -e IMAGE=IMAGE -e NAME=NAME --restart=always IMAGE /bin/rsyslog.sh",
 "summary": "A containerized version of the rsyslog utility
...

The rhel8/rhel container will execute the bash shell, if no other argument is given when you start
it with podman run. If an Entrypoint were set, its value would be used instead of the Cmd value
(and the value of Cmd would be used as an argument to the Entrypoint command).

In the second example, the rhel8/rsyslog container image has built-in install and run labels.
Those labels give an indication of how the container is meant to be set up on the system (install)
and executed (run). You would use the podman command instead of docker.

2. Mount a container: Using the podman command, mount an active container to further
investigate its contents. This example runs and lists a running rsyslog container, then displays
the mount point from which you can examine the contents of its file system:

podman run -d registry.redhat.io/rhel8/rsyslog
podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
1cc92aea398d ...rsyslog:latest /bin/rsyslog.sh 37 minutes ago Up 1 day ago myrsyslog
podman mount 1cc92aea398d
/var/lib/containers/storage/overlay/65881e78.../merged
ls /var/lib/containers/storage/overlay/65881e78*/merged
bin boot dev etc home lib lib64 media mnt opt proc root run sbin srv sys tmp usr
var

After the podman mount, the contents of the container are accessible from the listed directory
on the host. Use ls to explore the contents of the image.

3. Check the image’s package list: To check the packages installed in the container, tell the rpm
command to examine the packages installed on the container’s mount point:

rpm -qa --root=/var/lib/containers/storage/overlay/65881e78.../merged
redhat-release-server-7.6-4.el7.x86_64
filesystem-3.2-25.el7.x86_64
basesystem-10.0-7.el7.noarch
ncurses-base-5.9-14.20130511.el7_4.noarch

Red Hat Enterprise Linux 8 Building, running, and managing containers

12

glibc-common-2.17-260.el7.x86_64
nspr-4.19.0-1.el7_5.x86_64
libstdc++-4.8.5-36.el7.x86_64

2.2.3. Inspecting remote images

To inspect a container image before you pull it to your system, you can use the skopeo inspect
command. With skopeo inspect, you can display information about an image that resides in a remote
container registry.

The following command inspects the rhel-init image from the Red Hat registry:

skopeo inspect docker://registry.redhat.io/rhel8/rhel-init
{
 "Name": "registry.redhat.io/rhel8/rhel-init",
 "Digest": "sha256:53dfe24...",
 "RepoTags": [
 "8.0.0-9",
 "8.0.0",
 "latest"
],
 "Created": "2019-05-13T20:50:11.437931Z",
 "DockerVersion": "1.13.1",
 "Labels": {
 "architecture": "x86_64",
 "authoritative-source-url": "registry.access.redhat.com",
 "build-date": "2019-05-13T20:49:44.207967",
 "com.redhat.build-host": "cpt-0013.osbs.prod.upshift.rdu2.redhat.com",
 "com.redhat.component": "rhel-init-container",
 "description": "The Red Hat Enterprise Linux Init image is designed to be...

2.3. TAGGING IMAGES

You can add names to images to make it more intuitive to understand what they contain. Tagging
images can also be used to identify the target registry for which the image is intended. Using the
podman tag command, you essentially add an alias to the image that can consist of several parts. Those
parts can include:

registryhost/username/NAME:tag

You can add just NAME if you like. For example:

podman tag 474ff279782b myrhel8

In the previous example, the rhel8 image had a image ID of 474ff279782b. Using podman tag, the
name myrhel8 now also is attached to the image ID. So you could run this container by name (rhel8 or
myrhel8) or by image ID. Notice that without adding a :tag to the name, it was assigned :latest as the tag.
You could have set the tag to 8.0 as follows:

podman tag 474ff279782b myrhel8:8.0

To the beginning of the name, you can optionally add a user name and/or a registry name. The user
name is actually the repository on Docker.io that relates to the user account that owns the repository.
Tagging an image with a registry name was shown in the "Tagging Images" section earlier in this

CHAPTER 2. WORKING WITH CONTAINER IMAGES

13

document. Here’s an example of adding a user name:

podman tag 474ff279782b jsmith/myrhel8
podman images | grep 474ff279782b
rhel8 latest 474ff279782b 7 days ago 139.6 MB
myrhel8 latest 474ff279782b 7 months ago 139.6 MB
myrhel8 7.1 474ff279782b 7 months ago 139.6 MB
jsmith/myrhel8 latest 474ff279782b 7 months ago 139.6 MB

Above, you can see all the image names assigned to the single image ID.

2.4. SAVING AND IMPORTING IMAGES

If you want to save a container image you created, you can use podman save to save the image to a
tarball. After that, you can store it or send it to someone else, then reload the image later to reuse it.
Here is an example of saving an image as a tarball:

podman save -o myrsyslog.tar registry.redhat.io/rhel8/rsyslog:latest
Getting image source signatures
Copying blob sha256:dd7d5adb457...
Writing manifest to image destination
Storing signatures
ls
myrsyslog.tar

The myrsyslog.tar file should now be stored in your current directory. Later, when you ready to reuse
the tarball as a container image, you can import it to another podman environment as follows:

cat myrsyslog.tar | podman import - rhel8/myrsyslog
podman images

2.5. REMOVING IMAGES

To see a list of images that are on your system, run the podman images command. To remove images
you no longer need, use the podman rmi command, with the image ID or name as an option. (You must
stop any containers run from an image before you can remove the image.) Here is an example:

podman rmi rhel-init
7e85c34f126351ccb9d24e492488ba7e49820be08fe53bee02301226f2773293

You can remove multiple images on the same command line:

podman rmi registry.redhat.io/rhel8/rsyslog support-tools
46da8e23fa1461b658f9276191b4f473f366759a6c840805ed0c9ff694aa7c2f
85cfba5cd49c84786c773a9f66b8d6fca04582d5d7b921a308f04bb8ec071205

If you want to clear out all your images, you could use a command like the following to remove all images
from your local registry (make sure you mean it before you do this!):

podman rmi $(podman images -a -q)
1ca061b47bd70141d11dcb2272dee0f9ea3f76e9afd71cd121a000f3f5423731
ed904b8f2d5c1b5502dea190977e066b4f76776b98f6d5aa1e389256d5212993

Red Hat Enterprise Linux 8 Building, running, and managing containers

14

83508706ef1b603e511b1b19afcb5faab565053559942db5d00415fb1ee21e96

To remove images that have multiple names (tags) associated with them, you need to add the force
option to remove them. For example:

podman rmi $(podman images -a -q)
unable to delete eb205f07ce7d0bb63bfe5603ef8964648536963e2eee51a3ebddf6cfe62985f7 (must
force) - image is referred to in multiple tags
unable to delete eb205f07ce7d0bb63bfe5603ef8964648536963e2eee51a3ebddf6cfe62985f7 (must
force) - image is referred to in multiple tags

podman rmi -f eb205f07ce7d
eb205f07ce7d0bb63bfe5603ef8964648536963e2eee51a3ebddf6cfe62985f7

CHAPTER 2. WORKING WITH CONTAINER IMAGES

15

CHAPTER 3. WORKING WITH CONTAINERS
Containers represent a running or stopped process spawned from the files located in a decompressed
container image. Tools for running containers and working with them are described in this section.

3.1. RUNNING CONTAINERS

When you execute a podman run command, you essentially spin up and create a new container from a
container image. The command you pass on the podman run command line sees the inside the
container as its running environment so, by default, very little can be seen of the host system. For
example, by default, the running applications sees:

The file system provided by the container image.

A new process table from inside the container (no processes from the host can be seen).

If you want to make a directory from the host available to the container, map network ports from the
container to the host, limit the amount of memory the container can use, or expand the CPU shares
available to the container, you can do those things from the podman run command line. Here are some
examples of podman run command lines that enable different features.

EXAMPLE #1 (Run a quick command): This podman command runs the cat /etc/os-release command
to see the type of operating system used as the basis for the container. After the container runs the
command, the container exits and is deleted (--rm).

podman run --rm registry.redhat.io/ubi8/ubi cat /etc/os-release
NAME="Red Hat Enterprise Linux"
VERSION="8.0 (Ootpa)"
ID="rhel"
ID_LIKE="fedora"
VERSION_ID="8.0"
PLATFORM_ID="platform:el8"
PRETTY_NAME="Red Hat Enterprise Linux 8.0 (Ootpa)"
ANSI_COLOR="0;31"
CPE_NAME="cpe:/o:redhat:enterprise_linux:8.0:latest"
HOME_URL="https://www.redhat.com/"
BUG_REPORT_URL="https://bugzilla.redhat.com/"

REDHAT_BUGZILLA_PRODUCT="Red Hat Enterprise Linux 8"
REDHAT_BUGZILLA_PRODUCT_VERSION=8.0
REDHAT_SUPPORT_PRODUCT="Red Hat Enterprise Linux"
REDHAT_SUPPORT_PRODUCT_VERSION="8.0"
...

EXAMPLE #2 (View the Dockerfile in the container): This is another example of running a quick
command to inspect the content of a container from the host. All layered images that Red Hat provides
include the Dockerfile from which they are built in /root/buildinfo. In this case you do not need to mount
any volumes from the host.

podman run --rm registry.access.redhat.com/rhel8/rsyslog ls /root/buildinfo
Dockerfile-rhel8-rsyslog-8

Now you know what the Dockerfile is called, you can list its contents:

Red Hat Enterprise Linux 8 Building, running, and managing containers

16

podman run --rm registry.access.redhat.com/rhel8/rsyslog \
 cat /root/buildinfo/Dockerfile-rhel8-rsyslog-8
FROM sha256:eb205f07ce7d0bb63bfe560...
LABEL maintainer="Red Hat, Inc."

RUN INSTALL_PKGS="\
rsyslog \
rsyslog-gnutls \
rsyslog-gssapi \
rsyslog-mysql \
rsyslog-pgsql \
rsyslog-relp \
" && yum -y install $INSTALL_PKGS && rpm -V --nosize
 --nofiledigest --nomtime --nomode $INSTALL_PKGS && yum clean all
LABEL com.redhat.component="rsyslog-container"
LABEL name="rhel8/rsyslog"
LABEL version="8.0"
...

EXAMPLE #3 (Run a shell inside the container): Using a container to launch a bash shell lets you look
inside the container and change the contents. This sets the name of the container to mybash. The -i
creates an interactive session and -t opens a terminal session. Without -i, the shell would open and then
exit. Without -t, the shell would stay open, but you wouldn’t be able to type anything to the shell.

Once you run the command, you are presented with a shell prompt and you can start running commands
from inside the container:

podman run --name=mybash -it registry.redhat.io/ubi8/ubi /bin/bash
[root@ed904b8f2d5c/]# yum install procps-ng
[root@ed904b8f2d5c/]# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 00:46 pts/0 00:00:00 /bin/bash
root 35 1 0 00:51 pts/0 00:00:00 ps -ef
[root@49830c4f9cc4/]# exit

Although the container is no longer running once you exit, the container still exists with the new
software package still installed. Use podman ps -a to list the container:

podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
IS INFRA
1ca061b47bd7 .../ubi8/ubi:latest /bin/bash 8 minutes ago Exited 12 seconds ago musing_brown
false
...

You could start that container again using podman start with the -ai options. For example:

podman start -ai mybash
[root@ed904b8f2d5c/]#

EXAMPLE #4 (Bind mounting log files): One way to make log messages from inside a container
available to the host system is to bind mount the host’s /dev/log device inside the container. This
example illustrates how to run an application in a RHEL container that is named log_test that generates

CHAPTER 3. WORKING WITH CONTAINERS

17

log messages (just the logger command in this case) and directs those messages to the /dev/log device
that is mounted in the container from the host. The --rm option removes the container after it runs.

podman run --name="log_test" -v /dev/log:/dev/log --rm \
 registry.redhat.io/ubi8/ubi logger "Testing logging to the host"
journalctl -b | grep Testing
Nov 12 20:00:10 ubi8 root[17210]: Testing logging to the host

3.2. INVESTIGATING RUNNING AND STOPPED CONTAINERS

After you have some running container, you can list both those containers that are still running and those
that have exited or stopped with the podman ps command. You can also use the podman inspect to
look at specific pieces of information within those containers.

3.2.1. Listing containers

Let’s say you have one or more containers running on your host. To work with containers from the host
system, you can open a shell and try some of the following commands.

podman ps: The ps option shows all containers that are currently running:

podman run -d registry.redhat.io/rhel8/rsyslog
podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
74b1da000a11 rhel8/rsyslog /bin/rsyslog.sh 2 minutes ago Up About a minute musing_brown

If there are containers that are not running, but were not removed (--rm option), the containers are still
hanging around and can be restarted. The podman ps -a command shows all containers, running or
stopped.

podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES IS
INFRA
d65aecc325a4 ubi8/ubi /bin/bash 3 secs ago Exited (0) 5 secs ago peaceful_hopper false
74b1da000a11 rhel8/rsyslog rsyslog.sh 2 mins ago Up About a minute musing_brown false

3.2.2. Inspecting containers

To inspect the metadata of an existing container, use the podman inspect command. You can show all
metadata or just selected metadata for the container. For example, to show all metadata for a selected
container, type:

podman inspect 74b1da000a11
 ...
 "ID": "74b1da000a114015886c557deec8bed9dfb80c888097aa83f30ca4074ff55fb2",
 "Created": "2018-11-13T10:30:31.884673073-05:00",
 "Path": "/bin/rsyslog.sh",
 "Args": [
 "/bin/rsyslog.sh"
],
 "State": {
 OciVersion": "1.0.1-dev",

Red Hat Enterprise Linux 8 Building, running, and managing containers

18

 Status": "running",
 Running": true,
 ...

You can also use inspect to pull out particular pieces of information from a container. The information is
stored in a hierarchy. So to see the container’s IP address (IPAddress under NetworkSettings), use the --
format option and the identity of the container. For example:

podman inspect --format='{{.NetworkSettings.IPAddress}}' 74b1da000a11
10.88.0.31

Examples of other pieces of information you might want to inspect include .Path (to see the command
run with the container), .Args (arguments to the command), .Config.ExposedPorts (TCP or UDP ports
exposed from the container), .State.Pid (to see the process id of the container) and
.HostConfig.PortBindings (port mapping from container to host). Here’s an example of .State.Pid and
.State.StartedAt:

podman inspect --format='{{.State.Pid}}' 74b1da000a11
19593
ps -ef | grep 19593
root 19593 19583 0 10:30 ? 00:00:00 /usr/sbin/rsyslogd -n
podman inspect --format='{{.State.StartedAt}}' 74b1da000a11
2018-11-13 10:30:35.358175255 -0500 EST

In the first example, you can see the process ID of the containerized executable on the host system (PID
19593). The ps -ef command confirms that it is the rsyslogd daemon running. The second example
shows the date and time that the container was run.

3.2.3. Investigating within a container

To investigate within a running container, you can use the podman exec command. With podman exec,
you can run a command (such as /bin/bash) to enter a running container process to investigate that
container.

The reason for using podman exec, instead of just launching the container into a bash shell, is that you
can investigate the container as it is running its intended application. By attaching to the container as it
is performing its intended task, you get a better view of what the container actually does, without
necessarily interrupting the container’s activity.

Here is an example using podman exec to look into a running rsyslog, then look around inside that
container.

1. Launch a container: Launch a container such the rsyslog container image described earlier.
Type podman ps to make sure it is running:

podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
74b1da000a11 rsyslog:latest "/usr/rsyslog.sh 6 minutes ago Up 6 minutes rsyslog

2. Enter the container with podman exec: Use the container ID or name to open a bash shell to
access the running container. Then you can investigate the attributes of the container as
follows:

CHAPTER 3. WORKING WITH CONTAINERS

19

podman exec -it 74b1da000a11 /bin/bash
[root@74b1da000a11 /]# cat /etc/redhat-release
Red Hat Enterprise Linux release 8.0
[root@74b1da000a11 /]# yum install procps-ng
[root@74b1da000a11 /]# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 15:30 ? 00:00:00 /usr/sbin/rsyslogd -n
root 8 0 6 16:01 pts/0 00:00:00 /bin/bash
root 21 8 0 16:01 pts/0 00:00:00 ps -ef
[root@74b1da000a11 /]# df -h
Filesystem Size Used Avail Use% Mounted on
overlay 39G 2.5G 37G 7% /
tmpfs 64M 0 64M 0% /dev
tmpfs 1.5G 8.7M 1.5G 1% /etc/hosts
shm 63M 0 63M 0% /dev/shm
tmpfs 1.5G 0 1.5G 0% /sys/fs/cgroup
tmpfs 1.5G 0 1.5G 0% /proc/acpi
tmpfs 1.5G 0 1.5G 0% /proc/scsi
tmpfs 1.5G 0 1.5G 0% /sys/firmware
[root@74b1da000a11 /]# uname -r
4.18.0-80.1.2.el8_0.x86_64
[root@74b1da000a11 /]# rpm -qa | more
redhat-release-8.0-0.44.el8.x86_64
filesystem-3.8-2.el8.x86_64
basesystem-11-5.el8.noarch
ncurses-base-6.1-7.20180224.el8.noarch
...
bash-4.2# free -m
 total used free shared buff/cache available
Mem: 1941 560 139 10 1241 1189
Swap: 1023 15 1008
[root@74b1da000a11 /]# exit

The commands just run from the bash shell (running inside the container) show you several things.

The container was built from a RHEL release 8.0 image.

The process table (ps -ef) shows that the /usr/sbin/rsyslogd command is process ID 1.

Processes running in the host’s process table cannot be seen from within the container.
Although the rsyslogd process can be seen on the host process table (it was process ID 19593
on the host).

There is no separate kernel running in the container (uname -r shows the host system’s kernel).

The rpm -qa command lets you see the RPM packages that are included inside the container. In
other words, there is an RPM database inside of the container.

Viewing memory (free -m) shows the available memory on the host (although what the
container can actually use can be limited using cgroups).

3.3. STARTING AND STOPPING CONTAINERS

If you ran a container, but didn’t remove it (--rm), that container is stored on your local system and ready

Red Hat Enterprise Linux 8 Building, running, and managing containers

20

If you ran a container, but didn’t remove it (--rm), that container is stored on your local system and ready
to run again. To start a previously run container that wasn’t removed, use the start option. To stop a
running container, use the stop option.

3.3.1. Starting containers

A container that doesn’t need to run interactively can sometimes be restarted after being stopped with
only the start option and the container ID or name. For example:

podman start myrhel_httpd
myrhel_httpd

To start a container so you can work with it from the local shell, use the -a (attach) and -i (interactive)
options. Once the bash shell starts, run the commands you want inside the container and type exit to kill
the shell and stop the container.

podman start -a -i agitated_hopper
[root@d65aecc325a4 /]# exit

3.3.2. Stopping containers

To stop a running container that is not attached to a terminal session, use the stop option and the
container ID or number. For example:

podman stop 74b1da000a11
74b1da000a114015886c557deec8bed9dfb80c888097aa83f30ca4074ff55fb2

The stop option sends a SIGTERM signal to terminate a running container. If the container doesn’t stop
after a grace period (10 seconds by default), podman sends a SIGKILL signal. You could also use the
podman kill command to kill a container (SIGKILL) or send a different signal to a container. Here’s an
example of sending a SIGHUP signal to a container (if supported by the application, a SIGHUP causes
the application to re-read its configuration files):

podman kill --signal="SIGHUP" 74b1da000a11
74b1da000a114015886c557deec8bed9dfb80c888097aa83f30ca4074ff55fb2

3.4. REMOVING CONTAINERS

To see a list of containers that are still hanging around your system, run the podman ps -a command.
To remove containers you no longer need, use the podman rm command, with the container ID or name
as an option. Here is an example:

podman rm goofy_wozniak

You can remove multiple containers on the same command line:

podman rm clever_yonath furious_shockley drunk_newton

If you want to clear out all your containers, you could use a command like the following to remove all
containers (not images) from your local system (make sure you mean it before you do this!):

podman rm $(podman ps -a -q)

CHAPTER 3. WORKING WITH CONTAINERS

21

Red Hat Enterprise Linux 8 Building, running, and managing containers

22

CHAPTER 4. USING RED HAT UNIVERSAL BASE IMAGES
(STANDARD, MINIMAL, AND RUNTIMES)

Red Hat Enterprise Linux (RHEL) base images are meant to form the foundation for the container
images you build. For RHEL 8, all Red Hat base images are available as new Universal Base Images
(UBI). These include versions of RHEL standard, minimal, init, and Red Hat Software Collections that are
all now freely available and redistributable. Characteristics of RHEL base images include:

Supported: Supported by Red Hat for use with your containerized applications. Contains the
same secured, tested, and certified software packages you have in Red Hat Enterprise Linux.

Cataloged: Listed in the Red Hat Container Catalog , where you can find descriptions, technical
details, and a health index for each image.

Updated: Offered with a well-defined update schedule, so you know you are getting the latest
software (see Red Hat Container Image Updates).

Tracked: Tracked by errata, to help you understand the changes that go into each update.

Reusable: Only need to be downloaded and cached in your production environment once, where
each base image can be reused by all containers that include it as their foundation.

Red Hat Universal Base Images (UBI) for RHEL 8 provide the same quality RHEL software for building
container images as their non-UBI predecessors (rhel6, rhel7, rhel-init, and rhel-minimal base images),
but offer more freedom in how they are used and distributed.

4.1. WHAT ARE RED HAT BASE IMAGES?

Red Hat provides multiple base images that you can use as a starting point for your own images. These
images are available through the Red Hat Registry (registry.access.redhat.com and registry.redhat.io)
and described in the Red Hat Container Catalog .

For RHEL 8, there are standard, minimal and init base image available. Red Hat also provides a set of
Red Hat Software Collections images that you can build on when you are creating containers for
applications that require specific runtimes. These include python, php, nodejs, and others. All of these
images RHEL 8 images are UBI images, which means that you can freely obtain and redistribute them.

There is a set of RHEL 7 images as well that you can run on RHEL 8 systems. For RHEL 7, there are both
UBI (redistributable) and non-UBI (require subscription access and are non-redistributable) base
images. Those images include three regular base images (rhel7, rhel-init, and rhel-minimal) and three
UBI images (ubi7, ubi7-init, and ubi7-minimal).

Although Red Hat does not offer tools for running containers on RHEL 6 systems, it does offer RHEL 6
container images you can use. There are standard (rhel6) and Init (rhel6-init) base image available for
RHEL 6, but no minimal RHEL 6 image. Likewise, there are no RHEL 6 UBI images.

4.1.1. Using standard Red Hat base images

Standard RHEL 8 base images (ubi8) have a robust set of software features that include the following:

init system: All the features of the systemd initialization system you need to manage systemd
services are available in the standard base images. These init systems let you install RPM
packages that are pre-configured to start up services automatically, such as a Web server
(httpd) or FTP server (vsftpd).

yum: Software needed to install software packages is included via the standard set of yum

CHAPTER 4. USING RED HAT UNIVERSAL BASE IMAGES (STANDARD, MINIMAL, AND RUNTIMES)

23

https://access.redhat.com/containers/
https://access.redhat.com/articles/2208321
https://access.redhat.com/containers/?count=10#/category/Base Image
https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html-single/using_red_hat_software_collections_container_images/

yum: Software needed to install software packages is included via the standard set of yum
commands (yum, yum-config-manager, yumdownloader, and so on). For the UBI base
images, you have access to free yum repositories for adding and updating software.

utilities: The standard base image includes some useful utilities for working inside the container.
Utilities that are in this base image that are not in the minimal images include ps, tar, cpio,
dmidecode, gzip, lsmod (and other module commands), getfacl (and other acl commands),
dmsetup (and other device mapper commands), and others.

python: Python runtime libraries and modules (currently Python 2.7) are included in the
standard base image.

4.1.2. Using minimal Red Hat base images

The ubi8-minimal images are stripped-down RHEL images to use when a bare-bones base image in
desired. If you are looking for the smallest possible base image to use as part of the larger Red Hat
ecosystem, you can start with these minimal images.

RHEL minimal images provide a base for your own container images that is less than half the size of the
standard image, while still being able to draw on RHEL software repositories and maintain any
compliance requirements your software has.

Here are some features of the minimal base images:

Small size: Minimal images are about 75M on disk and 28M compressed. This makes it less than
half the size of the standard images.

Software installation (microdnf): Instead of including the full-blown yum facility for working
with software repositories and RPM software packages, the minimal images includes the
microdnf utility. Microdnf is a scaled-down version of dnf. It includes only what is needed to
enable and disable repositories, as well as install, remove, and update packages. It also has a
clean option, to clean out cache after packages have been installed.

Based on RHEL packaging: Because minimal images incorporate regular RHEL software RPM
packages, with a few features removed such as extra language files or documentation, you can
continue to rely on RHEL repositories for building your images. This allows you to still maintain
compliance requirements you have that are based on RHEL software. Features of minimal
images make them perfect for trying out applications you want to run with RHEL, while carrying
the smallest possible amount of overhead. What you don’t get with minimal images is an
initialization and service management system (systemd or System V init), a Python run-time
environment, and a bunch of common shell utilities.

If your goal, however, is just to try to run some simple binaries or pre-packaged software that doesn’t
have a lot of requirements from the operating system, the minimal images might suit your needs. If your
application does have dependencies on other software from RHEL, you can simply use microdnf to
install the needed packages at build time.

Red Hat intends for you to always use the latest version of the minimal images, which is implied by
simply requesting ubi8/ubi-minimal or ubi8-minimal. Red Hat does not expect to support older
versions of minimal images going forward.

4.1.3. Using Init Red Hat base images

The UBI ubi8-init images contains the systemd initialization system, making them useful for building
images in which you want to run systemd services, such as a web server or file server. The Init image
contents are less than what you get with the standard images, but more than what is in the minimal

Red Hat Enterprise Linux 8 Building, running, and managing containers

24

images.

Historically, Red Hat Enterprise Linux base container images were designed for Red Hat customers to
run enterprise applications, but were not free to redistribute. This can create challenges for some
organizations that need to redistribute their applications. That’s where the Red Hat Universal Base
Images come in.

4.2. HOW ARE UBI IMAGES DIFFERENT?

UBI images were created so you can build your container images on a foundation of official Red Hat
software that can be freely shared and deployed. From a technical perspective, they are nearly identical
to legacy Red Hat Enterprise Linux images, which means they have great security, performance, and life
cycles, but they are released under a different End User License Agreement. Here are some attributes of
Red Hat UBI images:

Built from a subset of RHEL content: Red Hat Universal Base images are built from a subset of
normal Red Hat Enterprise Linux content. All of the content used to build selected UBI images is
released in a publicly available set of yum repositories. This lets you install extra packages, as
well as update any package in UBI base images.

Redistributable: The intent of UBI images is to allow Red Hat customers, partners, ISVs, and
others to standardize on one container base image, allowing users to focus on application needs
instead of distribution rules. These images can be shared and run in any environment capable of
running those images. As long as you follow some basic guidelines, you will be able to freely
redistribute your UBI-based images.

Base and RHSCL images: Besides the three types of base images, UBI versions of some Red
Hat Software Collections (RHSCL) runtime images are available as well. These RHSCL images
provide a foundation for applications that can benefit from standard, supported runtimes such
as python, php, nodejs, and ruby.

Enabled yum repositories: The following yum repositories are enabled within each RHEL 8 UBI
image:

The rhubi-8.0-baseos repo holds the redistributable subset of RHEL packages you can
include in your container.

The rhubi-8.0-appstream repo holds Red Hat Software Collections packages that you can
add to a UBI image to help you standardize the environments you use with applications that
require particular runtimes.

Licensing: You are free to use and redistribute UBI images, provided you adhere to the Red Hat
Universal Base Image End User Licensing Agreement.

Adding UBI RPMs: You can add RPM packages to UBI images from preconfigured UBI
repositories. If you happen to be in a disconnected environment, you must whitelist the UBI
Content Delivery Network (https://cdn-ubi.redhat.com) to use that feature. See the Connect to
https://cdn-ubi.redhat.com solution for details.

Although the legacy RHEL 7 base images will continue to be supported, UBI images are recommended
going forward. For that reason, examples in the rest of this chapter are done with RHEL 8 UBI images.

4.3. GET UBI IMAGES

The following table shows the UBI base images currently available. Notice that some of those images
have multiple names you can use to refer to them.

CHAPTER 4. USING RED HAT UNIVERSAL BASE IMAGES (STANDARD, MINIMAL, AND RUNTIMES)

25

https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html-single/using_red_hat_software_collections_container_images/
https://www.redhat.com/licenses/EULA_Red_Hat_Universal_Base_Image_English_20190422.pdf
https://cdn-ubi.redhat.com
https://access.redhat.com/solutions/4165521

Table 4.1. Available Red Hat Universal Base Images

Registry names Namespace Image RHEL version

registry.access.redhat.com

registry.redhat.io

/ ubi8 8.0.0

 ubi8-minimal 8.0.0

 ubi8-init 8.0.0

registry.access.redhat.com

registry.redhat.io

ubi8/ ubi 8.0.0

 ubi-init 8.0.0

 ubi-minimal 8.0.0

 s2i-core 8.0.0

 s2i-base 8.0.0

 dotnet-21-runtime 8.0.0

 dotnet-21 8.0.0

 perl-526 8.0.0

 php-72 8.0.0

 nodejs-10 8.0.0

 ruby-25 8.0.0

 python-27 8.0.0

 python-36 8.0.0

registry.redhat.io rhel8 s2i-core 8.0.0

 s2i-base 8.0.0

 dotnet-21-runtime 8.0.0

 dotnet-21 8.0.0

Red Hat Enterprise Linux 8 Building, running, and managing containers

26

 nginx-114 8.0.0

 perl-526 8.0.0

 php-72 8.0.0

 nodejs-10 8.0.0

 httpd-24 8.0.0

 redis-5 8.0.0

 varnish-6 8.0.0

 ruby-25 8.0.0

 python-27 8.0.0

 python-36 8.0.0

 memcached 8.0.0

 net-snmp 8.0.0

 sssd 8.0.0

 ipa-server 8.0.0

 support-tools 8.0.0

 rsyslog 8.0.0

 GCC 8.0.0

 rust-toolset 8.0.0

 go-toolset 8.0.0

 llvm-toolset 8.0.0

 postgresql-10 8.0.0

 postgresql-96 8.0.0

 mysql-80 8.0.0

Registry names Namespace Image RHEL version

CHAPTER 4. USING RED HAT UNIVERSAL BASE IMAGES (STANDARD, MINIMAL, AND RUNTIMES)

27

 mariadb-103 8.0.0

registry.access.redhat.com

registry.redhat.io

/ ubi7 7.6.4

 ubi7-minimal 7.6.4

 ubi7-init 7.6.4

registry.access.redhat.com

registry.redhat.io

ubi7/ ubi 7.6.4

 ubi-init 7.6.4

 ubi-minimal 7.6.4

 php-72 7.6.4

 nodejs-8 7.6.4

 ruby-25 7.6.4

 python-27 7.6.4

 python-36 7.6.4

 s2i-core 7.6.4

 s2i-base 7.6.4

Registry names Namespace Image RHEL version

4.4. PULL UBI IMAGES

To pull UBI images to your system so you can use them with tools such as podman, buildah or skopeo,
type the following:

podman pull registry.access.redhat.com/ubi8/ubi:latest
podman pull registry.access.redhat.com/ubi/ubi-minimal:latest

To check that the images are available on your system, type:

podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi8/ubi-minimal latest c94a444803e3 8 hours ago 80.9 MB
registry.access.redhat.com/ubi8/ubi latest 40b488f87628 17 hours ago 214 MB

Red Hat Enterprise Linux 8 Building, running, and managing containers

28

When pulled in this way, images are available and usable by podman, buildah, skopeo and the CRI-O
container image, but they are not available to the Docker service or docker command. To use these
images with Docker, you can run docker pull instead.

4.5. REDISTRIBUTING UBI IMAGES

After you pull a UBI image, you are free to push it to your own registry and share it with others. You can
upgrade or add to that image from UBI yum repositories as you like. Here is an example of how to push a
UBI image to your own or another third-party repository:

podman pull registry.redhat.io/ubi8/ubi
podman tag registry.access.redhat.com/ubi8/ubi registry.example.com:5000/ubi8/ubi
podman push registry.example.com:5000/ubi8/ubi

While there are few restrictions on how you use these images, there are some restrictions about how you
can refer to them. For example, you can’t call those images Red Hat certified or Red Hat supported
unless you certify it through the Red Hat Partner Connect Program , either with Red Hat Container
Certification or Red Hat OpenShift Operator Certification.

4.6. RUN UBI IMAGES

To start a container from a UBI image and run the bash shell in that image (so you can look around
inside), do the following (type exit when you are done):

podman run --rm -it registry.access.redhat.com/ubi8/ubi-minimal:latest /bin/bash
[root@da9213157c51 /]#
podman run --rm -it registry.access.redhat.com/ubi8/ubi:latest /bin/bash
bash-4.2#

While in the container:

Run rpm -qa to see a list of package inside each container.

Type yum list available to see packages available to add to the image from the UBI yum repos.
(The yum command is not available in the ubi-minimal containers.)

Get source code, as described in the "Getting UBI Container Image Source Code," later in this
chapter.

On systems that include the Docker service, you can use docker run instead.

4.7. ADD SOFTWARE TO A RUNNING UBI CONTAINER

UBI images are built from 100% Red Hat content. These UBI images also provide a subset of Red Hat
Enterprise Linux packages that are freely available to install for use with UBI. To add or update software,
UBI images are pre-configured to point to the freely available yum repositories that hold official Red
Hat RPMs.

To add packages from UBI repos to running UBI containers:

On ubi images, the yum command is installed to let you draw packages

On ubi-minimal images, the microdnf command (with a smaller feature set) is included instead
of yum.

CHAPTER 4. USING RED HAT UNIVERSAL BASE IMAGES (STANDARD, MINIMAL, AND RUNTIMES)

29

https://connect.redhat.com

Keep in mind that installing and working with software packages directly in running containers is just for
adding packages temporarily or learning about the repos. Refer to the “Build a UBI-based image” for
more permanent ways of building UBI-based images.

When you add software to a UBI container, procedures differ for updating UBI images on a subscribed
RHEL host or on an unsubscribed (or non-RHEL) system. Those two ways of working with UBI images
are illustrated below.

4.7.1. Adding software to a UBI container (subscribed host)

If you are running a UBI container on a registered and subscribed RHEL host, the main RHEL Server
repository is enabled inside the standard UBI container, along with all the UBI repos. So the full set of
Red Hat packages is available. From the UBI minimal container, all UBI repos are enabled by default, but
no repos are enabled from the host by default.

4.7.2. Adding software inside the standard UBI container

To ensure the containers you build can be redistributed, disable subscription management in the
standard UBI image when you add software. If you disable the subscription-manager plugin, only
packages from the freely available repos are used when you add software.

With a shell open inside a standard UBI base image container (ubi8/ubi) from a subscribed RHEL host,
run the following command to add a package to that container (for example, the bzip2 package):

yum install --disableplugin=subscription-manager bzip2

To add software inside a standard UBI container that is in the RHEL server repo, but not in UBI repos,
leave the subscription-manager plugin intact and just install the package:

yum install zsh

To install a package that is in a different host repo from inside the standard UBI container, you have to
explicitly enable the repo you need. For example:

yum install --enablerepo=rhel-7-server-optional-rpms zsh-html

WARNING

Installing Red Hat packages that are not inside the Red Hat UBI repos might limit
how widely you can distribute the container outside of subscribed hosts.

4.7.3. Adding software inside the minimal UBI container

UBI yum repositories are enabled inside the UBI minimal image by default.

To install the same package demonstrated earlier (bzip2) from one of those UBI yum repositories on a
subscribed RHEL host from the UBI minimal container, type:

microdnf install bzip2

Red Hat Enterprise Linux 8 Building, running, and managing containers

30

To install packages inside a minimal UBI container from repos available on a subscribed host that are not
part of a UBI yum repo, you would have to explicitly enable those repos. For example:

microdnf install --enablerepo=rhel-7-server-rpms zsh
microdnf install --enablerepo=rhel-7-server-rpms \
 --enablerepo=rhel-7-server-optional-rpms zsh-html

WARNING

Using non-UBI RHEL repositories to install packages in your UBI images could
restrict your ability to share those images to run outside of subscribed RHEL
systems.

4.7.4. Adding software to a UBI container (unsubscribed host)

To add software packages to a running container that is either on an unsubscribed RHEL host or some
other Linux system, you don’t have to disable the subscription-manager plugin. For example:

yum install bzip2

To install that package on a subscribed RHEL host from the UBI minimal container, type:

microdnf install bzip2

As noted earlier, both of these means of adding software to a running UBI container are not intended
for creating permanent UBI-based container images. For that, you should build new layers on to UBI
images, as described in the following section.

4.7.5. Build a UBI-based image

You can build UBI-based container images in the same way you build other images, with one exception.
You should disable Red Hat subscriptions when you actually build the images, if you want to be sure that
your image only contains Red Hat software that you can redistribute.

Here’s an example of creating a UBI-based Web server container from a Dockerfile with the buildah
utility:

NOTE

For ubl8/ubi-minimal images, use microdnf instead of yum below:

RUN microdnf update -y && rm -rf /var/cache/yum
RUN microdnf install httpd -y && microdnf clean all

1. Create a Dockerfile: Add a Dockerfile with the following contents to a new directory:

FROM registry.access.redhat.com/ubi8/ubi

CHAPTER 4. USING RED HAT UNIVERSAL BASE IMAGES (STANDARD, MINIMAL, AND RUNTIMES)

31

USER root
LABEL maintainer="John Doe"
Update image
RUN yum update --disableplugin=subscription-manager -y && rm -rf /var/cache/yum
RUN yum install --disableplugin=subscription-manager httpd -y && rm -rf /var/cache/yum
Add default Web page and expose port
RUN echo "The Web Server is Running" > /var/www/html/index.html
EXPOSE 80
Start the service
CMD ["-D", "FOREGROUND"]
ENTRYPOINT ["/usr/sbin/httpd"]

2. Build the new image: While in that directory, use buildah to create a new UBI layered image:

buildah bud -t johndoe/webserver .
STEP 1: FROM registry.access.redhat.com/ubi8/ubi:latest
STEP 2: USER root
STEP 3: LABEL maintainer="John Doe"
STEP 4: RUN yum update --disableplugin=subscription-manager -y
. . .
No packages marked for update
STEP 5: RUN yum install --disableplugin=subscription-manager httpd -y
Loaded plugins: ovl, product-id, search-disabled-repos
Resolving Dependencies
--> Running transaction check
===
 Package Arch Version Repository Size
===
Installing:
 httpd x86_64 2.4.37-10
 latest-rhubi-8.0-appstream 1.4 M
Installing dependencies:
 apr x86_64 1.6.3-9.el8 latest-rhubi-8.0-appstream 125 k
 apr-util x86_64 1.6.1-6.el8 latest-rhubi-8.0-appstream 105 k
 httpd-filesystem noarch 2.4.37-10
 latest-rhubi-8.0-appstream 34 k
 httpd-tools x86_64 2.4.37-10.
...

Transaction Summary
...
Complete!
STEP 6: RUN echo "The Web Server is Running" > /var/www/html/index.html
STEP 7: EXPOSE 80
STEP 8: CMD ["-D", "FOREGROUND"]
STEP 9: ENTRYPOINT ["/usr/sbin/httpd"]
STEP 10: COMMIT
...
Writing manifest to image destination
Storing signatures
--> 36a604cc0dd3657b46f8762d7ef69873f65e16343b54c63096e636c80f0d68c7

3. Test: Test the UBI layered webserver image:

podman run -d -p 80:80 johndoe/webserver

Red Hat Enterprise Linux 8 Building, running, and managing containers

32

bbe98c71d18720d966e4567949888dc4fb86eec7d304e785d5177168a5965f64
curl http://localhost/index.html
The Web Server is Running

4.7.6. Using Red Hat Software Collections runtime images

Red Hat Software Collections offers another set of container images that you can use as the basis for
your container builds. These images are built on RHEL standard base images, with some already
updated as UBI images. Each of these images include additional software you might want to use for
specific runtime environments.

So, if you expect to build multiple images that require, for example, php runtime software, you can use
provide a more consistent platform for those images by starting with a PHP software collections image.

Here are a few examples of Red Hat Software Collections container images built on UBI base images,
that are available from the Red Hat Registry (registry.access.redhat.com or registry.redhat.io):

ubi8/php-72: PHP 7.2 platform for building and running applications

ubi8/nodejs-10: Node.js 10 platform for building and running applications. Used by Node.js 10
Source-To-Image builds

ubi8/ruby25: Ruby 2.5 platform for building and running applications

ubi8/python-27: Python 2.7 platform for building and running applications

ubi8/python-36: Python 3.6 platform for building and running applications

ubi8/s2i-core: Base image with essential libraries and tools used as a base for builder images
like perl, python, ruby, and so on

ubi8/s2i-base: Base image for Source-to-Image builds

Because these UBI images container the same basic software as their legacy image counterparts, you
can learn about those images from the Using Red Hat Software Collections Container Images guide. Be
sure to use the UBI image names to pull those images.

Red Hat Software Collections container images are updated every time RHEL base images are updated.
Search the Red Hat Container Catalog for details on any of these images. For more information on
update schedules, see Red Hat Container Image Updates .

4.7.7. Getting UBI Container Image Source Code

You can download the source code for all UBI base images (excluding the minimal images) by starting
up those images with a bash shell and running the following set of commands from inside that container:

yum install yum-utils -y
for i in `rpm -qa`
 do
 yumdownloader --source $i
 done

The source code RPM for each binary RPM package is downloaded to the current directory. Because
the UBI minimal images include a subset of RPMs from the regular UBI images, running the
yumdownloader loop just shown will get you the minimal image packages as well.

CHAPTER 4. USING RED HAT UNIVERSAL BASE IMAGES (STANDARD, MINIMAL, AND RUNTIMES)

33

https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html-single/using_red_hat_software_collections_container_images/index
https://access.redhat.com/containers
https://access.redhat.com/articles/2208321:

4.7.8. Tips and tricks for using UBI images

Here are a few issues to consider when working with UBI images:

Hundreds of RPM packages used in existing Red Hat Software Collections runtime images are
stored in the yum repositories packaged with the new UBI images. Feel free to install those
RPMs on your UBI images to emulate the runtime (python, php, nodejs, etc.) that interests you.

Because some language files and documentation have been stripped out of the minimal UBI
image (ubi8/ubi-minimal), running rpm -Va inside that container will show the contents of
many packages as being missing or modified. If having a complete list of files inside that
container is important to you, consider using a tool such as Tripwire to record the files in the
container and check it later.

After a layered image has been created, use podman history to check which UBI image it was
built on. For example, after completing the webserver example shown earlier, type podman
history johndoe/webserver to see that the image it was built on includes the image ID of the
UBI image you added on the FROM line of the Dockerfile.

4.7.9. How to request new features in UBI?

Red Hat partners and customers can request new features, including package requests, by filing a
support ticket through standard methods. Non-Red Hat customers do not receive support, but can file
requests through the standard Red Hat Bugzilla for the appropriate RHEL product. See also: Red Hat
Bugzilla Queue

4.7.10. How to file a support case for UBI?

Red Hat partners and customers can file support tickets through standard methods when running UBI
on a supported Red Hat platform (OpenShift/RHEL). Red Hat support staff will guide partners and
customers

See also: Open a Support Case

Red Hat Enterprise Linux 8 Building, running, and managing containers

34

https://red.ht/2UmqzEH
https://access.redhat.com/support/cases/#/case/new?intcmp=hp|a|a3|case&

CHAPTER 5. BUILDING CONTAINER IMAGES WITH BUILDAH
The buildah command lets you create container images from a working container, a Dockerfile, or from
scratch. The resulting images are OCI compliant, so they will work on any container runtime that meets
the OCI Runtime Specification (such as Docker and CRI-O).

This section describes how to use the buildah command to create and otherwise work with containers
and container images.

5.1. UNDERSTANDING BUILDAH

Using Buildah is different from building images with the docker command in the following ways:

No Daemon!: Bypasses the Docker daemon! So no container runtime (Docker, CRI-O, or other)
is needed to use Buildah.

Base image or scratch: Lets you not only build an image based on another container, but also
lets you start with an empty image (scratch).

Build tools external: Doesn’t include build tools within the image itself. As a result, Buildah:

Reduces the size of images you build

Makes the image more secure by not having the software used to build the container (like
gcc, make, and dnf) within the resulting image.

Creates images that require fewer resources to transport the images (because they are
smaller).

Buildah is able to operate without Docker or other container runtimes by storing data separately and by
including features that let you not only build images, but run those images as containers as well. By
default, Buildah stores images in an area identified as containers-storage (/var/lib/containers).

NOTE

The containers-storage location that the buildah command uses by default is the same
place that the CRI-O container engine uses for storing local copies of images. So images
pulled from a registry by either CRI-O or Buildah, or committed by the buildah command,
will be stored in the same directory structure. Currently, however, CRI-O and Buildah
cannot share containers, though they can share images.

There are more than a dozen options to use with the buildah command. Some of the main activities you
can do with the buildah command include:

Build a container from a Dockerfile: Use a Dockerfile to build a new container image (buildah
bud).

Build a container from another image or scratch: Build a new container, starting with an
existing base image (buildah from <imagename>) or from scratch (buildah from scratch)

Inspecting a container or image: View metadata associated with the container or image
(buildah inspect)

Mount a container: Mount a container’s root filesystem to add or change content (buildah
mount).

CHAPTER 5. BUILDING CONTAINER IMAGES WITH BUILDAH

35

https://github.com/opencontainers/runtime-spec

Create a new container layer: Use the updated contents of a container’s root filesystem as a
filesystem layer to commit content to a new image (buildah commit).

Unmount a container: Unmount a mounted container (buildah umount).

Delete a container or an image: Remove a container (buildah rm) or a container image
(buildah rmi).

For more details on Buildah, see the GitHub Buildah page . The GitHub Buildah site includes man pages
and software that might be more recent than is available with the RHEL version. Here are some other
articles on Buildah that might interest you:

Buildah Tutorial 1: Building OCI container images

Buildah Tutorial 2: Using Buildah with container registries

Buildah Blocks - Getting Fit

5.1.1. Installing Buildah

The buildah package is available with the container-tools module in RHEL 8. You can install the buildah
package separately by typing:

yum -y install buildah

With the buildah package installed, you can refer to the man pages included with the buildah package
for details on how to use it. To see the available man pages and other documentation, then open a man
page, type:

rpm -qd buildah
man buildah
buildah(1) General Commands Manual buildah(1)

NAME
 Buildah - A command line tool that facilitates building OCI container images.
...

The following sections describe how to use buildah to get containers, build a container from a
Dockerfile, build one from scratch, and manage containers in various ways.

5.2. GETTING IMAGES WITH BUILDAH

To get a container image to use with buildah, use the buildah from command. Here’s how to get a
RHEL 8 image from the Red Hat Registry as a working container to use with the buildah command:

buildah from registry.redhat.io/ubi8/ubi
Getting image source signatures
Copying blob…
Writing manifest to image destination
Storing signatures
rhel-working-container
buildah images
IMAGE ID IMAGE NAME CREATED AT SIZE
3da40a1670b5 registry.redhat.io/ubi8/ubi:latest May 8, 2019 21:55 214 MB

Red Hat Enterprise Linux 8 Building, running, and managing containers

36

https://github.com/projectatomic/buildah
https://github.com/projectatomic/buildah/blob/master/docs/tutorials/01-intro.md
https://github.com/projectatomic/buildah/blob/master/docs/tutorials/02-registries-repositories.md
https://www.projectatomic.io/blog/2017/08/buildah-getting-fit/

buildah containers
CONTAINER ID BUILDER IMAGE ID IMAGE NAME CONTAINER NAME
c6c9279ecc0f * 3da40a1670b5 ...ubi8/ubi:latest rhel-working-container

Notice that the result of the buildah from command is an image (registry.redhat.io/ubi8/ubi:latest) and
a working container that is ready to run from that image (rhel-working-container). Here’s an example of
how to execute a command from that container:

podman run rhel-working-container cat /etc/redhat-release
Red Hat Enterprise Linux release 8.0

The image and container are now ready for use with Buildah.

5.3. BUILDING AN IMAGE FROM A DOCKERFILE WITH BUILDAH

With the buildah command, you can create a new image from a Dockerfile. The following steps show
how to build an image that includes a simple script that is executed when the image is run.

This simple example starts with two files in the current directory: Dockerfile (which holds the instructions
for building the container image) and myecho (a script that echoes a few words to the screen):

ls
Dockerfile myecho
cat Dockerfile
FROM registry.redhat.io/ubi8/ubi
ADD myecho /usr/local/bin
ENTRYPOINT "/usr/local/bin/myecho"
cat myecho
echo "This container works!"
chmod 755 myecho
./myecho
This container works!

With the Dockerfile in the current directory, build the new container as follows:

buildah bud -t myecho .
STEP 1: FROM registry.redhat.io/ubi8/ubi
STEP 2: ADD myecho /usr/local/bin
STEP 3: ENTRYPOINT "/usr/local/bin/myecho"

The buildah bud command creates a new image named myecho. To run see that new image, type:

buildah images
IMAGE NAME IMAGE TAG IMAGE ID CREATED AT SIZE
localhost/myecho latest a3882af49784 Jun 21, 2019 12:21 216 MB

Next, you can run the image, to make sure it is working.

5.3.1. Running the image you built

To check that the image you built previously works, you can run the image using podman run:

CHAPTER 5. BUILDING CONTAINER IMAGES WITH BUILDAH

37

podman run myecho
This container works!

5.3.2. Inspecting a container with Buildah

With buildah inspect, you can show information about a container or image. For example, to inspect the
myecho image you created earlier, type:

buildah inspect myecho | less
{
 "Type": "buildah 0.0.1",
 "FromImage": "docker.io/library/myecho:latest",
 "FromImage-ID": "e2b190ac8...",
 "Config": "{\"created\":\"2018-11-13...

 "Entrypoint": [
 "/usr/local/bin/myecho"
],
 "WorkingDir": "/",
 "Labels": {
 "architecture": "x86_64",
 "authoritative-source-url": "registry.access.redhat.com",
 "build-date": "2018-09-19T20:46:28.459833",

To inspect a container from that same image, type the following:

buildah inspect myecho-working-container | less
{
 "Type": "buildah 0.0.1",
 "FromImage": "docker.io/library/myecho:latest",
 "FromImage-ID": "e2b190a...",
 "Config": "{\"created\":\"2018-11-13T19:5...
...
 "Container": "myecho-working-container",
 "ContainerID": "c0cd2e494d...",
 "MountPoint": "",
 "ProcessLabel": "system_u:system_r:svirt_lxc_net_t:s0:c89,c921",
 "MountLabel": "",

Note that the container output has added information, such as the container name, container id, process
label, and mount label to what was in the image.

5.4. MODIFYING A CONTAINER TO CREATE A NEW IMAGE WITH
BUILDAH

There are several ways you can modify an existing container with the buildah command and commit
those changes to a new container image:

Mount a container and copy files to it

Use buildah copy and buildah config to modify a container

Once you have modified the container, use buildah commit to commit the changes to a new image.

Red Hat Enterprise Linux 8 Building, running, and managing containers

38

5.4.1. Using buildah mount to modify a container

After getting an image with buildah from, you can use that image as the basis for a new image. The
following text shows how to create a new image by mounting a working container, adding files to that
container, then committing the changes to a new image.

Type the following to view the working container you used earlier:

buildah containers
CONTAINER ID BUILDER IMAGE ID IMAGE NAME CONTAINER NAME

dc8f21af4a47 * 1456eedf8101 registry.redhat.io/ubi8/ubi:latest
 rhel-working-container
6d1ffccb557d * ab230ac5aba3 docker.io/library/myecho:latest
 myecho-working-container

Mount the container image and set the mount point to a variable ($mymount) to make it easier to deal
with:

mymount=$(buildah mount myecho-working-container)
echo $mymount
/var/lib/containers/storage/devicemapper/mnt/176c273fe28c23e5319805a2c48559305a57a706cc7ae7b
ec7da4cd79edd3c02/rootfs

Add content to the script created earlier in the mounted container:

echo 'echo "We even modified it."' >> $mymount/usr/local/bin/myecho

To commit the content you added to create a new image (named myecho), type the following:

buildah commit myecho-working-container containers-storage:myecho2

To check that the new image includes your changes, create a working container and run it:

buildah images
IMAGE ID IMAGE NAME CREATED AT SIZE
a7e06d3cd0e2 docker.io/library/myecho2:latest
 Oct 12, 2017 15:15 3.144 KB
buildah from docker.io/library/myecho2:latest
myecho2-working-container
podman run myecho2-working-container
This container works!
We even modified it.

You can see that the new echo command added to the script displays the additional text.

When you are done, you can unmount the container:

buildah umount myecho-working-container

5.4.2. Using buildah copy and buildah config to modify a container

With buildah copy, you can copy files to a container without mounting it first. Here’s an example, using

CHAPTER 5. BUILDING CONTAINER IMAGES WITH BUILDAH

39

With buildah copy, you can copy files to a container without mounting it first. Here’s an example, using
the myecho-working-container created (and unmounted) in the previous section, to copy a new script
to the container and change the container’s configuration to run that script by default.

Create a script called newecho and make it executable:

cat newecho
echo "I changed this container"
chmod 755 newecho

Create a new working container:

buildah from myecho:latest
myecho-working-container-2

Copy newecho to /usr/local/bin inside the container:

buildah copy myecho-working-container-2 newecho /usr/local/bin

Change the configuration to use the newecho script as the new entrypoint:

buildah config --entrypoint "/bin/sh -c /usr/local/bin/newecho "myecho-working-container-2

Run the new container, which should result in the newecho command being executed:

podman run myecho-working-container-2
I changed this container

If the container behaved as you expected it would, you could then commit it to a new image
(mynewecho):

buildah commit myecho-working-container-2 containers-storage:mynewecho

5.5. CREATING IMAGES FROM SCRATCH WITH BUILDAH

Instead of starting with a base image, you can create a new container that holds no content and only a
small amount of container metadata. This is referred to as a scratch container. Here are a few issues to
consider when choosing to create an image starting from a scratch container with the buildah
command:

With a scratch container, you can simply copy executables that have no dependencies to the
scratch image and make a few configuration settings to get a minimal container to work.

To use tools like yum or rpm packages to populate the scratch container, you need to at least
initialize an RPM database in the container and add a release package. The example below
shows how to do that.

If you end up adding a lot of RPM packages, consider using the rhel or rhel-minimal base
images instead of a scratch image. Those base images have had documentation, language
packs, and other components trimmed out, which can ultimately result in your image being
smaller.

This example adds a Web service (httpd) to a container and configures it to run. In the example, instead

Red Hat Enterprise Linux 8 Building, running, and managing containers

40

of committing the image to Buildah (containers-storage which stores locally in /var/lib/containers), we
illustrate how to commit the image so it can be managed by the local Docker service (docker-daemon
which stores locally in /var/lib/docker). You could just have easily committed it to Buildah, which would
let you then push it to a Docker service (docker), a local OSTree repository (ostree), or other OCI-
compliant storage (oci). (Type man buildah push for details.)

To begin, create a scratch container:

buildah from scratch
working-container

This creates just an empty container (no image) that you can mount as follows:

scratchmnt=$(buildah mount working-container)
echo $scratchmnt
/var/lib/containers/storage/devicemapper/mnt/cc92011e9a2b077d03a97c0809f1f3e7fef0f29bdc6ab5e86
b85430ec77b2bf6/rootfs

Initialize an RPM database within the scratch image and add the redhat-release package (which includes
other files needed for RPMs to work):

rpm --root $scratchmnt --initdb
yum install yum-utils (if not already installed)
yumdownloader --destdir=/tmp redhat-release-server
rpm --root $scratchmnt -ihv /tmp/redhat-release*.rpm

Install the httpd service to the scratch directory:

yum install -y --installroot=$scratchmnt httpd

Add some text to an index.html file in the container, so you will be able to test it later:

echo "Your httpd container from scratch worked." > $scratchmnt/var/www/html/index.html

Instead of running httpd as an init service, set a few buildah config options to run the httpd daemon
directly from the container:

buildah config --cmd "/usr/sbin/httpd -DFOREGROUND" working-container
buildah config --port 80/tcp working-container
buildah commit working-container docker-daemon:myhttpd:latest

By default, the buildah commit command adds the docker.io repository name to the image name and
copies the image to the storage area for your local Docker service (/var/lib/docker). For now, you can
use the Image ID to run the new image as a container with the docker command:

docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.io/myhttpd latest 47c0795d7b0e 9 minutes ago 665.6 MB
docker run -p 8080:80 -d --name httpd-server 47c0795d7b0e
curl localhost:8080
Your httpd container from scratch worked.

CHAPTER 5. BUILDING CONTAINER IMAGES WITH BUILDAH

41

5.6. REMOVING IMAGES OR CONTAINERS WITH BUILDAH

When you are done with particular containers or images, you can remove them with buildah rm or
buildah rmi, respectively. Here are some examples.

To remove the container created in the previous section, you could type the following to see the
mounted container, unmount it and remove it:

buildah containers
CONTAINER ID BUILDER IMAGE ID IMAGE NAME CONTAINER NAME
05387e29ab93 * c37e14066ac7 docker.io/library/myecho:latest myecho-working-container
buildah mount
05387e29ab93 /var/lib/containers/storage/devicemapper/mnt/9274181773a.../rootfs
buildah umount 05387e29ab93
buildah rm 05387e29ab93
05387e29ab93151cf52e9c85c573f3e8ab64af1592b1ff9315db8a10a77d7c22

To remove the image you created previously, you could type the following:

buildah rmi docker.io/library/myecho:latest
untagged: docker.io/library/myecho:latest
ab230ac5aba3b5a0a7c3d2c5e0793280c1a1b4d2457a75a01b70a4b7a9ed415a

5.7. USING CONTAINER REGISTRIES WITH BUILDAH

With Buildah, you can push and pull container images between your local system and public or private
container registries. The following examples show how to:

Push containers to and pull them from a private registry with buildah.

Push and pull container between your local system and the Docker Registry.

Use credentials to associate your containers with a registry account when you push them.

Use the skopeo command, in tandem with the buildah command, to query registries for information
about container images.

5.7.1. Pushing containers to a private registry

Pushing containers to a private container registry with the buildah command works much the same as
pushing containers with the docker command. You need to:

Set up a private registry (OpenShift provides a container registry or you can set up a Red Hat
Quay container registry).

Create or acquire the container image you want to push.

Use buildah push to push the image to the registry.

To push an image from your local Buildah container storage, check the image name, then push it using
the buildah push command. Remember to identify both the local image name and a new name that
includes the location. For example, a registry running on the local system that is listening on TCP port
5000 would be identified as localhost:5000.

Red Hat Enterprise Linux 8 Building, running, and managing containers

42

buildah images
IMAGE ID IMAGE NAME CREATED AT SIZE
cb702d492ee9 docker.io/library/myecho2:latest Nov 12, 2018 16:50 3.143 KB

buildah push --tls-verify=false myecho2:latest localhost:5000/myecho2:latest
Getting image source signatures
Copying blob sha256:e4efd0...
...
Writing manifest to image destination
Storing signatures

Use the curl command to list the images in the registry and skopeo to inspect metadata about the
image:

curl http://localhost:5000/v2/_catalog
{"repositories":["myatomic","myecho2"]}
curl http://localhost:5000/v2/myecho2/tags/list
{"name":"myecho2","tags":["latest"]}
skopeo inspect --tls-verify=false docker://localhost:5000/myecho2:latest | less
{
 "Name": "localhost:5000/myecho2",
 "Digest": "sha256:8999ff6050...",
 "RepoTags": [
 "latest"
],
 "Created": "2017-11-21T16:50:25.830343Z",
 "DockerVersion": "",
 "Labels": {
 "architecture": "x86_64",
 "authoritative-source-url": "registry.redhat.io",

At this point, any tool that can pull container images from a container registry can get a copy of your
pushed image. For example, on a RHEL 7 system you could start the docker daemon and try to pull the
image so it can be used by the docker command as follows:

systemctl start docker
docker pull localhost:5000/myecho2
docker run localhost:5000/myecho2
This container works!

5.7.2. Pushing containers to the Docker Hub

You can use your Docker Hub credentials to push and pull images from the Docker Hub with the
buildah command. For this example, replace the username and password
(testaccountXX:My00P@sswd) with your own Docker Hub credentials:

buildah push --creds testaccountXX:My00P@sswd \
 docker.io/library/myecho2:latest docker://testaccountXX/myecho2:latest

As with the private registry, you can then get and run the container from the Docker Hub with the
podman, buildah or docker command:

podman run docker.io/textaccountXX/myecho2:latest
This container works!

CHAPTER 5. BUILDING CONTAINER IMAGES WITH BUILDAH

43

buildah from docker.io/textaccountXX/myecho2:latest
myecho2-working-container-2
podman run myecho2-working-container-2
This container works!

Red Hat Enterprise Linux 8 Building, running, and managing containers

44

CHAPTER 6. RUNNING CONTAINERS AS SYSTEMD SERVICES
WITH PODMAN

Podman (Pod Manager) is a fully featured container engine that is a simple daemonless tool. Podman
provides a Docker-CLI comparable command line that eases the transition from other container engines
and allows the management of pods, containers and images. It was not originally designed to bring up an
entire Linux system or manage services for such things as start-up order, dependency checking, and
failed service recovery. That is the job of a full-blown initialization system like systemd.

Red Hat has become a leader in integrating containers with systemd, so that OCI and Docker-formatted
containers built by Podman can be managed in the same way that other services and features are
managed in a Linux system. This chapter describes how you can use the systemd initialization service to
work with containers in two different ways:

Starting Containers with systemd: By setting up a systemd unit file on your host computer, you
can have the host automatically start, stop, check the status, and otherwise manage a container
as a systemd service.

Starting services within a container using systemd: Many Linux services (Web servers, file
servers, database servers, and so on) are already packaged for Red Hat Enterprise Linux to run
as systemd services. If you are using the latest RHEL container image, you can set the RHEL
container image to start the systemd service, then automatically start selected services within
the container when the container starts up.

The following two sections describe how to use systemd container in those ways.

6.1. STARTING CONTAINERS WITH SYSTEMD

When you set up a container to start as a systemd service, you can define the order in which the
containerized service runs, check for dependencies (like making sure another service is running, a file is
available or a resource is mounted), and even have a container start by using the runc command.

This section provides an example of a container that is configured to run directly on a RHEL or RHEL
Atomic Host system as a systemd service.

1. Get the image you want to run on your system. For example, to use the redis service from
docker.io, run the following command:

podman pull docker.io/redis

2. Open Selinux permission. If SELinux is enabled on your system, you must turn on the
container_manage_cgroup boolean to run containers with systemd as shown here (see the
Containers running systemd solution for details):

setsebool -P container_manage_cgroup on

3. Run the image as a container, giving it a name you want to use in the systemd service file. For
example, to name the running redis container redis_server, type the following:

podman run -d --name redis_server -p 6379:6379 redis

4. Configure the container as a systemd service by creating the unit configuration file in the
/etc/systemd/system/ directory. For example, the contents of the /etc/systemd/system/redis-
container.service can look as follows (note that redis_server matches the name you set on the

CHAPTER 6. RUNNING CONTAINERS AS SYSTEMD SERVICES WITH PODMAN

45

https://access.redhat.com/solutions/3387631

podman run line):

[Unit]
Description=Redis container

[Service]
Restart=always
ExecStart=/usr/bin/podman start -a redis_server
ExecStop=/usr/bin/podman stop -t 2 redis_server

[Install]
WantedBy=local.target

5. After creating the unit file, to start the container automatically at boot time, type the following:

systemctl enable redis-container.service

6. Once the service is enabled, it will start at boot time. To start it immediately and check the
status of the service, type the following:

systemctl start redis-container.service
systemctl status redis-container.service
* redis-container.service - Redis container
 Loaded: loaded (/etc/systemd/system/redis-container.service; enabled; vendor preset:
disabled)
 Active: active (running) since Fri 2019-03-15 16:22:55 EDT; 6s ago
 Main PID: 1540 (podman)
 Tasks: 8 (limit: 2353)
 Memory: 7.7M
 CGroup: /system.slice/redis-container.service
 └─1540 /usr/bin/podman start -a redis_server

Mar 15 16:22:55 localhost.localdomain systemd[1]: Started Redis container.

To learn more about configuring services with systemd, refer to the System Administrator’s Guide
chapter called Managing Services with systemd.

6.2. STARTING SERVICES WITHIN A CONTAINER USING SYSTEMD

A package with the systemd initialization system is included in the official Red Hat Enterprise Linux Init
base image named registry.redhat.io/ubi8/ubi. This means that applications created to be managed with
systemd can be started and managed inside a container. A container running systemd will:

Start the /sbin/init process (the systemd service) to run as PID 1 within the container.

Start all systemd services that are installed and enabled within the container, in order of
dependencies.

Allow systemd to restart services or kill zombie processes for services started within the
container.

The general steps for building a container that is ready to be used as a systemd services is:

Install the package containing the systemd-enabled service inside the container. This can
include dozens of services that come with RHEL, such as Apache Web Server (httpd), FTP

Red Hat Enterprise Linux 8 Building, running, and managing containers

46

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/System_Administrators_Guide/index.html#chap-Managing_Services_with_systemd

server (vsftpd), Proxy server (squid), and many others. For this example, we simply install an
Apache (httpd) Web server.

Use the systemctl command to enable the service inside the container.

Add data for the service to use in the container (in this example, we add a Web server test
page). For a real deployment, you would probably connect to outside storage.

Expose any ports needed to access the service.

Set /sbin/init as the default process to start when the container runs

In this example, we build a container by creating a Dockerfile that installs and configures a Web server
(httpd) to start automatically by the systemd service (/sbin/init) when the container is run on a host
system.

1. Create Dockerfile: In a separate directory, create a file named Dockerfile with the following
contents:

FROM ubi8/ubi
RUN yum -y install httpd; yum clean all; systemctl enable httpd;
RUN echo "Successful Web Server Test" > /var/www/html/index.html
RUN mkdir /etc/systemd/system/httpd.service.d/; echo -e '[Service]\nRestart=always' >
/etc/systemd/system/httpd.service.d/httpd.conf
EXPOSE 80
CMD ["/sbin/init"]

The Dockerfile installs the httpd package, enables the httpd service to start at boot time (i.e.
when the container starts), creates a test file (index.html), exposes the Web server to the host
(port 80), and starts the systemd init service (/sbin/init) when the container starts.

2. Build the container: From the directory containing the Dockerfile, type the following:

podman build --format=docker -t mysysd .

3. Open Selinux permission. If SELinux is enabled on your system, you must turn on the
container_manage_cgroup boolean to run containers with systemd as shown here (see the
Containers running systemd solution for details):

setsebool -P container_manage_cgroup 1

4. Run the container: Once the container is built and named mysysd, type the following to run the
container:

podman run -d --name=mysysd_run -p 80:80 mysysd

From this command, the mysysd image runs as the mysysd_run container as a daemon process,
with port 80 from the container exposed to port 80 on the host system.

5. Check that the container is running: To make sure that the container is running and that the
service is working, type the following commands:

podman ps | grep mysysd_run
a282b0c2ad3d localhost/mysysd:latest /sbin/init 15 seconds ago Up 14 seconds ago
0.0.0.0:80->80/tcp mysysd_run

CHAPTER 6. RUNNING CONTAINERS AS SYSTEMD SERVICES WITH PODMAN

47

https://access.redhat.com/solutions/3387631

curl localhost/index.html
Successful Web Server Test

At this point, you have a container that starts up a Web server as a systemd service inside the container.
Install and run any services you like in this same way by modifying the Dockerfile and configuring data
and opening ports as appropriate.

Red Hat Enterprise Linux 8 Building, running, and managing containers

48

CHAPTER 7. CONTAINER COMMAND-LINE REFERENCE

7.1. PODMAN

The podman command lets you run containers as standalone entities, without requiring that
Kubernetes, the Docker runtime, or any other container runtime be involved. It is a tool that can act as a
replacement for the docker command, implementing the same command-line syntax, while it adds even
more container management features. The podman features include:

Based on docker interface: Because podman syntax mirrors the docker command,
transitioning to podman should be easy for those familiar with docker.

Managing containers and images: Both Docker- and OCI-compatible container images can be
used with podman to:

Run, stop and restart containers

Create and manage container images (push, commit, configure, build, and so on)

Managing pods: Besides running individual containers, podman can run a set of containers
grouped in a pod. A pod is the smallest container unit that Kubernetes manages.

Working with no runtime: No runtime environment is used by podman to work with containers.

Here are a few implementation features of podman you should know about:

Podman, buildah, and the CRI-O container engine all use the same back-end store directory,
/var/lib/containers, instead of using the Docker storage location (/var/lib/docker), by default.

Although podman buildah and CRI-O share the same storage directory, they cannot interact
with each other’s containers. Those tools can share images, however. Eventually those features
will be able to share containers.

The podman command, like the docker command, can build container images from a
Dockerfile.

The podman command can be a useful troubleshooting tool when the CRI-O service is
unavailable.

Options to the docker command that are not supported by podman include container, events,
image, network, node, plugin (podman does not support plugins), port, rename (use rm and
create to rename containers with podman), secret, service, stack, swarm (podman does not
support Docker Swarm), system, and volume (for podman, create volumes on the host, then
mount in a container). The container and image options are used to run subcommands that are
used directly in podman.

The following features are currently in development for podman:

To interact programmatically with podman, a remote API for Podman is being developed
using a technology called varlink. This will let podman listen for API requests from remote
tools (such as the RHEL 8 web console or the atomic command) and respond to them.

Support for user namespaces is just on the horizon. This feature will let you run a container
as one user or group (for example, uid 0) inside the container and another user (for
example, uid 1000000) outside the container. See User namespaces support in Podman for
details.

A feature in development will allow podman to run and manage a Pod (which may consist

CHAPTER 7. CONTAINER COMMAND-LINE REFERENCE

49

http://www.projectatomic.io/blog/2018/05/podman-varlink/
https://github.com/varlink
http://www.projectatomic.io/blog/2018/05/podman-userns/

A feature in development will allow podman to run and manage a Pod (which may consist
of multiple containers and some metadata) without Kubernetes or OpenShift being active.
(However, podman is not expected to do some of Kubernetes’ more advanced features,
such as scheduling pods across clusters).

7.1.1. Using podman commands

If you are used to using the docker command to work with containers, you will find most of the features
and options match those of podman. Table 1 shows a list of commands you can use with podman (type
podman -h to see this list):

Table 7.1. Commands supported by podman

podman command Description podman command Description

attach Attach to a running
container

commit Create new image from
changed container

build Build an image using
Dockerfile instructions

create Create, but do not start,
a container

diff Inspect changes on
container’s filesystems

exec Run a process in a
running container

export Export container’s
filesystem contents as a
tar archive

help, h Shows a list of
commands or help for
one command

history Show history of a
specified image

images List images in local
storage

import Import a tarball to
create a filesystem
image

info Display system
information

inspect Display the
configuration of a
container or image

kill Send a specific signal to
one or more running
containers

load Load an image from an
archive

login Login to a container
registry

logout Logout of a container
registry

logs Fetch the logs of a
container

mount Mount a working
container’s root
filesystem

pause Pauses all the processes
in one or more
containers

Red Hat Enterprise Linux 8 Building, running, and managing containers

50

ps List containers port List port mappings or a
specific mapping for the
container

pull Pull an image from a
registry

push Push an image to a
specified destination

restart Restart one or more
containers

rm Remove one or more
containers from host.
Add -f if running.

rmi removes one or more
images from local
storage

run run a command in a new
container

save Save image to an
archive

search search registry for image

start Start one or more
containers

stats Display percentage of
CPU, memory, network
I/O, block I/O and PIDs
for one or more
containers

stop Stop one or more
containers

tag Add an additional name
to a local image

top Display the running
processes of a container

umount, unmount Unmount a working
container’s root
filesystem

unpause Unpause the processes
in one or more
containers

version Display podman version
information

wait Block on one or more
containers

7.1.2. Trying basic podman commands

Because the use of podman mirrors the features and syntax of the docker command, you can refer to
Working with Docker Formatted Container Images for examples of how to use those options to work
with containers. Simply replace docker with podman in most cases. Here are some examples of using
podman.

7.1.3. Pull a container image to the local system

podman pull registry.redhat.io/ubi8/ubi
Trying to pull registry.redhat...Getting image source signatures
Copying blob sha256:d1fe25896eb5cbcee...

CHAPTER 7. CONTAINER COMMAND-LINE REFERENCE

51

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/getting_started_with_containers/get_started_with_docker_formatted_container_images#working_with_docker_formatted_containers

Writing manifest to image destination
Storing signatures
fd1ba0b398a82d56900bb798c...

7.1.4. List local container images

podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.redhat.io/ubi8/ubi latest de9c26f23799 5 weeks ago 80.1MB
registry.redhat.io/ubi8/ubi latest fd1ba0b398a8 5 weeks ago 211MB

7.1.5. Inspect a container image

podman inspect registry.redhat.io/ubi8/ubi | less
[
 {
 "Id": "4bbd153adf8487a8a5114af0d6...",
 "Digest": "sha256:9999e735605c73f...",
 "RepoTags": [
 "registry.access.redhat.com/ubi8/ubi:latest"
],
 "RepoDigests": [
 "registry.access.redhat.com/ubi8/ubi/rhel@sha256:9999e7356...

7.1.6. Run a container image

Run a container that opens a shell inside the container:

podman run -it registry.redhat.io/ubi8/ubi /bin/bash
[root@8414218c04f9 /]# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 13:48 pts/0 00:00:00 /bin/bash
root 21 1 0 13:49 pts/0 00:00:00 ps -ef
[root@8414218c04f9 /]# exit
#

7.1.7. List containers that are running or have exited

podman ps -a
CONTAINER ID IMAGE COMMAND
 CREATED AT STATUS PORTS NAMES
440becd26893 registry.redhat.io/ubi8/ubi-minimal:latest /bin/bash
 2018-05-10 09:02:52 -0400 EDT Exited (0) About an hour ago happy_hodgkin
8414218c04f9 registry.redhat.io/ubi8/ubi:latest /bin/bash
 2018-05-10 09:48:07 -0400 EDT Exited (0) 14 minutes ago nostalgic_boyd

7.1.8. Remove a container or image

Remove a container by its container ID:

podman rm 440becd26893

Red Hat Enterprise Linux 8 Building, running, and managing containers

52

Remove a container image by its image ID or name (use -f to force):

podman rmi registry.redhat.io/ubi8/ubi
podman rmi de9c26f23799
podman rmi -f registry.redhat.io/ubi8/ubi:latest

7.1.9. Build a container

cat Dockerfile
FROM registry.redhat.io/ubi8/ubi
ENTRYPOINT "echo 'Podman built this container.'"

podman build -t podbuilt .
STEP 1: FROM registry.access...
...
Writing manifest to image destination
Storing signatures
91e043c11617c08d4f8...

podman run podbuilt
Podman build this container.

7.2. RUNC

"runC" is a lightweight, portable implementation of the Open Container Initiative (OCI) container
runtime specification. runC unites a lot of the low-level features that make running containers possible.
It shares a lot of low-level code with Docker but it is not dependent on any of the components of the
Docker platform.

runc supports Linux namespaces, live migration, and has portable performance profiles. It also provides
full support for Linux security features such as SELinux, control groups (cgroups), seccomp, and others.
You can build and run images with runc, or you can run OCI-compatible images with runc.

7.2.1. Running containers with runc

With runc, containers are configured using bundles. A bundle for a container is a directory that includes a
specification file named "config.json" and a root filesystem. The root filesystem contains the contents of
the container.

To create a bundle, run:

$ runc spec

This command creates a config.json file that only contains a bare-bones structure that you will need to
edit. Most importantly, you will need to change the "args" parameter to identify the executable to run.
By default, "args" is set to "sh".

 "args": [
 "sh"
],

As an example, you can download the Red Hat Enterprise Linux base image (ubi8/ubi) using podman
then export it, create a new bundle for it with runc, and edit the "config.json" file to point to that image.

CHAPTER 7. CONTAINER COMMAND-LINE REFERENCE

53

You can then create the container image and run an instance of that image with runc. Use the following
commands:

podman pull registry.redhat.io/ubi8/ubi
podman export $(podman create registry.redhat.io/ubi8/ubi) > rhel.tar
mkdir -p rhel-runc/rootfs
tar -C rhel-runc/rootfs -xf rhel.tar
runc spec -b rhel-runc
vi rhel-runc/config.json Change any setting you like
runc create -b rhel-runc/ rhel-container
runc start rhel-container
sh-4.2#

In this example, the name of the container instance is "rhel-container". Running that container, by
default, starts a shell, so you can begin looking around and running commands from inside that container.
Type exit when you are done.

The name of a container instance must be unique on the host. To start a new instance of a container:

runc start <container_name>

You can provide the bundle directory using the "-b" option. By default, the value for the bundle is the
current directory.

You will need root privileges to start containers with runc. To see all commands available to runc and
their usage, run "runc --help".

7.3. SKOPEO

With the skopeo command, you can work with container images from registries without using the docker
daemon or the docker command. Registries can include the Docker Registry, your own local registries,
Red Hat Quay or OpenShift registries. Activities you can do with skopeo include:

inspect: The output of a skopeo inspect command is similar to what you see from a docker
inspect command: low-level information about the container image. That output can be in json
format (default) or raw format (using the --raw option).

copy: With skopeo copy you can copy a container image from a registry to another registry or
to a local directory.

layers: The skopeo layers command lets you download the layers associated with images so
that they are stored as tarballs and associated manifest files in a local directory.

Like the buildah command and other tools that rely on the containers/image library, the skopeo
command can work with images from container storage areas other than those associated with Docker.
Available transports to other types of container storage include: containers-storage (for images stored
by buildah and CRI-O), ostree (for atomic and system containers), oci (for content stored in an OCI-
compliant directory), and others. See the skopeo man page for details.

To try out skopeo, you could set up a local registry, then run the commands that follow to inspect, copy,
and download image layers. If you want to follow along with the examples, start by doing the following:

Install a local registry.

Pull the latest RHEL image to your local system (podman pull ubi8/ubi).

Red Hat Enterprise Linux 8 Building, running, and managing containers

54

https://github.com/projectatomic/skopeo/blob/master/docs/skopeo.1.md

Retag the RHEL image and push it to your local registry as follows:

podman tag ubi8/ubi localhost:5000/myubi8
podman push localhost:5000/myubi8

The rest of this section describes how to inspect, copy and get layers from the RHEL image.

NOTE

The skopeo tool by default requires a TLS connection. It fails when trying to use an
unencrypted connection. To override the default and use an http registry, prepend http:
to the <registry>/<image> string.

7.3.1. Inspecting container images with skopeo

When you inspect a container image from a registry, you need to identify the container format (such as
docker), the location of the registry (such as docker.io or localhost:5000), and the repository/image
(such as ubi8/ubi).

The following example inspects the mariadb container image from the Docker Registry:

skopeo inspect docker://docker.io/library/mariadb
{
 "Name": "docker.io/library/mariadb",
 "Tag": "latest",
 "Digest": "sha256:d3f56b143b62690b400ef42e876e628eb5e488d2d0d2a35d6438a4aa841d89c4",
 "RepoTags": [
 "10.0.15",
 "10.0.16",
 "10.0.17",
 "10.0.19",
...
 "Created": "2018-06-10T01:53:48.812217692Z",
 "DockerVersion": "1.10.3",
 "Labels": {},
 "Architecture": "amd64",
 "Os": "linux",
 "Layers": [
...

Assuming you pushed a container image tagged localhost:5000/myubi8 to a container registry running
on your local system, the following command inspects that image:

skopeo inspect docker://localhost:5000/myubi8
{
 "Name": "localhost:5000/myubi8",
 "Tag": "latest",
 "Digest": "sha256:4e09c308a9ddf56c0ff6e321d135136eb04152456f73786a16166ce7cba7c904",
 "RepoTags": [
 "latest"
],
 "Created": "2018-06-16T17:27:13Z",
 "DockerVersion": "1.7.0",
 "Labels": {

CHAPTER 7. CONTAINER COMMAND-LINE REFERENCE

55

 "Architecture": "x86_64",
 "Authoritative_Registry": "registry.access.redhat.com",
 "BZComponent": "rhel-server-docker",
 "Build_Host": "rcm-img01.build.eng.bos.redhat.com",
 "Name": "myubi8",
 "Release": "75",
 "Vendor": "Red Hat, Inc.",
 "Version": "8.0"
 },
 "Architecture": "amd64",
 "Os": "linux",
 "Layers": [
 "sha256:16dc1f96e3a1bb628be2e00518fec2bb97bd5933859de592a00e2eb7774b6ecf"
]
}

7.3.2. Copying container images with skopeo

This command copies the myubi8 container image from a local registry into a directory on the local
system:

skopeo copy docker://localhost:5000/myubi8 dir:/root/test/
INFO[0000] Downloading
myubi8/blobs/sha256:16dc1f96e3a1bb628be2e00518fec2bb97bd5933859de592a00e2eb7774b6ecf
ls /root/test
16dc1f96e3a1bb628be2e00518fec2bb97bd5933859de592a00e2eb7774b6ecf.tar manifest.json

The result of the skopeo copy command is a tarball (16d*.tar) and a manifest.json file representing the
image begin copied to the directory you identified. If there were multiple layers, there would be multiple
tarballs. The skopeo copy command can also copy images to another registry. If you need to provide a
signature to write to the destination registry, you can do that by adding a --sign-by= option to the
command line, followed by the required key-id.

7.3.3. Getting image layers with skopeo

The skopeo layers command is similar to skopeo copy, with the difference being that the copy option
can copy an image to another registry or to a local directory, while the layers option just drops the layers
(tarballs and manifest.jason file) in the current directory. For example

skopeo layers docker://localhost:5000/myubi8
INFO[0000] Downloading
myubi8/blobs/sha256:16dc1f96e3a1bb628be2e00518fec2bb97bd5933859de592a00e2eb7774b6ecf
find .
./layers-myubi8-latest-698503105
./layers-myubi-latest-698503105/manifest.json
./layers-myubi8-latest-
698503105/16dc1f96e3a1bb628be2e00518fec2bb97bd5933859de592a00e2eb7774b6ecf.tar

As you can see from this example, a new directory is created (layers-myubi8-latest-698503105) and, in
this case, a single layer tarball and a manifest.json file are copied to that directory.

Red Hat Enterprise Linux 8 Building, running, and managing containers

56

CHAPTER 8. ADDITIONAL RESOURCES
Buildah - a tool for building OCI container images

Podman - a tool for running and managing containers

Skopeo - a tool for copying and inspecting container images

CHAPTER 8. ADDITIONAL RESOURCES

57

https://github.com/containers/buildah
https://github.com/containers/libpod/tree/master/cmd/podman
https://github.com/containers/skopeo

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. STARTING WITH CONTAINERS
	1.1. RUNNING CONTAINERS WITHOUT DOCKER
	1.2. CHOOSING A RHEL ARCHITECTURE FOR CONTAINERS
	1.3. GETTING CONTAINER TOOLS
	1.4. ENABLING CONTAINER SETTINGS

	CHAPTER 2. WORKING WITH CONTAINER IMAGES
	2.1. PULLING IMAGES FROM REGISTRIES
	2.2. INVESTIGATING IMAGES
	2.2.1. Listing images
	2.2.2. Inspecting local images
	2.2.3. Inspecting remote images

	2.3. TAGGING IMAGES
	2.4. SAVING AND IMPORTING IMAGES
	2.5. REMOVING IMAGES

	CHAPTER 3. WORKING WITH CONTAINERS
	3.1. RUNNING CONTAINERS
	3.2. INVESTIGATING RUNNING AND STOPPED CONTAINERS
	3.2.1. Listing containers
	3.2.2. Inspecting containers
	3.2.3. Investigating within a container

	3.3. STARTING AND STOPPING CONTAINERS
	3.3.1. Starting containers
	3.3.2. Stopping containers

	3.4. REMOVING CONTAINERS

	CHAPTER 4. USING RED HAT UNIVERSAL BASE IMAGES (STANDARD, MINIMAL, AND RUNTIMES)
	4.1. WHAT ARE RED HAT BASE IMAGES?
	4.1.1. Using standard Red Hat base images
	4.1.2. Using minimal Red Hat base images
	4.1.3. Using Init Red Hat base images

	4.2. HOW ARE UBI IMAGES DIFFERENT?
	4.3. GET UBI IMAGES
	4.4. PULL UBI IMAGES
	4.5. REDISTRIBUTING UBI IMAGES
	4.6. RUN UBI IMAGES
	4.7. ADD SOFTWARE TO A RUNNING UBI CONTAINER
	4.7.1. Adding software to a UBI container (subscribed host)
	4.7.2. Adding software inside the standard UBI container
	4.7.3. Adding software inside the minimal UBI container
	4.7.4. Adding software to a UBI container (unsubscribed host)
	4.7.5. Build a UBI-based image
	4.7.6. Using Red Hat Software Collections runtime images
	4.7.7. Getting UBI Container Image Source Code
	4.7.8. Tips and tricks for using UBI images
	4.7.9. How to request new features in UBI?
	4.7.10. How to file a support case for UBI?

	CHAPTER 5. BUILDING CONTAINER IMAGES WITH BUILDAH
	5.1. UNDERSTANDING BUILDAH
	5.1.1. Installing Buildah

	5.2. GETTING IMAGES WITH BUILDAH
	5.3. BUILDING AN IMAGE FROM A DOCKERFILE WITH BUILDAH
	5.3.1. Running the image you built
	5.3.2. Inspecting a container with Buildah

	5.4. MODIFYING A CONTAINER TO CREATE A NEW IMAGE WITH BUILDAH
	5.4.1. Using buildah mount to modify a container
	5.4.2. Using buildah copy and buildah config to modify a container

	5.5. CREATING IMAGES FROM SCRATCH WITH BUILDAH
	5.6. REMOVING IMAGES OR CONTAINERS WITH BUILDAH
	5.7. USING CONTAINER REGISTRIES WITH BUILDAH
	5.7.1. Pushing containers to a private registry
	5.7.2. Pushing containers to the Docker Hub

	CHAPTER 6. RUNNING CONTAINERS AS SYSTEMD SERVICES WITH PODMAN
	6.1. STARTING CONTAINERS WITH SYSTEMD
	6.2. STARTING SERVICES WITHIN A CONTAINER USING SYSTEMD

	CHAPTER 7. CONTAINER COMMAND-LINE REFERENCE
	7.1. PODMAN
	7.1.1. Using podman commands
	7.1.2. Trying basic podman commands
	7.1.3. Pull a container image to the local system
	7.1.4. List local container images
	7.1.5. Inspect a container image
	7.1.6. Run a container image
	7.1.7. List containers that are running or have exited
	7.1.8. Remove a container or image
	7.1.9. Build a container

	7.2. RUNC
	7.2.1. Running containers with runc

	7.3. SKOPEO
	7.3.1. Inspecting container images with skopeo
	7.3.2. Copying container images with skopeo
	7.3.3. Getting image layers with skopeo

	CHAPTER 8. ADDITIONAL RESOURCES

