Red Hat Training

A Red Hat training course is available for RHEL 8

Chapter 13. Supported kdump configurations and targets

13.1. Memory requirements for kdump

In order for kdump to be able to capture a kernel crash dump and save it for further analysis, a part of the system memory has to be permanently reserved for the capture kernel. When reserved, this part of the system memory is not available to the main kernel.

The memory requirements vary based on certain system parameters. One of the major factors is the system’s hardware architecture. To find out the exact machine architecture (such as Intel 64 and AMD64, also known as x86_64) and print it to standard output, use the following command:

$ uname -m

Table 10.1 lists the minimum memory requirements to automatically reserve a memory size for kdump on the latest available versions. The size changes according to the system’s architecture and total available physical memory.

Table 13.1. Minimum Amount of Reserved Memory Required for kdump

ArchitectureAvailable MemoryMinimum Reserved Memory

AMD64 and Intel 64 (x86_64)

1 GB to 4 GB

160 MB of RAM.

4 GB to 64 GB

192 MB of RAM.

64 GB to 1 TB

256 MB of RAM.

1 TB and more

512 MB of RAM.

64-bit ARM architecture (arm64)

2 GB and more

448 MB of RAM.

IBM Power Systems (ppc64le)

2 GB to 4 GB

384 MB of RAM.

4 GB to 16 GB

512 MB of RAM.

16 GB to 64 GB

1 GB of RAM.

64 GB to 128 GB

2 GB of RAM.

128 GB and more

4 GB of RAM.

IBM Z (s390x)

1 GB to 4 GB

160 MB of RAM.

4 GB to 64 GB

192 MB of RAM.

64 GB to 1 TB

256 MB of RAM.

1 TB and more

512 MB of RAM.

On many systems, kdump is able to estimate the amount of required memory and reserve it automatically. This behavior is enabled by default, but only works on systems that have more than a certain amount of total available memory, which varies based on the system architecture.


The automatic configuration of reserved memory based on the total amount of memory in the system is a best effort estimation. The actual required memory may vary due to other factors such as I/O devices. Using not enough of memory might cause that a debug kernel is not able to boot as a capture kernel in case of a kernel panic. To avoid this problem, sufficiently increase the crash kernel memory.

13.2. Minimum threshold for automatic memory reservation

On some systems, it is possible to allocate memory for kdump automatically, either by using the crashkernel=auto parameter in the boot loader configuration file, or by enabling this option in the graphical configuration utility. For this automatic reservation to work, however, a certain amount of total memory needs to be available in the system. The amount differs based on the system’s architecture.

Table 10.2 lists the threshold values for automatic memory allocation. If the system has memory less than the specified threshold value, you must configure the memory manually.

Table 13.2. Minimum Amount of Memory Required for Automatic Memory Reservation

ArchitectureRequired Memory

AMD64 and Intel 64 (x86_64)

2 GB

IBM Power Systems (ppc64le)

2 GB

IBM  Z (s390x)

4 GB

13.3. Supported kdump targets

When a kernel crash is captured, the vmcore dump file can be either written directly to a device, stored as a file on a local file system, or sent over a network. The table below contains a complete list of dump targets that are currently supported or explicitly unsupported by kdump.

TypeSupported TargetsUnsupported Targets

Raw device

All locally attached raw disks and partitions.


Local file system

ext2, ext3, ext4, and xfs file systems on directly attached disk drives, hardware RAID logical drives, LVM devices, and mdraid arrays.

Any local file system not explicitly listed as supported in this table, including the auto type (automatic file system detection).

Remote directory

Remote directories accessed using the NFS or SSH protocol over IPv4.

Remote directories on the rootfs file system accessed using the NFS protocol.

Remote directories accessed using the iSCSI protocol over both hardware and software initiators.

Remote directories accessed using the iSCSI protocol on be2iscsi hardware.

Multipath-based storages.


Remote directories accessed over IPv6.


Remote directories accessed using the SMB or CIFS protocol.


Remote directories accessed using the FCoE (Fibre Channel over Ethernet) protocol.


Remote directories accessed using wireless network interfaces.


Utilizing firmware assisted dump (fadump) to capture a vmcore and store it to a remote machine using SSH or NFS protocol causes renaming of the network interface to kdump-<interface-name>. The renaming happens if the <interface-name> is generic, for example *eth#, net#, and so on. This problem occurs because the vmcore capture scripts in the initial RAM disk (initrd) add the kdump- prefix to the network interface name to secure persistent naming. Since the same initrd is used also for a regular boot, the interface name is changed for the production kernel too.

13.4. Supported kdump filtering levels

To reduce the size of the dump file, kdump uses the makedumpfile core collector to compress the data and optionally to omit unwanted information. The table below contains a complete list of filtering levels that are currently supported by the makedumpfile utility.



Zero pages


Cache pages


Cache private


User pages


Free pages


The makedumpfile command supports removal of transparent huge pages and hugetlbfs pages. Consider both these types of hugepages User Pages and remove them using the -8 level.

Additional resources

13.5. Supported default failure responses

By default, when kdump fails to create a core dump, the operating system reboots. You can, however, configure kdump to perform a different operation in case it fails to save the core dump to the primary target. The table below lists all default actions that are currently supported.



Attempt to save the core dump to the root file system. This option is especially useful in combination with a network target: if the network target is unreachable, this option configures kdump to save the core dump locally. The system is rebooted afterwards.


Reboot the system, losing the core dump in the process.


Halt the system, losing the core dump in the process.


Power off the system, losing the core dump in the process.


Run a shell session from within the initramfs, allowing the user to record the core dump manually.


Enable additional operations such as reboot, halt, and poweroff actions after a successful kdump or when shell or dump_to_rootfs failure action completes. The default final_action option is reboot.

13.6. Using final_action parameter

The final_action parameter enables you to use certain additional operations such as reboot, halt, and poweroff actions after a successful kdump or when an invoked failure_response mechanism using shell or dump_to_rootfs completes. If the final_action option is not specified, it defaults to reboot.


  1. Edit the `/etc/kdump.conf file and add the final_action parameter.

    final_action <reboot | halt | poweroff>
  2. Restart the kdump service:

    kdumpctl restart

13.7. Estimating kdump size

When planning and building your kdump environment, it is necessary to know how much space is required for the dump file before one is produced.

The makedumpfile --mem-usage command provides a useful report about excludable pages, and can be used to determine which dump level you want to assign. Run this command when the system is under representative load, otherwise makedumpfile --mem-usage returns a smaller value than is expected in your production environment.

[root@hostname ~]# makedumpfile --mem-usage /proc/kcore

TYPE            PAGES                   EXCLUDABLE      DESCRIPTION
ZERO            501635                  yes             Pages filled with zero
CACHE           51657                   yes             Cache pages
CACHE_PRIVATE   5442                    yes             Cache pages + private
USER            16301                   yes             User process pages
FREE            77738211                yes             Free pages
KERN_DATA       1333192                 no              Dumpable kernel data

The makedumpfile --mem-usage command reports in pages. This means that you have to calculate the size of memory in use against the kernel page size. By default the Red Hat Enterprise Linux kernel uses 4 KB sized pages for AMD64 and Intel 64 architectures, and 64 KB sized pages for IBM POWER architectures.