Chapter 4. Managing user and group accounts and setting permissions on files

The control of users and groups is a core element of Red Hat Enterprise Linux system administration. This section explains how to add, manage, and delete users and groups in the graphical user interface and on the command line, and covers advanced topics, such as creating group directories.

4.1. Introduction to Users and Groups

While users can be either people (meaning accounts tied to physical users) or accounts that exist for specific applications to use, groups are logical expressions of organization, tying users together for a common purpose. Users within a group share the same permissions to read, write, or execute files owned by that group.

Each user is associated with a unique numerical identification number called a user ID (UID). Likewise, each group is associated with a group ID (GID). A user who creates a file is also the owner and group owner of that file. The file is assigned separate read, write, and execute permissions for the owner, the group, and everyone else. The file owner can be changed only by root, and access permissions can be changed by both the root user and file owner.

4.2. Reserved user and group IDs

Red Hat Enterprise Linux reserves user and group IDs below 1000 for system users and groups. By default, the User Manager does not display the system users. Reserved user and group IDs are documented in the setup package. To view the documentation, use this command:

cat /usr/share/doc/setup*/uidgid

The recommended practice is to assign IDs starting at 5,000 that were not already reserved, as the reserved range can increase in the future. To make the IDs assigned to new users by default start at 5,000, change the UID_MIN and GID_MIN directives in the /etc/login.defs file:

[file contents truncated]
UID_MIN                  5000
[file contents truncated]
GID_MIN                  5000
[file contents truncated]
Note

For users created before you changed UID_MIN and GID_MIN directives, UIDs will still start at the default 1000.

Even with new user and group IDs beginning with 5,000, it is recommended not to raise IDs reserved by the system above 1000 to avoid conflict with systems that retain the 1000 limit.

4.3. User private groups

Red Hat Enterprise Linux uses a user private group (UPG) scheme, which makes UNIX groups easier to manage. A user private group is created whenever a new user is added to the system. It has the same name as the user for which it was created and that user is the only member of the user private group.

User private groups make it safe to set default permissions for a newly created file or directory, allowing both the user and the group of that user to make modifications to the file or directory.

The setting which determines what permissions are applied to a newly created file or directory is called a umask and is configured in the /etc/bashrc file. Traditionally on UNIX-based systems, the umask is set to 022, which allows only the user who created the file or directory to make modifications. Under this scheme, all other users, including members of the creator’s group, are not allowed to make any modifications. However, under the UPG scheme, this "group protection" is not necessary since every user has their own private group.

A list of all groups is stored in the /etc/group configuration file.

4.4. Shadow Passwords

In environments with multiple users, it is very important to use shadow passwords provided by the shadow-utils package to enhance the security of system authentication files. For this reason, the installation program enables shadow passwords by default.

The advantages of shadow passwords over the traditional way of storing passwords on UNIX-based systems are:

  • Shadow passwords improve system security by moving encrypted password hashes from the world-readable /etc/passwd file to /etc/shadow, which is readable only by the root user.
  • Shadow passwords store information about password aging.
  • Shadow passwords allow to enforce some of the security policies set in the /etc/login.defs file.

Most utilities provided by the shadow-utils package work properly whether or not shadow passwords are enabled. However, since password aging information is stored exclusively in the /etc/shadow file, some utilities and commands do not work without first enabling shadow passwords:

  • The chage utility for setting password aging parameters.
  • The gpasswd utility for administrating the /etc/group file.
  • The usermod command with the -e, --expiredate or -f, --inactive option.
  • The useradd command with the -e, --expiredate or -f, --inactive option.

4.5. Managing users in a graphical environment

The Users utility allows you to view, modify, add, and delete local users in the graphical user interface.

4.5.1. Using the Users Settings tool

Press the Super key to enter the Activities Overview, type Users and then press Enter. The Users settings tool appears. The Super key appears in a variety of options, depending on the keyboard and other hardware, but often as either the Windows or Command key, and typically to the left of the Space bar. Alternatively, you can open the Users utility from the Settings menu after clicking your user name in the top right corner of the screen.

To make changes to the user accounts, first select the Unlock button and authenticate yourself as indicated by the dialog box that appears. Note that unless you have superuser privileges, the application will prompt you to authenticate as root. To add and remove users, select the + and - button respectively. To add a user to the administrative group wheel, change the Account Type from Standard to Administrator. To edit a user’s language setting, select the language and a drop-down menu appears.

Figure 4.1. The Users Settings Tool

managing users

When a new user is created, the account is disabled until a password is set. The Password drop-down menu, shown in Figure 4.2, “The Password Menu”, contains the options to set a password by the administrator immediately, choose a password by the user at the first login, or create a guest account with no password required to log in. You can also disable or enable an account from this menu.

Figure 4.2. The Password Menu

managing users password

4.6. Managing users using command-line tools

Apart from the Users settings tool described in Section 4.5.1, “Using the Users Settings tool”, which is designed for basic managing of users, you can use command line tools for managing users and groups that are listed in the table below.

Table 4.1. Command line utilities for managing users and groups

UtilitiesDescription

id

Displays user and group IDs.

useradd, usermod, userdel

Standard utilities for adding, modifying, and deleting user accounts.

groupadd, groupmod, groupdel

Standard utilities for adding, modifying, and deleting groups.

gpasswd

Utility primarily used for modification of group password in the /etc/gshadow file which is used by the newgrp command.

pwck, grpck

Utilities that can be used for verification of the password, group, and associated shadow files.

pwconv, pwunconv

Utilities that can be used for the conversion of passwords to shadow passwords, or back from shadow passwords to standard passwords.

grpconv, grpunconv

Similar to the previous, these utilities can be used for conversion of shadowed information for group accounts.

4.6.1. Adding a new user

To add a new user to the system, type the following at a shell prompt as root:

useradd options username

Here options are command-line options as described in Table 4.2, “Common useradd command-line options”.

Warning

With RHEL 8, you cannot use all-numeric user names. The reason for not allowing such names is that this can confuse tools that work with user names and user ids, which are numbers.

By default, the useradd command creates a locked user account. To unlock the account, run the following command as root to assign a password:

passwd username

Table 4.2. Common useradd command-line options

Option 

-c 'comment'

comment can be replaced with any string. This option is generally used to specify the full name of a user.

-d home_directory

Home directory to be used instead of default /home/username/.

-e date

Date for the account to be disabled in the format YYYY-MM-DD.

-f days

Number of days after the password expires until the account is disabled. If 0 is specified, the account is disabled immediately after the password expires. If -1 is specified, the account is not disabled after the password expires.

-g group_name

Group name or group number for the user’s default (primary) group. The group must exist prior to being specified here.

-G group_list

List of additional (supplementary, other than default) group names or group numbers, separated by commas, of which the user is a member. The groups must exist prior to being specified here.

-m

Create the home directory if it does not exist.

-M

Do not create the home directory.

-N

Do not create a user private group for the user.

-p password

The password encrypted with crypt.

-r

Create a system account with a UID less than 1000 and without a home directory.

-s

User’s login shell, which defaults to /bin/bash.

-u uid

User ID for the user, which must be unique and greater than 999.

Important

The default range of IDs for system and normal users has been changed in Red Hat Enterprise Linux 7 from earlier releases. Before Red Hat Enterprise Linux 7, UID 1-499 was used for system users and values above for normal users. The default range for system users is now 1-999. This change might cause problems when migrating to Red Hat Enterprise Linux 8 with existing users having UIDs and GIDs between 500 and 999. The default ranges of UID and GID can be changed in the /etc/login.defs file.

The following steps illustrate what happens if the command useradd juan is issued on a system that has shadow passwords enabled:

  1. A new line for juan is created in /etc/passwd:

    juan:x:1001:1001::/home/juan:/bin/bash

    The line has the following characteristics:

    • It begins with the user name juan.
    • There is an x for the password field indicating that the system is using shadow passwords.
    • A UID greater than 999 is created. Under Red Hat Enterprise Linux 7, UIDs below 1000 are reserved for system use and should not be assigned to users.
    • A GID greater than 999 is created. Under Red Hat Enterprise Linux 7, GIDs below 1000 are reserved for system use and should not be assigned to users.
    • The optional GECOS information is left blank. The GECOS field can be used to provide additional information about the user, such as their full name or phone number.
    • The home directory for juan is set to /home/juan/.
    • The default shell is set to /bin/bash.
  2. A new line for juan is created in /etc/shadow:

    juan:!!:14798:0:99999:7:::

    The line has the following characteristics:

    • It begins with the user name juan.
    • Two exclamation marks (!!) appear in the password field of the /etc/shadow file, which locks the account.

      Note

      If an encrypted password is passed using the -p flag, it is placed in the /etc/shadow file on the new line for the user.

    • The password is set to never expire.
  3. A new line for a group named juan is created in /etc/group:

    juan:x:1001:

    A group with the same name as a user is called a user private group. For more information on user private groups, see Section 4.3, “User private groups”.

    The line created in /etc/group has the following characteristics:

    • It begins with the group name juan.
    • An x appears in the password field indicating that the system is using shadow group passwords.
    • The GID matches the one listed for juan's primary group in /etc/passwd.
  4. A new line for a group named juan is created in /etc/gshadow:

    juan:!::

    The line has the following characteristics:

    • It begins with the group name juan.
    • An exclamation mark (!) appears in the password field of the /etc/gshadow file, which locks the group.
    • All other fields are blank.
  5. A directory for user juan is created in the /home directory:

    ~]# ls -ld /home/juan
    drwx------. 4 juan juan 4096 Mar  3 18:23 /home/juan

    This directory is owned by user juan and group juan. It has read, write, and execute privileges only for the user juan. All other permissions are denied.

  6. The files within the /etc/skel/ directory (which contain default user settings) are copied into the new /home/juan/ directory:

    ~]# ls -la /home/juan
    total 28
    drwx------. 4 juan juan 4096 Mar  3 18:23 .
    drwxr-xr-x. 5 root root 4096 Mar  3 18:23 ..
    -rw-r—​r--. 1 juan juan   18 Jun 22  2010 .bash_logout
    -rw-r—​r--. 1 juan juan  176 Jun 22  2010 .bash_profile
    -rw-r—​r--. 1 juan juan  124 Jun 22  2010 .bashrc
    drwxr-xr-x. 4 juan juan 4096 Nov 23 15:09 .mozilla

At this point, a locked account called juan exists on the system. To activate it, the administrator must next assign a password to the account using the passwd command and, optionally, set password aging guidelines.

4.6.2. Adding a new group

To add a new group to the system, type the following at a shell prompt as root:

groupadd options group_name

Here options are command-line options as described in Table 4.3, “Common groupadd command-line options”.

Warning

With RHEL 8, you cannot use all-numeric group names. The reason for not allowing such names is that this can confuse tools that work with group names and group ids, which are numbers.

Table 4.3. Common groupadd command-line options

OptionDescription

-f, --force

When used with -g gid and gid already exists, groupadd will choose another unique gid for the group.

-g gid

Group ID for the group, which must be unique and greater than 999.

-K, --key key=value

Override /etc/login.defs defaults.

-o, --non-unique

Allows creating groups with duplicate GID.

-p, --password password

Use this encrypted password for the new group.

-r

Create a system group with a GID less than 1000.

4.6.3. Adding an existing user to an existing group

Use the usermod utility to add an already existing user to an already existing group.

Various options of usermod have different impact on user’s primary group and on his or her supplementary groups.

To override user’s primary group, run the following command as root:

usermod -g group_name user_name

To override user’s supplementary groups, run the following command as root:

usermod -G group_name1,group_name2,…​ user_name

Note that in this case all previous supplementary groups of the user are replaced by the new group or several new groups.

To add one or more groups to user’s supplementary groups, run one of the following commands as root:

usermod -aG group_name1,group_name2,…​ user_name
usermod --append -G group_name1,group_name2,…​ user_name

Note that in this case the new group is added to user’s current supplementary groups.

4.6.4. Creating group directories

System administrators usually like to create a group for each major project and assign people to the group when they need to access that project’s files. With this traditional scheme, file management is difficult; when someone creates a file, it is associated with the primary group to which they belong. When a single person works on multiple projects, it becomes difficult to associate the right files with the right group. However, with the UPG scheme, groups are automatically assigned to files created within a directory with the setgid bit set. The setgid bit makes managing group projects that share a common directory very simple because any files a user creates within the directory are owned by the group that owns the directory.

For example, a group of people need to work on files in the /opt/myproject/ directory. Some people are trusted to modify the contents of this directory, but not everyone.

  1. As root, create the /opt/myproject/ directory by typing the following at a shell prompt:

    mkdir /opt/myproject
  2. Add the myproject group to the system:

    groupadd myproject
  3. Associate the contents of the /opt/myproject/ directory with the myproject group:

    chown root:myproject /opt/myproject
  4. Allow users in the group to create files within the directory and set the setgid bit:

    chmod 2775 /opt/myproject

    At this point, all members of the myproject group can create and edit files in the /opt/myproject/ directory without the administrator having to change file permissions every time users write new files. To verify that the permissions have been set correctly, run the following command:

    ls -ld /opt/myproject
    drwxrwsr-x. 3 root myproject 4096 Mar  3 18:31 /opt/myproject
  5. Add users to the myproject group:

    usermod -aG myproject username

4.6.5. Setting default permissions for new files using umask

When a process creates a file, the file has certain default permissions, for example, -rw-rw-r--. These initial permissions are partially defined by the file mode creation mask, also called file permission mask or umask. Every process has its own umask, for example, bash has umask 0022 by default. Process umask can be changed.

4.6.5.1. What umask consists of

A umask consists of bits corresponding to standard file permissions. For example, for umask 0137, the digits mean that:

  • 0 = no meaning, it is always 0 (umask does not affect special bits)
  • 1 = for owner permissions, the execute bit is set
  • 3 = for group permissions, the execute and write bits are set
  • 7 = for others permissions, the execute, write, and read bits are set

Umasks can be represented in binary, octal, or symbolic notation. For example, the octal representation 0137 equals symbolic representation u=rw-,g=r--,o=---. Symbolic notation specification is the reverse of the octal notation specification: it shows the allowed permissions, not the prohibited permissions.

4.6.5.2. How umask works

Umask prohibits permissions from being set for a file:

  • When a bit is set in umask, it is unset in the file.
  • When a bit is not set in umask, it can be set in the file, depending on other factors.

The following figure shows how umask 0137 affects creating a new file.

Figure 4.3. Applying umask when creating a file

Users Groups Umask Example
Important

For security reasons, a regular file cannot have execute permissions by default. Therefore, even if umask is 0000, which does not prohibit any permissions, a new regular file still does not have execute permissions. However, directories can be created with execute permissions:

[john@server tmp]$ umask 0000
[john@server tmp]$ touch file
[john@server tmp]$ mkdir directory
[john@server tmp]$ ls -lh .
total 0
drwxrwxrwx. 2 john john 40 Nov  2 13:17 directory
-rw-rw-rw-. 1 john john  0 Nov  2 13:17 file

4.6.5.3. Managing umask in Shells

For popular shells, such as bash, ksh, zsh and tcsh, umask is managed using the umask shell builtin. Processes started from shell inherit its umask.

4.6.5.3.1. Displaying the current mask

To show the current umask in octal notation:

~]$ umask
0022

To show the current umask in symbolic notation:

umask -S
u=rwx,g=rx,o=rx
4.6.5.3.2. Setting mask in shell using umask

To set umask for the current shell session using octal notation run:

umask octal_mask

Substitute octal_mask with four or less digits from 0 to 7. When three or less digits are provided, permissions are set as if the command contained leading zeros. For example, umask 7 translates to 0007.

Example 4.1. Setting umask Using Octal Notation

To prohibit new files from having write and execute permissions for owner and group, and from having any permissions for others:

umask 0337

Or:

umask 337

To set umask for the current shell session using symbolic notation:

umask -S symbolic_mask

Example 4.2. Setting umask Using Symbolic Notation

To set umask 0337 using symbolic notation:

umask -S u=r,g=r,o=
4.6.5.3.3. Working with the default shell umask

Shells usually have a configuration file where their default umask is set. For bash, it is /etc/bashrc. To show the default bash umask:

grep -i -B 1 umask /etc/bashrc

The output shows if umask is set, either using the umask command or the UMASK variable. In the following example, umask is set to 022 using the umask command:

grep -i -B 1 umask /etc/bashrc
    # By default, we want umask to get set. This sets it for non-login shell. —     if [ $UID -gt 199 ] && [ “id -gn” = “id -un” ]; then
       umask 002
    else
       umask 022

To change the default umask for bash, change the umask command call or the UMASK variable assignment in /etc/bashrc. This example changes the default umask to 0227:

    if [ $UID -gt 199 ] && [ “id -gn” = “id -un” ]; then
       umask 002
    else
       umask 227
4.6.5.3.4. Working with the default shell umask of a specific user

By default, bash umask of a new user defaults to the one defined in /etc/bashrc.

To change bash umaskfor a particular user, add a call to the umask command in $HOME/.bashrc file of that user. For example, to change bash umask of user john to 0227:

john@server ~]$ echo 'umask 227' [] /home/john/.bashrc
4.6.5.3.5. Setting default permissions for newly created home directories

To change permissions with which user home directories are created, change the UMASK variable in the /etc/login.defs file:

# The permission mask is initialized to this value. If not specified,
# the permission mask will be initialized to 022.
UMASK 077

4.7. Additional Resources

For more information on how to manage users and groups on Red Hat Enterprise Linux, see the resources listed below.

4.7.1. Installed Documentation

For information about various utilities for managing users and groups, see the following manual pages:

  • useradd(8) — The manual page for the useradd command documents how to use it to create new users.
  • userdel(8) — The manual page for the userdel command documents how to use it to delete users.
  • usermod(8) — The manual page for the usermod command documents how to use it to modify users.
  • groupadd(8) — The manual page for the groupadd command documents how to use it to create new groups.
  • groupdel(8) — The manual page for the groupdel command documents how to use it to delete groups.
  • groupmod(8) — The manual page for the groupmod command documents how to use it to modify group membership.
  • gpasswd(1) — The manual page for the gpasswd command documents how to manage the /etc/group file.
  • grpck(8) — The manual page for the grpck command documents how to use it to verify the integrity of the /etc/group file.
  • pwck(8) — The manual page for the pwck command documents how to use it to verify the integrity of the /etc/passwd and /etc/shadow files.
  • pwconv(8) — The manual page for the pwconv, pwunconv, grpconv, and grpunconv commands documents how to convert shadowed information for passwords and groups.
  • id(1) — The manual page for the id command documents how to display user and group IDs.

For information about related configuration files, see:

  • group(5) — The manual page for the /etc/group file documents how to use this file to define system groups.
  • passwd(5) — The manual page for the /etc/passwd file documents how to use this file to define user information.
  • shadow(5) — The manual page for the /etc/shadow file documents how to use this file to set passwords and account expiration information for the system.