Chapter 10. Configuring cluster resources

The format for the command to create a cluster resource is as follows:

pcs resource create resource_id [standard:[provider:]]type [resource_options] [op operation_action operation_options [operation_action operation options]...] [meta meta_options...] [clone [clone_options] | master [master_options] | --group group_name [--before resource_id | --after resource_id] | [bundle bundle_id] [--disabled] [--wait[=n]]

Key cluster resource creation options include the following:

  • When you specify the --group option, the resource is added to the resource group named. If the group does not exist, this creates the group and adds this resource to the group.
  • The --before and --after options specify the position of the added resource relative to a resource that already exists in a resource group.
  • Specifying the --disabled option indicates that the resource is not started automatically.

You can determine the behavior of a resource in a cluster by configuring constraints for that resource.

Resource creation examples

The following command creates a resource with the name VirtualIP of standard ocf, provider heartbeat, and type IPaddr2. The floating address of this resource is 192.168.0.120, and the system will check whether the resource is running every 30 seconds.

# pcs resource create VirtualIP ocf:heartbeat:IPaddr2 ip=192.168.0.120 cidr_netmask=24 op monitor interval=30s

Alternately, you can omit the standard and provider fields and use the following command. This will default to a standard of ocf and a provider of heartbeat.

# pcs resource create VirtualIP IPaddr2 ip=192.168.0.120 cidr_netmask=24 op monitor interval=30s

Deleting a configured resource

Use the following command to delete a configured resource.

pcs resource delete resource_id

For example, the following command deletes an existing resource with a resource ID of VirtualIP.

# pcs resource delete VirtualIP

10.1. Resource agent identifiers

The identifiers that you define for a resource tell the cluster which agent to use for the resource, where to find that agent and what standards it conforms to. Table 10.1, “Resource Agent Identifiers”, describes these properties.

Table 10.1. Resource Agent Identifiers

FieldDescription

standard

The standard the agent conforms to. Allowed values and their meaning:

* ocf - The specified type is the name of an executable file conforming to the Open Cluster Framework Resource Agent API and located beneath /usr/lib/ocf/resource.d/provider

* lsb - The specified type is the name of an executable file conforming to Linux Standard Base Init Script Actions. If the type does not specify a full path, the system will look for it in the /etc/init.d directory.

* systemd - The specified type is the name of an installed systemd unit

* service - Pacemaker will search for the specified type, first as an lsb agent, then as a systemd agent

* nagios - The specified type is the name of an executable file conforming to the Nagios Plugin API and located in the /usr/libexec/nagios/plugins directory, with OCF-style metadata stored separately in the /usr/share/nagios/plugins-metadata directory (available in the nagios-agents-metadata package for certain common plugins).

type

The name of the resource agent you wish to use, for example IPaddr or Filesystem

provider

The OCF spec allows multiple vendors to supply the same resource agent. Most of the agents shipped by Red Hat use heartbeat as the provider.

Table 10.2, “Commands to Display Resource Properties” summarizes the commands that display the available resource properties.

Table 10.2. Commands to Display Resource Properties

pcs Display CommandOutput

pcs resource list

Displays a list of all available resources.

pcs resource standards

Displays a list of available resource agent standards.

pcs resource providers

Displays a list of available resource agent providers.

pcs resource list string

Displays a list of available resources filtered by the specified string. You can use this command to display resources filtered by the name of a standard, a provider, or a type.

10.2. Displaying resource-specific parameters

For any individual resource, you can use the following command to display a description of the resource, the parameters you can set for that resource, and the default values that are set for the resource.

pcs resource describe [standard:[provider:]]type

For example, the following command displays information for a resource of type apache.

# pcs resource describe ocf:heartbeat:apache
This is the resource agent for the Apache Web server.
This resource agent operates both version 1.x and version 2.x Apache
servers.

...

10.3. Configuring resource meta options

In addition to the resource-specific parameters, you can configure additional resource options for any resource. These options are used by the cluster to decide how your resource should behave.

Table 10.3, “Resource Meta Options” describes the resource meta options.

Table 10.3. Resource Meta Options

FieldDefaultDescription

priority

0

If not all resources can be active, the cluster will stop lower priority resources in order to keep higher priority ones active.

target-role

Started

What state should the cluster attempt to keep this resource in? Allowed values:

* Stopped - Force the resource to be stopped

* Started - Allow the resource to be started (and in the case of promotable clones, promoted to master role if appropriate)

* Master - Allow the resource to be started and, if appropriate, promoted

* Slave - Allow the resource to be started, but only in Slave mode if the resource is promotable

is-managed

true

Is the cluster allowed to start and stop the resource? Allowed values: true, false

resource-stickiness

0

Value to indicate how much the resource prefers to stay where it is.

requires

Calculated

Indicates under what conditions the resource can be started.

Defaults to fencing except under the conditions noted below. Possible values:

* nothing - The cluster can always start the resource.

* quorum - The cluster can only start this resource if a majority of the configured nodes are active. This is the default value if stonith-enabled is false or the resource’s standard is stonith.

* fencing - The cluster can only start this resource if a majority of the configured nodes are active and any failed or unknown nodes have been fenced.

* unfencing - The cluster can only start this resource if a majority of the configured nodes are active and any failed or unknown nodes have been fenced and only on nodes that have been unfenced. This is the default value if the provides=unfencing stonith meta option has been set for a fencing device.

migration-threshold

INFINITY

How many failures may occur for this resource on a node, before this node is marked ineligible to host this resource. A value of 0 indicates that this feature is disabled (the node will never be marked ineligible); by contrast, the cluster treats INFINITY (the default) as a very large but finite number. This option has an effect only if the failed operation has on-fail=restart (the default), and additionally for failed start operations if the cluster property start-failure-is-fatal is false.

failure-timeout

0 (disabled)

Used in conjunction with the migration-threshold option, indicates how many seconds to wait before acting as if the failure had not occurred, and potentially allowing the resource back to the node on which it failed. As with any time-based actions, this is not guaranteed to be checked more frequently than the value of the cluster-recheck-interval cluster parameter.

multiple-active

stop_start

What should the cluster do if it ever finds the resource active on more than one node. Allowed values:

* block - mark the resource as unmanaged

* stop_only - stop all active instances and leave them that way

* stop_start - stop all active instances and start the resource in one location only

10.3.1. Changing the default value of a resource option

To change the default value of a resource option, use the following command.

pcs resource defaults options

For example, the following command resets the default value of resource-stickiness to 100.

# pcs resource defaults resource-stickiness=100

10.3.2. Displaying currently configured resource defaults

Omitting the options parameter from the pcs resource defaults displays a list of currently configured default values for resource options. The following example shows the output of this command after you have reset the default value of resource-stickiness to 100.

# pcs resource defaults
resource-stickiness: 100

10.3.3. Setting meta options on resource creation

Whether you have reset the default value of a resource meta option or not, you can set a resource option for a particular resource to a value other than the default when you create the resource. The following shows the format of the pcs resource create command you use when specifying a value for a resource meta option.

pcs resource create resource_id [standard:[provider:]]type [resource options] [meta meta_options...]

For example, the following command creates a resource with a resource-stickiness value of 50.

# pcs resource create VirtualIP ocf:heartbeat:IPaddr2 ip=192.168.0.120 meta resource-stickiness=50

You can also set the value of a resource meta option for an existing resource, group, or cloned resource with the following command.

pcs resource meta resource_id | group_id | clone_id meta_options

In the following example, there is an existing resource named dummy_resource. This command sets the failure-timeout meta option to 20 seconds, so that the resource can attempt to restart on the same node in 20 seconds.

# pcs resource meta dummy_resource failure-timeout=20s

After executing this command, you can display the values for the resource to verify that failure-timeout=20s is set.

# pcs resource config dummy_resource
 Resource: dummy_resource (class=ocf provider=heartbeat type=Dummy)
  Meta Attrs: failure-timeout=20s
  ...

10.4. Configuring resource groups

One of the most common elements of a cluster is a set of resources that need to be located together, start sequentially, and stop in the reverse order. To simplify this configuration, Pacemaker supports the concept of resource groups.

10.4.1. Creating a resource group

You create a resource group with the following command, specifying the resources to include in the group. If the group does not exist, this command creates the group. If the group exists, this command adds additional resources to the group. The resources will start in the order you specify them with this command, and will stop in the reverse order of their starting order.

pcs resource group add group_name resource_id [resource_id] ... [resource_id] [--before resource_id | --after resource_id]

You can use the --before and --after options of this command to specify the position of the added resources relative to a resource that already exists in the group.

You can also add a new resource to an existing group when you create the resource, using the following command. The resource you create is added to the group named group_name. If the group group_name does not exist, it will be created.

pcs resource create resource_id [standard:[provider:]]type [resource_options] [op operation_action operation_options] --group group_name

There is no limit to the number of resources a group can contain. The fundamental properties of a group are as follows.

  • Resources are colocated within a group.
  • Resources are started in the order in which you specify them. If a resource in the group cannot run anywhere, then no resource specified after that resource is allowed to run.
  • Resources are stopped in the reverse order in which you specify them.

The following example creates a resource group named shortcut that contains the existing resources IPaddr and Email.

# pcs resource group add shortcut IPaddr Email

In this example:

  • The IPaddr is started first, then Email.
  • The Email resource is stopped first, then IPAddr.
  • If IPaddr cannot run anywhere, neither can Email.
  • If Email cannot run anywhere, however, this does not affect IPaddr in any way.

10.4.2. Removing a resource group

You remove a resource from a group with the following command. If there are no remaining resources in the group, this command removes the group itself.

pcs resource group remove group_name resource_id...

10.4.3. Displaying resource groups

The following command lists all currently configured resource groups.

pcs resource group list

10.4.4. Group options

You can set the following options for a resource group, and they maintain the same meaning as when they are set for a single resource: priority, target-role, is-managed. For information on resource meta options, see Configuring resource meta options.

10.4.5. Group stickiness

Stickiness, the measure of how much a resource wants to stay where it is, is additive in groups. Every active resource of the group will contribute its stickiness value to the group’s total. So if the default resource-stickiness is 100, and a group has seven members, five of which are active, then the group as a whole will prefer its current location with a score of 500.

10.5. Determining resource behavior

You can determine the behavior of a resource in a cluster by configuring constraints for that resource. You can configure the following categories of constraints:

As a shorthand for configuring a set of constraints that will locate a set of resources together and ensure that the resources start sequentially and stop in reverse order, Pacemaker supports the concept of resource groups. After you have created a resource group, you can configure constraints on the group itself just as you configure constraints for individual resources. For information on resource groups, see Configuring resource groups.