Integrating RHEL systems directly with Windows Active Directory

Red Hat Enterprise Linux 8

Understanding and configuring RHEL systems to connect directly with Active Directory

Red Hat Customer Content Services

Abstract

This documentation collection provides instructions on how to integrate RHEL systems directly with Windows Active Directory using SSSD.

Providing feedback on Red Hat documentation

We appreciate your input on our documentation. Please let us know how we could make it better. To do so:

  • For simple comments on specific passages:

    1. Make sure you are viewing the documentation in the Multi-page HTML format. In addition, ensure you see the Feedback button in the upper right corner of the document.
    2. Use your mouse cursor to highlight the part of text that you want to comment on.
    3. Click the Add Feedback pop-up that appears below the highlighted text.
    4. Follow the displayed instructions.
  • For submitting more complex feedback, create a Bugzilla ticket:

    1. Go to the Bugzilla website.
    2. As the Component, use Documentation.
    3. Fill in the Description field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
    4. Click Submit Bug.

Chapter 1. Connecting RHEL systems directly to AD using SSSD

This section describes using the System Security Services Daemon (SSSD) to connect a RHEL system to Active Directory (AD). You need two components to connect a RHEL system to Active Directory (AD). One component, SSSD, interacts with the central identity and authentication source, and the other component, realmd, detects available domains and configures the underlying RHEL system services, in this case SSSD, to connect to the domain.

1.1. Overview of direct integration using SSSD

You use SSSD to access a user directory for authentication and authorization through a common framework with user caching to permit offline logins. SSSD is highly configurable; it provides Pluggable Authentication Modules (PAM) and Name Switch Service (NSS) integration and a database to store local users as well as extended user data retrieved from a central server. SSSD is the recommended component to connect a RHEL system with one of the following types of identity server:

  • Active Directory
  • Identity Management (IdM) in RHEL
  • Any generic LDAP or Kerberos server
Note
  • Direct integration with SSSD works only within a single AD forest by default. For multi-forest setup, configure manual domain enumeration as described in this Knowledgebase solution: Joining SSSD to domains in different forests.

The most convenient way to configure SSSD to directly integrate a Linux system with AD is to use the realmd service. It allows callers to configure network authentication and domain membership in a standard way. The realmd service automatically discovers information about accessible domains and realms and does not require advanced configuration to join a domain or realm.

You can use SSSD for both direct and indirect integration with AD and it allows you to switch from one integration approach to another. Direct integration is a simple way to introduce RHEL systems to an AD environment. However, as the share of RHEL systems grows, your deployments usually need a better centralized management of the identity-related policies such as host-based access control, sudo, or SELinux user mappings. Initially, you can maintain the configuration of these aspects of the RHEL systems in local configuration files. However, with a growing number of systems, distribution and management of the configuration files is easier with a provisioning system such as Red Hat Satellite. When direct integration does not scale anymore, you should consider indirect integration. For more information on moving from direct integration (RHEL clients are in the AD domain) to indirect integration (IdM with trust to AD), see Moving RHEL clients from AD domain to IdM Server.

For more information on which type of integration fits your use case, see Deciding between indirect and direct integration.

Additional resources

  • The realm(8) man page.
  • The sssd-ad(5) man page.
  • The sssd(8) man page.

1.2. Supported Windows platforms for direct integration

You can directly integrate your RHEL system with Active Directory forests that use the following forest and domain functional levels:

  • Forest functional level range: Windows Server 2008 - Windows Server 2016
  • Domain functional level range: Windows Server 2008 - Windows Server 2016

Direct integration has been tested on the following supported operating systems:

  • Windows Server 2019
  • Windows Server 2016
  • Windows Server 2012 R2
Note

Windows Server 2019 does not introduce a new functional level. The highest functional level Windows Server 2019 uses is Windows Server 2016.

1.3. Connecting directly to AD

This section describes how to integrate directly with AD using either ID mapping or POSIX attributes.

1.3.1. Connecting a RHEL system to an AD Domain

This procedure describes how to connect a RHEL system to an AD domain using SSSD.

Prerequisites

  • Ensure that none of the following ports are blocked to the AD domain controllers.

    Table 1.1. Ports Required for Direct Integration of Linux Systems into AD Using SSSD

    ServicePortProtocolNotes

    DNS

    53

    UDP and TCP

     

    LDAP

    389

    UDP and TCP

     

    Kerberos

    88

    UDP and TCP

     

    Kerberos

    464

    UDP and TCP

    Used by kadmin for setting and changing a password

    LDAP Global Catalog

    3268

    TCP

    If the id_provider = ad option is being used

    NTP

    123

    UDP

    Optional

  • Ensure that you are using the AD domain controller server for DNS.
  • Verify that the system time on both systems is synchronized. This ensures that Kerberos is able to work correctly.

Procedure

  1. Install the following packages:

    # yum install realmd oddjob oddjob-mkhomedir sssd adcli krb5-workstation
  2. Configure the local RHEL system with the realm join command. The realmd suite edits all required configuration files automatically. For example, for a domain named ad.example.com:

    # realm join ad.example.com

    If you do not want to use realmd, you can configure the system manually. See Manually Connecting an SSSD Client to an Active Directory Domain in the Red Hat Knowledgebase.

Verification steps

  • Display an AD user details, such as the administrator user:

    # getent passwd administrator@ad.example.com
    administrator@ad.example.com:*:1450400500:1450400513:Administrator:/home/administrator@ad.example.com:/bin/bash

Additional resources

  • See the realm(8) man page.
  • See the nmcli(1) man page.

1.3.2. Options for integrating with AD: using ID mapping or POSIX attributes

Linux and Windows systems use different identifiers for users and groups:

  • Linux uses user IDs (UID) and group IDs (GID). See Managing Users and Groups in Configuring Basic System Settings. Linux UIDs and GIDs are compliant with the POSIX standard.
  • Windows use security IDs (SID).
Important

Do not use the same user name in Windows and Linux.

To authenticate to a RHEL system as an AD user, you must have a UID and GID assigned. SSSD provides the option to integrate with AD either using ID mapping or POSIX attributes. The default is to use ID mapping.

1.3.2.1. Automatically generate new UIDs and GIDs for AD users

SSSD can use the SID of an AD user to algorithmically generate POSIX IDs in a process called ID mapping. ID mapping creates a map between SIDs in AD and IDs on Linux.

  • When SSSD detects a new AD domain, it assigns a range of available IDs to the new domain.
  • When an AD user logs in to an SSSD client machine for the first time, SSSD creates an entry for the user in the SSSD cache, including a UID based on the user’s SID and the ID range for that domain.
  • Because the IDs for an AD user are generated in a consistent way from the same SID, the user has the same UID and GID when logging in to any Red Hat Enterprise Linux system.

See Connecting a RHEL system to an AD Domain using SSSD.

Note

When all client systems use SSSD to map SIDs to Linux IDs, the mapping is consistent. If some clients use different software, choose one of the following:

  • Ensure that the same mapping algorithm is used on all clients.
  • Use explicit POSIX attributes defined in AD.

1.3.2.2. Use POSIX attributes defined in AD

AD can create and store POSIX attributes, such as uidNumber, gidNumber, unixHomeDirectory, or loginShell.

When using ID mapping described above, SSSD creates new UIDs and GIDs, which overrides the values defined in AD. To keep the AD-defined values, you must disable ID mapping in SSSD.

See Connecting to AD using POSIX attributes defined in Active Directory.

1.3.3. Connecting to AD using POSIX attributes defined in Active Directory

For best performance, publish the POSIX attributes to the AD global catalog. If POSIX attributes are not present in the global catalog, SSSD connects to the individual domain controllers directly on the LDAP port.

Prerequisites

  • Ensure that none of the following ports are blocked to the AD domain controllers.

    Table 1.2. Ports Required for Direct Integration of Linux Systems into AD Using SSSD

    ServicePortProtocolNotes

    DNS

    53

    UDP and TCP

     

    LDAP

    389

    UDP and TCP

     

    Kerberos

    88

    UDP and TCP

     

    Kerberos

    464

    UDP and TCP

    Used by kadmin for setting and changing a password

    LDAP Global Catalog

    3268

    TCP

    If the id_provider = ad option is being used

    NTP

    123

    UDP

    Optional

  • Ensure that you are using the AD domain controller server for DNS.
  • Verify that the system time on both systems is synchronized. This ensures that Kerberos is able to work correctly.

Procedure

  1. Install the following packages:

    # yum install realmd oddjob oddjob-mkhomedir sssd adcli krb5-workstation
  2. Configure the local RHEL system with ID mapping disabled using the realm join command with the --automatic-id-mapping=no option. The realmd suite edits all required configuration files automatically. For example, for a domain named ad.example.com:

    # realm join --automatic-id-mapping=no ad.example.com
  3. If you already joined a domain, you can manually disable ID Mapping in SSSD:

    1. Open the /etc/sssd/sssd.conf file.
    2. In the AD domain section, add the ldap_id_mapping = false setting.
    3. Remove the SSSD caches:

      rm -f /var/lib/sss/db/*
    4. Restart SSSD:

      systemctl restart sssd

SSSD now uses POSIX attributes from AD, instead of creating them locally.

Note

You must have the relevant POSIX attributes (uidNumber, gidNumber, unixHomeDirectory, and loginShell) configured for the users in AD.

Verification steps

  • Display an AD user details, such as the administrator user:

    # getent passwd administrator@ad.example.com
    administrator@ad.example.com:*:10000:10000:Administrator:/home/Administrator:/bin/bash

Additional resources

  • For further details about ID mapping and the ldap_id_mapping parameter, see the sssd-ldap(8) man page.

1.3.4. Connecting to multiple domains in different AD forests with SSSD

This procedure describes joining and authenticating to multiple Active Directory (AD) domains in different forests where there is no trust between them.

This example describes joining two domains, addomain1.com and addomain2.com. Use realmd to join the first domain and automatically configure SSSD, Kerberos, and other utilities for that domain. Use adcli to join additional domains, and manually edit configuration files to include those domains.

Prerequisites

  • Ensure that none of the following ports are blocked to the AD domain controllers.

    Table 1.3. Ports Required for Direct Integration of Linux Systems into AD Using SSSD

    ServicePortProtocolNotes

    DNS

    53

    UDP and TCP

     

    LDAP

    389

    UDP and TCP

     

    Kerberos

    88

    UDP and TCP

     

    Kerberos

    464

    UDP and TCP

    Used by kadmin for setting and changing a password

    LDAP Global Catalog

    3268

    TCP

    If the id_provider = ad option is being used

    NTP

    123

    UDP

    Optional

  • Ensure that you are using the AD domain controller server for DNS.
  • Verify that the system time on both systems is synchronized. This ensures that Kerberos is able to work correctly.
  • Ensure you have credentials for an AD administrator account in each AD domain which has rights to join machines to that domain

Procedure

  1. Install required packages.

    # yum install sssd realmd adcli samba-common-tools oddjob oddjob-mkhomedir
  2. Use realmd to join the first AD domain, addomain1.com.

    # realm join ADDOMAIN1.COM
  3. Rename the system keytab to a unique name.

    # mv /etc/krb5.keytab /etc/addomain1.com.krb5.keytab
  4. Use adcli to join the second AD domain, and any additional domains. Use the -K option to specify a unique path for the Kerberos keytab where host credentials will be written.

    # adcli join -D dc2.addomain2.com -K /etc/addomain2.com.krb5.keytab
  5. Modify /etc/krb5.conf.

    • Add the includedir option to include SSSD configuration files.
    • Enable DNS lookups for AD Domain Controllers with the dns_lookup_kdc option.

      includedir /var/lib/sss/pubconf/krb5.include.d/
      
      [logging]
       default = FILE:/var/log/krb5libs.log
       kdc = FILE:/var/log/krb5kdc.log
       admin_server = FILE:/var/log/kadmind.log
      
      [libdefaults]
       default_realm = ADDOMAIN1.COM
       dns_lookup_realm = false
       dns_lookup_kdc = true
       ticket_lifetime = 24h
       renew_lifetime = 7d
       forwardable = true
      
      ...
  6. Modify /etc/sssd/sssd.conf to include information about all AD domains in use.

    [sssd]
    services = nss, pam
    config_file_version = 2
    domains = addomain1.com, addomain2.com
    
    [domain/addomain1.com]
    id_provider = ad
    access_provider = ad
    krb5_keytab = /etc/addomain1.com.krb5.keytab
    ldap_krb5_keytab = /etc/addomain1.com.krb5.keytab
    ad_server = dc1.addomain1.com
    ad_maximum_machine_account_password_age = 0
    use_fully_qualified_names = true
    default_shell=/bin/bash
    override_homedir=/home/%d/%u
    
    [domain/addomain2.com]
    id_provider = ad
    access_provider = ad
    krb5_keytab = /etc/addomain2.com.krb5.keytab
    ldap_krb5_keytab = /etc/addomain2.com.krb5.keytab
    ad_server = dc2.addomain2.com
    ad_maximum_machine_account_password_age = 0
    use_fully_qualified_names = true
    default_shell=/bin/bash
    override_homedir=/home/%d/%u
    
    [nss]
    
    [pam]
    • For each domain section, specify the path to the Kerberos keytab that corresponds to each domain with the krb5_keytab and ldap_krb5_keytab options.
    • Set ad_maximum_machine_account_password_age = 0 to disable renewing host Kerberos keys.
    • Set use_fully_qualified_names = true to differentiate users from different domains.
    • Set override_homedir = /home/%d/%u so users (%u) from different domains (%d) each receive unique home directories. For example, the home directory for user linuxuser@addomain1.com is /home/addomain1.com/linuxuser.
  7. SSH retrieves host keys from the system keytab and provides single sign-on functionality through GSSAPI/Kerberos. If you would like to use single sign-on, copy all current Kerberos host keys to the /etc/kbr5.keytab system keytab.

    # ktutil
    ktutil:  rkt /etc/addomain1.com.krb5.keytab
    ktutil:  rkt /etc/addomain2.com.krb5.keytab
    ktutil:  wkt /etc/krb5.keytab
  8. Restart and enable the SSSD service.

    # systemctl restart sssd
    # systemctl enable sssd

Verification steps

  1. Display user details for users from each AD domain:

    # id administrator@addomain1.com
    uid=1240800500(administrator@addomain1.com) gid=1240800513(domain users@addomain1.com) groups=1240800513(domain users@addomain1.com),1240800512(domain admins@addomain1.com),1240800518(schema admins@addomain1.com),1240800520(group policy creator owners@addomain1.com),1240800572(denied rodc password replication group@addomain1.com),1240800519(enterprise admins@addomain1.com)
    
    # id administrator@addomain2.com
    uid=1013800500(administrator@addomain2.com) gid=1013800500(administrator@addomain2.com) groups=1013800500(administrator@addomain2.com),1013800513(domain users@addomain2.com)
  2. Log in as a user from each domain and verify the correct home directory is created for the user.

    # ssh administrator@addomain1.com@localhost
    administrator@addomain1.com@localhost's password:
    Creating directory '/home/addomain1.com/administrator'.
    
    $ pwd
    /home/addomain1.com/administrator
    # ssh administrator@addomain2.com@localhost
    administrator@addomain2.com@localhost's password:
    Creating directory '/home/addomain2.com/administrator'.
    
    $ pwd
    /home/addomain2.com/administrator

1.4. How the AD provider handles trusted domains

This section describes how SSSD handles trusted domains if you set id_provider = ad in the /etc/sssd/sssd.conf file.

  • SSSD only supports domains in a single AD forest. If SSSD requires access to multiple domains from multiple forests, consider using IPA with trusts (preferred) or the winbindd service instead of SSSD.
  • By default, SSSD discovers all domains in the forest and, if a request for an object in a trusted domain arrives, SSSD tries to resolve it.

    If the trusted domains are not reachable or geographically distant, which makes them slow, you can set the ad_enabled_domains parameter in /etc/sssd/sssd.conf to limit from which trusted domains SSSD resolves objects.

  • By default, you must use fully-qualified user names to resolve users from trusted domains.

Additional resources

  • The sssd.conf(5)` man page.

1.5. realm commands

The realmd system has two major task areas:

  • Managing system enrollment in a domain.
  • Controlling which domain users are allowed to access local system resources.

In realmd use the command line tool realm to run commands. Most realm commands require the user to specify the action that the utility should perform, and the entity, such as a domain or user account, for which to perform the action.

Table 1.4. realmd Commands

CommandDescription

Realm Commands

discover

Run a discovery scan for domains on the network.

join

Add the system to the specified domain.

leave

Remove the system from the specified domain.

list

List all configured domains for the system or all discovered and configured domains.

Login Commands

permit

Enable access for specific users or for all users within a configured domain to access the local system.

deny

Restrict access for specific users or for all users within a configured domain to access the local system.

For more information about the realm commands, see the realm(8) man page.

Chapter 2. Connecting RHEL systems directly to AD using Samba Winbind

This section describes using Samba Winbind to connect a RHEL system to Active Directory (AD). You need two components to connect a RHEL system to AD. One component, Samba Winbind, interacts with the AD identity and authentication source, and the other component, realmd, detects available domains and configures the underlying RHEL system services, in this case Samba Winbind, to connect to the AD domain.

2.1. Overview of direct integration using Samba Winbind

Samba Winbind emulates a Windows client on a Linux system and communicates with AD servers.

You can use the realmd service to configure Samba Winbind by:

  • Configuring network authentication and domain membership in a standard way.
  • Automatically discovering information about accessible domains and realms.
  • Not requiring advanced configuration to join a domain or realm.

Note that:

  • Direct integration with Winbind in a multi-forest AD setup requires bidirectional trusts.
  • Remote forests must trust the local forest to ensure that the idmap_ad plug-in handles remote forest users correctly.

Samba’s winbindd service provides an interface for the Name Service Switch (NSS) and enables domain users to authenticate to AD when logging into the local system.

Using winbindd provides the benefit that you can enhance the configuration to share directories and printers without installing additional software. For further detail, see the section about Using Samba as a server in the Deploying Different Types of Servers Guide.

Additional resources

  • See the realmd man page.
  • See the windbindd man page.

2.2. Supported Windows platforms for direct integration

You can directly integrate your RHEL system with Active Directory forests that use the following forest and domain functional levels:

  • Forest functional level range: Windows Server 2008 - Windows Server 2016
  • Domain functional level range: Windows Server 2008 - Windows Server 2016

Direct integration has been tested on the following supported operating systems:

  • Windows Server 2019
  • Windows Server 2016
  • Windows Server 2012 R2
Note

Windows Server 2019 does not introduce a new functional level. The highest functional level Windows Server 2019 uses is Windows Server 2016.

2.3. Joining a RHEL system to an AD domain

This section describes how to join a Red Hat Enterprise Linux system to an AD domain by using realmd to configure Samba Winbind.

Procedure

  1. Install the following packages:

    # yum install realmd oddjob-mkhomedir oddjob samba-winbind-clients \
           samba-winbind samba-common-tools samba-winbind-krb5-locator
  2. To share directories or printers on the domain member, install the samba package:

    # yum install samba
  3. Backup the existing /etc/samba/smb.conf Samba configuration file:

    # mv /etc/samba/smb.conf /etc/samba/smb.conf.bak
  4. Join the domain. For example, to join a domain named ad.example.com:

    # realm join --membership-software=samba --client-software=winbind ad.example.com

    Using the previous command, the realm utility automatically:

    • Creates a /etc/samba/smb.conf file for a membership in the ad.example.com domain
    • Adds the winbind module for user and group lookups to the /etc/nsswitch.conf file
    • Updates the Pluggable Authentication Module (PAM) configuration files in the /etc/pam.d/ directory
    • Starts the winbind service and enables the service to start when the system boots
  5. Optionally, set an alternative ID mapping back end or customized ID mapping settings in the /etc/samba/smb.conf file. For details, see the Samba ID mapping section in the Deploying different types of servers documentation.
  6. Edit the /etc/krb5.conf file and add the following section:

    [plugins]
        localauth = {
            module = winbind:/usr/lib64/samba/krb5/winbind_krb5_localauth.so
            enable_only = winbind
        }
  7. Verify that the winbind service is running:

    # systemctl status winbind
    ...
       Active: active (running) since Tue 2018-11-06 19:10:40 CET; 15s ago
    Important

    To enable Samba to query domain user and group information, the winbind service must be running before you start smb.

  8. If you installed the samba package to share directories and printers, start the smb service:

    # systemctl start smb

Verification steps

  • Display an AD user’s details, such as the AD administrator account in the AD domain:

    # getent passwd "AD\administrator"
    AD\administrator:*:10000:10000::/home/administrator@AD:/bin/bash
  • Query the members of the domain users group in the AD domain:

    # getent group "AD\Domain Users"
        AD\domain users:x:10000:user1,user2

Additional resources

  • For further details about the realm utility, see the realm(8) man page.

2.4. realm commands

The realmd system has two major task areas:

  • Managing system enrollment in a domain.
  • Controlling which domain users are allowed to access local system resources.

In realmd use the command line tool realm to run commands. Most realm commands require the user to specify the action that the utility should perform, and the entity, such as a domain or user account, for which to perform the action.

Table 2.1. realmd Commands

CommandDescription

Realm Commands

discover

Run a discovery scan for domains on the network.

join

Add the system to the specified domain.

leave

Remove the system from the specified domain.

list

List all configured domains for the system or all discovered and configured domains.

Login Commands

permit

Enable access for specific users or for all users within a configured domain to access the local system.

deny

Restrict access for specific users or for all users within a configured domain to access the local system.

For more information about the realm commands, see the realm(8) man page.

Chapter 3. Managing direct connections to AD

This section describes how to modify and manage your connection to Active Directory.

Prerequisites

  • You have connected your RHEL system to the Active Directory domain.

3.1. Modifying the default Kerberos host keytab renewal interval

SSSD automatically renews the Kerberos host keytab file in an AD environment if the adcli package is installed. The daemon checks daily if the machine account password is older than the configured value and renews it if necessary.

The default renewal interval is 30 days. To change the default, follow the steps in this procedure.

Procedure

  1. Add the following parameter to the AD provider in your /etc/sssd/sssd.conf file:

    ad_maximum_machine_account_password_age = value_in_days
  2. Restart SSSD:

    # systemctl restart sssd
  3. To disable the automatic Kerberos host keytab renewal, set ad_maximum_machine_account_password_age = 0.

Additional resources

  • The adcli(8) man page.
  • The sssd.conf(5) man page.

3.2. Removing a RHEL system from an AD domain

This procedure describes how to remove a RHEL system from an Active Directory (AD) domain.

Procedure

  1. Remove a system from an identity domain using the realm leave command. The command removes the domain configuration from SSSD and the local system.

    # realm leave ad.example.com
    Note

    When a client leaves a domain, the account is not deleted from AD; the local client configuration is only removed. If you want to delete the AD account, run the command with the --remove option. You are prompted for your user password and you must have the rights to remove an account from Active Directory.

  2. Use the -U option with the realm leave command to specify a different user to remove a system from an identity domain.

    By default, the realm leave command is executed as the default administrator. For AD, the administrator account is called Administrator. If a different user was used to join to the domain, it might be required to perform the removal as that user.

    # realm leave [ad.example.com] -U [AD.EXAMPLE.COM\user]'

The command first attempts to connect without credentials, but it prompts for a password if required.

Verification steps

  • Verify the domain is no longer configured:

    # realm discover [ad.example.com]
    ad.example.com
        type: kerberos
        realm-name: EXAMPLE.COM
        domain-name: example.com
        configured: no
        server-software: active-directory
        client-software: sssd
        required-package: oddjob
        required-package: oddjob-mkhomedir
        required-package: sssd
        required-package: adcli
        required-package: samba-common-tools

Additional resources

  • See the realm(8)` man page.

3.3. Managing login permissions for domain users

By default, domain-side access control is applied, which means that login policies for Active Directory (AD) users are defined in the AD domain itself. This default behavior can be overridden so that client-side access control is used. With client-side access control, login permission is defined by local policies only.

If a domain applies client-side access control, you can use the realmd to configure basic allow or deny access rules for users from that domain.

Note

Access rules either allow or deny access to all services on the system. More specific access rules must be set on a specific system resource or in the domain.

3.3.1. Enabling access to users within a domain

This section describes how to enable access to users within a domain.

Important

It is safer to only allow access to specific users or groups than to deny access to some, while enabling it to everyone else. Therefore, it is not recommended to allow access to all by default while only denying it to specific users with realm permit -x. Instead, Red Hat recommends maintaining a default no access policy for all users and only grant access to selected users using realm permit.

Prerequisites

  • Your RHEL system is a member of the Active Directory domain.

Procedure

  1. Grant access to all users:

    # realm permit --all
  2. Grant access to specific users:

    $ realm permit aduser01@example.com
    $ realm permit 'AD.EXAMPLE.COM\aduser01'

Currently, you can only allow access to users in primary domains and not to users in trusted domains. This is due to the fact that user login must contain the domain name and SSSD cannot currently provide realmd with information about available child domains.

Verification steps

  1. Use SSH to log in to the server as the aduser01@example.com user:

    $ ssh aduser01@example.com@server_name
    [aduser01@example.com@server_name ~]$
  2. Use the ssh command a second time to access the same server, this time as the aduser02@example.com user:

    $ ssh aduser02@example.com@server_name
    Authentication failed.

Notice how the aduser02@example.com is denied access to the system. You have granted the permission to log in to the system to the aduser01@example.com user only. All other users from that Active Directory domain are rejected because of the specified login policy.

Note

If you set use_fully_qualified_names to true in the sssd.conf file, all requests must use the fully qualified domain name. However, if you set use_fully_qualified_names to false, it is possible to use the fully-qualified name in the requests, but only the simplified version is displayed in the output.

Additional resources

  • See the realm(8)` man page.

3.3.2. Denying access to users within a domain

This section describes how to deny access to all users within a domain.

Important

It is safer to only allow access to specific users or groups than to deny access to some, while enabling it to everyone else. Therefore, it is not recommended to allow access to all by default while only denying it to specific users with realm permit -x. Instead, Red Hat recommends maintaining a default no access policy for all users and only grant access to selected users using realm permit.

Prerequisites

  • Your RHEL system is a member of the Active Directory domain.

Procedure

  1. Deny access to all users within the domain:

    # realm deny --all

    This command prevents realm accounts from logging into the local machine. Use realm permit to restrict login to specific accounts.

  2. Verify that the domain user’s login-policy is set to deny-any-login:

    [root@replica1 ~]# realm list
    example.net
      type: kerberos
      realm-name: EXAMPLE.NET
      domain-name: example.net
      configured: kerberos-member
      server-software: active-directory
      client-software: sssd
      required-package: oddjob
      required-package: oddjob-mkhomedir
      required-package: sssd
      required-package: adcli
      required-package: samba-common-tools
      login-formats: %U@example.net
      login-policy: deny-any-login
  3. Deny access to specific users by using the -x option:

    $ realm permit -x 'AD.EXAMPLE.COM\aduser02'

Verification steps

  • Use SSH to log in to the server as the aduser01@example.net user.

    $ ssh aduser01@example.net@server_name
    Authentication failed.
Note

If you set use_fully_qualified_names to true in the sssd.conf file, all requests must use the fully qualified domain name. However, if you set use_fully_qualified_names to false, it is possible to use the fully-qualified name in the requests, but only the simplified version is displayed in the output.

Additional resources

  • See the realm(8)` man page.

Legal Notice

Copyright © 2020 Red Hat, Inc.
The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.
XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
All other trademarks are the property of their respective owners.