Introduction to SystemTap

William Cohen
Red Hat Software Engineering
wcohen@redhat.com

Don Domingo
Red Hat Customer Content Services

Vladimír Slávik
Red Hat Customer Content Services
vslavik@redhat.com

Robert Kratky
Red Hat Customer Content Services

Jacquelynn East
Red Hat Customer Content Services
Abstract

This guide provides basic instructions on how to use SystemTap to monitor different subsystems of Red Hat Enterprise Linux 7 in detail. The SystemTap Beginners Guide is recommended for users who have taken the RHCSA exam or have a similar level of expertise in Red Hat Enterprise Linux 7.
Table of Contents

CHAPTER 1. INTRODUCTION ... 3
 1.1. DOCUMENTATION GOALS .. 3
 1.2. SYSTEMTAP CAPABILITIES .. 3

CHAPTER 2. USING SYSTEMTAP .. 5
 2.1. INSTALLATION AND SETUP .. 5
 2.2. GENERATING INSTRUMENTATION FOR OTHER COMPUTERS 6
 2.3. RUNNING SYSTEMTAP SCRIPTS .. 8

CHAPTER 3. UNDERSTANDING HOW SYSTEMTAP WORKS 12
 3.1. ARCHITECTURE ... 12
 3.2. SYSTEMTAP SCRIPTS ... 12
 3.3. BASIC SYSTEMTAP HANDLER CONSTRUCTS 19
 3.4. ASSOCIATIVE ARRAYS ... 22
 3.5. ARRAY OPERATIONS IN SYSTEMTAP 23
 3.6. TAPSETS ... 29

CHAPTER 4. USEFUL SYSTEMTAP SCRIPTS .. 30
 4.1. NETWORK ... 30
 4.2. DISK ... 35
 4.3. PROFILING ... 44
 4.4. IDENTIFYING CONTENTED USER-SPACE LOCKS 54

CHAPTER 5. UNDERSTANDING SYSTEMTAP ERRORS 57
 5.1. PARSE AND SEMANTIC ERRORS .. 57
 5.2. RUN TIME ERRORS AND WARNINGS 59

CHAPTER 6. REFERENCES .. 60

APPENDIX A. REVISION HISTORY .. 61

INDEX .. 62
CHAPTER 1. INTRODUCTION

SystemTap is a tracing and probing tool that allows users to study and monitor the activities of the operating system (particularly, the kernel) in fine detail. It provides information similar to the output of tools like `netstat`, `ps`, `top`, and `iostat`; however, SystemTap is designed to provide more filtering and analysis options for collected information.

SystemTap can be used by system administrators as a performance monitoring tool for Red Hat Enterprise Linux 5 or later. It is most useful when other similar tools cannot precisely pinpoint a bottleneck in the system, thus requiring a deep analysis of system activity. In the same manner, application developers can also use SystemTap to monitor, in fine detail, how their application behaves within the Linux system.

1.1. DOCUMENTATION GOALS

SystemTap provides the infrastructure to monitor the running Linux system for detailed analysis. This can assist administrators and developers in identifying the underlying cause of a bug or performance problem.

Without SystemTap, monitoring the activity of a running kernel would require a tedious instrument, recompile, install, and reboot sequence. SystemTap is designed to eliminate this, allowing users to gather the same information by simply running user-written SystemTap scripts.

However, SystemTap was initially designed for users with intermediate to advanced knowledge of the Linux kernel. This makes SystemTap less useful to administrators or developers with limited knowledge of and experience with the kernel. Moreover, much of the existing SystemTap documentation is similarly aimed at knowledgeable and experienced users.

To lower these barriers the `SystemTap Beginners Guide` was written with the following goals:

- To introduce users to SystemTap, familiarize them with its architecture, and provide setup instructions for all kernel types.
- To provide pre-written SystemTap scripts for monitoring detailed activity in different components of the system, along with instructions on how to run them and analyze their output.

1.2. SYSTEMTAP CAPABILITIES

SystemTap was originally developed to provide functionality for Red Hat Enterprise Linux similar to previous Linux probing tools such as `dprobes` and the Linux Trace Toolkit. SystemTap aims to supplement the existing suite of Linux monitoring tools by providing users with the infrastructure to track kernel activity. In addition, SystemTap combines this capability with two attributes:

- **Flexibility**: SystemTap’s framework allows users to develop simple scripts for investigating and monitoring a wide variety of kernel functions, system calls, and other events that occur in kernel space. With this, SystemTap is not so much a tool as it is a system that allows you to develop your own kernel-specific forensic and monitoring tools.

- **Ease-of-Use**: as mentioned earlier, SystemTap allows users to probe kernel-space events without having to resort to the lengthy instrument, recompile, install, and reboot the kernel process.

Most of the SystemTap scripts enumerated in Chapter 4, `Useful SystemTap Scripts` demonstrate system forensics and monitoring capabilities not natively available with other similar tools (such as `top`, `OProfile`, or `ps`). These scripts are provided to give readers extensive examples of the application of...
SystemTap, which in turn will educate them further on the capabilities they can employ when writing their own SystemTap scripts.
CHAPTER 2. USING SYSTEMTAP

This chapter instructs users how to install SystemTap, and provides an introduction on how to run SystemTap scripts.

2.1. INSTALLATION AND SETUP

To deploy SystemTap, SystemTap packages along with the corresponding set of -devel, -debuginfo and -debuginfo-common-arch packages for the kernel need to be installed. To use SystemTap on more than one kernel where a system has multiple kernels installed, install the -devel and -debuginfo packages for each of those kernel versions.

These procedures will be discussed in detail in the following sections.

IMPORTANT

Many users confuse -debuginfo with -debug packages. Remember that the deployment of SystemTap requires the installation of the -debuginfo package of the kernel, not the -debug version of the kernel.

2.1.1. Installing SystemTap

To deploy SystemTap, install the systemtap and systemtap-runtime packages by running the following command as root:

```
~]# yum install -y systemtap systemtap-runtime
```

2.1.2. Installing Required Kernel Information Packages

SystemTap needs information about the kernel in order to place instrumentation in it (probe it). This information, which allows SystemTap to generate the code for the instrumentation, is contained in the matching kernel-devel, kernel-debuginfo, and kernel-debuginfo-common-arch packages (where arch is the hardware platform of your system, which you can determine by running the `uname -m` command).

While the kernel-devel package is available from the default Red Hat Enterprise Linux repository, the kernel-debuginfo and kernel-debuginfo-common-arch packages are available from the debug repository.

To install the required packages, enable the debug repository for your system:

```
~]# subscription-manager repos --enable=rhel-7-variant-debug-rpms
```

In the above command, replace variant with **server**, **workstation**, or **client**, depending on the variant of the Red Hat Enterprise Linux system you are using. To determine the variant, you can use the following command:

```
~]# cat /etc/redhat-release
Red Hat Enterprise Linux Server release 7.2 (Maipo)
```

The version, variant, and architecture of the kernel-devel, kernel-debuginfo, and kernel-debuginfo-common-arch packages must exactly match the kernel to be probed with SystemTap. To determine what kernel your system is currently running, use:

```
```
uname -r
3.10.0-327.el7.x86_64

For example, if you wish to use SystemTap on kernel version **3.10.0-327.4.4.el7** on an AMD64 or Intel 64 machine, then you need to install the following packages:

- kernel-debuginfo-3.10.0-327.4.4.el7.x86_64.rpm
- kernel-debuginfo-common-x86_64-3.10.0-327.4.4.el7.x86_64.rpm
- kernel-devel-3.10.0-327.4.4.el7.x86_64.rpm

To use the **yum** package manager to install the packages required for running SystemTap on the current kernel, execute the following command as **root**:

```
~]# yum install -y kernel-devel-$(uname -r) \
    kernel-debuginfo-$(uname -r) \
    kernel-debuginfo-common-$(uname -m)-$(uname -r)
```

2.1.3. Initial Testing

If the kernel to be probed with SystemTap is currently being used, it is possible to immediately test whether the deployment was successful. If a different kernel is to be probed, reboot and load the appropriate kernel.

To start the test, run the following command:

```
stap -v -e 'probe vfs.read {printf("read performed\n"); exit()}'
```

This command simply instructs SystemTap to print **read performed** and then exit properly once a virtual file system read is detected. If the SystemTap deployment was successful, you should get output similar to the following:

```
Pass 1: parsed user script and 45 library script(s) in 340usr/0sys/358real ms.
Pass 2: analyzed script: 1 probe(s), 1 function(s), 0 embed(s), 0 global(s) in 290usr/260sys/568real ms.
Pass 3: translated to C into "/tmp/stapiArgLX/stap_e5886fa50499994e6a87aacdc43cd392_399.c" in 490usr/430sys/938real ms. 
Pass 4: compiled C into "stap_e5886fa50499994e6a87aacdc43cd392_399.ko" in 3310usr/430sys/3714real ms. 
Pass 5: starting run. 
read performed
Pass 5: run completed in 10usr/40sys/73real ms.
```

The last three lines of the output (beginning with **Pass 5**) indicate that SystemTap was able to successfully create the instrumentation to probe the kernel, run the instrumentation, detect the event being probed (in this case, a virtual file system read), and execute a valid handler (print text and then close it with no errors).

2.2. GENERATING INSTRUMENTATION FOR OTHER COMPUTERS

When users run a SystemTap script, a kernel module is built out of that script. SystemTap then loads the module into the kernel, allowing it to extract the specified data directly from the kernel (see **Procedure 3.1, “SystemTap Session”** in **Section 3.1, “Architecture”** for more information).
Normally, SystemTap scripts can only be run on systems where SystemTap is deployed (as in Section 2.1, “Installation and Setup”). This could mean that to run SystemTap on ten systems, SystemTap needs to be deployed on all those systems. In some cases, this may be neither feasible nor desired. For instance, corporate policy may prohibit an administrator from installing packages that provide compilers or debug information on specific machines, which will prevent the deployment of SystemTap.

To work around this, use cross-instrumentation. Cross-instrumentation is the process of generating SystemTap instrumentation modules from a SystemTap script on one computer to be used on another computer. This process offers the following benefits:

- The kernel information packages for various machines can be installed on a single host machine.
- Each target machine only needs one package to be installed to use the generated SystemTap instrumentation module: systemtap-runtime.

IMPORTANT

The host system must be the same architecture and running the same distribution of Linux as the target system in order for the built instrumentation module to work.

NOTE

For the sake of simplicity, the following terms will be used throughout this section:

- **instrumentation module**: The kernel module built from a SystemTap script; the SystemTap module is built on the host system, and will be loaded on the target kernel of the target system.
- **host system**: The system on which the instrumentation modules (from SystemTap scripts) are compiled, to be loaded on target systems.
- **target system**: The system in which the instrumentation module is being built (from SystemTap scripts).
- **target kernel**: The kernel of the target system. This is the kernel which loads/running the instrumentation module.

Procedure 2.1. Configuring a Host System and Target Systems

1. Install the systemtap-runtime package on each target system.
2. Determine the kernel running on each target system by running `uname -r` on each target system.
3. Install SystemTap on the host system. The instrumentation module will be built for the target systems on the host system. For instructions on how to install SystemTap, see Section 2.1.1, “Installing SystemTap”.
4. Using the target kernel version determined earlier, install the target kernel and related packages on the host system by the method described in Section 2.1.2, “Installing Required Kernel Information Packages”. If multiple target systems use different target kernels, repeat this step for each different kernel used on the target systems.
After performing Procedure 2.1, “Configuring a Host System and Target Systems”, the instrumentation module (for any target system) can be built on the host system.

To build the instrumentation module, run the following command on the host system (be sure to specify the appropriate values):

```
stap -r kernel_version script -m module_name -p4
```

Here, `kernel_version` refers to the version of the target kernel (the output of `uname -r` on the target machine), `script` refers to the script to be converted into an instrumentation module, and `module_name` is the desired name of the instrumentation module.

Once the instrumentation module is compiled, copy it to the target system and then load it using:

```
staprun module_name.ko
```

For example, to create the `simple.ko` instrumentation module from a SystemTap script named `simple.stp` for the `3.10.0-327.4.4.el7` target kernel, use the following command:

```
stap -r 2.6.32-53.el6 -e 'probe vfs.read {exit()}' -m simple -p4
```

This will create a module named `simple.ko`. To use the `simple.ko` instrumentation module, copy it to the target system and run the following command (on the target system):

```
staprun simple.ko
```

2.3. RUNNING SYSTEMTAP SCRIPTS

SystemTap scripts are run through the command `stap`. `stap` can run SystemTap scripts from the standard input or from a file.

Running `stap` and `staprun` requires elevated privileges to the system. However, not all users can be granted root access just to run SystemTap. In some cases, for instance, a non-privileged user may need to run SystemTap instrumentation on their machine.

To allow ordinary users to run SystemTap without root access, add them to both of these user groups:

stapdev

Members of this group can use `stap` to run SystemTap scripts, or `staprun` to run SystemTap instrumentation modules.

Running `stap` involves compiling SystemTap scripts into kernel modules and loading them into the kernel. This requires elevated privileges to the system, which are granted to `stapdev` members. Unfortunately, such privileges also grant effective root access to `stapdev` members. As such, only grant `stapdev` group membership to users who can be trusted with root access.

stapusr

Members of this group can only use `staprun` to run SystemTap instrumentation modules. In addition, they can only run those modules from `/lib/modules/kernel_version/systemtap/`. Note that this directory must be owned only by the root user, and it must only be writable by the root user.
NOTE

In order to run SystemTap scripts, the user must be in both the stapdev and stapusr groups.

Below is a list of commonly used stap options:

- **-v**
 Makes the output of the SystemTap session more verbose. This option (for example, stap -vvv script.stp) can be repeated to provide more details on the script’s execution. It is particularly useful if errors are encountered when running the script.

For more information about common SystemTap script errors, see Chapter 5, Understanding SystemTap Errors.

- **-o filename**
 Sends the standard output to filename.

- **-S size, count**
 Limit files to size megabytes and limit the number of files kept around to count. The file names will have a sequence number suffix. This option implements logrotate operations for SystemTap.

 When used with -o, the -S will limit the size of log files.

- **-x process ID**
 Sets the SystemTap handler function target() to the specified process ID. For more information about target(), see SystemTap Functions.

- **-c command**
 Sets the SystemTap handler function target() to the specified command. The full path to the specified command must be used; for example, instead of specifying cp, use /bin/cp (as in stap script -c /bin/cp). For more information about target(), see SystemTap Functions.

- **-e 'script'**
 Use script string rather than a file as input for systemtap translator.

- **-F**
 Use SystemTap’s Flight recorder mode and make the script a background process. For more information about flight recorder mode, see Section 2.3.1, “SystemTap Flight Recorder Mode”.

stap can also be instructed to run scripts from the standard input using the - switch. To illustrate:

```
Example 2.1. Running Scripts From Standard Input
  echo "probe timer.s(1) {exit()}" | stap -
```

Example 2.1, “Running Scripts From Standard Input” instructs stap to run the script passed by echo to standard input. Any stap options to be used should be inserted before the - switch; for instance, to make the example in Example 2.1, "Running Scripts From Standard Input" more verbose, the command would
be:
```
  echo "probe timer.s(1) {exit()}" | stap -v -
```

For more information about `stap`, see `man stap`.

To run SystemTap instrumentation (the kernel module built from SystemTap scripts during a cross-instrumentation), use `staprun` instead. For more information about `staprun` and cross-instrumentation, see Section 2.2, "Generating Instrumentation for Other Computers".

NOTE

The `stap` options `-v` and `-o` also work for `staprun`. For more information about `staprun`, see the `staprun(1)` manual page.

2.3.1. SystemTap Flight Recorder Mode

SystemTap's flight recorder mode allows a SystemTap script to be ran for long periods and just focus on recent output. The flight recorder mode (the `-F` option) limits the amount of output generated. There are two variations of the flight recorder mode: in-memory and file mode. In both cases, the SystemTap script runs as a background process.

2.3.1.1. In-memory Flight Recorder

When flight recorder mode (the `-F` option) is used without a file name, SystemTap uses a buffer in kernel memory to store the output of the script. Next, SystemTap instrumentation module loads and the probes start running, then instrumentation will detach and be put in the background. When the interesting event occurs, the instrumentation can be reattached and the recent output in the memory buffer and any continuing output can be seen. The following command starts a script using the flight recorder in-memory mode:
```
  stap -F /usr/share/doc/systemtap-version/examples/io/iotime.stp
```

Once the script starts, a message that provides the command to reconnect to the running script will appear:
```
  Disconnecting from systemtap module. To reconnect, type "staprun -A stap_5dd0073edcb1f13f7565d8c343063e68_19556"
```

When the interesting event occurs, reattach to the currently running script and output the recent data in the memory buffer, then get the continuing output with the following command:
```
  staprun -A stap_5dd0073edcb1f13f7565d8c343063e68_19556
```

By default, the kernel buffer is 1MB in size, but it can be increased with the `-s` option specifying the size in megabytes (rounded up to the next power of 2) for the buffer. For example `-s2` on the SystemTap command line would specify 2MB for the buffer.

2.3.1.2. File Flight Recorder

The flight recorder mode can also store data to files. The number and size of the files kept is controlled by the `-S` option followed by two numerical arguments separated by a comma. The first argument is the maximum size in megabytes for the each output file. The second argument is the number of recent files
to keep. The file name is specified by the `-o` option followed by the name. SystemTap adds a number suffix to the file name to indicate the order of the files. The following will start SystemTap in file flight recorder mode with the output going to files named `/tmp/pfaults.log.[0-9]+` with each file 1MB or smaller and keeping latest two files:

```
stap -F -o /tmp/pfaults.log -S 1,2 pfaults.stp
```

The number printed by the command is the process ID. Sending a `SIGTERM` to the process will shutdown the SystemTap script and stop the data collection. For example, if the previous command listed `7590` as the process ID, the following command would shutdown the SystemTap script:

```
kill -s SIGTERM 7590
```

Only the most recent two file generated by the script are kept and the older files are been removed. Thus, `ls -sh /tmp/pfaults.log.*` shows the only two files:

```
1020K /tmp/pfaults.log.5 44K /tmp/pfaults.log.6
```

One can look at the highest number file for the latest data, in this case `/tmp/pfaults.log.6`.
CHAPTER 3. UNDERSTANDING HOW SYSTEMTAP WORKS

SystemTap allows users to write and reuse simple scripts to deeply examine the activities of a running Linux system. These scripts can be designed to extract data, filter it, and summarize it quickly (and safely), enabling the diagnosis of complex performance (or even functional) problems.

The essential idea behind a SystemTap script is to name events, and to give them handlers. When SystemTap runs the script, SystemTap monitors for the event; once the event occurs, the Linux kernel then runs the handler as a quick sub-routine and then resumes its normal operation.

There are several kinds of events; entering or exiting a function, timer expiration, session termination, etc. A handler is a series of script language statements that specify the work to be done whenever the event occurs. This work normally includes extracting data from the event context, storing them into internal variables, and printing results.

3.1. ARCHITECTURE

A SystemTap session begins when you run a SystemTap script. This session occurs in the following fashion:

Procedure 3.1. SystemTap Session

1. First, SystemTap checks the script against the existing tapset library (normally in the /usr/share/systemtap/tapset/ directory) for any tapsets used. SystemTap will then substitute any located tapsets with their corresponding definitions in the tapset library.

2. SystemTap then translates the script to C, running the system C compiler to create a kernel module from it. The tools that perform this step are contained in the systemtap package (see Section 2.1.1, “Installing SystemTap” for more information).

3. SystemTap loads the module, then enables all the probes (events and handlers) in the script. The staprun in the systemtap-runtime package (see Section 2.1.1, “Installing SystemTap” for more information) provides this functionality.

4. As the events occur, their corresponding handlers are executed.

5. Once the SystemTap session is terminated, the probes are disabled, and the kernel module is unloaded.

This sequence is driven from a single command-line program: stap. This program is SystemTap’s main front-end tool. For more information about stap, see the stap(1) manual page (once SystemTap is properly installed on your machine).

3.2. SYSTEMTAP SCRIPTS

For the most part, SystemTap scripts are the foundation of each SystemTap session. SystemTap scripts instruct SystemTap on what type of information to collect, and what to do once that information is collected.

As stated in Chapter 3, Understanding How SystemTap Works, SystemTap scripts are made up of two components: events and handlers. Once a SystemTap session is underway, SystemTap monitors the operating system for the specified events and executes the handlers as they occur.
NOTE

An event and its corresponding handler is collectively called a probe. A SystemTap script can have multiple probes. A probe’s handler is commonly referred to as a probe body.

In terms of application development, using events and handlers is similar to instrumenting the code by inserting diagnostic print statements in a program’s sequence of commands. These diagnostic print statements allow you to view a history of commands executed once the program is run.

SystemTap scripts allow insertion of the instrumentation code without recompilation of the code and allows more flexibility with regard to handlers. Events serve as the triggers for handlers to run; handlers can be specified to record specified data and print it in a certain manner.

Format

SystemTap scripts use the .stp file extension and contains probes written in the following format:

```
probe event {statements}
```

SystemTap supports multiple events per probe; multiple events are delimited by a comma (,). If multiple events are specified in a single probe, SystemTap executes the handler when any of the specified events occurs.

Each probe has a corresponding statement block. This statement block is enclosed in braces ({ }) and contains the statements to be executed per event. SystemTap executes these statements in sequence; special separators or terminators are generally not necessary between multiple statements.

NOTE

Statement blocks in SystemTap scripts follow the same syntax and semantics as the C programming language. A statement block can be nested within another statement block.

Systemtap allows you to write functions to factor out code to be used by a number of probes. Thus, rather than repeatedly writing the same series of statements in multiple probes, you can just place the instructions in a function, as in:

```
function function_name(arguments){statements}
probe event {function_name(arguments)}
```

The statements in function_name are executed when the probe for event executes. The arguments are optional values passed into the function.

IMPORTANT

Section 3.2, “SystemTap Scripts” is designed to introduce readers to the basics of SystemTap scripts. To understand SystemTap scripts better, it is advisable that you see Chapter 4, Useful SystemTap Scripts; each section therein provides a detailed explanation of the script, its events, handlers, and expected output.

3.2.1. Event

SystemTap events can be broadly classified into two types: synchronous and asynchronous.

Synchronous Events
A synchronous event occurs when any process executes an instruction at a particular location in kernel code. This gives other events a reference point from which more contextual data may be available.

Examples of synchronous events include:

syscall.system_call

The entry to the system call system_call. If the exit from a syscall is desired, appending a `.return` to the event monitor the exit of the system call instead. For example, to specify the entry and exit of the close system call, use syscall.close and syscall.close.return respectively.

vfs.file_operation

The entry to the file_operation event for Virtual File System (VFS). Similar to syscall event, appending a `.return` to the event monitors the exit of the file_operation operation.

kernel.function("function")

The entry to the function kernel function. For example, kernel.function("sys_open") refers to the event that occurs when the sys_open kernel function is called by any thread in the system. To specify the return of the sys_open kernel function, append the return string to the event statement; that is, kernel.function("sys_open").return.

When defining probe events, you can use asterisk (*) for wildcards. You can also trace the entry or exit of a function in a kernel source file. Consider the following example:

```
Example 3.1. wildcards.stp

probe kernel.function("@@net/socket.c") { }
probe kernel.function("@@net/socket.c").return { }
```

In the previous example, the first probe’s event specifies the entry of ALL functions in the net/socket.c kernel source file. The second probe specifies the exit of all those functions. Note that in this example, there are no statements in the handler; as such, no information will be collected or displayed.

kernel.trace("tracepoint")

The static probe for tracepoint. Recent kernels (2.6.30 and newer) include instrumentation for specific events in the kernel. These events are statically marked with tracepoints. One example of a tracepoint available in SystemTap is kernel.trace("kfree_skb"), which indicates each time a network buffer is freed in the kernel.

module("module").function("function")

Allows you to probe functions within modules. For example:

```
Example 3.2. moduleprobe.stp

probe module("ext3").function("**") { }
probe module("ext3").function("**").return { }
```

The first probe in Example 3.2, “moduleprobe.stp” points to the entry of all functions for the ext3 module. The second probe points to the exits of all functions for that same module; the use of the
.return suffix is similar to kernel.function(). Note that the probes in Example 3.2, “moduleprobe.stp” do not contain statements in the probe handlers, and as such will not print any useful data (as in Example 3.1, “wildcards.stp”).

A system’s kernel modules are typically located in /lib/modules/kernel_version, where kernel_version refers to the currently loaded kernel version. Modules use the file name extension .ko.

Asynchronous Events

Asynchronous events are not tied to a particular instruction or location in code. This family of probe points consists mainly of counters, timers, and similar constructs.

Examples of asynchronous events include:

begin
 The startup of a SystemTap session; that is, as soon as the SystemTap script is run.
end
 The end of a SystemTap session.

timer events
 An event that specifies a handler to be executed periodically. For example:

```
Example 3.3. timer-s.stp

    probe timer.s(4) {
      printf("hello world\n")
    }
```

Example 3.3, “timer-s.stp” is an example of a probe that prints hello world every four seconds. Note that you can also use the following timer events:

- timer.ms(milliseconds)
- timer.us(microseconds)
- timer.ns(nanoseconds)
- timer.hz(hertz)
- timer.jiffies(jiffies)

When used in conjunction with other probes that collect information, timer events allows you to print periodic updates and see how that information changes over time.
IMPORTANT

SystemTap supports the use of a large collection of probe events. For more information about supported events, see the stapprobes(3) manual page. The SEE ALSO section of stapprobes(3) also contains links to other manual pages that discuss supported events for specific subsystems and components.

3.2.2. Systemtap Handler/Body

Consider the following sample script:

Example 3.4. helloworld.stp

```plaintext
probe begin
{
  printf("hello world\n")
  exit()
}
```

In Example 3.4, “helloworld.stp”, the begin event (the start of the session) triggers the handler enclosed in { }, which simply prints hello world followed by a new line, then exits.

NOTE

SystemTap scripts continue to run until the exit() function executes. If the users wants to stop the execution of the script, it can interrupted manually with Ctrl+C.

printf () Statements

The printf() statement is one of the simplest functions for printing data. printf() can also be used to display data using many SystemTap functions in the following format:

```plaintext
printf("format string", arguments)
```

The format string specifies how arguments should be printed. The format string of Example 3.4, “helloworld.stp” simply instructs SystemTap to print hello world and contains no format specifiers.

You can use the format specifiers %s (for strings) and %d (for numbers) in format strings, depending on your list of arguments. Format strings can have multiple format specifiers, each matching a corresponding argument; multiple arguments are delimited by a comma (,).

NOTE

Semantically, the SystemTap printf function is very similar to its C language counterpart. The aforementioned syntax and format for SystemTap’s printf function is identical to that of the C-style printf.

To illustrate this, consider the following probe example:

Example 3.5. variables-in-printf-statements.stp
Example 3.5, “variables-in-printf-statements.stp” instructs SystemTap to probe all entries to the system call `open`; for each event, it prints the current `execname()` (a string with the executable name) and `pid()` (the current process ID number), followed by the word `open`. A snippet of this probe’s output would look like:

```
vmware-guestd(2206) open
hald(2360) open
hald(2360) open
df(3433) open
df(3433) open
df(3433) open
hald(2360) open
```

SystemTap Functions

SystemTap supports many functions that can be used as `printf()` arguments. Example 3.5, “variables-in-printf-statements.stp” uses the SystemTap functions `execname()` (name of the process that called a kernel function/performed a system call) and `pid()` (current process ID).

The following is a list of commonly-used SystemTap functions:

- `tid()`: The ID of the current thread.
- `uid()`: The ID of the current user.
- `cpu()`: The current CPU number.
- `gettimeofday_s()`: The number of seconds since UNIX epoch (January 1, 1970).
- `ctime()`: Convert number of seconds since UNIX epoch to date.
- `pp()`: A string describing the probe point currently being handled.
- `thread_indent()`: This particular function is quite useful, providing you with a way to better organize your print results. The function takes one argument, an indentation delta, which indicates how many spaces to add or remove from a thread’s “indentation counter”. It then returns a string with some generic trace data along with an appropriate number of indentation spaces.
The generic data included in the returned string includes a timestamp (number of microseconds since the first call to `thread_indent()` by the thread), a process name, and the thread ID. This allows you to identify what functions were called, who called them, and the duration of each function call.

If call entries and exits immediately precede each other, it is easy to match them. However, in most cases, after a first function call entry is made, several other call entries and exits may be made before the first call exits. The indentation counter helps you match an entry with its corresponding exit by indenting the next function call if it is not the exit of the previous one.

Consider the following example on the use of `thread_indent()`:

Example 3.6. `thread_indent.stp`

```c
probe kernel.function("@net/socket.c")
{
    printf("%s -> %s\n", thread_indent(1), probefunc())
}

probe kernel.function("@net/socket.c").return
{
    printf("%s <- %s\n", thread_indent(-1), probefunc())
}
```

Example 3.6, "thread_indent.stp" prints out the `thread_indent()` and `probe` functions at each event in the following format:

```
0 ftp(7223): -> sys_socketcall
1159 ftp(7223): -> sys_socket
2173 ftp(7223): -> __sock_create
2286 ftp(7223): -> sock_alloc_inode
2737 ftp(7223): <- sock_alloc_inode
3349 ftp(7223): -> sock_alloc
3389 ftp(7223): <- sock_alloc
3417 ftp(7223): <- __sock_create
4117 ftp(7223): -> sock_create
4160 ftp(7223): <- sock_create
4301 ftp(7223): -> sock_map_fd
4644 ftp(7223): -> sock_map_file
4699 ftp(7223): <- sock_map_file
4715 ftp(7223): <- sock_map_fd
4732 ftp(7223): <- sys_socket
4775 ftp(7223): <- sys_socketcall
```

This sample output contains the following information:

- The time (in microseconds) since the initial `thread_indent()` call for the thread.
- The process name (and its corresponding ID) that made the function call.
- An arrow signifying whether the call was an entry (<-) or an exit (->); the indentations help you match specific function call entries with their corresponding exits.
- The name of the function called by the process.
Identifies the name of a specific system call. This variable can only be used in probes that use the event `syscall.system_call`.

`target()`

Used in conjunction with either of the following two commands:

```
stap script -x process ID stap script -c command
```

If you want to specify a script to take an argument of a process ID or command, use `target()` as the variable in the script to refer to it. For example:

```
Example 3.7. targetexample.stp
```  
```c
probe syscall.* {
  if (pid() == target())
    printf("%s/n", name)
}
```

When Example 3.7, “targetexample.stp” is run with the argument `-x process ID`, it watches all system calls (as specified by the `syscall.*` event) and prints out the name of all system calls made by the specified process.

This has the same effect as specifying `if (pid() == process ID)` each time you wish to target a specific process. However, using `target()` makes it easier to re-use the script, giving you the ability to simply pass a process ID as an argument each time you wish to run the script. For example:

```
stap targetexample.stp -x process ID
```

For more information about supported SystemTap functions, see `stapfuncs(3)`.

3.3. BASIC SYSTEMTAP HANDLER CONSTRUCTS

SystemTap supports the use of several basic constructs in handlers. The syntax for most of these handler constructs are mostly based on C and `awk` syntax. This section describes several of the most useful SystemTap handler constructs, which should provide you with enough information to write simple yet useful SystemTap scripts.

3.3.1. Variables

Variables can be used freely throughout a handler; simply choose a name, assign a value from a function or expression to it, and use it in an expression. SystemTap automatically identifies whether a variable should be typed as a string or integer, based on the type of the values assigned to it. For instance, if you set the variable `var` to `gettimeofday_s()` (as in `var = gettimeofday_s()`), then `var` is typed as a number and can be printed in a `printf()` with the integer format specifier (`%d`).

Note, however, that by default variables are only local to the probe they are used in. This means that variables are initialized, used and disposed at each probe handler invocation. To share a variable between probes, declare the variable name using `global` outside of the probes. Consider the following example:

```
Example 3.8. timer-jiffies.stp
```  
```c
probe syscall.* {
  if (pid() == target())
    printf("%s\n", name)
}
```
Example 3.8, “timer-jiffies.stp” computes the CONFIG_HZ setting of the kernel using timers that count jiffies and milliseconds, then computing accordingly. The global statement allows the script to use the variables count_jiffies and count_ms (set in their own respective probes) to be shared with probe timer.ms(12345).

NOTE

The ++ notation in Example 3.8, “timer-jiffies.stp” (count_jiffies ++ and count_ms ++) is used to increment the value of a variable by 1. In the following probe, count_jiffies is incremented by 1 every 100 jiffies:

```plaintext
probe timer.jiffies(100) { count_jiffies ++ }
```

In this instance, SystemTap understands that count_jiffies is an integer. Because no initial value was assigned to count_jiffies, its initial value is zero by default.

3.3.2. Conditional Statements

In some cases, the output of a SystemTap script may be too big. To address this, you need to further refine the script’s logic in order to delimit the output into something more relevant or useful to your probe.

You can do this by using conditionals in handlers. SystemTap accepts the following types of conditional statements:

If/Else Statements

Format:

```plaintext
if (condition)
  statement1
else
  statement2
```

The statement1 is executed if the condition expression is non-zero. The statement2 is executed if the condition expression is zero. The else clause (else statement2) is optional. Both statement1 and statement2 can be statement blocks.

Example 3.9. ifelse.stp

```plaintext
global countrread, countnonread
probe kernel.function("vfs_read").kernel.function("vfs_write")
```
Example 3.9, “ifelse.stp” is a script that counts how many virtual file system reads (\texttt{vfs_read}) and writes (\texttt{vfs_write}) the system performs within a 5-second span. When run, the script increments the value of the variable \texttt{countread} by 1 if the name of the function it probed matches \texttt{vfs_read} (as noted by the condition \texttt{if (probefunc()="vfs_read")}); otherwise, it increments \texttt{countnonread} (\texttt{else \{countnonread ++\}}).

\begin{verbatim}
{ if (probefunc()=="vfs_read")
 countread ++
 else
 countnonread ++
}
probe timer.s(5) { exit() }
probe end
{ printf("VFS reads total %d
 VFS writes total %d\n", countread, countnonread)
}
\end{verbatim}

\textbf{While Loops}

Format:

\begin{verbatim}
while (condition)
statement
\end{verbatim}

So long as \texttt{condition} is non-zero the block of statements in \texttt{statement} are executed. The \texttt{statement} is often a statement block and it must change a value so \texttt{condition} will eventually be zero.

\textbf{For Loops}

Format:

\begin{verbatim}
for (initialization; conditional; increment) statement
\end{verbatim}

The \texttt{for} loop is simply shorthand for a while loop. The following is the equivalent \texttt{while} loop:

\begin{verbatim}
initialization
while (conditional) {
 statement
 increment
}
\end{verbatim}

\textbf{Conditional Operators}

Aside from \texttt{==} (is equal to), you can also use the following operators in your conditional statements:

\begin{verbatim}
> =
 Greater than or equal to

< =
 Less than or equal to
\end{verbatim}
3.3.3. Command-Line Arguments

You can also allow a SystemTap script to accept simple command-line arguments using a $ or @ immediately followed by the number of the argument on the command line. Use $ if you are expecting the user to enter an integer as a command-line argument, and @ if you are expecting a string.

Example 3.10. commandlineargs.stp

```plaintext
probe kernel.function(@1) { }
probe kernel.function(@1).return { }
```

Example 3.10, “commandlineargs.stp” is similar to Example 3.1, “wildcards.stp”, except that it allows you to pass the kernel function to be probed as a command-line argument (as in stap commandlineargs.stp kernel function). You can also specify the script to accept multiple command-line arguments, noting them as @1, @2, and so on, in the order they are entered by the user.

3.4. ASSOCIATIVE ARRAYS

SystemTap also supports the use of associative arrays. While an ordinary variable represents a single value, associative arrays can represent a collection of values. Simply put, an associative array is a collection of unique keys; each key in the array has a value associated with it.

Since associative arrays are normally processed in multiple probes (as we will demonstrate later), they should be declared as global variables in the SystemTap script. The syntax for accessing an element in an associative array is similar to that of awk, and is as follows:

```
array_name[index_expression]
```

Here, the `array_name` is any arbitrary name the array uses. The `index_expression` is used to see a specific unique key in the array. To illustrate, let us try to build an array named `arr` that specifies the ages of three people (the unique keys): `tom`, `dick`, and `harry`. To assign them the ages (associated values) of 23, 24, and 25 respectively, we'd use the following array statements:

Example 3.11. Basic Array Statements

```plaintext
arr["tom"] = 23
arr["dick"] = 24
arr["harry"] = 25
```

You can specify up to nine index expressons in an array statement, each one delimited by a comma (,). This is useful if you wish to have a key that contains multiple pieces of information. The following line from Example 4.9, “disktop.stp” uses 5 elements for the key: process ID, executable name, user ID, parent process ID, and string "W". It associates the value of `devname` with that key.

```plaintext
device[pid(),execname(),uid(),ppid(),"W"] = devname
```
IMPORTANT

All associate arrays must be declared as `global`, regardless of whether the associate array is used in one or multiple probes.

3.5. ARRAY OPERATIONS IN SYSTEMTAP

This section enumerates some of the most commonly used array operations in SystemTap.

3.5.1. Assigning an Associated Value

Use `=` to set an associated value to indexed unique pairs, as in:

```plaintext
array_name[index_expression] = value
```

Example 3.11, “Basic Array Statements” shows a very basic example of how to set an explicit associated value to a unique key. You can also use a handler function as both your `index_expression` and `value`. For example, you can use arrays to set a timestamp as the associated value to a process name (which you wish to use as your unique key), as in:

```plaintext
arr[tid()] = gettimeofday_s()
```

Whenever an event invokes the statement in Example 3.12, “Associating Timestamps to Process Names”, SystemTap returns the appropriate `tid()` value (that is, the ID of a thread, which is then used as the unique key). At the same time, SystemTap also uses the function `gettimeofday_s()` to set the corresponding timestamp as the associated value to the unique key defined by the function `tid()`. This creates an array composed of key pairs containing thread IDs and timestamps.

In this same example, if `tid()` returns a value that is already defined in the array `arr`, the operator will discard the original associated value to it, and replace it with the current timestamp from `gettimeofday_s()`.

3.5.2. Reading Values From Arrays

You can also read values from an array the same way you would read the value of a variable. To do so, include the `array_name[index_expression]` statement as an element in a mathematical expression. For example:

```plaintext
delta = gettimeofday_s() - arr[tid()]
```

This example assumes that the array `arr` was built using the construct in Example 3.12, “Associating Timestamps to Process Names” (from Section 3.5.1, “Assigning an Associated Value”). This sets a timestamp that will serve as a reference point, to be used in computing for `delta`.

The construct in Example 3.13, “Using Array Values in Simple Computations” computes a value for the variable `delta` by subtracting the associated value of the key `tid()` from the current `gettimeofday_s()`.
The construct does this by reading the value of `tid()` from the array. This particular construct is useful for determining the time between two events, such as the start and completion of a read operation.

NOTE

If the `index_expression` cannot find the unique key, it returns a value of 0 (for numerical operations, such as Example 3.13, “Using Array Values in Simple Computations”) or a null (empty) string value (for string operations) by default.

3.5.3. Incrementing Associated Values

Use `++` to increment the associated value of a unique key in an array, as in:

```
array_name[index_expression] ++
```

Again, you can also use a handler function for your `index_expression`. For example, if you wanted to tally how many times a specific process performed a read to the virtual file system (using the `vfs.read` event), you can use the following probe:

```
Example 3.14. vfsreads.stp

probe vfs.read
{
  reads[execname()] ++
}
```

In Example 3.14, “vfsreads.stp”, the first time that the probe returns the process name `gnome-terminal` (that is, the first time `gnome-terminal` performs a VFS read), that process name is set as the unique key `gnome-terminal` with an associated value of 1. The next time that the probe returns the process name `gnome-terminal`, SystemTap increments the associated value of `gnome-terminal` by 1. SystemTap performs this operation for all process names as the probe returns them.

3.5.4. Processing Multiple Elements in an Array

Once you have collected enough information in an array, you will need to retrieve and process all elements in that array to make it useful. Consider Example 3.14, “vfsreads.stp”: the script collects information about how many VFS reads each process performs, but does not specify what to do with it. The simplest method of making Example 3.14, “vfsreads.stp” useful is to print the key pairs in the `reads` array.

The best way to process all key pairs in an array (as an iteration) is to use the `foreach` statement. Consider the following example:

```
Example 3.15. cumulative-vfsreads.stp

global reads
probe reads
{
  reads[execname()] ++
} probe timer.s(3)
```
In the second probe of Example 3.15, “cumulative-vfsreads.stp”, the `foreach` statement uses the `count` variable to reference each iteration of a unique key in the `reads` array. The `reads[count]` array statement in the same probe retrieves the associated value of each unique key.

Given what we know about the first probe in Example 3.15, “cumulative-vfsreads.stp”, the script prints VFS-read statistics every 3 seconds, displaying names of processes that performed a VFS-read along with a corresponding VFS-read count.

Now, remember that the `foreach` statement in Example 3.15, “cumulative-vfsreads.stp” prints all iterations of process names in the array, and in no particular order. You can instruct the script to process the iterations in a particular order by using `+` (ascending) or `-` (descending). In addition, you can also limit the number of iterations the script needs to process with the `limit value` option.

For example, consider the following replacement probe:

```plaintext
probes.m(3)
{
    foreach (count in reads) { limit 10)
        printf("%s : %d \n", count, reads[count])
    }
}
```

This `foreach` statement instructs the script to process the elements in the array `reads` in descending order (of associated value). The `limit 10` option instructs the `foreach` to only process the first ten iterations (that is, print the first 10, starting with the highest value).

3.5.5. Clearing/Deleting Arrays and Array Elements

Sometimes, you may need to clear the associated values in array elements, or reset an entire array for re-use in another probe. Example 3.15, “cumulative-vfsreads.stp” in Section 3.5.4, “Processing Multiple Elements in an Array” allows you to track how the number of VFS reads per process grows over time, but it does not show you the number of VFS reads each process makes per 3-second period.

To do that, you will need to clear the values accumulated by the array. You can accomplish this using the `delete` operator to delete elements in an array, or an entire array. Consider the following example:

```plaintext
Example 3.16. noncumulative-vfsreads.stp

    global reads
    probe vfs.read
    {
        reads[execname()] ++
    }
    probe timer.s(3)
    {
        foreach (count in reads)
            printf("%s : %d \n", count, reads[count])
        delete reads
    }
```
In Example 3.16, “noncumulative-vfsreads.stp”, the second probe prints the number of VFS reads each process made within the probed 3-second period only. The delete reads statement clears the reads array within the probe.

NOTE

You can have multiple array operations within the same probe. Using the examples from Section 3.5.4, “Processing Multiple Elements in an Array” and Section 3.5.5, “Clearing/Deleteing Arrays and Array Elements”, you can track the number of VFS reads each process makes per 3-second period and tally the cumulative VFS reads of those same processes. Consider the following example:

```plaintext
global reads, totalreads
probe vfs.read
{
  reads[execname()] ++
  totalreads[execname()] ++
}
probe timer.s(3)
{
  printf("=======\n")
  foreach (count in reads-)
    printf("%s : %d \n", count, reads[count])
  delete reads
}
probe end
{
  printf("TOTALS\n")
  foreach (total in totalreads-)
    printf("%s : %d \n", total, totalreads[total])
}
```

In this example, the arrays reads and totalreads track the same information, and are printed out in a similar fashion. The only difference here is that reads is cleared every 3-second period, whereas totalreads keeps growing.

3.5.6. Using Arrays in Conditional Statements

You can also use associative arrays in if statements. This is useful if you want to execute a subroutine once a value in the array matches a certain condition. Consider the following example:

```plaintext
Example 3.17. vfsreads-print-if-1kb.stp

global reads
probe vfs.read
{
  reads[execname()] ++
}
probe timer.s(3)
{
  printf("=======\n")
  foreach (count in reads-)
    if (reads[count] >= 1024)
      printf("%s : %dkB \n", count, reads[count]/1024)
```
Every three seconds, Example 3.17, “vfsreads-print-if-1kb.stp” prints out a list of all processes, along with how many times each process performed a VFS read. If the associated value of a process name is equal or greater than 1024, the if statement in the script converts and prints it out in \textit{kB}.

Testing for Membership

You can also test whether a specific unique key is a member of an array. Further, membership in an array can be used in if statements, as in:

\begin{verbatim}
if([index_expression] in array_name) statement
\end{verbatim}

To illustrate this, consider the following example:

\textbf{Example 3.18. vfsreads-stop-on-stapio2.stp}

\begin{verbatim}
global reads
probe vfs.read
{
 reads[execname()] ++
}
probe timer.s(3)
{
 printf(“=======\n”)
 foreach (count in reads+)
 printf(“%s : %d \n”, count, reads[count])
 if([“stapio"] in reads) {
 printf(“stapio read detected, exiting\n")
 exit()
 }
}
\end{verbatim}

The if([“stapio"] in reads) statement instructs the script to print \textit{stapio read detected, exiting} once the unique key \textit{stapio} is added to the array \textit{reads}.

3.5.7. Computing for Statistical Aggregates

Statistical aggregates are used to collect statistics on numerical values where it is important to accumulate new data quickly and in large volume (storing only aggregated stream statistics). Statistical aggregates can be used in global variables or as elements in an array.

To add value to a statistical aggregate, use the operator \lll \textit{value}.

\textbf{Example 3.19. stat-aggregates.stp}

\begin{verbatim}
global reads
probe vfs.read
{
\end{verbatim}
In Example 3.19, “stat-aggregates.stp”, the operator <<< count stores the amount returned by count to the associated value of the corresponding execname() in the reads array. Remember, these values are stored; they are not added to the associated values of each unique key, nor are they used to replace the current associated values. In a manner of speaking, think of it as having each unique key (execname()) having multiple associated values, accumulating with each probe handler run.

NOTE
In the context of Example 3.19, “stat-aggregates.stp”, count returns the amount of data written by the returned execname() to the virtual file system.

To extract data collected by statistical aggregates, use the syntax format @extractor(variable/array index expression). extractor can be any of the following integer extractors:

- **count**
 Returns the number of all values stored into the variable/array index expression. Given the sample probe in Example 3.19, “stat-aggregates.stp”, the expression @count(writes[execname()]) will return how many values are stored in each unique key in array writes.

- **sum**
 Returns the sum of all values stored into the variable/array index expression. Again, given sample probe in Example 3.19, “stat-aggregates.stp”, the expression @sum(writes[execname()]) will return the total of all values stored in each unique key in array writes.

- **min**
 Returns the smallest among all the values stored in the variable/array index expression.

- **max**
 Returns the largest among all the values stored in the variable/array index expression.

- **avg**
 Returns the average of all values stored in the variable/array index expression.

When using statistical aggregates, you can also build array constructs that use multiple index expressions (to a maximum of 5). This is helpful in capturing additional contextual information during a probe. For example:

Example 3.20. Multiple Array Indexes

```
reads[execname()] <<< count
}
```

```
NOTE
In the context of Example 3.19, “stat-aggregates.stp”, count returns the amount of data written by the returned execname() to the virtual file system.

To extract data collected by statistical aggregates, use the syntax format @extractor(variable/array index expression). extractor can be any of the following integer extractors:

- **count**
  Returns the number of all values stored into the variable/array index expression. Given the sample probe in Example 3.19, “stat-aggregates.stp”, the expression @count(writes[execname()]) will return how many values are stored in each unique key in array writes.

- **sum**
  Returns the sum of all values stored into the variable/array index expression. Again, given sample probe in Example 3.19, “stat-aggregates.stp”, the expression @sum(writes[execname()]) will return the total of all values stored in each unique key in array writes.

- **min**
  Returns the smallest among all the values stored in the variable/array index expression.

- **max**
  Returns the largest among all the values stored in the variable/array index expression.

- **avg**
  Returns the average of all values stored in the variable/array index expression.

When using statistical aggregates, you can also build array constructs that use multiple index expressions (to a maximum of 5). This is helpful in capturing additional contextual information during a probe. For example:

Example 3.20. Multiple Array Indexes

```
reads[execname()] <<< count
}
```

```
```
Example 3.20, “Multiple Array Indexes”, the first probe tracks how many times each process performs a VFS read. What makes this different from earlier examples is that this array associates a performed read to both a process name and its corresponding process ID.

The second probe in Example 3.20, “Multiple Array Indexes” demonstrates how to process and print the information collected by the array reads. Note how the foreach statement uses the same number of variables (var1 and var2) contained in the first instance of the array reads from the first probe.

3.6. TAPSETS

Tapsets are scripts that form a library of pre-written probes and functions to be used in SystemTap scripts. When a user runs a SystemTap script, SystemTap checks the script’s probe events and handlers against the tapset library; SystemTap then loads the corresponding probes and functions before translating the script to C (see Section 3.1, “Architecture” for information on what transpires in a SystemTap session).

Like SystemTap scripts, tapsets use the file name extension .stp. The standard library of tapsets is located in the /usr/share/systemtap/tapset/ directory by default. However, unlike SystemTap scripts, tapsets are not meant for direct execution; rather, they constitute the library from which other scripts can pull definitions.

The tapset library is an abstraction layer designed to make it easier for users to define events and functions. Tapsets provide useful aliases for functions that users may want to specify as an event; knowing the proper alias to use is, for the most part, easier than remembering specific kernel functions that might vary between kernel versions.

Several handlers and functions in Section 3.2.1, “Event” and SystemTap Functions are defined in tapsets. For example, thread_indent() is defined in indent.stp.
This chapter enumerates several SystemTap scripts you can use to monitor and investigate different subsystems. All of these scripts are available in the
\texttt{/usr/share/systemtap/testsuite/systemtap.examples} directory once you install the \texttt{systemtap-testsuite} package.

### 4.1. NETWORK

The following sections showcase scripts that trace network-related functions and build a profile of network activity.

#### 4.1.1. Network Profiling

This section describes how to profile network activity. \texttt{Example 4.1, "nettop.stp"} provides a glimpse into how much network traffic each process is generating on a machine.

**Example 4.1. nettop.stp**

```stap
#!/usr/bin/env stap

global ifxmit, ifrecv

global ifmerged

probe netdev.transmit
{
 ifxmit[pid(), dev_name, execname(), uid()] <<< length
}

probe netdev.receive
{
 ifrecv[pid(), dev_name, execname(), uid()] <<< length
}

function print_activity()
{
 printf("%5s %5s %-7s %7s %7s %7s %7s %-15s\n", "PID", "UID", "DEV", "XMIT_PK", "RECV_PK", "XMIT_KB", "RECV_KB", "COMMAND")

 foreach ([pid, dev, exec, uid] in ifrecv) {
 ifmerged[pid, dev, exec, uid] += @count(ifrecv[pid, dev, exec, uid]);
 }

 foreach ([pid, dev, exec, uid] in ifxmit) {
 ifmerged[pid, dev, exec, uid] += @count(ifxmit[pid, dev, exec, uid]);
 }

 foreach ([pid, dev, exec, uid] in ifmerged-) {
 n_xmit = @count(ifxmit[pid, dev, exec, uid])
 n_recv = @count(ifrecv[pid, dev, exec, uid])
 printf("%5d %5d %-7s %7d %7d %7d %7d %-15s\n", pid, uid, dev, n_xmit, n_recv,
 n_xmit ? @sum(ifxmit[pid, dev, exec, uid])/1024 : 0,
 n_recv ? @sum(ifrecv[pid, dev, exec, uid])/1024 : 0,
 exec)
}
```

SystemTap Beginners Guide

30
Note that the **print_activity()** function uses the following expressions:

```plaintext
n_xmit ? @sum(ifxmit[pid, dev, exec, uid])/1024 : 0
n_recv ? @sum(ifrecv[pid, dev, exec, uid])/1024 : 0
```

These expressions are **if** or **else** conditionals. The second statement is simply a more concise way of writing the following pseudo code:

```plaintext
if n_recv != 0 then
 @sum(ifrecv[pid, dev, exec, uid])/1024
else
 0
```

**Example 4.1, “nettop.stp”** tracks which processes are generating network traffic on the system, and provides the following information about each process:

- **PID** – the ID of the listed process.
- **UID** – user ID. A user ID of 0 refers to the root user.
- **DEV** – which ethernet device the process used to send or receive data (for example, eth0, eth1)
- **XMIT_PK** – number of packets transmitted by the process
- **RECV_PK** – number of packets received by the process
- **XMIT_KB** – amount of data sent by the process, in kilobytes
- **RECV_KB** – amount of data received by the service, in kilobytes

**Example 4.1, “nettop.stp”** provides network profile sampling every 5 seconds. You can change this setting by editing **probe timer.ms(5000)** accordingly. **Example 4.2, “Example 4.1, “nettop.stp” Sample Output”** contains an excerpt of the output from Example 4.1, “nettop.stp” over a 20-second period:

**Example 4.2. Example 4.1, “nettop.stp” Sample Output**

```plaintext
[...]
PID UID DEV XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND
0 0 eth0 0 5 0 0 swapper
11178 0 eth0 2 0 0 0 synergyc
```
4.1.2. Tracing Functions Called in Network Socket Code

This section describes how to trace functions called from the kernel's `net/socket.c` file. This task helps you identify, in finer detail, how each process interacts with the network at the kernel level.

Example 4.3. `socket-trace.stp`

```stapl
#!/usr/bin/stap

probe kernel.function("
@net/socket.c"").call {
 printf("%s -> %s\n", thread_indent(1), probefunc())
}

probe kernel.function("
@net/socket.c"").return {
 printf("%s <- %s\n", thread_indent(-1), probefunc())
}
```

Example 4.3, “`socket-trace.stp`” is identical to Example 3.6, “`thread_indent.stp`”, which was earlier used in SystemTap Functions to illustrate how `thread_indent()` works.

Example 4.4. Example 4.3, “`socket-trace.stp`” Sample Output

```plaintext
[...]
0 Xorg(3611): -> sock_poll
3 Xorg(3611): <- sock_poll
0 Xorg(3611): -> sock_poll
3 Xorg(3611): <- sock_poll
0 gnome-terminal(11106): -> sock_poll
5 gnome-terminal(11106): <- sock_poll
0 scim-bridge(3883): -> sock_poll
3 scim-bridge(3883): <- sock_poll
0 scim-bridge(3883): -> sys_socketcall
4 scim-bridge(3883): -> sys_recv
8 scim-bridge(3883): -> sys_recvfrom
12 scim-bridge(3883): -> sock_from_file
```
4.1.3. Monitoring Incoming TCP Connections

This section illustrates how to monitor incoming TCP connections. This task is useful in identifying any unauthorized, suspicious, or otherwise unwanted network access requests in real time.

Example 4.5. tcp_connections.stp

```sh
#!/usr/bin/env stap

probe begin {
 printf("%6s %16s %6s %6s %16s\n", "UID", "CMD", "PID", "PORT", "IP_SOURCE")
}

probe kernel.function("tcp_accept").return?,
 kernel.function("inet_csk_accept").return? {
 sock = $return
 if (sock != 0)
 printf("%6d %16s %6d %6d %16s\n", uid(), execname(), pid(),
 inet_get_local_port(sock), inet_get_ip_source(sock))
}
```

While Example 4.5, “tcp_connections.stp” is running, it will print out the following information about any incoming TCP connections accepted by the system in real time:

- Current **UID**
- **CMD** - the command accepting the connection
- **PID** of the command
- Port used by the connection
- IP address from which the TCP connection originated

Example 4.6. Example 4.5, “tcp_connections.stp” Sample Output

<table>
<thead>
<tr>
<th>UID</th>
<th>CMD</th>
<th>PID</th>
<th>PORT</th>
<th>IP_SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>sshd</td>
<td>3165</td>
<td>22</td>
<td>10.64.0.227</td>
</tr>
<tr>
<td>0</td>
<td>sshd</td>
<td>3165</td>
<td>22</td>
<td>10.64.0.227</td>
</tr>
</tbody>
</table>
4.1.4. Monitoring Network Packets Drops in Kernel

The network stack in Linux can discard packets for various reasons. Some Linux kernels include a tracepoint, `kernel.trace("kfree_skb")`, which easily tracks where packets are discarded. Example 4.7, “dropwatch.stp” uses `kernel.trace("kfree_skb")` to trace packet discards; the script summarizes which locations discard packets every five-second interval.

Example 4.7. dropwatch.stp

```
#!/usr/bin/stap

##
Dropwatch.stp
Author: Neil Horman <nhorman@redhat.com>
An example script to mimic the behavior of the dropwatch utility
http://fedorahosted.org/dropwatch
##

Array to hold the list of drop points we find
global locations

Note when we turn the monitor on and off
probe begin { printf("Monitoring for dropped packets\n") }
probe end { printf("Stopping dropped packet monitor\n") }

increment a drop counter for every location we drop at
probe kernel.trace("kfree_skb") { locations[$location] <<= 1 }

Every 5 seconds report our drop locations
probe timer.sec(5) {
 printf("\n")
 foreach (l in locations-) {
 printf("%d packets dropped at location %p\n", @count(locations[l]), l)
 }
 delete locations
}
```

The `kernel.trace("kfree_skb")` traces which places in the kernel drop network packets. The `kernel.trace("kfree_skb")` has two arguments: a pointer to the buffer being freed (`$skb`) and the location in kernel code the buffer is being freed (`$location`).

Running the dropwatch.stp script 15 seconds would result in output similar in Example 4.8, “Example 4.7, “dropwatch.stp” Sample Output”. The output lists the number of misses for tracepoint address and the actual address.

Example 4.8. Example 4.7, “dropwatch.stp” Sample Output

```
Monitoring for dropped packets
51 packets dropped at location 0xffffffff8024cd0f
```
To make the location of packet drops more meaningful, see the /boot/System.map-$\{\text{uname -r}\}$ file. This file lists the starting addresses for each function, allowing you to map the addresses in the output of Example 4.8, “Example 4.7, “dropwatch.stp” Sample Output” to a specific function name. Given the following snippet of the /boot/System.map-$\{\text{uname -r}\}$ file, the address 0xffffffff8024cd0f maps to the function unix_stream_recvmsg and the address 0xffffffff8044b472 maps to the function arp_rcv:

```
[...]
ffffffff8024c5cd T unlock_new_inode
ffffffff8024c5da t unix_stream_sendmsg
ffffffff8024c920 t unix_stream_recvmsg
ffffffff8024cea1 t udp_v4_lookup_longway
[...]
ffffffff8044addc t arp_process
ffffffff8044b360 t arp_rcv
ffffffff8044b487 t parp_redo
ffffffff8044b48c t arp_solicit
[...]
```

4.2. DISK

The following sections showcase scripts that monitor disk and I/O activity.

4.2.1. Summarizing Disk Read/Write Traffic

This section describes how to identify which processes are performing the heaviest disk reads/writes to the system.

Example 4.9. desktop.stp

```
#!/usr/bin/stap
#
Copyright (C) 2007 Oracle Corp.
#
Get the status of reading/writing disk every 5 seconds,
output top ten entries
#
This is free software,GNU General Public License (GPL);
either version 2, or (at your option) any later version.
#
Usage:
./desktop.stp
#

global io_stat,device
global read_bytes,write_bytes
```
probe vfs.read.return {
    if ($return>0) {
        if (devname!="N/A") {/*skip read from cache*/
            io_stat[pid(),execname(),uid(),ppid(),"R"] += $return
            device[pid(),execname(),uid(),ppid(),"R"] = devname
            read_bytes += $return
        }
    }
}

probe vfs.write.return {
    if ($return>0) {
        if (devname!="N/A") {/*skip update cache*/
            io_stat[pid(),execname(),uid(),ppid(),"W"] += $return
            device[pid(),execname(),uid(),ppid(),"W"] = devname
            write_bytes += $return
        }
    }
}

probe timer.ms(<5000>) {
    /* skip non-read/write disk */
    if (read_bytes+write_bytes) {
        printf("%-25s, %-8s%4dKb/sec, %-7s%6dKb, %-7s%6dKb

Average:" , (read_bytes+write_bytes)/1024)/5,
"Read:" ,read_bytes/1024,
"Write:" ,write_bytes/1024)
    }
    /* print header */
    printf("%8s %8s %8s %25s %8s %4s %12s
" , "UID", "PID", "PPID", "CMD", "DEVICE", "T", "BYTES")

    /* print top ten I/O */
    foreach ([process,cmd,userid,parent,action] in io_stat- limit 10)
        printf("%8d %8d %8d %25s %8s %4s %12d
" , userid,process,parent,cmd,
        device[process,cmd,userid,parent,action],
        action,io_stat[process,cmd,userid,parent,action])

    /* clear data */
    delete io_stat
    delete device
    read_bytes = 0
    write_bytes = 0
}

probe end{
    delete io_stat
    delete device
    delete read_bytes
    delete write_bytes
}
Example 4.9, “disktop.stp” outputs the top ten processes responsible for the heaviest reads or writes to a disk. Example 4.10, “Example 4.9, “disktop.stp” Sample Output” displays a sample output for this script and includes the following data per listed process:

- **UID** – user ID. A user ID of 0 refers to the root user.
- **PID** – the ID of the listed process.
- **PPID** – the process ID of the listed process’s *parent process*.
- **CMD** – the name of the listed process.
- **DEVICE** – which storage device the listed process is reading from or writing to.
- **T** – the type of action performed by the listed process; **W** refers to write, and **R** refers to read.
- **BYTES** – the amount of data read to or written from disk.

The time and date in the output of Example 4.9, “disktop.stp” is returned by the functions `ctime()` and `gettimeofday_s()`. `ctime()` derives calendar time in terms of seconds passed since the start of the Unix time (January 1, 1970). `gettimeofday_s()` counts the actual number of seconds since the start of the Unix time, which gives a fairly accurate human-readable timestamp for the output.

In this script, the `$return` is a local variable that stores the actual number of bytes each process reads or writes from the virtual file system. `$return` can only be used in return probes (for example, `vfs.read.return` and `vfs.write.return`).

### Example 4.10. Example 4.9, “disktop.stp” Sample Output

```
[...]
Mon Sep 29 03:38:28 2008 , Average: 19Kb/sec, Read: 7Kb, Write: 89Kb
UID PID PPID CMD DEVICE T BYTES
0 26319 26294 firefox sda5 W 90229
0 2758 2757 pam_timestamp_c sda5 R 8064
0 2885 1 cupsd sda5 W 1678
Mon Sep 29 03:38:38 2008 , Average: 1Kb/sec, Read: 7Kb, Write: 1Kb
UID PID PPID CMD DEVICE T BYTES
0 2758 2757 pam_timestamp_c sda5 R 8064
0 2885 1 cupsd sda5 W 1678
```

### 4.2.2. Tracking I/O Time For Each File Read or Write

This section describes how to monitor the amount of time it takes for each process to read from or write to any file. This is useful if you wish to determine what files are slow to load on a given system.

### Example 4.11. iotime.stp

```
global start
global entry_io
global fd_io
global time_io

function timestamp:long() {
 return gettimeofday_us() - start
```
function proc[string]() {
    return sprintf("%d (%s)", pid(), execname())
}

probe begin {
    start = gettimeofday_us()
}

global filenames
global filehandles
global fileread
global filewrite

probe syscall.open {
    filenames[pid()] = user_string($filename)
}

probe syscall.open.return {
    if ($return != -1) {
        filehandles[pid(), $return] = filenames[pid()]
        fileread[pid(), $return] = 0
        filewrite[pid(), $return] = 0
    } else {
        printf("%d %s access %s fail\n", timestamp(), proc(), filenames[pid()])
    }
    delete filenames[pid()]
}

probe syscall.read {
    if ($count > 0) {
        fileread[pid(), $fd] += $count
    }
    t = gettimeofday_us(); p = pid()
    entry_io[p] = t
    fd_io[p] = $fd
}

probe syscall.read.return {
    t = gettimeofday_us(); p = pid()
    fd = fd_io[p]
    time_io[p,fd] <<< t - entry_io[p]
}

probe syscall.write {
    if ($count > 0) {
        filewrite[pid(), $fd] += $count
    }
    t = gettimeofday_us(); p = pid()
    entry_io[p] = t
    fd_io[p] = $fd
}

probe syscall.write.return {
    t = gettimeofday_us(); p = pid()
Example 4.11, “iotime.stp” tracks each time a system call opens, closes, reads from, and writes to a file. For each file any system call accesses, Example 4.11, “iotime.stp” counts the number of microseconds it takes for any reads or writes to finish and tracks the amount of data (in bytes) read from or written to the file.

Example 4.11, “iotime.stp” also uses the local variable $count to track the amount of data (in bytes) that any system call attempts to read or write. Note that $return (as used in Example 4.9, “disktop.stp” from Section 4.2.1, “Summarizing Disk Read/Write Traffic”) stores the actual amount of data read/written. $count can only be used on probes that track data reads or writes (e.g. syscall.read and syscall.write).

Example 4.12. Example 4.11, “iotime.stp” Sample Output

[['...'], 825946 3364 (NetworkManager) access /sys/class/net/eth0/carrier read: 8190 write: 0, 825955 3364 (NetworkManager) iotime /sys/class/net/eth0/carrier time: 9, ['...'], 117061 2460 (pcscd) access /dev/bus/usb/003/001 read: 43 write: 0, 117065 2460 (pcscd) iotime /dev/bus/usb/003/001 time: 7, ['...'], 397373 2886 (sendmail) access /proc/loadavg read: 4096 write: 0, 397374 2886 (sendmail) iotime /proc/loadavg time: 11, ['...']]
If a process was able to read or write any data, a pair of access and iotime lines should appear together. The access line’s timestamp refers to the time that a given process started accessing a file; at the end of the line, it will show the amount of data read/written (in bytes). The iotime line will show the amount of time (in microseconds) that the process took in order to perform the read or write.

If an access line is not followed by an iotime line, it simply means that the process did not read or write any data.

### 4.2.3. Track Cumulative IO

This section describes how to track the cumulative amount of I/O to the system.

**Example 4.13. traceio.stp**

```plaintext
#!/usr/bin/env stap
traceio.stp
Copyright (C) 2007 Red Hat, Inc., Eugene Teo <eteo@redhat.com>
Copyright (C) 2009 Kai Meyer <kai@unixlords.com>
Fixed a bug that allows this to run longer
And added the humanreadable function
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
#
global reads, writes, total_io

probe vfs.read.return {
 reads[pid(),execname()] += $return
 total_io[pid(),execname()] += $return
}

probe vfs.write.return {
 writes[pid(),execname()] += $return
 total_io[pid(),execname()] += $return
}

function humanreadable(bytes) {
 if (bytes > 1024*1024*1024) {
 return sprintf("%d GiB", bytes/1024/1024/1024)
 } else if (bytes > 1024*1024) {
 return sprintf("%d MiB", bytes/1024/1024)
 } else if (bytes > 1024) {
 return sprintf("%d KiB", bytes/1024)
 } else {
 return sprintf("%d B", bytes)
 }
}

probe timer.s(1) {
 foreach([p,e] in total_io- limit 10)
 printf("%8d %15s r: %12s w: %12s\n",
 p, e, humanreadable(reads[p,e]),
 humanreadable(writes[p,e]))
}
```

SystemTap Beginners Guide
Example 4.13, “traceio.stp” prints the top ten executables generating I/O traffic over time. In addition, it also tracks the cumulative amount of I/O reads and writes done by those ten executables. This information is tracked and printed out in 1-second intervals, and in descending order.

Note that Example 4.13, “traceio.stp” also uses the local variable $return, which is also used by Example 4.9, “disktop.stp” from Section 4.2.1, “Summarizing Disk Read/Write Traffic”.


```
[...]
 Xorg r: 583401 KiB w: 0 KiB
 floaters r: 96 KiB w: 7130 KiB
 multiload-apple r: 538 KiB w: 537 KiB
 sshd r: 71 KiB w: 72 KiB
 pam_timestamp_c r: 138 KiB w: 0 KiB
 staprun r: 51 KiB w: 51 KiB
 snmpd r: 46 KiB w: 0 KiB
 pcscd r: 28 KiB w: 0 KiB
 irqbalance r: 27 KiB w: 4 KiB
 cupsd r: 4 KiB w: 18 KiB
 Xorg r: 588140 KiB w: 0 KiB
 floaters r: 97 KiB w: 7143 KiB
 multiload-apple r: 543 KiB w: 542 KiB
 sshd r: 72 KiB w: 72 KiB
 pam_timestamp_c r: 138 KiB w: 0 KiB
 staprun r: 51 KiB w: 51 KiB
 snmpd r: 46 KiB w: 0 KiB
 pcscd r: 28 KiB w: 0 KiB
 irqbalance r: 27 KiB w: 4 KiB
 cupsd r: 4 KiB w: 18 KiB
```

4.2.4. I/O Monitoring (By Device)

This section describes how to monitor I/O activity on a specific device.

Example 4.15. traceio2.stp

```
#!/usr/bin/env stap

global device_of_interest

probe begin {
 /* The following is not the most efficient way to do this.
 One could directly put the result of usrdev2kerndev()
 into device_of_interest. However, want to test out
 the other device functions */
 dev = usrdev2kerndev($1)
}
Example 4.15, “traceio2.stp” takes 1 argument: the whole device number. To get this number, use `stat -c "0x%D" directory`, where `directory` is located on the device you wish to monitor.

The `usrdev2kerndev()` function converts the whole device number into the format understood by the kernel. The output produced by `usrdev2kerndev()` is used in conjunction with the `MKDEV()`, `MINOR()`, and `MAJOR()` functions to determine the major and minor numbers of a specific device.

The output of Example 4.15, “traceio2.stp” includes the name and ID of any process performing a read/write, the function it is performing (`vfs_read` or `vfs_write`), and the kernel device number.

The following example is an excerpt from the full output of `stap traceio2.stp 0x805`, where `0x805` is the whole device number of `/home`. `/home` resides in `/dev/sda5`, which is the device we wish to monitor.

Example 4.16. Example 4.15, “traceio2.stp” Sample Output

```bash
[...]
synergyc(3722) vfs_read 0x800005
cupsd(2889) vfs_write 0x800005
cupsd(2889) vfs_write 0x800005
cupsd(2889) vfs_write 0x800005
[...]
```

4.2.5. Monitoring Reads and Writes to a File

This section describes how to monitor reads from and writes to a file in real time.

Example 4.17. inodewatch.stp

```bash
#!/usr/bin/env stap

probe vfs.write, vfs.read
{
    # dev and ino are defined by vfs.write and vfs.read
    if (dev == MKDEV($1,$2) # major/minor device
        && ino == $3)
        printf("%s(%d) %s 0x%x/%u\n",
            execname(), pid(), probefunc(), dev, ino)
    }
```
Example 4.17, “inodewatch.stp” takes the following information about the file as arguments on the command line:

- The file's major device number.
- The file's minor device number.
- The file's inode number.

To get this information, use `stat -c '%D %i' filename`, where `filename` is an absolute path.

For instance, if you wish to monitor the `/etc/crontab` file, run `stat -c '%D %i' /etc/crontab` first. This outputs the following output:

```
805 1078319
```

805 is the base-16 (hexadecimal) device number. The lower two digits are the minor device number, and the upper digits are the major number. 1078319 is the inode number. To start monitoring `/etc/crontab`, run `stap inodewatch.stp 0x8 0x05 1078319` (The `0x` prefixes indicate base-16 values).

The output of this command contains the name and ID of any process performing a read/write, the function it is performing (`vfs_read` or `vfs_write`), the device number (in hex format), and the inode number. Example 4.18, “Example 4.17, “inodewatch.stp” Sample Output” contains the output of `stap inodewatch.stp 0x8 0x05 1078319` (when `cat /etc/crontab` is executed while the script is running):

```
Example 4.18. Example 4.17, “inodewatch.stp” Sample Output

```

4.2.6. Monitoring Changes to File Attributes

This section describes how to monitor if any processes are changing the attributes of a targeted file, in real time.

Example 4.19. inodewatch2-simple.stp

```
Example 4.19. inodewatch2-simple.stp

global ATTR_MODE = 1

probe kernel.function("inode_setattr") {
    dev_nr = $inode->i_sb->s_dev
    inode_nr = $inode->i_ino
    if (dev_nr == ($1 << 20 | $2)) # major/minor device
        && inode_nr == $3
        && $attr->ia_valid & ATTR_MODE
        printf("%s(%d) %s 0x%x/%u %o %d
", execname(), pid(), probefunc(), dev_nr, inode_nr, $attr->ia_mode, uid())
}
```

Like Example 4.17, “inodewatch.stp” from Section 4.2.5, “Monitoring Reads and Writes to a File”, Example 4.19, “inodewatch2-simple.stp” takes the targeted file's device number (in integer format) and
inode number as arguments. For more information on how to retrieve this information, see Section 4.2.5, "Monitoring Reads and Writes to a File".

The output for Example 4.19, “inodewatch2-simple.stp” is similar to that of Example 4.17, "inodewatch.stp", except that Example 4.19, “inodewatch2-simple.stp” also contains the attribute changes to the monitored file, as well as the ID of the user responsible (uid()). Example 4.20, “Example 4.19, “inodewatch2-simple.stp” Sample Output” shows the output of Example 4.19, “inodewatch2-simple.stp” while monitoring /home/joe/bigfile when user joe executes chmod 777 /home/joe/bigfile and chmod 666 /home/joe/bigfile.

Example 4.20. Example 4.19, “inodewatch2-simple.stp” Sample Output

```bash
chmod(17448) inode_setattr 0x800005/6011835 100777 500
chmod(17449) inode_setattr 0x800005/6011835 100666 500
```

4.3. PROFILING

The following sections showcase scripts that profile kernel activity by monitoring function calls.

4.3.1. Counting Function Calls Made

This section describes how to identify how many times the system called a specific kernel function in a 30-second sample. Depending on your use of wildcards, you can also use this script to target multiple kernel functions.

Example 4.21. functioncallcount.stp

```bash
#!/usr/bin/env stap
# The following line command will probe all the functions
# in kernel's memory management code:
#
# stap  functioncallcount.stp **@mm/*.c

probe kernel.function(@1).call {  # probe functions listed on commandline
    called[probefunc()] <<< 1  # add a count efficiently
}

global called

probe end {
    foreach (fn in called-)  # Sort by call count (in decreasing order)
        # (fn+ in called)  # Sort by function name
        printf("%s %d\n", fn, @count(called[fn]))
    exit()
}
```

Example 4.21, “functioncallcount.stp” takes the targeted kernel function as an argument. The argument supports wildcards, which enables you to target multiple kernel functions up to a certain extent.

The output of Example 4.21, “functioncallcount.stp” contains the name of the function called and how many times it was called during the sample time (in alphabetical order). Example 4.22, “Example 4.21,
“functioncallcount.stp” Sample Output contains an excerpt from the output of
`stap functioncallcount.stp "*/mm/*.c"`

Example 4.22. Example 4.21, “functioncallcount.stp” Sample Output

```plaintext
[...]
__vma_link 97
__vma_link_file 66
__vma_link_list 97
__vma_link_rb 97
__xchg 103
add_page_to_active_list 102
add_page_to_inactive_list 19
add_to_page_cache 19
add_to_page_cache_lru 7
all_vm_events 6
alloc_pages_node 4630
alloc_slabmgmt 67
anon_vma_alloc 62
anon_vma_free 62
anon_vma_lock 66
anon_vma_prepare 98
anon_vma_unlink 97
anon_vma_unlock 66
arch_get_unmapped_area_topdown 94
arch_get_unmapped_exec_area 3
arch_unmap_area_topdown 97
atomic_add 2
atomic_add_negative 97
atomic_dec_and_test 5153
atomic_inc 470
atomic_inc_and_test 1
[...]
```

4.3.2. Call Graph Tracing

This section describes how to trace incoming and outgoing function calls.

Example 4.23. para-callgraph.stp

```plaintext
#!/usr/bin/env stap

function trace(entry_p, extra) {
  %($# > 1 ? if (tid() in trace) %)
  printf("%s%s%s %s
",
         thread_indent (entry_p),
         (entry_p>0?"->".:""),
         probefunc (),
         extra)
}

%( $# > 1 ?
```
Example 4.23, “para-callgraph.stp” takes two command-line arguments:

- The function(s) whose entry/exit you’d like to trace (1).
- A second optional trigger function (2), which enables or disables tracing on a per-thread basis. Tracing in each thread will continue as long as the trigger function has not exited yet.

Example 4.23, “para-callgraph.stp” uses thread_indent(); as such, its output contains the timestamp, process name, and thread ID of 1 (the probe function you are tracing). For more information about thread_indent(), see its entry in SystemTap Functions.

The following example contains an excerpt from the output for stap para-callgraph.stp 'kernel.function("*@fs/*c")' 'kernel.function("sys_read")':


```
[...]
267 gnome-terminal(2921): <-do_sync_read return=0xfffffffffffffff5
269 gnome-terminal(2921): <-vfs_read return=0xfffffffffffffff5
 0 gnome-terminal(2921): ->fput file=0xffff880111eebbc0
 2 gnome-terminal(2921): <-fput
 0 gnome-terminal(2921): ->fget_light fd=0x3 fput_needed=0xffff88010544df54
 3 gnome-terminal(2921): <-fget_light return=0xffff8801116ce980
 0 gnome-terminal(2921): ->vfs_read file=0xffff8801116ce980 buf=0xc86504 count=0x1000 pos=0xfff88010544df48
 4 gnome-terminal(2921): ->rw_verify_area read_write=0x0 file=0xffff8801116ce980 ppos=0xfff88010544df48 count=0x1000
 7 gnome-terminal(2921): <-rw_verify_area return=0x1000
 12 gnome-terminal(2921): <-do_sync_read buf=0xc86504 len=0x1000 ppos=0xfff88010544df48
 15 gnome-terminal(2921): <-do_sync_read return=0xfffffffffffffff5
 18 gnome-terminal(2921): <-vfs_read return=0xfffffffffffffff5
 0 gnome-terminal(2921): ->fput file=0xffff8801116ce980
```

4.3.3. Determining Time Spent in Kernel and User Space

This section illustrates how to determine the amount of time any given thread is spending in either kernel or user-space.

Example 4.25. thread-times.stp
Example 4.25, “thread-times.stp” lists the top 20 processes currently taking up CPU time within a 5-second sample, along with the total number of CPU ticks made during the sample. The output of this script also notes the percentage of CPU time each process used, as well as whether that time was spent in kernel space or user space.

<table>
<thead>
<tr>
<th>tid</th>
<th>%user</th>
<th>%kernel (of 20002 ticks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3.4. Monitoring Polling Applications

This section describes how to identify and monitor which applications are polling. Doing so allows you to track unnecessary or excessive polling, which can help you pinpoint areas for improvement in terms of CPU usage and power savings.

Example 4.27. timeout.stp

```bash
#! /usr/bin/env stap
# Copyright (C) 2009 Red Hat, Inc.
# Written by Ulrich Drepper <drepper@redhat.com>
# Modified by William Cohen <wcohen@redhat.com>

global process, timeout_count, to
global poll_timeout, epoll_timeout, select_timeout, itimer_timeout
global nanosleep_timeout, futex_timeout, signal_timeout

probe syscall.poll, syscall.epoll_wait {
    if (timeout) to[pid()] = timeout
}

probe syscall.poll.return {
    p = pid()
    if ($return == 0 && to[p] > 0 ) {
        poll_timeout[p]++
        timeout_count[p]++
        process[p] = execname()
        delete to[p]
    }
}

probe syscall.epoll_wait.return {
    p = pid()
}
```

SystemTap Beginners Guide
if ($return == 0 && to[p] > 0) {
 epoll_timeout[p]++
 timeout_count[p]++
 process[p] = execname()
 delete to[p]
}
}

probe syscall.select.return {
 if ($return == 0) {
 p = pid()
 select_timeout[p]++
 timeout_count[p]++
 process[p] = execname()
 }
}

probe syscall.futex.return {
 if (errno_str($return) == "ETIMEDOUT") {
 p = pid()
 futex_timeout[p]++
 timeout_count[p]++
 process[p] = execname()
 }
}

probe syscall.nanosleep.return {
 if ($return == 0) {
 p = pid()
 nanosleep_timeout[p]++
 timeout_count[p]++
 process[p] = execname()
 }
}

probe kernel.function("it_real_fn") {
 p = pid()
 itimer_timeout[p]++
 timeout_count[p]++
 process[p] = execname()
}

probe syscall.rt_sigtimedwait.return {
 if (errno_str($return) == "EAGAIN") {
 p = pid()
 signal_timeout[p]++
 timeout_count[p]++
 process[p] = execname()
 }
}

probe syscall.exit {
 p = pid()
 if (p in process) {
 delete process[p]
 delete timeout_count[p]
Example 4.27, “timeout.stp” tracks how many times each application used the following system calls over time:

- `poll`
- `select`
- `epoll`
- `itimer`
- `futex`
- `nanosleep`
- `signal`

In some applications, these system calls are used excessively. As such, they are normally identified as “likely culprits” for polling applications. Note, however, that an application may be using a different system call to poll excessively; sometimes, it is useful to find out the top system calls used by the system (see Section 4.3.5, “Tracking Most Frequently Used System Calls” for instructions). Doing so can help you identify any additional suspects, which you can add to Example 4.27, “timeout.stp” for tracking.

Example 4.28. Example 4.27, “timeout.stp” Sample Output

<table>
<thead>
<tr>
<th>uid</th>
<th>poll</th>
<th>select</th>
<th>epoll</th>
<th>itimer</th>
<th>futex</th>
<th>nanosleep</th>
<th>signal</th>
<th>process</th>
</tr>
</thead>
<tbody>
<tr>
<td>28937</td>
<td>148793</td>
<td>0</td>
<td>0</td>
<td>4727</td>
<td>37288</td>
<td>0</td>
<td>0</td>
<td>firefox</td>
</tr>
<tr>
<td>22945</td>
<td>0.56949</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>scim-bridge</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>36414</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>swapper</td>
</tr>
<tr>
<td>4275</td>
<td>23140</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>mixer_applet2</td>
</tr>
<tr>
<td>4191</td>
<td>0.14405</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>scim-launcher</td>
</tr>
<tr>
<td>22941</td>
<td>7908</td>
<td>1</td>
<td>0</td>
<td>62</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>gnome-terminal</td>
</tr>
<tr>
<td>4261</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>7622</td>
<td>0</td>
<td>escd</td>
</tr>
<tr>
<td>PID</td>
<td>UID</td>
<td>GID</td>
<td>R</td>
<td>ST</td>
<td>TT</td>
<td>CERN</td>
<td>PRT</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>3695</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7622</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3483</td>
<td>0</td>
<td>7206</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4189</td>
<td>6916</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1863</td>
<td>5767</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2562</td>
<td>0</td>
<td>2881</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1438</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4257</td>
<td>4255</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4278</td>
<td>3876</td>
<td>0</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4083</td>
<td>0</td>
<td>1331</td>
<td>0</td>
<td>1728</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3921</td>
<td>1603</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4248</td>
<td>1591</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3165</td>
<td>0</td>
<td>1441</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>29548</td>
<td>0</td>
<td>1440</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1862</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1438</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

You can increase the sample time by editing the timer in the second probe (`timer.s()`). The output of Example 4.21, “functioncallcount.stp” contains the name and UID of the top 20 polling applications, along with how many times each application performed each polling system call (over time). Example 4.28, “Example 4.27, “timeout.stp” Sample Output” contains an excerpt of the script:

4.3.5. Tracking Most Frequently Used System Calls

Example 4.27, “timeout.stp” from Section 4.3.4, “Monitoring Polling Applications” helps you identify which applications are polling by pointing out which ones used the following system calls most frequently:

- `poll`
- `select`
- `epoll`
- `itimer`
- `futex`
- `nanosleep`
- `signal`

However, in some systems, a different system call might be responsible for excessive polling. If you suspect that a polling application is using a different system call to poll, you need to identify first the top system calls used by the system. To do this, use Example 4.29, “topsys.stp”.

Example 4.29. topsys.stp

```bash
#!/usr/bin/env stap
#
# This script continuously lists the top 20 systemcalls in the interval
# 5 seconds
#

global sysexecs_count

probe syscall.* {
```
Example 4.29, “topsys.stp” lists the top 20 system calls used by the system per 5-second interval. It also lists how many times each system call was used during that period. Refer to Example 4.30, “Example 4.29, “topsys.stp” Sample Output” for a sample output.

Example 4.30. Example 4.29, “topsys.stp” Sample Output

```
--------------------------------------------------------------
SYSCALL      COUNT
gettimeofday       1857
read       1821
ioctl       1568
poll       1033
close        638
open        503
select        455
write        391
writev        335
futex        303
recvmsg        251
socket        137
clock_gettime        124
rt_sigprocmask        121
sendto        120
setitimer        106
stat         90
time         81
sigreturn         72
fstat         66
--------------------------------------------------------------
```

4.3.6. Tracking System Call Volume Per Process

This section illustrates how to determine which processes are performing the highest volume of system calls. In previous sections, we’ve described how to monitor the top system calls used by the system over time (Section 4.3.5, “Tracking Most Frequently Used System Calls”). We’ve also described how to
identify which applications use a specific set of "polling suspect" system calls the most (Section 4.3.4, “Monitoring Polling Applications”). Monitoring the volume of system calls made by each process provides more data in investigating your system for polling processes and other resource hogs.

Example 4.31. syscalls_by_proc.stp

```bash
#!/usr/bin/env stap

# Copyright (C) 2006 IBM Corp.
#
# This file is part of systemtap, and is free software. You can
# redistribute it and/or modify it under the terms of the GNU General
# Public License (GPL); either version 2, or (at your option) any
# later version.
#
# Print the system call count by process name in descending order.
#
global syscalls

probe begin {
    print ("Collecting data... Type Ctrl-C to exit and display results\n")
}

probe syscall.* {
    syscalls[execname()]++
}

probe end {
    printf ("%-10s %-s\n", "#SysCalls", "Process Name")
    foreach (proc in syscalls-)
        printf("%-10d %-s\n", syscalls[proc], proc)
}
```

Example 4.31, “syscalls_by_proc.stp” lists the top 20 processes performing the highest number of system calls. It also lists how many system calls each process performed during the time period. See Example 4.32, “Example 4.29, “topsys.stp” Sample Output” for a sample output.

Example 4.32. Example 4.29, “topsys.stp” Sample Output

Collecting data... Type Ctrl-C to exit and display results
#SysCalls Process Name
1577 multiload-apple
692 synergyc
408 pcscd
376 mixer_applet2
299 gnome-terminal
293 Xorg
206 scim-panel-gtk
95 gnome-power-man
90 artdsd
gnome-term
85 dhcdbd
84 scim-bridge
If you prefer the output to display the process IDs instead of the process names, use the following script instead.

Example 4.33. syscalls_by_pid.stp

```bash
#!/usr/bin/env stap

# Copyright (C) 2006 IBM Corp.
#
# This file is part of systemtap, and is free software. You can
# redistribute it and/or modify it under the terms of the GNU General
# Public License (GPL); either version 2, or (at your option) any
# later version.
#
# Print the system call count by process ID in descending order.
#
# global syscalls

probe begin {
    print ("Collecting data... Type Ctrl-C to exit and display results\n")
}

probe syscall.* {
    syscalls[pid()]++
}

probe end {
    printf ("%-10s %-s\n", "#SysCalls", "PID")
    foreach (pid in syscalls-)
        printf("%-10d %-d\n", syscalls[pid], pid)
}

probe timer.s(5)
{
    exit()
}
```

As indicated in the output, you need to manually exit the script in order to display the results. You can add a timed expiration to either script by simply adding a `timer.s()` probe; for example, to instruct the script to expire after 5 seconds, add the following probe to the script:

```bash
probe timer.s(5)
{
    exit()
}
```

4.4. IDENTIFYING CONTENTED USER-SPACE LOCKS
This section describes how to identify contended user-space locks throughout the system within a specific time period. The ability to identify contended user-space locks can help you investigate hangs that you suspect may be caused by **futex** contentions.

Simply put, a **futex** contention occurs when multiple processes are trying to access the same region of memory. In some cases, this can result in a deadlock between the processes in contention, thereby appearing as an application hang.

To do this, **Example 4.34, “futexes.stp”** probes the **futex** system call.

Example 4.34. futexes.stp

```sh
#!/usr/bin/env stap

# This script tries to identify contended user-space locks by hooking into the futex system call.

global thread_thislock # short
global thread_blocktime #
global FUTEX_WAIT = 0 /*, FUTEX_WAKE = 1 */

global lock_waits # long-lived stats on (tid,lock) blockage elapsed time
global process_names # long-lived pid-to-execname mapping

probe syscall.futex {
    if (op != FUTEX_WAIT) next # don’t care about WAKE event originator
    t = tid ()
    process_names[pid()] = execname()
    thread_thislock[t] = $uaddr
    thread_blocktime[t] = gettimeofday_us()
}

probe syscall.futex.return {
    t = tid()
    ts = thread_blocktime[t]
    if (ts) {
        elapsed = gettimeofday_us() - ts
        lock_waits[pid(), thread_thislock[t]] <<= elapsed
        delete thread_blocktime[t]
        delete thread_thislock[t]
    }
}

probe end {
    foreach ([pid+, lock] in lock_waits)
        printf (“%s[%d] lock %p contended %d times, %d avg us\n”,
            process_names[pid], pid, lock, @count(lock_waits[pid,lock]),
            @avg(lock_waits[pid,lock]))
}
```

Example 4.34, “futexes.stp” needs to be manually stopped; upon exit, it prints the following information:

- Name and ID of the process responsible for a contention
- The region of memory it contested
- How many times the region of memory was contended
- Average time of contention throughout the probe

Example 4.35, “Example 4.34, “futexes.stp” Sample Output” contains an excerpt from the output of Example 4.34, “futexes.stp” upon exiting the script (after approximately 20 seconds).

Example 4.35. Example 4.34, “futexes.stp” Sample Output

[...]
automount[2825] lock 0x00bc7784 contended 18 times, 999931 avg us
synergyc[3686] lock 0x0861e96c contended 192 times, 101991 avg us
synergyc[3758] lock 0x08d98744 contended 192 times, 101990 avg us
synergyc[3938] lock 0x0982a8b4 contended 192 times, 101997 avg us
[...]
CHAPTER 5. UNDERSTANDING SYSTEMTAP ERRORS

This chapter explains errors that are commonly encountered while using SystemTap.

Many diagnostic errors include strings that suggest reading a man page, such as:

[man warning::example1]
[man error::example2]

In such instances, see the respective man pages for warning::example1 and error::example2 which provides explanatory information specific to that diagnostic.

5.1. PARSE AND SEMANTIC ERRORS

These types of errors occur while SystemTap attempts to parse and translate the script into C, prior to being converted into a kernel module. For example type errors result from operations that assign invalid values to variables or arrays.

parse error: expected abc, saw xyz
The script contains a grammatical/typographical error. SystemTap detected type of construct that is incorrect, given the context of the probe.

The following invalid SystemTap script is missing its probe handlers:

probe vfs.read
probe vfs.write

It results in the following error message showing that the parser was expecting something other than the probe keyword in column 1 of line 2:

parse error: expected one of `. , (? ! { = +='
saw: keyword at perror.stp:2:1
1 parse error(s).

parse error: embedded code in unprivileged script
The script contains unsafe embedded C code (blocks of code surrounded by %{ %}). SystemTap allows you to embed C code in a script, which is useful if there are no tapsets to suit your purposes. However, embedded C constructs are not safe; as such, SystemTap warns you with this error if such constructs appear in the script.

If you are sure of the safety of any similar constructs in the script and are member of stapdev group (or have root privileges), run the script in guru mode by using the -g option:

stap -g script

semantic error: type mismatch for identifier Ident' ... string vs. long
The ident function in the script used the wrong type (%s or %d). This error presents itself in Example 5.1, "error-variable.stp". Because the execname() function returns a string, the format specifier should be %s, not %d.

Example 5.1. error-variable.stp
The identifier (a variable, for example) was used, but no type (integer or string) could be determined. This occurs, for instance, if you use a variable in a `printf` statement while the script never assigns a value to the variable.

semantic error: Expecting symbol or array index expression

SystemTap could not assign a value to a variable or to a location in an array. The destination for the assignment is not a valid destination. The following example code would generate this error:

```c
while searching for arity N function, semantic error: unresolved function call
```

A function call or array index expression in the script used an invalid number of arguments/parameters. In SystemTap `arity` can either see the number of indices for an array, or the number of parameters to a function.

semantic error: array locals not supported, missing global declaration?

The script used an array operation without declaring the array as a global variable (global variables can be declared after their use in SystemTap scripts). Similar messages appear if an array is used, but with inconsistent arities.

semantic error: variable 'vaar' modified during 'foreach' iteration

The `var` array is being modified (being assigned to or deleted from) within an active `foreach` loop. This error also displays if an operation within the script performs a function call within the `foreach` loop.

semantic error: probe point mismatch at position N, while resolving probe point pnt

SystemTap did not understand what the event or SystemTap function `pnt` refers to. This usually means that SystemTap could not find a match for `pnt` in the tapset library. The `N` refers to the line and column of the error.

semantic error: no match for probe point, while resolving probe point pnt

The `pnt` events and handler function could not be resolved for a variety of reasons. This error occurs when the script contains the `kernel.function("name")` event, and `name` does not exist. In some cases, the error could also mean the script contains an invalid kernel file name or source-line number.

semantic error: unresolved target-symbol expression

A handler in the script references a target variable, but the value of the variable could not be resolved. This error could also mean that a handler is referencing a target variable that is not valid in the context when it was referenced. This may be a result of compiler optimization of the generated code.

semantic error: libdwfl failure

There was a problem processing the debugging information. In most cases, this error results from the installation of a kernel-debuginfo package. The installed kernel-debuginfo package itself may have some consistency or correctness problems.
semantic error: cannot find package debuginfo

SystemTap could not find a suitable kernel-debuginfo at all.

5.2. RUN TIME ERRORS AND WARNINGS

Runtime errors and warnings occur when the SystemTap instrumentation has been installed and is collecting data on the system.

WARNING: Number of errors: \(N\), skipped probes: \(M\)

Errors, skipped probes, or both occurred during this run. \(N\) and \(M\) are the numbers of errors encountered and probes skipped due to conditions, such as too much time required to execute event handlers over an interval of time.

- **division by 0**
 The script code performed an invalid division.

- **aggregate element not found**
 A statistics extractor function other than \@count was invoked on an aggregate that has not had any values accumulated yet. This is similar to a division by zero.

- **aggregation overflow**
 An array containing aggregate values contains too many distinct key pairs at this time.

- **MAXNESTING exceeded**
 Too many levels of function call nesting were attempted. The default nesting of function calls allowed is 10.

- **MAXACTION exceeded**
 The probe handler attempted to execute too many statements in the probe handler. The default number of actions allowed in a probe handler is 1000.

- **kernel/user string copy fault at ADDR**
 The probe handler attempted to copy a string from kernel or user-space at an invalid address (ADDR).

- **pointer dereference fault**
 There was a fault encountered during a pointer dereference operation such as a target variable evaluation.
CHAPTER 6. REFERENCES

This chapter enumerates other references for more information about SystemTap. It is advisable that you see these sources in the course of writing advanced probes and tapsets.

SystemTap Wiki

The SystemTap Wiki is a collection of links and articles related to the deployment, usage, and development of SystemTap. You can find it at http://sourceware.org/systemtap/wiki/HomePage.

SystemTap Tutorial

Much of the content in this book comes from the SystemTap Tutorial. The SystemTap Tutorial is a more appropriate reference for users with intermediate to advanced knowledge of C++ and kernel development, and can be found at http://sourceware.org/systemtap/tutorial/.

man stapprobes

The stapprobes man page enumerates a variety of probe points supported by SystemTap, along with additional aliases defined by the SystemTap tapset library. The bottom of the man page includes a list of other man pages enumerating similar probe points for specific system components, such as stapprobes.scsi, stapprobes.kprocess, stapprobes.signal, etc.

man stapfuncs

The stapfuncs man page enumerates numerous functions supported by the SystemTap tapset library, along with the prescribed syntax for each one. Note, however, that this is not a complete list of all supported functions; there are more undocumented functions available.

SystemTap Language Reference

This document is a comprehensive reference of SystemTap’s language constructs and syntax. It is recommended for users with a rudimentary to intermediate knowledge of C++ and other similar programming languages. The SystemTap Language Reference is available to all users at http://sourceware.org/systemtap/langref/

Tapset Developers Guide

Once you have sufficient proficiency in writing SystemTap scripts, you can then try your hand out on writing your own tapsets. The Tapset Developers Guide describes how to add functions to your tapset library.

Test Suite

The systemtap-testsuite package allows you to test the entire SystemTap toolchain without having to build from source. In addition, it also contains numerous examples of SystemTap scripts you can study and test; some of these scripts are also documented in Chapter 4, Useful SystemTap Scripts.

By default, the example scripts included in systemtap-testsuite are located in /usr/share/systemtap/testsuite/systemtap.examples.
APPENDIX A. REVISION HISTORY

Revision 7-7 Mon Aug 5 2019 Vladimír Slávik
 Release for Red Hat Enterprise Linux 7.7 GA.

Revision 7-6 Tue Oct 30 2018 Vladimír Slávik
 Release for Red Hat Enterprise Linux 7.6 GA.

Revision 7-5.1 Mon Jun 18 2018 Radek Bíba
 Use an id for the stap test screen.

Revision 7-5 Tue Jan 09 2018 Vladimír Slávik
 Release for Red Hat Enterprise Linux 7.5 Beta.

Revision 7-4 Wed Jul 26 2017 Vladimír Slávik
 Release for Red Hat Enterprise Linux 7.4.

Revision 7-3.9 Tue May 16 2017 Robert Krátký
 Build for 7.4 Beta release.

Revision 1-8 Wed Oct 19 2016 Robert Kratky
 Release for Red Hat Enterprise Linux 7.3.

Revision 1-6 Wed Jan 20 2016 Robert Kratky
 Async release with many fixes.

Revision 1-5 Thu Nov 11 2015 Robert Kratky
 Release for Red Hat Enterprise Linux 7.2.

Revision 0-3 Fri Dec 6 2013 Jacquelynn East
 Release for Red Hat Enterprise Linux 7.0.
INDEX

Symbols

$count

sample usage

local variables, Tracking I/O Time For Each File Read or Write

$return

sample usage

local variables, Summarizing Disk Read/Write Traffic, Track Cumulative IO

@avg (integer extractor)

computing for statistical aggregates

array operations, Computing for Statistical Aggregates

@count (integer extractor)

computing for statistical aggregates

array operations, Computing for Statistical Aggregates

@max (integer extractor)

computing for statistical aggregates

array operations, Computing for Statistical Aggregates

@min (integer extractor)

computing for statistical aggregates

array operations, Computing for Statistical Aggregates

@sum (integer extractor)

computing for statistical aggregates

array operations, Computing for Statistical Aggregates

A

adding values to statistical aggregates

computing for statistical aggregates

array operations, Computing for Statistical Aggregates

advantages of cross-instrumentation, Generating Instrumentation for Other Computers

aggregate element not found

runtime errors/warnings
understanding SystemTap errors, Run Time Errors and Warnings

aggregates (statistical)
array operations, Computing for Statistical Aggregates

aggregation overflow
runtime errors/warnings
understanding SystemTap errors, Run Time Errors and Warnings

algebraic formulas using arrays
reading values from arrays
array operations, Reading Values From Arrays

architecture notation, determining, Installing Required Kernel Information Packages
architecture of SystemTap, Architecture
array locals not supported
parse/semantics error
understanding SystemTap errors, Parse and Semantic Errors

array operations
assigning associated values, Assigning an Associated Value
associating timestamps to process names, Assigning an Associated Value

associative arrays, Array Operations in SystemTap
clearing arrays/array elements, Clearing/Deleting Arrays and Array Elements
delete operator, Clearing/Deleting Arrays and Array Elements
multiple array operations within the same probe, Clearing/Deleting Arrays and Array Elements
virtual file system reads (non-cumulative), tallying, Clearing/Deleting Arrays and Array Elements

computing for statistical aggregates, Computing for Statistical Aggregates
@avg (integer extractor), Computing for Statistical Aggregates
@count (integer extractor), Computing for Statistical Aggregates
@max (integer extractor), Computing for Statistical Aggregates
@min (integer extractor), Computing for Statistical Aggregates
@sum (integer extractor), Computing for Statistical Aggregates
adding values to statistical aggregates, Computing for Statistical Aggregates
count (operator), Computing for Statistical Aggregates
extracting data collected by statistical aggregates, Computing for Statistical Aggregates

conditional statements, using arrays in, Using Arrays in Conditional Statements
testing for array membership, Using Arrays in Conditional Statements
deleting arrays and array elements, Clearing/Deleting Arrays and Array Elements
incrementing associated values, Incrementing Associated Values
tallying virtual file system reads (VFS reads), Incrementing Associated Values

multiple elements in an array, Processing Multiple Elements in an Array
processing multiple elements in an array, Processing Multiple Elements in an Array
cumulative virtual file system reads, tallying, Processing Multiple Elements in an Array
foreach, Processing Multiple Elements in an Array
iterations, processing elements in an array as, Processing Multiple Elements in an Array
limiting the output of foreach, Processing Multiple Elements in an Array
ordering the output of foreach, Processing Multiple Elements in an Array

reading values from arrays, Reading Values From Arrays
computing for timestamp deltas, Reading Values From Arrays
empty unique keys, Reading Values From Arrays
using arrays in simple computations, Reading Values From Arrays

arrays, Associative Arrays
(see also associative arrays)

assigning associated values
array operations, Assigning an Associated Value
associating timestamps to process names, Assigning an Associated Value

associating timestamps to process names
array operations, Assigning an Associated Value

associated values
introduction
arrays, Associative Arrays

associating timestamps to process names
assigning associated values
array operations, Assigning an Associated Value

associative arrays
introduction, Associative Arrays
associated values, Associative Arrays
deprecated, Associative Arrays
element, Associative Arrays
example, Associative Arrays
index expression, Associative Arrays
key pairs, Associative Arrays
syntax, Associative Arrays
unique keys, Associative Arrays
asynchronous events
 Events, Event

B
begin
 Events, Event

building instrumentation modules from SystemTap scripts, Generating Instrumentation for Other Computers
building kernel modules from SystemTap scripts, Generating Instrumentation for Other Computers

C
call graph tracing
 examples of SystemTap scripts, Call Graph Tracing

capabilities of SystemTap
 Introduction, SystemTap Capabilities

changes to file attributes, monitoring
 examples of SystemTap scripts, Monitoring Changes to File Attributes

clearing arrays/array elements
 array operations, Clearing/Deleting Arrays and Array Elements
 delete operator, Clearing/Deleting Arrays and Array Elements
 multiple array operations within the same probe, Clearing/Deleting Arrays and Array Elements
 virtual file system reads (non-cumulative), tallying, Clearing/Deleting Arrays and Array Elements

command-line arguments
 SystemTap handler constructs
 handlers, Command-Line Arguments

compiling instrumentation/kernel modules from SystemTap scripts, Generating Instrumentation for Other Computers

components
 SystemTap scripts
 introduction, SystemTap Scripts

computing for statistical aggregates
 array operations, Computing for Statistical Aggregates
 @avg (integer extractor), Computing for Statistical Aggregates
 @count (integer extractor), Computing for Statistical Aggregates
computing for timestamp deltas
 reading values from arrays
 array operations, Reading Values From Arrays

conditional operators
 conditional statements
 handlers, Conditional Statements

conditional statements, using arrays in
 array operations, Using Arrays in Conditional Statements
 testing for array membership, Using Arrays in Conditional Statements

CONFIG_HZ, computing for, Variables
contended user-space locks (futex contentions), identifying
 examples of SystemTap scripts, Identifying Contended User-Space Locks

copy fault
 runtime errors/warnings
 understanding SystemTap errors, Run Time Errors and Warnings

count operator
 computing for statistical aggregates
 array (operator), Computing for Statistical Aggregates

counting function calls
 examples of SystemTap scripts, Counting Function Calls Made

CPU ticks
 examples of SystemTap scripts, Determining Time Spent in Kernel and User Space

cpu()
 functions, Systemtap Handler/Body

cross-compiling, Generating Instrumentation for Other Computers
cross-instrumentation
advantages of, Generating Instrumentation for Other Computers
building kernel modules from SystemTap scripts, Generating Instrumentation for Other Computers
configuration
 host system and target system, Generating Instrumentation for Other Computers
generating instrumentation from SystemTap scripts, Generating Instrumentation for Other Computers
host system, Generating Instrumentation for Other Computers
instrumentation module, Generating Instrumentation for Other Computers
target kernel, Generating Instrumentation for Other Computers
target system, Generating Instrumentation for Other Computers

cTIME() functions, Systemtap Handler/Body
cTIME(), example of usage
 script examples, Summarizing Disk Read/Write Traffic
cumulative I/O, tracking
 examples of SystemTap scripts, Track Cumulative IO
cumulative virtual file system reads, tallying
 processing multiple elements in an array
 array operations, Processing Multiple Elements in an Array

D
delete operator
 clearing arrays/array elements
 array operations, Clearing/Deleting Arrays and Array Elements
determining architecture notation, Installing Required Kernel Information Packages
determining the kernel version, Installing Required Kernel Information Packages
determining time spent in kernel and user space
 examples of SystemTap scripts, Determining Time Spent in Kernel and User Space
device I/O, monitoring
 examples of SystemTap scripts, I/O Monitoring (By Device)
device number of a file (integer format)
 examples of SystemTap scripts, Monitoring Reads and Writes to a File
disk I/O traffic, summarizing
 script examples, Summarizing Disk Read/Write Traffic
division by 0
runtime errors/warnings
understanding SystemTap errors, Run Time Errors and Warnings

documentation goals
 Introduction, Documentation Goals

E
embedded code in unprivileged script
parse/semantics error
 understanding SystemTap errors, Parse and Semantic Errors

empty unique keys
 reading values from arrays
 array operations, Reading Values From Arrays

end
 Events, Event

errors
 parse/semantics error, Parse and Semantic Errors
 embedded code in unprivileged script, Parse and Semantic Errors
 expected symbol/array index expression, Parse and Semantic Errors
 grammatical/typographical script error, Parse and Semantic Errors
 guru mode, Parse and Semantic Errors
 invalid values to variables/arrays, Parse and Semantic Errors
 libdwfl failure, Parse and Semantic Errors
 no match for probe point, Parse and Semantic Errors
 non-global arrays, Parse and Semantic Errors
 probe mismatch, Parse and Semantic Errors
 type mismatch for identifier, Parse and Semantic Errors
 unresolved function call, Parse and Semantic Errors
 unresolved target-symbol expression, Parse and Semantic Errors
 unresolved type for identifier, Parse and Semantic Errors
 variable modified during 'foreach', Parse and Semantic Errors

runtime errors/warnings, Run Time Errors and Warnings
 aggregate element not found, Run Time Errors and Warnings
 aggregation overflow, Run Time Errors and Warnings
 copy fault, Run Time Errors and Warnings
 division by 0, Run Time Errors and Warnings
event types
Understanding How SystemTap Works, Understanding How SystemTap Works

Events
asynchronous events, Event
begin, Event
end, Event
events and handlers, Understanding How SystemTap Works
events wildcards, Event
example
introduction
arrays, Associative Arrays

events and handlers, Understanding How SystemTap Works
easynchronous events, Event
begin, Event
end, Event
examples of synchronous and asynchronous events, Event
introduction, Event
kernel.function("function"), Event
kernel.trace("tracepoint"), Event
module("module"), Event
synchronous events, Event
syscall.system_call, Event
timer events, Event
vfs.file_operation, Event
wildcards, Event

events and handlers, Understanding How SystemTap Works
examples of SystemTap scripts, Call Graph Tracing
events and handlers, Understanding How SystemTap Works
examples of synchronous and asynchronous events, Event
examples of SystemTap scripts, Useful SystemTap Scripts
call graph tracing, Call Graph Tracing
CPU ticks, Determining Time Spent in Kernel and User Space
cmtime(), example of usage, Summarizing Disk Read/Write Traffic
determining time spent in kernel and user space, Determining Time Spent in Kernel and User Space
file device number (integer format), Monitoring Reads and Writes to a File
futex system call, Identifying Contended User-Space Locks
identifying contended user-space locks (futex contentions),

if/else conditionals, alternative syntax,

inode number,

monitoring changes to file attributes,

monitoring device I/O,

monitoring I/O time,

monitoring incoming TCP connections,

monitoring polling applications,

monitoring reads and writes to a file,

monitoring system calls,

monitoring system calls (volume per process),

multiple command-line arguments, example of,

net/socket.c, tracing functions from,

network profiling,

process deadlocks (arising from futex contentions),

stat -c, determining file device number (integer format),

stat -c, determining whole device number,

summarizing disk I/O traffic,

tallying function calls,

thread_indent(), sample usage,

timer.ms(), sample usage,

timer.s(), sample usage,

tracing functions called in network socket code,

tracking cumulative I/O,

trigger function,

usrdev2kerndev(),

whole device number (usage as a command-line argument),

exceeded MAXACTION

runtime errors/warnings

understanding SystemTap errors,

exceeded MAXNESTING

runtime errors/warnings

understanding SystemTap errors,

exit()

functions,

expected symbol/array index expression
parse/semantics error
understanding SystemTap errors, Parse and Semantic Errors

extracting data collected by statistical aggregates
computing for statistical aggregates
array operations, Computing for Statistical Aggregates

F
file attributes, monitoring changes to
examples of SystemTap scripts, Monitoring Changes to File Attributes

file device number (integer format)
examples of SystemTap scripts, Monitoring Reads andWrites to a File

file reads/writes, monitoring
examples of SystemTap scripts, Monitoring Reads and Writes to a File

flight recorder mode, SystemTap Flight Recorder Mode
file mode, File Flight Recorder
in-memory mode, In-memory Flight Recorder

for loops
conditional statements
handlers, Conditional Statements

foreach
processing multiple elements in an array
array operations, Processing Multiple Elements in an Array

format
introduction
arrays, Associative Arrays

format and syntax
printf(), Systemtap Handler/Body
SystemTap handler constructs
handlers, Variables

SystemTap scripts
introduction, SystemTap Scripts

format specifiers
printf(), Systemtap Handler/Body

format strings
printf(), Systemtap Handler/Body

function call (unresolved)
parse/semantics error
understanding SystemTap errors, Parse and Semantic Errors

function calls (incoming/outgoing), tracing
elements of SystemTap scripts, Call Graph Tracing

function calls, tallying
elements of SystemTap scripts, Counting Function Calls Made

functions, Systemtap Handler/Body
cpu(), Systemtap Handler/Body
ctime(), Systemtap Handler/Body
gettimeofday_s(), Systemtap Handler/Body
pp(), Systemtap Handler/Body
SystemTap scripts
introduction, SystemTap Scripts

target(), Systemtap Handler/Body
thread_indent(), Systemtap Handler/Body
tid(), Systemtap Handler/Body
uid(), Systemtap Handler/Body

functions (used in handlers)
exit(), Systemtap Handler/Body

functions called in network socket code, tracing
examples of SystemTap scripts, Tracing Functions Called in Network Socket Code

futex contention, definition
examples of SystemTap scripts, Identifying Contended User-Space Locks

futex contentions, identifying
examples of SystemTap scripts, Identifying Contended User-Space Locks

futex system call
examples of SystemTap scripts, Identifying Contended User-Space Locks

G
gettimeofday_s()
functions, Systemtap Handler/Body

global
 SystemTap handler constructs
 handlers, Variables

goals, documentation
 Introduction, Documentation Goals

grammatical/typographical script error
parse/semantics error
 understanding SystemTap errors, Parse and Semantic Errors

guru mode
parse/semantics error
 understanding SystemTap errors, Parse and Semantic Errors

H
 handler functions, Systemtap Handler/Body
 handlers
 conditional statements, Conditional Statements
 conditional operators, Conditional Statements
 for loops, Conditional Statements
 if/else, Conditional Statements
 while loops, Conditional Statements

introduction, Systemtap Handler/Body
 SystemTap handler constructs, Basic SystemTap Handler Constructs
 command-line arguments, Command-Line Arguments
 global, Variables
 syntax and format, Basic SystemTap Handler Constructs
 variables, Variables

handlers and events, Understanding How SystemTap Works
 SystemTap scripts
 introduction, SystemTap Scripts

heaviest disk reads/writes, identifying
 script examples, Summarizing Disk Read/Write Traffic

host system
 cross-instrumentation, Generating Instrumentation for Other Computers
host system and target system
 cross-instrumentation
 configuration, Generating Instrumentation for Other Computers

I

I/O monitoring (by device)
 examples of SystemTap scripts, I/O Monitoring (By Device)

I/O time, monitoring
 examples of SystemTap scripts, Tracking I/O Time For Each File Read or Write

I/O traffic, summarizing
 script examples, Summarizing Disk Read/Write Traffic

identifier type mismatch
 parse/semantics error
 understanding SystemTap errors, Parse and Semantic Errors

identifying contended user-space locks (futex contentions)
 examples of SystemTap scripts, Identifying Contended User-Space Locks

identifying heaviest disk reads/writes
 script examples, Summarizing Disk Read/Write Traffic

if/else
 conditional statements
 handlers, Conditional Statements

if/else conditionals, alternative syntax
 examples of SystemTap scripts, Network Profiling

if/else statements, using arrays in
 array operations, Using Arrays in Conditional Statements

incoming TCP connections, monitoring
 examples of SystemTap scripts, Monitoring Incoming TCP Connections

incoming/outgoing function calls, tracing
 examples of SystemTap scripts, Call Graph Tracing

incrementing associated values
 array operations, Incrementing Associated Values
 tallying virtual file system reads (VFS reads), Incrementing Associated Values
index expression
introduction
arrays, Associative Arrays

initial testing, Initial Testing
inode number
examples of SystemTap scripts, Monitoring Reads and Writes to a File

Installation
initial testing, Initial Testing
kernel information packages, Installing Required Kernel Information Packages
kernel version, determining the, Installing Required Kernel Information Packages
required packages, Installing Required Kernel Information Packages
Setup and Installation, Installation and Setup
systemtap package, Installing SystemTap
systemtap-runtime package, Installing SystemTap

instrumentation module
cross-instrumentation, Generating Instrumentation for Other Computers

instrumentation modules from SystemTap scripts, building, Generating Instrumentation for Other Computers

integer extractors
computing for statistical aggregates
array operations, Computing for Statistical Aggregates

Introduction
capabilities of SystemTap, SystemTap Capabilities
documentation goals, Documentation Goals
goals, documentation, Documentation Goals
performance monitoring, Introduction

invalid division
runtime errors/warnings
understanding SystemTap errors, Run Time Errors and Warnings

invalid values to variables/arrays
parse/semantics error
understanding SystemTap errors, Parse and Semantic Errors

iterations, processing elements in an array as
processing multiple elements in an array
array operations, Processing Multiple Elements in an Array
kernel and user space, determining time spent in examples of SystemTap scripts, Determining Time Spent in Kernel and User Space

kernel information packages, Installing Required Kernel Information Packages

kernel modules from SystemTap scripts, building, Generating Instrumentation for Other Computers

kernel version, determining the, Installing Required Kernel Information Packages

kernel.function("function")

Events, Event

kernell.trace("tracepoint")

Events, Event

key pairs

text introduction

arrays, Associative Arrays

libdwfl failure

parse/semantics error

understanding SystemTap errors, Parse and Semantic Errors

limiting the output of foreach

processing multiple elements in an array

array operations, Processing Multiple Elements in an Array

local variables

name, Systemtap Handler/Body

sample usage

$count, Tracking I/O Time For Each File Read or Write

$return, Summarizing Disk Read/Write Traffic, Track Cumulative IO

MAXACTION exceeded

runtime errors/warnings

understanding SystemTap errors, Run Time Errors and Warnings

MAXNESTING exceeded

runtime errors/warnings
understanding SystemTap errors, Run Time Errors and Warnings

membership (in array), testing for
conditional statements, using arrays in
array operations, Using Arrays in Conditional Statements

module("module")
 Events, Event

monitoring changes to file attributes
examples of SystemTap scripts, Monitoring Changes to File Attributes

monitoring cumulative I/O
examples of SystemTap scripts, Track Cumulative I/O

monitoring device I/O
examples of SystemTap scripts, I/O Monitoring (By Device)

monitoring I/O time
examples of SystemTap scripts, Tracking I/O Time For Each File Read or Write

monitoring incoming TCP connections
examples of SystemTap scripts, Monitoring Incoming TCP Connections

monitoring polling applications
examples of SystemTap scripts, Monitoring Polling Applications

monitoring reads and writes to a file
examples of SystemTap scripts, Monitoring Reads and Writes to a File

monitoring system calls
examples of SystemTap scripts, Tracking Most Frequently Used System Calls

monitoring system calls (volume per process)
examples of SystemTap scripts, Tracking System Call Volume Per Process

multiple array operations within the same probe
 clearing arrays/array elements
 array operations, Clearing/Deleting Arrays and Array Elements

multiple command-line arguments, example of
 examples of SystemTap scripts, Call Graph Tracing

multiple elements in an array
 array operations, Processing Multiple Elements in an Array
N

name

- local variables, *Systemtap Handler/Body*

net/socket.c, tracing functions from

- examples of SystemTap scripts, *Tracing Functions Called in Network Socket Code*

network profiling

- examples of SystemTap scripts, *Network Profiling, Monitoring Network Packets Drops in Kernel*

network socket code, tracing functions called in

- examples of SystemTap scripts, *Tracing Functions Called in Network Socket Code*

network traffic, monitoring

- examples of SystemTap scripts, *Network Profiling, Monitoring Network Packets Drops in Kernel*

no match for probe point

- parse/semantics error

 - understanding SystemTap errors, *Parse and Semantic Errors*

non-global arrays

- parse/semantics error

 - understanding SystemTap errors, *Parse and Semantic Errors*

number of errors: N, skipped probes: M

- runtime errors/warnings

 - understanding SystemTap errors, *Run Time Errors and Warnings*

O

operations

- assigning associated values

 - associating timestamps to process names, *Assigning an Associated Value*

associative arrays, *Array Operations in SystemTap*

clearing arrays/array elements, *Clearing/Deleting Arrays and Array Elements*

 - delete operator, *Clearing/Deleting Arrays and Array Elements*

 - multiple array operations within the same probe, *Clearing/Deleting Arrays and Array Elements*

 - virtual file system reads (non-cumulative), tallying, *Clearing/Deleting Arrays and Array Elements*

computing for statistical aggregates, *Computing for Statistical Aggregates*

 - @avg (integer extractor), *Computing for Statistical Aggregates*
@count (integer extractor), Computing for Statistical Aggregates
@max (integer extractor), Computing for Statistical Aggregates
@min (integer extractor), Computing for Statistical Aggregates
@sum (integer extractor), Computing for Statistical Aggregates
adding values to statistical aggregates, Computing for Statistical Aggregates
count (operator), Computing for Statistical Aggregates
extracting data collected by statistical aggregates, Computing for Statistical Aggregates
conditional statements, using arrays in, Using Arrays in Conditional Statements
testing for array membership, Using Arrays in Conditional Statements
deleting arrays and array elements, Clearing/Deleting Arrays and Array Elements
incrementing associated values, Incrementing Associated Values
tallying virtual file system reads (VFS reads), Incrementing Associated Values
multiple elements in an array, Processing Multiple Elements in an Array
processing multiple elements in an array, Processing Multiple Elements in an Array
cumulative virtual file system reads, tallying, Processing Multiple Elements in an Array
foreach, Processing Multiple Elements in an Array
iterations, processing elements in an array as, Processing Multiple Elements in an Array
limiting the output of foreach, Processing Multiple Elements in an Array
ordering the output of foreach, Processing Multiple Elements in an Array
reading values from arrays, Reading Values From Arrays
computing for timestamp deltas, Reading Values From Arrays
empty unique keys, Reading Values From Arrays
using arrays in simple computations, Reading Values From Arrays

options, stap
Usage, Running SystemTap Scripts

ordering the output of foreach
processing multiple elements in an array
array operations, Processing Multiple Elements in an Array

overflow of aggregation
runtime errors/warnings
understanding SystemTap errors, Run Time Errors and Warnings

P

packages required to run SystemTap, Installing Required Kernel Information Packages
parse/semantics error
understanding SystemTap errors, **Parse and Semantic Errors**
embedded code in unprivileged script, **Parse and Semantic Errors**
expected symbol/array index expression, **Parse and Semantic Errors**
grammatical/typographical script error, **Parse and Semantic Errors**
guru mode, **Parse and Semantic Errors**
invalid values to variables/arrays, **Parse and Semantic Errors**
libdwfl failure, **Parse and Semantic Errors**
no match for probe point, **Parse and Semantic Errors**
non-global arrays, **Parse and Semantic Errors**
probe mismatch, **Parse and Semantic Errors**
type mismatch for identifier, **Parse and Semantic Errors**
unresolved function call, **Parse and Semantic Errors**
unresolved target-symbol expression, **Parse and Semantic Errors**
unresolved type for identifier, **Parse and Semantic Errors**
variable modified during ‘foreach’, **Parse and Semantic Errors**

performance monitoring
 Introduction, **Introduction**

pointer dereference fault
 runtime errors/warnings
 understanding SystemTap errors, **Run Time Errors and Warnings**

polling applications, monitoring
 examples of SystemTap scripts, **Monitoring Polling Applications**

pp()
 functions, **Systemtap Handler/Body**

printf()
 format specifiers, **Systemtap Handler/Body**
 format strings, **Systemtap Handler/Body**
 syntax and format, **Systemtap Handler/Body**

printing I/O activity (cumulative)
 examples of SystemTap scripts, **Track Cumulative IO**

probe mismatch
 parse/semantics error
 understanding SystemTap errors, **Parse and Semantic Errors**

probe point (no match for)
 parse/semantics error
understanding SystemTap errors, Parse and Semantic Errors

probes
 SystemTap scripts
 introduction, SystemTap Scripts

process deadlocks (arising from futex contentions)
 examples of SystemTap scripts, Identifying Contended User-Space Locks

processing multiple elements in an array
 array operations, Processing Multiple Elements in an Array
 cumulative virtual file system reads, tallying
 array operations, Processing Multiple Elements in an Array

 foreach
 array operations, Processing Multiple Elements in an Array

 limiting the output of foreach
 array operations, Processing Multiple Elements in an Array

 ordering the output of foreach
 array operations, Processing Multiple Elements in an Array

profiling the network
 examples of SystemTap scripts, Network Profiling, Monitoring Network Packets Drops in Kernel

R

 reading values from arrays
 array operations, Reading Values From Arrays
 empty unique keys, Reading Values From Arrays
 using arrays in simple computations, Reading Values From Arrays

 computing for timestamp deltas
 array operations, Reading Values From Arrays

reads/writes to a file, monitoring
 examples of SystemTap scripts, Monitoring Reads and Writes to a File

required packages, Installing Required Kernel Information Packages
RPMs required to run SystemTap, Installing Required Kernel Information Packages
running scripts from standard input, Running SystemTap Scripts
running SystemTap scripts
 Usage, Running SystemTap Scripts
runtime errors/warnings

understanding SystemTap errors, Run Time Errors and Warnings
aggregate element not found, Run Time Errors and Warnings
aggregation overflow, Run Time Errors and Warnings
copy fault, Run Time Errors and Warnings
division by 0, Run Time Errors and Warnings
MAXACTION exceeded, Run Time Errors and Warnings
MAXNESTING exceeded, Run Time Errors and Warnings
number of errors: N, skipped probes: M, Run Time Errors and Warnings
pointer dereference fault, Run Time Errors and Warnings

S

script examples

call graph tracing, Call Graph Tracing
CPU ticks, Determining Time Spent in Kernel and User Space
ctime(), example of usage, Summarizing Disk Read/Write Traffic
determining time spent in kernel and user space, Determining Time Spent in Kernel and User Space
file device number (integer format), Monitoring Reads and Writes to a File
futex system call, Identifying Contended User-Space Locks
identifying contended user-space locks (futex contentions), Identifying Contended User-Space Locks
if/else conditionals, alternative syntax, Network Profiling
inode number, Monitoring Reads and Writes to a File
monitoring changes to file attributes, Monitoring Changes to File Attributes
monitoring device I/O, I/O Monitoring (By Device)
monitoring I/O time, Tracking I/O Time For Each File Read or Write
monitoring incoming TCP connections, Monitoring Incoming TCP Connections
monitoring polling applications, Monitoring Polling Applications
monitoring reads and writes to a file, Monitoring Reads and Writes to a File
monitoring system calls, Tracking Most Frequently Used System Calls
monitoring system calls (volume per process), Tracking System Call Volume Per Process
multiple command-line arguments, example of, Call Graph Tracing
net/socket.c, tracing functions from, Tracing Functions Called in Network Socket Code
network profiling, Network Profiling, Monitoring Network Packets Drops in Kernel
process deadlocks (arising from futex contentions), Identifying Contended User-Space Locks
stat -c, determining file device number (integer format), Monitoring Reads and Writes to a File
stat -c, determining whole device number, I/O Monitoring (By Device)
summarizing disk I/O traffic, Summarizing Disk Read/Write Traffic
tallying function calls, Counting Function Calls Made
thread_indent(), sample usage, Call Graph Tracing
timer.ms(), sample usage, Counting Function Calls Made
timer.s(), sample usage, Monitoring Polling Applications, Tracking Most Frequently Used System Calls
tracing functions called in network socket code, Tracing Functions Called in Network Socket Code
tracking cumulative I/O, Track Cumulative IO
trigger function, Call Graph Tracing
usrdev2kerndev(), I/O Monitoring (By Device)
whole device number (usage as a command-line argument), I/O Monitoring (By Device)

scripts
introduction, SystemTap Scripts
 components, SystemTap Scripts
 events and handlers, SystemTap Scripts
 format and syntax, SystemTap Scripts
 functions, SystemTap Scripts
 probes, SystemTap Scripts
 statement blocks, SystemTap Scripts

sessions, SystemTap, Architecture
Setup and Installation, Installation and Setup
standard input, running scripts from
 Usage, Running SystemTap Scripts

stap
 Usage, Running SystemTap Scripts

stap options, Running SystemTap Scripts

stapdev
 Usage, Running SystemTap Scripts

staprun
 Usage, Running SystemTap Scripts

stapusr
 Usage, Running SystemTap Scripts

stat -c, determining file device number (integer format)
 examples of SystemTap scripts, Monitoring Reads and Writes to a File

stat -c, determining whole device number
 examples of SystemTap scripts, I/O Monitoring (By Device)

statement blocks
 SystemTap scripts
introduction, SystemTap Scripts

statistical aggregates
array operations, Computing for Statistical Aggregates

summarizing disk I/O traffic
script examples, Summarizing Disk Read/Write Traffic

synchronous events
Events, Event

syntax
introduction
arrays, Associative Arrays

syntax and format
printf(), Systemtap Handler/Body
SystemTap handler constructs
handlers, Basic SystemTap Handler Constructs

SystemTap scripts
introduction, SystemTap Scripts

syscall.system_call
Events, Event

system calls volume (per process), monitoring
examples of SystemTap scripts, Tracking System Call Volume Per Process

system calls, monitoring
examples of SystemTap scripts, Tracking Most Frequently Used System Calls

SystemTap architecture, Architecture
SystemTap handlers
SystemTap handler constructs, Basic SystemTap Handler Constructs
syntax and format, Basic SystemTap Handler Constructs

systemtap package, Installing SystemTap
SystemTap script functions, Systemtap Handler/Body
SystemTap scripts
introduction, SystemTap Scripts
components, SystemTap Scripts
events and handlers, SystemTap Scripts
format and syntax, SystemTap Scripts
functions, SystemTap Scripts
probes, SystemTap Scripts
statement blocks, SystemTap Scripts
useful examples, Useful SystemTap Scripts

SystemTap scripts, how to run, Running SystemTap Scripts
SystemTap sessions, Architecture

SystemTap statements
conditional statements, Conditional Statements
 conditional operators, Conditional Statements
 for loops, Conditional Statements
 if/else, Conditional Statements
 while loops, Conditional Statements

SystemTap handler constructs
 command-line arguments, Command-Line Arguments
 global, Variables
 variables, Variables

systemtap-runtime package, Installing SystemTap
systemtap-testsuite package
 sample scripts, Useful SystemTap Scripts

T

tallying function calls
 examples of SystemTap scripts, Counting Function Calls Made

tallying virtual file system reads (VFS reads)
 incrementing associated values
 array operations, Incrementing Associated Values

Tapsets
 definition of, Tapsets

target kernel
 cross-instrumentation, Generating Instrumentation for Other Computers

target system
 cross-instrumentation, Generating Instrumentation for Other Computers

target system and host system
 configuration, Generating Instrumentation for Other Computers
target()
 functions, Systemtap Handler/Body

target-symbol expression, unresolved
 parse/semantics error
 understanding SystemTap errors, Parse and Semantic Errors

TCP connections (incoming), monitoring
 examples of SystemTap scripts, Monitoring Incoming TCP Connections

testing for array membership
 conditional statements, using arrays in
 array operations, Using Arrays in Conditional Statements

testing, initial, Initial Testing
thread_indent()
 functions, Systemtap Handler/Body

thread_indent(), sample usage
 examples of SystemTap scripts, Call Graph Tracing

tid()
 functions, Systemtap Handler/Body

time of I/O
 examples of SystemTap scripts, Tracking I/O Time For Each File Read or Write

time spent in kernel/user space, determining
 examples of SystemTap scripts, Determining Time Spent in Kernel and User Space

timer events
 Events, Event

timer.ms(), sample usage
 examples of SystemTap scripts, Counting Function Calls Made

timer.s(), sample usage
 examples of SystemTap scripts, Monitoring Polling Applications, Tracking Most Frequently Used System Calls

timestamp deltas, computing for
 reading values from arrays
 array operations, Reading Values From Arrays

timestamps, association thereof to process names
assigning associated values
array operations, Assigning an Associated Value

tracepoint, Event, Monitoring Network Packets Drops in Kernel
tracing call graph
event types, Tracking Cumulative I/O
examples of SystemTap scripts, Call Graph Tracing
examples of SystemTap scripts, Tracing Functions Called in Network Socket Code
examples of SystemTap scripts, Call Graph Tracing

tracing functions called in network socket code
events and handlers, Understanding How SystemTap Works
examples of SystemTap scripts, Tracing Functions Called in Network Socket Code
examples of SystemTap scripts, Call Graph Tracing

tracing incoming/outgoing function calls
event types, Tracking Cumulative I/O
examples of SystemTap scripts, Call Graph Tracing

tracking cumulative I/O
event types, Tracking Cumulative I/O
examples of SystemTap scripts, Track Cumulative I/O
examples of SystemTap scripts, Call Graph Tracing

trigger function
event types, Tracking Cumulative I/O
examples of SystemTap scripts, Call Graph Tracing

type mismatch for identifier
type mismatch, Parse and Semantic Errors

parse/semantics error
understanding SystemTap errors, Parse and Semantic Errors

parse/semantics error
understanding SystemTap errors, Parse and Semantic Errors

U
uid()
functions, Systemtap Handler/Body

uname -m, Installing Required Kernel Information Packages
uname -r, Installing Required Kernel Information Packages
Understanding How SystemTap Works, Understanding How SystemTap Works
architecture, Architecture

event types, Understanding How SystemTap Works

events and handlers, Understanding How SystemTap Works

SystemTap sessions, Architecture
understanding SystemTap errors
parse/semantics error, Parse and Semantic Errors

parse/semantics error, Parse and Semantic Errors

expected symbol/array index expression, Parse and Semantic Errors

parse/semantics error, Parse and Semantic Errors
grammatical/typographical script error, Parse and Semantic Errors

guru mode, Parse and Semantic Errors

invalid values to variables/arrays, Parse and Semantic Errors

libdwfl failure, Parse and Semantic Errors

no match for probe point, Parse and Semantic Errors

non-global arrays, Parse and Semantic Errors

probe mismatch, Parse and Semantic Errors

type mismatch for identifier, Parse and Semantic Errors

unresolved function call, Parse and Semantic Errors

unresolved target-symbol expression, Parse and Semantic Errors

unresolved type for identifier, Parse and Semantic Errors

variable modified during ‘foreach’, Parse and Semantic Errors

runtime errors/warnings, Run Time Errors and Warnings

aggregate element not found, Run Time Errors and Warnings

aggregation overflow, Run Time Errors and Warnings

copy fault, Run Time Errors and Warnings

division by 0, Run Time Errors and Warnings

MAXACTION exceeded, Run Time Errors and Warnings

MAXNESTING exceeded, Run Time Errors and Warnings

number of errors: N, skipped probes: M, Run Time Errors and Warnings

pointer dereference fault, Run Time Errors and Warnings

unique keys

introduction

arrays, Associative Arrays

unprivileged script, embedded code in

parse/semantics error

understanding SystemTap errors, Parse and Semantic Errors

unresolved function call

parse/semantics error

understanding SystemTap errors, Parse and Semantic Errors

unresolved target-symbol expression

parse/semantics error

understanding SystemTap errors, Parse and Semantic Errors

unresolved type for identifier

parse/semantics error
understanding SystemTap errors, Parse and Semantic Errors

unsafe embedded code in unprivileged script
parse/semantics error
understanding SystemTap errors, Parse and Semantic Errors

Usage
options, stap, Running SystemTap Scripts
running SystemTap scripts, Running SystemTap Scripts
standard input, running scripts from, Running SystemTap Scripts
stap, Running SystemTap Scripts
stapdev, Running SystemTap Scripts
staprun, Running SystemTap Scripts
stapusr, Running SystemTap Scripts

useful examples of SystemTap scripts, Useful SystemTap Scripts
user and kernel space, determining time spent in
examples of SystemTap scripts, Determining Time Spent in Kernel and User Space

using arrays in simple computations
reading values from arrays
array operations, Reading Values From Arrays

Using SystemTap, Using SystemTap
usrdev2kerndev()
examples of SystemTap scripts, I/O Monitoring (By Device)

V
values, assignment of
array operations, Assigning an Associated Value

variable modified during 'foreach'
parse/semantics error
understanding SystemTap errors, Parse and Semantic Errors

variables
SystemTap handler constructs
handlers, Variables

variables (local)
name, Systemtap Handler/Body
sample usage
$count, Tracking I/O Time For Each File Read or Write
$return, Summarizing Disk Read/Write Traffic, Track Cumulative IO

VFS reads, tallying of
 incrementing associated values
 array operations, Incrementing Associated Values

time_events:

 vfs.file_operation
 Events, Event

 virtual file system reads (cumulative), tallying
 processing multiple elements in an array
 array operations, Processing Multiple Elements in an Array

virtual file system reads (non-cumulative), tallying
 clearing arrays/array elements
 array operations, Clearing/Deleting Arrays and Array Elements

while loops
 conditional statements
 handlers, Conditional Statements

whole device number (usage as a command-line argument)
 examples of SystemTap scripts, I/O Monitoring (By Device)

wildcards in events, Event
writes/reads to a file, monitoring
 examples of SystemTap scripts, Monitoring Reads and Writes to a File