
Red Hat Enterprise Linux 7

RPM Packaging Guide

Basic and advanced software packaging scenarios using the RPM package manager

Last Updated: 2023-10-02

Red Hat Enterprise Linux 7 RPM Packaging Guide

Basic and advanced software packaging scenarios using the RPM package manager

Marie Doleželová
Red Hat Customer Content Services
mdolezel@redhat.com

Maxim Svistunov
Red Hat Customer Content Services

Adam Miller
Red Hat

Adam Kvítek
Red Hat Customer Content Services

Petr Kovář
Red Hat Customer Content Services

Miroslav Suchý
Red Hat

Customer Content Services rhel-notes@redhat.com

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The RPM Packaging Guide documents packaging software into an RPM. It also shows how to
prepare source code for packaging. Lastly, the guide explains selected advanced packaging
scenarios.

. .

. .

. .

Table of Contents

CHAPTER 1. GETTING STARTED WITH RPM PACKAGING
1.1. INTRODUCTION TO RPM PACKAGING
1.2. RPM ADVANTAGES
1.3. CREATING YOUR FIRST RPM PACKAGE

CHAPTER 2. PREPARING SOFTWARE FOR RPM PACKAGING
2.1. WHAT SOURCE CODE IS

2.1.1. Source code examples
2.1.1.1. Hello World written in bash
2.1.1.2. Hello World written in Python
2.1.1.3. Hello World written in C

2.2. HOW PROGRAMS ARE MADE
2.2.1. Natively Compiled Code
2.2.2. Interpreted Code

2.2.2.1. Raw-interpreted programs
2.2.2.2. Byte-compiled programs

2.3. BUILDING SOFTWARE FROM SOURCE
2.3.1. Natively Compiled Code

2.3.1.1. Manual building
2.3.1.2. Automated building

2.3.2. Interpreting code
2.3.2.1. Byte-compiling code
2.3.2.2. Raw-interpreting code

2.4. PATCHING SOFTWARE
2.5. INSTALLING ARBITRARY ARTIFACTS

2.5.1. Using the install command
2.5.2. Using the make install command

2.6. PREPARING SOURCE CODE FOR PACKAGING
2.7. PUTTING SOURCE CODE INTO TARBALL

2.7.1. Putting the bello project into tarball
2.7.2. Putting the pello project into tarball
2.7.3. Putting the cello project into tarball

CHAPTER 3. PACKAGING SOFTWARE
3.1. RPM PACKAGES

3.1.1. What an RPM is
Types of RPM packages

3.1.2. Listing RPM packaging tool’s utilities
3.1.3. Setting up RPM packaging workspace
3.1.4. What a SPEC file is

3.1.4.1. Preamble Items
3.1.4.2. Body Items
3.1.4.3. Advanced items

3.1.5. BuildRoots
3.1.6. RPM macros

3.2. WORKING WITH SPEC FILES
3.2.1. Ways to create a new SPEC file
3.2.2. Creating a new SPEC file with rpmdev-newspec
3.2.3. Modifying an original SPEC file for creating RPMs
3.2.4. An example SPEC file for a program written in bash
3.2.5. An example SPEC file for a program written in Python

5
5
5
5

7
7
7
7
7
7
8
8
8
8
8
9
9
9
9

10
11

12
12
14
14
15
16
16
16
17
18

20
20
20
20
20
21
21
22
24
24
24
25
25
26
26
27
29
30

Table of Contents

1

. .

3.2.6. An example SPEC file for a program written in C
3.3. BUILDING RPMS

3.3.1. Building source RPMs
3.3.2. Building binary RPMs

3.3.2.1. Rebuilding a binary RPM from a source RPM
3.3.2.2. Building a binary RPM from the SPEC file
3.3.2.3. Building RPMs from source RPMs

3.4. CHECKING RPMS FOR SANITY
3.4.1. Checking bello for sanity

3.4.1.1. Checking the bello SPEC File
3.4.1.2. Checking the bello binary RPM

3.4.2. Checking pello for sanity
3.4.2.1. Checking the pello SPEC File
3.4.2.2. Checking the pello binary RPM

3.4.3. Checking cello for sanity
3.4.3.1. Checking the cello SPEC File
3.4.3.2. Checking the cello binary RPM

CHAPTER 4. ADVANCED TOPICS
4.1. SIGNING PACKAGES

4.1.1. Creating a GPG key
4.1.2. Adding a signature to an already existing package
4.1.3. Checking the signatures of a package with multiple signatures
4.1.4. A practical example of adding a signature to an already existing package
4.1.5. Replacing the signature on an already existing package
4.1.6. Signing a package at build-time

4.2. MORE ON MACROS
4.2.1. Defining your own macros
4.2.2. Using the %setup macro

4.2.2.1. Using the %setup -q macro
4.2.2.2. Using the %setup -n macro
4.2.2.3. Using the %setup -c macro
4.2.2.4. Using the %setup -D and %setup -T macros
4.2.2.5. Using the %setup -a and %setup -b macros

4.2.3. Common RPM macros in the %files section
4.2.4. Displaying the built-in macros
4.2.5. RPM distribution macros

4.2.5.1. Creating custom macros
4.3. EPOCH, SCRIPTLETS AND TRIGGERS

4.3.1. The Epoch directive
4.3.2. Scriptlets

4.3.2.1. Scriptlets directives
4.3.2.2. Turning off a scriptlet execution
4.3.2.3. Scriptlets macros

4.3.3. The Triggers directives
4.3.4. Using non-shell scripts in a SPEC file

4.4. RPM CONDITIONALS
4.4.1. RPM conditionals syntax
4.4.2. RPM conditionals examples

4.4.2.1. The %if conditionals
4.4.2.2. Specialized variants of %if conditionals

4.4.2.2.1. The %ifarch conditional
4.4.2.2.2. The %ifnarch conditional

32
33
33
34
34
35
35
36
36
36
37
37
37
38
39
39
39

41
41
41
41

42
42
42
43
43
43
44
45
45
45
45
46
46
47
47
48
48
48
49
49
49
50
51
52
52
53
53
53
54
54
54

Red Hat Enterprise Linux 7 RPM Packaging Guide

2

. .

. .

4.4.2.2.3. The %ifos conditional

APPENDIX A. NEW FEATURES OF RPM IN RHEL 7

CHAPTER 5. ADDITIONAL RESOURCES ABOUT RPM PACKAGING

54

56

57

Table of Contents

3

Red Hat Enterprise Linux 7 RPM Packaging Guide

4

CHAPTER 1. GETTING STARTED WITH RPM PACKAGING
The following section introduces the concept of RPM packaging and its main advantages.

1.1. INTRODUCTION TO RPM PACKAGING

The RPM Package Manager (RPM) is a package management system that runs on RHEL, CentOS, and
Fedora. You can use RPM to distribute, manage, and update software that you create for any of the
operating systems mentioned above.

1.2. RPM ADVANTAGES

The RPM package management system brings several advantages over distribution of software in
conventional archive files.

RPM enables you to:

Install, reinstall, remove, upgrade and verify packages with standard package management
tools, such as Yum or PackageKit.

Use a database of installed packages to query and verify packages.

Use metadata to describe packages, their installation instructions, and other package
parameters.

Package software sources, patches and complete build instructions into source and binary
packages.

Add packages to Yum repositories.

Digitally sign your packages by using GNU Privacy Guard (GPG) signing keys.

1.3. CREATING YOUR FIRST RPM PACKAGE

Creating an RPM package can be complicated. Here is a complete, working RPM Spec file with several
things skipped and simplified.

Name: hello-world
Version: 1
Release: 1
Summary: Most simple RPM package
License: FIXME

%description
This is my first RPM package, which does nothing.

%prep
we have no source, so nothing here

%build
cat > hello-world.sh <<EOF
#!/usr/bin/bash
echo Hello world
EOF

CHAPTER 1. GETTING STARTED WITH RPM PACKAGING

5

Save this file as hello-world.spec.

Now use these commands:

The command rpmdev-setuptree creates several working directories. As those directories are stored
permanently in $HOME, this command does not need to be used again.

The command rpmbuild creates the actual rpm package. The output of this command can be similar to:

The file /home/<username>/rpmbuild/RPMS/x86_64/hello-world-1-1.x86_64.rpm is your first RPM
package. It can be installed in the system and tested.

%install
mkdir -p %{buildroot}/usr/bin/
install -m 755 hello-world.sh %{buildroot}/usr/bin/hello-world.sh

%files
/usr/bin/hello-world.sh

%changelog
let's skip this for now

$ rpmdev-setuptree
$ rpmbuild -ba hello-world.spec

... [SNIP]
Wrote: /home/<username>/rpmbuild/SRPMS/hello-world-1-1.src.rpm
Wrote: /home/<username>/rpmbuild/RPMS/x86_64/hello-world-1-1.x86_64.rpm
Executing(%clean): /bin/sh -e /var/tmp/rpm-tmp.wgaJzv
+ umask 022
+ cd /home/<username>/rpmbuild/BUILD
+ /usr/bin/rm -rf /home/<username>/rpmbuild/BUILDROOT/hello-world-1-1.x86_64
+ exit 0

Red Hat Enterprise Linux 7 RPM Packaging Guide

6

CHAPTER 2. PREPARING SOFTWARE FOR RPM PACKAGING
This section explains how to prepare software for RPM packaging. To do so, knowing how to code is not
necessary. However, you need to understand the basic concepts, such as What source code is and How
programs are made.

2.1. WHAT SOURCE CODE IS

This part explains what source code is and shows example source codes of a program written in three
different programming languages.

Source code is human-readable instructions to the computer, which describe how to perform a
computation. Source code is expressed using a programming language.

2.1.1. Source code examples

This document features three versions of the Hello World program written in three different
programming languages:

Section 2.1.1.1, “Hello World written in bash”

Section 2.1.1.2, “Hello World written in Python”

Section 2.1.1.3, “Hello World written in C”

Each version is packaged differently.

These versions of the Hello World program cover the three major use cases of an RPM packager.

2.1.1.1. Hello World written in bash

The bello project implements Hello World in bash. The implementation only contains the bello shell
script. The purpose of the program is to output Hello World on the command line.

The bello file has the following syntax:

#!/bin/bash

printf "Hello World\n"

2.1.1.2. Hello World written in Python

The pello project implements Hello World in Python. The implementation only contains the pello.py
program. The purpose of the program is to output Hello World on the command line.

The pello.py file has the following syntax:

#!/usr/bin/python3

print("Hello World")

2.1.1.3. Hello World written in C

The cello project implements Hello World in C. The implementation only contains the cello.c and the

CHAPTER 2. PREPARING SOFTWARE FOR RPM PACKAGING

7

https://www.gnu.org/software/bash/
https://www.python.org/

The cello project implements Hello World in C. The implementation only contains the cello.c and the
Makefile files, so the resulting tar.gz archive will have two files apart from the LICENSE file.

The purpose of the program is to output Hello World on the command line.

The cello.c file has the following syntax:

#include <stdio.h>

int main(void) {
 printf("Hello World\n");
 return 0;
}

2.2. HOW PROGRAMS ARE MADE

Methods of conversion from human-readable source code to machine code (instructions that the
computer follows to execute the program) include the following:

The program is natively compiled.

The program is interpreted by raw interpreting.

The program is interpreted by byte compiling.

2.2.1. Natively Compiled Code

Natively compiled software is software written in a programming language that compiles to machine
code with a resulting binary executable file. Such software can be run stand-alone.

RPM packages built this way are architecture-specific.

If you compile such software on a computer that uses a 64-bit (x86_64) AMD or Intel processor, it does
not execute on a 32-bit (x86) AMD or Intel processor. The resulting package has architecture specified
in its name.

2.2.2. Interpreted Code

Some programming languages, such as bash or Python, do not compile to machine code. Instead, their
programs' source code is executed step by step, without prior transformations, by a Language
Interpreter or a Language Virtual Machine.

Software written entirely in interpreted programming languages is not architecture-specific. Hence, the
resulting RPM Package has the noarch string in its name.

Interpreted languages are either Raw-interpreted programs or Byte-compiled programs. These two
types differ in program build process and in packaging procedure.

2.2.2.1. Raw-interpreted programs

Raw-interpreted language programs do not need to be compiled and are directly executed by the
interpreter.

2.2.2.2. Byte-compiled programs

Byte-compiled languages need to be compiled into byte code, which is then executed by the language

Red Hat Enterprise Linux 7 RPM Packaging Guide

8

https://www.gnu.org/software/bash/
https://www.python.org/

Byte-compiled languages need to be compiled into byte code, which is then executed by the language
virtual machine.

NOTE

Some languages offer a choice: they can be raw-interpreted or byte-compiled.

2.3. BUILDING SOFTWARE FROM SOURCE

This part describes how to build software from source code.

For software written in compiled languages, the source code goes through a build process, producing
machine code. This process, commonly called compiling or translating, varies for different languages.
The resulting built software can be run, which makes the computer perform the task specified by the
programmer.

For software written in raw interpreted languages, the source code is not built, but executed directly.

For software written in byte-compiled interpreted languages, the source code is compiled into byte
code, which is then executed by the language virtual machine.

2.3.1. Natively Compiled Code

This section shows how to build the cello.c program written in the C language into an executable.

cello.c

#include <stdio.h>

int main(void) {
 printf("Hello World\n");
 return 0;
}

2.3.1.1. Manual building

If you want to build the cello.c program manually, use this procedure:

Procedure

1. Invoke the C compiler from the GNU Compiler Collection to compile the source code into
binary:

gcc -g -o cello cello.c

2. Execute the resulting output binary cello:

$./cello
Hello World

2.3.1.2. Automated building

Large-scale software commonly uses automated building that is done by creating the Makefile file and

CHAPTER 2. PREPARING SOFTWARE FOR RPM PACKAGING

9

https://gcc.gnu.org/

Large-scale software commonly uses automated building that is done by creating the Makefile file and
then running the GNU make utility.

If you want to use the automated building to build the cello.c program, use this procedure:

Procedure

1. To set up automated building, create the Makefile file with the following content in the same
directory as cello.c.
Makefile

cello:
 gcc -g -o cello cello.c
clean:
 rm cello

Note that the lines under cello: and clean: must begin with a tab space.

2. To build the software, run the make command:

$ make
make: 'cello' is up to date.

3. Since there is already a build available, run the make clean command, and after run the make
command again:

$ make clean
rm cello

$ make
gcc -g -o cello cello.c

NOTE

Trying to build the program after another build has no effect.

$ make
make: 'cello' is up to date.

4. Execute the program:

$./cello
Hello World

You have now compiled a program both manually and using a build tool.

2.3.2. Interpreting code

This section shows how to byte-compile a program written in Python and raw-interpret a program
written in bash.

NOTE

Red Hat Enterprise Linux 7 RPM Packaging Guide

10

http://www.gnu.org/software/make/
https://www.python.org/
https://www.gnu.org/software/bash/

NOTE

In the two examples below, the #! line at the top of the file is known as a shebang, and is
not part of the programming language source code.

The shebang enables using a text file as an executable: the system program loader
parses the line containing the shebang to get a path to the binary executable, which is
then used as the programming language interpreter. The functionality requires the text
file to be marked as executable.

2.3.2.1. Byte-compiling code

This section shows how to compile the pello.py program written in Python into byte code, which is then
executed by the Python language virtual machine.

Python source code can also be raw-interpreted, but the byte-compiled version is faster. Hence, RPM
Packagers prefer to package the byte-compiled version for distribution to end users.

pello.py

#!/usr/bin/python3

print("Hello World")

Procedure for byte-compiling programs varies depending on the following factors:

Programming language

Language’s virtual machine

Tools and processes used with that language

NOTE

Python is often byte-compiled, but not in the way described here. The following
procedure aims not to conform to the community standards, but to be simple. For real-
world Python guidelines, see Software Packaging and Distribution.

Use this procedure to compile pello.py into byte code:

Procedure

1. Byte-compile the pello.py file:

$ python -m compileall pello.py

$ file pello.pyc
pello.pyc: python 2.7 byte-compiled

2. Execute the byte code in pello.pyc:

$ python pello.pyc
Hello World

CHAPTER 2. PREPARING SOFTWARE FOR RPM PACKAGING

11

https://www.python.org/
https://docs.python.org/2/library/distribution.html

2.3.2.2. Raw-interpreting code

This section shows how to raw-interpret the bello program written in the bash shell built-in language.

bello

#!/bin/bash

printf "Hello World\n"

Programs written in shell scripting languages, like bash, are raw-interpreted.

Procedure

Make the file with source code executable and run it:

$ chmod +x bello
$./bello
Hello World

2.4. PATCHING SOFTWARE

This section explains how to patch the software.

In RPM packaging, instead of modifying the original source code, we keep it, and use patches on it.

A patch is a source code that updates other source code. It is formatted as a diff, because it represents
what is different between two versions of the text. A diff is created using the diff utility, which is then
applied to the source code using the patch utility.

NOTE

Software developers often use Version Control Systems such as git to manage their code
base. Such tools provide their own methods of creating diffs or patching software.

The following example shows how to create a patch from the original source code using diff, and how to
apply the patch using patch. Patching is used in a later section when creating an RPM; see Section 3.2,
“Working with SPEC files”.

This procedure shows how to create a patch from the original source code for cello.c.

Procedure

1. Preserve the original source code:

$ cp -p cello.c cello.c.orig

The -p option is used to preserve mode, ownership, and timestamps.

2. Modify cello.c as needed:

#include <stdio.h>

Red Hat Enterprise Linux 7 RPM Packaging Guide

12

https://www.gnu.org/software/bash/
http://savannah.gnu.org/projects/patch/
https://git-scm.com/

int main(void) {
 printf("Hello World from my very first patch!\n");
 return 0;
}

3. Generate a patch using the diff utility:

$ diff -Naur cello.c.orig cello.c
--- cello.c.orig 2016-05-26 17:21:30.478523360 -0500
+ cello.c 2016-05-27 14:53:20.668588245 -0500
@@ -1,6 +1,6 @@
 #include<stdio.h>

 int main(void){
- printf("Hello World!\n");
+ printf("Hello World from my very first patch!\n");
 return 0;
 }
\ No newline at end of file

Lines starting with a - are removed from the original source code and replaced with the lines
that start with +.

Using the Naur options with the diff command is recommended because it fits the majority of
usual use cases. However, in this particular case, only the -u option is necessary. Particular
options ensure the following:

-N (or --new-file) - Handles absent files as if they were empty files.

-a (or --text) - Treats all files as text. As a result, the files that diff classifies as binaries are
not ignored.

-u (or -U NUM or --unified[=NUM]) - Returns output in the form of output NUM (default 3)
lines of unified context. This is an easily readable format that allows fuzzy matching when
applying the patch to a changed source tree.

-r (or --recursive) - Recursively compares any subdirectories that are found.
For more information on common arguments for the diff utility, see the diff manual page.

4. Save the patch to a file:

$ diff -Naur cello.c.orig cello.c > cello-output-first-patch.patch

5. Restore the original cello.c:

$ cp cello.c.orig cello.c

The original cello.c must be retained, because when an RPM is built, the original file is used, not
the modified one. For more information, see Section 3.2, “Working with SPEC files” .

The following procedure shows how to patch cello.c using cello-output-first-patch.patch, built the
patched program, and run it.

1. Redirect the patch file to the patch command:

CHAPTER 2. PREPARING SOFTWARE FOR RPM PACKAGING

13

$ patch < cello-output-first-patch.patch
patching file cello.c

2. Check that the contents of cello.c now reflect the patch:

$ cat cello.c
#include<stdio.h>

int main(void){
 printf("Hello World from my very first patch!\n");
 return 1;
}

3. Build and run the patched cello.c:

$ make clean
rm cello

$ make
gcc -g -o cello cello.c

$./cello
Hello World from my very first patch!

2.5. INSTALLING ARBITRARY ARTIFACTS

Unix-like systems use the Filesystem Hierarchy Standard (FHS) to specify a directory suitable for a
particular file.

Files installed from the RPM packages are placed according to FHS. For example, an executable file
should go into a directory that is in the system $PATH variable.

In the context of this documentation, an Arbitrary Artifact is anything installed from an RPM to the
system. For RPM and for the system it can be a script, a binary compiled from the package’s source
code, a pre-compiled binary, or any other file.

This section describes two common ways of placing Arbitrary Artifacts in the system:

Section 2.5.1, “Using the install command”

Section 2.5.2, “Using the make install command”

2.5.1. Using the install command

Packagers often use the install command in cases when build automation tooling such as GNU make is
not optimal; for example if the packaged program does not need extra overhead.

The install command is provided to the system by coreutils, which places the artifact to the specified
directory in the file system with a specified set of permissions.

The following procedure uses the bello file that was previously created as the arbitrary artifact as a
subject to this installation method.

Procedure

1. Run the install command to place the bello file into the /usr/bin directory with permissions

Red Hat Enterprise Linux 7 RPM Packaging Guide

14

http://www.gnu.org/software/make/
http://www.gnu.org/software/coreutils/coreutils.html

1. Run the install command to place the bello file into the /usr/bin directory with permissions
common for executable scripts:

$ sudo install -m 0755 bello /usr/bin/bello

As a result, bello is now located in the directory that is listed in the $PATH variable.

2. Execute bello from any directory without specifying its full path:

$ cd ~

$ bello
Hello World

2.5.2. Using the make install command

Using the make install command is an automated way to install built software to the system. In this
case, you need to specify how to install the arbitrary artifacts to the system in the Makefile that is
usually written by the developer.

This procedure shows how to install a build artifact into a chosen location on the system.

Procedure

1. Add the install section to the Makefile:
Makefile

cello:
 gcc -g -o cello cello.c

clean:
 rm cello

install:
 mkdir -p $(DESTDIR)/usr/bin
 install -m 0755 cello $(DESTDIR)/usr/bin/cello

Note that the lines under cello:, clean:, and install: must begin with a tab space.

NOTE

The $(DESTDIR) variable is a GNU make built-in and is commonly used to
specify installation to a directory different than the root directory.

Now you can use Makefile not only to build software, but also to install it to the target system.

2. Build and install the cello.c program:

$ make
gcc -g -o cello cello.c

$ sudo make install
install -m 0755 cello /usr/bin/cello

CHAPTER 2. PREPARING SOFTWARE FOR RPM PACKAGING

15

https://www.gnu.org/software/make/manual/html_node/DESTDIR.html
http://www.gnu.org/software/make/

As a result, cello is now located in the directory that is listed in the $PATH variable.

3. Execute cello from any directory without specifying its full path:

$ cd ~

$ cello
Hello World

2.6. PREPARING SOURCE CODE FOR PACKAGING

Developers often distribute software as compressed archives of source code, which are then used to
create packages. RPM packagers work with a ready source code archive.

Software should be distributed with a software license.

This procedure uses the GPLv3 license text as an example content of the LICENSE file.

Procedure

Create a LICENSE file, and make sure that it includes the following content:

$ cat /tmp/LICENSE
This program is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

Additional resources

The code created in this section can be found here.

2.7. PUTTING SOURCE CODE INTO TARBALL

This section describes how to put each of the three Hello World programs introduced in Section 2.1.1,
“Source code examples” into a gzip-compressed tarball, which is a common way to release the software
to be later packaged for distribution.

2.7.1. Putting the bello project into tarball

The bello project implements Hello World in bash. The implementation only contains the bello shell
script, so the resulting tar.gz archive will have only one file apart from the LICENSE file.

This procedure shows how to prepare the bello project for distribution.

Prerequisites

Considering that this is version 0.1 of the program.

Red Hat Enterprise Linux 7 RPM Packaging Guide

16

https://www.gnu.org/licenses/quick-guide-gplv3.html
http://www.gnu.org/licenses/
https://github.com/redhat-developer/rpm-packaging-guide/tree/master/example-code
https://www.gnu.org/software/gzip/
https://www.gnu.org/software/bash/

Procedure

1. Put all required files into a single directory:

$ mkdir /tmp/bello-0.1

$ mv ~/bello /tmp/bello-0.1/

$ cp /tmp/LICENSE /tmp/bello-0.1/

2. Create the archive for distribution and move it to the ~/rpmbuild/SOURCES/ directory, which is
the default directory where the rpmbuild command stores the files for building packages:

$ cd /tmp/

$ tar -cvzf bello-0.1.tar.gz bello-0.1
bello-0.1/
bello-0.1/LICENSE
bello-0.1/bello

$ mv /tmp/bello-0.1.tar.gz ~/rpmbuild/SOURCES/

For more information about the example source code written in bash, see Section 2.1.1.1, “Hello World
written in bash”.

2.7.2. Putting the pello project into tarball

The pello project implements Hello World in Python. The implementation only contains the pello.py
program, so the resulting tar.gz archive will have only one file apart from the LICENSE file.

This procedure shows how to prepare the pello project for distribution.

Prerequisites

Considering that this is version 0.1.1 of the program.

Procedure

1. Put all required files into a single directory:

$ mkdir /tmp/pello-0.1.2

$ mv ~/pello.py /tmp/pello-0.1.2/

$ cp /tmp/LICENSE /tmp/pello-0.1.2/

2. Create the archive for distribution and move it to the ~/rpmbuild/SOURCES/ directory, which is
the default directory where the rpmbuild command stores the files for building packages:

$ cd /tmp/

$ tar -cvzf pello-0.1.2.tar.gz pello-0.1.2
pello-0.1.2/
pello-0.1.2/LICENSE

CHAPTER 2. PREPARING SOFTWARE FOR RPM PACKAGING

17

https://www.python.org/

pello-0.1.2/pello.py

$ mv /tmp/pello-0.1.2.tar.gz ~/rpmbuild/SOURCES/

For more information about the example source code written in Python, see Section 2.1.1.2, “Hello World
written in Python”.

2.7.3. Putting the cello project into tarball

The cello project implements Hello World in C. The implementation only contains the cello.c and the
Makefile files, so the resulting tar.gz archive will have two files apart from the LICENSE file.

NOTE

The patch file is not distributed in the archive with the program. The RPM Packager
applies the patch when the RPM is built. The patch will be placed into the
~/rpmbuild/SOURCES/ directory alongside the .tar.gz archive.

This procedure shows how to prepare the cello project for distribution.

Prerequisites

Considering that this is version 1.0 of the program.

Procedure

1. Put all required files into a single directory:

$ mkdir /tmp/cello-1.0

$ mv ~/cello.c /tmp/cello-1.0/

$ mv ~/Makefile /tmp/cello-1.0/

$ cp /tmp/LICENSE /tmp/cello-1.0/

2. Create the archive for distribution and move it to the ~/rpmbuild/SOURCES/ directory, which is
the default directory where the rpmbuild command stores the files for building packages:

$ cd /tmp/

$ tar -cvzf cello-1.0.tar.gz cello-1.0
cello-1.0/
cello-1.0/Makefile
cello-1.0/cello.c
cello-1.0/LICENSE

$ mv /tmp/cello-1.0.tar.gz ~/rpmbuild/SOURCES/

3. Add the patch:

$ mv ~/cello-output-first-patch.patch ~/rpmbuild/SOURCES/

For more information about the example source code written in C, see Section 2.1.1.3, “Hello World

Red Hat Enterprise Linux 7 RPM Packaging Guide

18

For more information about the example source code written in C, see Section 2.1.1.3, “Hello World
written in C”.

CHAPTER 2. PREPARING SOFTWARE FOR RPM PACKAGING

19

CHAPTER 3. PACKAGING SOFTWARE

3.1. RPM PACKAGES

This section covers the basics of the RPM packaging format.

3.1.1. What an RPM is

An RPM package is a file containing other files and their metadata (information about the files that are
needed by the system).

Specifically, an RPM package consists of the cpio archive.

The cpio archive contains:

Files

RPM header (package metadata)
The rpm package manager uses this metadata to determine dependencies, where to install files,
and other information.

Types of RPM packages
There are two types of RPM packages. Both types share the file format and tooling, but have different
contents and serve different purposes:

Source RPM (SRPM)
An SRPM contains source code and a SPEC file, which describes how to build the source code
into a binary RPM. Optionally, the patches to source code are included as well.

Binary RPM
A binary RPM contains the binaries built from the sources and patches.

3.1.2. Listing RPM packaging tool’s utilities

The following procedures show how to list the utilities provided by the rpmdevtools package.

Prerequisites

To be able to use the RPM packaging tools, you need to install the rpmdevtools package, which
provides several utilities for packaging RPMs.

yum install rpmdevtools

Procedure

List RPM packaging tool’s utilities:

$ rpm -ql rpmdevtools | grep bin

Additional information

For more information on the above utilities, see their manual pages or help dialogs.

Red Hat Enterprise Linux 7 RPM Packaging Guide

20

3.1.3. Setting up RPM packaging workspace

This section describes how to set up a directory layout that is the RPM packaging workspace by using
the rpmdev-setuptree utility.

Prerequisites

The rpmdevtools package must be installed on your system:

yum install rpmdevtools

Procedure

Run the rpmdev-setuptree utility:

$ rpmdev-setuptree

$ tree ~/rpmbuild/
/home/<username>/rpmbuild/
|-- BUILD
|-- RPMS
|-- SOURCES
|-- SPECS
`-- SRPMS

5 directories, 0 files

The created directories serve these purposes:

Directory Purpose

BUILD When packages are built, various %buildroot directories are created here. This is
useful for investigating a failed build if the logs output do not provide enough
information.

RPMS Binary RPMs are created here, in subdirectories for different architectures, for example
in subdirectories x86_64 and noarch.

SOURCES Here, the packager puts compressed source code archives and patches. The rpmbuild
command looks for them here.

SPECS The packager puts SPEC files here.

SRPMS When rpmbuild is used to build an SRPM instead of a binary RPM, the resulting SRPM
is created here.

3.1.4. What a SPEC file is

You can understand a SPEC file as a recipe that the rpmbuild utility uses to build an RPM. A SPEC file
provides necessary information to the build system by defining instructions in a series of sections. The
sections are defined in the Preamble and the Body part. The Preamble part contains a series of

CHAPTER 3. PACKAGING SOFTWARE

21

metadata items that are used in the Body part. The Body part represents the main part of the
instructions.

3.1.4.1. Preamble Items

The table below presents some of the directives that are used frequently in the Preamble section of the
RPM SPEC file.

Table 3.1. Items used in the Preamble section of the RPM SPEC file

SPEC Directive Definition

Name The base name of the package, which should match the SPEC file name.

Version The upstream version number of the software.

Release The number of times this version of the software was released. Normally, set
the initial value to 1%{?dist}, and increment it with each new release of the
package. Reset to 1 when a new Version of the software is built.

Summary A brief, one-line summary of the package.

License The license of the software being packaged.

URL The full URL for more information about the program. Most often this is the
upstream project website for the software being packaged.

Source0 Path or URL to the compressed archive of the upstream source code
(unpatched, patches are handled elsewhere). This should point to an
accessible and reliable storage of the archive, for example, the upstream
page and not the packager’s local storage. If needed, more SourceX
directives can be added, incrementing the number each time, for example:
Source1, Source2, Source3, and so on.

Patch The name of the first patch to apply to the source code if necessary.

The directive can be applied in two ways: with or without numbers at the end
of Patch.

If no number is given, one is assigned to the entry internally. It is also
possible to give the numbers explicitly using Patch0, Patch1, Patch2, Patch3,
and so on.

These patches can be applied one by one using the %patch0, %patch1,
%patch2 macro and so on. The macros are applied within the %prep
directive in the Body section of the RPM SPEC file. Alternatively, you can
use the %autopatch macro which automatically applies all patches in the
order they are given in the SPEC file.

Red Hat Enterprise Linux 7 RPM Packaging Guide

22

BuildArch If the package is not architecture dependent, for example, if written entirely
in an interpreted programming language, set this to BuildArch: noarch. If
not set, the package automatically inherits the Architecture of the machine
on which it is built, for example x86_64.

BuildRequires A comma or whitespace-separated list of packages required for building the
program written in a compiled language. There can be multiple entries of
BuildRequires, each on its own line in the SPEC file.

Requires A comma- or whitespace-separated list of packages required by the
software to run once installed. There can be multiple entries of Requires,
each on its own line in the SPEC file.

ExcludeArch If a piece of software can not operate on a specific processor architecture,
you can exclude that architecture here.

Conflicts Conflicts are inverse to Requires. If there is a package matching
Conflicts, the package cannot be installed independently on whether the
Conflict tag is on the package that has already been installed or on a
package that is going to be installed.

Obsoletes This directive alters the way updates work depending on whether the rpm
command is used directly on the command line or the update is performed
by an updates or dependency solver. When used on a command line, RPM
removes all packages matching obsoletes of packages being installed.
When using an update or dependency resolver, packages containing
matching Obsoletes: are added as updates and replace the matching
packages.

Provides If Provides is added to a package, the package can be referred to by
dependencies other than its name.

SPEC Directive Definition

The Name, Version, and Release directives comprise the file name of the RPM package. RPM package
maintainers and system administrators often call these three directives N-V-R or NVR, because RPM
package filenames have the NAME-VERSION-RELEASE format.

The following example shows how to obtain the NVR information for a specific package by querying the
rpm command.

Example 3.1. Querying rpm to provide the NVR information for the bash package

$ rpm -q bash
bash-4.2.46-34.el7.x86_64

Here, bash is the package name, 4.2.46 is the version, and 34.el7 is the release. The final marker is
x86_64, which signals the architecture. Unlike the NVR, the architecture marker is not under direct
control of the RPM packager, but is defined by the rpmbuild build environment. The exception to this is
the architecture-independent noarch package.

CHAPTER 3. PACKAGING SOFTWARE

23

3.1.4.2. Body Items

The items used in the Body section of the RPM SPEC file are listed in the table below.

Table 3.2. Items used in the Body section of the RPM SPEC file

SPEC Directive Definition

%description A full description of the software packaged in the RPM. This description can span
multiple lines and can be broken into paragraphs.

%prep Command or series of commands to prepare the software to be built, for example,
unpacking the archive in Source0. This directive can contain a shell script.

%build Command or series of commands for building the software into machine code (for
compiled languages) or byte code (for some interpreted languages).

%install Command or series of commands for copying the desired build artifacts from the
%builddir (where the build happens) to the %buildroot directory (which contains the
directory structure with the files to be packaged). This usually means copying files from
~/rpmbuild/BUILD to ~/rpmbuild/BUILDROOT and creating the necessary
directories in ~/rpmbuild/BUILDROOT. This is only run when creating a package, not
when the end-user installs the package. See Section 3.2, “Working with SPEC files” for
details.

%check Command or series of commands to test the software. This normally includes things
such as unit tests.

%files The list of files that will be installed in the end user’s system.

%changelog A record of changes that have happened to the package between different Version or
Release builds.

3.1.4.3. Advanced items

The SPEC file can also contain advanced items, such as Scriptlets or Triggers. They take effect at
different points during the installation process on the end user’s system, not the build process.

3.1.5. BuildRoots

In the context of RPM packaging, buildroot is a chroot environment. This means that the build artifacts
are placed here using the same file system hierarchy as the future hierarchy in end user’s system, with
buildroot acting as the root directory. The placement of build artifacts should comply with the file
system hierarchy standard of the end user’s system.

The files in buildroot are later put into a cpio archive, which becomes the main part of the RPM. When
RPM is installed on the end user’s system, these files are extracted in the root directory, preserving the
correct hierarchy.

NOTE

Red Hat Enterprise Linux 7 RPM Packaging Guide

24

NOTE

Starting from 6, the rpmbuild program has its own defaults. Overriding these defaults
leads to several problems; hence, {RH} does not recommend to define your own value of
this macro. You can use the %{buildroot} macro with the defaults from the rpmbuild
directory.

3.1.6. RPM macros

An rpm macro is a straight text substitution that can be conditionally assigned based on the optional
evaluation of a statement when certain built-in functionality is used. Hence, RPM can perform text
substitutions for you.

An example use is referencing the packaged software Version multiple times in a SPEC file. You define
Version only once in the %{version} macro, and use this macro throughout the SPEC file. Every
occurrence will be automatically substituted by Version that you defined previously.

NOTE

If you see an unfamiliar macro, you can evaluate it with the following command:

$ rpm --eval %{_MACRO}

Evaluating the %{_bindir} and the %{_libexecdir} macros

$ rpm --eval %{_bindir}
/usr/bin

$ rpm --eval %{_libexecdir}
/usr/libexec

On of the commonly-used macros is the %{?dist} macro, which signals which distribution is used for the
build (distribution tag).

On a RHEL 8.x machine
$ rpm --eval %{?dist}
.el8

3.2. WORKING WITH SPEC FILES

This section describes how to create and modify a SPEC file.

Prerequisites

This section uses the three example implementations of the Hello World! program that were described
in Section 2.1.1, “Source code examples” .

Each of the programs is also fully described in the below table.

Software
Name

Explanation of example

CHAPTER 3. PACKAGING SOFTWARE

25

http://rpm.org/user_doc/macros.html

bello A program written in a raw interpreted programming language. It demonstrates when the
source code does not need to be built, but only needs to be installed. If a pre-compiled
binary needs to be packaged, you can also use this method since the binary would also just be
a file.

pello A program written in a byte-compiled interpreted programming language. It demonstrates
byte-compiling the source code and installating the bytecode - the resulting pre-optimized
files.

cello A program written in a natively compiled programming language. It demonstrates a common
process of compiling the source code into machine code and installing the resulting
executables.

The implementations of Hello World! are:

bello-0.1.tar.gz

pello-0.1.2.tar.gz

cello-1.0.tar.gz

cello-output-first-patch.patch

As a prerequisite, these implementations need to be placed into the ~/rpmbuild/SOURCES directory.

3.2.1. Ways to create a new SPEC file

To package new software, you need to create a new SPEC file.

There are two to achieve this:

Writing the new SPEC file manually from scratch

Use the rpmdev-newspec utility
This utility creates an unpopulated SPEC file, and you fill in the necessary directives and fields.

NOTE

Some programmer-focused text editors pre-populate a new .spec file with their own
SPEC template. The rpmdev-newspec utility provides an editor-agnostic method.

3.2.2. Creating a new SPEC file with rpmdev-newspec

The following procedure shows how to create a SPEC file for each of the three aforementioned Hello
World! programs using the rpmdev-newspec utility.

Procedure

1. Change to the ~/rpmbuild/SPECS directory and use the rpmdev-newspec utility:

$ cd ~/rpmbuild/SPECS

Red Hat Enterprise Linux 7 RPM Packaging Guide

26

https://github.com/redhat-developer/rpm-packaging-guide/raw/master/example-code/bello-0.1.tar.gz
https://github.com/redhat-developer/rpm-packaging-guide/raw/master/example-code/pello-0.1.2.tar.gz
https://github.com/redhat-developer/rpm-packaging-guide/raw/master/example-code/cello-1.0.tar.gz
https://raw.githubusercontent.com/redhat-developer/rpm-packaging-guide/master/example-code/cello-output-first-patch.patch

$ rpmdev-newspec bello
bello.spec created; type minimal, rpm version >= 4.11.

$ rpmdev-newspec cello
cello.spec created; type minimal, rpm version >= 4.11.

$ rpmdev-newspec pello
pello.spec created; type minimal, rpm version >= 4.11.

The ~/rpmbuild/SPECS/ directory now contains three SPEC files named bello.spec,
cello.spec, and pello.spec.

fd. Examine the files:

+

NOTE

The rpmdev-newspec utility does not use guidelines or conventions specific to any
particular Linux distribution. However, this document targets , so the %{buildroot}
notation is preferred over the $RPM_BUILD_ROOT notation when referencing RPM’s
Buildroot for consistency with all other defined or provided macros throughout the SPEC
file.

3.2.3. Modifying an original SPEC file for creating RPMs

The following procedure shows how to modify the output SPEC file provided by rpmdev-newspec for
creating the RPMs.

Prerequisites

Make sure that:

The source code of the particular program has been placed into the ~/rpmbuild/SOURCES/
directory.

The unpopulated SPEC file ~/rpmbuild/SPECS/<name>.spec file has been created by the
rpmdev-newspec utility.

Procedure

1. Open the output template of the ~/rpmbuild/SPECS/<name>.spec file provided by the
rpmdev-newspec utility:

2. Populate the first section of the SPEC file:
The first section includes these directives that rpmdev-newspec grouped together:

Name

Version

Release

Summary
The Name was already specified as an argument to rpmdev-newspec.

CHAPTER 3. PACKAGING SOFTWARE

27

Set the Version to match the upstream release version of the source code.

The Release is automatically set to 1%{?dist}, which is initially 1. Increment the initial value
whenever updating the package without a change in the upstream release Version - such
as when including a patch. Reset Release to 1 when a new upstream release happens.

The Summary is a short, one-line explanation of what this software is.

3. Populate the License, URL, and Source0 directives:
The License field is the Software License associated with the source code from the upstream
release. The exact format for how to label the License in your SPEC file will vary depending on
which specific RPM based Linux distribution guidelines you are following.

For example, you can use GPLv3+.

The URL field provides URL to the upstream software website. For consistency, utilize the RPM
macro variable of %{name}, and use https://example.com/%{name}.

The Source0 field provides URL to the upstream software source code. It should link directly to
the specific version of software that is being packaged. Note that the example URLs given in
this documentation include hard-coded values that are possible subject to change in the future.
Similarly, the release version can change as well. To simplify these potential future changes, use
the %{name} and %{version} macros. By using these, you need to update only one field in the
SPEC file.

4. Populate the BuildRequires, Requires and BuildArch directives:
BuildRequires specifies build-time dependencies for the package.

Requires specifies run-time dependencies for the package.

This is a software written in an interpreted programming language with no natively compiled
extensions. Hence, add the BuildArch directive with the noarch value. This tells RPM that this
package does not need to be bound to the processor architecture on which it is built.

5. Populate the %description, %prep, %build, %install, %files, and %license directives:
These directives can be thought of as section headings, because they are directives that can
define multi-line, multi-instruction, or scripted tasks to occur.

The %description is a longer, fuller description of the software than Summary, containing one
or more paragraphs.

The %prep section specifies how to prepare the build environment. This usually involves
expansion of compressed archives of the source code, application of patches, and, potentially,
parsing of information provided in the source code for use in a later portion of the SPEC file. In
this section you can use the built-in %setup -q macro.

The %build section specifies how to build the software.

The %install section contains instructions for rpmbuild on how to install the software, once it
has been built, into the BUILDROOT directory.

This directory is an empty chroot base directory, which resembles the end user’s root directory.
Here you can create any directories that will contain the installed files. To create such
directories, you can use the RPM macros without having to hardcode the paths.

The %files section specifies the list of files provided by this RPM and their full path location on
the end user’s system.

Within this section, you can indicate the role of various files using built-in macros. This is useful

Red Hat Enterprise Linux 7 RPM Packaging Guide

28

https://www.gnu.org/licenses/quick-guide-gplv3.html
https://example.com/%{name}

Within this section, you can indicate the role of various files using built-in macros. This is useful
for querying the package file manifest metadata using the command[]rpm command. For
example, to indicate that the LICENSE file is a software license file, use the %license macro.

6. The last section, %changelog, is a list of datestamped entries for each Version-Release of the
package. They log packaging changes, not software changes. Examples of packaging changes:
adding a patch, changing the build procedure in the %build section.
Follow this format for the first line:

Start with an * character followed by Day-of-Week Month Day Year Name Surname <email> -
Version-Release

Follow this format for the actual change entry:

Each change entry can contain multiple items, one for each change.

Each item starts on a new line.

Each item begins with a - character.

You have now written an entire SPEC file for the required program.

For examples of SPEC file written in different programming languages, see:

3.2.4. An example SPEC file for a program written in bash

This section shows an example SPEC file for the bello program that was written in bash. For more
information about bello, see Section 2.1.1, “Source code examples” .

An example SPEC file for the bello program written in bash

Name: bello
Version: 0.1
Release: 1%{?dist}
Summary: Hello World example implemented in bash script

License: GPLv3+
URL: https://www.example.com/%{name}
Source0: https://www.example.com/%{name}/releases/%{name}-%{version}.tar.gz

Requires: bash

BuildArch: noarch

%description
The long-tail description for our Hello World Example implemented in
bash script.

%prep
%setup -q

%build

%install

mkdir -p %{buildroot}/%{_bindir}

CHAPTER 3. PACKAGING SOFTWARE

29

https://www.example.com/%{name}
https://www.example.com/%{name}/releases/%{name}-%{version}.tar.gz

install -m 0755 %{name} %{buildroot}/%{_bindir}/%{name}

%files
%license LICENSE
%{_bindir}/%{name}

%changelog
* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 0.1-1
- First bello package
- Example second item in the changelog for version-release 0.1-1

The BuildRequires directive, which specifies build-time dependencies for the package, was deleted
because there is no building step for bello. Bash is a raw interpreted programming language, and the
files are just installed to their location on the system.

The Requires directive, which specifies run-time dependencies for the package, include only bash,
because the bello script requires only the bash shell environment to execute.

The %build section, which specifies how to build the software, is blank, because a bash does not need
to be built.

For installing bello you only need to create the destination directory and install the executable bash
script file there. Hence, you can use the install command in the %install section. RPM macros allow to
do this without hardcoding paths.

3.2.5. An example SPEC file for a program written in Python

This section shows an example SPEC file for the pello program written in the Python programming
language. For more information about pello, see Section 2.1.1, “Source code examples” .

An example SPEC file for the pello program written in Python

Name: pello
Version: 0.1.1
Release: 1%{?dist}
Summary: Hello World example implemented in Python

License: GPLv3+
URL: https://www.example.com/%{name}
Source0: https://www.example.com/%{name}/releases/%{name}-%{version}.tar.gz

BuildRequires: python
Requires: python
Requires: bash

BuildArch: noarch

%description
The long-tail description for our Hello World Example implemented in Python.

%prep
%setup -q

%build

Red Hat Enterprise Linux 7 RPM Packaging Guide

30

mailto:maxamillion@fedoraproject.org
https://www.example.com/%{name}
https://www.example.com/%{name}/releases/%{name}-%{version}.tar.gz

python -m compileall %{name}.py

%install

mkdir -p %{buildroot}/%{_bindir}
mkdir -p %{buildroot}/usr/lib/%{name}

cat > %{buildroot}/%{_bindir}/%{name} <←EOF
#!/bin/bash
/usr/bin/python /usr/lib/%{name}/%{name}.pyc
EOF

chmod 0755 %{buildroot}/%{_bindir}/%{name}

install -m 0644 %{name}.py* %{buildroot}/usr/lib/%{name}/

%files
%license LICENSE
%dir /usr/lib/%{name}/
%{_bindir}/%{name}
/usr/lib/%{name}/%{name}.py*

%changelog
* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 0.1.1-1
 - First pello package

IMPORTANT

The pello program is written in a byte-compiled interpreted language. Hence, the
shebang is not applicable because the resulting file does not contain the entry.

Because the shebang is not applicable, you may want to apply one of the following
approaches:

Create a non-byte-compiled shell script that will call the executable.

Provide a small bit of the Python code that is not byte-compiled as the entry
point into the program’s execution.

These approaches are useful especially for large software projects with many thousands
of lines of code, where the performance increase of pre-byte-compiled code is sizeable.

The BuildRequires directive, which specifies build-time dependencies for the package, includes two
packages:

The python package is needed to perform the byte-compile build process

The bash package is needed to execute the small entry-point script

The Requires directive, which specifies run-time dependencies for the package, includes only the
python package. The pello program requires the python package to execute the byte-compiled code
at runtime.

The %build section, which specifies how to build the software, corresponds to the fact that the
software is byte-compiled.

CHAPTER 3. PACKAGING SOFTWARE

31

mailto:maxamillion@fedoraproject.org

To install pello, you need to create a wrapper script because the shebang is not applicable in byte-
compiled languages. There are multiple options to accomplish this, such as:

Making a separate script and using that as a separate SourceX directive.

Creating the file in-line in the SPEC file.

This example shows creating a wrapper script in-line in the SPEC file to demonstrate that the SPEC file
itself is scriptable. This wrapper script will execute the Python byte-compiled code by using a here
document.

The %install section in this example also corresponds to the fact that you will need to install the byte-
compiled file into a library directory on the system such that it can be accessed.

3.2.6. An example SPEC file for a program written in C

This section shows an example SPEC file for the cello program that was written in the C programming
language. For more information about cello, see Section 2.1.1, “Source code examples” .

An example SPEC file for the cello program written in C

Name: cello
Version: 1.0
Release: 1%{?dist}
Summary: Hello World example implemented in C

License: GPLv3+
URL: https://www.example.com/%{name}
Source0: https://www.example.com/%{name}/releases/%{name}-%{version}.tar.gz

Patch0: cello-output-first-patch.patch

BuildRequires: gcc
BuildRequires: make

%description
The long-tail description for our Hello World Example implemented in
C.

%prep
%setup -q

%patch0

%build
make %{?_smp_mflags}

%install
%make_install

%files
%license LICENSE
%{_bindir}/%{name}

Red Hat Enterprise Linux 7 RPM Packaging Guide

32

https://www.example.com/%{name}
https://www.example.com/%{name}/releases/%{name}-%{version}.tar.gz

%changelog
* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 1.0-1
- First cello package

The BuildRequires directive, which specifies build-time dependencies for the package, includes two
packages that are needed to perform the compilation build process:

The gcc package

The make package

The Requires directive, which specifies run-time dependencies for the package, is omitted in this
example. All runtime requirements are handled by rpmbuild, and the cello program does not require
anything outside of the core C standard libraries.

The %build section reflects the fact that in this example a Makefile for the cello program was written,
hence the GNU make command provided by the rpmdev-newspec utility can be used. However, you
need to remove the call to %configure because you did not provide a configure script.

The installation of the cello program can be accomplished by using the %make_install macro that was
provided by the rpmdev-newspec command. This is possible because the Makefile for the cello
program is available.

3.3. BUILDING RPMS

This section describes how to build an RPM after a SPEC file for a program has been created.

RPMs are built with the rpmbuild command. This command expects a certain directory and file
structure, which is the same as the structure that was set up by the rpmdev-setuptree utility.

Different use cases and desired outcomes require different combinations of arguments to the rpmbuild
command. This section describes the two main use cases:

Building source RPMs

Building binary RPMs

3.3.1. Building source RPMs

This paragraph is the procedure module introduction: a short description of the procedure.

Prerequisites

A SPEC file for the program that we want to package must already exist. For more information on
creating SPEC files, see Working with SPEC files.

Procedure

The following procedure describes how to build a source RPM.

Run the rpmbuild command with the specified SPEC file:

$ rpmbuild -bs SPECFILE

Substitute SPECFILE with the SPEC file. The -bs option stands for the build source.

CHAPTER 3. PACKAGING SOFTWARE

33

mailto:maxamillion@fedoraproject.org
http://www.gnu.org/software/make/

The following example shows building source RPMs for the bello, pello, and cello projects.

Building source RPMs for bello, pello, and cello.

$ cd ~/rpmbuild/SPECS/

8$ rpmbuild -bs bello.spec
Wrote: /home/<username>/rpmbuild/SRPMS/bello-0.1-1.el8.src.rpm

$ rpmbuild -bs pello.spec
Wrote: /home/<username>/rpmbuild/SRPMS/pello-0.1.2-1.el8.src.rpm

$ rpmbuild -bs cello.spec
Wrote: /home/<username>/rpmbuild/SRPMS/cello-1.0-1.el8.src.rpm

Verification steps

Make sure that the rpmbuild/SRPMS directory includes the resulting source RPMs. The
directory is a part of the structure expected by rpmbuild.

3.3.2. Building binary RPMs

The following methods are vailable for building binary RPMs:

Rebuilding a binary RPM from a source RPM

Building a binary RPM from the SPEC file

Building a binary RPM from a source RPM

3.3.2.1. Rebuilding a binary RPM from a source RPM

The following procedure shows how to rebuild a binary RPM from a source RPM (SRPM).

Procedure

To rebuild bello, pello, and cello from their SRPMs, run:

$ rpmbuild --rebuild ~/rpmbuild/SRPMS/bello-0.1-1.el8.src.rpm
[output truncated]

$ rpmbuild --rebuild ~/rpmbuild/SRPMS/pello-0.1.2-1.el8.src.rpm
[output truncated]

$ rpmbuild --rebuild ~/rpmbuild/SRPMS/cello-1.0-1.el8.src.rpm
[output truncated]

NOTE

Red Hat Enterprise Linux 7 RPM Packaging Guide

34

NOTE

Invoking rpmbuild --rebuild involves:

Installing the contents of the SRPM - the SPEC file and the source code - into
the ~/rpmbuild/ directory.

Building using the installed contents.

Removing the SPEC file and the source code.

To retain the SPEC file and the source code after building, you can:

When building, use the rpmbuild command with the --recompile option instead
of the --rebuild option.

Install the SRPMs using these commands:

$ rpm -Uvh ~/rpmbuild/SRPMS/bello-0.1-1.el8.src.rpm
Updating / installing…
 1:bello-0.1-1.el8 [100%]

$ rpm -Uvh ~/rpmbuild/SRPMS/pello-0.1.2-1.el8.src.rpm
Updating / installing…
… 1:pello-0.1.2-1.el8 [100%]

$ rpm -Uvh ~/rpmbuild/SRPMS/cello-1.0-1.el8.src.rpm
Updating / installing…
… 1:cello-1.0-1.el8 [100%]

The output generated when creating a binary RPM is verbose, which is helpful for debugging. The
output varies for different examples and corresponds to their SPEC files.

The resulting binary RPMs are in the ~/rpmbuild/RPMS/YOURARCH directory where YOURARCH is
your architecture or in the ~/rpmbuild/RPMS/noarch/ directory, if the package is not architecture-
specific.

3.3.2.2. Building a binary RPM from the SPEC file

The following procedure shows how to build bello, pello, and cello binary RPMs from their SPEC files.

Procedure

Run the rpmbuild command with the bb option:

$ rpmbuild -bb ~/rpmbuild/SPECS/bello.spec

$ rpmbuild -bb ~/rpmbuild/SPECS/pello.spec

$ rpmbuild -bb ~/rpmbuild/SPECS/cello.spec

3.3.2.3. Building RPMs from source RPMs

It is also possible to build any kind of RPM from a source RPM. To do so, use the following procedure.

CHAPTER 3. PACKAGING SOFTWARE

35

Procedure

Run the rpmbuild command with one of the below options and with the source package
specified:

rpmbuild {-ra|-rb|-rp|-rc|-ri|-rl|-rs} [rpmbuild-options] SOURCEPACKAGE

Additional resources

For more details on building RPMs from source RPMs, see the BUILDING PACKAGES section on the
rpmbuild(8) man page.

3.4. CHECKING RPMS FOR SANITY

After creating a package, check the quality of the package.

The main tool for checking package quality is rpmlint.

The rpmlint tool does the following:

Improves RPM maintainability.

Enables sanity checking by performing static analysis of the RPM.

Enables error checking by performing static analysis of the RPM.

The rpmlint tool can check binary RPMs, source RPMs (SRPMs), and SPEC files, so it is useful for all
stages of packaging, as shown in the following examples.

Note that rpmlint has very strict guidelines; hence it is sometimes acceptable to skip some of its errors
and warnings, as shown in the following examples.

NOTE

In the following examples, rpmlint is run without any options, which produces a non-
verbose output. For detailed explanations of each error or warning, you can run rpmlint -i
instead.

3.4.1. Checking bello for sanity

This section shows possible warnings and errors that can occur when checking RPM sanity on the
example of the bello SPEC file and bello binary RPM.

3.4.1.1. Checking the bello SPEC File

Example 3.2. Output of running the rpmlint command on the SPEC file for bello

$ rpmlint bello.spec
bello.spec: W: invalid-url Source0: https://www.example.com/bello/releases/bello-0.1.tar.gz HTTP
Error 404: Not Found
0 packages and 1 specfiles checked; 0 errors, 1 warnings.

For bello.spec, there is only one warning, which says that the URL listed in the Source0 directive is

Red Hat Enterprise Linux 7 RPM Packaging Guide

36

https://github.com/rpm-software-management/rpmlint
https://www.example.com/bello/releases/bello-0.1.tar.gz

For bello.spec, there is only one warning, which says that the URL listed in the Source0 directive is
unreachable. This is expected, because the specified example.com URL does not exist. Presuming that
we expect this URL to work in the future, we can ignore this warning.

Example 3.3. Output of running the rpmlint command on the SRPM for bello

$ rpmlint ~/rpmbuild/SRPMS/bello-0.1-1.el8.src.rpm
bello.src: W: invalid-url URL: https://www.example.com/bello HTTP Error 404: Not Found
bello.src: W: invalid-url Source0: https://www.example.com/bello/releases/bello-0.1.tar.gz HTTP
Error 404: Not Found
1 packages and 0 specfiles checked; 0 errors, 2 warnings.

For the bello SRPM, there is a new warning, which says that the URL specified in the URL directive is
unreachable. Assuming the link will be working in the future, we can ignore this warning.

3.4.1.2. Checking the bello binary RPM

When checking binary RPMs, rpmlint checks for the following items:

Documentation

Manual pages

Consistent use of the filesystem hierarchy standard

Example 3.4. Output of running the rpmlint command on the binary RPM for bello

$ rpmlint ~/rpmbuild/RPMS/noarch/bello-0.1-1.el8.noarch.rpm
bello.noarch: W: invalid-url URL: https://www.example.com/bello HTTP Error 404: Not Found
bello.noarch: W: no-documentation
bello.noarch: W: no-manual-page-for-binary bello
1 packages and 0 specfiles checked; 0 errors, 3 warnings.

The no-documentation and no-manual-page-for-binary warnings say that the RPM has no
documentation or manual pages, because we did not provide any. Apart from the above warnings, the
RPM passed rpmlint checks.

3.4.2. Checking pello for sanity

This section shows possible warnings and errors that can occur when checking RPM sanity on the
example of the pello SPEC file and pello binary RPM.

3.4.2.1. Checking the pello SPEC File

Example 3.5. Output of running the rpmlint command on the SPEC file for pello

$ rpmlint pello.spec
pello.spec:30: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}
pello.spec:34: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.pyc
pello.spec:39: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}/
pello.spec:43: E: hardcoded-library-path in /usr/lib/%{name}/

CHAPTER 3. PACKAGING SOFTWARE

37

https://www.example.com/bello
https://www.example.com/bello/releases/bello-0.1.tar.gz
https://www.example.com/bello

pello.spec:45: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.py*
pello.spec: W: invalid-url Source0: https://www.example.com/pello/releases/pello-0.1.2.tar.gz
HTTP Error 404: Not Found
0 packages and 1 specfiles checked; 5 errors, 1 warnings.

The invalid-url Source0 warning says that the URL listed in the Source0 directive is unreachable. This is
expected, because the specified example.com URL does not exist. Presuming that this URL will work in
the future, you can ignore this warning.

The hardcoded-library-path errors suggest to use the %{_libdir} macro instead of hard-coding the
library path. For the sake of this example, you can safely ignore these errors. However, for packages
going into production make sure to check all errors carefully.

Example 3.6. Output of running the rpmlint command on the SRPM for pello

$ rpmlint ~/rpmbuild/SRPMS/pello-0.1.2-1.el8.src.rpm
pello.src: W: invalid-url URL: https://www.example.com/pello HTTP Error 404: Not Found
pello.src:30: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}
pello.src:34: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.pyc
pello.src:39: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}/
pello.src:43: E: hardcoded-library-path in /usr/lib/%{name}/
pello.src:45: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.py*
pello.src: W: invalid-url Source0: https://www.example.com/pello/releases/pello-0.1.2.tar.gz HTTP
Error 404: Not Found
1 packages and 0 specfiles checked; 5 errors, 2 warnings.

The new invalid-url URL error here is about the URL directive, which is unreachable. Assuming that the
URL will be valid in the future, you can safely ignore this error.

3.4.2.2. Checking the pello binary RPM

When checking binary RPMs, rpmlint checks for the following items:

Documentation

Manual pages

Consistent use of the Filesystem Hierarchy Standard

Example 3.7. Output of running the rpmlint command on the binary RPM for pello

$ rpmlint ~/rpmbuild/RPMS/noarch/pello-0.1.2-1.el8.noarch.rpm
pello.noarch: W: invalid-url URL: https://www.example.com/pello HTTP Error 404: Not Found
pello.noarch: W: only-non-binary-in-usr-lib
pello.noarch: W: no-documentation
pello.noarch: E: non-executable-script /usr/lib/pello/pello.py 0644L /usr/bin/env
pello.noarch: W: no-manual-page-for-binary pello
1 packages and 0 specfiles checked; 1 errors, 4 warnings.

The no-documentation and no-manual-page-for-binary warnings say that the RPM has no
documentation or manual pages, because you did not provide any.

Red Hat Enterprise Linux 7 RPM Packaging Guide

38

https://www.example.com/pello/releases/pello-0.1.2.tar.gz
https://www.example.com/pello
https://www.example.com/pello/releases/pello-0.1.2.tar.gz
https://www.example.com/pello

The only-non-binary-in-usr-lib warning says that you provided only non-binary artifacts in /usr/lib/.
This directory is normally reserved for shared object files, which are binary files. Therefore, rpmlint
expects at least one or more files in /usr/lib/ directory to be binary.

This is an example of an rpmlint check for compliance with Filesystem Hierarchy Standard. Normally, use
RPM macros to ensure the correct placement of files. For the sake of this example, you can safely ignore
this warning.

The non-executable-script error warns that the /usr/lib/pello/pello.py file has no execute permissions.
The rpmlint tool expects the file to be executable, because the file contains the shebang. For the
purpose of this example, you can leave this file without execute permissions and ignore this error.

Apart from the above warnings and errors, the RPM passed rpmlint checks.

3.4.3. Checking cello for sanity

This section shows possible warnings and errors that can occur when checking RPM sanity on the
example of the cello SPEC file and pello binary RPM.

3.4.3.1. Checking the cello SPEC File

Example 3.8. Output of running the rpmlint command on the SPEC file for cello

$ rpmlint ~/rpmbuild/SPECS/cello.spec
/home/<username>/rpmbuild/SPECS/cello.spec: W: invalid-url Source0:
https://www.example.com/cello/releases/cello-1.0.tar.gz HTTP Error 404: Not Found
0 packages and 1 specfiles checked; 0 errors, 1 warnings.

For cello.spec, there is only one warning, which says that the URL listed in the Source0 directive is
unreachable. This is expected, because the specified example.com URL does not exist. Presuming that
this URL will work in the future, you can ignore this warning.

Example 3.9. Output of running the rpmlint command on the SRPM for cello

$ rpmlint ~/rpmbuild/SRPMS/cello-1.0-1.el8.src.rpm
cello.src: W: invalid-url URL: https://www.example.com/cello HTTP Error 404: Not Found
cello.src: W: invalid-url Source0: https://www.example.com/cello/releases/cello-1.0.tar.gz HTTP
Error 404: Not Found
1 packages and 0 specfiles checked; 0 errors, 2 warnings.

For the cello SRPM, there is a new warning, which says that the URL specified in the URL directive is
unreachable. Assuming the link will be working in the future, you can ignore this warning.

3.4.3.2. Checking the cello binary RPM

When checking binary RPMs, rpmlint checks for the following items:

Documentation

Manual pages

Consistent use of the filesystem hierarchy standard

CHAPTER 3. PACKAGING SOFTWARE

39

https://www.example.com/cello/releases/cello-1.0.tar.gz
https://www.example.com/cello
https://www.example.com/cello/releases/cello-1.0.tar.gz

Example 3.10. Output of running the rpmlint command on the binary RPM for cello

$ rpmlint ~/rpmbuild/RPMS/x86_64/cello-1.0-1.el8.x86_64.rpm
cello.x86_64: W: invalid-url URL: https://www.example.com/cello HTTP Error 404: Not Found
cello.x86_64: W: no-documentation
cello.x86_64: W: no-manual-page-for-binary cello
1 packages and 0 specfiles checked; 0 errors, 3 warnings.

The no-documentation and no-manual-page-for-binary warnings say that he RPM has no
documentation or manual pages, because you did not provide any. Apart from the above warnings, the
RPM passed rpmlint checks.

Red Hat Enterprise Linux 7 RPM Packaging Guide

40

https://www.example.com/cello

CHAPTER 4. ADVANCED TOPICS
This section covers topics that are beyond the scope of the introductory tutorial but are useful in real-
world RPM packaging.

4.1. SIGNING PACKAGES

Packages are signed to make sure no third party can alter their content. A user can add an additional
layer of security by using the HTTPS protocol when downloading the package.

There are three ways to sign a package:

4.1.1. Creating a GPG key

Procedure

1. Generate a GNU Privacy Guard (GPG) key pair:

gpg --gen-key

2. Confirm and see the generated key:

gpg --list-keys

3. Export the public key:

gpg --export -a '<Key_name>' > RPM-GPG-KEY-pmanager

NOTE

Include the real name that you have selected for the key instead of <Key_name>.

4. Import the exported public key into an RPM database:

rpm --import RPM-GPG-KEY-pmanager

4.1.2. Adding a signature to an already existing package

This section describes the most usual case when a package is built without a signature. The signature is
added just before the release of the package.

To add a signature to a package, use the --addsign option provided by the rpm-sign package.

Having more than one signature enables to record the package’s path of ownership from the package
builder to the end-user.

Procedure

Add a signature to a package:

$ rpm --addsign blather-7.9-1.x86_64.rpm

NOTE

CHAPTER 4. ADVANCED TOPICS

41

NOTE

You are supposed to enter the password to unlock the secret key for the
signature.

4.1.3. Checking the signatures of a package with multiple signatures

Procedure

To check the signatures of a package with multiple signatures, run the following:

$ rpm --checksig blather-7.9-1.x86_64.rpm
blather-7.9-1.x86_64.rpm: size pgp pgp md5 OK

The two pgp strings in the output of the rpm --checksig command show that the package has
been signed twice.

4.1.4. A practical example of adding a signature to an already existing package

This section describes an example situation where adding a signature to an already existing package
might be useful.

A division of a company creates a package and signs it with the division’s key. The company’s
headquarters then checks the package’s signature and adds the corporate signature to the package,
stating that the signed package is authentic.

With two signatures, the package makes its way to a retailer. The retailer checks the signatures and, if
they match, adds their signature as well.

The package now makes its way to a company that wants to deploy the package. After checking every
signature on the package, they know that it is an authentic copy. Depending on the deploying company’s
internal controls, they may choose to add their own signature, to inform their employees that the
package has received their corporate approval

4.1.5. Replacing the signature on an already existing package

This procedure describes how to change the public key without having to rebuild each package.

Procedure

To change the public key, run the following:

$ rpm --resign blather-7.9-1.x86_64.rpm

NOTE

You are supposed to enter the password to unlock the secret key for the
signature.

The --resign option also enables you to change the public key for multiple packages, as shown in the
following procedure.

Procedure

Red Hat Enterprise Linux 7 RPM Packaging Guide

42

To change the public key for multiple packages, execute:

$ rpm --resign b*.rpm

NOTE

You are supposed to enter the password to unlock the secret key for the
signature.

4.1.6. Signing a package at build-time

Procedure

1. Build the package with the rpmbuild command:

$ rpmbuild blather-7.9.spec

2. Sign the package with the rpmsign command using the --addsign option:

$ rpmsign --addsign blather-7.9-1.x86_64.rpm

3. Optionally, verify the signature of a package:

$ rpm --checksig blather-7.9-1.x86_64.rpm
blather-7.9-1.x86_64.rpm: size pgp md5 OK

NOTE

When building and signing multiple packages, use the following syntax to avoid entering
the Pretty Good Privacy (PGP) passphrase multiple times.

$ rpmbuild -ba --sign b*.spec

Note that you are supposed to enter the password to unlock the secret key for the
signature.

4.2. MORE ON MACROS

This section covers selected built-in RPM Macros. For an exhaustive list of such macros, see RPM
Documentation.

4.2.1. Defining your own macros

The following section describes how to create a custom macro.

Procedure

Include the following line in the RPM SPEC file:

%global <name>[(opts)] <body>

CHAPTER 4. ADVANCED TOPICS

43

http://rpm.org/user_doc/macros.html

All whitespace surrounding \ is removed. Name may be composed of alphanumeric characters, and the
character _ and must be at least 3 characters in length. Inclusion of the (opts) field is optional:

Simple macros do not contain the (opts) field. In this case, only recursive macro expansion is
performed.

Parametrized macros contain the (opts) field. The opts string between parentheses is passed
to getopt(3) for argc/argv processing at the beginning of a macro invocation.

NOTE

Older RPM SPEC files use the %define <name> <body> macro pattern instead. The
differences between %define and %global macros are as follows:

%define has local scope. It applies to a specific part of a SPEC file. The body of a
%define macro is expanded when used.

%global has global scope. It applies to an entire SPEC file. The body of a %global
macro is expanded at definition time.

IMPORTANT

Macros are evaluated even if they are commented out or the name of the macro is given
into the %changelog section of the SPEC file. To comment out a macro, use %%. For
example: %%global.

Additional resources

For comprehensive information on macros capabilities, see RPM Documentation .

4.2.2. Using the %setup macro

This section describes how to build packages with source code tarballs using different variants of the
%setup macro. Note that the macro variants can be combined The rpmbuild output illustrates standard
behavior of the %setup macro. At the beginning of each phase, the macro outputs Executing(%…), as
shown in the below example.

Example 4.1. Example %setup macro output

Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.DhddsG

The shell output is set with set -x enabled. To see the content of /var/tmp/rpm-tmp.DhddsG, use
the --debug option because rpmbuild deletes temporary files after a successful build. This displays
the setup of environment variables followed by for example:

cd '/builddir/build/BUILD'
rm -rf 'cello-1.0'
/usr/bin/gzip -dc '/builddir/build/SOURCES/cello-1.0.tar.gz' | /usr/bin/tar -xof -
STATUS=$?
if [$STATUS -ne 0]; then
 exit $STATUS
fi
cd 'cello-1.0'
/usr/bin/chmod -Rf a+rX,u+w,g-w,o-w .

Red Hat Enterprise Linux 7 RPM Packaging Guide

44

http://rpm.org/user_doc/macros.html

The %setup macro:

Ensures that we are working in the correct directory.

Removes residues of previous builds.

Unpacks the source tarball.

Sets up some default privileges.

4.2.2.1. Using the %setup -q macro

The -q option limits the verbosity of the %setup macro. Only tar -xof is executed instead of tar -xvvof.
Use this option as the first option.

4.2.2.2. Using the %setup -n macro

The -n option is used to specify the name of the directory from expanded tarball.

This is used in cases when the directory from expanded tarball has a different name from what is
expected (%{name}-%{version}), which can lead to an error of the %setup macro.

For example, if the package name is cello, but the source code is archived in hello-1.0.tgz and contains
the hello/ directory, the SPEC file content needs to be as follows:

Name: cello
Source0: https://example.com/%{name}/release/hello-%{version}.tar.gz
…
%prep
%setup -n hello

4.2.2.3. Using the %setup -c macro

The -c option is used if the source code tarball does not contain any subdirectories and after unpacking,
files from an archive fills the current directory.

The -c option then creates the directory and steps into the archive expansion as shown below:

/usr/bin/mkdir -p cello-1.0
cd 'cello-1.0'

The directory is not changed after archive expansion.

4.2.2.4. Using the %setup -D and %setup -T macros

The -D option disables deleting of source code directory, and is particularly useful if the %setup macro
is used several times. With the -D option, the following lines are not used:

rm -rf 'cello-1.0'

The -T option disables expansion of the source code tarball by removing the following line from the
script:

CHAPTER 4. ADVANCED TOPICS

45

https://example.com/%{name}/release/hello-%{version}.tar.gz

/usr/bin/gzip -dc '/builddir/build/SOURCES/cello-1.0.tar.gz' | /usr/bin/tar -xvvof -

4.2.2.5. Using the %setup -a and %setup -b macros

The -a and -b options expand specific sources:

The -b option stands for before, and it expands specific sources before entering the working directory.
The -a option stands for after, and it expands those sources after entering. Their arguments are source
numbers from the SPEC file preamble.

In the following example, the cello-1.0.tar.gz archive contains an empty examples directory. The
examples are shipped in a separate examples.tar.gz tarball and they expand into the directory of the
same name. In this case, use -a 1, if you want to expand Source1 after entering the working directory:

Source0: https://example.com/%{name}/release/%{name}-%{version}.tar.gz
Source1: examples.tar.gz
…
%prep
%setup -a 1

In the following example, examples are provided in a separate cello-1.0-examples.tar.gz tarball, which
expands into cello-1.0/examples. In this case, use -b 1, to expand Source1 before entering the working
directory:

Source0: https://example.com/%{name}/release/%{name}-%{version}.tar.gz
Source1: %{name}-%{version}-examples.tar.gz
…
%prep
%setup -b 1

4.2.3. Common RPM macros in the %files section

This section lists advanced RPM Macros that are needed in the %files section of a SPEC file.

Table 4.1. Advanced RPM Macros in the %files section

Macro Definition

%license The macro identifies the file listed as a LICENSE file and it will be installed and labeled
as such by RPM. Example: %license LICENSE

%doc The macro identifies a file listed as documentation and it will be installed and labeled as
such by RPM. The macro is used for documentation about the packaged software and
also for code examples and various accompanying items. In the event code examples
are included, care should be taken to remove executable mode from the file. Example:
%doc README

%dir The macro ensures that the path is a directory owned by this RPM. This is important so
that the RPM file manifest accurately knows what directories to clean up on uninstall.
Example: %dir %{_libdir}/%{name}

Red Hat Enterprise Linux 7 RPM Packaging Guide

46

https://example.com/%{name}/release/%{name}-%{version}.tar.gz
https://example.com/%{name}/release/%{name}-%{version}.tar.gz

%config(noreplace
)

The macro ensures that the following file is a configuration file and therefore should not
be overwritten (or replaced) on a package install or update if the file has been modified
from the original installation checksum. If there is a change, the file will be created with
.rpmnew appended to the end of the filename upon upgrade or install so that the pre-
existing or modified file on the target system is not modified. Example:
%config(noreplace) %{_sysconfdir}/%{name}/%{name}.conf

Macro Definition

4.2.4. Displaying the built-in macros

provides multiple built-in RPM macros.

Procedure

1. To display all built-in RPM macros, run:

rpm --showrc

NOTE

The output is quite sizeable. To narrow the result, use the command above with
the grep command.

2. To find information about the RPMs macros for your system’s version of RPM, run:

rpm -ql rpm

NOTE

RPM macros are the files titled macros in the output directory structure.

4.2.5. RPM distribution macros

Different distributions provide different sets of recommended RPM macros based on the language
implementation of the software being packaged or the specific guidelines of the distribution.

The sets of recommended RPM macros are often provided as RPM packages, ready to be installed with
the yum package manager.

Once installed, the macro files can be found in the /usr/lib/rpm/macros.d/ directory.

To display the raw RPM macro definitions, run:

rpm --showrc

The above output displays the raw RPM macro definitions.

To determine what a macro does and how it can be helpful when packaging RPMs, run the rpm --eval

CHAPTER 4. ADVANCED TOPICS

47

To determine what a macro does and how it can be helpful when packaging RPMs, run the rpm --eval
command with the name of the macro used as its argument:

rpm --eval %{_MACRO}

For more information, see the rpm man page.

4.2.5.1. Creating custom macros

You can override the distribution macros in the ~/.rpmmacros file with your custom macros. Any
changes that you make affect every build on your machine.

WARNING

Defining any new macros in the ~/.rpmmacros file is not recommended. Such
macros would not be present on other machines, where users may want to try to
rebuild your package.

To override a macro, run :

%_topdir /opt/some/working/directory/rpmbuild

You can create the directory from the example above, including all subdirectories through the rpmdev-
setuptree utility. The value of this macro is by default ~/rpmbuild.

%_smp_mflags -l3

The macro above is often used to pass to Makefile, for example make %{?_smp_mflags}, and to set a
number of concurrent processes during the build phase. By default, it is set to -jX, where X is a number of
cores. If you alter the number of cores, you can speed up or slow down a build of packages.

4.3. EPOCH, SCRIPTLETS AND TRIGGERS

This section covers Epoch, Scriptlets, and Triggers, which represent advanced directives for RMP
SPEC files.

All these directives influence not only the SPEC file, but also the end machine on which the resulting
RPM is installed.

4.3.1. The Epoch directive

The Epoch directive enables to define weighted dependencies based on version numbers.

If this directive is not listed in the RPM SPEC file, the Epoch directive is not set at all. This is contrary to
common belief that not setting Epoch results in an Epoch of 0. However, the YUM utility treats an
unset Epoch as the same as an Epoch of 0 for the purposes of depsolving.

However, listing Epoch in a SPEC file is usually omitted because in majority of cases introducing an
Epoch value skews the expected RPM behavior when comparing versions of packages.

Red Hat Enterprise Linux 7 RPM Packaging Guide

48

Example 4.2. Using Epoch

If you install the foobar package with Epoch: 1 and Version: 1.0, and someone else packages
foobar with Version: 2.0 but without the Epoch directive, the new version will never be considered
an update. The reason being that the Epoch version is preferred over the traditional Name-Version-
Release marker that signifies versioning for RPM Packages.

Using of Epoch is thus quite rare. However, Epoch is typically used to resolve an upgrade ordering
issue. The issue can appear as a side effect of upstream change in software version number schemes or
versions incorporating alphabetical characters that cannot always be compared reliably based on
encoding.

4.3.2. Scriptlets

Scriptlets are a series of RPM directives that are executed before or after packages are installed or
deleted.

Use Scriptlets only for tasks that cannot be done at build time or in an start up script.

4.3.2.1. Scriptlets directives

A set of common Scriptlet directives exists. They are similar to the SPEC file section headers, such as
%build or %install. They are defined by multi-line segments of code, which are often written as a
standard POSIX shell script. However, they can also be written in other programming languages that
RPM for the target machine’s distribution accepts. RPM Documentation includes an exhaustive list of
available languages.

The following table includes Scriptlet directives listed in their execution order. Note that a package
containing the scripts is installed between the %pre and %post directive, and it is uninstalled between
the %preun and %postun directive.

Table 4.2. Scriptlet directives

Directive Definition

%pretrans Scriptlet that is executed just before installing or removing any package.

%pre Scriptlet that is executed just before installing the package on the target system.

%post Scriptlet that is executed just after the package was installed on the target system.

%preun Scriptlet that is executed just before uninstalling the package from the target system.

%postun Scriptlet that is executed just after the package was uninstalled from the target system.

%posttrans Scriptlet that is executed at the end of the transaction.

4.3.2.2. Turning off a scriptlet execution

To turn off the execution of any scriptlet, use the rpm command together with the --
no_scriptlet_name_ option.

CHAPTER 4. ADVANCED TOPICS

49

Procedure

For example, to turn off the execution of the %pretrans scriptlets, run:

rpm --nopretrans

You can also use the -- noscripts option, which is equivalent to all of the following:

--nopre

--nopost

--nopreun

--nopostun

--nopretrans

--noposttrans

Additional resources

For more details, see the rpm(8) man page.

4.3.2.3. Scriptlets macros

The Scriptlets directives also work with RPM macros.

The following example shows the use of systemd scriptlet macro, which ensures that systemd is notified
about a new unit file.

$ rpm --showrc | grep systemd
-14: transaction_systemd_inhibit %{plugindir}/systemd_inhibit.so
-14: _journalcatalogdir /usr/lib/systemd/catalog
-14: _presetdir /usr/lib/systemd/system-preset
-14: _unitdir /usr/lib/systemd/system
-14: _userunitdir /usr/lib/systemd/user
/usr/lib/systemd/systemd-binfmt %{?} >/dev/null 2>&1 || : /usr/lib/systemd/systemd-sysctl %{?}
>/dev/null 2>&1 || :
-14: systemd_post
-14: systemd_postun
-14: systemd_postun_with_restart
-14: systemd_preun
-14: systemd_requires
Requires(post): systemd
Requires(preun): systemd
Requires(postun): systemd
-14: systemd_user_post %systemd_post --user --global %{?} -14: systemd_user_postun %{nil} -
14: systemd_user_postun_with_restart %{nil} -14: systemd_user_preun systemd-sysusers %
{?} >/dev/null 2>&1 || :
echo %{?} | systemd-sysusers - >/dev/null 2>&1 || : systemd-tmpfiles --create %{?} >/dev/null
2>&1 || :

$ rpm --eval %{systemd_post}

if [$1 -eq 1] ; then

Red Hat Enterprise Linux 7 RPM Packaging Guide

50

 # Initial installation
 systemctl preset >/dev/null 2>&1 || :
fi

$ rpm --eval %{systemd_postun}

systemctl daemon-reload >/dev/null 2>&1 || :

$ rpm --eval %{systemd_preun}

if [$1 -eq 0] ; then
 # Package removal, not upgrade
 systemctl --no-reload disable > /dev/null 2>&1 || :
 systemctl stop > /dev/null 2>&1 || :
fi

4.3.3. The Triggers directives

Triggers are RPM directives which provide a method for interaction during package installation and
uninstallation.

WARNING

Triggers may be executed at an unexpected time, for example on update of the
containing package. Triggers are difficult to debug, therefore they need to be
implemented in a robust way so that they do not break anything when executed
unexpectedly. For these reasons, {RH} recommends to minimize the use of
Triggers.

The order of execution and the details for each existing Triggers are listed below:

all-%pretrans
…
any-%triggerprein (%triggerprein from other packages set off by new install)
new-%triggerprein
new-%pre for new version of package being installed
… (all new files are installed)
new-%post for new version of package being installed

any-%triggerin (%triggerin from other packages set off by new install)
new-%triggerin
old-%triggerun
any-%triggerun (%triggerun from other packages set off by old uninstall)

old-%preun for old version of package being removed
… (all old files are removed)
old-%postun for old version of package being removed

old-%triggerpostun
any-%triggerpostun (%triggerpostun from other packages set off by old un

CHAPTER 4. ADVANCED TOPICS

51

 install)
…
all-%posttrans

The above items are found in the /usr/share/doc/rpm-4.*/triggers file.

4.3.4. Using non-shell scripts in a SPEC file

The -p scriptlet option in a SPEC file enables the user to invoke a specific interpreter instead of the
default shell scripts interpreter (-p /bin/sh).

The following procedure describes how to create a script, which prints out a message after installation of
the pello.py program:

Procedure

1. Open the pello.spec file.

2. Find the following line:

install -m 0644 %{name}.py* %{buildroot}/usr/lib/%{name}/

3. Under the above line, insert:

%post -p /usr/bin/python3
print("This is {} code".format("python"))

4. Install your package:

yum install /home/<username>/rpmbuild/RPMS/noarch/pello-0.1.2-1.el8.noarch.rpm

5. Check the output message after the installation:

Installing : pello-0.1.2-1.el8.noarch 1/1
Running scriptlet: pello-0.1.2-1.el8.noarch 1/1
This is python code

NOTE

To use a Python 3 script, include the following line under install -m in a SPEC file:

%post -p /usr/bin/python3

To use a Lua script, include the following line under install -m in a SPEC file:

%post -p <lua>

This way, you can specify any interpreter in a SPEC file.

4.4. RPM CONDITIONALS

RPM Conditionals enable conditional inclusion of various sections of the SPEC file.

Red Hat Enterprise Linux 7 RPM Packaging Guide

52

Conditional inclusions usually deal with:

Architecture-specific sections

Operating system-specific sections

Compatibility issues between various versions of operating systems

Existence and definition of macros

4.4.1. RPM conditionals syntax

RPM conditionals use the following syntax:

If expression is true, then do some action:

%if expression
…
%endif

If expression is true, then do some action, in other case, do another action:

%if expression
…
%else
…
%endif

4.4.2. RPM conditionals examples

This section provides multiple examples of RPM conditionals.

4.4.2.1. The %if conditionals

Example 4.3. Using the %if conditional to handle compatibility between 8 and other operating
systems

%if 0%{?rhel} == 8
sed -i '/AS_FUNCTION_DESCRIBE/ s/^//' configure.in sed -i '/AS_FUNCTION_DESCRIBE/ s/^//'
acinclude.m4
%endif

This conditional handles compatibility between RHEL 8 and other operating systems in terms of support
of the AS_FUNCTION_DESCRIBE macro. If the package is built for RHEL, the %rhel macro is defined,
and it is expanded to RHEL version. If its value is 8, meaning the package is build for RHEL 8, then the
references to AS_FUNCTION_DESCRIBE, which is not supported by RHEL 8, are deleted from
autoconfig scripts.

Example 4.4. Using the %if conditional to handle definition of macros

%define ruby_archive %{name}-%{ruby_version}
%if 0%{?milestone:1}%{?revision:1} != 0

CHAPTER 4. ADVANCED TOPICS

53

%define ruby_archive %{ruby_archive}-%{?milestone}%{?!milestone:%{?revision:r%{revision}}}
%endif

This conditional handles definition of macros. If the %milestone or the %revision macros are set, the
%ruby_archive macro, which defines the name of the upstream tarball, is redefined.

4.4.2.2. Specialized variants of %if conditionals

The %ifarch conditional, %ifnarch conditional and %ifos conditional are specialized variants of the %if
conditionals. These variants are commonly used, hence they have their own macros.

4.4.2.2.1. The %ifarch conditional

The %ifarch conditional is used to begin a block of the SPEC file that is architecture-specific. It is
followed by one or more architecture specifiers, each separated by commas or whitespace.

Example 4.5. An example use of the %ifarch conditional

%ifarch i386 sparc
…
%endif

All the contents of the SPEC file between %ifarch and %endif are processed only on the 32-bit AMD
and Intel architectures or Sun SPARC-based systems.

4.4.2.2.2. The %ifnarch conditional

The %ifnarch conditional has a reverse logic than %ifarch conditional.

Example 4.6. An example use of the %ifnarch conditional

%ifnarch alpha
…
%endif

All the contents of the SPEC file between %ifnarch and %endif are processed only if not done on a
Digital Alpha/AXP-based system.

4.4.2.2.3. The %ifos conditional

The %ifos conditional is used to control processing based on the operating system of the build. It can be
followed by one or more operating system names.

Example 4.7. An example use of the %ifos conditional

%ifos linux
…
%endif

All the contents of the SPEC file between %ifos and %endif are processed only if the build was done on

Red Hat Enterprise Linux 7 RPM Packaging Guide

54

All the contents of the SPEC file between %ifos and %endif are processed only if the build was done on
a Linux system.

CHAPTER 4. ADVANCED TOPICS

55

APPENDIX A. NEW FEATURES OF RPM IN RHEL 7
This list documents most noticable changes in RPM packaging between Red Hat Enterprise Linux 6 and
7.

A new command, rpmkeys, used for keyring import and signature verification has been added.

A new command, rpmspec, used for spec queries and parsed output has been added.

A new command, rpmsign, used for package signing has been added.

The posix.exec() and os.exit() extensions embedded in %{lua:… } scripts fail the script unless
called from a child process created with the posix.fork() scriptlet.

The %pretrans scriptlet failure causes the package installation to be skipped.

Scriptlets can be macro-expanded and queryformat-expanded at runtime.

Pre-transaction and post-transaction scriptlet dependencies can now be correctly expressed
with Requires(pretrans) and Requires(posttrans) scriptlets.

The OrderWithRequires tag for supplying additional ordering hints has been added. The tag
follows Requires tag syntax, but does not generate actual dependencies. The ordering hints are
treated as if they were Requires when calculating the transaction order, only if the involved
packages are present in the same transaction.

The %license flag can be used in the %files section. This flag can be used similar to the %doc
flag to mark files as licenses, which need to be installed despite the --nodocs option.

The %autosetup macro for automating patch application, with optional distributed version
control system integration has been added.

The automatic dependency generator has been rewritten into extensible and customizable rule
based system with built-in filtering.

The OpenPGP V3 public keys are no longer supported.

Red Hat Enterprise Linux 7 RPM Packaging Guide

56

CHAPTER 5. ADDITIONAL RESOURCES ABOUT RPM
PACKAGING

This section provides references to various topics related to RPMs, RPM packaging, and RPM building.
Some of these are advanced and extend the introductory material included in this documentation.

Red Hat Software Collections Overview - The Red Hat Software Collections offering provides
continuously updated development tools in latest stable versions.

Red Hat Software Collections - The Packaging Guide provides an explanation of Software Collections
and details how to build and package them. Developers and system administrators with basic
understanding of software packaging with RPM can use this Guide to get started with Software
Collections.

Mock - Mock provides a community-supported package building solution for various architectures and
different Fedora or RHEL versions than has the build host.

RPM Documentation - The official RPM documentation.

Fedora Packaging Guidelines - The official packaging guidelines for Fedora, useful for all RPM-based
distributions.

CHAPTER 5. ADDITIONAL RESOURCES ABOUT RPM PACKAGING

57

https://developers.redhat.com/products/softwarecollections/overview/
https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/packaging_guide/
https://rpm-packaging-guide.github.io/#mock
http://rpm.org/documentation
https://docs.fedoraproject.org/en-US/packaging-guidelines/

	Table of Contents
	CHAPTER 1. GETTING STARTED WITH RPM PACKAGING
	1.1. INTRODUCTION TO RPM PACKAGING
	1.2. RPM ADVANTAGES
	1.3. CREATING YOUR FIRST RPM PACKAGE

	CHAPTER 2. PREPARING SOFTWARE FOR RPM PACKAGING
	2.1. WHAT SOURCE CODE IS
	2.1.1. Source code examples
	2.1.1.1. Hello World written in bash
	2.1.1.2. Hello World written in Python
	2.1.1.3. Hello World written in C

	2.2. HOW PROGRAMS ARE MADE
	2.2.1. Natively Compiled Code
	2.2.2. Interpreted Code
	2.2.2.1. Raw-interpreted programs
	2.2.2.2. Byte-compiled programs

	2.3. BUILDING SOFTWARE FROM SOURCE
	2.3.1. Natively Compiled Code
	2.3.1.1. Manual building
	2.3.1.2. Automated building

	2.3.2. Interpreting code
	2.3.2.1. Byte-compiling code
	2.3.2.2. Raw-interpreting code

	2.4. PATCHING SOFTWARE
	2.5. INSTALLING ARBITRARY ARTIFACTS
	2.5.1. Using the install command
	2.5.2. Using the make install command

	2.6. PREPARING SOURCE CODE FOR PACKAGING
	2.7. PUTTING SOURCE CODE INTO TARBALL
	2.7.1. Putting the bello project into tarball
	2.7.2. Putting the pello project into tarball
	2.7.3. Putting the cello project into tarball

	CHAPTER 3. PACKAGING SOFTWARE
	3.1. RPM PACKAGES
	3.1.1. What an RPM is
	Types of RPM packages

	3.1.2. Listing RPM packaging tool’s utilities
	3.1.3. Setting up RPM packaging workspace
	3.1.4. What a SPEC file is
	3.1.4.1. Preamble Items
	3.1.4.2. Body Items
	3.1.4.3. Advanced items

	3.1.5. BuildRoots
	3.1.6. RPM macros

	3.2. WORKING WITH SPEC FILES
	3.2.1. Ways to create a new SPEC file
	3.2.2. Creating a new SPEC file with rpmdev-newspec
	3.2.3. Modifying an original SPEC file for creating RPMs
	3.2.4. An example SPEC file for a program written in bash
	3.2.5. An example SPEC file for a program written in Python
	3.2.6. An example SPEC file for a program written in C

	3.3. BUILDING RPMS
	3.3.1. Building source RPMs
	3.3.2. Building binary RPMs
	3.3.2.1. Rebuilding a binary RPM from a source RPM
	3.3.2.2. Building a binary RPM from the SPEC file
	3.3.2.3. Building RPMs from source RPMs

	3.4. CHECKING RPMS FOR SANITY
	3.4.1. Checking bello for sanity
	3.4.1.1. Checking the bello SPEC File
	3.4.1.2. Checking the bello binary RPM

	3.4.2. Checking pello for sanity
	3.4.2.1. Checking the pello SPEC File
	3.4.2.2. Checking the pello binary RPM

	3.4.3. Checking cello for sanity
	3.4.3.1. Checking the cello SPEC File
	3.4.3.2. Checking the cello binary RPM

	CHAPTER 4. ADVANCED TOPICS
	4.1. SIGNING PACKAGES
	4.1.1. Creating a GPG key
	4.1.2. Adding a signature to an already existing package
	4.1.3. Checking the signatures of a package with multiple signatures
	4.1.4. A practical example of adding a signature to an already existing package
	4.1.5. Replacing the signature on an already existing package
	4.1.6. Signing a package at build-time

	4.2. MORE ON MACROS
	4.2.1. Defining your own macros
	4.2.2. Using the %setup macro
	4.2.2.1. Using the %setup -q macro
	4.2.2.2. Using the %setup -n macro
	4.2.2.3. Using the %setup -c macro
	4.2.2.4. Using the %setup -D and %setup -T macros
	4.2.2.5. Using the %setup -a and %setup -b macros

	4.2.3. Common RPM macros in the %files section
	4.2.4. Displaying the built-in macros
	4.2.5. RPM distribution macros
	4.2.5.1. Creating custom macros

	4.3. EPOCH, SCRIPTLETS AND TRIGGERS
	4.3.1. The Epoch directive
	4.3.2. Scriptlets
	4.3.2.1. Scriptlets directives
	4.3.2.2. Turning off a scriptlet execution
	4.3.2.3. Scriptlets macros

	4.3.3. The Triggers directives
	4.3.4. Using non-shell scripts in a SPEC file

	4.4. RPM CONDITIONALS
	4.4.1. RPM conditionals syntax
	4.4.2. RPM conditionals examples
	4.4.2.1. The %if conditionals
	4.4.2.2. Specialized variants of %if conditionals

	APPENDIX A. NEW FEATURES OF RPM IN RHEL 7
	CHAPTER 5. ADDITIONAL RESOURCES ABOUT RPM PACKAGING

