
Red Hat Enterprise Linux 7

Developer Guide

Introduction to application development tools in RHEL 7

Last Updated: 2022-01-21

Red Hat Enterprise Linux 7 Developer Guide

Introduction to application development tools in RHEL 7

Eva-Lotte Gebhardt
Red Hat Customer Content Services
egebhard@redhat.com

Olga Tikhomirova
Red Hat Customer Content Services
otikhomi@redhat.com

Zuzana Zoubková
Red Hat Customer Content Services
zzoubkov@redhat.com

Vladimír Slávik
Red Hat Customer Content Services

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes different features and utilities that make Red Hat Enterprise Linux 7 an
ideal enterprise platform for application development.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

PART I. SETTING UP A DEVELOPMENT WORKSTATION

CHAPTER 1. INSTALLING THE OPERATING SYSTEM
Additional Resources

CHAPTER 2. SETTING UP TO MANAGE APPLICATION VERSIONS
Additional Resources

CHAPTER 3. SETTING UP TO DEVELOP APPLICATIONS USING C AND C++
Additional Resources

CHAPTER 4. SETTING UP TO DEBUG APPLICATIONS
Additional Resources

CHAPTER 5. SETTING UP TO MEASURE PERFORMANCE OF APPLICATIONS
Additional Resources

CHAPTER 6. SETTING UP TO DEVELOP APPLICATIONS USING JAVA

CHAPTER 7. SETTING UP TO DEVELOP APPLICATIONS USING PYTHON
Python versions corresponding to Red Hat Software Collections packages
Additional Resources

CHAPTER 8. SETTING UP TO DEVELOP APPLICATIONS USING C# AND .NET CORE
Additional Resources

CHAPTER 9. SETTING UP TO DEVELOP CONTAINERIZED APPLICATIONS
Additional Resources

CHAPTER 10. SETTING UP TO DEVELOP WEB APPLICATIONS
Additional Resources

PART II. COLLABORATING ON APPLICATIONS WITH OTHER DEVELOPERS

CHAPTER 11. USING GIT
Installed Documentation
Online Documentation

PART III. MAKING AN APPLICATION AVAILABLE TO USERS

CHAPTER 12. DISTRIBUTION OPTIONS
RPM Packages
Software Collections
Containers
Additional Resources

CHAPTER 13. CREATING A CONTAINER WITH AN APPLICATION
Prerequisites
Procedure
Additional Resources

CHAPTER 14. CONTAINERIZING AN APPLICATION FROM PACKAGES
Prerequisites
Procedure

8

9

10
10

11
11

12
12

13
13

14
14

15

16
16
16

17
17

18
18

19
19

20

21
21
21

22

23
23
23
23
23

24
24
24
25

26
26
26

Table of Contents

1

. .

. .

. .

Additional Information

PART IV. CREATING C OR C++ APPLICATIONS

CHAPTER 15. BUILDING CODE WITH GCC
15.1. RELATIONSHIP BETWEEN CODE FORMS

Prerequisites
Possible Code Forms
Handling of Code Forms in GCC
Additional Resources

15.2. COMPILING SOURCE FILES TO OBJECT CODE
Prerequisites
Procedure
Additional Resources

15.3. ENABLING DEBUGGING OF C AND C++ APPLICATIONS WITH GCC
Enabling the Creation of Debugging Information with GCC
Additional Resources

15.4. CODE OPTIMIZATION WITH GCC
Code Optimization with GCC
Additional Resources

15.5. HARDENING CODE WITH GCC
Release Version Options
Development Options
Additional Resources

15.6. LINKING CODE TO CREATE EXECUTABLE FILES
Prerequisites
Procedure
Additional Resources

15.7. C++ COMPATIBILITY OF VARIOUS RED HAT PRODUCTS
Additional Resources

15.8. EXAMPLE: BUILDING A C PROGRAM WITH GCC
Prerequisites
Steps
Additional Resources

15.9. EXAMPLE: BUILDING A C++ PROGRAM WITH GCC
Prerequisites
Procedure

CHAPTER 16. USING LIBRARIES WITH GCC
16.1. LIBRARY NAMING CONVENTIONS

Additional Resources
16.2. STATIC AND DYNAMIC LINKING

Comparison of static and dynamic linking
Reasons for static linking
Additional Resources

16.3. USING A LIBRARY WITH GCC
Compiling Code That Uses a Library
Linking Code That Uses a Library
Compiling and Linking Code Which Uses a Library in One Step
Additional Resources

16.4. USING A STATIC LIBRARY WITH GCC
Prerequisites
Procedure

16.5. USING A DYNAMIC LIBRARY WITH GCC

26

27

28
28
28
28
28
28
29
29
29
29
29
29
30
30
30
31
31
31
31
31
31
31
31
32
32
32
32
32
33
33
33
33
33

35
35
35
35
35
36
36
36
37
37
37
37
37
38
38
39

Red Hat Enterprise Linux 7 Developer Guide

2

. .

. .

. .

. .

. .

Prerequisites
Linking a Program Against a Dynamic Library
Using an rpath Value Stored in the Executable File
Using the LD_LIBRARY_PATH Environment Variable
Placing the Library into the Default Directories

16.6. USING BOTH STATIC AND DYNAMIC LIBRARIES WITH GCC
Prerequisites
Introduction
Specifying the static libraries by file
Using the -Wl option
Additional Resources

CHAPTER 17. CREATING LIBRARIES WITH GCC
17.1. LIBRARY NAMING CONVENTIONS

Additional Resources
17.2. THE SONAME MECHANISM

Prerequisites
Problem Introduction
The soname Mechanism
Reading soname from a File

17.3. CREATING DYNAMIC LIBRARIES WITH GCC
Prerequisites
Procedure
Additional Resources

17.4. CREATING STATIC LIBRARIES WITH GCC AND AR
Prerequisites
Procedure
Additional Resources

CHAPTER 18. MANAGING MORE CODE WITH MAKE
18.1. GNU MAKE AND MAKEFILE OVERVIEW

Prerequisites
GNU make
Makefile Details

Typical Makefile
Additional resources

18.2. EXAMPLE: BUILDING A C PROGRAM USING A MAKEFILE
Prerequisites
Procedure

Additional Resources
18.3. DOCUMENTATION RESOURCES FOR MAKE

Installed Documentation
Online Documentation

CHAPTER 19. USING THE ECLIPSE IDE FOR C AND C++ APPLICATION DEVELOPMENT
Using Eclipse to Develop C and C++ Applications
Additional Resources

PART V. DEBUGGING APPLICATIONS

CHAPTER 20. DEBUGGING A RUNNING APPLICATION
20.1. ENABLING DEBUGGING WITH DEBUGGING INFORMATION

20.1.1. Debugging Information
Additional Resources

39
39
39
39
40
40
40
40
41
41
41

42
42
42
42
42
42
42
43
43
43
43
44
44
44
44
45

46
46
46
46
46
46
47
47
47
47
48
48
48
49

50
50
50

51

52
52
52
52

Table of Contents

3

20.1.2. Enabling Debugging of C and C++ Applications with GCC
Enabling the Creation of Debugging Information with GCC
Additional Resources

20.1.3. Debuginfo Packages
Prerequisites
Debuginfo Packages

20.1.4. Getting debuginfo Packages for an Application or Library using GDB
Prerequisites
Procedure
Additional Resources

20.1.5. Getting debuginfo Packages for an Application or Library Manually
Prerequisites
Procedure
Additional Resources

20.2. INSPECTING THE APPLICATION’S INTERNAL STATE WITH GDB
20.2.1. GNU Debugger (GDB)

GDB Capabilities
Debugging Requirements

20.2.2. Attaching GDB to a Process
Prerequisites
Starting a Program with GDB
Attaching GDB to an Already Running Process
Attaching an Already Running GDB to an Already Running Process
Additional Resources

20.2.3. Stepping through Program Code with GDB
Prerequisites
GDB Commands to Step Through the Code
Additional Resources

20.2.4. Showing Program Internal Values with GDB
Prerequisites
GDB Commands to Display the Internal State of a Program
Additional Resources

20.2.5. Using GDB Breakpoints to Stop Execution at Defined Code Locations
Prerequisites
Using Breakpoints in GDB
Additional Resources

20.2.6. Using GDB Watchpoints to Stop Execution on Data Access and Changes
Prerequisites
Using Watchpoints in GDB
Additional Resources

20.2.7. Debugging Forking or Threaded Programs with GDB
Prerequisites
Debugging Forked Programs with GDB
Debugging Threaded Programs with GDB
Additional Resources

20.3. RECORDING APPLICATION INTERACTIONS
20.3.1. Useful Tools for Recording Application Interactions

Additional Resources
20.3.2. Monitoring an Application’s System Calls with strace

Prerequisites
Procedure
Notes
Additional Resources

52
52
53
53
53
53
53
53
53
54
54
54
54
56
56
56
56
56
56
56
56
57
57
57
57
58
58
59
59
59
59
60
60
60
60
61
61
61
61

62
62
62
62
62
63
63
63
65
65
65
65
66
66

Red Hat Enterprise Linux 7 Developer Guide

4

. .

. .

. .

. .

. .

. .

20.3.3. Monitoring the Application’s Library Function Calls with ltrace
Prerequisites
Procedure
Additional Resources

20.3.4. Monitoring the Application’s System Calls with SystemTap
Prerequisites
Procedure
Additional Resources

20.3.5. Using GDB to Intercept Application System Calls
Prerequisites
Stopping Program Execution on System Calls with GDB

Additional Resources
20.3.6. Using GDB to Intercept the Handling of Signals by Applications

Prerequisites
Stopping the Program Execution on Receiving a Signal with GDB
Additional Resources

CHAPTER 21. DEBUGGING A CRASHED APPLICATION
21.1. CORE DUMPS

Prerequisites
Description

21.2. RECORDING APPLICATION CRASHES WITH CORE DUMPS
Procedure
Additional Resources

21.3. INSPECTING APPLICATION CRASH STATES WITH CORE DUMPS
Prerequisites
Procedure
Additional Resources

21.4. DUMPING PROCESS MEMORY WITH GCORE
Prerequisites
Procedure

Additional resources
21.5. DUMPING PROTECTED PROCESS MEMORY WITH GDB

Prerequisites
Procedure
Additional Resources

PART VI. MONITORING PERFORMANCE

CHAPTER 22. VALGRIND
22.1. VALGRIND TOOLS
22.2. USING VALGRIND
22.3. ADDITIONAL INFORMATION

CHAPTER 23. OPROFILE
23.1. USING OPROFILE
23.2. OPROFILE DOCUMENTATION

CHAPTER 24. SYSTEMTAP
24.1. ADDITIONAL INFORMATION

CHAPTER 25. PERFORMANCE COUNTERS FOR LINUX (PCL) TOOLS AND PERF
25.1. PERF TOOL COMMANDS
25.2. USING PERF

67
67
67
68
68
68
68
69
69
69
69
70
70
70
70
70

71
71
71
71
71
71
72
72
72
72
74
74
74
74
75
75
75
75
75

76

77
77
78
78

79
79
81

82
82

83
83
83

Table of Contents

5

. .APPENDIX A. REVISION HISTORY 86

Red Hat Enterprise Linux 7 Developer Guide

6

Table of Contents

7

PREFACE
This document describes the different features and utilities that make Red Hat Enterprise Linux 7 an
ideal enterprise platform for application development.

Red Hat Enterprise Linux 7 will cease to be updated after the release of RHEL 7.9. Check the Product
Life Cycle of Red Hat Software Collections for Red Hat Enterprise Linux 7 for information on the current
status of RHEL 7 products.

Red Hat Enterprise Linux 7 Developer Guide

8

https://access.redhat.com/support/policy/updates/rhscl-rhel7

PART I. SETTING UP A DEVELOPMENT WORKSTATION
Red Hat Enterprise Linux 7 supports development of custom applications. To allow developers to do so,
the system must be set up with the required tools and utilities. This chapter lists the most common use
cases for development and the items to install.

PART I. SETTING UP A DEVELOPMENT WORKSTATION

9

CHAPTER 1. INSTALLING THE OPERATING SYSTEM
Before setting up for specific development needs, the underlying system must be set up.

1. Install Red Hat Enterprise Linux in the Workstation variant. Follow the instructions in the
Red Hat Enterprise Linux Installation Guide.

2. While installing, pay attention to software selection. Select the Development and Creative
Workstation system profile and enable the installation of Add-ons appropriate for your
development needs. The relevant Add-ons are listed in each of the following sections focusing
on various types of development.

3. To develop applications that cooperate closely with the Linux kernel such as drivers, enable
automatic crash dumping with kdump during the installation.

4. After the system itself is installed, register it and attach the required subscriptions. Follow the
instructions in Red Hat Enterprise Linux System Administrator’s Guide, Chapter 7., Registering
the System and Managing Subscriptions.
The following sections list the particular subscriptions that must be attached for the respective
type of development.

5. More recent versions of development tools and utilities are available as Red Hat Software
Collections. For instructions on accessing Red Hat Software Collections, see Red Hat Software
Collections Release Notes, Chapter 2., Installation.

Additional Resources

Red Hat Enterprise Linux Installation Guide — Subscription Manager

Red Hat Subscription Management

Red Hat Enterprise Linux 7 Package Manifest

Red Hat Enterprise Linux 7 Developer Guide

10

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-package-selection-x86.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/chap-Subscription_and_Support-Registering_a_System_and_Managing_Subscriptions
https://access.redhat.com/documentation/en-us/red_hat_software_collections/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/chap-initial-setup#sect-initial-setup-subsciption-manager
https://access.redhat.com/products/red-hat-subscription-management
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Package_Manifest/index.html

CHAPTER 2. SETTING UP TO MANAGE APPLICATION
VERSIONS

Effective version control is essential to all multi-developer projects. Red Hat Enterprise Linux is
distributed with Git, a distributed version control system.

1. Select the Development Tools Add-on during the system installation to install Git.

2. Alternatively, install the git package from the Red Hat Enterprise Linux repositories after the
system is installed.

yum install git

3. To get the latest version of Git supported by Red Hat, install the rh-git227 component from
Red Hat Software Collections.

yum install rh-git227

4. Set the full name and email address associated with your Git commits:

$ git config --global user.name "full name"
$ git config --global user.email "email_address"

Replace full name and email_address with your actual name and email address.

5. To change the default text editor started by Git, set the value of the core.editor configuration
option:

$ git config --global core.editor command

Replace command with the command to be used to start the selected text editor.

Additional Resources

Chapter 11, Using Git

CHAPTER 2. SETTING UP TO MANAGE APPLICATION VERSIONS

11

CHAPTER 3. SETTING UP TO DEVELOP APPLICATIONS USING
C AND C++

Red Hat Enterprise Linux best supports development using the fully compiled C and C++ programming
languages.

1. Select the Development Tools and Debugging Tools Add-ons during the system installation
to install the GNU Compiler Collection (GCC) and GNU Debugger (GDB) as well as other
development tools.

2. Latest versions of GCC, GDB, and the associated tools are available as a part of the Red Hat
Developer Toolset toolchain component.

yum install devtoolset-9-toolchain

NOTE: Red Hat Developer Toolset is shipped as a Software Collection. The scl utility allows you
to use it, running commands with the Red Hat Developer Toolset binaries used in preference to
the Red Hat Enterprise Linux system equivalent.

3. The Red Hat Enterprise Linux repositories contain many libraries widely used for the
development of C and C++ applications. Install the development packages of the libraries
needed for your application using the yum package manager.

4. For graphical-based development, install the Eclipse integrated development environment.
The C and C++ languages are directly supported. Eclipse is available as part of Red Hat
Developer Tools. For the actual installation procedure, see Using Eclipse.

Additional Resources

Red Hat Developer Toolset User Guide — Chapter 1., Red Hat Developer Toolset Components

Red Hat Enterprise Linux 7 Developer Guide

12

https://developers.redhat.com/products/developertoolset/overview/
https://access.redhat.com/documentation/en-us/red_hat_developer_tools/
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/9

CHAPTER 4. SETTING UP TO DEBUG APPLICATIONS
Red Hat Enterprise Linux offers multiple debugging and instrumentation tools to analyze and
troubleshoot internal application behavior.

1. Select the Debugging Tools and Desktop Debugging and Performance Tools Add-ons
during the system installation to install the GNU Debugger (GDB), Valgrind, SystemTap,
ltrace, strace, and other tools.

2. For the latest versions of GDB, Valgrind, SystemTap, strace, and ltrace, install Red Hat
Developer Toolset. This installs memstomp, too.

yum install devtoolset-9

NOTE: Red Hat Developer Toolset is shipped as a Software Collection. The scl utility allows you
to use it, running commands with the Red Hat Developer Toolset binaries used in preference to
the Red Hat Enterprise Linux system equivalent.

3. The memstomp utility is available only as a part of Red Hat Developer Toolset. In case installing
the whole Developer Toolset is not desirable and memstomp is required, install only its
component from Red Hat Developer Toolset.

yum install devtoolset-9-memstomp

4. Install the yum-utils package in order to use the debuginfo-install tool:

yum install yum-utils

5. To debug applications and libraries available as part of Red Hat Enterprise Linux, install their
respective debuginfo and source packages from the Red Hat Enterprise Linux repositories
using the debuginfo-install tool. This applies to core dump file analysis, too.

6. Install kernel debuginfo and source packages required by the SystemTap application. See the
SystemTap Beginners Guide, Chapter 2.1.1., Installing SystemTap .

7. To capture kernel dumps, install and configure kdump. Follow the instructions in the Kernel
Crash Dump Guide, Chapter 7.2., Installing and Configuring kdump.

8. Make sure SELinux policies allow the relevant applications to run not only normally but in
debugging situations, too. See SELinux User’s and Administrator’s Guide, Section 11.3., Fixing
Problems.

Additional Resources

Section 20.1, “Enabling Debugging with Debugging Information”

SystemTap Beginners Guide

CHAPTER 4. SETTING UP TO DEBUG APPLICATIONS

13

https://developers.redhat.com/products/developertoolset/overview/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Beginners_Guide/using-systemtap.html#installproper
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Kernel_Crash_Dump_Guide/chap-installing-configuring-kdump.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/selinux_users_and_administrators_guide/sect-security-enhanced_linux-troubleshooting-fixing_problems
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Beginners_Guide/index.html

CHAPTER 5. SETTING UP TO MEASURE PERFORMANCE OF
APPLICATIONS

Red Hat Enterprise Linux includes several applications that can help a developer identify the causes of
application performance loss.

1. Select the Debugging Tools, Development Tools, and Performance Tools Add-ons during
the system installation to install the tools OProfile, perf, and pcp.

2. Install the tools SystemTap, which allows some types of performance analysis, and Valgrind,
which includes modules for performance measurement.

yum install valgrind systemtap systemtap-runtime

NOTE: Red Hat Developer Toolset is shipped as a Software Collection. The scl utility allows you
to use it, running commands with the Red Hat Developer Toolset binaries used in preference to
the Red Hat Enterprise Linux system equivalent.

3. Run a SystemTap helper script for setting up the SystemTap environment.

stap-prep

NOTE

Running this script installs very large kernel debuginfo packages.

4. For more frequently updated versions of SystemTap, OProfile, and Valgrind, install the Red
Hat Developer Toolset package perftools.

yum install devtoolset-9-perftools

Additional Resources

Red Hat Developer Toolset User Guide — Part IV., Performance Monitoring Tools

Red Hat Enterprise Linux 7 Developer Guide

14

https://developers.redhat.com/products/developertoolset/overview/
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/9/html/user_guide/part-performance_monitoring_tools

CHAPTER 6. SETTING UP TO DEVELOP APPLICATIONS
USING JAVA

Red Hat Enterprise Linux supports the development of applications in Java.

1. During the system installation, select the Java Platform Add-on to install OpenJDK as the
default Java version.
Alternatively, follow the instructions in the Installation Guide for Red Hat CodeReady Studio,
Chapter 2.2, Installing OpenJDK 1.8.0 on RHEL to install OpenJDK separately.

2. For an integrated graphical development environment, install the Eclipse-based Red Hat
CodeReady Studio, which offers extensive support for Java development. Follow the
instructions in the Installation Guide for Red Hat CodeReady Studio .

CHAPTER 6. SETTING UP TO DEVELOP APPLICATIONS USING JAVA

15

https://access.redhat.com/documentation/en-us/red_hat_codeready_studio/
https://developers.redhat.com/products/codeready-studio/overview/
https://access.redhat.com/documentation/en-us/red_hat_codeready_studio/

CHAPTER 7. SETTING UP TO DEVELOP APPLICATIONS USING
PYTHON

The Python language version 2.7.5 is available as part of Red Hat Enterprise Linux.

Newer versions of the Python interpreter and libraries (including a newer version of Python 2.7)
are available as Red Hat Software Collections packages. Install the package with the desired
version according to the table below.

yum install package

Python versions corresponding to Red Hat Software Collections packages

Version Package

Python 2.7 python27

Python 3.6 rh-python36

Python 3.8 rh-python38

The python27 software collection is an updated version of the Python 2 packages in RHEL 7.

2. Install the Eclipse integrated development environment which supports development in the
Python language. Eclipse is available as part of Red Hat Developer Tools. For the actual
installation procedure, see Using Eclipse.

Additional Resources

Red Hat Software Collections Hello-World — Python

Red Hat Software Collections

Red Hat Enterprise Linux 7 Developer Guide

16

https://access.redhat.com/documentation/en-us/red_hat_developer_tools/1/
https://developers.redhat.com/products/softwarecollections/hello-world#fndtn-python
https://access.redhat.com/documentation/en-us/red_hat_software_collections/

CHAPTER 8. SETTING UP TO DEVELOP APPLICATIONS
USING C# AND .NET CORE

Red Hat supports the development of applications targeting .NET Core.

Install .NET Core for Red Hat Enterprise Linux, which includes runtime, compilers, and
additional tools. Follow the instructions in the Getting Started Guide for .NET Core .

Additional Resources

.NET Core for Red Hat Enterprise Linux Overview

.NET Core for Red Hat Enterprise Linux Documentation

CHAPTER 8. SETTING UP TO DEVELOP APPLICATIONS USING C# AND .NET CORE

17

https://access.redhat.com/documentation/en-us/net_core/
https://developers.redhat.com/products/dotnet/overview/
https://access.redhat.com/documentation/en-us/net_core/

CHAPTER 9. SETTING UP TO DEVELOP CONTAINERIZED
APPLICATIONS

Red Hat supports the development of containerized applications based on Red Hat Enterprise Linux,
Red Hat OpenShift , and a number of other Red Hat products.

Red Hat Container Development Kit (CDK) provides a Red Hat Enterprise Linux virtual
machine that runs a single-node Red Hat OpenShift 3 cluster. It does not support OpenShift 4.
Follow the instructions in the Red Hat Container Development Kit Getting Started Guide,
Chapter 1.4., Installing CDK.

Red Hat CodeReady Containers (CRC) brings a minimal OpenShift 4 cluster to your local
computer, providing a minimal environment for development and testing purposes. CodeReady
Containers is mainly targeted at running on developers' desktops.

Red Hat Development Suite provides Red Hat tools for the development of containerized
applications in Java, C, and C++. It consists of Red Hat JBoss Developer Studio, OpenJDK,
Red Hat Container Development Kit, and other minor components. To install DevSuite, follow
the instructions in the Red Hat Development Suite Installation Guide .

.NET Core 3.1 is a general-purpose development platform for building high-quality applications
that run on the OpenShift Container Platform versions 3.3 and later. For installation and usage
instructions, see the .NET Core Getting Started Guide Chapter 2., Using .NET Core 3.1 on Red
Hat OpenShift Container Platform.

Additional Resources

Red Hat CodeReady Studio — Getting Started with Container and Cloud-based Development

Product Documentation for Red Hat Container Development Kit

Product Documentation for OpenShift Container Platform

Red Hat Enterprise Linux Atomic Host — Overview of Containers in Red Hat Systems

Red Hat Enterprise Linux 7 Developer Guide

18

https://www.redhat.com/en/technologies/cloud-computing/openshift
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/
https://access.redhat.com/documentation/en-us/red_hat_development_suite/
https://access.redhat.com/documentation/en-us/net_core/
https://access.redhat.com/documentation/en-us/red_hat_codeready_studio/
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit
https://access.redhat.com/documentation/en-us/openshift_container_platform/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/

CHAPTER 10. SETTING UP TO DEVELOP WEB APPLICATIONS
Red Hat Enterprise Linux supports development of web applications by being the platform for their
deployment.

The topic of web development is too broad to be captured with a few simple instructions. This section
offers only the best supported paths for the development of web applications on Red Hat
Enterprise Linux.

To set up your environment for developing traditional web applications, install the Apache web
server, PHP runtime, and MariaDB database server and tools.

yum install httpd mariadb-server php-mysql php

Alternatively, more recent versions of these applications are available as components of Red Hat
Software Collections.

yum install httpd24 rh-mariadb102 rh-php73

Additional Resources

Red Hat Software Collections

Red Hat Developer portal Cheat Sheet — Advanced Linux Commands Cheat Sheet (setting up
a LAMP stack)

CHAPTER 10. SETTING UP TO DEVELOP WEB APPLICATIONS

19

https://access.redhat.com/documentation/en-us/red_hat_software_collections/
https://developers.redhat.com/cheat-sheet/advanced-linux-commands-cheatsheet/

PART II. COLLABORATING ON APPLICATIONS WITH OTHER
DEVELOPERS

This documentation part provides a short introduction to the version control system, Git.

Red Hat Enterprise Linux 7 Developer Guide

20

CHAPTER 11. USING GIT
Effective revision control is essential to all multi-developer projects. It allows all developers in a team to
create, review, revise, and document code in a systematic and orderly manner. Red Hat
Enterprise Linux 7 is distributed with an open-source revision control system, Git.

A detailed description of Git and its features is beyond the scope of this book. For more information
about this revision control system, see the resources listed below.

Installed Documentation

Linux manual pages for Git and tutorials:

$ man git
$ man gittutorial
$ man gittutorial-2

Note that many Git commands have their own manual pages.

Git User’s Manual — HTML documentation for Git is located at /usr/share/doc/git-1.8.3/user-
manual.html.

Online Documentation

The online version of the Pro Git book provides a detailed description of Git, its concepts and its
usage — Pro Git Book

The online version of the Linux manual pages for Git — Pro Git Reference Sheet

CHAPTER 11. USING GIT

21

http://git-scm.com/book/en/v2
https://git-scm.com/docs

PART III. MAKING AN APPLICATION AVAILABLE TO USERS
There are multiple ways of making an application available to its users. This guide describes the most
common methods:

Packaging an application as an RPM package

Packaging an application as a software collection

Packaging an application as a container

Red Hat Enterprise Linux 7 Developer Guide

22

CHAPTER 12. DISTRIBUTION OPTIONS
Red Hat Enterprise Linux offers three methods of distribution for third-party applications.

RPM Packages
RPM Packages are the traditional method of distributing and installing software.

RPM Packages are a mature technology with multiple tools and widely disseminated knowledge.

Applications are installed as part of the system.

The installation tools greatly assist in resolving dependencies.

NOTE

Only one version of a package can be installed, making multiple application version
installations difficult.

To create an RPM package, follow the instructions in the RPM Packaging Guide, Packaging Software.

Software Collections
A Software Collection is a specially prepared RPM package for an alternative version of an application.

A Software Collection is a packaging method used and supported by Red Hat.

It is built on top of the RPM package mechanism.

Multiple versions of an application can be installed at once.

For more information, see Red Hat Software Collections Packaging Guide, What Are Software
Collections?

To create a software collection package, follow the instructions in the Red Hat Software Collections
Packaging Guide, Packaging Software Collections.

Containers
Docker-formatted containers are a lightweight virtualization method.

Applications can be present in multiple independent versions and instances.

They can be prepared easily from an RPM package or Software Collection.

Interaction with the system can be precisely controlled.

Isolation of the application increases security.

Containerizing applications or their components enables the orchestration of multiple instances.

Additional Resources

Red Hat Software Collections Packaging Guide — What Are Software Collections?

CHAPTER 12. DISTRIBUTION OPTIONS

23

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/rpm_packaging_guide/packaging-software
https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/packaging_guide/sect-what_are_software_collections
https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/packaging_guide/chap-packaging_software_collections
https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/packaging_guide/sect-what_are_software_collections

CHAPTER 13. CREATING A CONTAINER WITH AN
APPLICATION

This section describes how to create a docker-formatted container image from a locally built application.
Making your application available as a container is advantageous when you wish to use orchestration for
deployment. Alternatively, containerizing effectively solves conflicts of dependencies.

Prerequisites

Understanding of containers

An application built locally from source

Procedure

1. Decide which base image to use.

NOTE

Red Hat recommends starting with a base image that uses Red Hat
Enterprise Linux as its foundation. Refer to the Base Image in the Red Hat
Container Catalog for further information.

2. Create a workspace directory.

3. Prepare your application as a directory containing all of the application’s required files. Place this
directory inside the workspace directory.

4. Write a Dockerfile that describes the steps required to create the container.
Refer to the Dockerfile Reference for information about how to create a Dockerfile that
includes your content, sets default commands to run, and opens necessary ports and other
features.

This example shows a minimal Dockerfile that contains the my-program/ directory:

Place this Dockerfile into the workspace directory.

5. Build a container image from the Dockerfile:

docker build .
(...)
Successfully built container-id

During this step, note the container-id of the newly created container image.

6. Add a tag to the image to identify the registry where you want the container image to be stored.
See Getting Started with Containers — Tagging Images .

docker tag container-id registry:port/name

FROM registry.access.redhat.com/rhel7
USER root
ADD my-program/ .

Red Hat Enterprise Linux 7 Developer Guide

24

https://access.redhat.com/containers/?count=10#/category/Base Image
https://docs.docker.com/engine/reference/builder/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/getting_started_with_containers/using_the_docker_command_and_service#tagging_images_2

Replace container-id with the value shown in the output of the previous step.

Replace registry with the address of the registry you want to push the image to, port with the
port of the registry (omit if not needed), and name with the name of the image.

For example, if you are running a registry using the docker-distribution service on your local
system with an image named myimage, the tag localhost:5000/myimage would enable that
image to be pushed to the registry.

7. Push the image to the registry so it can be pulled from that registry later.

docker push registry:port/name

Replace the tag parts with the same values as the ones used in the previous step.

To run your own Docker registry, see Getting Started with Containers — Working with Docker
registries.

Additional Resources

OpenShift Container Platform — Develop: Images

Red Hat Enterprise Linux Atomic Host — Recommended Practices for Container Development

Dockerfile Reference

Docker Documentation — Get Started, Part 2: Containers

Red Hat Enterprise Linux Atomic Host — Getting Started with Containers

Red Hat Container Catalog listing — Base Images

CHAPTER 13. CREATING A CONTAINER WITH AN APPLICATION

25

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/getting_started_with_containers/using_the_docker_command_and_service#working_with_docker_registries
https://access.redhat.com/documentation/en-us/openshift_container_platform/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/recommended_practices_for_container_development/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/get-started/part2/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/getting_started_with_containers/
https://access.redhat.com/containers/?count=10#/category/Base Image

CHAPTER 14. CONTAINERIZING AN APPLICATION FROM
PACKAGES

For multiple reasons, it may be advantageous to distribute an application packaged in an RPM package
as a container.

Prerequisites

Understanding of containers

An application packaged as one or more RPM packages

Procedure
To containerize an application from RPM packages, see Getting Started with Containers — Creating
Docker images.

Additional Information

OpenShift Container Platform — Creating Images

Red Hat Enterprise Linux Atomic Host — Getting Started with Containers

Product Documentation for Red Hat Enterprise Linux Atomic Host

Docker Documentation — Get Started, Part 2: Containers

Docker Documentation — Dockerfile reference

Red Hat Container Catalog listing — Base Images

Red Hat Enterprise Linux 7 Developer Guide

26

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/getting_started_with_containers/using_the_docker_command_and_service#creating_docker_images
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/creating_images/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/getting_started_with_containers/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/
https://docs.docker.com/get-started/part2/
https://docs.docker.com/engine/reference/builder/
https://access.redhat.com/containers/?count=10#/category/Base Image

PART IV. CREATING C OR C++ APPLICATIONS
Red Hat offers multiple tools for creating applications using the C and C++ languages. This part of the
book lists some of the most common development tasks.

PART IV. CREATING C OR C++ APPLICATIONS

27

CHAPTER 15. BUILDING CODE WITH GCC
This chapter describes situations where source code must be transformed into executable code.

15.1. RELATIONSHIP BETWEEN CODE FORMS

Prerequisites

Understanding of the concepts of compiling and linking

Possible Code Forms
When using the C and C++ languages, there are three forms of code:

Source code written in the C or C++ language, present as plain text files.
The files typically use extensions such as .c, .cc, .cpp, .h, .hpp, .i, .inc. For a complete list of
supported extensions and their interpretation, see the gcc manual pages:

$ man gcc

Object code, created by compiling the source code with a compiler. This is an intermediate
form.
The object code files use the .o extension.

Executable code, created by linking object code with a linker.
Linux application executable files do not use any file name extension. Shared object (library)
executable files use the .so file name extension.

NOTE

Library archive files for static linking also exist. This is a variant of object code which uses
the .a file name extension. Static linking is not recommended. See Section 16.2, “Static
and dynamic linking”.

Handling of Code Forms in GCC
Producing executable code from source code requires two steps, which require different applications or
tools. GCC can be used as an intelligent driver for both compilers and linkers. This allows you to use a
single command gcc for any of the required actions. GCC automatically selects the actions required
(compiling and linking), as well as their sequence:

1. Source files are compiled to object files.

2. Object files and libraries are linked (including the previously compiled sources).

It is possible to run GCC such that only step 1 happens, only step 2 happens, or both steps 1 and 2
happen. This is determined by the types of inputs and requested types of output.

Because larger projects require a build system which usually runs GCC separately for each action, it is
helpful to always consider compilation and linking as two distinct actions, even if GCC can perform both
at once.

Additional Resources

Section 15.2, “Compiling Source Files to Object Code”

Red Hat Enterprise Linux 7 Developer Guide

28

Section 15.6, “Linking Code to Create Executable Files”

15.2. COMPILING SOURCE FILES TO OBJECT CODE

To create object code files from source files and not an executable file immediately, GCC must be
instructed to create only object code files as its output. This action represents the basic operation of the
build process for larger projects.

Prerequisites

C or C++ source code file(s)

GCC installed on the system

Procedure

1. Change to the directory containing the source code file(s).

2. Run gcc with the -c option:

$ gcc -c source.c another_source.c

Object files are created, with their file names reflecting the original source code files: source.c
results in source.o.

NOTE

With C++ source code, replace the gcc command with g++ for convenient
handling of C++ Standard Library dependencies.

Additional Resources

Section 15.5, “Hardening Code with GCC”

Section 15.4, “Code Optimization with GCC”

Section 15.8, “Example: Building a C Program with GCC”

15.3. ENABLING DEBUGGING OF C AND C++ APPLICATIONS WITH
GCC

Because debugging information is large, it is not included in executable files by default. To enable
debugging of your C and C++ applications with it, you must explicitly instruct the compiler to create
debugging information.

Enabling the Creation of Debugging Information with GCC
To enable the creation of debugging information with GCC when compiling and linking code, use the -g
option:

$ gcc ... -g ...

Optimizations performed by the compiler and linker can result in executable code which is hard
to relate to the original source code: variables may be optimized out, loops unrolled, operations
merged into the surrounding ones etc. This affects debugging negatively. For an improved

CHAPTER 15. BUILDING CODE WITH GCC

29

debugging experience, consider setting the optimization with the -Og option. However,
changing the optimization level changes the executable code and may change the actual
behaviour so as to remove some bugs.

The -fcompare-debug GCC option tests code compiled by GCC with debug information and
without debug information. The test passes if the resulting two binary files are identical. This
test ensures that executable code is not affected by any debugging options, which further
ensures that there are no hidden bugs in the debug code. Note that using the -fcompare-debug
option significantly increases compilation time. See the GCC manual page for details about this
option.

Additional Resources

Section 20.1, “Enabling Debugging with Debugging Information”

Using the GNU Compiler Collection (GCC) — 3.10 Options for Debugging Your Program

Debugging with GDB — 18.3 Debugging Information in Separate Files

The GCC manual page:

$ man gcc

15.4. CODE OPTIMIZATION WITH GCC

A single program can be transformed into more than one sequence of machine instructions. An optimal
result can be achieved if more resources are allocated for analysis of the code during compilation.

Code Optimization with GCC
With GCC, it is possible to set the optimization level using the -Olevel option. This option accepts a set
of values in place of the level.

Level Description

0 Optimize for compilation speed - no code optimization (default)

1, 2, 3 Increasing optimization effort for code execution speed

s Optimize for resulting file size

fast Level 3 plus disregard for strict standards compliance to allow for additional optimizations

g Optimize for debugging experience

For release builds, the optimization option -O2 is recommended.

During development, the -Og option is more useful for debugging the program or library in some
situations. Because some bugs manifest only with certain optimization levels, ensure to test the
program or library with the release optimization level.

GCC offers a large number of options to enable individual optimizations. For more information, see the
following Additional Resources.

Red Hat Enterprise Linux 7 Developer Guide

30

https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html
https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html

Additional Resources

Using GNU Compiler Collection — 3.11 Options That Control Optimization

Linux manual page for GCC:

$ man gcc

15.5. HARDENING CODE WITH GCC

When the compiler transforms source code to object code, it can add various checks to prevent
commonly exploited situations and thus increase security. Choosing the right set of compiler options
can help produce more secure programs and libraries, without changes to the source code.

Release Version Options
The following list of options is the recommended minimum for developers targeting Red Hat
Enterprise Linux:

$ gcc ... -O2 -g -Wall -Wl,-z,now,-z,relro -fstack-protector-strong -D_FORTIFY_SOURCE=2 ...

For programs, add the -fPIE and -pie Position Independent Executable options.

For dynamically linked libraries, the mandatory -fPIC (Position Independent Code) option
indirectly increases security.

Development Options
The following options are recommended to detect security flaws during development. Use these options
in conjunction with the options for the release version:

$ gcc ... -Walloc-zero -Walloca-larger-than -Wextra -Wformat-security -Wvla-larger-than ...

Additional Resources

Defensive Coding Guide

Red Hat Developer blog post — Memory Error Detection Using GCC

15.6. LINKING CODE TO CREATE EXECUTABLE FILES

Linking is the final step when building a C or C++ application. Linking combines all object files and
libraries into an executable file.

Prerequisites

One or more object files

GCC is installed on the system

Procedure

1. Change to the directory containing the object code files.

2. Run gcc:

$ gcc ... objectfile.o another_object.o ... -o executable-file

CHAPTER 15. BUILDING CODE WITH GCC

31

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://redhat-crypto.gitlab.io/defensive-coding-guide/
https://developers.redhat.com/blog/2017/02/22/memory-error-detection-using-gcc/

An executable file named executable-file is created from the supplied object files and libraries.

To link additional libraries, add the required options before the list of object files. See
Chapter 16, Using Libraries with GCC .

NOTE

With C++ source code, replace the gcc command with g++ for convenient
handling of C++ Standard Library dependencies.

Additional Resources

Section 15.8, “Example: Building a C Program with GCC”

Chapter 16, Using Libraries with GCC

15.7. C++ COMPATIBILITY OF VARIOUS RED HAT PRODUCTS

The Red Hat ecosystem includes several versions of the GCC compiler and linker, provided in Red Hat
Enterprise Linux and Red Hat Developer Toolset. The C++ ABI compatibility between these is as follows:

The system compiler based on GCC 4.8 and provided directly as part of Red Hat
Enterprise Linux 7 supports only compiling and linking the C++98 standard (also known as
C++03), and its variant with GNU extensions.

Any C++98-compliant binaries or libraries built explicitly with the options -std=c++98 or -
std=gnu++98 can be freely mixed, regardless of the version of the compiler used.

Using and mixing the C++11 and C++14 language versions is supported only when using compilers
from Red Hat Developer Toolset and only when all C++ objects compiled with the respective
flag have been built using the same major version of GCC.

When linking C++ files built with both Red Hat Developer Toolset and Red Hat Enterprise Linux
toolchain, prefer the Red Hat Developer Toolset version of the compiler and linker.

The default setting for compilers in Red Hat Enterprise Linux 6 and 7 and Red Hat
Developer Toolset up to 4.1 is -std=gnu++98. That is, C++98 with GNU extensions.

The default setting for compilers in Red Hat Developer Toolset 6, 6.1, 7, 7.1, 8.0, 8.1, 9.0, 9.1, and
10 is -std=gnu++14. That is, C++14 with GNU extensions.

Additional Resources

Application Compatibility GUIDE

Knowledge base solution — What gcc versions are available in Red Hat Enterprise Linux?

Red Hat Developer Toolset User Guide — C++ Compatibility

15.8. EXAMPLE: BUILDING A C PROGRAM WITH GCC

This example shows the exact steps to build a sample minimal C program.

Prerequisites

Understanding the use of GCC

Red Hat Enterprise Linux 7 Developer Guide

32

https://access.redhat.com/articles/rhel-abi-compatibility
https://access.redhat.com/solutions/19458
hhttps://access.redhat.com/documentation/en-us/red_hat_developer_toolset/9/html/user_guide/chap-gcc#sect-GCC-CPP-Compatibility

Understanding the use of GCC

Steps

1. Create a directory hello-c and change to its location:

$ mkdir hello-c
$ cd hello-c

2. Create a file hello.c with the following contents:

3. Compile the code with GCC:

$ gcc -c hello.c

The object file hello.o is created.

4. Link an executable file helloworld from the object file:

$ gcc hello.o -o helloworld

5. Run the resulting executable file:

$./helloworld
Hello, World!

Additional Resources

Section 18.2, “Example: Building a C Program Using a Makefile”

15.9. EXAMPLE: BUILDING A C++ PROGRAM WITH GCC

This example shows the exact steps to build a sample minimal C++ program.

Prerequisites

Understanding the use of GCC

Understanding the difference between gcc and g++

Procedure

1. Create a directory hello-cpp and change to its location:

$ mkdir hello-cpp
$ cd hello-cpp

#include <stdio.h>

int main() {
 printf("Hello, World!\n");
 return 0;
}

CHAPTER 15. BUILDING CODE WITH GCC

33

2. Create a file hello.cpp with the following contents:

3. Compile the code with g++:

$ g++ -c hello.cpp

The object file hello.o is created.

4. Link an executable file helloworld from the object file:

$ g++ hello.o -o helloworld

5. Run the resulting executable file:

$./helloworld
Hello, World!

#include <iostream>

int main() {
 std::cout << "Hello, World!\n";
 return 0;
}

Red Hat Enterprise Linux 7 Developer Guide

34

CHAPTER 16. USING LIBRARIES WITH GCC
This chapter describes how to use libraries in code.

16.1. LIBRARY NAMING CONVENTIONS

A special file name convention is used for libraries: A library known as foo is expected to exist as the file
libfoo.so or libfoo.a. This convention is automatically understood by the linking input options of gcc, but
not by the output options:

When linking against the library, the library can be specified only by its name foo with the -l
option as -lfoo:

$ gcc ... -lfoo ...

When creating the library, the full file name libfoo.so or libfoo.a must be specified.

Additional Resources

Section 17.2, “The soname Mechanism”

16.2. STATIC AND DYNAMIC LINKING

Developers have a choice of using static or dynamic linking when building applications with fully
compiled languages. This section lists the differences, particularly in the contexti of using the C and C++
languages on Red Hat Enterprise Linux. To summarize, Red Hat discourages the use of static linking in
applications for Red Hat Enterprise Linux.

Comparison of static and dynamic linking
Static linking makes libraries part of the resulting executable file. Dynamic linking keeps these libraries
as separate files.

Dynamic and static linking can be compared in a number of ways:

Resource use

Static linking results in larger executable files which contain more code. This additional code coming
from libraries cannot be shared across multiple programs on the system, increasing file system usage
and memory usage at run time. Multiple processes running the same statically linked program will still
share the code.
On the other hand, static applications need fewer run-time relocations, leading to reduced startup
time, and require less private resident set size (RSS) memory. Generated code for static linking can
be more efficient than for dynamic linking due to the overhead introduced by position-independent
code (PIC).

Security

Dynamically linked libraries which provide ABI compatibility can be updated without changing the
executable files depending on these libraries. This is especially important for libraries provided by
Red Hat as part of Red Hat Enterprise Linux, where Red Hat provides security updates. Static linking
against any such libraries is strongly discouraged.
Additionally, security measures such as load address randomization cannot be used with a statically
linked executable file. This further reduces security of the resulting application.

Compatibility

CHAPTER 16. USING LIBRARIES WITH GCC

35

Static linking appears to provide executable files independent of the versions of libraries provided by
the operating system. However, most libraries depend on other libraries. With static linking, this
dependency becomes inflexible and as a result, both forward and backward compatibility is lost.
Static linking is guaranteed to work only on the system where the executable file was built.

WARNING

Applications linking static libraries from the GNU C library (glibc) still require
glibc to be present on the system as a dynamic library. Furthermore, the
dynamic library variant of glibc available at the application’s run time must be a
bitwise identical version of the one present while linking the application. As a
result, static linking is guaranteed to work only on the system where the
executable file was built.

Support coverage

Most static libraries provided by Red Hat are in the Optional channel and not supported by Red Hat.

Functionality

Some libraries, notably the GNU C Library (glibc), offer reduced functionality when linked statically.
For example, when statically linked, glibc does not support threads and any form of calls to the
dlopen() function in the same program.

As a result of the listed disadvantages, static linking should be avoided at all costs, particularly for whole
applications and the glibc and libstdc++ libraries.

NOTE

The compat-glibc package is included with Red Hat Enterprise Linux 7, but it is not a run
time package and therefore not required for running anything. It is solely a development
package, containing header files and dummy libraries for linking. This allows compiling
and linking packages to run in older Red Hat Enterprise Linux versions (using compat-
gcc-* against those headers and libraries). For more information on use of this package,
run: rpm -qpi compat-glibc-*.

Reasons for static linking
Static linking might be a reasonable choice in some cases, such as:

A library which is not enabled for dynamic linking

Fully static linking can be required for running code in an empty chroot environment or
container. However, static linking using the glibc-static package is not supported by Red Hat.

Additional Resources

Red Hat Enterprise Linux 7: Application Compatibility GUIDE

16.3. USING A LIBRARY WITH GCC

A library is a package of code which can be reused in your program. A C or C++ library consists of two

Red Hat Enterprise Linux 7 Developer Guide

36

https://access.redhat.com/articles/rhel-abi-compatibility

A library is a package of code which can be reused in your program. A C or C++ library consists of two
parts:

The library code

Header files

Compiling Code That Uses a Library
The header files describe the interface of the library: The functions and variables available in the library.
Information from the header files is needed for compiling the code.

Typically, header files of a library will be placed in a different directory than your application’s code. To
tell GCC where the header files are, use the -I option:

$ gcc ... -Iinclude_path ...

Replace include_path with the actual path to the header file directory.

The -I option can be used multiple times to add multiple directories with header files. When looking for a
header file, these directories are searched in the order of their appearance in the -I options.

Linking Code That Uses a Library
When linking an executable file, both the object code of your application and the binary code of the
library must be available. The code for static and dynamic libraries is present in different forms:

Static libraries are available as archive files. They contain a group of object files. The archive file
has the file name extension .a.

Dynamic libraries are available as shared objects. They are a form of executable file. A shared
object has the file name extension .so.

To tell GCC where the archives or shared object files of a library are, use the -L option:

$ gcc ... -Llibrary_path -lfoo ...

Replace library_path with the actual path to the library directory.

The -L option can be used multiple times to add multiple directories. When looking for a library, these
directories are searched in the order of their -L options.

The order of options matters: GCC cannot link against a library foo unless it knows the directory of this
library. Therefore, use the -L options to specify library directories before using the -l options for linking
against libraries.

Compiling and Linking Code Which Uses a Library in One Step
When the situation allows the code to be compiled and linked in one gcc command, use the options for
both situations mentioned above at once.

Additional Resources

Using the GNU Compiler Collection (GCC) — 3.16 Options for Directory Search

Using the GNU Compiler Collection (GCC) — 3.15 Options for Linking

16.4. USING A STATIC LIBRARY WITH GCC

CHAPTER 16. USING LIBRARIES WITH GCC

37

https://gcc.gnu.org/onlinedocs/gcc/Directory-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html

Static libraries are available as archives containing object files. After linking, they become part of the
resulting executable file.

NOTE

Red Hat discourages the use of static linking for various reasons. See Section 16.2,
“Static and dynamic linking”. Use static linking only when necessary, especially against
libraries provided by Red Hat.

Prerequisites

GCC is installed on your system

Understanding of static and dynamic linking

A set of source or object files forming a valid program, requiring some static library foo and no
other libraries

The foo library is available as a file libfoo.a, and no file libfoo.so is provided for dynamic linking.

NOTE

Most libraries which are part of Red Hat Enterprise Linux are supported for dynamic
linking only. The steps below only work for libraries which are not enabled for dynamic
linking. See Section 16.6, “Using Both Static and Dynamic Libraries with GCC” .

Procedure
To link a program from source and object files, add a statically linked library foo, which is named libfoo.a:

1. Change to the directory containing your code.

2. Compile the program source files with headers of the foo library:

$ gcc ... -Iheader_path -c ...

Replace header_path with the path to the directory containing the header files for the foo
library.

3. Link the program with the foo library:

$ gcc ... -Llibrary_path -lfoo ...

Replace library_path with the path to the directory containing the file libfoo.a.

4. To execute the program, run:

$./program

CAUTION

The -static GCC option related to static linking forbids all dynamic linking. Instead, use the -Wl,-Bstatic
and -Wl,-Bdynamic options to control linker behavior more precisely. See Section 16.6, “Using Both
Static and Dynamic Libraries with GCC”.

Red Hat Enterprise Linux 7 Developer Guide

38

16.5. USING A DYNAMIC LIBRARY WITH GCC

Dynamic libraries are available as standalone executable files, required at both linking time and run time.
They stay independent of your application’s executable file.

Prerequisites

GCC is installed on the system

A set of source or object files forming a valid program, requiring some dynamic library foo and
no other libraries

The foo library available as a file libfoo.so

Linking a Program Against a Dynamic Library
To link a program against a dynamic library foo:

$ gcc ... -Llibrary_path -lfoo ...

When a program is linked against a dynamic library, the resulting program must always load the library at
run time. There are two options for locating the library:

Using an rpath value stored in the executable file itself

Using the LD_LIBRARY_PATH variable at runtime

Using an rpath Value Stored in the Executable File
The rpath is a special value saved as a part of an executable file when it is being linked. Later, when the
program is loaded from its executable file, the runtime linker will use the rpath value to locate the library
files.

While linking with GCC, to store the path library_path as an rpath:

$ gcc ... -Llibrary_path -lfoo -Wl,-rpath=library_path ...

The path library_path must point to a directory containing the file libfoo.so.

CAUTION

There is no space after the comma in the -Wl,-rpath= option

To run the program later, execute:

$./program

Using the LD_LIBRARY_PATH Environment Variable
If no rpath is found in the program’s executable file, the runtime linker will use the LD_LIBRARY_PATH
environment variable. The value of this variable must be changed for each program according to the
path where the shared library objects are located.

To run the program without rpath set, with libraries present in the library_path, execute:

$ export LD_LIBRARY_PATH=library_path:$LD_LIBRARY_PATH
$./program

CHAPTER 16. USING LIBRARIES WITH GCC

39

Leaving out the rpath value offers flexibility, but requires setting the LD_LIBRARY_PATH variable
every time the program is to run.

Placing the Library into the Default Directories
The runtime linker configuration specifies a number of directories as a default location of dynamic
library files. To use this default behaviour, copy your library to the appropriate directory.

A full description of the dynamic linker behavior is out of scope for this document. For more information,
see the following resources:

Linux manual pages for the dynamic linker:

$ man ld.so

Contents of the /etc/ld.so.conf configuration file:

$ cat /etc/ld.so.conf

Report of the libraries recognized by the dynamic linker without additional configuration, which
includes directories:

$ ldconfig -v

16.6. USING BOTH STATIC AND DYNAMIC LIBRARIES WITH GCC

Sometimes it is required to link some libraries statically and some dynamically.

Prerequisites

Understanding of static and dynamic linking

Introduction
gcc recognizes both dynamic and static libraries. When the -lfoo option is encountered, gcc will first
attempt to locate a shared object (a .so file) containing a dynamically linked version of the foo library,
and then look for the archive file (.a) containing a static version of the library. Thus, the following
situations can result from this search:

Only the shared object is found and gcc links against it dynamically

Only the archive is found and gcc links against it statically

Both the shared object and archive are found; gcc selects by default dynamic linking against the
shared object

Neither shared object nor archive is found and linking fails

Because of these rules, the best way to select the static or dynamic version of a library for linking is
having only that version found by gcc. This can be controlled to some extent by using or leaving out
directories containing the library versions when specifying the -Lpath options.

Additionally, because dynamic linking is the default, the only situation where linking must be explicitly
specified is when a library with both versions present should be linked statically. There are two possible
solutions:

Specifying the static libraries by file path instead of the -l option

Red Hat Enterprise Linux 7 Developer Guide

40

Using the -Wl option to pass options to the linker

Specifying the static libraries by file
Usually, gcc is instructed to link against a library foo with the -lfoo option. However, it is possible to
specify the full path to the file libfoo.a containing the library instead:

$ gcc ... path/to/libfoo.a ...

From the file extension .a, gcc will understand that this is a library to link with the program. However,
specifying the full path to the library file is a less flexible method.

Using the -Wl option
The gcc option -Wl is a special option for passing options to the underlying linker. Syntax of this option
differs from the other gcc options. The -Wl option is followed by a comma-separated list of linker
options, while other gcc options require a space-separated list of options. The ld linker used by gcc
offers the options -Bstatic and -Bdynamic to specify whether libraries following this option should be
linked statically or dynamically, respectively. After passing -Bstatic and a library to the linker, the default
dynamic linking behaviour must be restored manually for the following libraries to be linked dynamically
with the -Bdynamic option.

To link a program, linking a library first statically (libfirst.a) and second dynamically (libsecond.so), run:

$ gcc ... -Wl,-Bstatic -lfirst -Wl,-Bdynamic -lsecond ...

NOTE

gcc can be configured to use linkers other than the default ld. The -Wl option applies to
the gold linker, too.

Additional Resources

Using the GNU Compiler Collection (GCC) — 3.15 Options for Linking

Documentation for binutils 2.32 — 2.1 Command Line Options

CHAPTER 16. USING LIBRARIES WITH GCC

41

https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html#index-Wl
https://sourceware.org/binutils/docs-2.32/ld/Options.html#index-_002dBdynamic

CHAPTER 17. CREATING LIBRARIES WITH GCC
This chapter describes steps for creating libraries and explains the necessary concepts used by the
Linux operating system for libraries.

17.1. LIBRARY NAMING CONVENTIONS

A special file name convention is used for libraries: A library known as foo is expected to exist as the file
libfoo.so or libfoo.a. This convention is automatically understood by the linking input options of gcc, but
not by the output options:

When linking against the library, the library can be specified only by its name foo with the -l
option as -lfoo:

$ gcc ... -lfoo ...

When creating the library, the full file name libfoo.so or libfoo.a must be specified.

Additional Resources

Section 17.2, “The soname Mechanism”

17.2. THE SONAME MECHANISM

Dynamically loaded libraries (shared objects) use a mechanism called soname to manage multiple
compatible versions of a library.

Prerequisites

Understanding of dynamic linking and libraries

Understanding of the concept of ABI compatibility

Understanding of library naming conventions

Understanding of symbolic links

Problem Introduction
A dynamically loaded library (shared object) exists as an independent executable file. This makes it
possible to update the library without updating the applications that depend on it. However, the
following problems arise with this concept:

The identification of the actual version of the library

The need for multiple versions of the same library present

The signalling of ABI compatibility of each of the multiple versions

The soname Mechanism
To resolve this, Linux uses a mechanism called soname.

A library foo version X.Y is ABI-compatible with other versions with the same value of X in the version
number. Minor changes preserving compatibility increase the number Y. Major changes that break
compatibility increase the number X.

The actual library foo version X.Y exists as the file libfoo.so.x.y. Inside the library file, a soname is

Red Hat Enterprise Linux 7 Developer Guide

42

The actual library foo version X.Y exists as the file libfoo.so.x.y. Inside the library file, a soname is
recorded with the value libfoo.so.x to signal the compatibility.

When applications are built, the linker looks for the library by searching for the file libfoo.so. A symbolic
link with this name must exist, pointing to the actual library file. The linker then reads the soname from
the library file and records it into the application executable file. Finally, the linker creates the application
so that it declares dependency on the library using the soname, not name or file name.

When the runtime dynamic linker links an application before running, it reads the soname from the
executable file of the application. This soname is libfoo.so.x. A symbolic link with this name must exist,
pointing to the actual library file. This allows loading the library, regardless of the Y component of the
version, because the soname does not change.

NOTE

The Y component of the version number is not limited to just a single number.
Additionally, some libraries encode the version in their name.

Reading soname from a File
To display the soname of a library file somelibrary:

$ objdump -p somelibrary | grep SONAME

Replace somelibrary with the actual file name of the library you wish to examine.

17.3. CREATING DYNAMIC LIBRARIES WITH GCC

Dynamically linked libraries (shared objects) allow resource conservation through code reuse and
increased security by easier updates of the library code. This section describes the steps to build and
install a dynamic library from source.

Prerequisites

Understanding of the soname mechanism

GCC is installed on the system

Source code for a library

Procedure

1. Change to the directory with library sources.

2. Compile each source file to an object file with the position-independent code option -fPIC:

$ gcc ... -c -fPIC some_file.c ...

The object files have the same file names as the original source code files, but their extension is
.o.

3. Link the shared library from the object files:

$ gcc -shared -o libfoo.so.x.y -Wl,-soname,libfoo.so.x some_file.o ...

The used major version number is X and the minor version number is Y.

CHAPTER 17. CREATING LIBRARIES WITH GCC

43

4. Copy the libfoo.so.x.y file to an appropriate location where the system’s dynamic linker can
find it. On Red Hat Enterprise Linux, the directory for libraries is /usr/lib64:

cp libfoo.so.x.y /usr/lib64

Note that you need root permissions to manipulate files in this directory.

5. Create the symlink structure for the soname mechanism:

ln -s libfoo.so.x.y libfoo.so.x
ln -s libfoo.so.x libfoo.so

Additional Resources

The Linux Documentation Project — Program Library HOWTO — 3. Shared Libraries

17.4. CREATING STATIC LIBRARIES WITH GCC AND AR

Creating libraries for static linking is possible through the conversion of object files into a special type of
archive file.

NOTE

Red Hat discourages the use of static linking for security reasons. Use static linking only
when necessary, especially against libraries provided by Red Hat. See Section 16.2, “Static
and dynamic linking”.

Prerequisites

GCC and binutils are installed on the system

Understanding of static and dynamic linking

A source file with functions to be shared as a library

Procedure

1. Create intermediate object files with GCC.

$ gcc -c source_file.c ...

Append more source files as required. The resulting object files share the file name but use the
.o file name extension.

2. Turn the object files into a static library (archive) using the ar tool from the binutils package.

$ ar rcs libfoo.a source_file.o ...

The file libfoo.a is created.

3. Use the nm command to inspect the resulting archive:

$ nm libfoo.a

Red Hat Enterprise Linux 7 Developer Guide

44

http://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html

4. Copy the static library file to the appropriate directory.

5. When linking against the library, GCC will automatically recognize from the .a file name
extension that the library is an archive for static linking.

$ gcc ... -lfoo ...

Additional Resources

The Linux manual page for the ar tool:

$ man ar

CHAPTER 17. CREATING LIBRARIES WITH GCC

45

CHAPTER 18. MANAGING MORE CODE WITH MAKE
The GNU Make utility, commonly abbreviated as Make, is a tool for controlling the generation of
executables from source files. Make automatically determines which parts of a complex program have
changed and need to be recompiled. Make uses configuration files called Makefiles to control the way
programs are built.

18.1. GNU MAKE AND MAKEFILE OVERVIEW

To create a usable form (usually executable files) from the source files of a particular project, perform
several necessary steps. Record the actions and their sequence to be able to repeat them later.

Red Hat Enterprise Linux contains GNU make, a build system designed for this purpose.

Prerequisites

Understanding the concepts of compiling and linking

GNU make
GNU make reads Makefiles which contain the instructions describing the build process. A Makefile
contains multiple rules that describe a way to satisfy a certain condition (target) with a specific action
(recipe). Rules can hierarchically depend on another rule.

Running make without any options makes it look for a Makefile in the current directory and attempt to
reach the default target. The actual Makefile file name can be one of Makefile, makefile, and
GNUmakefile. The default target is determined from the Makefile contents.

Makefile Details
Makefiles use a relatively simple syntax for defining variables and rules, which consists of a target and a
recipe. The target specifies the output if a rule is executed. The lines with recipes must start with the tab
character.

Typically, a Makefile contains rules for compiling source files, a rule for linking the resulting object files,
and a target that serves as the entry point at the top of the hierarchy.

Consider the following Makefile for building a C program which consists of a single file, hello.c.

This specifies that to reach the target all, the file hello is required. To get hello, one needs hello.o
(linked by gcc), which in turn is created from hello.c (compiled by gcc).

The target all is the default target because it is the first target that does not start with a period. Running
make without any arguments is then identical to running make all, if the current directory contains this
Makefile.

Typical Makefile
A more typical Makefile uses variables for generalization of the steps and adds a target "clean" which
removes everything but the source files.

all: hello

hello: hello.o
 gcc hello.o -o hello

hello.o: hello.c
 gcc -c hello.c -o hello.o

Red Hat Enterprise Linux 7 Developer Guide

46

Adding more source files to such a Makefile requires adding them to the line where the SOURCE
variable is defined.

Additional resources

GNU make: Introduction — 2 An Introduction to Makefiles

Chapter 15, Building Code with GCC

18.2. EXAMPLE: BUILDING A C PROGRAM USING A MAKEFILE

Build a sample C program using a Makefile by following the steps in the example below.

Prerequisites

Understanding of Makefiles and make

Procedure

1. Create a directory hellomake and change to this directory:

$ mkdir hellomake
$ cd hellomake

2. Create a file hello.c with the following contents:

3. Create a file Makefile with the following contents:

CC=gcc
CFLAGS=-c -Wall
SOURCE=hello.c
OBJ=$(SOURCE:.c=.o)
EXE=hello

all: $(SOURCE) $(EXE)

$(EXE): $(OBJ)
 $(CC) $(OBJ) -o $@

%.o: %.c
 $(CC) $(CFLAGS) $< -o $@

clean:
 rm -rf $(OBJ) $(EXE)

#include <stdio.h>

int main(int argc, char *argv[]) {
 printf("Hello, World!\n");
 return 0;
}

CC=gcc
CFLAGS=-c -Wall
SOURCE=hello.c

CHAPTER 18. MANAGING MORE CODE WITH MAKE

47

https://www.gnu.org/software/make/manual/html_node/Introduction.html#Introduction

CAUTION

The Makefile recipe lines must start with the tab character. When copying the text above from
the browser, you may paste spaces instead. Correct this change manually.

4. Run make:

$ make
gcc -c -Wall hello.c -o hello.o
gcc hello.o -o hello

This creates an executable file hello.

5. Run the executable file hello:

$./hello
Hello, World!

6. Run the Makefile target clean to remove the created files:

$ make clean
rm -rf hello.o hello

Additional Resources

Section 15.8, “Example: Building a C Program with GCC”

Section 15.9, “Example: Building a C++ Program with GCC”

18.3. DOCUMENTATION RESOURCES FOR MAKE

For more information about make, see the resources listed below.

Installed Documentation

Use the man and info tools to view manual pages and information pages installed on your
system:

$ man make
$ info make

OBJ=$(SOURCE:.c=.o)
EXE=hello

all: $(SOURCE) $(EXE)

$(EXE): $(OBJ)
 $(CC) $(OBJ) -o $@

%.o: %.c
 $(CC) $(CFLAGS) $< -o $@

clean:
 rm -rf $(OBJ) $(EXE)

Red Hat Enterprise Linux 7 Developer Guide

48

Online Documentation

The GNU Make Manual hosted by the Free Software Foundation

The Red Hat Developer Toolset User Guide — GNU make

CHAPTER 18. MANAGING MORE CODE WITH MAKE

49

https://www.gnu.org/software/make/manual/
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/9/html/user_guide/chap-make

CHAPTER 19. USING THE ECLIPSE IDE FOR C AND C++
APPLICATION DEVELOPMENT

Some developers prefer using an IDE instead of an array of command line tools. Red Hat makes available
the Eclipse IDE with support for development of C and C++ applications.

Using Eclipse to Develop C and C++ Applications
A detailed description of the Eclipse IDE and its use for developing C and C++ applications is out of the
scope of this document. Please refer to the resources linked below.

Additional Resources

Using Eclipse

Eclipse documentation — C/C++ Development User Guide

Red Hat Enterprise Linux 7 Developer Guide

50

https://access.redhat.com/documentation/en-us/red_hat_developer_tools/
https://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.cdt.doc.user%2Fconcepts%2Fcdt_o_home.htm&cp=13

PART V. DEBUGGING APPLICATIONS
Debugging applications is a very wide topic. This part provides developers with the most common
techniques for debugging in multiple situations.

PART V. DEBUGGING APPLICATIONS

51

CHAPTER 20. DEBUGGING A RUNNING APPLICATION
This chapter will introduce the techniques for debugging an application which can be executed as many
times as needed, on a machine directly accessible to the developer.

20.1. ENABLING DEBUGGING WITH DEBUGGING INFORMATION

To debug applications and libraries, debugging information is required. The following sections describe
how to obtain this information.

20.1.1. Debugging Information

While debugging any executable code, two kinds of information allow the tools and by extension the
programmer to comprehend the binary code:

The source code text

A description of how the source code text relates to the binary code

This is referred to as debugging information.

Red Hat Enterprise Linux uses the ELF format for executable binaries, shared libraries, or debuginfo
files. Within these ELF files, the DWARF format is used to hold the debug information.

DWARF symbols are read by the readelf -w file command.

CAUTION

STABS is occasionally used with UNIX. STABS is an older, less capable format. Its use is discouraged by
Red Hat. GCC and GDB support the STABS production and consumption on a best effort basis only.
Some other tools such as Valgrind and elfutils do not support STABS at all.

Additional Resources

The DWARF Debugging Standard

20.1.2. Enabling Debugging of C and C++ Applications with GCC

Because debugging information is large, it is not included in executable files by default. To enable
debugging of your C and C++ applications with it, you must explicitly instruct the compiler to create
debugging information.

Enabling the Creation of Debugging Information with GCC
To enable the creation of debugging information with GCC when compiling and linking code, use the -g
option:

$ gcc ... -g ...

Optimizations performed by the compiler and linker can result in executable code which is hard
to relate to the original source code: variables may be optimized out, loops unrolled, operations
merged into the surrounding ones etc. This affects debugging negatively. For an improved
debugging experience, consider setting the optimization with the -Og option. However,
changing the optimization level changes the executable code and may change the actual
behaviour so as to remove some bugs.

Red Hat Enterprise Linux 7 Developer Guide

52

http://www.dwarfstd.org/

The -fcompare-debug GCC option tests code compiled by GCC with debug information and
without debug information. The test passes if the resulting two binary files are identical. This
test ensures that executable code is not affected by any debugging options, which further
ensures that there are no hidden bugs in the debug code. Note that using the -fcompare-debug
option significantly increases compilation time. See the GCC manual page for details about this
option.

Additional Resources

Section 20.1, “Enabling Debugging with Debugging Information”

Using the GNU Compiler Collection (GCC) — 3.10 Options for Debugging Your Program

Debugging with GDB — 18.3 Debugging Information in Separate Files

The GCC manual page:

$ man gcc

20.1.3. Debuginfo Packages

Debuginfo packages contain debugging information and debug source code for programs and libraries.

Prerequisites

Understanding of debugging information

Debuginfo Packages
For applications and libraries installed in packages from the Red Hat Enterprise Linux repositories, you
can obtain the debugging information and debug source code as separate debuginfo packages
available through another channel. The debuginfo packages contain .debug files, which contain DWARF
debuginfo and the source files used for compiling the binary packages. Debuginfo package contents are
installed to the /usr/lib/debug directory.

A debuginfo package provides debugging information valid only for a binary package with the same
name, version, release, and architecture:

Binary package: packagename-version-release.architecture.rpm

Debuginfo package: packagename-debuginfo-version-release.architecture.rpm

20.1.4. Getting debuginfo Packages for an Application or Library using GDB

The GNU Debugger (GDB) automatically recognizes missing debug information and resolves the
package name.

Prerequisites

The application or library you want to debug is installed on the system

GDB is installed on the system

The debuginfo-install tool is installed on the system

Procedure

1. Start GDB attached to the application or library you want to debug. GDB automatically
recognizes missing debugging information and suggests a command to run.

CHAPTER 20. DEBUGGING A RUNNING APPLICATION

53

https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html
https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html

recognizes missing debugging information and suggests a command to run.

$ gdb -q /bin/ls
Reading symbols from /usr/bin/ls...Reading symbols from /usr/bin/ls...(no debugging symbols
found)...done.
(no debugging symbols found)...done.
Missing separate debuginfos, use: debuginfo-install coreutils-8.22-21.el7.x86_64
(gdb)

2. Exit GDB without proceeding further: type q and Enter.

(gdb) q

3. Run the command suggested by GDB to install the needed debuginfo packages:

debuginfo-install coreutils-8.22-21.el7.x86_64

Installing a debuginfo package for an application or library installs debuginfo packages for all
dependencies, too.

4. In case GDB is not able to suggest the debuginfo package, follow the procedure in
Section 20.1.5, “Getting debuginfo Packages for an Application or Library Manually” .

Additional Resources

Red Hat Developer Toolset User Guide — Chapter 1.5, Installing Debugging Information

Red Hat Knowledgebase solution — How can I download or install debuginfo packages for RHEL
systems?

20.1.5. Getting debuginfo Packages for an Application or Library Manually

To manually choose (which) debuginfo packages (to install) for installation, locate the executable file
and find the package which installs it.

NOTE

The use of GDB to determine the packages for installation is preferable. Use this manual
procedure only if GDB is not able to suggest the package to install.

Prerequisites

The application or library must be installed on the system

The debuginfo-install tool must be available on the system

Procedure

1. Find the executable file of the application or library.

a. Use the which command to find the application file.

$ which nautilus
/usr/bin/nautilus

Red Hat Enterprise Linux 7 Developer Guide

54

https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/9/html/user_guide/sect-red_hat_developer_toolset-install#sect-Red_Hat_Developer_Toolset-Install-Debugging
https://access.redhat.com/solutions/9907

b. Use the locate command to find the library file.

$ locate libz | grep so
/usr/lib64/libz.so
/usr/lib64/libz.so.1
/usr/lib64/libz.so.1.2.7

If the original reasons for debugging included error messages, pick the result where the
library has the same additional numbers in its file name. If in doubt, try following the rest of
the procedure with the result where the library file name includes no additional numbers.

NOTE

The locate command is provided by the mlocate package. To install it and
enable its use:

yum install mlocate
updatedb

2. Using the file path, search for a package which provides that file.

yum provides /usr/lib64/libz.so.1.2.7
Loaded plugins: product-id, search-disabled-repos, subscription-manager
zlib-1.2.7-17.el7.x86_64 : The compression and decompression library
Repo : @anaconda/7.4
Matched from:
Filename : /usr/lib64/libz.so.1.2.7

The output provides a list of packages in the format name-version.distribution.architecture.
In this step, only the package name is important, because the version shown in yum output may
not be the actual installed version.

IMPORTANT

If this step does not produce any results, it is not possible to determine which
package provided the binary file and this procedure fails.

3. Use the rpm low-level package management tool to find what package version is installed on
the system. Use the package name as an argument:

$ rpm -q zlib
zlib-1.2.7-17.el7.x86_64

The output provides details for the installed package in the format
name-version.distribution.architecture.

4. Install the debuginfo packages using the debuginfo-install utility. In the command, use the
package name and other details you determined during the previous step:

debuginfo-install zlib-1.2.7-17.el7.x86_64

Installing a debuginfo package for an application or library installs debuginfo packages for all
dependencies, too.

CHAPTER 20. DEBUGGING A RUNNING APPLICATION

55

Additional Resources

Red Hat Developer Toolset User Guide — Installing Debugging Information

Knowledgebase article — How can I download or install debuginfo packages for RHEL systems?

20.2. INSPECTING THE APPLICATION’S INTERNAL STATE WITH GDB

To find why an application does not work properly, control its execution and examine its internal state
with a debugger. This section describes how to use the GNU Debugger (GDB) for this task.

20.2.1. GNU Debugger (GDB)

A debugger is a tool that enables control of code execution and inspection of the state of the code. This
capability is used to investigate what is happening in a program and why.

Red Hat Enterprise Linux contains the GNU debugger (GDB) which offers this functionality through a
command line user interface.

For a graphical frontend to GDB, install the Eclipse integrated development environment. See Using
Eclipse.

GDB Capabilities
A single GDB session can debug:

multithreaded and forking programs

multiple programs at once

programs on remote machines or in containers with the gdbserver utility connected over a
TCP/IP network connection

Debugging Requirements
To debug any executable code, GDB requires the respective debugging information:

For programs developed by you, you can create the debugging information while building the
code.

For system programs installed from packages, their respective debuginfo packages must be
installed.

20.2.2. Attaching GDB to a Process

In order to examine a process, GDB must be attached to the process.

Prerequisites

GDB must be installed on the system

Starting a Program with GDB
When the program is not running as a process, start it with GDB:

$ gdb program

Replace program with a file name or path to the program.

GDB starts execution of the program. You can set up breakpoints and the gdb environment before

Red Hat Enterprise Linux 7 Developer Guide

56

https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/9/html/user_guide/sect-red_hat_developer_toolset-install#sect-Red_Hat_Developer_Toolset-Install-Debugging
https://access.redhat.com/solutions/9907
https://access.redhat.com/documentation/en-us/red_hat_developer_tools/

GDB starts execution of the program. You can set up breakpoints and the gdb environment before
beginning the execution of the process with the run command.

Attaching GDB to an Already Running Process
To attach GDB to a program already running as a process:

1. Find the process id (pid) with the ps command:

$ ps -C program -o pid h
 pid

Replace program with a file name or path to the program.

2. Attach GDB to this process:

$ gdb program -p pid

Replace program with a file name or path to the program, replace pid with an actual process id
number from the ps output.

Attaching an Already Running GDB to an Already Running Process
To attach an already running GDB to an already running program:

1. Use the shell GDB command to run the ps command and find the program’s process id (pid):

(gdb) shell ps -C program -o pid h
 pid

Replace program with a file name or path to the program.

2. Use the attach command to attach GDB to the program:

(gdb) attach pid

Replace pid by an actual process id number from the ps output.

NOTE

In some cases, GDB might not be able to find the respective executable file. Use the file
command to specify the path:

(gdb) file path/to/program

Additional Resources

Debugging with GDB — 2.1 Invoking GDB

Debugging with GDB — 4.7 Debugging an Already-running Process

20.2.3. Stepping through Program Code with GDB

Once the GDB debugger is attached to a program, you can use a number of commands to control the
execution of the program.

CHAPTER 20. DEBUGGING A RUNNING APPLICATION

57

https://sourceware.org/gdb/onlinedocs/gdb/Invoking-GDB.html
https://sourceware.org/gdb/onlinedocs/gdb/Attach.html

Prerequisites

GDB must be installed on the system

You must have the required debugging information available:

The program is compiled and built with debugging information, or

The relevant debuginfo packages are installed

GDB is attached to the program that is to be debugged

GDB Commands to Step Through the Code

r (run)

Start the execution of the program. If run is executed with arguments, those arguments are passed
on to the executable as if the program was started normally. Users normally issue this command after
setting breakpoints.

start

Start the execution of the program and stop at the beginning of the main function. If start is
executed with arguments, those arguments are passed on to the executable as if the program was
started normally.

c (continue)

Continue the execution of the program from the current state. The execution of the program will
continue until one of the following becomes true:

A breakpoint is reached

A specified condition is satisfied

A signal is received by the program

An error occurs

The program terminates

n (next)

Another commonly known name of this command is step over. Continue the execution of the
program from the current state, until the next line of code in the current source file is reached. The
execution of the program will continue until one of the following becomes true:

A breakpoint is reached

A specified condition is satisfied

A signal is received by the program

An error occurs

The program terminates

s (step)

Another commonly known name of this command is step into. The step command halts execution at
each sequential line of code in the current source file. However, if the execution is currently stopped

Red Hat Enterprise Linux 7 Developer Guide

58

at a source line containing a function call, GDB stops the execution after entering the function call
(rather than executing it).

until location

Continue the execution until the code location specified by the location option is reached.

fini (finish)

Resume the execution of the program and halt when the execution returns from a function. The
execution of the program will continue until one of the following becomes true:

A breakpoint is reached

A specified condition is satisfied

A signal is received by the program

An error occurs

The program terminates

q (quit)

Terminate the execution and exit GDB.

Additional Resources

Section 20.2.5, “Using GDB Breakpoints to Stop Execution at Defined Code Locations”

Debugging with GDB — 4.2 Starting your Program

Debugging with GDB — 5.2 Continuing and Stepping

20.2.4. Showing Program Internal Values with GDB

Displaying the values of the internal variables of a program is important for understanding what the
program is doing. GDB offers multiple commands that you can use to inspect the internal variables. This
section describes the most useful of these commands.

Prerequisites

Understanding of the GDB debugger

GDB Commands to Display the Internal State of a Program

p (print)

Displays the value of the argument given. Usually, the argument is the name of a variable of any
complexity, from a simple single value to a structure. An argument can also be an expression valid in
the current language, including the use of program variables and library functions, or functions
defined in the program being tested.
It is possible to extend GDB with pretty-printer Python or Guile scripts for customized display of data
structures (such as classes, structs) using the print command.

bt (backtrace)

Display the chain of function calls used to reach the current execution point, or the chain of functions
used up until execution was signalled. This is useful for investigating serious bugs (such as
segmentation faults) with elusive causes.
Adding the full option to the backtrace command displays local variables, too.

CHAPTER 20. DEBUGGING A RUNNING APPLICATION

59

https://sourceware.org/gdb/download/onlinedocs/gdb/Starting.html
https://sourceware.org/gdb/download/onlinedocs/gdb/Continuing-and-Stepping.html

It is possible to extend GDB with frame filter Python scripts for customized display of data displayed
using the bt and info frame commands. The term frame refers to the data associated with a single
function call.

info

The info command is a generic command to provide information about various items. It takes an
option specifying the item.

The info args command displays arguments of the function call that is the currently selected
frame.

The info locals command displays local variables in the currently selected frame.

For a list of the possible items, run the command help info in a GDB session:

(gdb) help info

l (list)

Show the line in the source code where the program stopped. This command is available only when
the program execution is stopped. While not strictly a command to show the internal state, list helps
the user understand what changes to the internal state will happen in the next step of the program’s
execution.

Additional Resources

Red Hat Developer blog entry — The GDB Python API

Debugging with GDB — 10.9 Pretty Printing

20.2.5. Using GDB Breakpoints to Stop Execution at Defined Code Locations

In many cases, it is advantageous to let the program execute until a certain line of code is reached.

Prerequisites

Understanding of GDB

Using Breakpoints in GDB
Breakpoints are markers that tell GDB to stop the execution of a program. Breakpoints are most
commonly associated with source code lines: Placing a breakpoint requires specifying the source file
and line number.

To place a breakpoint:

Specify the name of the source code file and the line in that file:

(gdb) br file:line

When file is not present, the name of the source file at the current point of execution is
used:

(gdb) br line

Alternatively, use a function name to place the breakpoint:

Red Hat Enterprise Linux 7 Developer Guide

60

https://developers.redhat.com/blog/2017/11/10/gdb-python-api/
http://sourceware.org/gdb/onlinedocs/gdb/Pretty-Printing.html

(gdb) br function_name

A program might encounter an error after a certain number of iterations of a task. To specify an
additional condition to halt execution:

(gdb) br file:line if condition

Replace condition with a condition in the C or C++ language. The meaning of file and line is the
same as above.

To inspect the status of all breakpoints and watchpoints:

(gdb) info br

To remove a breakpoint by using its number as displayed in the output of info br:

(gdb) delete number

To remove a breakpoint at a given location:

(gdb) clear file:line

Additional Resources

Debugging with GDB — 5.1 Breakpoints, Watchpoints, and Catchpoints

20.2.6. Using GDB Watchpoints to Stop Execution on Data Access and Changes

In many cases, it is advantageous to let the program execute until certain data changes or is accessed.
This section lists the most common watchpoints.

Prerequisites

Understanding of GDB

Using Watchpoints in GDB
Watchpoints are markers which tell GDB to stop the execution of a program. Watchpoints are
associated with data: Placing a watchpoint requires specifying an expression describing a variable,
multiple variables, or a memory address.

To place a watchpoint for data change (write):

(gdb) watch expression

Replace expression with an expression that describes what you want to watch. For variables,
expression is equal to the name of the variable.

To place a watchpoint for data access (read):

(gdb) rwatch expression

To place a watchpoint for any data access (both read and write):

(gdb) awatch expression

CHAPTER 20. DEBUGGING A RUNNING APPLICATION

61

https://sourceware.org/gdb/download/onlinedocs/gdb/Breakpoints.html

To inspect the status of all watchpoints and breakpoints:

(gdb) info br

To remove a watchpoint:

(gdb) delete num

Replace the num option with the number reported by the info br command.

Additional Resources

Debugging with GDB — 5.1.2 Setting Watchpoints

20.2.7. Debugging Forking or Threaded Programs with GDB

Some programs use forking or threads to achieve parallel code execution. Debugging multiple
simultaneous execution paths requires special considerations.

Prerequisites

Understanding of the GDB debugger

Understanding of the concepts of process forking and threads

Debugging Forked Programs with GDB
Forking is a situation when a program (parent) creates an independent copy of itself (child). Use the
following settings and commands to affect the reaction of GDB to an occuring fork:

The follow-fork-mode setting controls whether GDB follows the parent or the child after the
fork.

set follow-fork-mode parent

After forking, debug the parent process. This is the default.

set follow-fork-mode child

After forking, debug the child process.

show follow-fork-mode

Displays the current setting of the follow-fork-mode.

The set detach-on-fork setting controls whether the GDB keeps control of the other (not
followed) process or leaves it to run.

set detach-on-fork on

The process which is not followed (depending on the value of the follow-fork-mode) is
detached and runs independently. This is the default.

set detach-on-fork off

GDB keeps control of both processes. The process which is followed (depending on the
value of follow-fork-mode) is debugged as usual, while the other is suspended.

show detach-on-fork

Displays the current setting of detach-on-fork.

Debugging Threaded Programs with GDB

Red Hat Enterprise Linux 7 Developer Guide

62

https://sourceware.org/gdb/download/onlinedocs/gdb/Set-Watchpoints.html

GDB has the ability to debug individual threads, and to manipulate and examine them independently. To
make GDB stop only the thread that is examined, use the commands set non-stop on and set target-
async on. You can add these commands to the .gdbinit file. After that functionality is turned on, GDB is
ready to conduct thread debugging.

GDB uses the concept of current thread . By default, commands apply to the current thread only.

info threads

Displays a list of threads with their id and gid numbers, indicating the current thread.

thread id

Sets the thread with the specified id as the current thread.

thread apply ids command

Applies the command command to all threads listed by ids. The ids option is a space-separated list
of thread ids. The special value all applies the command to all threads.

break location thread id if condition

Sets a breakpoint at a certain location with a certain condition only for the thread number id.

watch expression thread id

Sets a watchpoint defined by expression only for the thread number id.

command&

Executes the command command and returns immediately to the GDB prompt (gdb), continuing
code execution in the background.

interrupt

Halts execution in the background.

Additional Resources

Debugging with GDB — 4.10 Debugging Programs with Multiple Threads

Debugging with GDB — 4.11 Debugging Forks

20.3. RECORDING APPLICATION INTERACTIONS

The executable code of applications interacts with the code of the operating system and shared
libraries. Recording an activity log of these interactions can provide enough insight into the application’s
behavior without debugging the actual application code. Alternatively, analyzing an application’s
interactions can help to pinpoint the conditions in which a bug manifests.

20.3.1. Useful Tools for Recording Application Interactions

Red Hat Enterprise Linux offers multiple tools for analyzing an application’s interactions.

strace

The strace tool enables the tracing of (and tampering with) interactions between an application and
the Linux kernel: system calls, signal deliveries, and changes of process state.

The strace output is detailed and explains the calls well, because strace interprets
parameters and results with knowledge of the underlying kernel code. Numbers are turned
into the respective constant names, bitwise combined flags expanded to flag lists, pointers
to character arrays dereferenced to provide the actual string, and more. Support for more
recent kernel features may be lacking, however.

CHAPTER 20. DEBUGGING A RUNNING APPLICATION

63

https://sourceware.org/gdb/onlinedocs/gdb/Threads.html
https://sourceware.org/gdb/onlinedocs/gdb/Forks.html

The use of strace does not require any particular setup except for setting up the log filter.

Tracing the application code with strace may result in significant slowdown of the
application’s execution. As a result, strace is not suitable for many production deployments.
As an alternative, consider using SystemTap in such cases.

You can limit the list of traced system calls and signals to reduce the amount of captured
data.

strace captures only kernel-userspace interactions and does not trace library calls, for
example. Consider using ltrace for tracing library calls.

ltrace

The ltrace tool enables logging of an application’s user space calls into shared objects (dynamic
libraries).

ltrace enables tracing calls to any library.

You can filter the traced calls to reduce the amount of captured data.

The use of ltrace does not require any particular setup except for setting up the log filter.

ltrace is lightweight and fast, offering an alternative to strace: it is possible to trace the
respective interfaces in libraries such as glibc with ltrace instead of tracing kernel functions
with strace. Note however that ltrace may be less precise at syscall tracing.

ltrace is able to decode parameters only for a limited set of library calls: the calls whose
prototypes are defined in the relevant configuration files. As part of the ltrace package,
prototypes for some libacl, libc, and libm calls and system calls are provided. The ltrace
output mostly contains only raw numbers and pointers. The interpretation of ltrace output
usually requires consulting the actual interface declarations of the libraries present in the
output.

SystemTap

SystemTap is an instrumentation platform for probing running processes and kernel activity on the
Linux system. SystemTap uses its own scripting language for programming custom event handlers.

Compared to using strace and ltrace, scripting the logging means more work in the initial
setup phase. However, the scripting capabilities extend SystemTap’s usefulness beyond just
producing logs.

SystemTap works by creating and inserting a kernel module. The use of SystemTap is
efficient and does not create a significant slowdown of the system or application execution
on its own.

SystemTap comes with a set of usage examples.

GDB

The GNU Debugger is primarily meant for debugging, not logging. However, some of its features
make it useful even in the scenario where an application’s interaction is the primary activity of
interest.

With GDB, it is possible to conveniently combine the capture of an interaction event with
immediate debugging of the subsequent execution path.

GDB is best suited for analyzing responses to infrequent or singular events, after the initial

Red Hat Enterprise Linux 7 Developer Guide

64

GDB is best suited for analyzing responses to infrequent or singular events, after the initial
identification of problematic situations by other tools. Using GDB in any scenario with
frequent events becomes inefficient or even impossible.

Additional Resources

Red Hat Enterprise Linux SystemTap Beginners Guide

Red Hat Developer Toolset User Guide

20.3.2. Monitoring an Application’s System Calls with strace

The strace tool enables tracing of (and optional tampering with) interactions between an application
and the Linux kernel: system calls, signal deliveries, and changes of process state.

Prerequisites

strace is installed on the system

To install strace, run as root:

yum install strace

Procedure
Note that the tracing specification syntax of strace offers regular expressions and syscall classes to help
with the identification of system calls.

1. Run or attach to the process you wish to monitor.

If the program you want to monitor is not running, start strace and specify the program:

$ strace -fvttTyy -s 256 -e trace=call program

Options used in the example above are not mandatory. Use when needed:

The -f option is an acronym for "follow forks". This option traces children created by the
fork, vfork, and clone system calls.

The -v or -e abbrev=none option disables abbreviation of output, omitting various
structure fields.

The -tt option is a variant of the -t option that prefixes each line with an absolute
timestamp. With the -tt option, the time printed includes microseconds.

The -T option prints the amount of time spent in each system call at the end of the line.

The -yy option is a variant of the -y option that enables printing of paths associated with
file descriptor numbers. The -yy option prints not only paths, but also protocol-specific
information associated with socket file descriptors and block or character device
number associated with device file descriptors.

The -s option controls the maximum string size to be printed. Note that filenames are
not considered strings and are always printed in full.

-e trace controls the set of system calls to trace.

Replace call with a comma-separated list of system calls to be displayed. If call is left,

CHAPTER 20. DEBUGGING A RUNNING APPLICATION

65

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/systemtap_beginners_guide/
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/

Replace call with a comma-separated list of system calls to be displayed. If call is left,
strace will display all system calls. Shorthands for some groups of system calls are
provided in the strace(1) manual page.

If the program is already running, find its process ID (pid) and attach strace to it:

$ ps -C program
(...)
$ strace -fvttTyy -s 256 -e trace=call -ppid

If you do not wish to trace any forked processes or threads, do not use the -f option.

2. strace displays the system calls made by the application and their details.
In most cases, an application and its libraries make a large number of calls and strace output
appears immediately, if no filter for system calls is set.

3. strace exits when all the traced processes exit. To terminate the monitoring before the traced
program exits, press Ctrl+C.

If strace started the program, it will send the terminating signal (SIGINT, in this case) to the
program being started. Note, however, that program, in turn, may ignore that signal.

If you attached strace to an already running program, the program terminates together
with strace.

4. Analyze the list of system calls done by the application.

Problems with resource access or availability are present in the log as calls returning errors.

Values passed to the system calls and patterns of call sequences provide insight into the
causes of the application’s behaviour.

If the application crashes, the important information is probably at the end of the log.

The output contains a lot of extra information. However, you can construct a more precise
filter and repeat the procedure.

Notes

It is advantageous to both see the output and save it to a file. To do this, run the tee command:

$ strace ...-o |tee your_log_file.log>&2

To see separate output that corresponds to different processes, run:

$ strace ... -ff -o your_log_file

Output for a process with the process ID (pid) will be stored in your_log_file.pid.

Additional Resources

The strace(1) manual page.

Knowledgebase article — How do I use strace to trace system calls made by a command?

Red Hat Developer Toolset User Guide — strace

Red Hat Enterprise Linux 7 Developer Guide

66

https://access.redhat.com/articles/2483
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/9/html/user_guide/chap-strace

20.3.3. Monitoring the Application’s Library Function Calls with ltrace

The ltrace tool enables monitoring of the calls done by an application to functions available in libraries
(shared objects).

Prerequisites

ltrace is installed on the system

Procedure

1. Identify the libraries and functions of interest, if possible.

2. If the program you want to monitor is not running, start ltrace and specify program:

$ ltrace -f -l library -e function program

Use the options -e and -l to filter the output:

Supply the function names to be displayed as function. The -e function option can be used
multiple times. If left out, ltrace will display calls to all functions.

Instead of specifying functions, you can specify whole libraries with the -l library option.
This option behaves similarly to the -e function option.

See the ltrace(1)_ manual page for more information.

If the program is already running, find its process id (pid) and attach ltrace to it:

$ ps -C program
(...)
$ ltrace ... -ppid

If you do not wish to trace any forked processes or threads, leave out the -f option.

3. ltrace displays the library calls made by the application.
In most cases, an application will make a large number of calls and ltrace output will appear
immediately if no filter is set.

4. ltrace exits when the program exits.
To terminate the monitoring before the traced program exits, press ctrl+C.

If ltrace started the program, the program terminates together with ltrace.

If you attached ltrace to an already running program, the program terminates together with
ltrace.

5. Analyze the list of library calls done by the application.

If the application crashes, the important information is probably at the end of the log.

The output contains a lot of unnecessary information. However, you can construct a more
precise filter and repeat the procedure.

NOTE

CHAPTER 20. DEBUGGING A RUNNING APPLICATION

67

NOTE

It is advantageous to both see the output and save it to a file. Use the tee command to
achieve this:

$ ltrace ... |& tee your_log_file.log

Additional Resources

The strace(1) manual page

Red Hat Developer Toolset User Guide — ltrace

20.3.4. Monitoring the Application’s System Calls with SystemTap

The SystemTap tool enables registering custom event handlers for kernel events. In comparison with
strace, it is harder to use, but SystemTap is more efficient and enables more complicated processing
logic.

Prerequisites

SystemTap is installed on the system

Procedure

1. Create a file my_script.stp with the contents:

probe begin
{
 printf("waiting for syscalls of process %d \n", target())
}

probe syscall.*
{
 if (pid() == target())
 printf("%s(%s)\n", name, argstr)
}

probe process.end
{
 if (pid() == target())
 exit()
}

2. Find the process ID (pid) of the process you wish to monitor:

$ ps -aux

3. Run SystemTap with the script:

stap my_script.stp -x pid

The value of pid is the process id.

The script is compiled to a kernel module which is then loaded. This introduces a slight delay

Red Hat Enterprise Linux 7 Developer Guide

68

https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/9/html/user_guide/chap-ltrace

The script is compiled to a kernel module which is then loaded. This introduces a slight delay
between entering the command and getting the output.

4. When the process performs a system call, the call name and its parameters are printed to the
terminal.

5. The script exits when the process terminates, or when you press Ctrl+C.

Additional Resources

SystemTap Beginners Guide

SystemTap Tapset Reference

A larger SystemTap script, which approximates strace functionality, is available as
/usr/share/systemtap/examples/process/strace.stp. To run the script:
stap --example strace.stp -x pid

or

stap --example strace.stp -c "cmd args … "

20.3.5. Using GDB to Intercept Application System Calls

GDB enables stopping the execution in various kinds of situations arising during the execution of a
program. To stop the execution when the program performs a system call, use a GDB catchpoint.

Prerequisites

Understanding of GDB breakpoints

GDB is attached to the program

Stopping Program Execution on System Calls with GDB

1. Set the catchpoint:

(gdb) catch syscall syscall-name

The command catch syscall sets a special type of breakpoint that halts execution when a
system call is performed by the program.

The syscall-name option specifies the name of the call. You can specify multiple catchpoints
for various system calls. Leaving out the syscall-name option causes GDB to stop on any
system call.

2. If the program has not started execution, start it:

(gdb) r

If the program execution is only halted, resume it:

(gdb) c

3. GDB halts the execution after any specified system call is performed by the program.

CHAPTER 20. DEBUGGING A RUNNING APPLICATION

69

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/systemtap_beginners_guide/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/systemtap_tapset_reference/

Additional Resources

Section 20.2.4, “Showing Program Internal Values with GDB”

Section 20.2.3, “Stepping through Program Code with GDB”

Debugging with GDB — 5.1.3 Setting Catchpoints

20.3.6. Using GDB to Intercept the Handling of Signals by Applications

GDB enables stopping the execution in various kinds of situations arising during the execution of a
program. To stop the execution when the program receives a signal from the operating system, use a
GDB catchpoint.

Prerequisites

Understanding of GDB breakpoints

GDB is attached to the program

Stopping the Program Execution on Receiving a Signal with GDB

1. Set the catchpoint:

(gdb) catch signal signal-type

The command catch signal sets a special type of breakpoint that halts execution when a signal
is received by the program. The signal-type option specifies the type of the signal. Use the
special value 'all' to catch all the signals.

2. If the program has not started execution, start it:

(gdb) r

If the program execution is only halted, resume it:

(gdb) c

3. GDB halts the execution after the program receives any specified signal.

Additional Resources

Section 20.2.4, “Showing Program Internal Values with GDB”

Section 20.2.3, “Stepping through Program Code with GDB”

Debugging With GDB — 5.3.1 Setting Catchpoints

Red Hat Enterprise Linux 7 Developer Guide

70

https://sourceware.org/gdb/onlinedocs/gdb/Set-Catchpoints.html
https://sourceware.org/gdb/onlinedocs/gdb/Set-Catchpoints.html

CHAPTER 21. DEBUGGING A CRASHED APPLICATION
Sometimes, it is not possible to debug an application directly. In these situations, you can collect
information about the application at the moment of its termination and analyze it afterwards.

21.1. CORE DUMPS

This section describes what a core dump is and how to use it.

Prerequisites

Understanding of debugging information

Description
A core dump is a copy of a part of the application’s memory at the moment the application stopped
working, stored in the ELF format. It contains all the application’s internal variables and stack, which
enables inspection of the application’s final state. When augmented with the respective executable file
and debugging information, it is possible to analyze a core dump file with a debugger in a way similar to
analyzing a running program.

The Linux operating system kernel can record core dumps automatically, if this functionality is enabled.
Alternatively, you can send a signal to any running application to generate a core dump regardless of its
actual state.

WARNING

Some limits might affect the ability to generate a core dump.

21.2. RECORDING APPLICATION CRASHES WITH CORE DUMPS

To record application crashes, set up core dump saving and add information about the system.

Procedure

1. Enable core dumps. Edit the file /etc/systemd/system.conf and change the line containing
DefaultLimitCORE to the following:

DefaultLimitCORE=infinity

2. Reboot the system:

shutdown -r now

3. Remove the limits for core dump sizes:

ulimit -c unlimited

To reverse this change, run the command with the value 0 instead of unlimited.

4. When an application crashes, a core dump is generated. The default location for core dumps is

CHAPTER 21. DEBUGGING A CRASHED APPLICATION

71

4. When an application crashes, a core dump is generated. The default location for core dumps is
the application’s working directory at the time of the crash.

5. Create an SOS report to provide additional information about the system:

sosreport

This creates a tar archive containing information about your system, such as copies of
configuration files.

6. Transfer the core dump and the SOS report to the computer where the debugging will take
place. Transfer the executable file, too, if it is known.

IMPORTANT

If the executable file is not known, subsequent analysis of the core file will
identify it.

7. Optional: Remove the core dump and SOS report after transferring them to free up disk space.

Additional Resources

Knowledgebase article — How to enable core file dumps when an application crashes or
segmentation faults

Knowledgebase article — What is a sosreport and how to create one in Red Hat Enterprise Linux
4.6 and later?

21.3. INSPECTING APPLICATION CRASH STATES WITH CORE DUMPS

Prerequisites

You have a core dump file and SOS report

GDB and elfutils are installed on the system

Procedure

1. To identify the executable file where the crash occurred, run the eu-unstrip command with the
core dump file:

$ eu-unstrip -n --core=./core.9814
0x400000+0x207000 2818b2009547f780a5639c904cded443e564973e@0x400284
/usr/bin/sleep /usr/lib/debug/bin/sleep.debug [exe]
0x7fff26fff000+0x1000 1e2a683b7d877576970e4275d41a6aaec280795e@0x7fff26fff340 . -
linux-vdso.so.1
0x35e7e00000+0x3b6000
374add1ead31ccb449779bc7ee7877de3377e5ad@0x35e7e00280 /usr/lib64/libc-2.14.90.so
/usr/lib/debug/lib64/libc-2.14.90.so.debug libc.so.6
0x35e7a00000+0x224000
3ed9e61c2b7e707ce244816335776afa2ad0307d@0x35e7a001d8 /usr/lib64/ld-2.14.90.so
/usr/lib/debug/lib64/ld-2.14.90.so.debug ld-linux-x86-64.so.2

The output contains details for each module on one line, separated by spaces. The information
is listed in this order:

Red Hat Enterprise Linux 7 Developer Guide

72

https://access.redhat.com/solutions/4896
https://access.redhat.com/solutions/3592

1. The memory address where the module was mapped

2. The build-id of the module and where in the memory it was found

3. The module’s executable file name, displayed as - when unknown, or as . when the module
has not been loaded from a file

4. The source of debugging information, displayed as a file name when available, as . when
contained in the executable file itself, or as - when not present at all

5. The shared library name (soname), or [exe] for the main module

In this example, the important details are the file name /usr/bin/sleep and the build-id
2818b2009547f780a5639c904cded443e564973e on the line containing the text [exe]. With this
information, you can identify the executable file required for analyzing the core dump.

2. Get the executable file that crashed.

If possible, copy it from the system where the crash occurred. Use the file name extracted
from the core file.

Alternatively, use an identical executable file on your system. Each executable file built on
Red Hat Enterprise Linux contains a note with a unique build-id value. Determine the build-
id of the relevant locally available executable files:

$ eu-readelf -n executable_file

Use this information to match the executable file on the remote system with your local
copy. The build-id of the local file and build-id listed in the core dump must match.

Finally, if the application is installed from an RPM package, you can get the executable file
from the package. Use the sosreport output to find the exact version of the package
required.

3. Get the shared libraries used by the executable file. Use the same steps as for the executable
file.

4. If the application is distributed as a package, load the executable file in GDB to display hints for
missing debuginfo packages. For more details, see Section 20.1.4, “Getting debuginfo Packages
for an Application or Library using GDB”.

5. To examine the core file in detail, load the executable file and core dump file with GDB:

$ gdb -e executable_file -c core_file

Further messages about missing files and debugging information help you to identify what is
missing for the debugging session. Return to the previous step if needed.

If the debugging information is available as a file instead of a package, load this file in GDB with
the symbol-file command:

(gdb) symbol-file program.debug

Replace program.debug with the actual file name.

NOTE

CHAPTER 21. DEBUGGING A CRASHED APPLICATION

73

NOTE

It might not be necessary to install the debugging information for all executable
files contained in the core dump. Most of these executable files are libraries used
by the application code. These libraries might not directly contribute to the
problem you are analyzing, and you do not need to include debugging information
for them.

6. Use the GDB commands to inspect the state of the application at the moment it crashed. See
Section 20.2, “Inspecting the Application’s Internal State with GDB” .

NOTE

When analyzing a core file, GDB is not attached to a running process. Commands
for controlling execution have no effect.

Additional Resources

Debugging with GDB — 2.1.1 Choosing Files

Debugging with GDB — 18.1 Commands to Specify Files

Debugging with GDB — 18.3 Debugging Information in Separate Files

21.4. DUMPING PROCESS MEMORY WITH GCORE

The workflow of core dump debugging enables the analysis of the offline state of the program. In some
cases it is advantageous to use this workflow with a program that is still running, such as when it is hard
to access the environment with the process. You can use the gcore command to dump memory of any
process while it is still running.

Prerequisites

Understanding of core dumps

GDB is installed on the system

Procedure
To dump a process memory using gcore:

1. Find out the process id (pid). Use tools such as ps, pgrep, and top:

$ ps -C some-program

2. Dump the memory of this process:

$ gcore -o filename pid

This creates a file filename and dumps the process memory in it. While the memory is being
dumped, the execution of the process is halted.

3. After the core dump is finished, the process resumes normal execution.

4. Create an SOS report to provide additional information about the system:

Red Hat Enterprise Linux 7 Developer Guide

74

https://sourceware.org/gdb/onlinedocs/gdb/File-Options.html
https://sourceware.org/gdb/onlinedocs/gdb/Files.html
https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html

sosreport

This creates a tar archive containing information about your system, such as copies of
configuration files.

5. Transfer the program’s executable file, core dump, and the SOS report to the computer where
the debugging will take place.

6. Optional: Remove the core dump and SOS report after transferring them to reclaim disk space.

Additional resources

Knowledgebase article — How to obtain a core file without restarting an application?

21.5. DUMPING PROTECTED PROCESS MEMORY WITH GDB

You can mark the memory of processes as not to be dumped. This can save resources and ensure
additional security if the process memory contains sensitive data. Both kernel core dumps (kdump) and
manual core dumps (gcore, GDB) do not dump memory marked this way.

In some cases, it is necessary to dump the whole contents of the process memory regardless of these
protections. This procedure shows how to do this using the GDB debugger.

Prerequisites

Understanding of core dumps

GDB is installed on the system

GDB is attached to the process with protected memory

Procedure

1. Set GDB to ignore the settings in the /proc/PID/coredump_filter file:

(gdb) set use-coredump-filter off

2. Set GDB to ignore the memory page flag VM_DONTDUMP:

(gdb) set dump-excluded-mappings on

3. Dump the memory:

(gdb) gcore core-file

Replace core-file with the name of the file of which you want to dump the memory.

Additional Resources

Debugging with GDB — 10.19 How to Produce a Core File from Your Program

CHAPTER 21. DEBUGGING A CRASHED APPLICATION

75

https://access.redhat.com/solutions/9952
https://sourceware.org/gdb/onlinedocs/gdb/Core-File-Generation.html

PART VI. MONITORING PERFORMANCE

Developers profile programs to focus attention on the areas of the program that have the largest
impact on performance. The types of data collected include what section of the program consumes the
most processor time, and where memory is allocated. Profiling collects data from the actual program
execution. Thus, the quality of the data collected is influenced by the actual tasks being performed by
the program. The tasks performed during profiling should be representative of actual use; this ensures
that problems arising from realistic use of the program are addressed during development.

Red Hat Enterprise Linux includes a number of different tools (Valgrind, OProfile, perf, and
SystemTap) to collect profiling data. Each tool is suitable for performing specific types of profile runs,
as described in the following sections.

Red Hat Enterprise Linux 7 Developer Guide

76

CHAPTER 22. VALGRIND
Valgrind is an instrumentation framework for building dynamic analysis tools that can be used to profile
applications in detail. The default installation already provides five standard tools. Valgrind tools are
generally used to investigate memory management and threading problems. Valgrind provides
instrumentation for user-space binaries to check for errors, such as the use of uninitialized memory,
improper allocation/freeing of memory, and improper arguments for system calls. Its profiling tools can
be used on most binaries; however, compared to other profilers, Valgrind profile runs are significantly
slower. To profile a binary, Valgrind runs it inside a special virtual machine, which allows Valgrind to
intercept all of the binary instructions. Valgrind's tools are most useful for looking for memory-related
issues in user-space programs; it is not suitable for debugging time-specific issues or kernel-space
instrumentation and debugging.

Valgrind reports are most useful and accurate when debuginfo packages are installed for the programs
or libraries under investigation. See Section 20.1, “Enabling Debugging with Debugging Information” .

22.1. VALGRIND TOOLS

The Valgrind suite is composed of the following tools:

memcheck

This tool detects memory management problems in programs:

By checking all reads from and writes to memory

By intercepting memory manipulations like calls to malloc, free, new or delete

memcheck is perhaps the most used Valgrind tool, as memory management problems can be
difficult to detect using other means. Such problems often remain undetected for long periods,
eventually causing crashes that are difficult to diagnose.

memcheck functions as the default tool when no specific tool is selected.

cachegrind

cachegrind is a cache profiler that accurately pinpoints sources of cache misses in code by
performing a detailed simulation of the I1, D1 and L2 caches in the CPU. It shows the number of cache
misses, memory references, and instructions accruing to each line of source code; cachegrind also
provides per-function, per-module, and whole-program summaries, and can even show counts for
each individual machine instructions.

callgrind

Like cachegrind, callgrind can model cache behavior. However, the main purpose of callgrind is to
record callgraphs data for the executed code.

massif

massif is a heap profiler; it measures how much heap memory a program uses, providing information
on heap blocks, heap administration overheads, and stack sizes. Heap profilers are useful in finding
ways to reduce heap memory usage. On systems that use virtual memory, programs with optimized
heap memory usage are less likely to run out of memory, and may be faster as they require less
paging.

helgrind

In programs that use the POSIX pthreads threading primitives, helgrind detects synchronization
errors. Such errors are:

CHAPTER 22. VALGRIND

77

Misuses of the POSIX pthreads API

Potential deadlocks arising from lock ordering problems

Data races (that is, accessing memory without adequate locking)

22.2. USING VALGRIND

The valgrind package and its dependencies install all the necessary tools for performing a Valgrind
profile run. To profile a program with Valgrind, use:

$ valgrind --tool=toolname program

See Section 22.1, “Valgrind Tools” for a list of arguments for toolname. In addition to the suite of
Valgrind tools, none is also a valid argument for toolname; this argument allows you to run a program
under Valgrind without performing any profiling. This is useful for debugging or benchmarking Valgrind
itself.

You can also instruct Valgrind to send all of its information to a specific file. To do so, use the option --
log-file=filename. For example, to check the memory usage of the executable file hello and send
profile information to output, use:

$ valgrind --tool=memcheck --log-file=output hello

See Section 22.3, “Additional information” for more information on Valgrind, along with other available
documentation on the Valgrind suite of tools.

22.3. ADDITIONAL INFORMATION

For more extensive information on Valgrind, see man valgrind. Red Hat Enterprise Linux also provides
a comprehensive Valgrind Documentation book available as PDF and HTML in:

/usr/share/doc/valgrind-version/valgrind_manual.pdf

/usr/share/doc/valgrind-version/html/index.html

Red Hat Enterprise Linux 7 Developer Guide

78

CHAPTER 23. OPROFILE
OProfile is a low overhead, system-wide performance monitoring tool provided by the oprofile
package. It uses performance monitoring hardware on the system’s processor to retrieve information
about the kernel and executables on the system, such as when memory is referenced, the number of
second-level cache requests, and the number of hardware interrupts received. OProfile is also able to
profile applications that run in a Java Virtual Machine (JVM).

The following is a selection of the tools provided by OProfile:

ophelp

Displays available events for the system’s processor along with a brief description of each event.

operf

The main profiling tool. The operf tool uses the Linux Performance Events subsystem, which allows
OProfile to operate alongside other tools using performance monitoring hardware of your system.
Unlike the previously used opcontrol tool, no initial setup is required, and it can be used without root
privileges unless the --system-wide option is used.

ocount

A tool for counting the absolute number of event occurrences. It can count events on the whole
system, per process, per CPU, or per thread.

opimport

Converts sample database files from a foreign binary format to the native format for the system.
Only use this option when analyzing a sample database from a different architecture.

opannotate

Creates an annotated source for an executable if the application was compiled with debugging
symbols.

opreport

Reads the recorded performance data and generates a summary as specified by the profile
specification. It is possible to generate different reports from the same profile data using different
profile specifications.

23.1. USING OPROFILE

operf is the recommended tool for collecting profiling data. The tool does not require any initial
configuration, and all options are passed to it on the command line. Unlike the legacy opcontrol tool,
operf can run without root privileges. See the Using operf chapter in the System Administrator’s Guide
for detailed instructions on how to use the operf tool.

Example 23.1. Using ocount

The following example shows counting the amount of events with ocount during execution of the
sleep utility:

$ ocount -e INST_RETIRED -- sleep 1

Events were actively counted for 1.0 seconds.

CHAPTER 23. OPROFILE

79

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/System_Administrators_Guide/#s1-using-operf

Event counts (actual) for /bin/sleep:
Event Count % time counted
INST_RETIRED 683,011 100.00

NOTE

The events are processor implementation specific. It might be necessary to set the
option perf_event_paranoid or limit the counts to only user-space events.

Example 23.2. Basic operf usage

In the following example, the operf tool is used to collect profiling data from the ls -l ~ command.

1. Install debugging information for the ls command:

debuginfo-install -y coreutils

2. Run the profiling:

$ operf ls -l ~
Profiling done.

3. Analyze the collected data:

$ opreport --symbols
CPU: Intel Skylake microarchitecture, speed 3.4e+06 MHz (estimated)
Counted cpu_clk_unhalted events () with a unit mask of 0x00 (Core cycles when at least
one thread on the physical core is not in halt state) count 100000
samples % image name symbol name
161 81.3131 no-vmlinux /no-vmlinux
3 1.5152 libc-2.17.so get_next_seq
3 1.5152 libc-2.17.so strcoll_l
2 1.0101 ld-2.17.so _dl_fixup
2 1.0101 ld-2.17.so _dl_lookup_symbol_x
[...]

Example 23.3. Using operf to Profile a Java Program

In the following example, the operf tool is used to collect profiling data from a Java (JIT) program,
and the opreport tool is then used to output per-symbol data.

1. Install the demonstration Java program used in this example. It is a part of the java-1.8.0-
openjdk-demo package, which is included in the Optional channel. See Adding the Optional
and Supplementary Repositories for instructions on how to use the Optional channel. When
the Optional channel is enabled, install the package:

yum install java-1.8.0-openjdk-demo

2. Install the oprofile-jit package for OProfile to be able to collect profiling data from Java
programs:

Red Hat Enterprise Linux 7 Developer Guide

80

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system_administrators_guide/index#sec-Adding_the_Optional_and_Supplementary_Repositories

yum install oprofile-jit

3. Create a directory for OProfile data:

$ mkdir ~/oprofile_data

4. Change into the directory with the demonstration program:

$ cd /usr/lib/jvm/java-1.8.0-openjdk/demo/applets/MoleculeViewer/

5. Start the profiling:

$ operf -d ~/oprofile_data appletviewer \
-J"-agentpath:/usr/lib64/oprofile/libjvmti_oprofile.so" example2.html

6. Change into the home directory and analyze the collected data:

$ cd

$ opreport --symbols --threshold 0.5

A sample output may look like the following:

$ opreport --symbols --threshold 0.5
Using /home/rkratky/oprofile_data/samples/ for samples directory.
CPU: Intel Ivy Bridge microarchitecture, speed 3600 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Clock cycles when not halted) with a unit mask
of 0x00 (No unit mask) count 100000
samples % image name symbol name
14270 57.1257 libjvm.so /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.51-
1.b16.el7_1.x86_64/jre/lib/amd64/server/libjvm.so
3537 14.1593 23719.jo Interpreter
690 2.7622 libc-2.17.so fgetc
581 2.3259 libX11.so.6.3.0 /usr/lib64/libX11.so.6.3.0
364 1.4572 libpthread-2.17.so pthread_getspecific
130 0.5204 libfreetype.so.6.10.0 /usr/lib64/libfreetype.so.6.10.0
128 0.5124 libc-2.17.so __memset_sse2

23.2. OPROFILE DOCUMENTATION

For more extensive information on OProfile, see the oprofile(1) manual page. Red Hat Enterprise Linux
also provides two comprehensive guides to OProfile in file:///usr/share/doc/oprofile-version/:

OProfile Manual

A comprehensive manual with detailed instructions on the setup and use of OProfile is available at
file:///usr/share/doc/oprofile-version/oprofile.html

OProfile Internals

Documentation on the internal workings of OProfile, useful for programmers interested in
contributing to the OProfile upstream, can be found at
file:///usr/share/doc/oprofile-version/internals.html

CHAPTER 23. OPROFILE

81

file:///usr/share/doc/oprofile-
file:///usr/share/doc/oprofile-
file:///usr/share/doc/oprofile-

CHAPTER 24. SYSTEMTAP
SystemTap is a useful instrumentation platform for probing running processes and kernel activity on the
Linux system. To execute a probe:

1. Write SystemTap scripts that specify which system events (for example, virtual file system
reads, packet transmissions) should trigger specified actions (for example, print, parse, or
otherwise manipulate data).

2. SystemTap translates the script into a C program, which it compiles into a kernel module.

3. SystemTap loads the kernel module to perform the actual probe.

SystemTap scripts are useful for monitoring system operation and diagnosing system issues with
minimal intrusion into the normal operation of the system. You can quickly instrument running system
test hypotheses without having to recompile and re-install instrumented code. To compile a SystemTap
script that probes kernel-space, SystemTap uses information from three different kernel information
packages:

kernel-variant-devel-version

kernel-variant-debuginfo-version

kernel-debuginfo-common-arch-version

These kernel information packages must match the kernel to be probed. In addition, to compile
SystemTap scripts for multiple kernels, the kernel information packages of each kernel must also be
installed.

24.1. ADDITIONAL INFORMATION

For more detailed information about SystemTap, see the following Red Hat documentation:

SystemTap Beginner’s Guide

SystemTap Tapset Reference

Red Hat Enterprise Linux 7 Developer Guide

82

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/SystemTap_Beginners_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/SystemTap_Tapset_Reference/index.html

CHAPTER 25. PERFORMANCE COUNTERS FOR LINUX (PCL)
TOOLS AND PERF

Performance Counters for Linux (PCL) is a kernel-based subsystem that provides a framework for
collecting and analyzing performance data. Red Hat Enterprise Linux 7 includes this kernel subsystem to
collect data and the user-space tool perf to analyze the collected performance data. The PCL
subsystem can be used to measure hardware events, including retired instructions and processor clock
cycles. It can also measure software events, including major page faults and context switches. For
example, PCL counters can compute Instructions Per Clock (IPC) from a process’s counts of instructions
retired and processor clock cycles. A low IPC ratio indicates the code makes poor use of CPU. Other
hardware events can also be used to diagnose poor CPU performance.

Performance counters can also be configured to record samples. The relative amount of samples can be
used to identify which regions of code have the greatest impact on performance.

25.1. PERF TOOL COMMANDS

Useful perf commands include the following:

perf stat

This perf command provides overall statistics for common performance events, including
instructions executed and clock cycles consumed. Options allow the selection of events other than
the default measurement events.

perf record

This perf command records performance data into a file which can be later analyzed using perf
report.

perf report

This perf command reads the performance data from a file and analyzes the recorded data.

perf list

This perf command lists the events available on a particular machine. These events will vary based on
performance monitoring hardware and software configuration of the system.

Use perf help to obtain a complete list of perf commands. To retrieve man page information on each
perf command, use perf help command.

25.2. USING PERF

Using the basic PCL infrastructure for collecting statistics or samples of program execution is relatively
straightforward. This section provides simple examples of overall statistics and sampling.

To collect statistics on make and its children, use the following command:

perf stat -- make all

The perf command collects a number of different hardware and software counters. It then prints the
following information:

Performance counter stats for 'make all':

 244011.782059 task-clock-msecs # 0.925 CPUs
 53328 context-switches # 0.000 M/sec

CHAPTER 25. PERFORMANCE COUNTERS FOR LINUX (PCL) TOOLS AND PERF

83

 515 CPU-migrations # 0.000 M/sec
 1843121 page-faults # 0.008 M/sec
 789702529782 cycles # 3236.330 M/sec
 1050912611378 instructions # 1.331 IPC
 275538938708 branches # 1129.203 M/sec
 2888756216 branch-misses # 1.048 %
 4343060367 cache-references # 17.799 M/sec
 428257037 cache-misses # 1.755 M/sec

 263.779192511 seconds time elapsed

The perf tool can also record samples. For example, to record data on the make command and its
children, use:

perf record -- make all

This prints out the file in which the samples are stored, along with the number of samples collected:

[perf record: Woken up 42 times to write data]
[perf record: Captured and wrote 9.753 MB perf.data (~426109 samples)]

Performance Counters for Linux (PCL) Tools conflict with OProfile

Both OProfile and Performance Counters for Linux (PCL) use the same hardware Performance
Monitoring Unit (PMU). If OProfile is running while attempting to use the PCL perf command, an error
message like the following occurs when starting OProfile:

Error: open_counter returned with 16 (Device or resource busy). /usr/bin/dmesg may provide
additional information.

Fatal: Not all events could be opened.

To use the perf command, first shut down OProfile:

opcontrol --deinit

You can then analyze perf.data to determine the relative frequency of samples. The report output
includes the command, object, and function for the samples. Use perf report to output an analysis of
perf.data. For example, the following command produces a report of the executable that consumes the
most time:

perf report --sort=comm

The resulting output:

Samples: 1083783860000
#
Overhead Command
........
#
 48.19% xsltproc
 44.48% pdfxmltex
 6.01% make
 0.95% perl

Red Hat Enterprise Linux 7 Developer Guide

84

 0.17% kernel-doc
 0.05% xmllint
 0.05% cc1
 0.03% cp
 0.01% xmlto
 0.01% sh
 0.01% docproc
 0.01% ld
 0.01% gcc
 0.00% rm
 0.00% sed
 0.00% git-diff-files
 0.00% bash
 0.00% git-diff-index

The column on the left shows the relative amount of samples. This output shows that make spends most
of this time in xsltproc and pdfxmltex. To reduce the time for make to complete, focus on xsltproc
and pdfxmltex. To list functions executed by xsltproc, run:

perf report -n --comm=xsltproc

This generates:

comm: xsltproc
Samples: 472520675377
#
Overhead Samples Shared Object Symbol
........
#
 45.54%215179861044 libxml2.so.2.7.6 [.] xmlXPathCmpNodesExt
 11.63%54959620202 libxml2.so.2.7.6 [.] xmlXPathNodeSetAdd__internal_alias
 8.60%40634845107 libxml2.so.2.7.6 [.] xmlXPathCompOpEval
 4.63%21864091080 libxml2.so.2.7.6 [.] xmlXPathReleaseObject
 2.73%12919672281 libxml2.so.2.7.6 [.] xmlXPathNodeSetSort__internal_alias
 2.60%12271959697 libxml2.so.2.7.6 [.] valuePop
 2.41%11379910918 libxml2.so.2.7.6 [.] xmlXPathIsNaN__internal_alias
 2.19%10340901937 libxml2.so.2.7.6 [.] valuePush__internal_alias

CHAPTER 25. PERFORMANCE COUNTERS FOR LINUX (PCL) TOOLS AND PERF

85

APPENDIX A. REVISION HISTORY
Revision 7-6.1, Tue Oct 30 2018, Vladimír Slávik

Build for 7.6 GA release.

Revision 7-6, Tue Aug 21 2018, Vladimír Slávik

Build for 7.6 Beta release.

Revision 7-5.1, Tue Apr 10 2018, Vladimír Slávik

Build for the 7.5 GA release.

Revision 7-5, Tue Jan 9 2018, Vladimír Slávik

Published preview of new book version for 7.5 Beta

Revision 7-4.1, Tue Aug 22 2017, Vladimír Slávik

Update for new releases of linked products.

Revision 7-4, Wed Jul 26 2017, Vladimír Slávik

Build for 7.4 GA release. New chapter about setting up a workstation for development.

Revision 1-12, Fri May 26 2017, Vladimír Slávik

Update to remove outdated information.

Revision 7-3.9, Mon May 15 2017, Robert Krátký

Build for 7.4 Beta release.

Red Hat Enterprise Linux 7 Developer Guide

86

	Table of Contents
	PREFACE
	PART I. SETTING UP A DEVELOPMENT WORKSTATION
	CHAPTER 1. INSTALLING THE OPERATING SYSTEM
	Additional Resources

	CHAPTER 2. SETTING UP TO MANAGE APPLICATION VERSIONS
	Additional Resources

	CHAPTER 3. SETTING UP TO DEVELOP APPLICATIONS USING C AND C++
	Additional Resources

	CHAPTER 4. SETTING UP TO DEBUG APPLICATIONS
	Additional Resources

	CHAPTER 5. SETTING UP TO MEASURE PERFORMANCE OF APPLICATIONS
	Additional Resources

	CHAPTER 6. SETTING UP TO DEVELOP APPLICATIONS USING JAVA
	CHAPTER 7. SETTING UP TO DEVELOP APPLICATIONS USING PYTHON
	Python versions corresponding to Red Hat Software Collections packages
	Additional Resources

	CHAPTER 8. SETTING UP TO DEVELOP APPLICATIONS USING C# AND .NET CORE
	Additional Resources

	CHAPTER 9. SETTING UP TO DEVELOP CONTAINERIZED APPLICATIONS
	Additional Resources

	CHAPTER 10. SETTING UP TO DEVELOP WEB APPLICATIONS
	Additional Resources

	PART II. COLLABORATING ON APPLICATIONS WITH OTHER DEVELOPERS
	CHAPTER 11. USING GIT
	Installed Documentation
	Online Documentation

	PART III. MAKING AN APPLICATION AVAILABLE TO USERS
	CHAPTER 12. DISTRIBUTION OPTIONS
	RPM Packages
	Software Collections
	Containers
	Additional Resources

	CHAPTER 13. CREATING A CONTAINER WITH AN APPLICATION
	Prerequisites
	Procedure
	Additional Resources

	CHAPTER 14. CONTAINERIZING AN APPLICATION FROM PACKAGES
	Prerequisites
	Procedure
	Additional Information

	PART IV. CREATING C OR C++ APPLICATIONS
	CHAPTER 15. BUILDING CODE WITH GCC
	15.1. RELATIONSHIP BETWEEN CODE FORMS
	Prerequisites
	Possible Code Forms
	Handling of Code Forms in GCC
	Additional Resources

	15.2. COMPILING SOURCE FILES TO OBJECT CODE
	Prerequisites
	Procedure
	Additional Resources

	15.3. ENABLING DEBUGGING OF C AND C++ APPLICATIONS WITH GCC
	Enabling the Creation of Debugging Information with GCC
	Additional Resources

	15.4. CODE OPTIMIZATION WITH GCC
	Code Optimization with GCC
	Additional Resources

	15.5. HARDENING CODE WITH GCC
	Release Version Options
	Development Options
	Additional Resources

	15.6. LINKING CODE TO CREATE EXECUTABLE FILES
	Prerequisites
	Procedure
	Additional Resources

	15.7. C++ COMPATIBILITY OF VARIOUS RED HAT PRODUCTS
	Additional Resources

	15.8. EXAMPLE: BUILDING A C PROGRAM WITH GCC
	Prerequisites
	Steps
	Additional Resources

	15.9. EXAMPLE: BUILDING A C++ PROGRAM WITH GCC
	Prerequisites
	Procedure

	CHAPTER 16. USING LIBRARIES WITH GCC
	16.1. LIBRARY NAMING CONVENTIONS
	Additional Resources

	16.2. STATIC AND DYNAMIC LINKING
	Comparison of static and dynamic linking
	Reasons for static linking
	Additional Resources

	16.3. USING A LIBRARY WITH GCC
	Compiling Code That Uses a Library
	Linking Code That Uses a Library
	Compiling and Linking Code Which Uses a Library in One Step
	Additional Resources

	16.4. USING A STATIC LIBRARY WITH GCC
	Prerequisites
	Procedure

	16.5. USING A DYNAMIC LIBRARY WITH GCC
	Prerequisites
	Linking a Program Against a Dynamic Library
	Using an rpath Value Stored in the Executable File
	Using the LD_LIBRARY_PATH Environment Variable
	Placing the Library into the Default Directories

	16.6. USING BOTH STATIC AND DYNAMIC LIBRARIES WITH GCC
	Prerequisites
	Introduction
	Specifying the static libraries by file
	Using the -Wl option
	Additional Resources

	CHAPTER 17. CREATING LIBRARIES WITH GCC
	17.1. LIBRARY NAMING CONVENTIONS
	Additional Resources

	17.2. THE SONAME MECHANISM
	Prerequisites
	Problem Introduction
	The soname Mechanism
	Reading soname from a File

	17.3. CREATING DYNAMIC LIBRARIES WITH GCC
	Prerequisites
	Procedure
	Additional Resources

	17.4. CREATING STATIC LIBRARIES WITH GCC AND AR
	Prerequisites
	Procedure
	Additional Resources

	CHAPTER 18. MANAGING MORE CODE WITH MAKE
	18.1. GNU MAKE AND MAKEFILE OVERVIEW
	Prerequisites
	GNU make
	Makefile Details
	Typical Makefile

	Additional resources

	18.2. EXAMPLE: BUILDING A C PROGRAM USING A MAKEFILE
	Prerequisites
	Procedure
	Additional Resources

	18.3. DOCUMENTATION RESOURCES FOR MAKE
	Installed Documentation
	Online Documentation

	CHAPTER 19. USING THE ECLIPSE IDE FOR C AND C++ APPLICATION DEVELOPMENT
	Using Eclipse to Develop C and C++ Applications
	Additional Resources

	PART V. DEBUGGING APPLICATIONS
	CHAPTER 20. DEBUGGING A RUNNING APPLICATION
	20.1. ENABLING DEBUGGING WITH DEBUGGING INFORMATION
	20.1.1. Debugging Information
	Additional Resources

	20.1.2. Enabling Debugging of C and C++ Applications with GCC
	Enabling the Creation of Debugging Information with GCC
	Additional Resources

	20.1.3. Debuginfo Packages
	Prerequisites
	Debuginfo Packages

	20.1.4. Getting debuginfo Packages for an Application or Library using GDB
	Prerequisites
	Procedure
	Additional Resources

	20.1.5. Getting debuginfo Packages for an Application or Library Manually
	Prerequisites
	Procedure
	Additional Resources

	20.2. INSPECTING THE APPLICATION’S INTERNAL STATE WITH GDB
	20.2.1. GNU Debugger (GDB)
	GDB Capabilities
	Debugging Requirements

	20.2.2. Attaching GDB to a Process
	Prerequisites
	Starting a Program with GDB
	Attaching GDB to an Already Running Process
	Attaching an Already Running GDB to an Already Running Process
	Additional Resources

	20.2.3. Stepping through Program Code with GDB
	Prerequisites
	GDB Commands to Step Through the Code
	Additional Resources

	20.2.4. Showing Program Internal Values with GDB
	Prerequisites
	GDB Commands to Display the Internal State of a Program
	Additional Resources

	20.2.5. Using GDB Breakpoints to Stop Execution at Defined Code Locations
	Prerequisites
	Using Breakpoints in GDB
	Additional Resources

	20.2.6. Using GDB Watchpoints to Stop Execution on Data Access and Changes
	Prerequisites
	Using Watchpoints in GDB
	Additional Resources

	20.2.7. Debugging Forking or Threaded Programs with GDB
	Prerequisites
	Debugging Forked Programs with GDB
	Debugging Threaded Programs with GDB
	Additional Resources

	20.3. RECORDING APPLICATION INTERACTIONS
	20.3.1. Useful Tools for Recording Application Interactions
	Additional Resources

	20.3.2. Monitoring an Application’s System Calls with strace
	Prerequisites
	Procedure
	Notes
	Additional Resources

	20.3.3. Monitoring the Application’s Library Function Calls with ltrace
	Prerequisites
	Procedure
	Additional Resources

	20.3.4. Monitoring the Application’s System Calls with SystemTap
	Prerequisites
	Procedure
	Additional Resources

	20.3.5. Using GDB to Intercept Application System Calls
	Prerequisites
	Stopping Program Execution on System Calls with GDB

	20.3.6. Using GDB to Intercept the Handling of Signals by Applications
	Prerequisites
	Stopping the Program Execution on Receiving a Signal with GDB
	Additional Resources

	CHAPTER 21. DEBUGGING A CRASHED APPLICATION
	21.1. CORE DUMPS
	Prerequisites
	Description

	21.2. RECORDING APPLICATION CRASHES WITH CORE DUMPS
	Procedure
	Additional Resources

	21.3. INSPECTING APPLICATION CRASH STATES WITH CORE DUMPS
	Prerequisites
	Procedure
	Additional Resources

	21.4. DUMPING PROCESS MEMORY WITH GCORE
	Prerequisites
	Procedure
	Additional resources

	21.5. DUMPING PROTECTED PROCESS MEMORY WITH GDB
	Prerequisites
	Procedure
	Additional Resources

	PART VI. MONITORING PERFORMANCE
	CHAPTER 22. VALGRIND
	22.1. VALGRIND TOOLS
	22.2. USING VALGRIND
	22.3. ADDITIONAL INFORMATION

	CHAPTER 23. OPROFILE
	23.1. USING OPROFILE
	23.2. OPROFILE DOCUMENTATION

	CHAPTER 24. SYSTEMTAP
	24.1. ADDITIONAL INFORMATION

	CHAPTER 25. PERFORMANCE COUNTERS FOR LINUX (PCL) TOOLS AND PERF
	25.1. PERF TOOL COMMANDS
	25.2. USING PERF

	APPENDIX A. REVISION HISTORY

