Red Hat Enterprise Linux 7
SystemTap Tapset Reference

For SystemTap in Red Hat Enterprise Linux 7

		[image:]

	

		Red Hat Enterprise Linux Documentation
	
Vladimír Slávik
Red Hat Customer Content Services
vslavik@redhat.com
Robert Krátký
Red Hat Customer Content Services

William Cohen
Red Hat Software Engineering

Don Domingo
Red Hat Customer Content Services

Jacquelynn East
Red Hat Customer Content Services

Legal Notice

		This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation.
	

		This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
	

		You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
	

		For more details see the file COPYING in the source distribution of Linux.
	

Abstract

			The Tapset Reference Guide describes the most common tapset definitions users can apply to SystemTap scripts.
		

 ⁠Chapter 1. Introduction

		SystemTap provides free software (GPL) infrastructure to simplify the gathering of information about the running Linux system. This assists diagnosis of a performance or functional problem. SystemTap eliminates the need for the developer to go through the tedious and disruptive instrument, recompile, install, and reboot sequence that may be otherwise required to collect data.
	

		SystemTap provides a simple command line interface and scripting language for writing instrumentation for a live, running kernel. This instrumentation uses probe points and functions provided in the tapset library.
	

		Simply put, tapsets are scripts that encapsulate knowledge about a kernel subsystem into pre-written probes and functions that can be used by other scripts. Tapsets are analogous to libraries for C programs. They hide the underlying details of a kernel area while exposing the key information needed to manage and monitor that aspect of the kernel. They are typically developed by kernel subject-matter experts.
	

		A tapset exposes the high-level data and state transitions of a subsystem. For the most part, good tapset developers assume that SystemTap users know little to nothing about the kernel subsystem's low-level details. As such, tapset developers write tapsets that help ordinary SystemTap users write meaningful and useful SystemTap scripts.
	

 ⁠1.1. Documentation Goals

			This guide aims to document SystemTap's most useful and common tapset entries; it also contains guidelines on proper tapset development and documentation. The tapset definitions contained in this guide are extracted automatically from properly-formatted comments in the code of each tapset file. As such, any revisions to the definitions in this guide should be applied directly to their respective tapset file.
		

 ⁠Chapter 2. Tapset Development Guidelines

		This chapter describes the upstream guidelines on proper tapset documentation. It also contains information on how to properly document your tapsets, to ensure that they are properly defined in this guide.
	

 ⁠2.1. Writing Good Tapsets

			The first step to writing good tapsets is to create a simple model of your subject area. For example, a model of the process subsystem might include the following:
		
Key Data

					
							process ID
						

	
							parent process ID
						

	
							process group ID
						

			
State Transitions

					
							forked
						

	
							exec'd
						

	
							running
						

	
							stopped
						

	
							terminated
						

			
Note

				Both lists are examples, and are not meant to represent a complete list.
			

			Use your subsystem expertise to find probe points (function entries and exits) that expose the elements of the model, then define probe aliases for those points. Be aware that some state transitions can occur in more than one place. In those cases, an alias can place a probe in multiple locations.
		

			For example, process execs can occur in either the do_execve() or the compat_do_execve() functions. The following alias inserts probes at the beginning of those functions:
		

			

probe kprocess.exec = kernel.function("do_execve"),
kernel.function("compat_do_execve")
{probe body}

		

			Try to place probes on stable interfaces (i.e., functions that are unlikely to change at the interface level) whenever possible. This will make the tapset less likely to break due to kernel changes. Where kernel version or architecture dependencies are unavoidable, use preprocessor conditionals (see the stap(1) man page for details).
		

			Fill in the probe bodies with the key data available at the probe points. Function entry probes can access the entry parameters specified to the function, while exit probes can access the entry parameters and the return value. Convert the data into meaningful forms where appropriate (e.g., bytes to kilobytes, state values to strings, etc).
		

			You may need to use auxiliary functions to access or convert some of the data. Auxiliary functions often use embedded C to do things that cannot be done in the SystemTap language, like access structure fields in some contexts, follow linked lists, etc. You can use auxiliary functions defined in other tapsets or write your own.
		

			In the following example, copy_process() returns a pointer to the task_struct for the new process. Note that the process ID of the new process is retrieved by calling task_pid() and passing it the task_struct pointer. In this case, the auxiliary function is an embedded C function defined in task.stp.
		

			

probe kprocess.create = kernel.function("copy_process").return
{
 task = $return
 new_pid = task_pid(task)
}

		

			It is not advisable to write probes for every function. Most SystemTap users will not need or understand them. Keep your tapsets simple and high-level.
		

 ⁠2.2. Elements of a Tapset

			The following sections describe the most important aspects of writing a tapset. Most of the content herein is suitable for developers who wish to contribute to SystemTap's upstream library of tapsets.
		

 ⁠2.2.1. Tapset Files

				Tapset files are stored in src/tapset/ of the SystemTap GIT directory. Most tapset files are kept at that level. If you have code that only works with a specific architecture or kernel version, you may choose to put your tapset in the appropriate subdirectory.
			

				Installed tapsets are located in /usr/share/systemtap/tapset/ or /usr/local/share/systemtap/tapset.
			

				Personal tapsets can be stored anywhere. However, to ensure that SystemTap can use them, use -I tapset_directory to specify their location when invoking stap.
			

 ⁠2.2.2. Namespace

				Probe alias names should take the form tapset_name.probe_name. For example, the probe for sending a signal could be named signal.send.
			

				Global symbol names (probes, functions, and variables) should be unique accross all tapsets. This helps avoid namespace collisions in scripts that use multiple tapsets. To ensure this, use tapset-specific prefixes in your global symbols.
			

				Internal symbol names should be prefixed with an underscore (_).
			

 ⁠2.2.3. Comments and Documentation

				All probes and functions should include comment blocks that describe their purpose, the data they provide, and the context in which they run (e.g. interrupt, process, etc). Use comments in areas where your intent may not be clear from reading the code.
			

				Note that specially-formatted comments are automatically extracted from most tapsets and included in this guide. This helps ensure that tapset contributors can write their tapset and document it in the same place. The specified format for documenting tapsets is as follows:
			

				

/**
 * probe tapset.name - Short summary of what the tapset does.
 * @argument: Explanation of argument.
 * @argument2: Explanation of argument2. Probes can have multiple arguments.
 *
 * Context:
 * A brief explanation of the tapset context.
 * Note that the context should only be 1 paragraph short.
 *
 * Text that will appear under "Description."
 *
 * A new paragraph that will also appear under the heading "Description".
 *
 * Header:
 * A paragraph that will appear under the heading "Header".
 **/

			

				For example:
			

				

/**
 * probe vm.write_shared_copy- Page copy for shared page write.
 * @address: The address of the shared write.
 * @zero: Boolean indicating whether it is a zero page
 * (can do a clear instead of a copy).
 *
 * Context:
 * The process attempting the write.
 *
 * Fires when a write to a shared page requires a page copy. This is
 * always preceded by a vm.shared_write.
 **/

			

				To override the automatically-generated Synopsis content, use:
			

				

 * Synopsis:
 * New Synopsis string
 *

			

				For example:
			

				

/**
 * probe signal.handle - Fires when the signal handler is invoked
 * @sig: The signal number that invoked the signal handler
 *
 * Synopsis:
 * <programlisting>static int handle_signal(unsigned long sig, siginfo_t *info, struct k_sigaction *ka,
 * sigset_t *oldset, struct pt_regs * regs)</programlisting>
 */

			

				It is recommended that you use the <programlisting> tag in this instance, since overriding the Synopsis content of an entry does not automatically form the necessary tags.
			

				For the purposes of improving the DocBook XML output of your comments, you can also use the following XML tags in your comments:
			
	
						command
					

	
						emphasis
					

	
						programlisting
					

	
						remark (tagged strings will appear in Publican beta builds of the document)
					

 ⁠Chapter 3. Context Functions

			The context functions provide additional information about where an event occurred. These functions can provide information such as a backtrace to where the event occurred and the current register values for the processor.
		

 ⁠
Name
function::addr — Address of the current probe point.

 ⁠Synopsis

addr:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the instruction pointer from the current probe's register state. Not all probe types have registers though, in which case zero is returned. The returned address is suitable for use with functions like symname and symdata.
				

 ⁠
Name
function::asmlinkage — Mark function as declared asmlinkage

 ⁠Synopsis

asmlinkage()

 ⁠Arguments

					None
				

 ⁠Description

					Call this function before accessing arguments using the *_arg functions if the probed kernel function was declared asmlinkage in the source.
				

 ⁠
Name
function::backtrace — Hex backtrace of current kernel stack

 ⁠Synopsis

backtrace:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns a string of hex addresses that are a backtrace of the kernel stack. Output may be truncated as per maximum string length (MAXSTRINGLEN). See ubacktrace for user-space backtrace.
				

 ⁠
Name
function::caller — Return name and address of calling function

 ⁠Synopsis

caller:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the address and name of the calling function. This is equivalent to calling: sprintf(“s 0xx”, symname(caller_addr), caller_addr)
				

 ⁠
Name
function::caller_addr — Return caller address

 ⁠Synopsis

caller_addr:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the address of the calling function.
				

 ⁠
Name
function::callers — Return first n elements of kernel stack backtrace

 ⁠Synopsis

callers:string(n:long)

 ⁠Arguments
	n
	
								number of levels to descend in the stack (not counting the top level). If n is -1, print the entire stack.
							

 ⁠Description

					This function returns a string of the first n hex addresses from the backtrace of the kernel stack. Output may be truncated as per maximum string length (MAXSTRINGLEN).
				

 ⁠
Name
function::cmdline_arg — Fetch a command line argument

 ⁠Synopsis

cmdline_arg:string(n:long)

 ⁠Arguments
	n
	
								Argument to get (zero is the program itself)
							

 ⁠Description

					Returns argument the requested argument from the current process or the empty string when there are not that many arguments or there is a problem retrieving the argument. Argument zero is traditionally the command itself.
				

 ⁠
Name
function::cmdline_args — Fetch command line arguments from current process

 ⁠Synopsis

cmdline_args:string(n:long,m:long,delim:string)

 ⁠Arguments
	n
	
								First argument to get (zero is normally the program itself)
							

	m
	
								Last argument to get (or minus one for all arguments after n)
							

	delim
	
								String to use to separate arguments when more than one.
							

 ⁠Description

					Returns arguments from the current process starting with argument number n, up to argument m. If there are less than n arguments, or the arguments cannot be retrieved from the current process, the empty string is returned. If m is smaller than n then all arguments starting from argument n are returned. Argument zero is traditionally the command itself.
				

 ⁠
Name
function::cmdline_str — Fetch all command line arguments from current process

 ⁠Synopsis

cmdline_str:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns all arguments from the current process delimited by spaces. Returns the empty string when the arguments cannot be retrieved.
				

 ⁠
Name
function::cpu — Returns the current cpu number

 ⁠Synopsis

cpu:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the current cpu number.
				

 ⁠
Name
function::cpuid — Returns the current cpu number

 ⁠Synopsis

cpuid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the current cpu number. Deprecated in SystemTap 1.4 and removed in SystemTap 1.5.
				

 ⁠
Name
function::egid — Returns the effective gid of a target process

 ⁠Synopsis

egid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the effective gid of a target process
				

 ⁠
Name
function::env_var — Fetch environment variable from current process

 ⁠Synopsis

env_var:string(name:string)

 ⁠Arguments
	name
	
								Name of the environment variable to fetch
							

 ⁠Description

					Returns the contents of the specified environment value for the current process. If the variable isn't set an empty string is returned.
				

 ⁠
Name
function::euid — Return the effective uid of a target process

 ⁠Synopsis

euid:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the effective user ID of the target process.
				

 ⁠
Name
function::execname — Returns the execname of a target process (or group of processes)

 ⁠Synopsis

execname:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the execname of a target process (or group of processes).
				

 ⁠
Name
function::fastcall — Mark function as declared fastcall

 ⁠Synopsis

fastcall()

 ⁠Arguments

					None
				

 ⁠Description

					Call this function before accessing arguments using the *_arg functions if the probed kernel function was declared fastcall in the source.
				

 ⁠
Name
function::gid — Returns the group ID of a target process

 ⁠Synopsis

gid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the group ID of a target process.
				

 ⁠
Name
function::int_arg — Return function argument as signed int

 ⁠Synopsis

int_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the value of argument n as a signed int (i.e., a 32-bit integer sign-extended to 64 bits).
				

 ⁠
Name
function::is_myproc — Determines if the current probe point has occurred in the user's own process

 ⁠Synopsis

is_myproc:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns 1 if the current probe point has occurred in the user's own process.
				

 ⁠
Name
function::is_return — Whether the current probe context is a return probe

 ⁠Synopsis

is_return:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns 1 if the current probe context is a return probe, returns 0 otherwise.
				

 ⁠
Name
function::long_arg — Return function argument as signed long

 ⁠Synopsis

long_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the value of argument n as a signed long. On architectures where a long is 32 bits, the value is sign-extended to 64 bits.
				

 ⁠
Name
function::longlong_arg — Return function argument as 64-bit value

 ⁠Synopsis

longlong_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the value of argument n as a 64-bit value.
				

 ⁠
Name
function::modname — Return the kernel module name loaded at the address

 ⁠Synopsis

modname:string(addr:long)

 ⁠Arguments
	addr
	
								The address to map to a kernel module name
							

 ⁠Description

					Returns the module name associated with the given address if known. If not known it will raise an error. If the address was not in a kernel module, but in the kernel itself, then the string “kernel” will be returned.
				

 ⁠
Name
function::module_name — The module name of the current script

 ⁠Synopsis

module_name:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the name of the stap module. Either generated randomly (stap_[0-9a-f]+_[0-9a-f]+) or set by stap -m <module_name>.
				

 ⁠
Name
function::module_size — The module size of the current script

 ⁠Synopsis

module_size:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the sizes of various sections of the stap module.
				

 ⁠
Name
function::ns_egid — Returns the effective gid of a target process as seen in a user namespace

 ⁠Synopsis

ns_egid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the effective gid of a target process as seen in the target user namespace if provided, or the stap process namespace
				

 ⁠
Name
function::ns_euid — Returns the effective user ID of a target process as seen in a user namespace

 ⁠Synopsis

ns_euid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the effective user ID of the target process as seen in the target user namespace if provided, or the stap process namespace.
				

 ⁠
Name
function::ns_gid — Returns the group ID of a target process as seen in a user namespace

 ⁠Synopsis

ns_gid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the group ID of a target process as seen in the target user namespace if provided, or the stap process namespace.
				

 ⁠
Name
function::ns_pgrp — Returns the process group ID of the current process as seen in a pid namespace

 ⁠Synopsis

ns_pgrp:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the process group ID of the current process as seen in the target pid namespace if provided, or the stap process namespace.
				

 ⁠
Name
function::ns_pid — Returns the ID of a target process as seen in a pid namespace

 ⁠Synopsis

ns_pid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the ID of a target process as seen in the target pid namespace.
				

 ⁠
Name
function::ns_ppid — Returns the process ID of a target process's parent process as seen in a pid namespace

 ⁠Synopsis

ns_ppid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function return the process ID of the target proccess's parent process as seen in the target pid namespace if provided, or the stap process namespace.
				

 ⁠
Name
function::ns_sid — Returns the session ID of the current process as seen in a pid namespace

 ⁠Synopsis

ns_sid:long()

 ⁠Arguments

					None
				

 ⁠Description

					The namespace-aware session ID of a process is the process group ID of the session leader as seen in the target pid namespace if provided, or the stap process namespace. Session ID is stored in the signal_struct since Kernel 2.6.0.
				

 ⁠
Name
function::ns_tid — Returns the thread ID of a target process as seen in a pid namespace

 ⁠Synopsis

ns_tid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the thread ID of a target process as seen in the target pid namespace if provided, or the stap process namespace.
				

 ⁠
Name
function::ns_uid — Returns the user ID of a target process as seen in a user namespace

 ⁠Synopsis

ns_uid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the user ID of the target process as seen in the target user namespace if provided, or the stap process namespace.
				

 ⁠
Name
function::pexecname — Returns the execname of a target process's parent process

 ⁠Synopsis

pexecname:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the execname of a target process's parent procces.
				

 ⁠
Name
function::pgrp — Returns the process group ID of the current process

 ⁠Synopsis

pgrp:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the process group ID of the current process.
				

 ⁠
Name
function::pid — Returns the ID of a target process

 ⁠Synopsis

pid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the ID of a target process.
				

 ⁠
Name
function::pid2execname — The name of the given process identifier

 ⁠Synopsis

pid2execname:string(pid:long)

 ⁠Arguments
	pid
	
								process identifier
							

 ⁠Description

					Return the name of the given process id.
				

 ⁠
Name
function::pid2task — The task_struct of the given process identifier

 ⁠Synopsis

pid2task:long(pid:long)

 ⁠Arguments
	pid
	
								process identifier
							

 ⁠Description

					Return the task struct of the given process id.
				

 ⁠
Name
function::pn — Returns the active probe name

 ⁠Synopsis

pn:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the script-level probe point associated with a currently running probe handler, including wild-card expansion effects. Context: The current probe point.
				

 ⁠
Name
function::pnlabel — Returns the label name parsed from the probe name

 ⁠Synopsis

pnlabel:string()

 ⁠Arguments

					None
				

 ⁠Description

					This returns the label name as parsed from the script-level probe point. This function will only work if called directly from the body of a '.label' probe point (i.e. no aliases).
				

 ⁠Context

					The current probe point.
				

 ⁠
Name
function::pointer_arg — Return function argument as pointer value

 ⁠Synopsis

pointer_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the unsigned value of argument n, same as ulong_arg. Can be used with any type of pointer.
				

 ⁠
Name
function::pp — Returns the active probe point

 ⁠Synopsis

pp:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the fully-resolved probe point associated with a currently running probe handler, including alias and wild-card expansion effects. Context: The current probe point.
				

 ⁠
Name
function::ppfunc — Returns the function name parsed from pp

 ⁠Synopsis

ppfunc:string()

 ⁠Arguments

					None
				

 ⁠Description

					This returns the function name from the current pp. Not all pp have functions in them, in which case "" is returned.
				

 ⁠
Name
function::ppid — Returns the process ID of a target process's parent process

 ⁠Synopsis

ppid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function return the process ID of the target proccess's parent process.
				

 ⁠
Name
function::print_backtrace — Print kernel stack back trace

 ⁠Synopsis

print_backtrace()

 ⁠Arguments

					None
				

 ⁠Description

					This function is equivalent to print_stack(backtrace), except that deeper stack nesting may be supported. See print_ubacktrace for user-space backtrace. The function does not return a value.
				

 ⁠
Name
function::print_regs — Print a register dump

 ⁠Synopsis

print_regs()

 ⁠Arguments

					None
				

 ⁠Description

					This function prints a register dump. Does nothing if no registers are available for the probe point.
				

 ⁠
Name
function::print_stack — Print out kernel stack from string

 ⁠Synopsis

print_stack(stk:string)

 ⁠Arguments
	stk
	
								String with list of hexadecimal addresses
							

 ⁠Description

					This function performs a symbolic lookup of the addresses in the given string, which is assumed to be the result of a prior call to backtrace.
				

					Print one line per address, including the address, the name of the function containing the address, and an estimate of its position within that function. Return nothing.
				

 ⁠NOTE

					it is recommended to use print_syms instead of this function.
				

 ⁠
Name
function::print_syms — Print out kernel stack from string

 ⁠Synopsis

print_syms(callers:string)

 ⁠Arguments
	callers
	
								String with list of hexadecimal (kernel) addresses
							

 ⁠Description

					This function performs a symbolic lookup of the addresses in the given string, which are assumed to be the result of prior calls to stack, callers, and similar functions.
				

					Prints one line per address, including the address, the name of the function containing the address, and an estimate of its position within that function, as obtained by symdata. Returns nothing.
				

 ⁠
Name
function::print_ubacktrace — Print stack back trace for current user-space task.

 ⁠Synopsis

print_ubacktrace()

 ⁠Arguments

					None
				

 ⁠Description

					Equivalent to print_ustack(ubacktrace), except that deeper stack nesting may be supported. Returns nothing. See print_backtrace for kernel backtrace.
				

 ⁠Note

					To get (full) backtraces for user space applications and shared shared libraries not mentioned in the current script run stap with -d /path/to/exe-or-so and/or add --ldd to load all needed unwind data.
				

 ⁠
Name
function::print_ubacktrace_brief — Print stack back trace for current user-space task.

 ⁠Synopsis

print_ubacktrace_brief()

 ⁠Arguments

					None
				

 ⁠Description

					Equivalent to print_ubacktrace, but output for each symbol is shorter (just name and offset, or just the hex address of no symbol could be found).
				

 ⁠Note

					To get (full) backtraces for user space applications and shared shared libraries not mentioned in the current script run stap with -d /path/to/exe-or-so and/or add --ldd to load all needed unwind data.
				

 ⁠
Name
function::print_ustack — Print out stack for the current task from string.

 ⁠Synopsis

print_ustack(stk:string)

 ⁠Arguments
	stk
	
								String with list of hexadecimal addresses for the current task.
							

 ⁠Description

					Perform a symbolic lookup of the addresses in the given string, which is assumed to be the result of a prior call to ubacktrace for the current task.
				

					Print one line per address, including the address, the name of the function containing the address, and an estimate of its position within that function. Return nothing.
				

 ⁠NOTE

					it is recommended to use print_usyms instead of this function.
				

 ⁠
Name
function::print_usyms — Print out user stack from string

 ⁠Synopsis

print_usyms(callers:string)

 ⁠Arguments
	callers
	
								String with list of hexadecimal (user) addresses
							

 ⁠Description

					This function performs a symbolic lookup of the addresses in the given string, which are assumed to be the result of prior calls to ustack, ucallers, and similar functions.
				

					Prints one line per address, including the address, the name of the function containing the address, and an estimate of its position within that function, as obtained by usymdata. Returns nothing.
				

 ⁠
Name
function::probe_type — The low level probe handler type of the current probe.

 ⁠Synopsis

probe_type:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns a short string describing the low level probe handler type for the current probe point. This is for informational purposes only. Depending on the low level probe handler different context functions can or cannot provide information about the current event (for example some probe handlers only trigger in user space and have no associated kernel context). High-level probes might map to the same or different low-level probes (depending on systemtap version and/or kernel used).
				

 ⁠
Name
function::probefunc — Return the probe point's function name, if known

 ⁠Synopsis

probefunc:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the name of the function being probed based on the current address, as computed by symname(addr) or usymname(uaddr) depending on probe context (whether the probe is a user probe or a kernel probe).
				

 ⁠Please note

					this function's behaviour differs between SystemTap 2.0 and earlier versions. Prior to 2.0, probefunc obtained the function name from the probe point string as returned by pp, and used the current address as a fallback.
				

					Consider using ppfunc instead.
				

 ⁠
Name
function::probemod — Return the probe point's kernel module name

 ⁠Synopsis

probemod:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the name of the kernel module containing the probe point, if known.
				

 ⁠
Name
function::pstrace — Chain of processes and pids back to init(1)

 ⁠Synopsis

pstrace:string(task:long)

 ⁠Arguments
	task
	
								Pointer to task struct of process
							

 ⁠Description

					This function returns a string listing execname and pid for each process starting from task back to the process ancestor that init(1) spawned.
				

 ⁠
Name
function::register — Return the signed value of the named CPU register

 ⁠Synopsis

register:long(name:string)

 ⁠Arguments
	name
	
								Name of the register to return
							

 ⁠Description

					Return the value of the named CPU register, as it was saved when the current probe point was hit. If the register is 32 bits, it is sign-extended to 64 bits.
				

					For the i386 architecture, the following names are recognized. (name1/name2 indicates that name1 and name2 are alternative names for the same register.) eax/ax, ebp/bp, ebx/bx, ecx/cx, edi/di, edx/dx, eflags/flags, eip/ip, esi/si, esp/sp, orig_eax/orig_ax, xcs/cs, xds/ds, xes/es, xfs/fs, xss/ss.
				

					For the x86_64 architecture, the following names are recognized: 64-bit registers: r8, r9, r10, r11, r12, r13, r14, r15, rax/ax, rbp/bp, rbx/bx, rcx/cx, rdi/di, rdx/dx, rip/ip, rsi/si, rsp/sp; 32-bit registers: eax, ebp, ebx, ecx, edx, edi, edx, eip, esi, esp, flags/eflags, orig_eax; segment registers: xcs/cs, xss/ss.
				

					For powerpc, the following names are recognized: r0, r1, ... r31, nip, msr, orig_gpr3, ctr, link, xer, ccr, softe, trap, dar, dsisr, result.
				

					For s390x, the following names are recognized: r0, r1, ... r15, args, psw.mask, psw.addr, orig_gpr2, ilc, trap.
				

					For AArch64, the following names are recognized: x0, x1, ... x30, fp, lr, sp, pc, and orig_x0.
				

 ⁠
Name
function::registers_valid — Determines validity of register and u_register in current context

 ⁠Synopsis

registers_valid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns 1 if register and u_register can be used in the current context, or 0 otherwise. For example, registers_valid returns 0 when called from a begin or end probe.
				

 ⁠
Name
function::regparm — Specify regparm value used to compile function

 ⁠Synopsis

regparm(n:long)

 ⁠Arguments
	n
	
								original regparm value
							

 ⁠Description

					Call this function with argument n before accessing function arguments using the *_arg function is the function was build with the gcc -mregparm=n option.
				

					(The i386 kernel is built with \-mregparm=3, so systemtap considers regparm(3) the default for kernel functions on that architecture.) Only valid on i386 and x86_64 (when probing 32bit applications). Produces an error on other architectures.
				

 ⁠
Name
function::remote_id — The index of this instance in a remote execution.

 ⁠Synopsis

remote_id:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns a number 0..N, which is the unique index of this particular script execution from a swarm of “stap --remote A --remote B ...” runs, and is the same number “stap --remote-prefix” would print. The function returns -1 if the script was not launched with “stap --remote”, or if the remote staprun/stapsh are older than version 1.7.
				

 ⁠
Name
function::remote_uri — The name of this instance in a remote execution.

 ⁠Synopsis

remote_uri:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the remote host used to invoke this particular script execution from a swarm of “stap --remote” runs. It may not be unique among the swarm. The function returns an empty string if the script was not launched with “stap --remote”.
				

 ⁠
Name
function::s32_arg — Return function argument as signed 32-bit value

 ⁠Synopsis

s32_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the signed 32-bit value of argument n, same as int_arg.
				

 ⁠
Name
function::s64_arg — Return function argument as signed 64-bit value

 ⁠Synopsis

s64_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the signed 64-bit value of argument n, same as longlong_arg.
				

 ⁠
Name
function::sid — Returns the session ID of the current process

 ⁠Synopsis

sid:long()

 ⁠Arguments

					None
				

 ⁠Description

					The session ID of a process is the process group ID of the session leader. Session ID is stored in the signal_struct since Kernel 2.6.0.
				

 ⁠
Name
function::sprint_backtrace — Return stack back trace as string

 ⁠Synopsis

sprint_backtrace:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns a simple (kernel) backtrace. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found). Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_backtrace. Equivalent to sprint_stack(backtrace), but more efficient (no need to translate between hex strings and final backtrace string).
				

 ⁠
Name
function::sprint_stack — Return stack for kernel addresses from string

 ⁠Synopsis

sprint_stack:string(stk:string)

 ⁠Arguments
	stk
	
								String with list of hexadecimal (kernel) addresses
							

 ⁠Description

					Perform a symbolic lookup of the addresses in the given string, which is assumed to be the result of a prior call to backtrace.
				

					Returns a simple backtrace from the given hex string. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found). Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_stack.
				

 ⁠NOTE

					it is recommended to use sprint_syms instead of this function.
				

 ⁠
Name
function::sprint_syms — Return stack for kernel addresses from string

 ⁠Synopsis

sprint_syms(callers:string)

 ⁠Arguments
	callers
	
								String with list of hexadecimal (kernel) addresses
							

 ⁠Description

					Perform a symbolic lookup of the addresses in the given string, which are assumed to be the result of a prior calls to stack, callers, and similar functions.
				

					Returns a simple backtrace from the given hex string. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found), as obtained from symdata. Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_syms.
				

 ⁠
Name
function::sprint_ubacktrace — Return stack back trace for current user-space task as string.

 ⁠Synopsis

sprint_ubacktrace:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns a simple backtrace for the current task. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found). Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_ubacktrace. Equivalent to sprint_ustack(ubacktrace), but more efficient (no need to translate between hex strings and final backtrace string).
				

 ⁠Note

					To get (full) backtraces for user space applications and shared shared libraries not mentioned in the current script run stap with -d /path/to/exe-or-so and/or add --ldd to load all needed unwind data.
				

 ⁠
Name
function::sprint_ustack — Return stack for the current task from string.

 ⁠Synopsis

sprint_ustack:string(stk:string)

 ⁠Arguments
	stk
	
								String with list of hexadecimal addresses for the current task.
							

 ⁠Description

					Perform a symbolic lookup of the addresses in the given string, which is assumed to be the result of a prior call to ubacktrace for the current task.
				

					Returns a simple backtrace from the given hex string. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found). Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_ustack.
				

 ⁠NOTE

					it is recommended to use sprint_usyms instead of this function.
				

 ⁠
Name
function::sprint_usyms — Return stack for user addresses from string

 ⁠Synopsis

sprint_usyms(callers:string)

 ⁠Arguments
	callers
	
								String with list of hexadecimal (user) addresses
							

 ⁠Description

					Perform a symbolic lookup of the addresses in the given string, which are assumed to be the result of a prior calls to ustack, ucallers, and similar functions.
				

					Returns a simple backtrace from the given hex string. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found), as obtained from usymdata. Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_usyms.
				

 ⁠
Name
function::stack — Return address at given depth of kernel stack backtrace

 ⁠Synopsis

stack:long(n:long)

 ⁠Arguments
	n
	
								number of levels to descend in the stack.
							

 ⁠Description

					Performs a simple (kernel) backtrace, and returns the element at the specified position. The results of the backtrace itself are cached, so that the backtrace computation is performed at most once no matter how many times stack is called, or in what order.
				

 ⁠
Name
function::stack_size — Return the size of the kernel stack

 ⁠Synopsis

stack_size:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the size of the kernel stack.
				

 ⁠
Name
function::stack_unused — Returns the amount of kernel stack currently available

 ⁠Synopsis

stack_unused:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function determines how many bytes are currently available in the kernel stack.
				

 ⁠
Name
function::stack_used — Returns the amount of kernel stack used

 ⁠Synopsis

stack_used:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function determines how many bytes are currently used in the kernel stack.
				

 ⁠
Name
function::stp_pid — The process id of the stapio process

 ⁠Synopsis

stp_pid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the process id of the stapio process that launched this script. There could be other SystemTap scripts and stapio processes running on the system.
				

 ⁠
Name
function::symdata — Return the kernel symbol and module offset for the address

 ⁠Synopsis

symdata:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate
							

 ⁠Description

					Returns the (function) symbol name associated with the given address if known, the offset from the start and size of the symbol, plus module name (between brackets). If symbol is unknown, but module is known, the offset inside the module, plus the size of the module is added. If any element is not known it will be omitted and if the symbol name is unknown it will return the hex string for the given address.
				

 ⁠
Name
function::symfile — Return the file name of a given address.

 ⁠Synopsis

symfile:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the file name of the given address, if known. If the file name cannot be found, the hex string representation of the address will be returned.
				

 ⁠
Name
function::symfileline — Return the file name and line number of an address.

 ⁠Synopsis

symfileline:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the file name and the (approximate) line number of the given address, if known. If the file name or the line number cannot be found, the hex string representation of the address will be returned.
				

 ⁠
Name
function::symline — Return the line number of an address.

 ⁠Synopsis

symline:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the (approximate) line number of the given address, if known. If the line number cannot be found, the hex string representation of the address will be returned.
				

 ⁠
Name
function::symname — Return the kernel symbol associated with the given address

 ⁠Synopsis

symname:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate
							

 ⁠Description

					Returns the (function) symbol name associated with the given address if known. If not known it will return the hex string representation of addr.
				

 ⁠
Name
function::target — Return the process ID of the target process

 ⁠Synopsis

target:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the process ID of the target process. This is useful in conjunction with the -x PID or -c CMD command-line options to stap. An example of its use is to create scripts that filter on a specific process.
				

					-x <pid> target returns the pid specified by -x
				

					target returns the pid for the executed command specified by -c
				

 ⁠
Name
function::task_ancestry — The ancestry of the given task

 ⁠Synopsis

task_ancestry:string(task:long,with_time:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

	with_time
	
								set to 1 to also print the start time of processes (given as a delta from boot time)
							

 ⁠Description

					Return the ancestry of the given task in the form of “grandparent_process=>parent_process=>process”.
				

 ⁠
Name
function::task_backtrace — Hex backtrace of an arbitrary task

 ⁠Synopsis

task_backtrace:string(task:long)

 ⁠Arguments
	task
	
								pointer to task_struct
							

 ⁠Description

					This function returns a string of hex addresses that are a backtrace of the stack of a particular task Output may be truncated as per maximum string length. Deprecated in SystemTap 1.6.
				

 ⁠
Name
function::task_cpu — The scheduled cpu of the task

 ⁠Synopsis

task_cpu:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the scheduled cpu for the given task.
				

 ⁠
Name
function::task_current — The current task_struct of the current task

 ⁠Synopsis

task_current:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the task_struct representing the current process. This address can be passed to the various task_*() functions to extract more task-specific data.
				

 ⁠
Name
function::task_cwd_path — get the path struct pointer for a task's current working directory

 ⁠Synopsis

task_cwd_path:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠
Name
function::task_egid — The effective group identifier of the task

 ⁠Synopsis

task_egid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the effective group id of the given task.
				

 ⁠
Name
function::task_euid — The effective user identifier of the task

 ⁠Synopsis

task_euid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the effective user id of the given task.
				

 ⁠
Name
function::task_exe_file — get the file struct pointer for a task's executable file

 ⁠Synopsis

task_exe_file:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠
Name
function::task_execname — The name of the task

 ⁠Synopsis

task_execname:string(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					Return the name of the given task.
				

 ⁠
Name
function::task_fd_lookup — get the file struct for a task's fd

 ⁠Synopsis

task_fd_lookup:long(task:long,fd:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

	fd
	
								file descriptor number.
							

 ⁠Description

					Returns the file struct pointer for a task's file descriptor.
				

 ⁠
Name
function::task_gid — The group identifier of the task

 ⁠Synopsis

task_gid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the group id of the given task.
				

 ⁠
Name
function::task_max_file_handles — The max number of open files for the task

 ⁠Synopsis

task_max_file_handles:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the maximum number of file handlers for the given task.
				

 ⁠
Name
function::task_nice — The nice value of the task

 ⁠Synopsis

task_nice:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the nice value of the given task.
				

 ⁠
Name
function::task_ns_egid — The effective group identifier of the task

 ⁠Synopsis

task_ns_egid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the effective group id of the given task.
				

 ⁠
Name
function::task_ns_euid — The effective user identifier of the task

 ⁠Synopsis

task_ns_euid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the effective user id of the given task.
				

 ⁠
Name
function::task_ns_gid — The group identifier of the task as seen in a namespace

 ⁠Synopsis

task_ns_gid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the group id of the given task as seen in in the given user namespace.
				

 ⁠
Name
function::task_ns_pid — The process identifier of the task

 ⁠Synopsis

task_ns_pid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This fucntion returns the process id of the given task based on the specified pid namespace..
				

 ⁠
Name
function::task_ns_tid — The thread identifier of the task as seen in a namespace

 ⁠Synopsis

task_ns_tid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the thread id of the given task as seen in the pid namespace.
				

 ⁠
Name
function::task_ns_uid — The user identifier of the task

 ⁠Synopsis

task_ns_uid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the user id of the given task.
				

 ⁠
Name
function::task_open_file_handles — The number of open files of the task

 ⁠Synopsis

task_open_file_handles:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the number of open file handlers for the given task.
				

 ⁠
Name
function::task_parent — The task_struct of the parent task

 ⁠Synopsis

task_parent:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the parent task_struct of the given task. This address can be passed to the various task_*() functions to extract more task-specific data.
				

 ⁠
Name
function::task_pid — The process identifier of the task

 ⁠Synopsis

task_pid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This fucntion returns the process id of the given task.
				

 ⁠
Name
function::task_prio — The priority value of the task

 ⁠Synopsis

task_prio:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the priority value of the given task.
				

 ⁠
Name
function::task_state — The state of the task

 ⁠Synopsis

task_state:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					Return the state of the given task, one of: TASK_RUNNING (0), TASK_INTERRUPTIBLE (1), TASK_UNINTERRUPTIBLE (2), TASK_STOPPED (4), TASK_TRACED (8), EXIT_ZOMBIE (16), or EXIT_DEAD (32).
				

 ⁠
Name
function::task_tid — The thread identifier of the task

 ⁠Synopsis

task_tid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the thread id of the given task.
				

 ⁠
Name
function::task_uid — The user identifier of the task

 ⁠Synopsis

task_uid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the user id of the given task.
				

 ⁠
Name
function::tid — Returns the thread ID of a target process

 ⁠Synopsis

tid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the thread ID of the target process.
				

 ⁠
Name
function::u32_arg — Return function argument as unsigned 32-bit value

 ⁠Synopsis

u32_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the unsigned 32-bit value of argument n, same as uint_arg.
				

 ⁠
Name
function::u64_arg — Return function argument as unsigned 64-bit value

 ⁠Synopsis

u64_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the unsigned 64-bit value of argument n, same as ulonglong_arg.
				

 ⁠
Name
function::u_register — Return the unsigned value of the named CPU register

 ⁠Synopsis

u_register:long(name:string)

 ⁠Arguments
	name
	
								Name of the register to return
							

 ⁠Description

					Same as register(name), except that if the register is 32 bits wide, it is zero-extended to 64 bits.
				

 ⁠
Name
function::uaddr — User space address of current running task

 ⁠Synopsis

uaddr:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the address in userspace that the current task was at when the probe occurred. When the current running task isn't a user space thread, or the address cannot be found, zero is returned. Can be used to see where the current task is combined with usymname or usymdata. Often the task will be in the VDSO where it entered the kernel.
				

 ⁠
Name
function::ubacktrace — Hex backtrace of current user-space task stack.

 ⁠Synopsis

ubacktrace:string()

 ⁠Arguments

					None
				

 ⁠Description

					Return a string of hex addresses that are a backtrace of the stack of the current task. Output may be truncated as per maximum string length. Returns empty string when current probe point cannot determine user backtrace. See backtrace for kernel traceback.
				

 ⁠Note

					To get (full) backtraces for user space applications and shared shared libraries not mentioned in the current script run stap with -d /path/to/exe-or-so and/or add --ldd to load all needed unwind data.
				

 ⁠
Name
function::ucallers — Return first n elements of user stack backtrace

 ⁠Synopsis

ucallers:string(n:long)

 ⁠Arguments
	n
	
								number of levels to descend in the stack (not counting the top level). If n is -1, print the entire stack.
							

 ⁠Description

					This function returns a string of the first n hex addresses from the backtrace of the user stack. Output may be truncated as per maximum string length (MAXSTRINGLEN).
				

 ⁠Note

					To get (full) backtraces for user space applications and shared shared libraries not mentioned in the current script run stap with -d /path/to/exe-or-so and/or add --ldd to load all needed unwind data.
				

 ⁠
Name
function::uid — Returns the user ID of a target process

 ⁠Synopsis

uid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the user ID of the target process.
				

 ⁠
Name
function::uint_arg — Return function argument as unsigned int

 ⁠Synopsis

uint_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the value of argument n as an unsigned int (i.e., a 32-bit integer zero-extended to 64 bits).
				

 ⁠
Name
function::ulong_arg — Return function argument as unsigned long

 ⁠Synopsis

ulong_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the value of argument n as an unsigned long. On architectures where a long is 32 bits, the value is zero-extended to 64 bits.
				

 ⁠
Name
function::ulonglong_arg — Return function argument as 64-bit value

 ⁠Synopsis

ulonglong_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the value of argument n as a 64-bit value. (Same as longlong_arg.)
				

 ⁠
Name
function::umodname — Returns the (short) name of the user module.

 ⁠Synopsis

umodname:string(addr:long)

 ⁠Arguments
	addr
	
								User-space address
							

 ⁠Description

					Returns the short name of the user space module for the current task that that the given address is part of. Reports an error when the address isn't in a (mapped in) module, or the module cannot be found for some reason.
				

 ⁠
Name
function::user_mode — Determines if probe point occurs in user-mode

 ⁠Synopsis

user_mode:long()

 ⁠Arguments

					None
				

 ⁠Description

					Return 1 if the probe point occurred in user-mode.
				

 ⁠
Name
function::ustack — Return address at given depth of user stack backtrace

 ⁠Synopsis

ustack:long(n:long)

 ⁠Arguments
	n
	
								number of levels to descend in the stack.
							

 ⁠Description

					Performs a simple (user space) backtrace, and returns the element at the specified position. The results of the backtrace itself are cached, so that the backtrace computation is performed at most once no matter how many times ustack is called, or in what order.
				

 ⁠
Name
function::usymdata — Return the symbol and module offset of an address.

 ⁠Synopsis

usymdata:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the (function) symbol name associated with the given address in the current task if known, the offset from the start and the size of the symbol, plus the module name (between brackets). If symbol is unknown, but module is known, the offset inside the module, plus the size of the module is added. If any element is not known it will be omitted and if the symbol name is unknown it will return the hex string for the given address.
				

 ⁠
Name
function::usymfile — Return the file name of a given address.

 ⁠Synopsis

usymfile:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the file name of the given address, if known. If the file name cannot be found, the hex string representation of the address will be returned.
				

 ⁠
Name
function::usymfileline — Return the file name and line number of an address.

 ⁠Synopsis

usymfileline:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the file name and the (approximate) line number of the given address, if known. If the file name or the line number cannot be found, the hex string representation of the address will be returned.
				

 ⁠
Name
function::usymline — Return the line number of an address.

 ⁠Synopsis

usymline:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the (approximate) line number of the given address, if known. If the line number cannot be found, the hex string representation of the address will be returned.
				

 ⁠
Name
function::usymname — Return the symbol of an address in the current task.

 ⁠Synopsis

usymname:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the (function) symbol name associated with the given address if known. If not known it will return the hex string representation of addr.
				

 ⁠
Name
function::addr — Address of the current probe point.

 ⁠Synopsis

addr:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the instruction pointer from the current probe's register state. Not all probe types have registers though, in which case zero is returned. The returned address is suitable for use with functions like symname and symdata.
				

 ⁠
Name
function::asmlinkage — Mark function as declared asmlinkage

 ⁠Synopsis

asmlinkage()

 ⁠Arguments

					None
				

 ⁠Description

					Call this function before accessing arguments using the *_arg functions if the probed kernel function was declared asmlinkage in the source.
				

 ⁠
Name
function::backtrace — Hex backtrace of current kernel stack

 ⁠Synopsis

backtrace:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns a string of hex addresses that are a backtrace of the kernel stack. Output may be truncated as per maximum string length (MAXSTRINGLEN). See ubacktrace for user-space backtrace.
				

 ⁠
Name
function::caller — Return name and address of calling function

 ⁠Synopsis

caller:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the address and name of the calling function. This is equivalent to calling: sprintf(“s 0xx”, symname(caller_addr), caller_addr)
				

 ⁠
Name
function::caller_addr — Return caller address

 ⁠Synopsis

caller_addr:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the address of the calling function.
				

 ⁠
Name
function::callers — Return first n elements of kernel stack backtrace

 ⁠Synopsis

callers:string(n:long)

 ⁠Arguments
	n
	
								number of levels to descend in the stack (not counting the top level). If n is -1, print the entire stack.
							

 ⁠Description

					This function returns a string of the first n hex addresses from the backtrace of the kernel stack. Output may be truncated as per maximum string length (MAXSTRINGLEN).
				

 ⁠
Name
function::cmdline_arg — Fetch a command line argument

 ⁠Synopsis

cmdline_arg:string(n:long)

 ⁠Arguments
	n
	
								Argument to get (zero is the program itself)
							

 ⁠Description

					Returns argument the requested argument from the current process or the empty string when there are not that many arguments or there is a problem retrieving the argument. Argument zero is traditionally the command itself.
				

 ⁠
Name
function::cmdline_args — Fetch command line arguments from current process

 ⁠Synopsis

cmdline_args:string(n:long,m:long,delim:string)

 ⁠Arguments
	n
	
								First argument to get (zero is normally the program itself)
							

	m
	
								Last argument to get (or minus one for all arguments after n)
							

	delim
	
								String to use to separate arguments when more than one.
							

 ⁠Description

					Returns arguments from the current process starting with argument number n, up to argument m. If there are less than n arguments, or the arguments cannot be retrieved from the current process, the empty string is returned. If m is smaller than n then all arguments starting from argument n are returned. Argument zero is traditionally the command itself.
				

 ⁠
Name
function::cmdline_str — Fetch all command line arguments from current process

 ⁠Synopsis

cmdline_str:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns all arguments from the current process delimited by spaces. Returns the empty string when the arguments cannot be retrieved.
				

 ⁠
Name
function::cpu — Returns the current cpu number

 ⁠Synopsis

cpu:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the current cpu number.
				

 ⁠
Name
function::cpuid — Returns the current cpu number

 ⁠Synopsis

cpuid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the current cpu number. Deprecated in SystemTap 1.4 and removed in SystemTap 1.5.
				

 ⁠
Name
function::egid — Returns the effective gid of a target process

 ⁠Synopsis

egid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the effective gid of a target process
				

 ⁠
Name
function::env_var — Fetch environment variable from current process

 ⁠Synopsis

env_var:string(name:string)

 ⁠Arguments
	name
	
								Name of the environment variable to fetch
							

 ⁠Description

					Returns the contents of the specified environment value for the current process. If the variable isn't set an empty string is returned.
				

 ⁠
Name
function::euid — Return the effective uid of a target process

 ⁠Synopsis

euid:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the effective user ID of the target process.
				

 ⁠
Name
function::execname — Returns the execname of a target process (or group of processes)

 ⁠Synopsis

execname:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the execname of a target process (or group of processes).
				

 ⁠
Name
function::fastcall — Mark function as declared fastcall

 ⁠Synopsis

fastcall()

 ⁠Arguments

					None
				

 ⁠Description

					Call this function before accessing arguments using the *_arg functions if the probed kernel function was declared fastcall in the source.
				

 ⁠
Name
function::gid — Returns the group ID of a target process

 ⁠Synopsis

gid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the group ID of a target process.
				

 ⁠
Name
function::int_arg — Return function argument as signed int

 ⁠Synopsis

int_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the value of argument n as a signed int (i.e., a 32-bit integer sign-extended to 64 bits).
				

 ⁠
Name
function::is_myproc — Determines if the current probe point has occurred in the user's own process

 ⁠Synopsis

is_myproc:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns 1 if the current probe point has occurred in the user's own process.
				

 ⁠
Name
function::is_return — Whether the current probe context is a return probe

 ⁠Synopsis

is_return:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns 1 if the current probe context is a return probe, returns 0 otherwise.
				

 ⁠
Name
function::long_arg — Return function argument as signed long

 ⁠Synopsis

long_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the value of argument n as a signed long. On architectures where a long is 32 bits, the value is sign-extended to 64 bits.
				

 ⁠
Name
function::longlong_arg — Return function argument as 64-bit value

 ⁠Synopsis

longlong_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the value of argument n as a 64-bit value.
				

 ⁠
Name
function::modname — Return the kernel module name loaded at the address

 ⁠Synopsis

modname:string(addr:long)

 ⁠Arguments
	addr
	
								The address to map to a kernel module name
							

 ⁠Description

					Returns the module name associated with the given address if known. If not known it will raise an error. If the address was not in a kernel module, but in the kernel itself, then the string “kernel” will be returned.
				

 ⁠
Name
function::module_name — The module name of the current script

 ⁠Synopsis

module_name:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the name of the stap module. Either generated randomly (stap_[0-9a-f]+_[0-9a-f]+) or set by stap -m <module_name>.
				

 ⁠
Name
function::module_size — The module size of the current script

 ⁠Synopsis

module_size:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the sizes of various sections of the stap module.
				

 ⁠
Name
function::ns_egid — Returns the effective gid of a target process as seen in a user namespace

 ⁠Synopsis

ns_egid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the effective gid of a target process as seen in the target user namespace if provided, or the stap process namespace
				

 ⁠
Name
function::ns_euid — Returns the effective user ID of a target process as seen in a user namespace

 ⁠Synopsis

ns_euid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the effective user ID of the target process as seen in the target user namespace if provided, or the stap process namespace.
				

 ⁠
Name
function::ns_gid — Returns the group ID of a target process as seen in a user namespace

 ⁠Synopsis

ns_gid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the group ID of a target process as seen in the target user namespace if provided, or the stap process namespace.
				

 ⁠
Name
function::ns_pgrp — Returns the process group ID of the current process as seen in a pid namespace

 ⁠Synopsis

ns_pgrp:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the process group ID of the current process as seen in the target pid namespace if provided, or the stap process namespace.
				

 ⁠
Name
function::ns_pid — Returns the ID of a target process as seen in a pid namespace

 ⁠Synopsis

ns_pid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the ID of a target process as seen in the target pid namespace.
				

 ⁠
Name
function::ns_ppid — Returns the process ID of a target process's parent process as seen in a pid namespace

 ⁠Synopsis

ns_ppid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function return the process ID of the target proccess's parent process as seen in the target pid namespace if provided, or the stap process namespace.
				

 ⁠
Name
function::ns_sid — Returns the session ID of the current process as seen in a pid namespace

 ⁠Synopsis

ns_sid:long()

 ⁠Arguments

					None
				

 ⁠Description

					The namespace-aware session ID of a process is the process group ID of the session leader as seen in the target pid namespace if provided, or the stap process namespace. Session ID is stored in the signal_struct since Kernel 2.6.0.
				

 ⁠
Name
function::ns_tid — Returns the thread ID of a target process as seen in a pid namespace

 ⁠Synopsis

ns_tid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the thread ID of a target process as seen in the target pid namespace if provided, or the stap process namespace.
				

 ⁠
Name
function::ns_uid — Returns the user ID of a target process as seen in a user namespace

 ⁠Synopsis

ns_uid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the user ID of the target process as seen in the target user namespace if provided, or the stap process namespace.
				

 ⁠
Name
function::pexecname — Returns the execname of a target process's parent process

 ⁠Synopsis

pexecname:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the execname of a target process's parent procces.
				

 ⁠
Name
function::pgrp — Returns the process group ID of the current process

 ⁠Synopsis

pgrp:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the process group ID of the current process.
				

 ⁠
Name
function::pid — Returns the ID of a target process

 ⁠Synopsis

pid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the ID of a target process.
				

 ⁠
Name
function::pid2execname — The name of the given process identifier

 ⁠Synopsis

pid2execname:string(pid:long)

 ⁠Arguments
	pid
	
								process identifier
							

 ⁠Description

					Return the name of the given process id.
				

 ⁠
Name
function::pid2task — The task_struct of the given process identifier

 ⁠Synopsis

pid2task:long(pid:long)

 ⁠Arguments
	pid
	
								process identifier
							

 ⁠Description

					Return the task struct of the given process id.
				

 ⁠
Name
function::pn — Returns the active probe name

 ⁠Synopsis

pn:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the script-level probe point associated with a currently running probe handler, including wild-card expansion effects. Context: The current probe point.
				

 ⁠
Name
function::pnlabel — Returns the label name parsed from the probe name

 ⁠Synopsis

pnlabel:string()

 ⁠Arguments

					None
				

 ⁠Description

					This returns the label name as parsed from the script-level probe point. This function will only work if called directly from the body of a '.label' probe point (i.e. no aliases).
				

 ⁠Context

					The current probe point.
				

 ⁠
Name
function::pointer_arg — Return function argument as pointer value

 ⁠Synopsis

pointer_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the unsigned value of argument n, same as ulong_arg. Can be used with any type of pointer.
				

 ⁠
Name
function::pp — Returns the active probe point

 ⁠Synopsis

pp:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the fully-resolved probe point associated with a currently running probe handler, including alias and wild-card expansion effects. Context: The current probe point.
				

 ⁠
Name
function::ppfunc — Returns the function name parsed from pp

 ⁠Synopsis

ppfunc:string()

 ⁠Arguments

					None
				

 ⁠Description

					This returns the function name from the current pp. Not all pp have functions in them, in which case "" is returned.
				

 ⁠
Name
function::ppid — Returns the process ID of a target process's parent process

 ⁠Synopsis

ppid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function return the process ID of the target proccess's parent process.
				

 ⁠
Name
function::print_backtrace — Print kernel stack back trace

 ⁠Synopsis

print_backtrace()

 ⁠Arguments

					None
				

 ⁠Description

					This function is equivalent to print_stack(backtrace), except that deeper stack nesting may be supported. See print_ubacktrace for user-space backtrace. The function does not return a value.
				

 ⁠
Name
function::print_regs — Print a register dump

 ⁠Synopsis

print_regs()

 ⁠Arguments

					None
				

 ⁠Description

					This function prints a register dump. Does nothing if no registers are available for the probe point.
				

 ⁠
Name
function::print_stack — Print out kernel stack from string

 ⁠Synopsis

print_stack(stk:string)

 ⁠Arguments
	stk
	
								String with list of hexadecimal addresses
							

 ⁠Description

					This function performs a symbolic lookup of the addresses in the given string, which is assumed to be the result of a prior call to backtrace.
				

					Print one line per address, including the address, the name of the function containing the address, and an estimate of its position within that function. Return nothing.
				

 ⁠NOTE

					it is recommended to use print_syms instead of this function.
				

 ⁠
Name
function::print_syms — Print out kernel stack from string

 ⁠Synopsis

print_syms(callers:string)

 ⁠Arguments
	callers
	
								String with list of hexadecimal (kernel) addresses
							

 ⁠Description

					This function performs a symbolic lookup of the addresses in the given string, which are assumed to be the result of prior calls to stack, callers, and similar functions.
				

					Prints one line per address, including the address, the name of the function containing the address, and an estimate of its position within that function, as obtained by symdata. Returns nothing.
				

 ⁠
Name
function::print_ubacktrace — Print stack back trace for current user-space task.

 ⁠Synopsis

print_ubacktrace()

 ⁠Arguments

					None
				

 ⁠Description

					Equivalent to print_ustack(ubacktrace), except that deeper stack nesting may be supported. Returns nothing. See print_backtrace for kernel backtrace.
				

 ⁠Note

					To get (full) backtraces for user space applications and shared shared libraries not mentioned in the current script run stap with -d /path/to/exe-or-so and/or add --ldd to load all needed unwind data.
				

 ⁠
Name
function::print_ubacktrace_brief — Print stack back trace for current user-space task.

 ⁠Synopsis

print_ubacktrace_brief()

 ⁠Arguments

					None
				

 ⁠Description

					Equivalent to print_ubacktrace, but output for each symbol is shorter (just name and offset, or just the hex address of no symbol could be found).
				

 ⁠Note

					To get (full) backtraces for user space applications and shared shared libraries not mentioned in the current script run stap with -d /path/to/exe-or-so and/or add --ldd to load all needed unwind data.
				

 ⁠
Name
function::print_ustack — Print out stack for the current task from string.

 ⁠Synopsis

print_ustack(stk:string)

 ⁠Arguments
	stk
	
								String with list of hexadecimal addresses for the current task.
							

 ⁠Description

					Perform a symbolic lookup of the addresses in the given string, which is assumed to be the result of a prior call to ubacktrace for the current task.
				

					Print one line per address, including the address, the name of the function containing the address, and an estimate of its position within that function. Return nothing.
				

 ⁠NOTE

					it is recommended to use print_usyms instead of this function.
				

 ⁠
Name
function::print_usyms — Print out user stack from string

 ⁠Synopsis

print_usyms(callers:string)

 ⁠Arguments
	callers
	
								String with list of hexadecimal (user) addresses
							

 ⁠Description

					This function performs a symbolic lookup of the addresses in the given string, which are assumed to be the result of prior calls to ustack, ucallers, and similar functions.
				

					Prints one line per address, including the address, the name of the function containing the address, and an estimate of its position within that function, as obtained by usymdata. Returns nothing.
				

 ⁠
Name
function::probe_type — The low level probe handler type of the current probe.

 ⁠Synopsis

probe_type:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns a short string describing the low level probe handler type for the current probe point. This is for informational purposes only. Depending on the low level probe handler different context functions can or cannot provide information about the current event (for example some probe handlers only trigger in user space and have no associated kernel context). High-level probes might map to the same or different low-level probes (depending on systemtap version and/or kernel used).
				

 ⁠
Name
function::probefunc — Return the probe point's function name, if known

 ⁠Synopsis

probefunc:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the name of the function being probed based on the current address, as computed by symname(addr) or usymname(uaddr) depending on probe context (whether the probe is a user probe or a kernel probe).
				

 ⁠Please note

					this function's behaviour differs between SystemTap 2.0 and earlier versions. Prior to 2.0, probefunc obtained the function name from the probe point string as returned by pp, and used the current address as a fallback.
				

					Consider using ppfunc instead.
				

 ⁠
Name
function::probemod — Return the probe point's kernel module name

 ⁠Synopsis

probemod:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the name of the kernel module containing the probe point, if known.
				

 ⁠
Name
function::pstrace — Chain of processes and pids back to init(1)

 ⁠Synopsis

pstrace:string(task:long)

 ⁠Arguments
	task
	
								Pointer to task struct of process
							

 ⁠Description

					This function returns a string listing execname and pid for each process starting from task back to the process ancestor that init(1) spawned.
				

 ⁠
Name
function::register — Return the signed value of the named CPU register

 ⁠Synopsis

register:long(name:string)

 ⁠Arguments
	name
	
								Name of the register to return
							

 ⁠Description

					Return the value of the named CPU register, as it was saved when the current probe point was hit. If the register is 32 bits, it is sign-extended to 64 bits.
				

					For the i386 architecture, the following names are recognized. (name1/name2 indicates that name1 and name2 are alternative names for the same register.) eax/ax, ebp/bp, ebx/bx, ecx/cx, edi/di, edx/dx, eflags/flags, eip/ip, esi/si, esp/sp, orig_eax/orig_ax, xcs/cs, xds/ds, xes/es, xfs/fs, xss/ss.
				

					For the x86_64 architecture, the following names are recognized: 64-bit registers: r8, r9, r10, r11, r12, r13, r14, r15, rax/ax, rbp/bp, rbx/bx, rcx/cx, rdi/di, rdx/dx, rip/ip, rsi/si, rsp/sp; 32-bit registers: eax, ebp, ebx, ecx, edx, edi, edx, eip, esi, esp, flags/eflags, orig_eax; segment registers: xcs/cs, xss/ss.
				

					For powerpc, the following names are recognized: r0, r1, ... r31, nip, msr, orig_gpr3, ctr, link, xer, ccr, softe, trap, dar, dsisr, result.
				

					For s390x, the following names are recognized: r0, r1, ... r15, args, psw.mask, psw.addr, orig_gpr2, ilc, trap.
				

					For AArch64, the following names are recognized: x0, x1, ... x30, fp, lr, sp, pc, and orig_x0.
				

 ⁠
Name
function::registers_valid — Determines validity of register and u_register in current context

 ⁠Synopsis

registers_valid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns 1 if register and u_register can be used in the current context, or 0 otherwise. For example, registers_valid returns 0 when called from a begin or end probe.
				

 ⁠
Name
function::regparm — Specify regparm value used to compile function

 ⁠Synopsis

regparm(n:long)

 ⁠Arguments
	n
	
								original regparm value
							

 ⁠Description

					Call this function with argument n before accessing function arguments using the *_arg function is the function was build with the gcc -mregparm=n option.
				

					(The i386 kernel is built with \-mregparm=3, so systemtap considers regparm(3) the default for kernel functions on that architecture.) Only valid on i386 and x86_64 (when probing 32bit applications). Produces an error on other architectures.
				

 ⁠
Name
function::remote_id — The index of this instance in a remote execution.

 ⁠Synopsis

remote_id:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns a number 0..N, which is the unique index of this particular script execution from a swarm of “stap --remote A --remote B ...” runs, and is the same number “stap --remote-prefix” would print. The function returns -1 if the script was not launched with “stap --remote”, or if the remote staprun/stapsh are older than version 1.7.
				

 ⁠
Name
function::remote_uri — The name of this instance in a remote execution.

 ⁠Synopsis

remote_uri:string()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the remote host used to invoke this particular script execution from a swarm of “stap --remote” runs. It may not be unique among the swarm. The function returns an empty string if the script was not launched with “stap --remote”.
				

 ⁠
Name
function::s32_arg — Return function argument as signed 32-bit value

 ⁠Synopsis

s32_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the signed 32-bit value of argument n, same as int_arg.
				

 ⁠
Name
function::s64_arg — Return function argument as signed 64-bit value

 ⁠Synopsis

s64_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the signed 64-bit value of argument n, same as longlong_arg.
				

 ⁠
Name
function::sid — Returns the session ID of the current process

 ⁠Synopsis

sid:long()

 ⁠Arguments

					None
				

 ⁠Description

					The session ID of a process is the process group ID of the session leader. Session ID is stored in the signal_struct since Kernel 2.6.0.
				

 ⁠
Name
function::sprint_backtrace — Return stack back trace as string

 ⁠Synopsis

sprint_backtrace:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns a simple (kernel) backtrace. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found). Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_backtrace. Equivalent to sprint_stack(backtrace), but more efficient (no need to translate between hex strings and final backtrace string).
				

 ⁠
Name
function::sprint_stack — Return stack for kernel addresses from string

 ⁠Synopsis

sprint_stack:string(stk:string)

 ⁠Arguments
	stk
	
								String with list of hexadecimal (kernel) addresses
							

 ⁠Description

					Perform a symbolic lookup of the addresses in the given string, which is assumed to be the result of a prior call to backtrace.
				

					Returns a simple backtrace from the given hex string. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found). Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_stack.
				

 ⁠NOTE

					it is recommended to use sprint_syms instead of this function.
				

 ⁠
Name
function::sprint_syms — Return stack for kernel addresses from string

 ⁠Synopsis

sprint_syms(callers:string)

 ⁠Arguments
	callers
	
								String with list of hexadecimal (kernel) addresses
							

 ⁠Description

					Perform a symbolic lookup of the addresses in the given string, which are assumed to be the result of a prior calls to stack, callers, and similar functions.
				

					Returns a simple backtrace from the given hex string. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found), as obtained from symdata. Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_syms.
				

 ⁠
Name
function::sprint_ubacktrace — Return stack back trace for current user-space task as string.

 ⁠Synopsis

sprint_ubacktrace:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns a simple backtrace for the current task. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found). Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_ubacktrace. Equivalent to sprint_ustack(ubacktrace), but more efficient (no need to translate between hex strings and final backtrace string).
				

 ⁠Note

					To get (full) backtraces for user space applications and shared shared libraries not mentioned in the current script run stap with -d /path/to/exe-or-so and/or add --ldd to load all needed unwind data.
				

 ⁠
Name
function::sprint_ustack — Return stack for the current task from string.

 ⁠Synopsis

sprint_ustack:string(stk:string)

 ⁠Arguments
	stk
	
								String with list of hexadecimal addresses for the current task.
							

 ⁠Description

					Perform a symbolic lookup of the addresses in the given string, which is assumed to be the result of a prior call to ubacktrace for the current task.
				

					Returns a simple backtrace from the given hex string. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found). Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_ustack.
				

 ⁠NOTE

					it is recommended to use sprint_usyms instead of this function.
				

 ⁠
Name
function::sprint_usyms — Return stack for user addresses from string

 ⁠Synopsis

sprint_usyms(callers:string)

 ⁠Arguments
	callers
	
								String with list of hexadecimal (user) addresses
							

 ⁠Description

					Perform a symbolic lookup of the addresses in the given string, which are assumed to be the result of a prior calls to ustack, ucallers, and similar functions.
				

					Returns a simple backtrace from the given hex string. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found), as obtained from usymdata. Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_usyms.
				

 ⁠
Name
function::stack — Return address at given depth of kernel stack backtrace

 ⁠Synopsis

stack:long(n:long)

 ⁠Arguments
	n
	
								number of levels to descend in the stack.
							

 ⁠Description

					Performs a simple (kernel) backtrace, and returns the element at the specified position. The results of the backtrace itself are cached, so that the backtrace computation is performed at most once no matter how many times stack is called, or in what order.
				

 ⁠
Name
function::stack_size — Return the size of the kernel stack

 ⁠Synopsis

stack_size:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the size of the kernel stack.
				

 ⁠
Name
function::stack_unused — Returns the amount of kernel stack currently available

 ⁠Synopsis

stack_unused:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function determines how many bytes are currently available in the kernel stack.
				

 ⁠
Name
function::stack_used — Returns the amount of kernel stack used

 ⁠Synopsis

stack_used:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function determines how many bytes are currently used in the kernel stack.
				

 ⁠
Name
function::stp_pid — The process id of the stapio process

 ⁠Synopsis

stp_pid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the process id of the stapio process that launched this script. There could be other SystemTap scripts and stapio processes running on the system.
				

 ⁠
Name
function::symdata — Return the kernel symbol and module offset for the address

 ⁠Synopsis

symdata:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate
							

 ⁠Description

					Returns the (function) symbol name associated with the given address if known, the offset from the start and size of the symbol, plus module name (between brackets). If symbol is unknown, but module is known, the offset inside the module, plus the size of the module is added. If any element is not known it will be omitted and if the symbol name is unknown it will return the hex string for the given address.
				

 ⁠
Name
function::symfile — Return the file name of a given address.

 ⁠Synopsis

symfile:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the file name of the given address, if known. If the file name cannot be found, the hex string representation of the address will be returned.
				

 ⁠
Name
function::symfileline — Return the file name and line number of an address.

 ⁠Synopsis

symfileline:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the file name and the (approximate) line number of the given address, if known. If the file name or the line number cannot be found, the hex string representation of the address will be returned.
				

 ⁠
Name
function::symline — Return the line number of an address.

 ⁠Synopsis

symline:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the (approximate) line number of the given address, if known. If the line number cannot be found, the hex string representation of the address will be returned.
				

 ⁠
Name
function::symname — Return the kernel symbol associated with the given address

 ⁠Synopsis

symname:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate
							

 ⁠Description

					Returns the (function) symbol name associated with the given address if known. If not known it will return the hex string representation of addr.
				

 ⁠
Name
function::target — Return the process ID of the target process

 ⁠Synopsis

target:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the process ID of the target process. This is useful in conjunction with the -x PID or -c CMD command-line options to stap. An example of its use is to create scripts that filter on a specific process.
				

					-x <pid> target returns the pid specified by -x
				

					target returns the pid for the executed command specified by -c
				

 ⁠
Name
function::task_ancestry — The ancestry of the given task

 ⁠Synopsis

task_ancestry:string(task:long,with_time:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

	with_time
	
								set to 1 to also print the start time of processes (given as a delta from boot time)
							

 ⁠Description

					Return the ancestry of the given task in the form of “grandparent_process=>parent_process=>process”.
				

 ⁠
Name
function::task_backtrace — Hex backtrace of an arbitrary task

 ⁠Synopsis

task_backtrace:string(task:long)

 ⁠Arguments
	task
	
								pointer to task_struct
							

 ⁠Description

					This function returns a string of hex addresses that are a backtrace of the stack of a particular task Output may be truncated as per maximum string length. Deprecated in SystemTap 1.6.
				

 ⁠
Name
function::task_cpu — The scheduled cpu of the task

 ⁠Synopsis

task_cpu:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the scheduled cpu for the given task.
				

 ⁠
Name
function::task_current — The current task_struct of the current task

 ⁠Synopsis

task_current:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the task_struct representing the current process. This address can be passed to the various task_*() functions to extract more task-specific data.
				

 ⁠
Name
function::task_cwd_path — get the path struct pointer for a task's current working directory

 ⁠Synopsis

task_cwd_path:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠
Name
function::task_egid — The effective group identifier of the task

 ⁠Synopsis

task_egid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the effective group id of the given task.
				

 ⁠
Name
function::task_euid — The effective user identifier of the task

 ⁠Synopsis

task_euid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the effective user id of the given task.
				

 ⁠
Name
function::task_exe_file — get the file struct pointer for a task's executable file

 ⁠Synopsis

task_exe_file:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠
Name
function::task_execname — The name of the task

 ⁠Synopsis

task_execname:string(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					Return the name of the given task.
				

 ⁠
Name
function::task_fd_lookup — get the file struct for a task's fd

 ⁠Synopsis

task_fd_lookup:long(task:long,fd:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

	fd
	
								file descriptor number.
							

 ⁠Description

					Returns the file struct pointer for a task's file descriptor.
				

 ⁠
Name
function::task_gid — The group identifier of the task

 ⁠Synopsis

task_gid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the group id of the given task.
				

 ⁠
Name
function::task_max_file_handles — The max number of open files for the task

 ⁠Synopsis

task_max_file_handles:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the maximum number of file handlers for the given task.
				

 ⁠
Name
function::task_nice — The nice value of the task

 ⁠Synopsis

task_nice:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the nice value of the given task.
				

 ⁠
Name
function::task_ns_egid — The effective group identifier of the task

 ⁠Synopsis

task_ns_egid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the effective group id of the given task.
				

 ⁠
Name
function::task_ns_euid — The effective user identifier of the task

 ⁠Synopsis

task_ns_euid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the effective user id of the given task.
				

 ⁠
Name
function::task_ns_gid — The group identifier of the task as seen in a namespace

 ⁠Synopsis

task_ns_gid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the group id of the given task as seen in in the given user namespace.
				

 ⁠
Name
function::task_ns_pid — The process identifier of the task

 ⁠Synopsis

task_ns_pid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This fucntion returns the process id of the given task based on the specified pid namespace..
				

 ⁠
Name
function::task_ns_tid — The thread identifier of the task as seen in a namespace

 ⁠Synopsis

task_ns_tid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the thread id of the given task as seen in the pid namespace.
				

 ⁠
Name
function::task_ns_uid — The user identifier of the task

 ⁠Synopsis

task_ns_uid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the user id of the given task.
				

 ⁠
Name
function::task_open_file_handles — The number of open files of the task

 ⁠Synopsis

task_open_file_handles:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the number of open file handlers for the given task.
				

 ⁠
Name
function::task_parent — The task_struct of the parent task

 ⁠Synopsis

task_parent:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the parent task_struct of the given task. This address can be passed to the various task_*() functions to extract more task-specific data.
				

 ⁠
Name
function::task_pid — The process identifier of the task

 ⁠Synopsis

task_pid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This fucntion returns the process id of the given task.
				

 ⁠
Name
function::task_prio — The priority value of the task

 ⁠Synopsis

task_prio:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the priority value of the given task.
				

 ⁠
Name
function::task_state — The state of the task

 ⁠Synopsis

task_state:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					Return the state of the given task, one of: TASK_RUNNING (0), TASK_INTERRUPTIBLE (1), TASK_UNINTERRUPTIBLE (2), TASK_STOPPED (4), TASK_TRACED (8), EXIT_ZOMBIE (16), or EXIT_DEAD (32).
				

 ⁠
Name
function::task_tid — The thread identifier of the task

 ⁠Synopsis

task_tid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the thread id of the given task.
				

 ⁠
Name
function::task_uid — The user identifier of the task

 ⁠Synopsis

task_uid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer
							

 ⁠Description

					This function returns the user id of the given task.
				

 ⁠
Name
function::tid — Returns the thread ID of a target process

 ⁠Synopsis

tid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the thread ID of the target process.
				

 ⁠
Name
function::u32_arg — Return function argument as unsigned 32-bit value

 ⁠Synopsis

u32_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the unsigned 32-bit value of argument n, same as uint_arg.
				

 ⁠
Name
function::u64_arg — Return function argument as unsigned 64-bit value

 ⁠Synopsis

u64_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the unsigned 64-bit value of argument n, same as ulonglong_arg.
				

 ⁠
Name
function::u_register — Return the unsigned value of the named CPU register

 ⁠Synopsis

u_register:long(name:string)

 ⁠Arguments
	name
	
								Name of the register to return
							

 ⁠Description

					Same as register(name), except that if the register is 32 bits wide, it is zero-extended to 64 bits.
				

 ⁠
Name
function::uaddr — User space address of current running task

 ⁠Synopsis

uaddr:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the address in userspace that the current task was at when the probe occurred. When the current running task isn't a user space thread, or the address cannot be found, zero is returned. Can be used to see where the current task is combined with usymname or usymdata. Often the task will be in the VDSO where it entered the kernel.
				

 ⁠
Name
function::ubacktrace — Hex backtrace of current user-space task stack.

 ⁠Synopsis

ubacktrace:string()

 ⁠Arguments

					None
				

 ⁠Description

					Return a string of hex addresses that are a backtrace of the stack of the current task. Output may be truncated as per maximum string length. Returns empty string when current probe point cannot determine user backtrace. See backtrace for kernel traceback.
				

 ⁠Note

					To get (full) backtraces for user space applications and shared shared libraries not mentioned in the current script run stap with -d /path/to/exe-or-so and/or add --ldd to load all needed unwind data.
				

 ⁠
Name
function::ucallers — Return first n elements of user stack backtrace

 ⁠Synopsis

ucallers:string(n:long)

 ⁠Arguments
	n
	
								number of levels to descend in the stack (not counting the top level). If n is -1, print the entire stack.
							

 ⁠Description

					This function returns a string of the first n hex addresses from the backtrace of the user stack. Output may be truncated as per maximum string length (MAXSTRINGLEN).
				

 ⁠Note

					To get (full) backtraces for user space applications and shared shared libraries not mentioned in the current script run stap with -d /path/to/exe-or-so and/or add --ldd to load all needed unwind data.
				

 ⁠
Name
function::uid — Returns the user ID of a target process

 ⁠Synopsis

uid:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the user ID of the target process.
				

 ⁠
Name
function::uint_arg — Return function argument as unsigned int

 ⁠Synopsis

uint_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the value of argument n as an unsigned int (i.e., a 32-bit integer zero-extended to 64 bits).
				

 ⁠
Name
function::ulong_arg — Return function argument as unsigned long

 ⁠Synopsis

ulong_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the value of argument n as an unsigned long. On architectures where a long is 32 bits, the value is zero-extended to 64 bits.
				

 ⁠
Name
function::ulonglong_arg — Return function argument as 64-bit value

 ⁠Synopsis

ulonglong_arg:long(n:long)

 ⁠Arguments
	n
	
								index of argument to return
							

 ⁠Description

					Return the value of argument n as a 64-bit value. (Same as longlong_arg.)
				

 ⁠
Name
function::umodname — Returns the (short) name of the user module.

 ⁠Synopsis

umodname:string(addr:long)

 ⁠Arguments
	addr
	
								User-space address
							

 ⁠Description

					Returns the short name of the user space module for the current task that that the given address is part of. Reports an error when the address isn't in a (mapped in) module, or the module cannot be found for some reason.
				

 ⁠
Name
function::user_mode — Determines if probe point occurs in user-mode

 ⁠Synopsis

user_mode:long()

 ⁠Arguments

					None
				

 ⁠Description

					Return 1 if the probe point occurred in user-mode.
				

 ⁠
Name
function::ustack — Return address at given depth of user stack backtrace

 ⁠Synopsis

ustack:long(n:long)

 ⁠Arguments
	n
	
								number of levels to descend in the stack.
							

 ⁠Description

					Performs a simple (user space) backtrace, and returns the element at the specified position. The results of the backtrace itself are cached, so that the backtrace computation is performed at most once no matter how many times ustack is called, or in what order.
				

 ⁠
Name
function::usymdata — Return the symbol and module offset of an address.

 ⁠Synopsis

usymdata:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the (function) symbol name associated with the given address in the current task if known, the offset from the start and the size of the symbol, plus the module name (between brackets). If symbol is unknown, but module is known, the offset inside the module, plus the size of the module is added. If any element is not known it will be omitted and if the symbol name is unknown it will return the hex string for the given address.
				

 ⁠
Name
function::usymfile — Return the file name of a given address.

 ⁠Synopsis

usymfile:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the file name of the given address, if known. If the file name cannot be found, the hex string representation of the address will be returned.
				

 ⁠
Name
function::usymfileline — Return the file name and line number of an address.

 ⁠Synopsis

usymfileline:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the file name and the (approximate) line number of the given address, if known. If the file name or the line number cannot be found, the hex string representation of the address will be returned.
				

 ⁠
Name
function::usymline — Return the line number of an address.

 ⁠Synopsis

usymline:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the (approximate) line number of the given address, if known. If the line number cannot be found, the hex string representation of the address will be returned.
				

 ⁠
Name
function::usymname — Return the symbol of an address in the current task.

 ⁠Synopsis

usymname:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the (function) symbol name associated with the given address if known. If not known it will return the hex string representation of addr.
				

 ⁠Chapter 4. Timestamp Functions

			Each timestamp function returns a value to indicate when a function is executed. These returned values can then be used to indicate when an event occurred, provide an ordering for events, or compute the amount of time elapsed between two time stamps.
		

 ⁠
Name
function::HZ — Kernel HZ

 ⁠Synopsis

HZ:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the value of the kernel HZ macro, which corresponds to the rate of increase of the jiffies value.
				

 ⁠
Name
function::cpu_clock_ms — Number of milliseconds on the given cpu's clock

 ⁠Synopsis

cpu_clock_ms:long(cpu:long)

 ⁠Arguments
	cpu
	
								Which processor's clock to read
							

 ⁠Description

					This function returns the number of milliseconds on the given cpu's clock. This is always monotonic comparing on the same cpu, but may have some drift between cpus (within about a jiffy).
				

 ⁠
Name
function::cpu_clock_ns — Number of nanoseconds on the given cpu's clock

 ⁠Synopsis

cpu_clock_ns:long(cpu:long)

 ⁠Arguments
	cpu
	
								Which processor's clock to read
							

 ⁠Description

					This function returns the number of nanoseconds on the given cpu's clock. This is always monotonic comparing on the same cpu, but may have some drift between cpus (within about a jiffy).
				

 ⁠
Name
function::cpu_clock_s — Number of seconds on the given cpu's clock

 ⁠Synopsis

cpu_clock_s:long(cpu:long)

 ⁠Arguments
	cpu
	
								Which processor's clock to read
							

 ⁠Description

					This function returns the number of seconds on the given cpu's clock. This is always monotonic comparing on the same cpu, but may have some drift between cpus (within about a jiffy).
				

 ⁠
Name
function::cpu_clock_us — Number of microseconds on the given cpu's clock

 ⁠Synopsis

cpu_clock_us:long(cpu:long)

 ⁠Arguments
	cpu
	
								Which processor's clock to read
							

 ⁠Description

					This function returns the number of microseconds on the given cpu's clock. This is always monotonic comparing on the same cpu, but may have some drift between cpus (within about a jiffy).
				

 ⁠
Name
function::delete_stopwatch — Remove an existing stopwatch

 ⁠Synopsis

delete_stopwatch(name:string)

 ⁠Arguments
	name
	
								the stopwatch name
							

 ⁠Description

					Remove stopwatch name.
				

 ⁠
Name
function::get_cycles — Processor cycle count

 ⁠Synopsis

get_cycles:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the processor cycle counter value if available, else it returns zero. The cycle counter is free running and unsynchronized on each processor. Thus, the order of events cannot determined by comparing the results of the get_cycles function on different processors.
				

 ⁠
Name
function::gettimeofday_ms — Number of milliseconds since UNIX epoch

 ⁠Synopsis

gettimeofday_ms:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the number of milliseconds since the UNIX epoch.
				

 ⁠
Name
function::gettimeofday_ns — Number of nanoseconds since UNIX epoch

 ⁠Synopsis

gettimeofday_ns:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the number of nanoseconds since the UNIX epoch.
				

 ⁠
Name
function::gettimeofday_s — Number of seconds since UNIX epoch

 ⁠Synopsis

gettimeofday_s:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the number of seconds since the UNIX epoch.
				

 ⁠
Name
function::gettimeofday_us — Number of microseconds since UNIX epoch

 ⁠Synopsis

gettimeofday_us:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the number of microseconds since the UNIX epoch.
				

 ⁠
Name
function::jiffies — Kernel jiffies count

 ⁠Synopsis

jiffies:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the value of the kernel jiffies variable. This value is incremented periodically by timer interrupts, and may wrap around a 32-bit or 64-bit boundary. See HZ.
				

 ⁠
Name
function::local_clock_ms — Number of milliseconds on the local cpu's clock

 ⁠Synopsis

local_clock_ms:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the number of milliseconds on the local cpu's clock. This is always monotonic comparing on the same cpu, but may have some drift between cpus (within about a jiffy).
				

 ⁠
Name
function::local_clock_ns — Number of nanoseconds on the local cpu's clock

 ⁠Synopsis

local_clock_ns:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the number of nanoseconds on the local cpu's clock. This is always monotonic comparing on the same cpu, but may have some drift between cpus (within about a jiffy).
				

 ⁠
Name
function::local_clock_s — Number of seconds on the local cpu's clock

 ⁠Synopsis

local_clock_s:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the number of seconds on the local cpu's clock. This is always monotonic comparing on the same cpu, but may have some drift between cpus (within about a jiffy).
				

 ⁠
Name
function::local_clock_us — Number of microseconds on the local cpu's clock

 ⁠Synopsis

local_clock_us:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the number of microseconds on the local cpu's clock. This is always monotonic comparing on the same cpu, but may have some drift between cpus (within about a jiffy).
				

 ⁠
Name
function::read_stopwatch_ms — Reads the time in milliseconds for a stopwatch

 ⁠Synopsis

read_stopwatch_ms:long(name:string)

 ⁠Arguments
	name
	
								stopwatch name
							

 ⁠Description

					Returns time in milliseconds for stopwatch name. Creates stopwatch name if it does not currently exist.
				

 ⁠
Name
function::read_stopwatch_ns — Reads the time in nanoseconds for a stopwatch

 ⁠Synopsis

read_stopwatch_ns:long(name:string)

 ⁠Arguments
	name
	
								stopwatch name
							

 ⁠Description

					Returns time in nanoseconds for stopwatch name. Creates stopwatch name if it does not currently exist.
				

 ⁠
Name
function::read_stopwatch_s — Reads the time in seconds for a stopwatch

 ⁠Synopsis

read_stopwatch_s:long(name:string)

 ⁠Arguments
	name
	
								stopwatch name
							

 ⁠Description

					Returns time in seconds for stopwatch name. Creates stopwatch name if it does not currently exist.
				

 ⁠
Name
function::read_stopwatch_us — Reads the time in microseconds for a stopwatch

 ⁠Synopsis

read_stopwatch_us:long(name:string)

 ⁠Arguments
	name
	
								stopwatch name
							

 ⁠Description

					Returns time in microseconds for stopwatch name. Creates stopwatch name if it does not currently exist.
				

 ⁠
Name
function::start_stopwatch — Start a stopwatch

 ⁠Synopsis

start_stopwatch(name:string)

 ⁠Arguments
	name
	
								the stopwatch name
							

 ⁠Description

					Start stopwatch name. Creates stopwatch name if it does not currently exist.
				

 ⁠
Name
function::stop_stopwatch — Stop a stopwatch

 ⁠Synopsis

stop_stopwatch(name:string)

 ⁠Arguments
	name
	
								the stopwatch name
							

 ⁠Description

					Stop stopwatch name. Creates stopwatch name if it does not currently exist.
				

 ⁠
Name
function::HZ — Kernel HZ

 ⁠Synopsis

HZ:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the value of the kernel HZ macro, which corresponds to the rate of increase of the jiffies value.
				

 ⁠
Name
function::cpu_clock_ms — Number of milliseconds on the given cpu's clock

 ⁠Synopsis

cpu_clock_ms:long(cpu:long)

 ⁠Arguments
	cpu
	
								Which processor's clock to read
							

 ⁠Description

					This function returns the number of milliseconds on the given cpu's clock. This is always monotonic comparing on the same cpu, but may have some drift between cpus (within about a jiffy).
				

 ⁠
Name
function::cpu_clock_ns — Number of nanoseconds on the given cpu's clock

 ⁠Synopsis

cpu_clock_ns:long(cpu:long)

 ⁠Arguments
	cpu
	
								Which processor's clock to read
							

 ⁠Description

					This function returns the number of nanoseconds on the given cpu's clock. This is always monotonic comparing on the same cpu, but may have some drift between cpus (within about a jiffy).
				

 ⁠
Name
function::cpu_clock_s — Number of seconds on the given cpu's clock

 ⁠Synopsis

cpu_clock_s:long(cpu:long)

 ⁠Arguments
	cpu
	
								Which processor's clock to read
							

 ⁠Description

					This function returns the number of seconds on the given cpu's clock. This is always monotonic comparing on the same cpu, but may have some drift between cpus (within about a jiffy).
				

 ⁠
Name
function::cpu_clock_us — Number of microseconds on the given cpu's clock

 ⁠Synopsis

cpu_clock_us:long(cpu:long)

 ⁠Arguments
	cpu
	
								Which processor's clock to read
							

 ⁠Description

					This function returns the number of microseconds on the given cpu's clock. This is always monotonic comparing on the same cpu, but may have some drift between cpus (within about a jiffy).
				

 ⁠
Name
function::delete_stopwatch — Remove an existing stopwatch

 ⁠Synopsis

delete_stopwatch(name:string)

 ⁠Arguments
	name
	
								the stopwatch name
							

 ⁠Description

					Remove stopwatch name.
				

 ⁠
Name
function::get_cycles — Processor cycle count

 ⁠Synopsis

get_cycles:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the processor cycle counter value if available, else it returns zero. The cycle counter is free running and unsynchronized on each processor. Thus, the order of events cannot determined by comparing the results of the get_cycles function on different processors.
				

 ⁠
Name
function::gettimeofday_ms — Number of milliseconds since UNIX epoch

 ⁠Synopsis

gettimeofday_ms:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the number of milliseconds since the UNIX epoch.
				

 ⁠
Name
function::gettimeofday_ns — Number of nanoseconds since UNIX epoch

 ⁠Synopsis

gettimeofday_ns:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the number of nanoseconds since the UNIX epoch.
				

 ⁠
Name
function::gettimeofday_s — Number of seconds since UNIX epoch

 ⁠Synopsis

gettimeofday_s:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the number of seconds since the UNIX epoch.
				

 ⁠
Name
function::gettimeofday_us — Number of microseconds since UNIX epoch

 ⁠Synopsis

gettimeofday_us:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the number of microseconds since the UNIX epoch.
				

 ⁠
Name
function::jiffies — Kernel jiffies count

 ⁠Synopsis

jiffies:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the value of the kernel jiffies variable. This value is incremented periodically by timer interrupts, and may wrap around a 32-bit or 64-bit boundary. See HZ.
				

 ⁠
Name
function::local_clock_ms — Number of milliseconds on the local cpu's clock

 ⁠Synopsis

local_clock_ms:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the number of milliseconds on the local cpu's clock. This is always monotonic comparing on the same cpu, but may have some drift between cpus (within about a jiffy).
				

 ⁠
Name
function::local_clock_ns — Number of nanoseconds on the local cpu's clock

 ⁠Synopsis

local_clock_ns:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the number of nanoseconds on the local cpu's clock. This is always monotonic comparing on the same cpu, but may have some drift between cpus (within about a jiffy).
				

 ⁠
Name
function::local_clock_s — Number of seconds on the local cpu's clock

 ⁠Synopsis

local_clock_s:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the number of seconds on the local cpu's clock. This is always monotonic comparing on the same cpu, but may have some drift between cpus (within about a jiffy).
				

 ⁠
Name
function::local_clock_us — Number of microseconds on the local cpu's clock

 ⁠Synopsis

local_clock_us:long()

 ⁠Arguments

					None
				

 ⁠Description

					This function returns the number of microseconds on the local cpu's clock. This is always monotonic comparing on the same cpu, but may have some drift between cpus (within about a jiffy).
				

 ⁠
Name
function::read_stopwatch_ms — Reads the time in milliseconds for a stopwatch

 ⁠Synopsis

read_stopwatch_ms:long(name:string)

 ⁠Arguments
	name
	
								stopwatch name
							

 ⁠Description

					Returns time in milliseconds for stopwatch name. Creates stopwatch name if it does not currently exist.
				

 ⁠
Name
function::read_stopwatch_ns — Reads the time in nanoseconds for a stopwatch

 ⁠Synopsis

read_stopwatch_ns:long(name:string)

 ⁠Arguments
	name
	
								stopwatch name
							

 ⁠Description

					Returns time in nanoseconds for stopwatch name. Creates stopwatch name if it does not currently exist.
				

 ⁠
Name
function::read_stopwatch_s — Reads the time in seconds for a stopwatch

 ⁠Synopsis

read_stopwatch_s:long(name:string)

 ⁠Arguments
	name
	
								stopwatch name
							

 ⁠Description

					Returns time in seconds for stopwatch name. Creates stopwatch name if it does not currently exist.
				

 ⁠
Name
function::read_stopwatch_us — Reads the time in microseconds for a stopwatch

 ⁠Synopsis

read_stopwatch_us:long(name:string)

 ⁠Arguments
	name
	
								stopwatch name
							

 ⁠Description

					Returns time in microseconds for stopwatch name. Creates stopwatch name if it does not currently exist.
				

 ⁠
Name
function::start_stopwatch — Start a stopwatch

 ⁠Synopsis

start_stopwatch(name:string)

 ⁠Arguments
	name
	
								the stopwatch name
							

 ⁠Description

					Start stopwatch name. Creates stopwatch name if it does not currently exist.
				

 ⁠
Name
function::stop_stopwatch — Stop a stopwatch

 ⁠Synopsis

stop_stopwatch(name:string)

 ⁠Arguments
	name
	
								the stopwatch name
							

 ⁠Description

					Stop stopwatch name. Creates stopwatch name if it does not currently exist.
				

 ⁠Chapter 5. Time utility functions

			Utility functions to turn seconds since the epoch (as returned by the timestamp function gettimeofday_s()) into a human readable date/time strings.
		

 ⁠
Name
function::ctime — Convert seconds since epoch into human readable date/time string

 ⁠Synopsis

ctime:string(epochsecs:long)

 ⁠Arguments
	epochsecs
	
								Number of seconds since epoch (as returned by gettimeofday_s)
							

 ⁠Description

					Takes an argument of seconds since the epoch as returned by gettimeofday_s. Returns a string of the form
				

					“Wed Jun 30 21:49:08 1993”
				

					The string will always be exactly 24 characters. If the time would be unreasonable far in the past (before what can be represented with a 32 bit offset in seconds from the epoch) an error will occur (which can be avoided with try/catch). If the time would be unreasonable far in the future, an error will also occur.
				

					Note that the epoch (zero) corresponds to
				

					“Thu Jan 1 00:00:00 1970”
				

					The earliest full date given by ctime, corresponding to epochsecs -2147483648 is “Fri Dec 13 20:45:52 1901”. The latest full date given by ctime, corresponding to epochsecs 2147483647 is “Tue Jan 19 03:14:07 2038”.
				

					The abbreviations for the days of the week are ‘Sun’, ‘Mon’, ‘Tue’, ‘Wed’, ‘Thu’, ‘Fri’, and ‘Sat’. The abbreviations for the months are ‘Jan’, ‘Feb’, ‘Mar’, ‘Apr’, ‘May’, ‘Jun’, ‘Jul’, ‘Aug’, ‘Sep’, ‘Oct’, ‘Nov’, and ‘Dec’.
				

					Note that the real C library ctime function puts a newline ('\n') character at the end of the string that this function does not. Also note that since the kernel has no concept of timezones, the returned time is always in GMT.
				

 ⁠
Name
function::tz_ctime — Convert seconds since epoch into human readable date/time string, with local time zone

 ⁠Synopsis

tz_ctime(epochsecs:)

 ⁠Arguments
	epochsecs
	
								number of seconds since epoch (as returned by gettimeofday_s)
							

 ⁠Description

					Takes an argument of seconds since the epoch as returned by gettimeofday_s. Returns a string of the same form as ctime, but offsets the epoch time for the local time zone, and appends the name of the local time zone. The string length may vary. The time zone information is passed by staprun at script startup only.
				

 ⁠
Name
function::tz_gmtoff — Return local time zone offset

 ⁠Synopsis

tz_gmtoff()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the local time zone offset (seconds west of UTC), as passed by staprun at script startup only.
				

 ⁠
Name
function::tz_name — Return local time zone name

 ⁠Synopsis

tz_name()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the local time zone name, as passed by staprun at script startup only.
				

 ⁠
Name
function::ctime — Convert seconds since epoch into human readable date/time string

 ⁠Synopsis

ctime:string(epochsecs:long)

 ⁠Arguments
	epochsecs
	
								Number of seconds since epoch (as returned by gettimeofday_s)
							

 ⁠Description

					Takes an argument of seconds since the epoch as returned by gettimeofday_s. Returns a string of the form
				

					“Wed Jun 30 21:49:08 1993”
				

					The string will always be exactly 24 characters. If the time would be unreasonable far in the past (before what can be represented with a 32 bit offset in seconds from the epoch) an error will occur (which can be avoided with try/catch). If the time would be unreasonable far in the future, an error will also occur.
				

					Note that the epoch (zero) corresponds to
				

					“Thu Jan 1 00:00:00 1970”
				

					The earliest full date given by ctime, corresponding to epochsecs -2147483648 is “Fri Dec 13 20:45:52 1901”. The latest full date given by ctime, corresponding to epochsecs 2147483647 is “Tue Jan 19 03:14:07 2038”.
				

					The abbreviations for the days of the week are ‘Sun’, ‘Mon’, ‘Tue’, ‘Wed’, ‘Thu’, ‘Fri’, and ‘Sat’. The abbreviations for the months are ‘Jan’, ‘Feb’, ‘Mar’, ‘Apr’, ‘May’, ‘Jun’, ‘Jul’, ‘Aug’, ‘Sep’, ‘Oct’, ‘Nov’, and ‘Dec’.
				

					Note that the real C library ctime function puts a newline ('\n') character at the end of the string that this function does not. Also note that since the kernel has no concept of timezones, the returned time is always in GMT.
				

 ⁠
Name
function::tz_ctime — Convert seconds since epoch into human readable date/time string, with local time zone

 ⁠Synopsis

tz_ctime(epochsecs:)

 ⁠Arguments
	epochsecs
	
								number of seconds since epoch (as returned by gettimeofday_s)
							

 ⁠Description

					Takes an argument of seconds since the epoch as returned by gettimeofday_s. Returns a string of the same form as ctime, but offsets the epoch time for the local time zone, and appends the name of the local time zone. The string length may vary. The time zone information is passed by staprun at script startup only.
				

 ⁠
Name
function::tz_gmtoff — Return local time zone offset

 ⁠Synopsis

tz_gmtoff()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the local time zone offset (seconds west of UTC), as passed by staprun at script startup only.
				

 ⁠
Name
function::tz_name — Return local time zone name

 ⁠Synopsis

tz_name()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the local time zone name, as passed by staprun at script startup only.
				

 ⁠Chapter 6. Shell command functions

			Utility functions to enqueue shell commands.
		

 ⁠
Name
function::system — Issue a command to the system

 ⁠Synopsis

system(cmd:string)

 ⁠Arguments
	cmd
	
								the command to issue to the system
							

 ⁠Description

					This function runs a command on the system. The command is started in the background some time after the current probe completes. The command is run with the same UID as the user running the stap or staprun command.
				

 ⁠
Name
function::system — Issue a command to the system

 ⁠Synopsis

system(cmd:string)

 ⁠Arguments
	cmd
	
								the command to issue to the system
							

 ⁠Description

					This function runs a command on the system. The command is started in the background some time after the current probe completes. The command is run with the same UID as the user running the stap or staprun command.
				

 ⁠Chapter 7. Memory Tapset

			This family of probe points is used to probe memory-related events or query the memory usage of the current process. It contains the following probe points:
		

 ⁠
Name
function::addr_to_node — Returns which node a given address belongs to within a NUMA system

 ⁠Synopsis

addr_to_node:long(addr:long)

 ⁠Arguments
	addr
	
								the address of the faulting memory access
							

 ⁠Description

					This function accepts an address, and returns the node that the given address belongs to in a NUMA system.
				

 ⁠
Name
function::bytes_to_string — Human readable string for given bytes

 ⁠Synopsis

bytes_to_string:string(bytes:long)

 ⁠Arguments
	bytes
	
								Number of bytes to translate.
							

 ⁠Description

					Returns a string representing the number of bytes (up to 1024 bytes), the number of kilobytes (when less than 1024K) postfixed by 'K', the number of megabytes (when less than 1024M) postfixed by 'M' or the number of gigabytes postfixed by 'G'. If representing K, M or G, and the number is amount is less than 100, it includes a '.' plus the remainer. The returned string will be 5 characters wide (padding with whitespace at the front) unless negative or representing more than 9999G bytes.
				

 ⁠
Name
function::mem_page_size — Number of bytes in a page for this architecture

 ⁠Synopsis

mem_page_size:long()

 ⁠Arguments

					None
				

 ⁠
Name
function::pages_to_string — Turns pages into a human readable string

 ⁠Synopsis

pages_to_string:string(pages:long)

 ⁠Arguments
	pages
	
								Number of pages to translate.
							

 ⁠Description

					Multiplies pages by page_size to get the number of bytes and returns the result of bytes_to_string.
				

 ⁠
Name
function::proc_mem_data — Program data size (data + stack) in pages

 ⁠Synopsis

proc_mem_data:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the current process data size (data + stack) in pages, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_data_pid — Program data size (data + stack) in pages

 ⁠Synopsis

proc_mem_data_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the given process data size (data + stack) in pages, or zero when the process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_rss — Program resident set size in pages

 ⁠Synopsis

proc_mem_rss:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the resident set size in pages of the current process, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_rss_pid — Program resident set size in pages

 ⁠Synopsis

proc_mem_rss_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the resident set size in pages of the given process, or zero when the process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_shr — Program shared pages (from shared mappings)

 ⁠Synopsis

proc_mem_shr:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the shared pages (from shared mappings) of the current process, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_shr_pid — Program shared pages (from shared mappings)

 ⁠Synopsis

proc_mem_shr_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the shared pages (from shared mappings) of the given process, or zero when the process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_size — Total program virtual memory size in pages

 ⁠Synopsis

proc_mem_size:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the total virtual memory size in pages of the current process, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_size_pid — Total program virtual memory size in pages

 ⁠Synopsis

proc_mem_size_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the total virtual memory size in pages of the given process, or zero when that process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_string — Human readable string of current proc memory usage

 ⁠Synopsis

proc_mem_string:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns a human readable string showing the size, rss, shr, txt and data of the memory used by the current process. For example “size: 301m, rss: 11m, shr: 8m, txt: 52k, data: 2248k”.
				

 ⁠
Name
function::proc_mem_string_pid — Human readable string of process memory usage

 ⁠Synopsis

proc_mem_string_pid:string(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns a human readable string showing the size, rss, shr, txt and data of the memory used by the given process. For example “size: 301m, rss: 11m, shr: 8m, txt: 52k, data: 2248k”.
				

 ⁠
Name
function::proc_mem_txt — Program text (code) size in pages

 ⁠Synopsis

proc_mem_txt:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the current process text (code) size in pages, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_txt_pid — Program text (code) size in pages

 ⁠Synopsis

proc_mem_txt_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the given process text (code) size in pages, or zero when the process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::vm_fault_contains — Test return value for page fault reason

 ⁠Synopsis

vm_fault_contains:long(value:long,test:long)

 ⁠Arguments
	value
	
								the fault_type returned by vm.page_fault.return
							

	test
	
								the type of fault to test for (VM_FAULT_OOM or similar)
							

 ⁠
Name
probe::vm.brk — Fires when a brk is requested (i.e. the heap will be resized)

 ⁠Synopsis
vm.brk

 ⁠Values
	name
	
								name of the probe point
							

	address
	
								the requested address
							

	length
	
								the length of the memory segment
							

 ⁠Context

					The process calling brk.
				

 ⁠
Name
probe::vm.kfree — Fires when kfree is requested

 ⁠Synopsis
vm.kfree

 ⁠Values
	name
	
								name of the probe point
							

	ptr
	
								pointer to the kmemory allocated which is returned by kmalloc
							

	caller_function
	
								name of the caller function.
							

	call_site
	
								address of the function calling this kmemory function
							

 ⁠
Name
probe::vm.kmalloc — Fires when kmalloc is requested

 ⁠Synopsis
vm.kmalloc

 ⁠Values
	gfp_flags
	
								type of kmemory to allocate
							

	bytes_req
	
								requested Bytes
							

	name
	
								name of the probe point
							

	ptr
	
								pointer to the kmemory allocated
							

	bytes_alloc
	
								allocated Bytes
							

	caller_function
	
								name of the caller function
							

	gfp_flag_name
	
								type of kmemory to allocate (in String format)
							

	call_site
	
								address of the kmemory function
							

 ⁠
Name
probe::vm.kmalloc_node — Fires when kmalloc_node is requested

 ⁠Synopsis
vm.kmalloc_node

 ⁠Values
	caller_function
	
								name of the caller function
							

	gfp_flag_name
	
								type of kmemory to allocate(in string format)
							

	call_site
	
								address of the function caling this kmemory function
							

	gfp_flags
	
								type of kmemory to allocate
							

	bytes_req
	
								requested Bytes
							

	name
	
								name of the probe point
							

	ptr
	
								pointer to the kmemory allocated
							

	bytes_alloc
	
								allocated Bytes
							

 ⁠
Name
probe::vm.kmem_cache_alloc — Fires when kmem_cache_alloc is requested

 ⁠Synopsis
vm.kmem_cache_alloc

 ⁠Values
	bytes_alloc
	
								allocated Bytes
							

	ptr
	
								pointer to the kmemory allocated
							

	name
	
								name of the probe point
							

	bytes_req
	
								requested Bytes
							

	gfp_flags
	
								type of kmemory to allocate
							

	caller_function
	
								name of the caller function.
							

	gfp_flag_name
	
								type of kmemory to allocate(in string format)
							

	call_site
	
								address of the function calling this kmemory function.
							

 ⁠
Name
probe::vm.kmem_cache_alloc_node — Fires when kmem_cache_alloc_node is requested

 ⁠Synopsis
vm.kmem_cache_alloc_node

 ⁠Values
	gfp_flags
	
								type of kmemory to allocate
							

	name
	
								name of the probe point
							

	bytes_req
	
								requested Bytes
							

	ptr
	
								pointer to the kmemory allocated
							

	bytes_alloc
	
								allocated Bytes
							

	caller_function
	
								name of the caller function
							

	call_site
	
								address of the function calling this kmemory function
							

	gfp_flag_name
	
								type of kmemory to allocate(in string format)
							

 ⁠
Name
probe::vm.kmem_cache_free — Fires when kmem_cache_free is requested

 ⁠Synopsis
vm.kmem_cache_free

 ⁠Values
	caller_function
	
								Name of the caller function.
							

	call_site
	
								Address of the function calling this kmemory function
							

	ptr
	
								Pointer to the kmemory allocated which is returned by kmem_cache
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::vm.mmap — Fires when an mmap is requested

 ⁠Synopsis
vm.mmap

 ⁠Values
	name
	
								name of the probe point
							

	length
	
								the length of the memory segment
							

	address
	
								the requested address
							

 ⁠Context

					The process calling mmap.
				

 ⁠
Name
probe::vm.munmap — Fires when an munmap is requested

 ⁠Synopsis
vm.munmap

 ⁠Values
	length
	
								the length of the memory segment
							

	address
	
								the requested address
							

	name
	
								name of the probe point
							

 ⁠Context

					The process calling munmap.
				

 ⁠
Name
probe::vm.oom_kill — Fires when a thread is selected for termination by the OOM killer

 ⁠Synopsis
vm.oom_kill

 ⁠Values
	name
	
								name of the probe point
							

	task
	
								the task being killed
							

 ⁠Context

					The process that tried to consume excessive memory, and thus triggered the OOM.
				

 ⁠
Name
probe::vm.pagefault — Records that a page fault occurred

 ⁠Synopsis
vm.pagefault

 ⁠Values
	address
	
								the address of the faulting memory access; i.e. the address that caused the page fault
							

	write_access
	
								indicates whether this was a write or read access; 1 indicates a write, while 0 indicates a read
							

	name
	
								name of the probe point
							

 ⁠Context

					The process which triggered the fault
				

 ⁠
Name
probe::vm.pagefault.return — Indicates what type of fault occurred

 ⁠Synopsis
vm.pagefault.return

 ⁠Values
	name
	
								name of the probe point
							

	fault_type
	
								returns either 0 (VM_FAULT_OOM) for out of memory faults, 2 (VM_FAULT_MINOR) for minor faults, 3 (VM_FAULT_MAJOR) for major faults, or 1 (VM_FAULT_SIGBUS) if the fault was neither OOM, minor fault, nor major fault.
							

 ⁠
Name
probe::vm.write_shared — Attempts at writing to a shared page

 ⁠Synopsis
vm.write_shared

 ⁠Values
	address
	
								the address of the shared write
							

	name
	
								name of the probe point
							

 ⁠Context

					The context is the process attempting the write.
				

 ⁠Description

					Fires when a process attempts to write to a shared page. If a copy is necessary, this will be followed by a vm.write_shared_copy.
				

 ⁠
Name
probe::vm.write_shared_copy — Page copy for shared page write

 ⁠Synopsis
vm.write_shared_copy

 ⁠Values
	zero
	
								boolean indicating whether it is a zero page (can do a clear instead of a copy)
							

	name
	
								Name of the probe point
							

	address
	
								The address of the shared write
							

 ⁠Context

					The process attempting the write.
				

 ⁠Description

					Fires when a write to a shared page requires a page copy. This is always preceded by a vm.write_shared.
				

 ⁠
Name
function::addr_to_node — Returns which node a given address belongs to within a NUMA system

 ⁠Synopsis

addr_to_node:long(addr:long)

 ⁠Arguments
	addr
	
								the address of the faulting memory access
							

 ⁠Description

					This function accepts an address, and returns the node that the given address belongs to in a NUMA system.
				

 ⁠
Name
function::bytes_to_string — Human readable string for given bytes

 ⁠Synopsis

bytes_to_string:string(bytes:long)

 ⁠Arguments
	bytes
	
								Number of bytes to translate.
							

 ⁠Description

					Returns a string representing the number of bytes (up to 1024 bytes), the number of kilobytes (when less than 1024K) postfixed by 'K', the number of megabytes (when less than 1024M) postfixed by 'M' or the number of gigabytes postfixed by 'G'. If representing K, M or G, and the number is amount is less than 100, it includes a '.' plus the remainer. The returned string will be 5 characters wide (padding with whitespace at the front) unless negative or representing more than 9999G bytes.
				

 ⁠
Name
function::mem_page_size — Number of bytes in a page for this architecture

 ⁠Synopsis

mem_page_size:long()

 ⁠Arguments

					None
				

 ⁠
Name
function::pages_to_string — Turns pages into a human readable string

 ⁠Synopsis

pages_to_string:string(pages:long)

 ⁠Arguments
	pages
	
								Number of pages to translate.
							

 ⁠Description

					Multiplies pages by page_size to get the number of bytes and returns the result of bytes_to_string.
				

 ⁠
Name
function::proc_mem_data — Program data size (data + stack) in pages

 ⁠Synopsis

proc_mem_data:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the current process data size (data + stack) in pages, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_data_pid — Program data size (data + stack) in pages

 ⁠Synopsis

proc_mem_data_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the given process data size (data + stack) in pages, or zero when the process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_rss — Program resident set size in pages

 ⁠Synopsis

proc_mem_rss:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the resident set size in pages of the current process, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_rss_pid — Program resident set size in pages

 ⁠Synopsis

proc_mem_rss_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the resident set size in pages of the given process, or zero when the process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_shr — Program shared pages (from shared mappings)

 ⁠Synopsis

proc_mem_shr:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the shared pages (from shared mappings) of the current process, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_shr_pid — Program shared pages (from shared mappings)

 ⁠Synopsis

proc_mem_shr_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the shared pages (from shared mappings) of the given process, or zero when the process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_size — Total program virtual memory size in pages

 ⁠Synopsis

proc_mem_size:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the total virtual memory size in pages of the current process, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_size_pid — Total program virtual memory size in pages

 ⁠Synopsis

proc_mem_size_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the total virtual memory size in pages of the given process, or zero when that process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_string — Human readable string of current proc memory usage

 ⁠Synopsis

proc_mem_string:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns a human readable string showing the size, rss, shr, txt and data of the memory used by the current process. For example “size: 301m, rss: 11m, shr: 8m, txt: 52k, data: 2248k”.
				

 ⁠
Name
function::proc_mem_string_pid — Human readable string of process memory usage

 ⁠Synopsis

proc_mem_string_pid:string(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns a human readable string showing the size, rss, shr, txt and data of the memory used by the given process. For example “size: 301m, rss: 11m, shr: 8m, txt: 52k, data: 2248k”.
				

 ⁠
Name
function::proc_mem_txt — Program text (code) size in pages

 ⁠Synopsis

proc_mem_txt:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the current process text (code) size in pages, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_txt_pid — Program text (code) size in pages

 ⁠Synopsis

proc_mem_txt_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the given process text (code) size in pages, or zero when the process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::vm_fault_contains — Test return value for page fault reason

 ⁠Synopsis

vm_fault_contains:long(value:long,test:long)

 ⁠Arguments
	value
	
								the fault_type returned by vm.page_fault.return
							

	test
	
								the type of fault to test for (VM_FAULT_OOM or similar)
							

 ⁠
Name
probe::vm.brk — Fires when a brk is requested (i.e. the heap will be resized)

 ⁠Synopsis
vm.brk

 ⁠Values
	name
	
								name of the probe point
							

	address
	
								the requested address
							

	length
	
								the length of the memory segment
							

 ⁠Context

					The process calling brk.
				

 ⁠
Name
probe::vm.kfree — Fires when kfree is requested

 ⁠Synopsis
vm.kfree

 ⁠Values
	name
	
								name of the probe point
							

	ptr
	
								pointer to the kmemory allocated which is returned by kmalloc
							

	caller_function
	
								name of the caller function.
							

	call_site
	
								address of the function calling this kmemory function
							

 ⁠
Name
probe::vm.kmalloc — Fires when kmalloc is requested

 ⁠Synopsis
vm.kmalloc

 ⁠Values
	gfp_flags
	
								type of kmemory to allocate
							

	bytes_req
	
								requested Bytes
							

	name
	
								name of the probe point
							

	ptr
	
								pointer to the kmemory allocated
							

	bytes_alloc
	
								allocated Bytes
							

	caller_function
	
								name of the caller function
							

	gfp_flag_name
	
								type of kmemory to allocate (in String format)
							

	call_site
	
								address of the kmemory function
							

 ⁠
Name
probe::vm.kmalloc_node — Fires when kmalloc_node is requested

 ⁠Synopsis
vm.kmalloc_node

 ⁠Values
	caller_function
	
								name of the caller function
							

	gfp_flag_name
	
								type of kmemory to allocate(in string format)
							

	call_site
	
								address of the function caling this kmemory function
							

	gfp_flags
	
								type of kmemory to allocate
							

	bytes_req
	
								requested Bytes
							

	name
	
								name of the probe point
							

	ptr
	
								pointer to the kmemory allocated
							

	bytes_alloc
	
								allocated Bytes
							

 ⁠
Name
probe::vm.kmem_cache_alloc — Fires when kmem_cache_alloc is requested

 ⁠Synopsis
vm.kmem_cache_alloc

 ⁠Values
	bytes_alloc
	
								allocated Bytes
							

	ptr
	
								pointer to the kmemory allocated
							

	name
	
								name of the probe point
							

	bytes_req
	
								requested Bytes
							

	gfp_flags
	
								type of kmemory to allocate
							

	caller_function
	
								name of the caller function.
							

	gfp_flag_name
	
								type of kmemory to allocate(in string format)
							

	call_site
	
								address of the function calling this kmemory function.
							

 ⁠
Name
probe::vm.kmem_cache_alloc_node — Fires when kmem_cache_alloc_node is requested

 ⁠Synopsis
vm.kmem_cache_alloc_node

 ⁠Values
	gfp_flags
	
								type of kmemory to allocate
							

	name
	
								name of the probe point
							

	bytes_req
	
								requested Bytes
							

	ptr
	
								pointer to the kmemory allocated
							

	bytes_alloc
	
								allocated Bytes
							

	caller_function
	
								name of the caller function
							

	call_site
	
								address of the function calling this kmemory function
							

	gfp_flag_name
	
								type of kmemory to allocate(in string format)
							

 ⁠
Name
probe::vm.kmem_cache_free — Fires when kmem_cache_free is requested

 ⁠Synopsis
vm.kmem_cache_free

 ⁠Values
	caller_function
	
								Name of the caller function.
							

	call_site
	
								Address of the function calling this kmemory function
							

	ptr
	
								Pointer to the kmemory allocated which is returned by kmem_cache
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::vm.mmap — Fires when an mmap is requested

 ⁠Synopsis
vm.mmap

 ⁠Values
	name
	
								name of the probe point
							

	length
	
								the length of the memory segment
							

	address
	
								the requested address
							

 ⁠Context

					The process calling mmap.
				

 ⁠
Name
probe::vm.munmap — Fires when an munmap is requested

 ⁠Synopsis
vm.munmap

 ⁠Values
	length
	
								the length of the memory segment
							

	address
	
								the requested address
							

	name
	
								name of the probe point
							

 ⁠Context

					The process calling munmap.
				

 ⁠
Name
probe::vm.oom_kill — Fires when a thread is selected for termination by the OOM killer

 ⁠Synopsis
vm.oom_kill

 ⁠Values
	name
	
								name of the probe point
							

	task
	
								the task being killed
							

 ⁠Context

					The process that tried to consume excessive memory, and thus triggered the OOM.
				

 ⁠
Name
probe::vm.pagefault — Records that a page fault occurred

 ⁠Synopsis
vm.pagefault

 ⁠Values
	address
	
								the address of the faulting memory access; i.e. the address that caused the page fault
							

	write_access
	
								indicates whether this was a write or read access; 1 indicates a write, while 0 indicates a read
							

	name
	
								name of the probe point
							

 ⁠Context

					The process which triggered the fault
				

 ⁠
Name
probe::vm.pagefault.return — Indicates what type of fault occurred

 ⁠Synopsis
vm.pagefault.return

 ⁠Values
	name
	
								name of the probe point
							

	fault_type
	
								returns either 0 (VM_FAULT_OOM) for out of memory faults, 2 (VM_FAULT_MINOR) for minor faults, 3 (VM_FAULT_MAJOR) for major faults, or 1 (VM_FAULT_SIGBUS) if the fault was neither OOM, minor fault, nor major fault.
							

 ⁠
Name
probe::vm.write_shared — Attempts at writing to a shared page

 ⁠Synopsis
vm.write_shared

 ⁠Values
	address
	
								the address of the shared write
							

	name
	
								name of the probe point
							

 ⁠Context

					The context is the process attempting the write.
				

 ⁠Description

					Fires when a process attempts to write to a shared page. If a copy is necessary, this will be followed by a vm.write_shared_copy.
				

 ⁠
Name
probe::vm.write_shared_copy — Page copy for shared page write

 ⁠Synopsis
vm.write_shared_copy

 ⁠Values
	zero
	
								boolean indicating whether it is a zero page (can do a clear instead of a copy)
							

	name
	
								Name of the probe point
							

	address
	
								The address of the shared write
							

 ⁠Context

					The process attempting the write.
				

 ⁠Description

					Fires when a write to a shared page requires a page copy. This is always preceded by a vm.write_shared.
				

 ⁠Chapter 8. Task Time Tapset

			This tapset defines utility functions to query time related properties of the current tasks, translate those in miliseconds and human readable strings.
		

 ⁠
Name
function::cputime_to_msecs — Translates the given cputime into milliseconds

 ⁠Synopsis

cputime_to_msecs:long(cputime:long)

 ⁠Arguments
	cputime
	
								Time to convert to milliseconds.
							

 ⁠
Name
function::cputime_to_string — Human readable string for given cputime

 ⁠Synopsis

cputime_to_string:string(cputime:long)

 ⁠Arguments
	cputime
	
								Time to translate.
							

 ⁠Description

					Equivalent to calling: msec_to_string (cputime_to_msecs (cputime).
				

 ⁠
Name
function::cputime_to_usecs — Translates the given cputime into microseconds

 ⁠Synopsis

cputime_to_usecs:long(cputime:long)

 ⁠Arguments
	cputime
	
								Time to convert to microseconds.
							

 ⁠
Name
function::msecs_to_string — Human readable string for given milliseconds

 ⁠Synopsis

msecs_to_string:string(msecs:long)

 ⁠Arguments
	msecs
	
								Number of milliseconds to translate.
							

 ⁠Description

					Returns a string representing the number of milliseconds as a human readable string consisting of “XmY.ZZZs”, where X is the number of minutes, Y is the number of seconds and ZZZ is the number of milliseconds.
				

 ⁠
Name
function::nsecs_to_string — Human readable string for given nanoseconds

 ⁠Synopsis

nsecs_to_string:string(nsecs:long)

 ⁠Arguments
	nsecs
	
								Number of nanoseconds to translate.
							

 ⁠Description

					Returns a string representing the number of nanoseconds as a human readable string consisting of “XmY.ZZZZZZs”, where X is the number of minutes, Y is the number of seconds and ZZZZZZZZZ is the number of nanoseconds.
				

 ⁠
Name
function::task_start_time — Start time of the given task

 ⁠Synopsis

task_start_time:long(tid:long)

 ⁠Arguments
	tid
	
								Thread id of the given task
							

 ⁠Description

					Returns the start time of the given task in nanoseconds since boot time or 0 if the task does not exist.
				

 ⁠
Name
function::task_stime — System time of the current task

 ⁠Synopsis

task_stime:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the system time of the current task in cputime. Does not include any time used by other tasks in this process, nor does it include any time of the children of this task.
				

 ⁠
Name
function::task_stime_tid — System time of the given task

 ⁠Synopsis

task_stime_tid:long(tid:long)

 ⁠Arguments
	tid
	
								Thread id of the given task
							

 ⁠Description

					Returns the system time of the given task in cputime, or zero if the task doesn't exist. Does not include any time used by other tasks in this process, nor does it include any time of the children of this task.
				

 ⁠
Name
function::task_time_string — Human readable string of task time usage

 ⁠Synopsis

task_time_string:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns a human readable string showing the user and system time the current task has used up to now. For example “usr: 0m12.908s, sys: 1m6.851s”.
				

 ⁠
Name
function::task_time_string_tid — Human readable string of task time usage

 ⁠Synopsis

task_time_string_tid:string(tid:long)

 ⁠Arguments
	tid
	
								Thread id of the given task
							

 ⁠Description

					Returns a human readable string showing the user and system time the given task has used up to now. For example “usr: 0m12.908s, sys: 1m6.851s”.
				

 ⁠
Name
function::task_utime — User time of the current task

 ⁠Synopsis

task_utime:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the user time of the current task in cputime. Does not include any time used by other tasks in this process, nor does it include any time of the children of this task.
				

 ⁠
Name
function::task_utime_tid — User time of the given task

 ⁠Synopsis

task_utime_tid:long(tid:long)

 ⁠Arguments
	tid
	
								Thread id of the given task
							

 ⁠Description

					Returns the user time of the given task in cputime, or zero if the task doesn't exist. Does not include any time used by other tasks in this process, nor does it include any time of the children of this task.
				

 ⁠
Name
function::usecs_to_string — Human readable string for given microseconds

 ⁠Synopsis

usecs_to_string:string(usecs:long)

 ⁠Arguments
	usecs
	
								Number of microseconds to translate.
							

 ⁠Description

					Returns a string representing the number of microseconds as a human readable string consisting of “XmY.ZZZZZZs”, where X is the number of minutes, Y is the number of seconds and ZZZZZZ is the number of microseconds.
				

 ⁠
Name
function::cputime_to_msecs — Translates the given cputime into milliseconds

 ⁠Synopsis

cputime_to_msecs:long(cputime:long)

 ⁠Arguments
	cputime
	
								Time to convert to milliseconds.
							

 ⁠
Name
function::cputime_to_string — Human readable string for given cputime

 ⁠Synopsis

cputime_to_string:string(cputime:long)

 ⁠Arguments
	cputime
	
								Time to translate.
							

 ⁠Description

					Equivalent to calling: msec_to_string (cputime_to_msecs (cputime).
				

 ⁠
Name
function::cputime_to_usecs — Translates the given cputime into microseconds

 ⁠Synopsis

cputime_to_usecs:long(cputime:long)

 ⁠Arguments
	cputime
	
								Time to convert to microseconds.
							

 ⁠
Name
function::msecs_to_string — Human readable string for given milliseconds

 ⁠Synopsis

msecs_to_string:string(msecs:long)

 ⁠Arguments
	msecs
	
								Number of milliseconds to translate.
							

 ⁠Description

					Returns a string representing the number of milliseconds as a human readable string consisting of “XmY.ZZZs”, where X is the number of minutes, Y is the number of seconds and ZZZ is the number of milliseconds.
				

 ⁠
Name
function::nsecs_to_string — Human readable string for given nanoseconds

 ⁠Synopsis

nsecs_to_string:string(nsecs:long)

 ⁠Arguments
	nsecs
	
								Number of nanoseconds to translate.
							

 ⁠Description

					Returns a string representing the number of nanoseconds as a human readable string consisting of “XmY.ZZZZZZs”, where X is the number of minutes, Y is the number of seconds and ZZZZZZZZZ is the number of nanoseconds.
				

 ⁠
Name
function::task_start_time — Start time of the given task

 ⁠Synopsis

task_start_time:long(tid:long)

 ⁠Arguments
	tid
	
								Thread id of the given task
							

 ⁠Description

					Returns the start time of the given task in nanoseconds since boot time or 0 if the task does not exist.
				

 ⁠
Name
function::task_stime — System time of the current task

 ⁠Synopsis

task_stime:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the system time of the current task in cputime. Does not include any time used by other tasks in this process, nor does it include any time of the children of this task.
				

 ⁠
Name
function::task_stime_tid — System time of the given task

 ⁠Synopsis

task_stime_tid:long(tid:long)

 ⁠Arguments
	tid
	
								Thread id of the given task
							

 ⁠Description

					Returns the system time of the given task in cputime, or zero if the task doesn't exist. Does not include any time used by other tasks in this process, nor does it include any time of the children of this task.
				

 ⁠
Name
function::task_time_string — Human readable string of task time usage

 ⁠Synopsis

task_time_string:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns a human readable string showing the user and system time the current task has used up to now. For example “usr: 0m12.908s, sys: 1m6.851s”.
				

 ⁠
Name
function::task_time_string_tid — Human readable string of task time usage

 ⁠Synopsis

task_time_string_tid:string(tid:long)

 ⁠Arguments
	tid
	
								Thread id of the given task
							

 ⁠Description

					Returns a human readable string showing the user and system time the given task has used up to now. For example “usr: 0m12.908s, sys: 1m6.851s”.
				

 ⁠
Name
function::task_utime — User time of the current task

 ⁠Synopsis

task_utime:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the user time of the current task in cputime. Does not include any time used by other tasks in this process, nor does it include any time of the children of this task.
				

 ⁠
Name
function::task_utime_tid — User time of the given task

 ⁠Synopsis

task_utime_tid:long(tid:long)

 ⁠Arguments
	tid
	
								Thread id of the given task
							

 ⁠Description

					Returns the user time of the given task in cputime, or zero if the task doesn't exist. Does not include any time used by other tasks in this process, nor does it include any time of the children of this task.
				

 ⁠
Name
function::usecs_to_string — Human readable string for given microseconds

 ⁠Synopsis

usecs_to_string:string(usecs:long)

 ⁠Arguments
	usecs
	
								Number of microseconds to translate.
							

 ⁠Description

					Returns a string representing the number of microseconds as a human readable string consisting of “XmY.ZZZZZZs”, where X is the number of minutes, Y is the number of seconds and ZZZZZZ is the number of microseconds.
				

 ⁠Chapter 9. Scheduler Tapset

			This family of probe points is used to probe the task scheduler activities. It contains the following probe points:
		

 ⁠
Name
probe::scheduler.balance — A cpu attempting to find more work.

 ⁠Synopsis
scheduler.balance

 ⁠Values
	name
	
								name of the probe point
							

 ⁠Context

					The cpu looking for more work.
				

 ⁠
Name
probe::scheduler.cpu_off — Process is about to stop running on a cpu

 ⁠Synopsis
scheduler.cpu_off

 ⁠Values
	task_prev
	
								the process leaving the cpu (same as current)
							

	idle
	
								boolean indicating whether current is the idle process
							

	name
	
								name of the probe point
							

	task_next
	
								the process replacing current
							

 ⁠Context

					The process leaving the cpu.
				

 ⁠
Name
probe::scheduler.cpu_on — Process is beginning execution on a cpu

 ⁠Synopsis
scheduler.cpu_on

 ⁠Values
	idle
	
								- boolean indicating whether current is the idle process
							

	task_prev
	
								the process that was previously running on this cpu
							

	name
	
								name of the probe point
							

 ⁠Context

					The resuming process.
				

 ⁠
Name
probe::scheduler.ctxswitch — A context switch is occuring.

 ⁠Synopsis
scheduler.ctxswitch

 ⁠Values
	prev_tid
	
								The TID of the process to be switched out
							

	name
	
								name of the probe point
							

	next_tid
	
								The TID of the process to be switched in
							

	prev_pid
	
								The PID of the process to be switched out
							

	prevtsk_state
	
								the state of the process to be switched out
							

	next_pid
	
								The PID of the process to be switched in
							

	nexttsk_state
	
								the state of the process to be switched in
							

	prev_priority
	
								The priority of the process to be switched out
							

	next_priority
	
								The priority of the process to be switched in
							

	prev_task_name
	
								The name of the process to be switched out
							

	next_task_name
	
								The name of the process to be switched in
							

 ⁠
Name
probe::scheduler.kthread_stop — A thread created by kthread_create is being stopped

 ⁠Synopsis
scheduler.kthread_stop

 ⁠Values
	thread_pid
	
								PID of the thread being stopped
							

	thread_priority
	
								priority of the thread
							

 ⁠
Name
probe::scheduler.kthread_stop.return — A kthread is stopped and gets the return value

 ⁠Synopsis
scheduler.kthread_stop.return

 ⁠Values
	return_value
	
								return value after stopping the thread
							

	name
	
								name of the probe point
							

 ⁠
Name
probe::scheduler.migrate — Task migrating across cpus

 ⁠Synopsis
scheduler.migrate

 ⁠Values
	priority
	
								priority of the task being migrated
							

	cpu_to
	
								the destination cpu
							

	cpu_from
	
								the original cpu
							

	task
	
								the process that is being migrated
							

	name
	
								name of the probe point
							

	pid
	
								PID of the task being migrated
							

 ⁠
Name
probe::scheduler.process_exit — Process exiting

 ⁠Synopsis
scheduler.process_exit

 ⁠Values
	name
	
								name of the probe point
							

	pid
	
								PID of the process exiting
							

	priority
	
								priority of the process exiting
							

 ⁠
Name
probe::scheduler.process_fork — Process forked

 ⁠Synopsis
scheduler.process_fork

 ⁠Values
	name
	
								name of the probe point
							

	parent_pid
	
								PID of the parent process
							

	child_pid
	
								PID of the child process
							

 ⁠
Name
probe::scheduler.process_free — Scheduler freeing a data structure for a process

 ⁠Synopsis
scheduler.process_free

 ⁠Values
	name
	
								name of the probe point
							

	pid
	
								PID of the process getting freed
							

	priority
	
								priority of the process getting freed
							

 ⁠
Name
probe::scheduler.process_wait — Scheduler starting to wait on a process

 ⁠Synopsis
scheduler.process_wait

 ⁠Values
	name
	
								name of the probe point
							

	pid
	
								PID of the process scheduler is waiting on
							

 ⁠
Name
probe::scheduler.signal_send — Sending a signal

 ⁠Synopsis
scheduler.signal_send

 ⁠Values
	pid
	
								pid of the process sending signal
							

	name
	
								name of the probe point
							

	signal_number
	
								signal number
							

 ⁠
Name
probe::scheduler.tick — Schedulers internal tick, a processes timeslice accounting is updated

 ⁠Synopsis
scheduler.tick

 ⁠Values
	idle
	
								boolean indicating whether current is the idle process
							

	name
	
								name of the probe point
							

 ⁠Context

					The process whose accounting will be updated.
				

 ⁠
Name
probe::scheduler.wait_task — Waiting on a task to unschedule (become inactive)

 ⁠Synopsis
scheduler.wait_task

 ⁠Values
	task_pid
	
								PID of the task the scheduler is waiting on
							

	name
	
								name of the probe point
							

	task_priority
	
								priority of the task
							

 ⁠
Name
probe::scheduler.wakeup — Task is woken up

 ⁠Synopsis
scheduler.wakeup

 ⁠Values
	task_tid
	
								tid of the task being woken up
							

	task_priority
	
								priority of the task being woken up
							

	task_cpu
	
								cpu of the task being woken up
							

	task_pid
	
								PID of the task being woken up
							

	name
	
								name of the probe point
							

	task_state
	
								state of the task being woken up
							

 ⁠
Name
probe::scheduler.wakeup_new — Newly created task is woken up for the first time

 ⁠Synopsis
scheduler.wakeup_new

 ⁠Values
	name
	
								name of the probe point
							

	task_state
	
								state of the task woken up
							

	task_pid
	
								PID of the new task woken up
							

	task_tid
	
								TID of the new task woken up
							

	task_priority
	
								priority of the new task
							

	task_cpu
	
								cpu of the task woken up
							

 ⁠
Name
probe::scheduler.balance — A cpu attempting to find more work.

 ⁠Synopsis
scheduler.balance

 ⁠Values
	name
	
								name of the probe point
							

 ⁠Context

					The cpu looking for more work.
				

 ⁠
Name
probe::scheduler.cpu_off — Process is about to stop running on a cpu

 ⁠Synopsis
scheduler.cpu_off

 ⁠Values
	task_prev
	
								the process leaving the cpu (same as current)
							

	idle
	
								boolean indicating whether current is the idle process
							

	name
	
								name of the probe point
							

	task_next
	
								the process replacing current
							

 ⁠Context

					The process leaving the cpu.
				

 ⁠
Name
probe::scheduler.cpu_on — Process is beginning execution on a cpu

 ⁠Synopsis
scheduler.cpu_on

 ⁠Values
	idle
	
								- boolean indicating whether current is the idle process
							

	task_prev
	
								the process that was previously running on this cpu
							

	name
	
								name of the probe point
							

 ⁠Context

					The resuming process.
				

 ⁠
Name
probe::scheduler.ctxswitch — A context switch is occuring.

 ⁠Synopsis
scheduler.ctxswitch

 ⁠Values
	prev_tid
	
								The TID of the process to be switched out
							

	name
	
								name of the probe point
							

	next_tid
	
								The TID of the process to be switched in
							

	prev_pid
	
								The PID of the process to be switched out
							

	prevtsk_state
	
								the state of the process to be switched out
							

	next_pid
	
								The PID of the process to be switched in
							

	nexttsk_state
	
								the state of the process to be switched in
							

	prev_priority
	
								The priority of the process to be switched out
							

	next_priority
	
								The priority of the process to be switched in
							

	prev_task_name
	
								The name of the process to be switched out
							

	next_task_name
	
								The name of the process to be switched in
							

 ⁠
Name
probe::scheduler.kthread_stop — A thread created by kthread_create is being stopped

 ⁠Synopsis
scheduler.kthread_stop

 ⁠Values
	thread_pid
	
								PID of the thread being stopped
							

	thread_priority
	
								priority of the thread
							

 ⁠
Name
probe::scheduler.kthread_stop.return — A kthread is stopped and gets the return value

 ⁠Synopsis
scheduler.kthread_stop.return

 ⁠Values
	return_value
	
								return value after stopping the thread
							

	name
	
								name of the probe point
							

 ⁠
Name
probe::scheduler.migrate — Task migrating across cpus

 ⁠Synopsis
scheduler.migrate

 ⁠Values
	priority
	
								priority of the task being migrated
							

	cpu_to
	
								the destination cpu
							

	cpu_from
	
								the original cpu
							

	task
	
								the process that is being migrated
							

	name
	
								name of the probe point
							

	pid
	
								PID of the task being migrated
							

 ⁠
Name
probe::scheduler.process_exit — Process exiting

 ⁠Synopsis
scheduler.process_exit

 ⁠Values
	name
	
								name of the probe point
							

	pid
	
								PID of the process exiting
							

	priority
	
								priority of the process exiting
							

 ⁠
Name
probe::scheduler.process_fork — Process forked

 ⁠Synopsis
scheduler.process_fork

 ⁠Values
	name
	
								name of the probe point
							

	parent_pid
	
								PID of the parent process
							

	child_pid
	
								PID of the child process
							

 ⁠
Name
probe::scheduler.process_free — Scheduler freeing a data structure for a process

 ⁠Synopsis
scheduler.process_free

 ⁠Values
	name
	
								name of the probe point
							

	pid
	
								PID of the process getting freed
							

	priority
	
								priority of the process getting freed
							

 ⁠
Name
probe::scheduler.process_wait — Scheduler starting to wait on a process

 ⁠Synopsis
scheduler.process_wait

 ⁠Values
	name
	
								name of the probe point
							

	pid
	
								PID of the process scheduler is waiting on
							

 ⁠
Name
probe::scheduler.signal_send — Sending a signal

 ⁠Synopsis
scheduler.signal_send

 ⁠Values
	pid
	
								pid of the process sending signal
							

	name
	
								name of the probe point
							

	signal_number
	
								signal number
							

 ⁠
Name
probe::scheduler.tick — Schedulers internal tick, a processes timeslice accounting is updated

 ⁠Synopsis
scheduler.tick

 ⁠Values
	idle
	
								boolean indicating whether current is the idle process
							

	name
	
								name of the probe point
							

 ⁠Context

					The process whose accounting will be updated.
				

 ⁠
Name
probe::scheduler.wait_task — Waiting on a task to unschedule (become inactive)

 ⁠Synopsis
scheduler.wait_task

 ⁠Values
	task_pid
	
								PID of the task the scheduler is waiting on
							

	name
	
								name of the probe point
							

	task_priority
	
								priority of the task
							

 ⁠
Name
probe::scheduler.wakeup — Task is woken up

 ⁠Synopsis
scheduler.wakeup

 ⁠Values
	task_tid
	
								tid of the task being woken up
							

	task_priority
	
								priority of the task being woken up
							

	task_cpu
	
								cpu of the task being woken up
							

	task_pid
	
								PID of the task being woken up
							

	name
	
								name of the probe point
							

	task_state
	
								state of the task being woken up
							

 ⁠
Name
probe::scheduler.wakeup_new — Newly created task is woken up for the first time

 ⁠Synopsis
scheduler.wakeup_new

 ⁠Values
	name
	
								name of the probe point
							

	task_state
	
								state of the task woken up
							

	task_pid
	
								PID of the new task woken up
							

	task_tid
	
								TID of the new task woken up
							

	task_priority
	
								priority of the new task
							

	task_cpu
	
								cpu of the task woken up
							

 ⁠Chapter 10. IO Scheduler and block IO Tapset

			This family of probe points is used to probe block IO layer and IO scheduler activities. It contains the following probe points:
		

 ⁠
Name
probe::ioblock.end — Fires whenever a block I/O transfer is complete.

 ⁠Synopsis
ioblock.end

 ⁠Values
	name
	
								name of the probe point
							

	sector
	
								beginning sector for the entire bio
							

	hw_segments
	
								number of segments after physical and DMA remapping hardware coalescing is performed
							

	phys_segments
	
								number of segments in this bio after physical address coalescing is performed.
							

	flags
	
								see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported
							

	devname
	
								block device name
							

	bytes_done
	
								number of bytes transferred
							

	error
	
								0 on success
							

	size
	
								total size in bytes
							

	idx
	
								offset into the bio vector array
							

	vcnt
	
								bio vector count which represents number of array element (page, offset, length) which makes up this I/O request
							

	ino
	
								i-node number of the mapped file
							

	rw
	
								binary trace for read/write request
							

 ⁠Context

					The process signals the transfer is done.
				

 ⁠
Name
probe::ioblock.request — Fires whenever making a generic block I/O request.

 ⁠Synopsis
ioblock.request

 ⁠Values
	sector
	
								beginning sector for the entire bio
							

	name
	
								name of the probe point
							

	devname
	
								block device name
							

	phys_segments
	
								number of segments in this bio after physical address coalescing is performed
							

	flags
	
								see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported
							

	hw_segments
	
								number of segments after physical and DMA remapping hardware coalescing is performed
							

	bdev_contains
	
								points to the device object which contains the partition (when bio structure represents a partition)
							

	vcnt
	
								bio vector count which represents number of array element (page, offset, length) which make up this I/O request
							

	idx
	
								offset into the bio vector array
							

	bdev
	
								target block device
							

	p_start_sect
	
								points to the start sector of the partition structure of the device
							

	size
	
								total size in bytes
							

	ino
	
								i-node number of the mapped file
							

	rw
	
								binary trace for read/write request
							

 ⁠Context

					The process makes block I/O request
				

 ⁠
Name
probe::ioblock_trace.bounce — Fires whenever a buffer bounce is needed for at least one page of a block IO request.

 ⁠Synopsis
ioblock_trace.bounce

 ⁠Values
	q
	
								request queue on which this bio was queued.
							

	size
	
								total size in bytes
							

	vcnt
	
								bio vector count which represents number of array element (page, offset, length) which makes up this I/O request
							

	idx
	
								offset into the bio vector array phys_segments - number of segments in this bio after physical address coalescing is performed.
							

	bdev
	
								target block device
							

	p_start_sect
	
								points to the start sector of the partition structure of the device
							

	ino
	
								i-node number of the mapped file
							

	rw
	
								binary trace for read/write request
							

	name
	
								name of the probe point
							

	sector
	
								beginning sector for the entire bio
							

	bdev_contains
	
								points to the device object which contains the partition (when bio structure represents a partition)
							

	devname
	
								device for which a buffer bounce was needed.
							

	flags
	
								see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported
							

	bytes_done
	
								number of bytes transferred
							

 ⁠Context

					The process creating a block IO request.
				

 ⁠
Name
probe::ioblock_trace.end — Fires whenever a block I/O transfer is complete.

 ⁠Synopsis
ioblock_trace.end

 ⁠Values
	bdev_contains
	
								points to the device object which contains the partition (when bio structure represents a partition)
							

	flags
	
								see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported
							

	devname
	
								block device name
							

	bytes_done
	
								number of bytes transferred
							

	name
	
								name of the probe point
							

	sector
	
								beginning sector for the entire bio
							

	ino
	
								i-node number of the mapped file
							

	rw
	
								binary trace for read/write request
							

	size
	
								total size in bytes
							

	q
	
								request queue on which this bio was queued.
							

	idx
	
								offset into the bio vector array phys_segments - number of segments in this bio after physical address coalescing is performed.
							

	vcnt
	
								bio vector count which represents number of array element (page, offset, length) which makes up this I/O request
							

	bdev
	
								target block device
							

	p_start_sect
	
								points to the start sector of the partition structure of the device
							

 ⁠Context

					The process signals the transfer is done.
				

 ⁠
Name
probe::ioblock_trace.request — Fires just as a generic block I/O request is created for a bio.

 ⁠Synopsis
ioblock_trace.request

 ⁠Values
	q
	
								request queue on which this bio was queued.
							

	size
	
								total size in bytes
							

	idx
	
								offset into the bio vector array phys_segments - number of segments in this bio after physical address coalescing is performed.
							

	vcnt
	
								bio vector count which represents number of array element (page, offset, length) which make up this I/O request
							

	bdev
	
								target block device
							

	p_start_sect
	
								points to the start sector of the partition structure of the device
							

	ino
	
								i-node number of the mapped file
							

	rw
	
								binary trace for read/write request
							

	name
	
								name of the probe point
							

	sector
	
								beginning sector for the entire bio
							

	bdev_contains
	
								points to the device object which contains the partition (when bio structure represents a partition)
							

	devname
	
								block device name
							

	flags
	
								see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported
							

	bytes_done
	
								number of bytes transferred
							

 ⁠Context

					The process makes block I/O request
				

 ⁠
Name
probe::ioscheduler.elv_add_request — probe to indicate request is added to the request queue.

 ⁠Synopsis
ioscheduler.elv_add_request

 ⁠Values
	rq
	
								Address of request.
							

	q
	
								Pointer to request queue.
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	disk_major
	
								Disk major no of request.
							

	disk_minor
	
								Disk minor number of request.
							

	rq_flags
	
								Request flags.
							

 ⁠
Name
probe::ioscheduler.elv_add_request.kp — kprobe based probe to indicate that a request was added to the request queue

 ⁠Synopsis
ioscheduler.elv_add_request.kp

 ⁠Values
	disk_major
	
								Disk major number of the request
							

	disk_minor
	
								Disk minor number of the request
							

	rq_flags
	
								Request flags
							

	elevator_name
	
								The type of I/O elevator currently enabled
							

	q
	
								pointer to request queue
							

	rq
	
								Address of the request
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::ioscheduler.elv_add_request.tp — tracepoint based probe to indicate a request is added to the request queue.

 ⁠Synopsis
ioscheduler.elv_add_request.tp

 ⁠Values
	q
	
								Pointer to request queue.
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	name
	
								Name of the probe point
							

	rq
	
								Address of request.
							

	disk_major
	
								Disk major no of request.
							

	disk_minor
	
								Disk minor number of request.
							

	rq_flags
	
								Request flags.
							

 ⁠
Name
probe::ioscheduler.elv_completed_request — Fires when a request is completed

 ⁠Synopsis
ioscheduler.elv_completed_request

 ⁠Values
	name
	
								Name of the probe point
							

	rq
	
								Address of the request
							

	elevator_name
	
								The type of I/O elevator currently enabled
							

	disk_major
	
								Disk major number of the request
							

	disk_minor
	
								Disk minor number of the request
							

	rq_flags
	
								Request flags
							

 ⁠
Name
probe::ioscheduler.elv_next_request — Fires when a request is retrieved from the request queue

 ⁠Synopsis
ioscheduler.elv_next_request

 ⁠Values
	elevator_name
	
								The type of I/O elevator currently enabled
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::ioscheduler.elv_next_request.return — Fires when a request retrieval issues a return signal

 ⁠Synopsis
ioscheduler.elv_next_request.return

 ⁠Values
	disk_major
	
								Disk major number of the request
							

	disk_minor
	
								Disk minor number of the request
							

	rq_flags
	
								Request flags
							

	rq
	
								Address of the request
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::ioscheduler_trace.elv_abort_request — Fires when a request is aborted.

 ⁠Synopsis
ioscheduler_trace.elv_abort_request

 ⁠Values
	disk_major
	
								Disk major no of request.
							

	disk_minor
	
								Disk minor number of request.
							

	rq_flags
	
								Request flags.
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	rq
	
								Address of request.
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::ioscheduler_trace.elv_completed_request — Fires when a request is

 ⁠Synopsis
ioscheduler_trace.elv_completed_request

 ⁠Values
	elevator_name
	
								The type of I/O elevator currently enabled.
							

	rq
	
								Address of request.
							

	name
	
								Name of the probe point
							

	rq_flags
	
								Request flags.
							

	disk_minor
	
								Disk minor number of request.
							

	disk_major
	
								Disk major no of request.
							

 ⁠Description

					completed.
				

 ⁠
Name
probe::ioscheduler_trace.elv_issue_request — Fires when a request is

 ⁠Synopsis
ioscheduler_trace.elv_issue_request

 ⁠Values
	rq_flags
	
								Request flags.
							

	disk_minor
	
								Disk minor number of request.
							

	disk_major
	
								Disk major no of request.
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	rq
	
								Address of request.
							

	name
	
								Name of the probe point
							

 ⁠Description

					scheduled.
				

 ⁠
Name
probe::ioscheduler_trace.elv_requeue_request — Fires when a request is

 ⁠Synopsis
ioscheduler_trace.elv_requeue_request

 ⁠Values
	rq
	
								Address of request.
							

	name
	
								Name of the probe point
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	rq_flags
	
								Request flags.
							

	disk_minor
	
								Disk minor number of request.
							

	disk_major
	
								Disk major no of request.
							

 ⁠Description

					put back on the queue, when the hadware cannot accept more requests.
				

 ⁠
Name
probe::ioscheduler_trace.plug — Fires when a request queue is plugged;

 ⁠Synopsis
ioscheduler_trace.plug

 ⁠Values
	rq_queue
	
								request queue
							

	name
	
								Name of the probe point
							

 ⁠Description

					ie, requests in the queue cannot be serviced by block driver.
				

 ⁠
Name
probe::ioscheduler_trace.unplug_io — Fires when a request queue is unplugged;

 ⁠Synopsis
ioscheduler_trace.unplug_io

 ⁠Values
	name
	
								Name of the probe point
							

	rq_queue
	
								request queue
							

 ⁠Description

					Either, when number of pending requests in the queue exceeds threshold or, upon expiration of timer that was activated when queue was plugged.
				

 ⁠
Name
probe::ioscheduler_trace.unplug_timer — Fires when unplug timer associated

 ⁠Synopsis
ioscheduler_trace.unplug_timer

 ⁠Values
	rq_queue
	
								request queue
							

	name
	
								Name of the probe point
							

 ⁠Description

					with a request queue expires.
				

 ⁠
Name
probe::ioblock.end — Fires whenever a block I/O transfer is complete.

 ⁠Synopsis
ioblock.end

 ⁠Values
	name
	
								name of the probe point
							

	sector
	
								beginning sector for the entire bio
							

	hw_segments
	
								number of segments after physical and DMA remapping hardware coalescing is performed
							

	phys_segments
	
								number of segments in this bio after physical address coalescing is performed.
							

	flags
	
								see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported
							

	devname
	
								block device name
							

	bytes_done
	
								number of bytes transferred
							

	error
	
								0 on success
							

	size
	
								total size in bytes
							

	idx
	
								offset into the bio vector array
							

	vcnt
	
								bio vector count which represents number of array element (page, offset, length) which makes up this I/O request
							

	ino
	
								i-node number of the mapped file
							

	rw
	
								binary trace for read/write request
							

 ⁠Context

					The process signals the transfer is done.
				

 ⁠
Name
probe::ioblock.request — Fires whenever making a generic block I/O request.

 ⁠Synopsis
ioblock.request

 ⁠Values
	sector
	
								beginning sector for the entire bio
							

	name
	
								name of the probe point
							

	devname
	
								block device name
							

	phys_segments
	
								number of segments in this bio after physical address coalescing is performed
							

	flags
	
								see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported
							

	hw_segments
	
								number of segments after physical and DMA remapping hardware coalescing is performed
							

	bdev_contains
	
								points to the device object which contains the partition (when bio structure represents a partition)
							

	vcnt
	
								bio vector count which represents number of array element (page, offset, length) which make up this I/O request
							

	idx
	
								offset into the bio vector array
							

	bdev
	
								target block device
							

	p_start_sect
	
								points to the start sector of the partition structure of the device
							

	size
	
								total size in bytes
							

	ino
	
								i-node number of the mapped file
							

	rw
	
								binary trace for read/write request
							

 ⁠Context

					The process makes block I/O request
				

 ⁠
Name
probe::ioblock_trace.bounce — Fires whenever a buffer bounce is needed for at least one page of a block IO request.

 ⁠Synopsis
ioblock_trace.bounce

 ⁠Values
	q
	
								request queue on which this bio was queued.
							

	size
	
								total size in bytes
							

	vcnt
	
								bio vector count which represents number of array element (page, offset, length) which makes up this I/O request
							

	idx
	
								offset into the bio vector array phys_segments - number of segments in this bio after physical address coalescing is performed.
							

	bdev
	
								target block device
							

	p_start_sect
	
								points to the start sector of the partition structure of the device
							

	ino
	
								i-node number of the mapped file
							

	rw
	
								binary trace for read/write request
							

	name
	
								name of the probe point
							

	sector
	
								beginning sector for the entire bio
							

	bdev_contains
	
								points to the device object which contains the partition (when bio structure represents a partition)
							

	devname
	
								device for which a buffer bounce was needed.
							

	flags
	
								see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported
							

	bytes_done
	
								number of bytes transferred
							

 ⁠Context

					The process creating a block IO request.
				

 ⁠
Name
probe::ioblock_trace.end — Fires whenever a block I/O transfer is complete.

 ⁠Synopsis
ioblock_trace.end

 ⁠Values
	bdev_contains
	
								points to the device object which contains the partition (when bio structure represents a partition)
							

	flags
	
								see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported
							

	devname
	
								block device name
							

	bytes_done
	
								number of bytes transferred
							

	name
	
								name of the probe point
							

	sector
	
								beginning sector for the entire bio
							

	ino
	
								i-node number of the mapped file
							

	rw
	
								binary trace for read/write request
							

	size
	
								total size in bytes
							

	q
	
								request queue on which this bio was queued.
							

	idx
	
								offset into the bio vector array phys_segments - number of segments in this bio after physical address coalescing is performed.
							

	vcnt
	
								bio vector count which represents number of array element (page, offset, length) which makes up this I/O request
							

	bdev
	
								target block device
							

	p_start_sect
	
								points to the start sector of the partition structure of the device
							

 ⁠Context

					The process signals the transfer is done.
				

 ⁠
Name
probe::ioblock_trace.request — Fires just as a generic block I/O request is created for a bio.

 ⁠Synopsis
ioblock_trace.request

 ⁠Values
	q
	
								request queue on which this bio was queued.
							

	size
	
								total size in bytes
							

	idx
	
								offset into the bio vector array phys_segments - number of segments in this bio after physical address coalescing is performed.
							

	vcnt
	
								bio vector count which represents number of array element (page, offset, length) which make up this I/O request
							

	bdev
	
								target block device
							

	p_start_sect
	
								points to the start sector of the partition structure of the device
							

	ino
	
								i-node number of the mapped file
							

	rw
	
								binary trace for read/write request
							

	name
	
								name of the probe point
							

	sector
	
								beginning sector for the entire bio
							

	bdev_contains
	
								points to the device object which contains the partition (when bio structure represents a partition)
							

	devname
	
								block device name
							

	flags
	
								see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported
							

	bytes_done
	
								number of bytes transferred
							

 ⁠Context

					The process makes block I/O request
				

 ⁠
Name
probe::ioscheduler.elv_add_request — probe to indicate request is added to the request queue.

 ⁠Synopsis
ioscheduler.elv_add_request

 ⁠Values
	rq
	
								Address of request.
							

	q
	
								Pointer to request queue.
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	disk_major
	
								Disk major no of request.
							

	disk_minor
	
								Disk minor number of request.
							

	rq_flags
	
								Request flags.
							

 ⁠
Name
probe::ioscheduler.elv_add_request.kp — kprobe based probe to indicate that a request was added to the request queue

 ⁠Synopsis
ioscheduler.elv_add_request.kp

 ⁠Values
	disk_major
	
								Disk major number of the request
							

	disk_minor
	
								Disk minor number of the request
							

	rq_flags
	
								Request flags
							

	elevator_name
	
								The type of I/O elevator currently enabled
							

	q
	
								pointer to request queue
							

	rq
	
								Address of the request
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::ioscheduler.elv_add_request.tp — tracepoint based probe to indicate a request is added to the request queue.

 ⁠Synopsis
ioscheduler.elv_add_request.tp

 ⁠Values
	q
	
								Pointer to request queue.
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	name
	
								Name of the probe point
							

	rq
	
								Address of request.
							

	disk_major
	
								Disk major no of request.
							

	disk_minor
	
								Disk minor number of request.
							

	rq_flags
	
								Request flags.
							

 ⁠
Name
probe::ioscheduler.elv_completed_request — Fires when a request is completed

 ⁠Synopsis
ioscheduler.elv_completed_request

 ⁠Values
	name
	
								Name of the probe point
							

	rq
	
								Address of the request
							

	elevator_name
	
								The type of I/O elevator currently enabled
							

	disk_major
	
								Disk major number of the request
							

	disk_minor
	
								Disk minor number of the request
							

	rq_flags
	
								Request flags
							

 ⁠
Name
probe::ioscheduler.elv_next_request — Fires when a request is retrieved from the request queue

 ⁠Synopsis
ioscheduler.elv_next_request

 ⁠Values
	elevator_name
	
								The type of I/O elevator currently enabled
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::ioscheduler.elv_next_request.return — Fires when a request retrieval issues a return signal

 ⁠Synopsis
ioscheduler.elv_next_request.return

 ⁠Values
	disk_major
	
								Disk major number of the request
							

	disk_minor
	
								Disk minor number of the request
							

	rq_flags
	
								Request flags
							

	rq
	
								Address of the request
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::ioscheduler_trace.elv_abort_request — Fires when a request is aborted.

 ⁠Synopsis
ioscheduler_trace.elv_abort_request

 ⁠Values
	disk_major
	
								Disk major no of request.
							

	disk_minor
	
								Disk minor number of request.
							

	rq_flags
	
								Request flags.
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	rq
	
								Address of request.
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::ioscheduler_trace.elv_completed_request — Fires when a request is

 ⁠Synopsis
ioscheduler_trace.elv_completed_request

 ⁠Values
	elevator_name
	
								The type of I/O elevator currently enabled.
							

	rq
	
								Address of request.
							

	name
	
								Name of the probe point
							

	rq_flags
	
								Request flags.
							

	disk_minor
	
								Disk minor number of request.
							

	disk_major
	
								Disk major no of request.
							

 ⁠Description

					completed.
				

 ⁠
Name
probe::ioscheduler_trace.elv_issue_request — Fires when a request is

 ⁠Synopsis
ioscheduler_trace.elv_issue_request

 ⁠Values
	rq_flags
	
								Request flags.
							

	disk_minor
	
								Disk minor number of request.
							

	disk_major
	
								Disk major no of request.
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	rq
	
								Address of request.
							

	name
	
								Name of the probe point
							

 ⁠Description

					scheduled.
				

 ⁠
Name
probe::ioscheduler_trace.elv_requeue_request — Fires when a request is

 ⁠Synopsis
ioscheduler_trace.elv_requeue_request

 ⁠Values
	rq
	
								Address of request.
							

	name
	
								Name of the probe point
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	rq_flags
	
								Request flags.
							

	disk_minor
	
								Disk minor number of request.
							

	disk_major
	
								Disk major no of request.
							

 ⁠Description

					put back on the queue, when the hadware cannot accept more requests.
				

 ⁠
Name
probe::ioscheduler_trace.plug — Fires when a request queue is plugged;

 ⁠Synopsis
ioscheduler_trace.plug

 ⁠Values
	rq_queue
	
								request queue
							

	name
	
								Name of the probe point
							

 ⁠Description

					ie, requests in the queue cannot be serviced by block driver.
				

 ⁠
Name
probe::ioscheduler_trace.unplug_io — Fires when a request queue is unplugged;

 ⁠Synopsis
ioscheduler_trace.unplug_io

 ⁠Values
	name
	
								Name of the probe point
							

	rq_queue
	
								request queue
							

 ⁠Description

					Either, when number of pending requests in the queue exceeds threshold or, upon expiration of timer that was activated when queue was plugged.
				

 ⁠
Name
probe::ioscheduler_trace.unplug_timer — Fires when unplug timer associated

 ⁠Synopsis
ioscheduler_trace.unplug_timer

 ⁠Values
	rq_queue
	
								request queue
							

	name
	
								Name of the probe point
							

 ⁠Description

					with a request queue expires.
				

 ⁠Chapter 11. SCSI Tapset

			This family of probe points is used to probe SCSI activities. It contains the following probe points:
		

 ⁠
Name
probe::scsi.iocompleted — SCSI mid-layer running the completion processing for block device I/O requests

 ⁠Synopsis
scsi.iocompleted

 ⁠Values
	device_state
	
								The current state of the device
							

	dev_id
	
								The scsi device id
							

	req_addr
	
								The current struct request pointer, as a number
							

	data_direction_str
	
								Data direction, as a string
							

	device_state_str
	
								The current state of the device, as a string
							

	lun
	
								The lun number
							

	goodbytes
	
								The bytes completed
							

	data_direction
	
								The data_direction specifies whether this command is from/to the device
							

	channel
	
								The channel number
							

	host_no
	
								The host number
							

 ⁠
Name
probe::scsi.iodispatching — SCSI mid-layer dispatched low-level SCSI command

 ⁠Synopsis
scsi.iodispatching

 ⁠Values
	device_state
	
								The current state of the device
							

	request_bufflen
	
								The request buffer length
							

	request_buffer
	
								The request buffer address
							

	dev_id
	
								The scsi device id
							

	data_direction_str
	
								Data direction, as a string
							

	req_addr
	
								The current struct request pointer, as a number
							

	device_state_str
	
								The current state of the device, as a string
							

	lun
	
								The lun number
							

	data_direction
	
								The data_direction specifies whether this command is from/to the device 0 (DMA_BIDIRECTIONAL), 1 (DMA_TO_DEVICE), 2 (DMA_FROM_DEVICE), 3 (DMA_NONE)
							

	channel
	
								The channel number
							

	host_no
	
								The host number
							

 ⁠
Name
probe::scsi.iodone — SCSI command completed by low level driver and enqueued into the done queue.

 ⁠Synopsis
scsi.iodone

 ⁠Values
	device_state
	
								The current state of the device
							

	data_direction_str
	
								Data direction, as a string
							

	req_addr
	
								The current struct request pointer, as a number
							

	dev_id
	
								The scsi device id
							

	lun
	
								The lun number
							

	scsi_timer_pending
	
								1 if a timer is pending on this request
							

	device_state_str
	
								The current state of the device, as a string
							

	host_no
	
								The host number
							

	channel
	
								The channel number
							

	data_direction
	
								The data_direction specifies whether this command is from/to the device.
							

 ⁠
Name
probe::scsi.ioentry — Prepares a SCSI mid-layer request

 ⁠Synopsis
scsi.ioentry

 ⁠Values
	req_addr
	
								The current struct request pointer, as a number
							

	disk_major
	
								The major number of the disk (-1 if no information)
							

	device_state_str
	
								The current state of the device, as a string
							

	disk_minor
	
								The minor number of the disk (-1 if no information)
							

	device_state
	
								The current state of the device
							

 ⁠
Name
probe::scsi.ioexecute — Create mid-layer SCSI request and wait for the result

 ⁠Synopsis
scsi.ioexecute

 ⁠Values
	host_no
	
								The host number
							

	channel
	
								The channel number
							

	data_direction
	
								The data_direction specifies whether this command is from/to the device.
							

	lun
	
								The lun number
							

	retries
	
								Number of times to retry request
							

	device_state_str
	
								The current state of the device, as a string
							

	data_direction_str
	
								Data direction, as a string
							

	dev_id
	
								The scsi device id
							

	request_buffer
	
								The data buffer address
							

	request_bufflen
	
								The data buffer buffer length
							

	device_state
	
								The current state of the device
							

	timeout
	
								Request timeout in seconds
							

 ⁠
Name
probe::scsi.set_state — Order SCSI device state change

 ⁠Synopsis
scsi.set_state

 ⁠Values
	state
	
								The new state of the device
							

	old_state
	
								The current state of the device
							

	dev_id
	
								The scsi device id
							

	state_str
	
								The new state of the device, as a string
							

	old_state_str
	
								The current state of the device, as a string
							

	lun
	
								The lun number
							

	channel
	
								The channel number
							

	host_no
	
								The host number
							

 ⁠
Name
probe::scsi.iocompleted — SCSI mid-layer running the completion processing for block device I/O requests

 ⁠Synopsis
scsi.iocompleted

 ⁠Values
	device_state
	
								The current state of the device
							

	dev_id
	
								The scsi device id
							

	req_addr
	
								The current struct request pointer, as a number
							

	data_direction_str
	
								Data direction, as a string
							

	device_state_str
	
								The current state of the device, as a string
							

	lun
	
								The lun number
							

	goodbytes
	
								The bytes completed
							

	data_direction
	
								The data_direction specifies whether this command is from/to the device
							

	channel
	
								The channel number
							

	host_no
	
								The host number
							

 ⁠
Name
probe::scsi.iodispatching — SCSI mid-layer dispatched low-level SCSI command

 ⁠Synopsis
scsi.iodispatching

 ⁠Values
	device_state
	
								The current state of the device
							

	request_bufflen
	
								The request buffer length
							

	request_buffer
	
								The request buffer address
							

	dev_id
	
								The scsi device id
							

	data_direction_str
	
								Data direction, as a string
							

	req_addr
	
								The current struct request pointer, as a number
							

	device_state_str
	
								The current state of the device, as a string
							

	lun
	
								The lun number
							

	data_direction
	
								The data_direction specifies whether this command is from/to the device 0 (DMA_BIDIRECTIONAL), 1 (DMA_TO_DEVICE), 2 (DMA_FROM_DEVICE), 3 (DMA_NONE)
							

	channel
	
								The channel number
							

	host_no
	
								The host number
							

 ⁠
Name
probe::scsi.iodone — SCSI command completed by low level driver and enqueued into the done queue.

 ⁠Synopsis
scsi.iodone

 ⁠Values
	device_state
	
								The current state of the device
							

	data_direction_str
	
								Data direction, as a string
							

	req_addr
	
								The current struct request pointer, as a number
							

	dev_id
	
								The scsi device id
							

	lun
	
								The lun number
							

	scsi_timer_pending
	
								1 if a timer is pending on this request
							

	device_state_str
	
								The current state of the device, as a string
							

	host_no
	
								The host number
							

	channel
	
								The channel number
							

	data_direction
	
								The data_direction specifies whether this command is from/to the device.
							

 ⁠
Name
probe::scsi.ioentry — Prepares a SCSI mid-layer request

 ⁠Synopsis
scsi.ioentry

 ⁠Values
	req_addr
	
								The current struct request pointer, as a number
							

	disk_major
	
								The major number of the disk (-1 if no information)
							

	device_state_str
	
								The current state of the device, as a string
							

	disk_minor
	
								The minor number of the disk (-1 if no information)
							

	device_state
	
								The current state of the device
							

 ⁠
Name
probe::scsi.ioexecute — Create mid-layer SCSI request and wait for the result

 ⁠Synopsis
scsi.ioexecute

 ⁠Values
	host_no
	
								The host number
							

	channel
	
								The channel number
							

	data_direction
	
								The data_direction specifies whether this command is from/to the device.
							

	lun
	
								The lun number
							

	retries
	
								Number of times to retry request
							

	device_state_str
	
								The current state of the device, as a string
							

	data_direction_str
	
								Data direction, as a string
							

	dev_id
	
								The scsi device id
							

	request_buffer
	
								The data buffer address
							

	request_bufflen
	
								The data buffer buffer length
							

	device_state
	
								The current state of the device
							

	timeout
	
								Request timeout in seconds
							

 ⁠
Name
probe::scsi.set_state — Order SCSI device state change

 ⁠Synopsis
scsi.set_state

 ⁠Values
	state
	
								The new state of the device
							

	old_state
	
								The current state of the device
							

	dev_id
	
								The scsi device id
							

	state_str
	
								The new state of the device, as a string
							

	old_state_str
	
								The current state of the device, as a string
							

	lun
	
								The lun number
							

	channel
	
								The channel number
							

	host_no
	
								The host number
							

 ⁠Chapter 12. TTY Tapset

			This family of probe points is used to probe TTY (Teletype) activities. It contains the following probe points:
		

 ⁠
Name
probe::tty.init — Called when a tty is being initalized

 ⁠Synopsis
tty.init

 ⁠Values
	name
	
								the driver .dev_name name
							

	module
	
								the module name
							

	driver_name
	
								the driver name
							

 ⁠
Name
probe::tty.ioctl — called when a ioctl is request to the tty

 ⁠Synopsis
tty.ioctl

 ⁠Values
	arg
	
								the ioctl argument
							

	name
	
								the file name
							

	cmd
	
								the ioctl command
							

 ⁠
Name
probe::tty.open — Called when a tty is opened

 ⁠Synopsis
tty.open

 ⁠Values
	inode_state
	
								the inode state
							

	file_mode
	
								the file mode
							

	inode_number
	
								the inode number
							

	file_flags
	
								the file flags
							

	file_name
	
								the file name
							

	inode_flags
	
								the inode flags
							

 ⁠
Name
probe::tty.poll — Called when a tty device is being polled

 ⁠Synopsis
tty.poll

 ⁠Values
	file_name
	
								the tty file name
							

	wait_key
	
								the wait queue key
							

 ⁠
Name
probe::tty.read — called when a tty line will be read

 ⁠Synopsis
tty.read

 ⁠Values
	file_name
	
								the file name lreated to the tty
							

	driver_name
	
								the driver name
							

	nr
	
								The amount of characters to be read
							

	buffer
	
								the buffer that will receive the characters
							

 ⁠
Name
probe::tty.receive — called when a tty receives a message

 ⁠Synopsis
tty.receive

 ⁠Values
	driver_name
	
								the driver name
							

	count
	
								The amount of characters received
							

	index
	
								The tty Index
							

	cp
	
								the buffer that was received
							

	id
	
								the tty id
							

	name
	
								the name of the module file
							

	fp
	
								The flag buffer
							

 ⁠
Name
probe::tty.register — Called when a tty device is registred

 ⁠Synopsis
tty.register

 ⁠Values
	name
	
								the driver .dev_name name
							

	module
	
								the module name
							

	index
	
								the tty index requested
							

	driver_name
	
								the driver name
							

 ⁠
Name
probe::tty.release — Called when the tty is closed

 ⁠Synopsis
tty.release

 ⁠Values
	inode_flags
	
								the inode flags
							

	file_flags
	
								the file flags
							

	file_name
	
								the file name
							

	inode_state
	
								the inode state
							

	inode_number
	
								the inode number
							

	file_mode
	
								the file mode
							

 ⁠
Name
probe::tty.resize — Called when a terminal resize happens

 ⁠Synopsis
tty.resize

 ⁠Values
	new_row
	
								the new row value
							

	old_row
	
								the old row value
							

	name
	
								the tty name
							

	new_col
	
								the new col value
							

	old_xpixel
	
								the old xpixel
							

	old_col
	
								the old col value
							

	new_xpixel
	
								the new xpixel value
							

	old_ypixel
	
								the old ypixel
							

	new_ypixel
	
								the new ypixel value
							

 ⁠
Name
probe::tty.unregister — Called when a tty device is being unregistered

 ⁠Synopsis
tty.unregister

 ⁠Values
	name
	
								the driver .dev_name name
							

	module
	
								the module name
							

	index
	
								the tty index requested
							

	driver_name
	
								the driver name
							

 ⁠
Name
probe::tty.write — write to the tty line

 ⁠Synopsis
tty.write

 ⁠Values
	nr
	
								The amount of characters
							

	buffer
	
								the buffer that will be written
							

	file_name
	
								the file name lreated to the tty
							

	driver_name
	
								the driver name
							

 ⁠
Name
probe::tty.init — Called when a tty is being initalized

 ⁠Synopsis
tty.init

 ⁠Values
	name
	
								the driver .dev_name name
							

	module
	
								the module name
							

	driver_name
	
								the driver name
							

 ⁠
Name
probe::tty.ioctl — called when a ioctl is request to the tty

 ⁠Synopsis
tty.ioctl

 ⁠Values
	arg
	
								the ioctl argument
							

	name
	
								the file name
							

	cmd
	
								the ioctl command
							

 ⁠
Name
probe::tty.open — Called when a tty is opened

 ⁠Synopsis
tty.open

 ⁠Values
	inode_state
	
								the inode state
							

	file_mode
	
								the file mode
							

	inode_number
	
								the inode number
							

	file_flags
	
								the file flags
							

	file_name
	
								the file name
							

	inode_flags
	
								the inode flags
							

 ⁠
Name
probe::tty.poll — Called when a tty device is being polled

 ⁠Synopsis
tty.poll

 ⁠Values
	file_name
	
								the tty file name
							

	wait_key
	
								the wait queue key
							

 ⁠
Name
probe::tty.read — called when a tty line will be read

 ⁠Synopsis
tty.read

 ⁠Values
	file_name
	
								the file name lreated to the tty
							

	driver_name
	
								the driver name
							

	nr
	
								The amount of characters to be read
							

	buffer
	
								the buffer that will receive the characters
							

 ⁠
Name
probe::tty.receive — called when a tty receives a message

 ⁠Synopsis
tty.receive

 ⁠Values
	driver_name
	
								the driver name
							

	count
	
								The amount of characters received
							

	index
	
								The tty Index
							

	cp
	
								the buffer that was received
							

	id
	
								the tty id
							

	name
	
								the name of the module file
							

	fp
	
								The flag buffer
							

 ⁠
Name
probe::tty.register — Called when a tty device is registred

 ⁠Synopsis
tty.register

 ⁠Values
	name
	
								the driver .dev_name name
							

	module
	
								the module name
							

	index
	
								the tty index requested
							

	driver_name
	
								the driver name
							

 ⁠
Name
probe::tty.release — Called when the tty is closed

 ⁠Synopsis
tty.release

 ⁠Values
	inode_flags
	
								the inode flags
							

	file_flags
	
								the file flags
							

	file_name
	
								the file name
							

	inode_state
	
								the inode state
							

	inode_number
	
								the inode number
							

	file_mode
	
								the file mode
							

 ⁠
Name
probe::tty.resize — Called when a terminal resize happens

 ⁠Synopsis
tty.resize

 ⁠Values
	new_row
	
								the new row value
							

	old_row
	
								the old row value
							

	name
	
								the tty name
							

	new_col
	
								the new col value
							

	old_xpixel
	
								the old xpixel
							

	old_col
	
								the old col value
							

	new_xpixel
	
								the new xpixel value
							

	old_ypixel
	
								the old ypixel
							

	new_ypixel
	
								the new ypixel value
							

 ⁠
Name
probe::tty.unregister — Called when a tty device is being unregistered

 ⁠Synopsis
tty.unregister

 ⁠Values
	name
	
								the driver .dev_name name
							

	module
	
								the module name
							

	index
	
								the tty index requested
							

	driver_name
	
								the driver name
							

 ⁠
Name
probe::tty.write — write to the tty line

 ⁠Synopsis
tty.write

 ⁠Values
	nr
	
								The amount of characters
							

	buffer
	
								the buffer that will be written
							

	file_name
	
								the file name lreated to the tty
							

	driver_name
	
								the driver name
							

 ⁠Chapter 13. Interrupt Request (IRQ) Tapset

			This family of probe points is used to probe interrupt request (IRQ) activities. It contains the following probe points:
		

 ⁠
Name
probe::irq_handler.entry — Execution of interrupt handler starting

 ⁠Synopsis
irq_handler.entry

 ⁠Values
	next_irqaction
	
								pointer to next irqaction for shared interrupts
							

	thread_fn
	
								interrupt handler function for threaded interrupts
							

	thread
	
								thread pointer for threaded interrupts
							

	thread_flags
	
								Flags related to thread
							

	irq
	
								irq number
							

	flags_str
	
								symbolic string representation of IRQ flags
							

	dev_name
	
								name of device
							

	action
	
								struct irqaction* for this interrupt num
							

	dir
	
								pointer to the proc/irq/NN/name entry
							

	flags
	
								Flags for IRQ handler
							

	dev_id
	
								Cookie to identify device
							

	handler
	
								interrupt handler function
							

 ⁠
Name
probe::irq_handler.exit — Execution of interrupt handler completed

 ⁠Synopsis
irq_handler.exit

 ⁠Values
	flags_str
	
								symbolic string representation of IRQ flags
							

	dev_name
	
								name of device
							

	ret
	
								return value of the handler
							

	action
	
								struct irqaction*
							

	thread_fn
	
								interrupt handler function for threaded interrupts
							

	next_irqaction
	
								pointer to next irqaction for shared interrupts
							

	thread
	
								thread pointer for threaded interrupts
							

	thread_flags
	
								Flags related to thread
							

	irq
	
								interrupt number
							

	handler
	
								interrupt handler function that was executed
							

	flags
	
								flags for IRQ handler
							

	dir
	
								pointer to the proc/irq/NN/name entry
							

	dev_id
	
								Cookie to identify device
							

 ⁠
Name
probe::softirq.entry — Execution of handler for a pending softirq starting

 ⁠Synopsis
softirq.entry

 ⁠Values
	action
	
								pointer to softirq handler just about to execute
							

	vec_nr
	
								softirq vector number
							

	vec
	
								softirq_action vector
							

	h
	
								struct softirq_action* for current pending softirq
							

 ⁠
Name
probe::softirq.exit — Execution of handler for a pending softirq completed

 ⁠Synopsis
softirq.exit

 ⁠Values
	vec_nr
	
								softirq vector number
							

	action
	
								pointer to softirq handler that just finished execution
							

	h
	
								struct softirq_action* for just executed softirq
							

	vec
	
								softirq_action vector
							

 ⁠
Name
probe::workqueue.create — Creating a new workqueue

 ⁠Synopsis
workqueue.create

 ⁠Values
	wq_thread
	
								task_struct of the workqueue thread
							

	cpu
	
								cpu for which the worker thread is created
							

 ⁠
Name
probe::workqueue.destroy — Destroying workqueue

 ⁠Synopsis
workqueue.destroy

 ⁠Values
	wq_thread
	
								task_struct of the workqueue thread
							

 ⁠
Name
probe::workqueue.execute — Executing deferred work

 ⁠Synopsis
workqueue.execute

 ⁠Values
	wq_thread
	
								task_struct of the workqueue thread
							

	work_func
	
								pointer to handler function
							

	work
	
								work_struct* being executed
							

 ⁠
Name
probe::workqueue.insert — Queuing work on a workqueue

 ⁠Synopsis
workqueue.insert

 ⁠Values
	wq_thread
	
								task_struct of the workqueue thread
							

	work_func
	
								pointer to handler function
							

	work
	
								work_struct* being queued
							

 ⁠
Name
probe::irq_handler.entry — Execution of interrupt handler starting

 ⁠Synopsis
irq_handler.entry

 ⁠Values
	next_irqaction
	
								pointer to next irqaction for shared interrupts
							

	thread_fn
	
								interrupt handler function for threaded interrupts
							

	thread
	
								thread pointer for threaded interrupts
							

	thread_flags
	
								Flags related to thread
							

	irq
	
								irq number
							

	flags_str
	
								symbolic string representation of IRQ flags
							

	dev_name
	
								name of device
							

	action
	
								struct irqaction* for this interrupt num
							

	dir
	
								pointer to the proc/irq/NN/name entry
							

	flags
	
								Flags for IRQ handler
							

	dev_id
	
								Cookie to identify device
							

	handler
	
								interrupt handler function
							

 ⁠
Name
probe::irq_handler.exit — Execution of interrupt handler completed

 ⁠Synopsis
irq_handler.exit

 ⁠Values
	flags_str
	
								symbolic string representation of IRQ flags
							

	dev_name
	
								name of device
							

	ret
	
								return value of the handler
							

	action
	
								struct irqaction*
							

	thread_fn
	
								interrupt handler function for threaded interrupts
							

	next_irqaction
	
								pointer to next irqaction for shared interrupts
							

	thread
	
								thread pointer for threaded interrupts
							

	thread_flags
	
								Flags related to thread
							

	irq
	
								interrupt number
							

	handler
	
								interrupt handler function that was executed
							

	flags
	
								flags for IRQ handler
							

	dir
	
								pointer to the proc/irq/NN/name entry
							

	dev_id
	
								Cookie to identify device
							

 ⁠
Name
probe::softirq.entry — Execution of handler for a pending softirq starting

 ⁠Synopsis
softirq.entry

 ⁠Values
	action
	
								pointer to softirq handler just about to execute
							

	vec_nr
	
								softirq vector number
							

	vec
	
								softirq_action vector
							

	h
	
								struct softirq_action* for current pending softirq
							

 ⁠
Name
probe::softirq.exit — Execution of handler for a pending softirq completed

 ⁠Synopsis
softirq.exit

 ⁠Values
	vec_nr
	
								softirq vector number
							

	action
	
								pointer to softirq handler that just finished execution
							

	h
	
								struct softirq_action* for just executed softirq
							

	vec
	
								softirq_action vector
							

 ⁠
Name
probe::workqueue.create — Creating a new workqueue

 ⁠Synopsis
workqueue.create

 ⁠Values
	wq_thread
	
								task_struct of the workqueue thread
							

	cpu
	
								cpu for which the worker thread is created
							

 ⁠
Name
probe::workqueue.destroy — Destroying workqueue

 ⁠Synopsis
workqueue.destroy

 ⁠Values
	wq_thread
	
								task_struct of the workqueue thread
							

 ⁠
Name
probe::workqueue.execute — Executing deferred work

 ⁠Synopsis
workqueue.execute

 ⁠Values
	wq_thread
	
								task_struct of the workqueue thread
							

	work_func
	
								pointer to handler function
							

	work
	
								work_struct* being executed
							

 ⁠
Name
probe::workqueue.insert — Queuing work on a workqueue

 ⁠Synopsis
workqueue.insert

 ⁠Values
	wq_thread
	
								task_struct of the workqueue thread
							

	work_func
	
								pointer to handler function
							

	work
	
								work_struct* being queued
							

 ⁠Chapter 14. Networking Tapset

			This family of probe points is used to probe the activities of the network device and protocol layers.
		

 ⁠
Name
function::format_ipaddr — Returns a string representation for an IP address

 ⁠Synopsis

format_ipaddr:string(addr:long,family:long)

 ⁠Arguments
	addr
	
								the IP address
							

	family
	
								the IP address family (either AF_INET or AF_INET6)
							

 ⁠
Name
function::htonl — Convert 32-bit long from host to network order

 ⁠Synopsis

htonl:long(x:long)

 ⁠Arguments
	x
	
								Value to convert
							

 ⁠
Name
function::htonll — Convert 64-bit long long from host to network order

 ⁠Synopsis

htonll:long(x:long)

 ⁠Arguments
	x
	
								Value to convert
							

 ⁠
Name
function::htons — Convert 16-bit short from host to network order

 ⁠Synopsis

htons:long(x:long)

 ⁠Arguments
	x
	
								Value to convert
							

 ⁠
Name
function::ip_ntop — Returns a string representation for an IPv4 address

 ⁠Synopsis

ip_ntop:string(addr:long)

 ⁠Arguments
	addr
	
								the IPv4 address represented as an integer
							

 ⁠
Name
function::ntohl — Convert 32-bit long from network to host order

 ⁠Synopsis

ntohl:long(x:long)

 ⁠Arguments
	x
	
								Value to convert
							

 ⁠
Name
function::ntohll — Convert 64-bit long long from network to host order

 ⁠Synopsis

ntohll:long(x:long)

 ⁠Arguments
	x
	
								Value to convert
							

 ⁠
Name
function::ntohs — Convert 16-bit short from network to host order

 ⁠Synopsis

ntohs:long(x:long)

 ⁠Arguments
	x
	
								Value to convert
							

 ⁠
Name
probe::netdev.change_mac — Called when the netdev_name has the MAC changed

 ⁠Synopsis
netdev.change_mac

 ⁠Values
	mac_len
	
								The MAC length
							

	old_mac
	
								The current MAC address
							

	dev_name
	
								The device that will have the MAC changed
							

	new_mac
	
								The new MAC address
							

 ⁠
Name
probe::netdev.change_mtu — Called when the netdev MTU is changed

 ⁠Synopsis
netdev.change_mtu

 ⁠Values
	old_mtu
	
								The current MTU
							

	new_mtu
	
								The new MTU
							

	dev_name
	
								The device that will have the MTU changed
							

 ⁠
Name
probe::netdev.change_rx_flag — Called when the device RX flag will be changed

 ⁠Synopsis
netdev.change_rx_flag

 ⁠Values
	flags
	
								The new flags
							

	dev_name
	
								The device that will be changed
							

 ⁠
Name
probe::netdev.close — Called when the device is closed

 ⁠Synopsis
netdev.close

 ⁠Values
	dev_name
	
								The device that is going to be closed
							

 ⁠
Name
probe::netdev.get_stats — Called when someone asks the device statistics

 ⁠Synopsis
netdev.get_stats

 ⁠Values
	dev_name
	
								The device that is going to provide the statistics
							

 ⁠
Name
probe::netdev.hard_transmit — Called when the devices is going to TX (hard)

 ⁠Synopsis
netdev.hard_transmit

 ⁠Values
	truesize
	
								The size of the data to be transmitted.
							

	dev_name
	
								The device scheduled to transmit
							

	protocol
	
								The protocol used in the transmission
							

	length
	
								The length of the transmit buffer.
							

 ⁠
Name
probe::netdev.ioctl — Called when the device suffers an IOCTL

 ⁠Synopsis
netdev.ioctl

 ⁠Values
	arg
	
								The IOCTL argument (usually the netdev interface)
							

	cmd
	
								The IOCTL request
							

 ⁠
Name
probe::netdev.open — Called when the device is opened

 ⁠Synopsis
netdev.open

 ⁠Values
	dev_name
	
								The device that is going to be opened
							

 ⁠
Name
probe::netdev.receive — Data received from network device.

 ⁠Synopsis
netdev.receive

 ⁠Values
	length
	
								The length of the receiving buffer.
							

	protocol
	
								Protocol of received packet.
							

	dev_name
	
								The name of the device. e.g: eth0, ath1.
							

 ⁠
Name
probe::netdev.register — Called when the device is registered

 ⁠Synopsis
netdev.register

 ⁠Values
	dev_name
	
								The device that is going to be registered
							

 ⁠
Name
probe::netdev.rx — Called when the device is going to receive a packet

 ⁠Synopsis
netdev.rx

 ⁠Values
	dev_name
	
								The device received the packet
							

	protocol
	
								The packet protocol
							

 ⁠
Name
probe::netdev.set_promiscuity — Called when the device enters/leaves promiscuity

 ⁠Synopsis
netdev.set_promiscuity

 ⁠Values
	dev_name
	
								The device that is entering/leaving promiscuity mode
							

	enable
	
								If the device is entering promiscuity mode
							

	inc
	
								Count the number of promiscuity openers
							

	disable
	
								If the device is leaving promiscuity mode
							

 ⁠
Name
probe::netdev.transmit — Network device transmitting buffer

 ⁠Synopsis
netdev.transmit

 ⁠Values
	protocol
	
								The protocol of this packet(defined in include/linux/if_ether.h).
							

	length
	
								The length of the transmit buffer.
							

	truesize
	
								The size of the data to be transmitted.
							

	dev_name
	
								The name of the device. e.g: eth0, ath1.
							

 ⁠
Name
probe::netdev.unregister — Called when the device is being unregistered

 ⁠Synopsis
netdev.unregister

 ⁠Values
	dev_name
	
								The device that is going to be unregistered
							

 ⁠
Name
probe::netfilter.arp.forward — - Called for each ARP packet to be forwarded

 ⁠Synopsis
netfilter.arp.forward

 ⁠Values
	ar_hln
	
								Length of hardware address
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	ar_tha
	
								Ethernet+IP only (ar_pro==0x800): target hardware (MAC) address
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	ar_data
	
								Address of ARP packet data region (after the header)
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	arphdr
	
								Address of ARP header
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	length
	
								The length of the packet buffer contents, in bytes
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	ar_pln
	
								Length of protocol address
							

	pf
	
								Protocol family -- always “arp”
							

	ar_sha
	
								Ethernet+IP only (ar_pro==0x800): source hardware (MAC) address
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	ar_pro
	
								Format of protocol address
							

	ar_sip
	
								Ethernet+IP only (ar_pro==0x800): source IP address
							

	ar_tip
	
								Ethernet+IP only (ar_pro==0x800): target IP address
							

	ar_hrd
	
								Format of hardware address
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	ar_op
	
								ARP opcode (command)
							

 ⁠
Name
probe::netfilter.arp.in — - Called for each incoming ARP packet

 ⁠Synopsis
netfilter.arp.in

 ⁠Values
	ar_hln
	
								Length of hardware address
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	ar_tha
	
								Ethernet+IP only (ar_pro==0x800): target hardware (MAC) address
							

	ar_data
	
								Address of ARP packet data region (after the header)
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	arphdr
	
								Address of ARP header
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	length
	
								The length of the packet buffer contents, in bytes
							

	ar_pln
	
								Length of protocol address
							

	ar_sha
	
								Ethernet+IP only (ar_pro==0x800): source hardware (MAC) address
							

	pf
	
								Protocol family -- always “arp”
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	ar_pro
	
								Format of protocol address
							

	ar_sip
	
								Ethernet+IP only (ar_pro==0x800): source IP address
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	ar_tip
	
								Ethernet+IP only (ar_pro==0x800): target IP address
							

	ar_hrd
	
								Format of hardware address
							

	ar_op
	
								ARP opcode (command)
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

 ⁠
Name
probe::netfilter.arp.out — - Called for each outgoing ARP packet

 ⁠Synopsis
netfilter.arp.out

 ⁠Values
	ar_tip
	
								Ethernet+IP only (ar_pro==0x800): target IP address
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	ar_pro
	
								Format of protocol address
							

	ar_sip
	
								Ethernet+IP only (ar_pro==0x800): source IP address
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	ar_sha
	
								Ethernet+IP only (ar_pro==0x800): source hardware (MAC) address
							

	pf
	
								Protocol family -- always “arp”
							

	ar_op
	
								ARP opcode (command)
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	ar_hrd
	
								Format of hardware address
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	ar_data
	
								Address of ARP packet data region (after the header)
							

	ar_tha
	
								Ethernet+IP only (ar_pro==0x800): target hardware (MAC) address
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	ar_hln
	
								Length of hardware address
							

	ar_pln
	
								Length of protocol address
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	length
	
								The length of the packet buffer contents, in bytes
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	arphdr
	
								Address of ARP header
							

	indev_name
	
								Name of network device packet was received on (if known)
							

 ⁠
Name
probe::netfilter.bridge.forward — Called on an incoming bridging packet destined for some other computer

 ⁠Synopsis
netfilter.bridge.forward

 ⁠Values
	br_fd
	
								Forward delay in 1/256 secs
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	brhdr
	
								Address of bridge header
							

	br_mac
	
								Bridge MAC address
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	br_msg
	
								Message age in 1/256 secs
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	llcproto_stp
	
								Constant used to signify Bridge Spanning Tree Protocol packet
							

	pf
	
								Protocol family -- always “bridge”
							

	br_vid
	
								Protocol version identifier
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	br_poid
	
								Port identifier
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	llcpdu
	
								Address of LLC Protocol Data Unit
							

	length
	
								The length of the packet buffer contents, in bytes
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	br_cost
	
								Total cost from transmitting bridge to root
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	br_type
	
								BPDU type
							

	br_max
	
								Max age in 1/256 secs
							

	br_htime
	
								Hello time in 1/256 secs
							

	protocol
	
								Packet protocol
							

	br_bid
	
								Identity of bridge
							

	br_rmac
	
								Root bridge MAC address
							

	br_prid
	
								Protocol identifier
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	br_flags
	
								BPDU flags
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	br_rid
	
								Identity of root bridge
							

 ⁠
Name
probe::netfilter.bridge.local_in — Called on a bridging packet destined for the local computer

 ⁠Synopsis
netfilter.bridge.local_in

 ⁠Values
	llcproto_stp
	
								Constant used to signify Bridge Spanning Tree Protocol packet
							

	pf
	
								Protocol family -- always “bridge”
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	br_msg
	
								Message age in 1/256 secs
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	br_fd
	
								Forward delay in 1/256 secs
							

	br_mac
	
								Bridge MAC address
							

	brhdr
	
								Address of bridge header
							

	br_rid
	
								Identity of root bridge
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	br_flags
	
								BPDU flags
							

	br_prid
	
								Protocol identifier
							

	br_htime
	
								Hello time in 1/256 secs
							

	protocol
	
								Packet protocol
							

	br_bid
	
								Identity of bridge
							

	br_rmac
	
								Root bridge MAC address
							

	br_max
	
								Max age in 1/256 secs
							

	br_type
	
								BPDU type
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	br_cost
	
								Total cost from transmitting bridge to root
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	length
	
								The length of the packet buffer contents, in bytes
							

	llcpdu
	
								Address of LLC Protocol Data Unit
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	br_poid
	
								Port identifier
							

	br_vid
	
								Protocol version identifier
							

 ⁠
Name
probe::netfilter.bridge.local_out — Called on a bridging packet coming from a local process

 ⁠Synopsis
netfilter.bridge.local_out

 ⁠Values
	indev
	
								Address of net_device representing input device, 0 if unknown
							

	br_msg
	
								Message age in 1/256 secs
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	llcproto_stp
	
								Constant used to signify Bridge Spanning Tree Protocol packet
							

	pf
	
								Protocol family -- always “bridge”
							

	br_fd
	
								Forward delay in 1/256 secs
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	brhdr
	
								Address of bridge header
							

	br_mac
	
								Bridge MAC address
							

	br_flags
	
								BPDU flags
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	br_rid
	
								Identity of root bridge
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	br_type
	
								BPDU type
							

	br_max
	
								Max age in 1/256 secs
							

	protocol
	
								Packet protocol
							

	br_htime
	
								Hello time in 1/256 secs
							

	br_bid
	
								Identity of bridge
							

	br_rmac
	
								Root bridge MAC address
							

	br_prid
	
								Protocol identifier
							

	llcpdu
	
								Address of LLC Protocol Data Unit
							

	length
	
								The length of the packet buffer contents, in bytes
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	br_cost
	
								Total cost from transmitting bridge to root
							

	br_vid
	
								Protocol version identifier
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	br_poid
	
								Port identifier
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

 ⁠
Name
probe::netfilter.bridge.post_routing — - Called before a bridging packet hits the wire

 ⁠Synopsis
netfilter.bridge.post_routing

 ⁠Values
	llcproto_stp
	
								Constant used to signify Bridge Spanning Tree Protocol packet
							

	pf
	
								Protocol family -- always “bridge”
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	br_msg
	
								Message age in 1/256 secs
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	br_mac
	
								Bridge MAC address
							

	br_fd
	
								Forward delay in 1/256 secs
							

	brhdr
	
								Address of bridge header
							

	br_htime
	
								Hello time in 1/256 secs
							

	br_bid
	
								Identity of bridge
							

	br_rmac
	
								Root bridge MAC address
							

	protocol
	
								Packet protocol
							

	br_prid
	
								Protocol identifier
							

	br_type
	
								BPDU type
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	br_max
	
								Max age in 1/256 secs
							

	br_rid
	
								Identity of root bridge
							

	br_flags
	
								BPDU flags
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	br_poid
	
								Port identifier
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	br_vid
	
								Protocol version identifier
							

	length
	
								The length of the packet buffer contents, in bytes
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	br_cost
	
								Total cost from transmitting bridge to root
							

	llcpdu
	
								Address of LLC Protocol Data Unit
							

 ⁠
Name
probe::netfilter.bridge.pre_routing — - Called before a bridging packet is routed

 ⁠Synopsis
netfilter.bridge.pre_routing

 ⁠Values
	llcproto_stp
	
								Constant used to signify Bridge Spanning Tree Protocol packet
							

	pf
	
								Protocol family -- always “bridge”
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	br_msg
	
								Message age in 1/256 secs
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	brhdr
	
								Address of bridge header
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	br_fd
	
								Forward delay in 1/256 secs
							

	br_mac
	
								Bridge MAC address
							

	br_rid
	
								Identity of root bridge
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	br_flags
	
								BPDU flags
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	br_prid
	
								Protocol identifier
							

	br_rmac
	
								Root bridge MAC address
							

	br_htime
	
								Hello time in 1/256 secs
							

	br_bid
	
								Identity of bridge
							

	protocol
	
								Packet protocol
							

	br_max
	
								Max age in 1/256 secs
							

	br_type
	
								BPDU type
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	br_cost
	
								Total cost from transmitting bridge to root
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	length
	
								The length of the packet buffer contents, in bytes
							

	llcpdu
	
								Address of LLC Protocol Data Unit
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	br_poid
	
								Port identifier
							

	br_vid
	
								Protocol version identifier
							

 ⁠
Name
probe::netfilter.ip.forward — Called on an incoming IP packet addressed to some other computer

 ⁠Synopsis
netfilter.ip.forward

 ⁠Values
	saddr
	
								A string representing the source IP address
							

	sport
	
								TCP or UDP source port (ipv4 only)
							

	daddr
	
								A string representing the destination IP address
							

	pf
	
								Protocol family -- either “ipv4” or “ipv6”
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	dport
	
								TCP or UDP destination port (ipv4 only)
							

	iphdr
	
								Address of IP header
							

	fin
	
								TCP FIN flag (if protocol is TCP; ipv4 only)
							

	ack
	
								TCP ACK flag (if protocol is TCP; ipv4 only)
							

	syn
	
								TCP SYN flag (if protocol is TCP; ipv4 only)
							

	ipproto_udp
	
								Constant used to signify that the packet protocol is UDP
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	rst
	
								TCP RST flag (if protocol is TCP; ipv4 only)
							

	protocol
	
								Packet protocol from driver (ipv4 only)
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	length
	
								The length of the packet buffer contents, in bytes
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	urg
	
								TCP URG flag (if protocol is TCP; ipv4 only)
							

	psh
	
								TCP PSH flag (if protocol is TCP; ipv4 only)
							

	ipproto_tcp
	
								Constant used to signify that the packet protocol is TCP
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	family
	
								IP address family
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

 ⁠
Name
probe::netfilter.ip.local_in — Called on an incoming IP packet addressed to the local computer

 ⁠Synopsis
netfilter.ip.local_in

 ⁠Values
	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	length
	
								The length of the packet buffer contents, in bytes
							

	urg
	
								TCP URG flag (if protocol is TCP; ipv4 only)
							

	psh
	
								TCP PSH flag (if protocol is TCP; ipv4 only)
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	family
	
								IP address family
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	ipproto_tcp
	
								Constant used to signify that the packet protocol is TCP
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	protocol
	
								Packet protocol from driver (ipv4 only)
							

	rst
	
								TCP RST flag (if protocol is TCP; ipv4 only)
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	dport
	
								TCP or UDP destination port (ipv4 only)
							

	iphdr
	
								Address of IP header
							

	fin
	
								TCP FIN flag (if protocol is TCP; ipv4 only)
							

	syn
	
								TCP SYN flag (if protocol is TCP; ipv4 only)
							

	ack
	
								TCP ACK flag (if protocol is TCP; ipv4 only)
							

	ipproto_udp
	
								Constant used to signify that the packet protocol is UDP
							

	saddr
	
								A string representing the source IP address
							

	sport
	
								TCP or UDP source port (ipv4 only)
							

	pf
	
								Protocol family -- either “ipv4” or “ipv6”
							

	daddr
	
								A string representing the destination IP address
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

 ⁠
Name
probe::netfilter.ip.local_out — Called on an outgoing IP packet

 ⁠Synopsis
netfilter.ip.local_out

 ⁠Values
	dport
	
								TCP or UDP destination port (ipv4 only)
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	syn
	
								TCP SYN flag (if protocol is TCP; ipv4 only)
							

	ipproto_udp
	
								Constant used to signify that the packet protocol is UDP
							

	ack
	
								TCP ACK flag (if protocol is TCP; ipv4 only)
							

	fin
	
								TCP FIN flag (if protocol is TCP; ipv4 only)
							

	iphdr
	
								Address of IP header
							

	saddr
	
								A string representing the source IP address
							

	sport
	
								TCP or UDP source port (ipv4 only)
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	daddr
	
								A string representing the destination IP address
							

	pf
	
								Protocol family -- either “ipv4” or “ipv6”
							

	psh
	
								TCP PSH flag (if protocol is TCP; ipv4 only)
							

	urg
	
								TCP URG flag (if protocol is TCP; ipv4 only)
							

	length
	
								The length of the packet buffer contents, in bytes
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	ipproto_tcp
	
								Constant used to signify that the packet protocol is TCP
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	family
	
								IP address family
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	rst
	
								TCP RST flag (if protocol is TCP; ipv4 only)
							

	protocol
	
								Packet protocol from driver (ipv4 only)
							

 ⁠
Name
probe::netfilter.ip.post_routing — Called immediately before an outgoing IP packet leaves the computer

 ⁠Synopsis
netfilter.ip.post_routing

 ⁠Values
	family
	
								IP address family
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	ipproto_tcp
	
								Constant used to signify that the packet protocol is TCP
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	length
	
								The length of the packet buffer contents, in bytes
							

	urg
	
								TCP URG flag (if protocol is TCP; ipv4 only)
							

	psh
	
								TCP PSH flag (if protocol is TCP; ipv4 only)
							

	rst
	
								TCP RST flag (if protocol is TCP; ipv4 only)
							

	protocol
	
								Packet protocol from driver (ipv4 only)
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	iphdr
	
								Address of IP header
							

	fin
	
								TCP FIN flag (if protocol is TCP; ipv4 only)
							

	syn
	
								TCP SYN flag (if protocol is TCP; ipv4 only)
							

	ipproto_udp
	
								Constant used to signify that the packet protocol is UDP
							

	ack
	
								TCP ACK flag (if protocol is TCP; ipv4 only)
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	dport
	
								TCP or UDP destination port (ipv4 only)
							

	pf
	
								Protocol family -- either “ipv4” or “ipv6”
							

	daddr
	
								A string representing the destination IP address
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	saddr
	
								A string representing the source IP address
							

	sport
	
								TCP or UDP source port (ipv4 only)
							

 ⁠
Name
probe::netfilter.ip.pre_routing — Called before an IP packet is routed

 ⁠Synopsis
netfilter.ip.pre_routing

 ⁠Values
	indev
	
								Address of net_device representing input device, 0 if unknown
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	daddr
	
								A string representing the destination IP address
							

	pf
	
								Protocol family - either 'ipv4' or 'ipv6'
							

	sport
	
								TCP or UDP source port (ipv4 only)
							

	saddr
	
								A string representing the source IP address
							

	syn
	
								TCP SYN flag (if protocol is TCP; ipv4 only)
							

	ipproto_udp
	
								Constant used to signify that the packet protocol is UDP
							

	ack
	
								TCP ACK flag (if protocol is TCP; ipv4 only)
							

	iphdr
	
								Address of IP header
							

	fin
	
								TCP FIN flag (if protocol is TCP; ipv4 only)
							

	dport
	
								TCP or UDP destination port (ipv4 only)
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	rst
	
								TCP RST flag (if protocol is TCP; ipv4 only)
							

	protocol
	
								Packet protocol from driver (ipv4 only)
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	ipproto_tcp
	
								Constant used to signify that the packet protocol is TCP
							

	family
	
								IP address family
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	psh
	
								TCP PSH flag (if protocol is TCP; ipv4 only)
							

	urg
	
								TCP URG flag (if protocol is TCP; ipv4 only)
							

	length
	
								The length of the packet buffer contents, in bytes
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

 ⁠
Name
probe::sunrpc.clnt.bind_new_program — Bind a new RPC program to an existing client

 ⁠Synopsis
sunrpc.clnt.bind_new_program

 ⁠Values
	progname
	
								the name of new RPC program
							

	old_prog
	
								the number of old RPC program
							

	vers
	
								the version of new RPC program
							

	servername
	
								the server machine name
							

	old_vers
	
								the version of old RPC program
							

	old_progname
	
								the name of old RPC program
							

	prog
	
								the number of new RPC program
							

 ⁠
Name
probe::sunrpc.clnt.call_async — Make an asynchronous RPC call

 ⁠Synopsis
sunrpc.clnt.call_async

 ⁠Values
	progname
	
								the RPC program name
							

	prot
	
								the IP protocol number
							

	proc
	
								the procedure number in this RPC call
							

	procname
	
								the procedure name in this RPC call
							

	vers
	
								the RPC program version number
							

	flags
	
								flags
							

	servername
	
								the server machine name
							

	xid
	
								current transmission id
							

	port
	
								the port number
							

	prog
	
								the RPC program number
							

	dead
	
								whether this client is abandoned
							

 ⁠
Name
probe::sunrpc.clnt.call_sync — Make a synchronous RPC call

 ⁠Synopsis
sunrpc.clnt.call_sync

 ⁠Values
	xid
	
								current transmission id
							

	servername
	
								the server machine name
							

	flags
	
								flags
							

	dead
	
								whether this client is abandoned
							

	prog
	
								the RPC program number
							

	port
	
								the port number
							

	prot
	
								the IP protocol number
							

	progname
	
								the RPC program name
							

	vers
	
								the RPC program version number
							

	proc
	
								the procedure number in this RPC call
							

	procname
	
								the procedure name in this RPC call
							

 ⁠
Name
probe::sunrpc.clnt.clone_client — Clone an RPC client structure

 ⁠Synopsis
sunrpc.clnt.clone_client

 ⁠Values
	authflavor
	
								the authentication flavor
							

	port
	
								the port number
							

	progname
	
								the RPC program name
							

	servername
	
								the server machine name
							

	prot
	
								the IP protocol number
							

	prog
	
								the RPC program number
							

	vers
	
								the RPC program version number
							

 ⁠
Name
probe::sunrpc.clnt.create_client — Create an RPC client

 ⁠Synopsis
sunrpc.clnt.create_client

 ⁠Values
	servername
	
								the server machine name
							

	prot
	
								the IP protocol number
							

	authflavor
	
								the authentication flavor
							

	port
	
								the port number
							

	progname
	
								the RPC program name
							

	vers
	
								the RPC program version number
							

	prog
	
								the RPC program number
							

 ⁠
Name
probe::sunrpc.clnt.restart_call — Restart an asynchronous RPC call

 ⁠Synopsis
sunrpc.clnt.restart_call

 ⁠Values
	servername
	
								the server machine name
							

	tk_priority
	
								the task priority
							

	xid
	
								the transmission id
							

	prog
	
								the RPC program number
							

	tk_runstate
	
								the task run status
							

	tk_pid
	
								the debugging aid of task
							

	tk_flags
	
								the task flags
							

 ⁠
Name
probe::sunrpc.clnt.shutdown_client — Shutdown an RPC client

 ⁠Synopsis
sunrpc.clnt.shutdown_client

 ⁠Values
	om_queue
	
								the jiffies queued for xmit
							

	clones
	
								the number of clones
							

	vers
	
								the RPC program version number
							

	om_rtt
	
								the RPC RTT jiffies
							

	om_execute
	
								the RPC execution jiffies
							

	rpccnt
	
								the count of RPC calls
							

	progname
	
								the RPC program name
							

	authflavor
	
								the authentication flavor
							

	prot
	
								the IP protocol number
							

	prog
	
								the RPC program number
							

	om_bytes_recv
	
								the count of bytes in
							

	om_bytes_sent
	
								the count of bytes out
							

	port
	
								the port number
							

	om_ntrans
	
								the count of RPC transmissions
							

	netreconn
	
								the count of reconnections
							

	om_ops
	
								the count of operations
							

	tasks
	
								the number of references
							

	servername
	
								the server machine name
							

 ⁠
Name
probe::sunrpc.sched.delay — Delay an RPC task

 ⁠Synopsis
sunrpc.sched.delay

 ⁠Values
	prog
	
								the program number in the RPC call
							

	xid
	
								the transmission id in the RPC call
							

	delay
	
								the time delayed
							

	vers
	
								the program version in the RPC call
							

	tk_flags
	
								the flags of the task
							

	tk_pid
	
								the debugging id of the task
							

	prot
	
								the IP protocol in the RPC call
							

 ⁠
Name
probe::sunrpc.sched.execute — Execute the RPC `scheduler'

 ⁠Synopsis
sunrpc.sched.execute

 ⁠Values
	tk_pid
	
								the debugging id of the task
							

	prot
	
								the IP protocol in the RPC call
							

	vers
	
								the program version in the RPC call
							

	tk_flags
	
								the flags of the task
							

	xid
	
								the transmission id in the RPC call
							

	prog
	
								the program number in the RPC call
							

 ⁠
Name
probe::sunrpc.sched.new_task — Create new task for the specified client

 ⁠Synopsis
sunrpc.sched.new_task

 ⁠Values
	xid
	
								the transmission id in the RPC call
							

	prog
	
								the program number in the RPC call
							

	prot
	
								the IP protocol in the RPC call
							

	vers
	
								the program version in the RPC call
							

	tk_flags
	
								the flags of the task
							

 ⁠
Name
probe::sunrpc.sched.release_task — Release all resources associated with a task

 ⁠Synopsis
sunrpc.sched.release_task

 ⁠Values
	prot
	
								the IP protocol in the RPC call
							

	tk_flags
	
								the flags of the task
							

	vers
	
								the program version in the RPC call
							

	xid
	
								the transmission id in the RPC call
							

	prog
	
								the program number in the RPC call
							

 ⁠Description

					rpc_release_task function might not be found for a particular kernel. So, if we can't find it, just return '-1' for everything.
				

 ⁠
Name
probe::sunrpc.svc.create — Create an RPC service

 ⁠Synopsis
sunrpc.svc.create

 ⁠Values
	bufsize
	
								the buffer size
							

	pg_nvers
	
								the number of supported versions
							

	progname
	
								the name of the program
							

	prog
	
								the number of the program
							

 ⁠
Name
probe::sunrpc.svc.destroy — Destroy an RPC service

 ⁠Synopsis
sunrpc.svc.destroy

 ⁠Values
	sv_nrthreads
	
								the number of concurrent threads
							

	sv_name
	
								the service name
							

	sv_prog
	
								the number of the program
							

	rpcbadauth
	
								the count of requests drooped for authentication failure
							

	rpcbadfmt
	
								the count of requests dropped for bad formats
							

	rpccnt
	
								the count of valid RPC requests
							

	sv_progname
	
								the name of the program
							

	netcnt
	
								the count of received RPC requests
							

	nettcpconn
	
								the count of accepted TCP connections
							

 ⁠
Name
probe::sunrpc.svc.drop — Drop RPC request

 ⁠Synopsis
sunrpc.svc.drop

 ⁠Values
	rq_xid
	
								the transmission id in the request
							

	sv_name
	
								the service name
							

	rq_prot
	
								the IP protocol of the reqeust
							

	peer_ip
	
								the peer address where the request is from
							

	rq_proc
	
								the procedure number in the request
							

	rq_vers
	
								the program version in the request
							

	rq_prog
	
								the program number in the request
							

 ⁠
Name
probe::sunrpc.svc.process — Process an RPC request

 ⁠Synopsis
sunrpc.svc.process

 ⁠Values
	rq_prog
	
								the program number in the request
							

	rq_vers
	
								the program version in the request
							

	peer_ip
	
								the peer address where the request is from
							

	rq_proc
	
								the procedure number in the request
							

	sv_prog
	
								the number of the program
							

	rq_prot
	
								the IP protocol of the reqeust
							

	sv_name
	
								the service name
							

	rq_xid
	
								the transmission id in the request
							

	sv_nrthreads
	
								the number of concurrent threads
							

 ⁠
Name
probe::sunrpc.svc.recv — Listen for the next RPC request on any socket

 ⁠Synopsis
sunrpc.svc.recv

 ⁠Values
	sv_nrthreads
	
								the number of concurrent threads
							

	sv_name
	
								the service name
							

	sv_prog
	
								the number of the program
							

	timeout
	
								the timeout of waiting for data
							

 ⁠
Name
probe::sunrpc.svc.register — Register an RPC service with the local portmapper

 ⁠Synopsis
sunrpc.svc.register

 ⁠Values
	sv_name
	
								the service name
							

	prog
	
								the number of the program
							

	port
	
								the port number
							

	progname
	
								the name of the program
							

	prot
	
								the IP protocol number
							

 ⁠Description

					If proto and port are both 0, then unregister a service.
				

 ⁠
Name
probe::sunrpc.svc.send — Return reply to RPC client

 ⁠Synopsis
sunrpc.svc.send

 ⁠Values
	rq_vers
	
								the program version in the request
							

	rq_prog
	
								the program number in the request
							

	rq_prot
	
								the IP protocol of the reqeust
							

	sv_name
	
								the service name
							

	rq_xid
	
								the transmission id in the request
							

	peer_ip
	
								the peer address where the request is from
							

	rq_proc
	
								the procedure number in the request
							

 ⁠
Name
probe::tcp.disconnect — TCP socket disconnection

 ⁠Synopsis
tcp.disconnect

 ⁠Values
	flags
	
								TCP flags (e.g. FIN, etc)
							

	daddr
	
								A string representing the destination IP address
							

	sport
	
								TCP source port
							

	family
	
								IP address family
							

	name
	
								Name of this probe
							

	saddr
	
								A string representing the source IP address
							

	dport
	
								TCP destination port
							

	sock
	
								Network socket
							

 ⁠Context

					The process which disconnects tcp
				

 ⁠
Name
probe::tcp.disconnect.return — TCP socket disconnection complete

 ⁠Synopsis
tcp.disconnect.return

 ⁠Values
	name
	
								Name of this probe
							

	ret
	
								Error code (0: no error)
							

 ⁠Context

					The process which disconnects tcp
				

 ⁠
Name
probe::tcp.receive — Called when a TCP packet is received

 ⁠Synopsis
tcp.receive

 ⁠Values
	psh
	
								TCP PSH flag
							

	ack
	
								TCP ACK flag
							

	daddr
	
								A string representing the destination IP address
							

	syn
	
								TCP SYN flag
							

	rst
	
								TCP RST flag
							

	sport
	
								TCP source port
							

	protocol
	
								Packet protocol from driver
							

	urg
	
								TCP URG flag
							

	name
	
								Name of the probe point
							

	family
	
								IP address family
							

	fin
	
								TCP FIN flag
							

	saddr
	
								A string representing the source IP address
							

	iphdr
	
								IP header address
							

	dport
	
								TCP destination port
							

 ⁠
Name
probe::tcp.recvmsg — Receiving TCP message

 ⁠Synopsis
tcp.recvmsg

 ⁠Values
	daddr
	
								A string representing the destination IP address
							

	sport
	
								TCP source port
							

	size
	
								Number of bytes to be received
							

	name
	
								Name of this probe
							

	family
	
								IP address family
							

	saddr
	
								A string representing the source IP address
							

	sock
	
								Network socket
							

	dport
	
								TCP destination port
							

 ⁠Context

					The process which receives a tcp message
				

 ⁠
Name
probe::tcp.recvmsg.return — Receiving TCP message complete

 ⁠Synopsis
tcp.recvmsg.return

 ⁠Values
	saddr
	
								A string representing the source IP address
							

	dport
	
								TCP destination port
							

	daddr
	
								A string representing the destination IP address
							

	size
	
								Number of bytes received or error code if an error occurred.
							

	sport
	
								TCP source port
							

	family
	
								IP address family
							

	name
	
								Name of this probe
							

 ⁠Context

					The process which receives a tcp message
				

 ⁠
Name
probe::tcp.sendmsg — Sending a tcp message

 ⁠Synopsis
tcp.sendmsg

 ⁠Values
	family
	
								IP address family
							

	sock
	
								Network socket
							

	name
	
								Name of this probe
							

	size
	
								Number of bytes to send
							

 ⁠Context

					The process which sends a tcp message
				

 ⁠
Name
probe::tcp.sendmsg.return — Sending TCP message is done

 ⁠Synopsis
tcp.sendmsg.return

 ⁠Values
	name
	
								Name of this probe
							

	size
	
								Number of bytes sent or error code if an error occurred.
							

 ⁠Context

					The process which sends a tcp message
				

 ⁠
Name
probe::tcp.setsockopt — Call to setsockopt

 ⁠Synopsis
tcp.setsockopt

 ⁠Values
	optstr
	
								Resolves optname to a human-readable format
							

	name
	
								Name of this probe
							

	family
	
								IP address family
							

	level
	
								The level at which the socket options will be manipulated
							

	optname
	
								TCP socket options (e.g. TCP_NODELAY, TCP_MAXSEG, etc)
							

	sock
	
								Network socket
							

	optlen
	
								Used to access values for setsockopt
							

 ⁠Context

					The process which calls setsockopt
				

 ⁠
Name
probe::tcp.setsockopt.return — Return from setsockopt

 ⁠Synopsis
tcp.setsockopt.return

 ⁠Values
	ret
	
								Error code (0: no error)
							

	name
	
								Name of this probe
							

 ⁠Context

					The process which calls setsockopt
				

 ⁠
Name
probe::udp.disconnect — Fires when a process requests for a UDP disconnection

 ⁠Synopsis
udp.disconnect

 ⁠Values
	daddr
	
								A string representing the destination IP address
							

	sock
	
								Network socket used by the process
							

	saddr
	
								A string representing the source IP address
							

	sport
	
								UDP source port
							

	flags
	
								Flags (e.g. FIN, etc)
							

	dport
	
								UDP destination port
							

	name
	
								The name of this probe
							

	family
	
								IP address family
							

 ⁠Context

					The process which requests a UDP disconnection
				

 ⁠
Name
probe::udp.disconnect.return — UDP has been disconnected successfully

 ⁠Synopsis
udp.disconnect.return

 ⁠Values
	saddr
	
								A string representing the source IP address
							

	sport
	
								UDP source port
							

	dport
	
								UDP destination port
							

	family
	
								IP address family
							

	name
	
								The name of this probe
							

	daddr
	
								A string representing the destination IP address
							

	ret
	
								Error code (0: no error)
							

 ⁠Context

					The process which requested a UDP disconnection
				

 ⁠
Name
probe::udp.recvmsg — Fires whenever a UDP message is received

 ⁠Synopsis
udp.recvmsg

 ⁠Values
	size
	
								Number of bytes received by the process
							

	sock
	
								Network socket used by the process
							

	daddr
	
								A string representing the destination IP address
							

	family
	
								IP address family
							

	name
	
								The name of this probe
							

	dport
	
								UDP destination port
							

	saddr
	
								A string representing the source IP address
							

	sport
	
								UDP source port
							

 ⁠Context

					The process which received a UDP message
				

 ⁠
Name
probe::udp.recvmsg.return — Fires whenever an attempt to receive a UDP message received is completed

 ⁠Synopsis
udp.recvmsg.return

 ⁠Values
	name
	
								The name of this probe
							

	family
	
								IP address family
							

	dport
	
								UDP destination port
							

	saddr
	
								A string representing the source IP address
							

	sport
	
								UDP source port
							

	size
	
								Number of bytes received by the process
							

	daddr
	
								A string representing the destination IP address
							

 ⁠Context

					The process which received a UDP message
				

 ⁠
Name
probe::udp.sendmsg — Fires whenever a process sends a UDP message

 ⁠Synopsis
udp.sendmsg

 ⁠Values
	daddr
	
								A string representing the destination IP address
							

	sock
	
								Network socket used by the process
							

	size
	
								Number of bytes sent by the process
							

	saddr
	
								A string representing the source IP address
							

	sport
	
								UDP source port
							

	family
	
								IP address family
							

	name
	
								The name of this probe
							

	dport
	
								UDP destination port
							

 ⁠Context

					The process which sent a UDP message
				

 ⁠
Name
probe::udp.sendmsg.return — Fires whenever an attempt to send a UDP message is completed

 ⁠Synopsis
udp.sendmsg.return

 ⁠Values
	size
	
								Number of bytes sent by the process
							

	name
	
								The name of this probe
							

 ⁠Context

					The process which sent a UDP message
				

 ⁠
Name
function::format_ipaddr — Returns a string representation for an IP address

 ⁠Synopsis

format_ipaddr:string(addr:long,family:long)

 ⁠Arguments
	addr
	
								the IP address
							

	family
	
								the IP address family (either AF_INET or AF_INET6)
							

 ⁠
Name
function::htonl — Convert 32-bit long from host to network order

 ⁠Synopsis

htonl:long(x:long)

 ⁠Arguments
	x
	
								Value to convert
							

 ⁠
Name
function::htonll — Convert 64-bit long long from host to network order

 ⁠Synopsis

htonll:long(x:long)

 ⁠Arguments
	x
	
								Value to convert
							

 ⁠
Name
function::htons — Convert 16-bit short from host to network order

 ⁠Synopsis

htons:long(x:long)

 ⁠Arguments
	x
	
								Value to convert
							

 ⁠
Name
function::ip_ntop — Returns a string representation for an IPv4 address

 ⁠Synopsis

ip_ntop:string(addr:long)

 ⁠Arguments
	addr
	
								the IPv4 address represented as an integer
							

 ⁠
Name
function::ntohl — Convert 32-bit long from network to host order

 ⁠Synopsis

ntohl:long(x:long)

 ⁠Arguments
	x
	
								Value to convert
							

 ⁠
Name
function::ntohll — Convert 64-bit long long from network to host order

 ⁠Synopsis

ntohll:long(x:long)

 ⁠Arguments
	x
	
								Value to convert
							

 ⁠
Name
function::ntohs — Convert 16-bit short from network to host order

 ⁠Synopsis

ntohs:long(x:long)

 ⁠Arguments
	x
	
								Value to convert
							

 ⁠
Name
probe::netdev.change_mac — Called when the netdev_name has the MAC changed

 ⁠Synopsis
netdev.change_mac

 ⁠Values
	mac_len
	
								The MAC length
							

	old_mac
	
								The current MAC address
							

	dev_name
	
								The device that will have the MAC changed
							

	new_mac
	
								The new MAC address
							

 ⁠
Name
probe::netdev.change_mtu — Called when the netdev MTU is changed

 ⁠Synopsis
netdev.change_mtu

 ⁠Values
	old_mtu
	
								The current MTU
							

	new_mtu
	
								The new MTU
							

	dev_name
	
								The device that will have the MTU changed
							

 ⁠
Name
probe::netdev.change_rx_flag — Called when the device RX flag will be changed

 ⁠Synopsis
netdev.change_rx_flag

 ⁠Values
	flags
	
								The new flags
							

	dev_name
	
								The device that will be changed
							

 ⁠
Name
probe::netdev.close — Called when the device is closed

 ⁠Synopsis
netdev.close

 ⁠Values
	dev_name
	
								The device that is going to be closed
							

 ⁠
Name
probe::netdev.get_stats — Called when someone asks the device statistics

 ⁠Synopsis
netdev.get_stats

 ⁠Values
	dev_name
	
								The device that is going to provide the statistics
							

 ⁠
Name
probe::netdev.hard_transmit — Called when the devices is going to TX (hard)

 ⁠Synopsis
netdev.hard_transmit

 ⁠Values
	truesize
	
								The size of the data to be transmitted.
							

	dev_name
	
								The device scheduled to transmit
							

	protocol
	
								The protocol used in the transmission
							

	length
	
								The length of the transmit buffer.
							

 ⁠
Name
probe::netdev.ioctl — Called when the device suffers an IOCTL

 ⁠Synopsis
netdev.ioctl

 ⁠Values
	arg
	
								The IOCTL argument (usually the netdev interface)
							

	cmd
	
								The IOCTL request
							

 ⁠
Name
probe::netdev.open — Called when the device is opened

 ⁠Synopsis
netdev.open

 ⁠Values
	dev_name
	
								The device that is going to be opened
							

 ⁠
Name
probe::netdev.receive — Data received from network device.

 ⁠Synopsis
netdev.receive

 ⁠Values
	length
	
								The length of the receiving buffer.
							

	protocol
	
								Protocol of received packet.
							

	dev_name
	
								The name of the device. e.g: eth0, ath1.
							

 ⁠
Name
probe::netdev.register — Called when the device is registered

 ⁠Synopsis
netdev.register

 ⁠Values
	dev_name
	
								The device that is going to be registered
							

 ⁠
Name
probe::netdev.rx — Called when the device is going to receive a packet

 ⁠Synopsis
netdev.rx

 ⁠Values
	dev_name
	
								The device received the packet
							

	protocol
	
								The packet protocol
							

 ⁠
Name
probe::netdev.set_promiscuity — Called when the device enters/leaves promiscuity

 ⁠Synopsis
netdev.set_promiscuity

 ⁠Values
	dev_name
	
								The device that is entering/leaving promiscuity mode
							

	enable
	
								If the device is entering promiscuity mode
							

	inc
	
								Count the number of promiscuity openers
							

	disable
	
								If the device is leaving promiscuity mode
							

 ⁠
Name
probe::netdev.transmit — Network device transmitting buffer

 ⁠Synopsis
netdev.transmit

 ⁠Values
	protocol
	
								The protocol of this packet(defined in include/linux/if_ether.h).
							

	length
	
								The length of the transmit buffer.
							

	truesize
	
								The size of the data to be transmitted.
							

	dev_name
	
								The name of the device. e.g: eth0, ath1.
							

 ⁠
Name
probe::netdev.unregister — Called when the device is being unregistered

 ⁠Synopsis
netdev.unregister

 ⁠Values
	dev_name
	
								The device that is going to be unregistered
							

 ⁠
Name
probe::netfilter.arp.forward — - Called for each ARP packet to be forwarded

 ⁠Synopsis
netfilter.arp.forward

 ⁠Values
	ar_hln
	
								Length of hardware address
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	ar_tha
	
								Ethernet+IP only (ar_pro==0x800): target hardware (MAC) address
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	ar_data
	
								Address of ARP packet data region (after the header)
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	arphdr
	
								Address of ARP header
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	length
	
								The length of the packet buffer contents, in bytes
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	ar_pln
	
								Length of protocol address
							

	pf
	
								Protocol family -- always “arp”
							

	ar_sha
	
								Ethernet+IP only (ar_pro==0x800): source hardware (MAC) address
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	ar_pro
	
								Format of protocol address
							

	ar_sip
	
								Ethernet+IP only (ar_pro==0x800): source IP address
							

	ar_tip
	
								Ethernet+IP only (ar_pro==0x800): target IP address
							

	ar_hrd
	
								Format of hardware address
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	ar_op
	
								ARP opcode (command)
							

 ⁠
Name
probe::netfilter.arp.in — - Called for each incoming ARP packet

 ⁠Synopsis
netfilter.arp.in

 ⁠Values
	ar_hln
	
								Length of hardware address
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	ar_tha
	
								Ethernet+IP only (ar_pro==0x800): target hardware (MAC) address
							

	ar_data
	
								Address of ARP packet data region (after the header)
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	arphdr
	
								Address of ARP header
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	length
	
								The length of the packet buffer contents, in bytes
							

	ar_pln
	
								Length of protocol address
							

	ar_sha
	
								Ethernet+IP only (ar_pro==0x800): source hardware (MAC) address
							

	pf
	
								Protocol family -- always “arp”
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	ar_pro
	
								Format of protocol address
							

	ar_sip
	
								Ethernet+IP only (ar_pro==0x800): source IP address
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	ar_tip
	
								Ethernet+IP only (ar_pro==0x800): target IP address
							

	ar_hrd
	
								Format of hardware address
							

	ar_op
	
								ARP opcode (command)
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

 ⁠
Name
probe::netfilter.arp.out — - Called for each outgoing ARP packet

 ⁠Synopsis
netfilter.arp.out

 ⁠Values
	ar_tip
	
								Ethernet+IP only (ar_pro==0x800): target IP address
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	ar_pro
	
								Format of protocol address
							

	ar_sip
	
								Ethernet+IP only (ar_pro==0x800): source IP address
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	ar_sha
	
								Ethernet+IP only (ar_pro==0x800): source hardware (MAC) address
							

	pf
	
								Protocol family -- always “arp”
							

	ar_op
	
								ARP opcode (command)
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	ar_hrd
	
								Format of hardware address
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	ar_data
	
								Address of ARP packet data region (after the header)
							

	ar_tha
	
								Ethernet+IP only (ar_pro==0x800): target hardware (MAC) address
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	ar_hln
	
								Length of hardware address
							

	ar_pln
	
								Length of protocol address
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	length
	
								The length of the packet buffer contents, in bytes
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	arphdr
	
								Address of ARP header
							

	indev_name
	
								Name of network device packet was received on (if known)
							

 ⁠
Name
probe::netfilter.bridge.forward — Called on an incoming bridging packet destined for some other computer

 ⁠Synopsis
netfilter.bridge.forward

 ⁠Values
	br_fd
	
								Forward delay in 1/256 secs
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	brhdr
	
								Address of bridge header
							

	br_mac
	
								Bridge MAC address
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	br_msg
	
								Message age in 1/256 secs
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	llcproto_stp
	
								Constant used to signify Bridge Spanning Tree Protocol packet
							

	pf
	
								Protocol family -- always “bridge”
							

	br_vid
	
								Protocol version identifier
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	br_poid
	
								Port identifier
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	llcpdu
	
								Address of LLC Protocol Data Unit
							

	length
	
								The length of the packet buffer contents, in bytes
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	br_cost
	
								Total cost from transmitting bridge to root
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	br_type
	
								BPDU type
							

	br_max
	
								Max age in 1/256 secs
							

	br_htime
	
								Hello time in 1/256 secs
							

	protocol
	
								Packet protocol
							

	br_bid
	
								Identity of bridge
							

	br_rmac
	
								Root bridge MAC address
							

	br_prid
	
								Protocol identifier
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	br_flags
	
								BPDU flags
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	br_rid
	
								Identity of root bridge
							

 ⁠
Name
probe::netfilter.bridge.local_in — Called on a bridging packet destined for the local computer

 ⁠Synopsis
netfilter.bridge.local_in

 ⁠Values
	llcproto_stp
	
								Constant used to signify Bridge Spanning Tree Protocol packet
							

	pf
	
								Protocol family -- always “bridge”
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	br_msg
	
								Message age in 1/256 secs
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	br_fd
	
								Forward delay in 1/256 secs
							

	br_mac
	
								Bridge MAC address
							

	brhdr
	
								Address of bridge header
							

	br_rid
	
								Identity of root bridge
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	br_flags
	
								BPDU flags
							

	br_prid
	
								Protocol identifier
							

	br_htime
	
								Hello time in 1/256 secs
							

	protocol
	
								Packet protocol
							

	br_bid
	
								Identity of bridge
							

	br_rmac
	
								Root bridge MAC address
							

	br_max
	
								Max age in 1/256 secs
							

	br_type
	
								BPDU type
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	br_cost
	
								Total cost from transmitting bridge to root
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	length
	
								The length of the packet buffer contents, in bytes
							

	llcpdu
	
								Address of LLC Protocol Data Unit
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	br_poid
	
								Port identifier
							

	br_vid
	
								Protocol version identifier
							

 ⁠
Name
probe::netfilter.bridge.local_out — Called on a bridging packet coming from a local process

 ⁠Synopsis
netfilter.bridge.local_out

 ⁠Values
	indev
	
								Address of net_device representing input device, 0 if unknown
							

	br_msg
	
								Message age in 1/256 secs
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	llcproto_stp
	
								Constant used to signify Bridge Spanning Tree Protocol packet
							

	pf
	
								Protocol family -- always “bridge”
							

	br_fd
	
								Forward delay in 1/256 secs
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	brhdr
	
								Address of bridge header
							

	br_mac
	
								Bridge MAC address
							

	br_flags
	
								BPDU flags
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	br_rid
	
								Identity of root bridge
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	br_type
	
								BPDU type
							

	br_max
	
								Max age in 1/256 secs
							

	protocol
	
								Packet protocol
							

	br_htime
	
								Hello time in 1/256 secs
							

	br_bid
	
								Identity of bridge
							

	br_rmac
	
								Root bridge MAC address
							

	br_prid
	
								Protocol identifier
							

	llcpdu
	
								Address of LLC Protocol Data Unit
							

	length
	
								The length of the packet buffer contents, in bytes
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	br_cost
	
								Total cost from transmitting bridge to root
							

	br_vid
	
								Protocol version identifier
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	br_poid
	
								Port identifier
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

 ⁠
Name
probe::netfilter.bridge.post_routing — - Called before a bridging packet hits the wire

 ⁠Synopsis
netfilter.bridge.post_routing

 ⁠Values
	llcproto_stp
	
								Constant used to signify Bridge Spanning Tree Protocol packet
							

	pf
	
								Protocol family -- always “bridge”
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	br_msg
	
								Message age in 1/256 secs
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	br_mac
	
								Bridge MAC address
							

	br_fd
	
								Forward delay in 1/256 secs
							

	brhdr
	
								Address of bridge header
							

	br_htime
	
								Hello time in 1/256 secs
							

	br_bid
	
								Identity of bridge
							

	br_rmac
	
								Root bridge MAC address
							

	protocol
	
								Packet protocol
							

	br_prid
	
								Protocol identifier
							

	br_type
	
								BPDU type
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	br_max
	
								Max age in 1/256 secs
							

	br_rid
	
								Identity of root bridge
							

	br_flags
	
								BPDU flags
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	br_poid
	
								Port identifier
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	br_vid
	
								Protocol version identifier
							

	length
	
								The length of the packet buffer contents, in bytes
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	br_cost
	
								Total cost from transmitting bridge to root
							

	llcpdu
	
								Address of LLC Protocol Data Unit
							

 ⁠
Name
probe::netfilter.bridge.pre_routing — - Called before a bridging packet is routed

 ⁠Synopsis
netfilter.bridge.pre_routing

 ⁠Values
	llcproto_stp
	
								Constant used to signify Bridge Spanning Tree Protocol packet
							

	pf
	
								Protocol family -- always “bridge”
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	br_msg
	
								Message age in 1/256 secs
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	brhdr
	
								Address of bridge header
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	br_fd
	
								Forward delay in 1/256 secs
							

	br_mac
	
								Bridge MAC address
							

	br_rid
	
								Identity of root bridge
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	br_flags
	
								BPDU flags
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	br_prid
	
								Protocol identifier
							

	br_rmac
	
								Root bridge MAC address
							

	br_htime
	
								Hello time in 1/256 secs
							

	br_bid
	
								Identity of bridge
							

	protocol
	
								Packet protocol
							

	br_max
	
								Max age in 1/256 secs
							

	br_type
	
								BPDU type
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	br_cost
	
								Total cost from transmitting bridge to root
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	length
	
								The length of the packet buffer contents, in bytes
							

	llcpdu
	
								Address of LLC Protocol Data Unit
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	br_poid
	
								Port identifier
							

	br_vid
	
								Protocol version identifier
							

 ⁠
Name
probe::netfilter.ip.forward — Called on an incoming IP packet addressed to some other computer

 ⁠Synopsis
netfilter.ip.forward

 ⁠Values
	saddr
	
								A string representing the source IP address
							

	sport
	
								TCP or UDP source port (ipv4 only)
							

	daddr
	
								A string representing the destination IP address
							

	pf
	
								Protocol family -- either “ipv4” or “ipv6”
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	dport
	
								TCP or UDP destination port (ipv4 only)
							

	iphdr
	
								Address of IP header
							

	fin
	
								TCP FIN flag (if protocol is TCP; ipv4 only)
							

	ack
	
								TCP ACK flag (if protocol is TCP; ipv4 only)
							

	syn
	
								TCP SYN flag (if protocol is TCP; ipv4 only)
							

	ipproto_udp
	
								Constant used to signify that the packet protocol is UDP
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	rst
	
								TCP RST flag (if protocol is TCP; ipv4 only)
							

	protocol
	
								Packet protocol from driver (ipv4 only)
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	length
	
								The length of the packet buffer contents, in bytes
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	urg
	
								TCP URG flag (if protocol is TCP; ipv4 only)
							

	psh
	
								TCP PSH flag (if protocol is TCP; ipv4 only)
							

	ipproto_tcp
	
								Constant used to signify that the packet protocol is TCP
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	family
	
								IP address family
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

 ⁠
Name
probe::netfilter.ip.local_in — Called on an incoming IP packet addressed to the local computer

 ⁠Synopsis
netfilter.ip.local_in

 ⁠Values
	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	length
	
								The length of the packet buffer contents, in bytes
							

	urg
	
								TCP URG flag (if protocol is TCP; ipv4 only)
							

	psh
	
								TCP PSH flag (if protocol is TCP; ipv4 only)
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	family
	
								IP address family
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	ipproto_tcp
	
								Constant used to signify that the packet protocol is TCP
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	protocol
	
								Packet protocol from driver (ipv4 only)
							

	rst
	
								TCP RST flag (if protocol is TCP; ipv4 only)
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	dport
	
								TCP or UDP destination port (ipv4 only)
							

	iphdr
	
								Address of IP header
							

	fin
	
								TCP FIN flag (if protocol is TCP; ipv4 only)
							

	syn
	
								TCP SYN flag (if protocol is TCP; ipv4 only)
							

	ack
	
								TCP ACK flag (if protocol is TCP; ipv4 only)
							

	ipproto_udp
	
								Constant used to signify that the packet protocol is UDP
							

	saddr
	
								A string representing the source IP address
							

	sport
	
								TCP or UDP source port (ipv4 only)
							

	pf
	
								Protocol family -- either “ipv4” or “ipv6”
							

	daddr
	
								A string representing the destination IP address
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

 ⁠
Name
probe::netfilter.ip.local_out — Called on an outgoing IP packet

 ⁠Synopsis
netfilter.ip.local_out

 ⁠Values
	dport
	
								TCP or UDP destination port (ipv4 only)
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	syn
	
								TCP SYN flag (if protocol is TCP; ipv4 only)
							

	ipproto_udp
	
								Constant used to signify that the packet protocol is UDP
							

	ack
	
								TCP ACK flag (if protocol is TCP; ipv4 only)
							

	fin
	
								TCP FIN flag (if protocol is TCP; ipv4 only)
							

	iphdr
	
								Address of IP header
							

	saddr
	
								A string representing the source IP address
							

	sport
	
								TCP or UDP source port (ipv4 only)
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	daddr
	
								A string representing the destination IP address
							

	pf
	
								Protocol family -- either “ipv4” or “ipv6”
							

	psh
	
								TCP PSH flag (if protocol is TCP; ipv4 only)
							

	urg
	
								TCP URG flag (if protocol is TCP; ipv4 only)
							

	length
	
								The length of the packet buffer contents, in bytes
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	ipproto_tcp
	
								Constant used to signify that the packet protocol is TCP
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	family
	
								IP address family
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	rst
	
								TCP RST flag (if protocol is TCP; ipv4 only)
							

	protocol
	
								Packet protocol from driver (ipv4 only)
							

 ⁠
Name
probe::netfilter.ip.post_routing — Called immediately before an outgoing IP packet leaves the computer

 ⁠Synopsis
netfilter.ip.post_routing

 ⁠Values
	family
	
								IP address family
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	ipproto_tcp
	
								Constant used to signify that the packet protocol is TCP
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

	length
	
								The length of the packet buffer contents, in bytes
							

	urg
	
								TCP URG flag (if protocol is TCP; ipv4 only)
							

	psh
	
								TCP PSH flag (if protocol is TCP; ipv4 only)
							

	rst
	
								TCP RST flag (if protocol is TCP; ipv4 only)
							

	protocol
	
								Packet protocol from driver (ipv4 only)
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	iphdr
	
								Address of IP header
							

	fin
	
								TCP FIN flag (if protocol is TCP; ipv4 only)
							

	syn
	
								TCP SYN flag (if protocol is TCP; ipv4 only)
							

	ipproto_udp
	
								Constant used to signify that the packet protocol is UDP
							

	ack
	
								TCP ACK flag (if protocol is TCP; ipv4 only)
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	dport
	
								TCP or UDP destination port (ipv4 only)
							

	pf
	
								Protocol family -- either “ipv4” or “ipv6”
							

	daddr
	
								A string representing the destination IP address
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	indev
	
								Address of net_device representing input device, 0 if unknown
							

	saddr
	
								A string representing the source IP address
							

	sport
	
								TCP or UDP source port (ipv4 only)
							

 ⁠
Name
probe::netfilter.ip.pre_routing — Called before an IP packet is routed

 ⁠Synopsis
netfilter.ip.pre_routing

 ⁠Values
	indev
	
								Address of net_device representing input device, 0 if unknown
							

	nf_drop
	
								Constant used to signify a 'drop' verdict
							

	daddr
	
								A string representing the destination IP address
							

	pf
	
								Protocol family - either 'ipv4' or 'ipv6'
							

	sport
	
								TCP or UDP source port (ipv4 only)
							

	saddr
	
								A string representing the source IP address
							

	syn
	
								TCP SYN flag (if protocol is TCP; ipv4 only)
							

	ipproto_udp
	
								Constant used to signify that the packet protocol is UDP
							

	ack
	
								TCP ACK flag (if protocol is TCP; ipv4 only)
							

	iphdr
	
								Address of IP header
							

	fin
	
								TCP FIN flag (if protocol is TCP; ipv4 only)
							

	dport
	
								TCP or UDP destination port (ipv4 only)
							

	nf_queue
	
								Constant used to signify a 'queue' verdict
							

	nf_stop
	
								Constant used to signify a 'stop' verdict
							

	rst
	
								TCP RST flag (if protocol is TCP; ipv4 only)
							

	protocol
	
								Packet protocol from driver (ipv4 only)
							

	outdev_name
	
								Name of network device packet will be routed to (if known)
							

	nf_accept
	
								Constant used to signify an 'accept' verdict
							

	indev_name
	
								Name of network device packet was received on (if known)
							

	ipproto_tcp
	
								Constant used to signify that the packet protocol is TCP
							

	family
	
								IP address family
							

	nf_repeat
	
								Constant used to signify a 'repeat' verdict
							

	outdev
	
								Address of net_device representing output device, 0 if unknown
							

	psh
	
								TCP PSH flag (if protocol is TCP; ipv4 only)
							

	urg
	
								TCP URG flag (if protocol is TCP; ipv4 only)
							

	length
	
								The length of the packet buffer contents, in bytes
							

	nf_stolen
	
								Constant used to signify a 'stolen' verdict
							

 ⁠
Name
probe::sunrpc.clnt.bind_new_program — Bind a new RPC program to an existing client

 ⁠Synopsis
sunrpc.clnt.bind_new_program

 ⁠Values
	progname
	
								the name of new RPC program
							

	old_prog
	
								the number of old RPC program
							

	vers
	
								the version of new RPC program
							

	servername
	
								the server machine name
							

	old_vers
	
								the version of old RPC program
							

	old_progname
	
								the name of old RPC program
							

	prog
	
								the number of new RPC program
							

 ⁠
Name
probe::sunrpc.clnt.call_async — Make an asynchronous RPC call

 ⁠Synopsis
sunrpc.clnt.call_async

 ⁠Values
	progname
	
								the RPC program name
							

	prot
	
								the IP protocol number
							

	proc
	
								the procedure number in this RPC call
							

	procname
	
								the procedure name in this RPC call
							

	vers
	
								the RPC program version number
							

	flags
	
								flags
							

	servername
	
								the server machine name
							

	xid
	
								current transmission id
							

	port
	
								the port number
							

	prog
	
								the RPC program number
							

	dead
	
								whether this client is abandoned
							

 ⁠
Name
probe::sunrpc.clnt.call_sync — Make a synchronous RPC call

 ⁠Synopsis
sunrpc.clnt.call_sync

 ⁠Values
	xid
	
								current transmission id
							

	servername
	
								the server machine name
							

	flags
	
								flags
							

	dead
	
								whether this client is abandoned
							

	prog
	
								the RPC program number
							

	port
	
								the port number
							

	prot
	
								the IP protocol number
							

	progname
	
								the RPC program name
							

	vers
	
								the RPC program version number
							

	proc
	
								the procedure number in this RPC call
							

	procname
	
								the procedure name in this RPC call
							

 ⁠
Name
probe::sunrpc.clnt.clone_client — Clone an RPC client structure

 ⁠Synopsis
sunrpc.clnt.clone_client

 ⁠Values
	authflavor
	
								the authentication flavor
							

	port
	
								the port number
							

	progname
	
								the RPC program name
							

	servername
	
								the server machine name
							

	prot
	
								the IP protocol number
							

	prog
	
								the RPC program number
							

	vers
	
								the RPC program version number
							

 ⁠
Name
probe::sunrpc.clnt.create_client — Create an RPC client

 ⁠Synopsis
sunrpc.clnt.create_client

 ⁠Values
	servername
	
								the server machine name
							

	prot
	
								the IP protocol number
							

	authflavor
	
								the authentication flavor
							

	port
	
								the port number
							

	progname
	
								the RPC program name
							

	vers
	
								the RPC program version number
							

	prog
	
								the RPC program number
							

 ⁠
Name
probe::sunrpc.clnt.restart_call — Restart an asynchronous RPC call

 ⁠Synopsis
sunrpc.clnt.restart_call

 ⁠Values
	servername
	
								the server machine name
							

	tk_priority
	
								the task priority
							

	xid
	
								the transmission id
							

	prog
	
								the RPC program number
							

	tk_runstate
	
								the task run status
							

	tk_pid
	
								the debugging aid of task
							

	tk_flags
	
								the task flags
							

 ⁠
Name
probe::sunrpc.clnt.shutdown_client — Shutdown an RPC client

 ⁠Synopsis
sunrpc.clnt.shutdown_client

 ⁠Values
	om_queue
	
								the jiffies queued for xmit
							

	clones
	
								the number of clones
							

	vers
	
								the RPC program version number
							

	om_rtt
	
								the RPC RTT jiffies
							

	om_execute
	
								the RPC execution jiffies
							

	rpccnt
	
								the count of RPC calls
							

	progname
	
								the RPC program name
							

	authflavor
	
								the authentication flavor
							

	prot
	
								the IP protocol number
							

	prog
	
								the RPC program number
							

	om_bytes_recv
	
								the count of bytes in
							

	om_bytes_sent
	
								the count of bytes out
							

	port
	
								the port number
							

	om_ntrans
	
								the count of RPC transmissions
							

	netreconn
	
								the count of reconnections
							

	om_ops
	
								the count of operations
							

	tasks
	
								the number of references
							

	servername
	
								the server machine name
							

 ⁠
Name
probe::sunrpc.sched.delay — Delay an RPC task

 ⁠Synopsis
sunrpc.sched.delay

 ⁠Values
	prog
	
								the program number in the RPC call
							

	xid
	
								the transmission id in the RPC call
							

	delay
	
								the time delayed
							

	vers
	
								the program version in the RPC call
							

	tk_flags
	
								the flags of the task
							

	tk_pid
	
								the debugging id of the task
							

	prot
	
								the IP protocol in the RPC call
							

 ⁠
Name
probe::sunrpc.sched.execute — Execute the RPC `scheduler'

 ⁠Synopsis
sunrpc.sched.execute

 ⁠Values
	tk_pid
	
								the debugging id of the task
							

	prot
	
								the IP protocol in the RPC call
							

	vers
	
								the program version in the RPC call
							

	tk_flags
	
								the flags of the task
							

	xid
	
								the transmission id in the RPC call
							

	prog
	
								the program number in the RPC call
							

 ⁠
Name
probe::sunrpc.sched.new_task — Create new task for the specified client

 ⁠Synopsis
sunrpc.sched.new_task

 ⁠Values
	xid
	
								the transmission id in the RPC call
							

	prog
	
								the program number in the RPC call
							

	prot
	
								the IP protocol in the RPC call
							

	vers
	
								the program version in the RPC call
							

	tk_flags
	
								the flags of the task
							

 ⁠
Name
probe::sunrpc.sched.release_task — Release all resources associated with a task

 ⁠Synopsis
sunrpc.sched.release_task

 ⁠Values
	prot
	
								the IP protocol in the RPC call
							

	tk_flags
	
								the flags of the task
							

	vers
	
								the program version in the RPC call
							

	xid
	
								the transmission id in the RPC call
							

	prog
	
								the program number in the RPC call
							

 ⁠Description

					rpc_release_task function might not be found for a particular kernel. So, if we can't find it, just return '-1' for everything.
				

 ⁠
Name
probe::sunrpc.svc.create — Create an RPC service

 ⁠Synopsis
sunrpc.svc.create

 ⁠Values
	bufsize
	
								the buffer size
							

	pg_nvers
	
								the number of supported versions
							

	progname
	
								the name of the program
							

	prog
	
								the number of the program
							

 ⁠
Name
probe::sunrpc.svc.destroy — Destroy an RPC service

 ⁠Synopsis
sunrpc.svc.destroy

 ⁠Values
	sv_nrthreads
	
								the number of concurrent threads
							

	sv_name
	
								the service name
							

	sv_prog
	
								the number of the program
							

	rpcbadauth
	
								the count of requests drooped for authentication failure
							

	rpcbadfmt
	
								the count of requests dropped for bad formats
							

	rpccnt
	
								the count of valid RPC requests
							

	sv_progname
	
								the name of the program
							

	netcnt
	
								the count of received RPC requests
							

	nettcpconn
	
								the count of accepted TCP connections
							

 ⁠
Name
probe::sunrpc.svc.drop — Drop RPC request

 ⁠Synopsis
sunrpc.svc.drop

 ⁠Values
	rq_xid
	
								the transmission id in the request
							

	sv_name
	
								the service name
							

	rq_prot
	
								the IP protocol of the reqeust
							

	peer_ip
	
								the peer address where the request is from
							

	rq_proc
	
								the procedure number in the request
							

	rq_vers
	
								the program version in the request
							

	rq_prog
	
								the program number in the request
							

 ⁠
Name
probe::sunrpc.svc.process — Process an RPC request

 ⁠Synopsis
sunrpc.svc.process

 ⁠Values
	rq_prog
	
								the program number in the request
							

	rq_vers
	
								the program version in the request
							

	peer_ip
	
								the peer address where the request is from
							

	rq_proc
	
								the procedure number in the request
							

	sv_prog
	
								the number of the program
							

	rq_prot
	
								the IP protocol of the reqeust
							

	sv_name
	
								the service name
							

	rq_xid
	
								the transmission id in the request
							

	sv_nrthreads
	
								the number of concurrent threads
							

 ⁠
Name
probe::sunrpc.svc.recv — Listen for the next RPC request on any socket

 ⁠Synopsis
sunrpc.svc.recv

 ⁠Values
	sv_nrthreads
	
								the number of concurrent threads
							

	sv_name
	
								the service name
							

	sv_prog
	
								the number of the program
							

	timeout
	
								the timeout of waiting for data
							

 ⁠
Name
probe::sunrpc.svc.register — Register an RPC service with the local portmapper

 ⁠Synopsis
sunrpc.svc.register

 ⁠Values
	sv_name
	
								the service name
							

	prog
	
								the number of the program
							

	port
	
								the port number
							

	progname
	
								the name of the program
							

	prot
	
								the IP protocol number
							

 ⁠Description

					If proto and port are both 0, then unregister a service.
				

 ⁠
Name
probe::sunrpc.svc.send — Return reply to RPC client

 ⁠Synopsis
sunrpc.svc.send

 ⁠Values
	rq_vers
	
								the program version in the request
							

	rq_prog
	
								the program number in the request
							

	rq_prot
	
								the IP protocol of the reqeust
							

	sv_name
	
								the service name
							

	rq_xid
	
								the transmission id in the request
							

	peer_ip
	
								the peer address where the request is from
							

	rq_proc
	
								the procedure number in the request
							

 ⁠
Name
probe::tcp.disconnect — TCP socket disconnection

 ⁠Synopsis
tcp.disconnect

 ⁠Values
	flags
	
								TCP flags (e.g. FIN, etc)
							

	daddr
	
								A string representing the destination IP address
							

	sport
	
								TCP source port
							

	family
	
								IP address family
							

	name
	
								Name of this probe
							

	saddr
	
								A string representing the source IP address
							

	dport
	
								TCP destination port
							

	sock
	
								Network socket
							

 ⁠Context

					The process which disconnects tcp
				

 ⁠
Name
probe::tcp.disconnect.return — TCP socket disconnection complete

 ⁠Synopsis
tcp.disconnect.return

 ⁠Values
	name
	
								Name of this probe
							

	ret
	
								Error code (0: no error)
							

 ⁠Context

					The process which disconnects tcp
				

 ⁠
Name
probe::tcp.receive — Called when a TCP packet is received

 ⁠Synopsis
tcp.receive

 ⁠Values
	psh
	
								TCP PSH flag
							

	ack
	
								TCP ACK flag
							

	daddr
	
								A string representing the destination IP address
							

	syn
	
								TCP SYN flag
							

	rst
	
								TCP RST flag
							

	sport
	
								TCP source port
							

	protocol
	
								Packet protocol from driver
							

	urg
	
								TCP URG flag
							

	name
	
								Name of the probe point
							

	family
	
								IP address family
							

	fin
	
								TCP FIN flag
							

	saddr
	
								A string representing the source IP address
							

	iphdr
	
								IP header address
							

	dport
	
								TCP destination port
							

 ⁠
Name
probe::tcp.recvmsg — Receiving TCP message

 ⁠Synopsis
tcp.recvmsg

 ⁠Values
	daddr
	
								A string representing the destination IP address
							

	sport
	
								TCP source port
							

	size
	
								Number of bytes to be received
							

	name
	
								Name of this probe
							

	family
	
								IP address family
							

	saddr
	
								A string representing the source IP address
							

	sock
	
								Network socket
							

	dport
	
								TCP destination port
							

 ⁠Context

					The process which receives a tcp message
				

 ⁠
Name
probe::tcp.recvmsg.return — Receiving TCP message complete

 ⁠Synopsis
tcp.recvmsg.return

 ⁠Values
	saddr
	
								A string representing the source IP address
							

	dport
	
								TCP destination port
							

	daddr
	
								A string representing the destination IP address
							

	size
	
								Number of bytes received or error code if an error occurred.
							

	sport
	
								TCP source port
							

	family
	
								IP address family
							

	name
	
								Name of this probe
							

 ⁠Context

					The process which receives a tcp message
				

 ⁠
Name
probe::tcp.sendmsg — Sending a tcp message

 ⁠Synopsis
tcp.sendmsg

 ⁠Values
	family
	
								IP address family
							

	sock
	
								Network socket
							

	name
	
								Name of this probe
							

	size
	
								Number of bytes to send
							

 ⁠Context

					The process which sends a tcp message
				

 ⁠
Name
probe::tcp.sendmsg.return — Sending TCP message is done

 ⁠Synopsis
tcp.sendmsg.return

 ⁠Values
	name
	
								Name of this probe
							

	size
	
								Number of bytes sent or error code if an error occurred.
							

 ⁠Context

					The process which sends a tcp message
				

 ⁠
Name
probe::tcp.setsockopt — Call to setsockopt

 ⁠Synopsis
tcp.setsockopt

 ⁠Values
	optstr
	
								Resolves optname to a human-readable format
							

	name
	
								Name of this probe
							

	family
	
								IP address family
							

	level
	
								The level at which the socket options will be manipulated
							

	optname
	
								TCP socket options (e.g. TCP_NODELAY, TCP_MAXSEG, etc)
							

	sock
	
								Network socket
							

	optlen
	
								Used to access values for setsockopt
							

 ⁠Context

					The process which calls setsockopt
				

 ⁠
Name
probe::tcp.setsockopt.return — Return from setsockopt

 ⁠Synopsis
tcp.setsockopt.return

 ⁠Values
	ret
	
								Error code (0: no error)
							

	name
	
								Name of this probe
							

 ⁠Context

					The process which calls setsockopt
				

 ⁠
Name
probe::udp.disconnect — Fires when a process requests for a UDP disconnection

 ⁠Synopsis
udp.disconnect

 ⁠Values
	daddr
	
								A string representing the destination IP address
							

	sock
	
								Network socket used by the process
							

	saddr
	
								A string representing the source IP address
							

	sport
	
								UDP source port
							

	flags
	
								Flags (e.g. FIN, etc)
							

	dport
	
								UDP destination port
							

	name
	
								The name of this probe
							

	family
	
								IP address family
							

 ⁠Context

					The process which requests a UDP disconnection
				

 ⁠
Name
probe::udp.disconnect.return — UDP has been disconnected successfully

 ⁠Synopsis
udp.disconnect.return

 ⁠Values
	saddr
	
								A string representing the source IP address
							

	sport
	
								UDP source port
							

	dport
	
								UDP destination port
							

	family
	
								IP address family
							

	name
	
								The name of this probe
							

	daddr
	
								A string representing the destination IP address
							

	ret
	
								Error code (0: no error)
							

 ⁠Context

					The process which requested a UDP disconnection
				

 ⁠
Name
probe::udp.recvmsg — Fires whenever a UDP message is received

 ⁠Synopsis
udp.recvmsg

 ⁠Values
	size
	
								Number of bytes received by the process
							

	sock
	
								Network socket used by the process
							

	daddr
	
								A string representing the destination IP address
							

	family
	
								IP address family
							

	name
	
								The name of this probe
							

	dport
	
								UDP destination port
							

	saddr
	
								A string representing the source IP address
							

	sport
	
								UDP source port
							

 ⁠Context

					The process which received a UDP message
				

 ⁠
Name
probe::udp.recvmsg.return — Fires whenever an attempt to receive a UDP message received is completed

 ⁠Synopsis
udp.recvmsg.return

 ⁠Values
	name
	
								The name of this probe
							

	family
	
								IP address family
							

	dport
	
								UDP destination port
							

	saddr
	
								A string representing the source IP address
							

	sport
	
								UDP source port
							

	size
	
								Number of bytes received by the process
							

	daddr
	
								A string representing the destination IP address
							

 ⁠Context

					The process which received a UDP message
				

 ⁠
Name
probe::udp.sendmsg — Fires whenever a process sends a UDP message

 ⁠Synopsis
udp.sendmsg

 ⁠Values
	daddr
	
								A string representing the destination IP address
							

	sock
	
								Network socket used by the process
							

	size
	
								Number of bytes sent by the process
							

	saddr
	
								A string representing the source IP address
							

	sport
	
								UDP source port
							

	family
	
								IP address family
							

	name
	
								The name of this probe
							

	dport
	
								UDP destination port
							

 ⁠Context

					The process which sent a UDP message
				

 ⁠
Name
probe::udp.sendmsg.return — Fires whenever an attempt to send a UDP message is completed

 ⁠Synopsis
udp.sendmsg.return

 ⁠Values
	size
	
								Number of bytes sent by the process
							

	name
	
								The name of this probe
							

 ⁠Context

					The process which sent a UDP message
				

 ⁠Chapter 15. Socket Tapset

			This family of probe points is used to probe socket activities. It contains the following probe points:
		

 ⁠
Name
function::inet_get_ip_source — Provide IP source address string for a kernel socket

 ⁠Synopsis

inet_get_ip_source:string(sock:long)

 ⁠Arguments
	sock
	
								pointer to the kernel socket
							

 ⁠
Name
function::inet_get_local_port — Provide local port number for a kernel socket

 ⁠Synopsis

inet_get_local_port:long(sock:long)

 ⁠Arguments
	sock
	
								pointer to the kernel socket
							

 ⁠
Name
function::sock_fam_num2str — Given a protocol family number, return a string representation

 ⁠Synopsis

sock_fam_num2str:string(family:long)

 ⁠Arguments
	family
	
								The family number
							

 ⁠
Name
function::sock_fam_str2num — Given a protocol family name (string), return the corresponding protocol family number

 ⁠Synopsis

sock_fam_str2num:long(family:string)

 ⁠Arguments
	family
	
								The family name
							

 ⁠
Name
function::sock_prot_num2str — Given a protocol number, return a string representation

 ⁠Synopsis

sock_prot_num2str:string(proto:long)

 ⁠Arguments
	proto
	
								The protocol number
							

 ⁠
Name
function::sock_prot_str2num — Given a protocol name (string), return the corresponding protocol number

 ⁠Synopsis

sock_prot_str2num:long(proto:string)

 ⁠Arguments
	proto
	
								The protocol name
							

 ⁠
Name
function::sock_state_num2str — Given a socket state number, return a string representation

 ⁠Synopsis

sock_state_num2str:string(state:long)

 ⁠Arguments
	state
	
								The state number
							

 ⁠
Name
function::sock_state_str2num — Given a socket state string, return the corresponding state number

 ⁠Synopsis

sock_state_str2num:long(state:string)

 ⁠Arguments
	state
	
								The state name
							

 ⁠
Name
probe::socket.aio_read — Receiving message via sock_aio_read

 ⁠Synopsis
socket.aio_read

 ⁠Values
	flags
	
								Socket flags value
							

	type
	
								Socket type value
							

	size
	
								Message size in bytes
							

	family
	
								Protocol family value
							

	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	state
	
								Socket state value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of receiving a message on a socket via the sock_aio_read function
				

 ⁠
Name
probe::socket.aio_read.return — Conclusion of message received via sock_aio_read

 ⁠Synopsis
socket.aio_read.return

 ⁠Values
	family
	
								Protocol family value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	success
	
								Was receive successful? (1 = yes, 0 = no)
							

	flags
	
								Socket flags value
							

	type
	
								Socket type value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of receiving a message on a socket via the sock_aio_read function
				

 ⁠
Name
probe::socket.aio_write — Message send via sock_aio_write

 ⁠Synopsis
socket.aio_write

 ⁠Values
	flags
	
								Socket flags value
							

	type
	
								Socket type value
							

	size
	
								Message size in bytes
							

	family
	
								Protocol family value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of sending a message on a socket via the sock_aio_write function
				

 ⁠
Name
probe::socket.aio_write.return — Conclusion of message send via sock_aio_write

 ⁠Synopsis
socket.aio_write.return

 ⁠Values
	state
	
								Socket state value
							

	success
	
								Was receive successful? (1 = yes, 0 = no)
							

	family
	
								Protocol family value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

	type
	
								Socket type value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	flags
	
								Socket flags value
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of sending a message on a socket via the sock_aio_write function
				

 ⁠
Name
probe::socket.close — Close a socket

 ⁠Synopsis
socket.close

 ⁠Values
	type
	
								Socket type value
							

	flags
	
								Socket flags value
							

	state
	
								Socket state value
							

	family
	
								Protocol family value
							

	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

 ⁠Context

					The requester (user process or kernel)
				

 ⁠Description

					Fires at the beginning of closing a socket.
				

 ⁠
Name
probe::socket.close.return — Return from closing a socket

 ⁠Synopsis
socket.close.return

 ⁠Values
	name
	
								Name of this probe
							

 ⁠Context

					The requester (user process or kernel)
				

 ⁠Description

					Fires at the conclusion of closing a socket.
				

 ⁠
Name
probe::socket.create — Creation of a socket

 ⁠Synopsis
socket.create

 ⁠Values
	type
	
								Socket type value
							

	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	family
	
								Protocol family value
							

	requester
	
								Requested by user process or the kernel (1 = kernel, 0 = user)
							

 ⁠Context

					The requester (see requester variable)
				

 ⁠Description

					Fires at the beginning of creating a socket.
				

 ⁠
Name
probe::socket.create.return — Return from Creation of a socket

 ⁠Synopsis
socket.create.return

 ⁠Values
	success
	
								Was socket creation successful? (1 = yes, 0 = no)
							

	family
	
								Protocol family value
							

	requester
	
								Requested by user process or the kernel (1 = kernel, 0 = user)
							

	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	type
	
								Socket type value
							

	err
	
								Error code if success == 0
							

 ⁠Context

					The requester (user process or kernel)
				

 ⁠Description

					Fires at the conclusion of creating a socket.
				

 ⁠
Name
probe::socket.read_iter — Receiving message via sock_read_iter

 ⁠Synopsis
socket.read_iter

 ⁠Values
	state
	
								Socket state value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

	family
	
								Protocol family value
							

	size
	
								Message size in bytes
							

	type
	
								Socket type value
							

	flags
	
								Socket flags value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of receiving a message on a socket via the sock_read_iter function
				

 ⁠
Name
probe::socket.read_iter.return — Conclusion of message received via sock_read_iter

 ⁠Synopsis
socket.read_iter.return

 ⁠Values
	flags
	
								Socket flags value
							

	type
	
								Socket type value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	family
	
								Protocol family value
							

	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	state
	
								Socket state value
							

	success
	
								Was receive successful? (1 = yes, 0 = no)
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of receiving a message on a socket via the sock_read_iter function
				

 ⁠
Name
probe::socket.readv — Receiving a message via sock_readv

 ⁠Synopsis
socket.readv

 ⁠Values
	state
	
								Socket state value
							

	family
	
								Protocol family value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

	type
	
								Socket type value
							

	size
	
								Message size in bytes
							

	flags
	
								Socket flags value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of receiving a message on a socket via the sock_readv function
				

 ⁠
Name
probe::socket.readv.return — Conclusion of receiving a message via sock_readv

 ⁠Synopsis
socket.readv.return

 ⁠Values
	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	family
	
								Protocol family value
							

	success
	
								Was receive successful? (1 = yes, 0 = no)
							

	state
	
								Socket state value
							

	flags
	
								Socket flags value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of receiving a message on a socket via the sock_readv function
				

 ⁠
Name
probe::socket.receive — Message received on a socket.

 ⁠Synopsis
socket.receive

 ⁠Values
	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	family
	
								Protocol family value
							

	success
	
								Was send successful? (1 = yes, 0 = no)
							

	state
	
								Socket state value
							

	flags
	
								Socket flags value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

 ⁠Context

					The message receiver
				

 ⁠
Name
probe::socket.recvmsg — Message being received on socket

 ⁠Synopsis
socket.recvmsg

 ⁠Values
	family
	
								Protocol family value
							

	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	state
	
								Socket state value
							

	flags
	
								Socket flags value
							

	type
	
								Socket type value
							

	size
	
								Message size in bytes
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the beginning of receiving a message on a socket via the sock_recvmsg function
				

 ⁠
Name
probe::socket.recvmsg.return — Return from Message being received on socket

 ⁠Synopsis
socket.recvmsg.return

 ⁠Values
	family
	
								Protocol family value
							

	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	state
	
								Socket state value
							

	success
	
								Was receive successful? (1 = yes, 0 = no)
							

	flags
	
								Socket flags value
							

	type
	
								Socket type value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of receiving a message on a socket via the sock_recvmsg function.
				

 ⁠
Name
probe::socket.send — Message sent on a socket.

 ⁠Synopsis
socket.send

 ⁠Values
	flags
	
								Socket flags value
							

	size
	
								Size of message sent (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

	family
	
								Protocol family value
							

	success
	
								Was send successful? (1 = yes, 0 = no)
							

	state
	
								Socket state value
							

 ⁠Context

					The message sender
				

 ⁠
Name
probe::socket.sendmsg — Message is currently being sent on a socket.

 ⁠Synopsis
socket.sendmsg

 ⁠Values
	family
	
								Protocol family value
							

	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	state
	
								Socket state value
							

	flags
	
								Socket flags value
							

	type
	
								Socket type value
							

	size
	
								Message size in bytes
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of sending a message on a socket via the sock_sendmsg function
				

 ⁠
Name
probe::socket.sendmsg.return — Return from socket.sendmsg.

 ⁠Synopsis
socket.sendmsg.return

 ⁠Values
	type
	
								Socket type value
							

	size
	
								Size of message sent (in bytes) or error code if success = 0
							

	flags
	
								Socket flags value
							

	state
	
								Socket state value
							

	success
	
								Was send successful? (1 = yes, 0 = no)
							

	family
	
								Protocol family value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

 ⁠Context

					The message sender.
				

 ⁠Description

					Fires at the conclusion of sending a message on a socket via the sock_sendmsg function
				

 ⁠
Name
probe::socket.write_iter — Message send via sock_write_iter

 ⁠Synopsis
socket.write_iter

 ⁠Values
	state
	
								Socket state value
							

	family
	
								Protocol family value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

	type
	
								Socket type value
							

	size
	
								Message size in bytes
							

	flags
	
								Socket flags value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of sending a message on a socket via the sock_write_iter function
				

 ⁠
Name
probe::socket.write_iter.return — Conclusion of message send via sock_write_iter

 ⁠Synopsis
socket.write_iter.return

 ⁠Values
	type
	
								Socket type value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	flags
	
								Socket flags value
							

	state
	
								Socket state value
							

	success
	
								Was receive successful? (1 = yes, 0 = no)
							

	family
	
								Protocol family value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of sending a message on a socket via the sock_write_iter function
				

 ⁠
Name
probe::socket.writev — Message sent via socket_writev

 ⁠Synopsis
socket.writev

 ⁠Values
	state
	
								Socket state value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

	family
	
								Protocol family value
							

	size
	
								Message size in bytes
							

	type
	
								Socket type value
							

	flags
	
								Socket flags value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of sending a message on a socket via the sock_writev function
				

 ⁠
Name
probe::socket.writev.return — Conclusion of message sent via socket_writev

 ⁠Synopsis
socket.writev.return

 ⁠Values
	success
	
								Was send successful? (1 = yes, 0 = no)
							

	state
	
								Socket state value
							

	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	family
	
								Protocol family value
							

	size
	
								Size of message sent (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	flags
	
								Socket flags value
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of sending a message on a socket via the sock_writev function
				

 ⁠
Name
function::inet_get_ip_source — Provide IP source address string for a kernel socket

 ⁠Synopsis

inet_get_ip_source:string(sock:long)

 ⁠Arguments
	sock
	
								pointer to the kernel socket
							

 ⁠
Name
function::inet_get_local_port — Provide local port number for a kernel socket

 ⁠Synopsis

inet_get_local_port:long(sock:long)

 ⁠Arguments
	sock
	
								pointer to the kernel socket
							

 ⁠
Name
function::sock_fam_num2str — Given a protocol family number, return a string representation

 ⁠Synopsis

sock_fam_num2str:string(family:long)

 ⁠Arguments
	family
	
								The family number
							

 ⁠
Name
function::sock_fam_str2num — Given a protocol family name (string), return the corresponding protocol family number

 ⁠Synopsis

sock_fam_str2num:long(family:string)

 ⁠Arguments
	family
	
								The family name
							

 ⁠
Name
function::sock_prot_num2str — Given a protocol number, return a string representation

 ⁠Synopsis

sock_prot_num2str:string(proto:long)

 ⁠Arguments
	proto
	
								The protocol number
							

 ⁠
Name
function::sock_prot_str2num — Given a protocol name (string), return the corresponding protocol number

 ⁠Synopsis

sock_prot_str2num:long(proto:string)

 ⁠Arguments
	proto
	
								The protocol name
							

 ⁠
Name
function::sock_state_num2str — Given a socket state number, return a string representation

 ⁠Synopsis

sock_state_num2str:string(state:long)

 ⁠Arguments
	state
	
								The state number
							

 ⁠
Name
function::sock_state_str2num — Given a socket state string, return the corresponding state number

 ⁠Synopsis

sock_state_str2num:long(state:string)

 ⁠Arguments
	state
	
								The state name
							

 ⁠
Name
probe::socket.aio_read — Receiving message via sock_aio_read

 ⁠Synopsis
socket.aio_read

 ⁠Values
	flags
	
								Socket flags value
							

	type
	
								Socket type value
							

	size
	
								Message size in bytes
							

	family
	
								Protocol family value
							

	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	state
	
								Socket state value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of receiving a message on a socket via the sock_aio_read function
				

 ⁠
Name
probe::socket.aio_read.return — Conclusion of message received via sock_aio_read

 ⁠Synopsis
socket.aio_read.return

 ⁠Values
	family
	
								Protocol family value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	success
	
								Was receive successful? (1 = yes, 0 = no)
							

	flags
	
								Socket flags value
							

	type
	
								Socket type value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of receiving a message on a socket via the sock_aio_read function
				

 ⁠
Name
probe::socket.aio_write — Message send via sock_aio_write

 ⁠Synopsis
socket.aio_write

 ⁠Values
	flags
	
								Socket flags value
							

	type
	
								Socket type value
							

	size
	
								Message size in bytes
							

	family
	
								Protocol family value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of sending a message on a socket via the sock_aio_write function
				

 ⁠
Name
probe::socket.aio_write.return — Conclusion of message send via sock_aio_write

 ⁠Synopsis
socket.aio_write.return

 ⁠Values
	state
	
								Socket state value
							

	success
	
								Was receive successful? (1 = yes, 0 = no)
							

	family
	
								Protocol family value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

	type
	
								Socket type value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	flags
	
								Socket flags value
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of sending a message on a socket via the sock_aio_write function
				

 ⁠
Name
probe::socket.close — Close a socket

 ⁠Synopsis
socket.close

 ⁠Values
	type
	
								Socket type value
							

	flags
	
								Socket flags value
							

	state
	
								Socket state value
							

	family
	
								Protocol family value
							

	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

 ⁠Context

					The requester (user process or kernel)
				

 ⁠Description

					Fires at the beginning of closing a socket.
				

 ⁠
Name
probe::socket.close.return — Return from closing a socket

 ⁠Synopsis
socket.close.return

 ⁠Values
	name
	
								Name of this probe
							

 ⁠Context

					The requester (user process or kernel)
				

 ⁠Description

					Fires at the conclusion of closing a socket.
				

 ⁠
Name
probe::socket.create — Creation of a socket

 ⁠Synopsis
socket.create

 ⁠Values
	type
	
								Socket type value
							

	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	family
	
								Protocol family value
							

	requester
	
								Requested by user process or the kernel (1 = kernel, 0 = user)
							

 ⁠Context

					The requester (see requester variable)
				

 ⁠Description

					Fires at the beginning of creating a socket.
				

 ⁠
Name
probe::socket.create.return — Return from Creation of a socket

 ⁠Synopsis
socket.create.return

 ⁠Values
	success
	
								Was socket creation successful? (1 = yes, 0 = no)
							

	family
	
								Protocol family value
							

	requester
	
								Requested by user process or the kernel (1 = kernel, 0 = user)
							

	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	type
	
								Socket type value
							

	err
	
								Error code if success == 0
							

 ⁠Context

					The requester (user process or kernel)
				

 ⁠Description

					Fires at the conclusion of creating a socket.
				

 ⁠
Name
probe::socket.read_iter — Receiving message via sock_read_iter

 ⁠Synopsis
socket.read_iter

 ⁠Values
	state
	
								Socket state value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

	family
	
								Protocol family value
							

	size
	
								Message size in bytes
							

	type
	
								Socket type value
							

	flags
	
								Socket flags value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of receiving a message on a socket via the sock_read_iter function
				

 ⁠
Name
probe::socket.read_iter.return — Conclusion of message received via sock_read_iter

 ⁠Synopsis
socket.read_iter.return

 ⁠Values
	flags
	
								Socket flags value
							

	type
	
								Socket type value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	family
	
								Protocol family value
							

	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	state
	
								Socket state value
							

	success
	
								Was receive successful? (1 = yes, 0 = no)
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of receiving a message on a socket via the sock_read_iter function
				

 ⁠
Name
probe::socket.readv — Receiving a message via sock_readv

 ⁠Synopsis
socket.readv

 ⁠Values
	state
	
								Socket state value
							

	family
	
								Protocol family value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

	type
	
								Socket type value
							

	size
	
								Message size in bytes
							

	flags
	
								Socket flags value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of receiving a message on a socket via the sock_readv function
				

 ⁠
Name
probe::socket.readv.return — Conclusion of receiving a message via sock_readv

 ⁠Synopsis
socket.readv.return

 ⁠Values
	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	family
	
								Protocol family value
							

	success
	
								Was receive successful? (1 = yes, 0 = no)
							

	state
	
								Socket state value
							

	flags
	
								Socket flags value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of receiving a message on a socket via the sock_readv function
				

 ⁠
Name
probe::socket.receive — Message received on a socket.

 ⁠Synopsis
socket.receive

 ⁠Values
	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	family
	
								Protocol family value
							

	success
	
								Was send successful? (1 = yes, 0 = no)
							

	state
	
								Socket state value
							

	flags
	
								Socket flags value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

 ⁠Context

					The message receiver
				

 ⁠
Name
probe::socket.recvmsg — Message being received on socket

 ⁠Synopsis
socket.recvmsg

 ⁠Values
	family
	
								Protocol family value
							

	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	state
	
								Socket state value
							

	flags
	
								Socket flags value
							

	type
	
								Socket type value
							

	size
	
								Message size in bytes
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the beginning of receiving a message on a socket via the sock_recvmsg function
				

 ⁠
Name
probe::socket.recvmsg.return — Return from Message being received on socket

 ⁠Synopsis
socket.recvmsg.return

 ⁠Values
	family
	
								Protocol family value
							

	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	state
	
								Socket state value
							

	success
	
								Was receive successful? (1 = yes, 0 = no)
							

	flags
	
								Socket flags value
							

	type
	
								Socket type value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of receiving a message on a socket via the sock_recvmsg function.
				

 ⁠
Name
probe::socket.send — Message sent on a socket.

 ⁠Synopsis
socket.send

 ⁠Values
	flags
	
								Socket flags value
							

	size
	
								Size of message sent (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

	family
	
								Protocol family value
							

	success
	
								Was send successful? (1 = yes, 0 = no)
							

	state
	
								Socket state value
							

 ⁠Context

					The message sender
				

 ⁠
Name
probe::socket.sendmsg — Message is currently being sent on a socket.

 ⁠Synopsis
socket.sendmsg

 ⁠Values
	family
	
								Protocol family value
							

	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	state
	
								Socket state value
							

	flags
	
								Socket flags value
							

	type
	
								Socket type value
							

	size
	
								Message size in bytes
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of sending a message on a socket via the sock_sendmsg function
				

 ⁠
Name
probe::socket.sendmsg.return — Return from socket.sendmsg.

 ⁠Synopsis
socket.sendmsg.return

 ⁠Values
	type
	
								Socket type value
							

	size
	
								Size of message sent (in bytes) or error code if success = 0
							

	flags
	
								Socket flags value
							

	state
	
								Socket state value
							

	success
	
								Was send successful? (1 = yes, 0 = no)
							

	family
	
								Protocol family value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

 ⁠Context

					The message sender.
				

 ⁠Description

					Fires at the conclusion of sending a message on a socket via the sock_sendmsg function
				

 ⁠
Name
probe::socket.write_iter — Message send via sock_write_iter

 ⁠Synopsis
socket.write_iter

 ⁠Values
	state
	
								Socket state value
							

	family
	
								Protocol family value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

	type
	
								Socket type value
							

	size
	
								Message size in bytes
							

	flags
	
								Socket flags value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of sending a message on a socket via the sock_write_iter function
				

 ⁠
Name
probe::socket.write_iter.return — Conclusion of message send via sock_write_iter

 ⁠Synopsis
socket.write_iter.return

 ⁠Values
	type
	
								Socket type value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	flags
	
								Socket flags value
							

	state
	
								Socket state value
							

	success
	
								Was receive successful? (1 = yes, 0 = no)
							

	family
	
								Protocol family value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of sending a message on a socket via the sock_write_iter function
				

 ⁠
Name
probe::socket.writev — Message sent via socket_writev

 ⁠Synopsis
socket.writev

 ⁠Values
	state
	
								Socket state value
							

	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

	family
	
								Protocol family value
							

	size
	
								Message size in bytes
							

	type
	
								Socket type value
							

	flags
	
								Socket flags value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of sending a message on a socket via the sock_writev function
				

 ⁠
Name
probe::socket.writev.return — Conclusion of message sent via socket_writev

 ⁠Synopsis
socket.writev.return

 ⁠Values
	success
	
								Was send successful? (1 = yes, 0 = no)
							

	state
	
								Socket state value
							

	name
	
								Name of this probe
							

	protocol
	
								Protocol value
							

	family
	
								Protocol family value
							

	size
	
								Size of message sent (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	flags
	
								Socket flags value
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of sending a message on a socket via the sock_writev function
				

 ⁠Chapter 16. SNMP Information Tapset

			This family of probe points is used to probe socket activities to provide SNMP type information. It contains the following functions and probe points:
		

 ⁠
Name
function::ipmib_filter_key — Default filter function for ipmib.* probes

 ⁠Synopsis

ipmib_filter_key:long(skb:long,op:long,SourceIsLocal:long)

 ⁠Arguments
	skb
	
								pointer to the struct sk_buff
							

	op
	
								value to be counted if skb passes the filter
							

	SourceIsLocal
	
								1 is local operation and 0 is non-local operation
							

 ⁠Description

					This function is a default filter function. The user can replace this function with their own. The user-supplied filter function returns an index key based on the values in skb. A return value of 0 means this particular skb should be not be counted.
				

 ⁠
Name
function::ipmib_get_proto — Get the protocol value

 ⁠Synopsis

ipmib_get_proto:long(skb:long)

 ⁠Arguments
	skb
	
								pointer to a struct sk_buff
							

 ⁠Description

					Returns the protocol value from skb.
				

 ⁠
Name
function::ipmib_local_addr — Get the local ip address

 ⁠Synopsis

ipmib_local_addr:long(skb:long,SourceIsLocal:long)

 ⁠Arguments
	skb
	
								pointer to a struct sk_buff
							

	SourceIsLocal
	
								flag to indicate whether local operation
							

 ⁠Description

					Returns the local ip address skb.
				

 ⁠
Name
function::ipmib_remote_addr — Get the remote ip address

 ⁠Synopsis

ipmib_remote_addr:long(skb:long,SourceIsLocal:long)

 ⁠Arguments
	skb
	
								pointer to a struct sk_buff
							

	SourceIsLocal
	
								flag to indicate whether local operation
							

 ⁠Description

					Returns the remote ip address from skb.
				

 ⁠
Name
function::ipmib_tcp_local_port — Get the local tcp port

 ⁠Synopsis

ipmib_tcp_local_port:long(skb:long,SourceIsLocal:long)

 ⁠Arguments
	skb
	
								pointer to a struct sk_buff
							

	SourceIsLocal
	
								flag to indicate whether local operation
							

 ⁠Description

					Returns the local tcp port from skb.
				

 ⁠
Name
function::ipmib_tcp_remote_port — Get the remote tcp port

 ⁠Synopsis

ipmib_tcp_remote_port:long(skb:long,SourceIsLocal:long)

 ⁠Arguments
	skb
	
								pointer to a struct sk_buff
							

	SourceIsLocal
	
								flag to indicate whether local operation
							

 ⁠Description

					Returns the remote tcp port from skb.
				

 ⁠
Name
function::linuxmib_filter_key — Default filter function for linuxmib.* probes

 ⁠Synopsis

linuxmib_filter_key:long(sk:long,op:long)

 ⁠Arguments
	sk
	
								pointer to the struct sock
							

	op
	
								value to be counted if sk passes the filter
							

 ⁠Description

					This function is a default filter function. The user can replace this function with their own. The user-supplied filter function returns an index key based on the values in sk. A return value of 0 means this particular sk should be not be counted.
				

 ⁠
Name
function::tcpmib_filter_key — Default filter function for tcpmib.* probes

 ⁠Synopsis

tcpmib_filter_key:long(sk:long,op:long)

 ⁠Arguments
	sk
	
								pointer to the struct sock being acted on
							

	op
	
								value to be counted if sk passes the filter
							

 ⁠Description

					This function is a default filter function. The user can replace this function with their own. The user-supplied filter function returns an index key based on the values in sk. A return value of 0 means this particular sk should be not be counted.
				

 ⁠
Name
function::tcpmib_get_state — Get a socket's state

 ⁠Synopsis

tcpmib_get_state:long(sk:long)

 ⁠Arguments
	sk
	
								pointer to a struct sock
							

 ⁠Description

					Returns the sk_state from a struct sock.
				

 ⁠
Name
function::tcpmib_local_addr — Get the source address

 ⁠Synopsis

tcpmib_local_addr:long(sk:long)

 ⁠Arguments
	sk
	
								pointer to a struct inet_sock
							

 ⁠Description

					Returns the saddr from a struct inet_sock in host order.
				

 ⁠
Name
function::tcpmib_local_port — Get the local port

 ⁠Synopsis

tcpmib_local_port:long(sk:long)

 ⁠Arguments
	sk
	
								pointer to a struct inet_sock
							

 ⁠Description

					Returns the sport from a struct inet_sock in host order.
				

 ⁠
Name
function::tcpmib_remote_addr — Get the remote address

 ⁠Synopsis

tcpmib_remote_addr:long(sk:long)

 ⁠Arguments
	sk
	
								pointer to a struct inet_sock
							

 ⁠Description

					Returns the daddr from a struct inet_sock in host order.
				

 ⁠
Name
function::tcpmib_remote_port — Get the remote port

 ⁠Synopsis

tcpmib_remote_port:long(sk:long)

 ⁠Arguments
	sk
	
								pointer to a struct inet_sock
							

 ⁠Description

					Returns the dport from a struct inet_sock in host order.
				

 ⁠
Name
probe::ipmib.ForwDatagrams — Count forwarded packet

 ⁠Synopsis
ipmib.ForwDatagrams

 ⁠Values
	op
	
								value to be added to the counter (default value of 1)
							

	skb
	
								pointer to the struct sk_buff being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global ForwDatagrams (equivalent to SNMP's MIB IPSTATS_MIB_OUTFORWDATAGRAMS)
				

 ⁠
Name
probe::ipmib.FragFails — Count datagram fragmented unsuccessfully

 ⁠Synopsis
ipmib.FragFails

 ⁠Values
	op
	
								Value to be added to the counter (default value of 1)
							

	skb
	
								pointer to the struct sk_buff being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global FragFails (equivalent to SNMP's MIB IPSTATS_MIB_FRAGFAILS)
				

 ⁠
Name
probe::ipmib.FragOKs — Count datagram fragmented successfully

 ⁠Synopsis
ipmib.FragOKs

 ⁠Values
	skb
	
								pointer to the struct sk_buff being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global FragOKs (equivalent to SNMP's MIB IPSTATS_MIB_FRAGOKS)
				

 ⁠
Name
probe::ipmib.InAddrErrors — Count arriving packets with an incorrect address

 ⁠Synopsis
ipmib.InAddrErrors

 ⁠Values
	skb
	
								pointer to the struct sk_buff being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global InAddrErrors (equivalent to SNMP's MIB IPSTATS_MIB_INADDRERRORS)
				

 ⁠
Name
probe::ipmib.InDiscards — Count discarded inbound packets

 ⁠Synopsis
ipmib.InDiscards

 ⁠Values
	op
	
								value to be added to the counter (default value of 1)
							

	skb
	
								pointer to the struct sk_buff being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global InDiscards (equivalent to SNMP's MIB STATS_MIB_INDISCARDS)
				

 ⁠
Name
probe::ipmib.InNoRoutes — Count an arriving packet with no matching socket

 ⁠Synopsis
ipmib.InNoRoutes

 ⁠Values
	op
	
								value to be added to the counter (default value of 1)
							

	skb
	
								pointer to the struct sk_buff being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global InNoRoutes (equivalent to SNMP's MIB IPSTATS_MIB_INNOROUTES)
				

 ⁠
Name
probe::ipmib.InReceives — Count an arriving packet

 ⁠Synopsis
ipmib.InReceives

 ⁠Values
	skb
	
								pointer to the struct sk_buff being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global InReceives (equivalent to SNMP's MIB IPSTATS_MIB_INRECEIVES)
				

 ⁠
Name
probe::ipmib.InUnknownProtos — Count arriving packets with an unbound proto

 ⁠Synopsis
ipmib.InUnknownProtos

 ⁠Values
	skb
	
								pointer to the struct sk_buff being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global InUnknownProtos (equivalent to SNMP's MIB IPSTATS_MIB_INUNKNOWNPROTOS)
				

 ⁠
Name
probe::ipmib.OutRequests — Count a request to send a packet

 ⁠Synopsis
ipmib.OutRequests

 ⁠Values
	skb
	
								pointer to the struct sk_buff being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global OutRequests (equivalent to SNMP's MIB IPSTATS_MIB_OUTREQUESTS)
				

 ⁠
Name
probe::ipmib.ReasmReqds — Count number of packet fragments reassembly requests

 ⁠Synopsis
ipmib.ReasmReqds

 ⁠Values
	op
	
								value to be added to the counter (default value of 1)
							

	skb
	
								pointer to the struct sk_buff being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global ReasmReqds (equivalent to SNMP's MIB IPSTATS_MIB_REASMREQDS)
				

 ⁠
Name
probe::ipmib.ReasmTimeout — Count Reassembly Timeouts

 ⁠Synopsis
ipmib.ReasmTimeout

 ⁠Values
	op
	
								value to be added to the counter (default value of 1)
							

	skb
	
								pointer to the struct sk_buff being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global ReasmTimeout (equivalent to SNMP's MIB IPSTATS_MIB_REASMTIMEOUT)
				

 ⁠
Name
probe::linuxmib.DelayedACKs — Count of delayed acks

 ⁠Synopsis
linuxmib.DelayedACKs

 ⁠Values
	op
	
								Value to be added to the counter (default value of 1)
							

	sk
	
								Pointer to the struct sock being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function linuxmib_filter_key. If the packet passes the filter is is counted in the global DelayedACKs (equivalent to SNMP's MIB LINUX_MIB_DELAYEDACKS)
				

 ⁠
Name
probe::linuxmib.ListenDrops — Count of times conn request that were dropped

 ⁠Synopsis
linuxmib.ListenDrops

 ⁠Values
	sk
	
								Pointer to the struct sock being acted on
							

	op
	
								Value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function linuxmib_filter_key. If the packet passes the filter is is counted in the global ListenDrops (equivalent to SNMP's MIB LINUX_MIB_LISTENDROPS)
				

 ⁠
Name
probe::linuxmib.ListenOverflows — Count of times a listen queue overflowed

 ⁠Synopsis
linuxmib.ListenOverflows

 ⁠Values
	sk
	
								Pointer to the struct sock being acted on
							

	op
	
								Value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function linuxmib_filter_key. If the packet passes the filter is is counted in the global ListenOverflows (equivalent to SNMP's MIB LINUX_MIB_LISTENOVERFLOWS)
				

 ⁠
Name
probe::linuxmib.TCPMemoryPressures — Count of times memory pressure was used

 ⁠Synopsis
linuxmib.TCPMemoryPressures

 ⁠Values
	sk
	
								Pointer to the struct sock being acted on
							

	op
	
								Value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function linuxmib_filter_key. If the packet passes the filter is is counted in the global TCPMemoryPressures (equivalent to SNMP's MIB LINUX_MIB_TCPMEMORYPRESSURES)
				

 ⁠
Name
probe::tcpmib.ActiveOpens — Count an active opening of a socket

 ⁠Synopsis
tcpmib.ActiveOpens

 ⁠Values
	op
	
								value to be added to the counter (default value of 1)
							

	sk
	
								pointer to the struct sock being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function tcpmib_filter_key. If the packet passes the filter is is counted in the global ActiveOpens (equivalent to SNMP's MIB TCP_MIB_ACTIVEOPENS)
				

 ⁠
Name
probe::tcpmib.AttemptFails — Count a failed attempt to open a socket

 ⁠Synopsis
tcpmib.AttemptFails

 ⁠Values
	op
	
								value to be added to the counter (default value of 1)
							

	sk
	
								pointer to the struct sock being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function tcpmib_filter_key. If the packet passes the filter is is counted in the global AttemptFails (equivalent to SNMP's MIB TCP_MIB_ATTEMPTFAILS)
				

 ⁠
Name
probe::tcpmib.CurrEstab — Update the count of open sockets

 ⁠Synopsis
tcpmib.CurrEstab

 ⁠Values
	sk
	
								pointer to the struct sock being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function tcpmib_filter_key. If the packet passes the filter is is counted in the global CurrEstab (equivalent to SNMP's MIB TCP_MIB_CURRESTAB)
				

 ⁠
Name
probe::tcpmib.EstabResets — Count the reset of a socket

 ⁠Synopsis
tcpmib.EstabResets

 ⁠Values
	sk
	
								pointer to the struct sock being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function tcpmib_filter_key. If the packet passes the filter is is counted in the global EstabResets (equivalent to SNMP's MIB TCP_MIB_ESTABRESETS)
				

 ⁠
Name
probe::tcpmib.InSegs — Count an incoming tcp segment

 ⁠Synopsis
tcpmib.InSegs

 ⁠Values
	op
	
								value to be added to the counter (default value of 1)
							

	sk
	
								pointer to the struct sock being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function tcpmib_filter_key (or ipmib_filter_key for tcp v4). If the packet passes the filter is is counted in the global InSegs (equivalent to SNMP's MIB TCP_MIB_INSEGS)
				

 ⁠
Name
probe::tcpmib.OutRsts — Count the sending of a reset packet

 ⁠Synopsis
tcpmib.OutRsts

 ⁠Values
	sk
	
								pointer to the struct sock being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function tcpmib_filter_key. If the packet passes the filter is is counted in the global OutRsts (equivalent to SNMP's MIB TCP_MIB_OUTRSTS)
				

 ⁠
Name
probe::tcpmib.OutSegs — Count the sending of a TCP segment

 ⁠Synopsis
tcpmib.OutSegs

 ⁠Values
	sk
	
								pointer to the struct sock being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function tcpmib_filter_key. If the packet passes the filter is is counted in the global OutSegs (equivalent to SNMP's MIB TCP_MIB_OUTSEGS)
				

 ⁠
Name
probe::tcpmib.PassiveOpens — Count the passive creation of a socket

 ⁠Synopsis
tcpmib.PassiveOpens

 ⁠Values
	sk
	
								pointer to the struct sock being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function tcpmib_filter_key. If the packet passes the filter is is counted in the global PassiveOpens (equivalent to SNMP's MIB TCP_MIB_PASSIVEOPENS)
				

 ⁠
Name
probe::tcpmib.RetransSegs — Count the retransmission of a TCP segment

 ⁠Synopsis
tcpmib.RetransSegs

 ⁠Values
	op
	
								value to be added to the counter (default value of 1)
							

	sk
	
								pointer to the struct sock being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function tcpmib_filter_key. If the packet passes the filter is is counted in the global RetransSegs (equivalent to SNMP's MIB TCP_MIB_RETRANSSEGS)
				

 ⁠
Name
function::ipmib_filter_key — Default filter function for ipmib.* probes

 ⁠Synopsis

ipmib_filter_key:long(skb:long,op:long,SourceIsLocal:long)

 ⁠Arguments
	skb
	
								pointer to the struct sk_buff
							

	op
	
								value to be counted if skb passes the filter
							

	SourceIsLocal
	
								1 is local operation and 0 is non-local operation
							

 ⁠Description

					This function is a default filter function. The user can replace this function with their own. The user-supplied filter function returns an index key based on the values in skb. A return value of 0 means this particular skb should be not be counted.
				

 ⁠
Name
function::ipmib_get_proto — Get the protocol value

 ⁠Synopsis

ipmib_get_proto:long(skb:long)

 ⁠Arguments
	skb
	
								pointer to a struct sk_buff
							

 ⁠Description

					Returns the protocol value from skb.
				

 ⁠
Name
function::ipmib_local_addr — Get the local ip address

 ⁠Synopsis

ipmib_local_addr:long(skb:long,SourceIsLocal:long)

 ⁠Arguments
	skb
	
								pointer to a struct sk_buff
							

	SourceIsLocal
	
								flag to indicate whether local operation
							

 ⁠Description

					Returns the local ip address skb.
				

 ⁠
Name
function::ipmib_remote_addr — Get the remote ip address

 ⁠Synopsis

ipmib_remote_addr:long(skb:long,SourceIsLocal:long)

 ⁠Arguments
	skb
	
								pointer to a struct sk_buff
							

	SourceIsLocal
	
								flag to indicate whether local operation
							

 ⁠Description

					Returns the remote ip address from skb.
				

 ⁠
Name
function::ipmib_tcp_local_port — Get the local tcp port

 ⁠Synopsis

ipmib_tcp_local_port:long(skb:long,SourceIsLocal:long)

 ⁠Arguments
	skb
	
								pointer to a struct sk_buff
							

	SourceIsLocal
	
								flag to indicate whether local operation
							

 ⁠Description

					Returns the local tcp port from skb.
				

 ⁠
Name
function::ipmib_tcp_remote_port — Get the remote tcp port

 ⁠Synopsis

ipmib_tcp_remote_port:long(skb:long,SourceIsLocal:long)

 ⁠Arguments
	skb
	
								pointer to a struct sk_buff
							

	SourceIsLocal
	
								flag to indicate whether local operation
							

 ⁠Description

					Returns the remote tcp port from skb.
				

 ⁠
Name
function::linuxmib_filter_key — Default filter function for linuxmib.* probes

 ⁠Synopsis

linuxmib_filter_key:long(sk:long,op:long)

 ⁠Arguments
	sk
	
								pointer to the struct sock
							

	op
	
								value to be counted if sk passes the filter
							

 ⁠Description

					This function is a default filter function. The user can replace this function with their own. The user-supplied filter function returns an index key based on the values in sk. A return value of 0 means this particular sk should be not be counted.
				

 ⁠
Name
function::tcpmib_filter_key — Default filter function for tcpmib.* probes

 ⁠Synopsis

tcpmib_filter_key:long(sk:long,op:long)

 ⁠Arguments
	sk
	
								pointer to the struct sock being acted on
							

	op
	
								value to be counted if sk passes the filter
							

 ⁠Description

					This function is a default filter function. The user can replace this function with their own. The user-supplied filter function returns an index key based on the values in sk. A return value of 0 means this particular sk should be not be counted.
				

 ⁠
Name
function::tcpmib_get_state — Get a socket's state

 ⁠Synopsis

tcpmib_get_state:long(sk:long)

 ⁠Arguments
	sk
	
								pointer to a struct sock
							

 ⁠Description

					Returns the sk_state from a struct sock.
				

 ⁠
Name
function::tcpmib_local_addr — Get the source address

 ⁠Synopsis

tcpmib_local_addr:long(sk:long)

 ⁠Arguments
	sk
	
								pointer to a struct inet_sock
							

 ⁠Description

					Returns the saddr from a struct inet_sock in host order.
				

 ⁠
Name
function::tcpmib_local_port — Get the local port

 ⁠Synopsis

tcpmib_local_port:long(sk:long)

 ⁠Arguments
	sk
	
								pointer to a struct inet_sock
							

 ⁠Description

					Returns the sport from a struct inet_sock in host order.
				

 ⁠
Name
function::tcpmib_remote_addr — Get the remote address

 ⁠Synopsis

tcpmib_remote_addr:long(sk:long)

 ⁠Arguments
	sk
	
								pointer to a struct inet_sock
							

 ⁠Description

					Returns the daddr from a struct inet_sock in host order.
				

 ⁠
Name
function::tcpmib_remote_port — Get the remote port

 ⁠Synopsis

tcpmib_remote_port:long(sk:long)

 ⁠Arguments
	sk
	
								pointer to a struct inet_sock
							

 ⁠Description

					Returns the dport from a struct inet_sock in host order.
				

 ⁠
Name
probe::ipmib.ForwDatagrams — Count forwarded packet

 ⁠Synopsis
ipmib.ForwDatagrams

 ⁠Values
	op
	
								value to be added to the counter (default value of 1)
							

	skb
	
								pointer to the struct sk_buff being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global ForwDatagrams (equivalent to SNMP's MIB IPSTATS_MIB_OUTFORWDATAGRAMS)
				

 ⁠
Name
probe::ipmib.FragFails — Count datagram fragmented unsuccessfully

 ⁠Synopsis
ipmib.FragFails

 ⁠Values
	op
	
								Value to be added to the counter (default value of 1)
							

	skb
	
								pointer to the struct sk_buff being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global FragFails (equivalent to SNMP's MIB IPSTATS_MIB_FRAGFAILS)
				

 ⁠
Name
probe::ipmib.FragOKs — Count datagram fragmented successfully

 ⁠Synopsis
ipmib.FragOKs

 ⁠Values
	skb
	
								pointer to the struct sk_buff being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global FragOKs (equivalent to SNMP's MIB IPSTATS_MIB_FRAGOKS)
				

 ⁠
Name
probe::ipmib.InAddrErrors — Count arriving packets with an incorrect address

 ⁠Synopsis
ipmib.InAddrErrors

 ⁠Values
	skb
	
								pointer to the struct sk_buff being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global InAddrErrors (equivalent to SNMP's MIB IPSTATS_MIB_INADDRERRORS)
				

 ⁠
Name
probe::ipmib.InDiscards — Count discarded inbound packets

 ⁠Synopsis
ipmib.InDiscards

 ⁠Values
	op
	
								value to be added to the counter (default value of 1)
							

	skb
	
								pointer to the struct sk_buff being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global InDiscards (equivalent to SNMP's MIB STATS_MIB_INDISCARDS)
				

 ⁠
Name
probe::ipmib.InNoRoutes — Count an arriving packet with no matching socket

 ⁠Synopsis
ipmib.InNoRoutes

 ⁠Values
	op
	
								value to be added to the counter (default value of 1)
							

	skb
	
								pointer to the struct sk_buff being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global InNoRoutes (equivalent to SNMP's MIB IPSTATS_MIB_INNOROUTES)
				

 ⁠
Name
probe::ipmib.InReceives — Count an arriving packet

 ⁠Synopsis
ipmib.InReceives

 ⁠Values
	skb
	
								pointer to the struct sk_buff being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global InReceives (equivalent to SNMP's MIB IPSTATS_MIB_INRECEIVES)
				

 ⁠
Name
probe::ipmib.InUnknownProtos — Count arriving packets with an unbound proto

 ⁠Synopsis
ipmib.InUnknownProtos

 ⁠Values
	skb
	
								pointer to the struct sk_buff being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global InUnknownProtos (equivalent to SNMP's MIB IPSTATS_MIB_INUNKNOWNPROTOS)
				

 ⁠
Name
probe::ipmib.OutRequests — Count a request to send a packet

 ⁠Synopsis
ipmib.OutRequests

 ⁠Values
	skb
	
								pointer to the struct sk_buff being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global OutRequests (equivalent to SNMP's MIB IPSTATS_MIB_OUTREQUESTS)
				

 ⁠
Name
probe::ipmib.ReasmReqds — Count number of packet fragments reassembly requests

 ⁠Synopsis
ipmib.ReasmReqds

 ⁠Values
	op
	
								value to be added to the counter (default value of 1)
							

	skb
	
								pointer to the struct sk_buff being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global ReasmReqds (equivalent to SNMP's MIB IPSTATS_MIB_REASMREQDS)
				

 ⁠
Name
probe::ipmib.ReasmTimeout — Count Reassembly Timeouts

 ⁠Synopsis
ipmib.ReasmTimeout

 ⁠Values
	op
	
								value to be added to the counter (default value of 1)
							

	skb
	
								pointer to the struct sk_buff being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function ipmib_filter_key. If the packet passes the filter is is counted in the global ReasmTimeout (equivalent to SNMP's MIB IPSTATS_MIB_REASMTIMEOUT)
				

 ⁠
Name
probe::linuxmib.DelayedACKs — Count of delayed acks

 ⁠Synopsis
linuxmib.DelayedACKs

 ⁠Values
	op
	
								Value to be added to the counter (default value of 1)
							

	sk
	
								Pointer to the struct sock being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function linuxmib_filter_key. If the packet passes the filter is is counted in the global DelayedACKs (equivalent to SNMP's MIB LINUX_MIB_DELAYEDACKS)
				

 ⁠
Name
probe::linuxmib.ListenDrops — Count of times conn request that were dropped

 ⁠Synopsis
linuxmib.ListenDrops

 ⁠Values
	sk
	
								Pointer to the struct sock being acted on
							

	op
	
								Value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function linuxmib_filter_key. If the packet passes the filter is is counted in the global ListenDrops (equivalent to SNMP's MIB LINUX_MIB_LISTENDROPS)
				

 ⁠
Name
probe::linuxmib.ListenOverflows — Count of times a listen queue overflowed

 ⁠Synopsis
linuxmib.ListenOverflows

 ⁠Values
	sk
	
								Pointer to the struct sock being acted on
							

	op
	
								Value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function linuxmib_filter_key. If the packet passes the filter is is counted in the global ListenOverflows (equivalent to SNMP's MIB LINUX_MIB_LISTENOVERFLOWS)
				

 ⁠
Name
probe::linuxmib.TCPMemoryPressures — Count of times memory pressure was used

 ⁠Synopsis
linuxmib.TCPMemoryPressures

 ⁠Values
	sk
	
								Pointer to the struct sock being acted on
							

	op
	
								Value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function linuxmib_filter_key. If the packet passes the filter is is counted in the global TCPMemoryPressures (equivalent to SNMP's MIB LINUX_MIB_TCPMEMORYPRESSURES)
				

 ⁠
Name
probe::tcpmib.ActiveOpens — Count an active opening of a socket

 ⁠Synopsis
tcpmib.ActiveOpens

 ⁠Values
	op
	
								value to be added to the counter (default value of 1)
							

	sk
	
								pointer to the struct sock being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function tcpmib_filter_key. If the packet passes the filter is is counted in the global ActiveOpens (equivalent to SNMP's MIB TCP_MIB_ACTIVEOPENS)
				

 ⁠
Name
probe::tcpmib.AttemptFails — Count a failed attempt to open a socket

 ⁠Synopsis
tcpmib.AttemptFails

 ⁠Values
	op
	
								value to be added to the counter (default value of 1)
							

	sk
	
								pointer to the struct sock being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function tcpmib_filter_key. If the packet passes the filter is is counted in the global AttemptFails (equivalent to SNMP's MIB TCP_MIB_ATTEMPTFAILS)
				

 ⁠
Name
probe::tcpmib.CurrEstab — Update the count of open sockets

 ⁠Synopsis
tcpmib.CurrEstab

 ⁠Values
	sk
	
								pointer to the struct sock being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function tcpmib_filter_key. If the packet passes the filter is is counted in the global CurrEstab (equivalent to SNMP's MIB TCP_MIB_CURRESTAB)
				

 ⁠
Name
probe::tcpmib.EstabResets — Count the reset of a socket

 ⁠Synopsis
tcpmib.EstabResets

 ⁠Values
	sk
	
								pointer to the struct sock being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function tcpmib_filter_key. If the packet passes the filter is is counted in the global EstabResets (equivalent to SNMP's MIB TCP_MIB_ESTABRESETS)
				

 ⁠
Name
probe::tcpmib.InSegs — Count an incoming tcp segment

 ⁠Synopsis
tcpmib.InSegs

 ⁠Values
	op
	
								value to be added to the counter (default value of 1)
							

	sk
	
								pointer to the struct sock being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function tcpmib_filter_key (or ipmib_filter_key for tcp v4). If the packet passes the filter is is counted in the global InSegs (equivalent to SNMP's MIB TCP_MIB_INSEGS)
				

 ⁠
Name
probe::tcpmib.OutRsts — Count the sending of a reset packet

 ⁠Synopsis
tcpmib.OutRsts

 ⁠Values
	sk
	
								pointer to the struct sock being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function tcpmib_filter_key. If the packet passes the filter is is counted in the global OutRsts (equivalent to SNMP's MIB TCP_MIB_OUTRSTS)
				

 ⁠
Name
probe::tcpmib.OutSegs — Count the sending of a TCP segment

 ⁠Synopsis
tcpmib.OutSegs

 ⁠Values
	sk
	
								pointer to the struct sock being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function tcpmib_filter_key. If the packet passes the filter is is counted in the global OutSegs (equivalent to SNMP's MIB TCP_MIB_OUTSEGS)
				

 ⁠
Name
probe::tcpmib.PassiveOpens — Count the passive creation of a socket

 ⁠Synopsis
tcpmib.PassiveOpens

 ⁠Values
	sk
	
								pointer to the struct sock being acted on
							

	op
	
								value to be added to the counter (default value of 1)
							

 ⁠Description

					The packet pointed to by skb is filtered by the function tcpmib_filter_key. If the packet passes the filter is is counted in the global PassiveOpens (equivalent to SNMP's MIB TCP_MIB_PASSIVEOPENS)
				

 ⁠
Name
probe::tcpmib.RetransSegs — Count the retransmission of a TCP segment

 ⁠Synopsis
tcpmib.RetransSegs

 ⁠Values
	op
	
								value to be added to the counter (default value of 1)
							

	sk
	
								pointer to the struct sock being acted on
							

 ⁠Description

					The packet pointed to by skb is filtered by the function tcpmib_filter_key. If the packet passes the filter is is counted in the global RetransSegs (equivalent to SNMP's MIB TCP_MIB_RETRANSSEGS)
				

 ⁠Chapter 17. Kernel Process Tapset

			This family of probe points is used to probe process-related activities. It contains the following probe points:
		

 ⁠
Name
function::get_loadavg_index — Get the load average for a specified interval

 ⁠Synopsis

get_loadavg_index:long(indx:long)

 ⁠Arguments
	indx
	
								The load average interval to capture.
							

 ⁠Description

					This function returns the load average at a specified interval. The three load average values 1, 5 and 15 minute average corresponds to indexes 0, 1 and 2 of the avenrun array - see linux/sched.h. Please note that the truncated-integer portion of the load average is returned. If the specified index is out-of-bounds, then an error message and exception is thrown.
				

 ⁠
Name
function::sprint_loadavg — Report a pretty-printed load average

 ⁠Synopsis

sprint_loadavg:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the a string with three decimal numbers in the usual format for 1-, 5- and 15-minute load averages.
				

 ⁠
Name
function::target_set_pid — Does pid descend from target process?

 ⁠Synopsis

target_set_pid(pid:)

 ⁠Arguments
	pid
	
								The pid of the process to query
							

 ⁠Description

					This function returns whether the given process-id is within the “target set”, that is whether it is a descendant of the top-level target process.
				

 ⁠
Name
function::target_set_report — Print a report about the target set

 ⁠Synopsis

target_set_report()

 ⁠Arguments

					None
				

 ⁠Description

					This function prints a report about the processes in the target set, and their ancestry.
				

 ⁠
Name
probe::kprocess.create — Fires whenever a new process or thread is successfully created

 ⁠Synopsis
kprocess.create

 ⁠Values
	new_tid
	
								The TID of the newly created task
							

	new_pid
	
								The PID of the newly created process
							

 ⁠Context

					Parent of the created process.
				

 ⁠Description

					Fires whenever a new process is successfully created, either as a result of fork (or one of its syscall variants), or a new kernel thread.
				

 ⁠
Name
probe::kprocess.exec — Attempt to exec to a new program

 ⁠Synopsis
kprocess.exec

 ⁠Values
	filename
	
								The path to the new executable
							

	name
	
								Name of the system call (“execve”) (SystemTap v2.5+)
							

	args
	
								The arguments to pass to the new executable, including the 0th arg (SystemTap v2.5+)
							

	argstr
	
								A string containing the filename followed by the arguments to pass, excluding 0th arg (SystemTap v2.5+)
							

 ⁠Context

					The caller of exec.
				

 ⁠Description

					Fires whenever a process attempts to exec to a new program. Aliased to the syscall.execve probe in SystemTap v2.5+.
				

 ⁠
Name
probe::kprocess.exec_complete — Return from exec to a new program

 ⁠Synopsis
kprocess.exec_complete

 ⁠Values
	retstr
	
								A string representation of errno (SystemTap v2.5+)
							

	success
	
								A boolean indicating whether the exec was successful
							

	errno
	
								The error number resulting from the exec
							

	name
	
								Name of the system call (“execve”) (SystemTap v2.5+)
							

 ⁠Context

					On success, the context of the new executable. On failure, remains in the context of the caller.
				

 ⁠Description

					Fires at the completion of an exec call. Aliased to the syscall.execve.return probe in SystemTap v2.5+.
				

 ⁠
Name
probe::kprocess.exit — Exit from process

 ⁠Synopsis
kprocess.exit

 ⁠Values
	code
	
								The exit code of the process
							

 ⁠Context

					The process which is terminating.
				

 ⁠Description

					Fires when a process terminates. This will always be followed by a kprocess.release, though the latter may be delayed if the process waits in a zombie state.
				

 ⁠
Name
probe::kprocess.release — Process released

 ⁠Synopsis
kprocess.release

 ⁠Values
	released_tid
	
								TID of the task being released
							

	task
	
								A task handle to the process being released
							

	released_pid
	
								PID of the process being released
							

	pid
	
								Same as released_pid for compatibility (deprecated)
							

 ⁠Context

					The context of the parent, if it wanted notification of this process' termination, else the context of the process itself.
				

 ⁠Description

					Fires when a process is released from the kernel. This always follows a kprocess.exit, though it may be delayed somewhat if the process waits in a zombie state.
				

 ⁠
Name
probe::kprocess.start — Starting new process

 ⁠Synopsis
kprocess.start

 ⁠Values

					None
				

 ⁠Context

					Newly created process.
				

 ⁠Description

					Fires immediately before a new process begins execution.
				

 ⁠
Name
function::get_loadavg_index — Get the load average for a specified interval

 ⁠Synopsis

get_loadavg_index:long(indx:long)

 ⁠Arguments
	indx
	
								The load average interval to capture.
							

 ⁠Description

					This function returns the load average at a specified interval. The three load average values 1, 5 and 15 minute average corresponds to indexes 0, 1 and 2 of the avenrun array - see linux/sched.h. Please note that the truncated-integer portion of the load average is returned. If the specified index is out-of-bounds, then an error message and exception is thrown.
				

 ⁠
Name
function::sprint_loadavg — Report a pretty-printed load average

 ⁠Synopsis

sprint_loadavg:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the a string with three decimal numbers in the usual format for 1-, 5- and 15-minute load averages.
				

 ⁠
Name
function::target_set_pid — Does pid descend from target process?

 ⁠Synopsis

target_set_pid(pid:)

 ⁠Arguments
	pid
	
								The pid of the process to query
							

 ⁠Description

					This function returns whether the given process-id is within the “target set”, that is whether it is a descendant of the top-level target process.
				

 ⁠
Name
function::target_set_report — Print a report about the target set

 ⁠Synopsis

target_set_report()

 ⁠Arguments

					None
				

 ⁠Description

					This function prints a report about the processes in the target set, and their ancestry.
				

 ⁠
Name
probe::kprocess.create — Fires whenever a new process or thread is successfully created

 ⁠Synopsis
kprocess.create

 ⁠Values
	new_tid
	
								The TID of the newly created task
							

	new_pid
	
								The PID of the newly created process
							

 ⁠Context

					Parent of the created process.
				

 ⁠Description

					Fires whenever a new process is successfully created, either as a result of fork (or one of its syscall variants), or a new kernel thread.
				

 ⁠
Name
probe::kprocess.exec — Attempt to exec to a new program

 ⁠Synopsis
kprocess.exec

 ⁠Values
	filename
	
								The path to the new executable
							

	name
	
								Name of the system call (“execve”) (SystemTap v2.5+)
							

	args
	
								The arguments to pass to the new executable, including the 0th arg (SystemTap v2.5+)
							

	argstr
	
								A string containing the filename followed by the arguments to pass, excluding 0th arg (SystemTap v2.5+)
							

 ⁠Context

					The caller of exec.
				

 ⁠Description

					Fires whenever a process attempts to exec to a new program. Aliased to the syscall.execve probe in SystemTap v2.5+.
				

 ⁠
Name
probe::kprocess.exec_complete — Return from exec to a new program

 ⁠Synopsis
kprocess.exec_complete

 ⁠Values
	retstr
	
								A string representation of errno (SystemTap v2.5+)
							

	success
	
								A boolean indicating whether the exec was successful
							

	errno
	
								The error number resulting from the exec
							

	name
	
								Name of the system call (“execve”) (SystemTap v2.5+)
							

 ⁠Context

					On success, the context of the new executable. On failure, remains in the context of the caller.
				

 ⁠Description

					Fires at the completion of an exec call. Aliased to the syscall.execve.return probe in SystemTap v2.5+.
				

 ⁠
Name
probe::kprocess.exit — Exit from process

 ⁠Synopsis
kprocess.exit

 ⁠Values
	code
	
								The exit code of the process
							

 ⁠Context

					The process which is terminating.
				

 ⁠Description

					Fires when a process terminates. This will always be followed by a kprocess.release, though the latter may be delayed if the process waits in a zombie state.
				

 ⁠
Name
probe::kprocess.release — Process released

 ⁠Synopsis
kprocess.release

 ⁠Values
	released_tid
	
								TID of the task being released
							

	task
	
								A task handle to the process being released
							

	released_pid
	
								PID of the process being released
							

	pid
	
								Same as released_pid for compatibility (deprecated)
							

 ⁠Context

					The context of the parent, if it wanted notification of this process' termination, else the context of the process itself.
				

 ⁠Description

					Fires when a process is released from the kernel. This always follows a kprocess.exit, though it may be delayed somewhat if the process waits in a zombie state.
				

 ⁠
Name
probe::kprocess.start — Starting new process

 ⁠Synopsis
kprocess.start

 ⁠Values

					None
				

 ⁠Context

					Newly created process.
				

 ⁠Description

					Fires immediately before a new process begins execution.
				

 ⁠Chapter 18. Signal Tapset

			This family of probe points is used to probe signal activities. It contains the following probe points:
		

 ⁠
Name
function::get_sa_flags — Returns the numeric value of sa_flags

 ⁠Synopsis

get_sa_flags:long(act:long)

 ⁠Arguments
	act
	
								address of the sigaction to query.
							

 ⁠
Name
function::get_sa_handler — Returns the numeric value of sa_handler

 ⁠Synopsis

get_sa_handler:long(act:long)

 ⁠Arguments
	act
	
								address of the sigaction to query.
							

 ⁠
Name
function::is_sig_blocked — Returns 1 if the signal is currently blocked, or 0 if it is not

 ⁠Synopsis

is_sig_blocked:long(task:long,sig:long)

 ⁠Arguments
	task
	
								address of the task_struct to query.
							

	sig
	
								the signal number to test.
							

 ⁠
Name
function::sa_flags_str — Returns the string representation of sa_flags

 ⁠Synopsis

sa_flags_str:string(sa_flags:long)

 ⁠Arguments
	sa_flags
	
								the set of flags to convert to string.
							

 ⁠
Name
function::sa_handler_str — Returns the string representation of an sa_handler

 ⁠Synopsis

sa_handler_str(handler:)

 ⁠Arguments
	handler
	
								the sa_handler to convert to string.
							

 ⁠Description

					Returns the string representation of an sa_handler. If it is not SIG_DFL, SIG_IGN or SIG_ERR, it will return the address of the handler.
				

 ⁠
Name
function::signal_str — Returns the string representation of a signal number

 ⁠Synopsis

signal_str(num:)

 ⁠Arguments
	num
	
								the signal number to convert to string.
							

 ⁠
Name
function::sigset_mask_str — Returns the string representation of a sigset

 ⁠Synopsis

sigset_mask_str:string(mask:long)

 ⁠Arguments
	mask
	
								the sigset to convert to string.
							

 ⁠
Name
probe::signal.check_ignored — Checking to see signal is ignored

 ⁠Synopsis
signal.check_ignored

 ⁠Values
	sig_pid
	
								The PID of the process receiving the signal
							

	sig
	
								The number of the signal
							

	sig_name
	
								A string representation of the signal
							

	pid_name
	
								Name of the process receiving the signal
							

 ⁠
Name
probe::signal.check_ignored.return — Check to see signal is ignored completed

 ⁠Synopsis
signal.check_ignored.return

 ⁠Values
	name
	
								Name of the probe point
							

	retstr
	
								Return value as a string
							

 ⁠
Name
probe::signal.checkperm — Check being performed on a sent signal

 ⁠Synopsis
signal.checkperm

 ⁠Values
	pid_name
	
								Name of the process receiving the signal
							

	task
	
								A task handle to the signal recipient
							

	sig_name
	
								A string representation of the signal
							

	sinfo
	
								The address of the siginfo structure
							

	name
	
								Name of the probe point
							

	sig
	
								The number of the signal
							

	si_code
	
								Indicates the signal type
							

	sig_pid
	
								The PID of the process receiving the signal
							

 ⁠
Name
probe::signal.checkperm.return — Check performed on a sent signal completed

 ⁠Synopsis
signal.checkperm.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.do_action — Examining or changing a signal action

 ⁠Synopsis
signal.do_action

 ⁠Values
	sigact_addr
	
								The address of the new sigaction struct associated with the signal
							

	sig_name
	
								A string representation of the signal
							

	sa_mask
	
								The new mask of the signal
							

	sa_handler
	
								The new handler of the signal
							

	oldsigact_addr
	
								The address of the old sigaction struct associated with the signal
							

	sig
	
								The signal to be examined/changed
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.do_action.return — Examining or changing a signal action completed

 ⁠Synopsis
signal.do_action.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.flush — Flushing all pending signals for a task

 ⁠Synopsis
signal.flush

 ⁠Values
	task
	
								The task handler of the process performing the flush
							

	pid_name
	
								The name of the process associated with the task performing the flush
							

	name
	
								Name of the probe point
							

	sig_pid
	
								The PID of the process associated with the task performing the flush
							

 ⁠
Name
probe::signal.force_segv — Forcing send of SIGSEGV

 ⁠Synopsis
signal.force_segv

 ⁠Values
	sig_name
	
								A string representation of the signal
							

	pid_name
	
								Name of the process receiving the signal
							

	sig_pid
	
								The PID of the process receiving the signal
							

	name
	
								Name of the probe point
							

	sig
	
								The number of the signal
							

 ⁠
Name
probe::signal.force_segv.return — Forcing send of SIGSEGV complete

 ⁠Synopsis
signal.force_segv.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.handle — Signal handler being invoked

 ⁠Synopsis
signal.handle

 ⁠Values
	name
	
								Name of the probe point
							

	sig
	
								The signal number that invoked the signal handler
							

	sinfo
	
								The address of the siginfo table
							

	ka_addr
	
								The address of the k_sigaction table associated with the signal
							

	sig_mode
	
								Indicates whether the signal was a user-mode or kernel-mode signal
							

	sig_code
	
								The si_code value of the siginfo signal
							

	regs
	
								The address of the kernel-mode stack area (deprecated in SystemTap 2.1)
							

	oldset_addr
	
								The address of the bitmask array of blocked signals (deprecated in SystemTap 2.1)
							

	sig_name
	
								A string representation of the signal
							

 ⁠
Name
probe::signal.handle.return — Signal handler invocation completed

 ⁠Synopsis
signal.handle.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠Description

					(deprecated in SystemTap 2.1)
				

 ⁠
Name
probe::signal.pending — Examining pending signal

 ⁠Synopsis
signal.pending

 ⁠Values
	name
	
								Name of the probe point
							

	sigset_size
	
								The size of the user-space signal set
							

	sigset_add
	
								The address of the user-space signal set (sigset_t)
							

 ⁠Description

					This probe is used to examine a set of signals pending for delivery to a specific thread. This normally occurs when the do_sigpending kernel function is executed.
				

 ⁠
Name
probe::signal.pending.return — Examination of pending signal completed

 ⁠Synopsis
signal.pending.return

 ⁠Values
	name
	
								Name of the probe point
							

	retstr
	
								Return value as a string
							

 ⁠
Name
probe::signal.procmask — Examining or changing blocked signals

 ⁠Synopsis
signal.procmask

 ⁠Values
	name
	
								Name of the probe point
							

	sigset
	
								The actual value to be set for sigset_t (correct?)
							

	how
	
								Indicates how to change the blocked signals; possible values are SIG_BLOCK=0 (for blocking signals), SIG_UNBLOCK=1 (for unblocking signals), and SIG_SETMASK=2 for setting the signal mask.
							

	sigset_addr
	
								The address of the signal set (sigset_t) to be implemented
							

	oldsigset_addr
	
								The old address of the signal set (sigset_t)
							

 ⁠
Name
probe::signal.procmask.return — Examining or changing blocked signals completed

 ⁠Synopsis
signal.procmask.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.send — Signal being sent to a process

 ⁠Synopsis
signal.send

 ⁠Values
	send2queue
	
								Indicates whether the signal is sent to an existing sigqueue (deprecated in SystemTap 2.1)
							

	pid_name
	
								The name of the signal recipient
							

	task
	
								A task handle to the signal recipient
							

	sig_name
	
								A string representation of the signal
							

	sinfo
	
								The address of siginfo struct
							

	shared
	
								Indicates whether the signal is shared by the thread group
							

	si_code
	
								Indicates the signal type
							

	name
	
								The name of the function used to send out the signal
							

	sig
	
								The number of the signal
							

	sig_pid
	
								The PID of the process receiving the signal
							

 ⁠Context

					The signal's sender.
				

 ⁠
Name
probe::signal.send.return — Signal being sent to a process completed (deprecated in SystemTap 2.1)

 ⁠Synopsis
signal.send.return

 ⁠Values
	shared
	
								Indicates whether the sent signal is shared by the thread group.
							

	name
	
								The name of the function used to send out the signal
							

	retstr
	
								The return value to either __group_send_sig_info, specific_send_sig_info, or send_sigqueue
							

	send2queue
	
								Indicates whether the sent signal was sent to an existing sigqueue
							

 ⁠Context

					The signal's sender. (correct?)
				

 ⁠Description

					Possible __group_send_sig_info and specific_send_sig_info return values are as follows;
				

					0 -- The signal is successfully sent to a process, which means that, (1) the signal was ignored by the receiving process, (2) this is a non-RT signal and the system already has one queued, and (3) the signal was successfully added to the sigqueue of the receiving process.
				

					-EAGAIN -- The sigqueue of the receiving process is overflowing, the signal was RT, and the signal was sent by a user using something other than kill.
				

					Possible send_group_sigqueue and send_sigqueue return values are as follows;
				

					0 -- The signal was either successfully added into the sigqueue of the receiving process, or a SI_TIMER entry is already queued (in which case, the overrun count will be simply incremented).
				

					1 -- The signal was ignored by the receiving process.
				

					-1 -- (send_sigqueue only) The task was marked exiting, allowing * posix_timer_event to redirect it to the group leader.
				

 ⁠
Name
probe::signal.send_sig_queue — Queuing a signal to a process

 ⁠Synopsis
signal.send_sig_queue

 ⁠Values
	sig
	
								The queued signal
							

	name
	
								Name of the probe point
							

	sig_pid
	
								The PID of the process to which the signal is queued
							

	pid_name
	
								Name of the process to which the signal is queued
							

	sig_name
	
								A string representation of the signal
							

	sigqueue_addr
	
								The address of the signal queue
							

 ⁠
Name
probe::signal.send_sig_queue.return — Queuing a signal to a process completed

 ⁠Synopsis
signal.send_sig_queue.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.sys_tgkill — Sending kill signal to a thread group

 ⁠Synopsis
signal.sys_tgkill

 ⁠Values
	sig_pid
	
								The PID of the thread receiving the kill signal
							

	sig
	
								The specific kill signal sent to the process
							

	name
	
								Name of the probe point
							

	pid_name
	
								The name of the signal recipient
							

	sig_name
	
								A string representation of the signal
							

	tgid
	
								The thread group ID of the thread receiving the kill signal
							

	task
	
								A task handle to the signal recipient
							

 ⁠Description

					The tgkill call is similar to tkill, except that it also allows the caller to specify the thread group ID of the thread to be signalled. This protects against TID reuse.
				

 ⁠
Name
probe::signal.sys_tgkill.return — Sending kill signal to a thread group completed

 ⁠Synopsis
signal.sys_tgkill.return

 ⁠Values
	name
	
								Name of the probe point
							

	retstr
	
								The return value to either __group_send_sig_info,
							

 ⁠
Name
probe::signal.sys_tkill — Sending a kill signal to a thread

 ⁠Synopsis
signal.sys_tkill

 ⁠Values
	sig_pid
	
								The PID of the process receiving the kill signal
							

	sig
	
								The specific signal sent to the process
							

	name
	
								Name of the probe point
							

	pid_name
	
								The name of the signal recipient
							

	sig_name
	
								A string representation of the signal
							

	task
	
								A task handle to the signal recipient
							

 ⁠Description

					The tkill call is analogous to kill(2), except that it also allows a process within a specific thread group to be targeted. Such processes are targeted through their unique thread IDs (TID).
				

 ⁠
Name
probe::signal.syskill — Sending kill signal to a process

 ⁠Synopsis
signal.syskill

 ⁠Values
	sig_pid
	
								The PID of the process receiving the signal
							

	sig
	
								The specific signal sent to the process
							

	name
	
								Name of the probe point
							

	pid_name
	
								The name of the signal recipient
							

	sig_name
	
								A string representation of the signal
							

	task
	
								A task handle to the signal recipient
							

 ⁠
Name
probe::signal.syskill.return — Sending kill signal completed

 ⁠Synopsis
signal.syskill.return

 ⁠Values

					None
				

 ⁠
Name
probe::signal.systkill.return — Sending kill signal to a thread completed

 ⁠Synopsis
signal.systkill.return

 ⁠Values
	retstr
	
								The return value to either __group_send_sig_info,
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.wakeup — Sleeping process being wakened for signal

 ⁠Synopsis
signal.wakeup

 ⁠Values
	pid_name
	
								Name of the process to wake
							

	resume
	
								Indicates whether to wake up a task in a STOPPED or TRACED state
							

	state_mask
	
								A string representation indicating the mask of task states to wake. Possible values are TASK_INTERRUPTIBLE, TASK_STOPPED, TASK_TRACED, TASK_WAKEKILL, and TASK_INTERRUPTIBLE.
							

	sig_pid
	
								The PID of the process to wake
							

 ⁠
Name
function::get_sa_flags — Returns the numeric value of sa_flags

 ⁠Synopsis

get_sa_flags:long(act:long)

 ⁠Arguments
	act
	
								address of the sigaction to query.
							

 ⁠
Name
function::get_sa_handler — Returns the numeric value of sa_handler

 ⁠Synopsis

get_sa_handler:long(act:long)

 ⁠Arguments
	act
	
								address of the sigaction to query.
							

 ⁠
Name
function::is_sig_blocked — Returns 1 if the signal is currently blocked, or 0 if it is not

 ⁠Synopsis

is_sig_blocked:long(task:long,sig:long)

 ⁠Arguments
	task
	
								address of the task_struct to query.
							

	sig
	
								the signal number to test.
							

 ⁠
Name
function::sa_flags_str — Returns the string representation of sa_flags

 ⁠Synopsis

sa_flags_str:string(sa_flags:long)

 ⁠Arguments
	sa_flags
	
								the set of flags to convert to string.
							

 ⁠
Name
function::sa_handler_str — Returns the string representation of an sa_handler

 ⁠Synopsis

sa_handler_str(handler:)

 ⁠Arguments
	handler
	
								the sa_handler to convert to string.
							

 ⁠Description

					Returns the string representation of an sa_handler. If it is not SIG_DFL, SIG_IGN or SIG_ERR, it will return the address of the handler.
				

 ⁠
Name
function::signal_str — Returns the string representation of a signal number

 ⁠Synopsis

signal_str(num:)

 ⁠Arguments
	num
	
								the signal number to convert to string.
							

 ⁠
Name
function::sigset_mask_str — Returns the string representation of a sigset

 ⁠Synopsis

sigset_mask_str:string(mask:long)

 ⁠Arguments
	mask
	
								the sigset to convert to string.
							

 ⁠
Name
probe::signal.check_ignored — Checking to see signal is ignored

 ⁠Synopsis
signal.check_ignored

 ⁠Values
	sig_pid
	
								The PID of the process receiving the signal
							

	sig
	
								The number of the signal
							

	sig_name
	
								A string representation of the signal
							

	pid_name
	
								Name of the process receiving the signal
							

 ⁠
Name
probe::signal.check_ignored.return — Check to see signal is ignored completed

 ⁠Synopsis
signal.check_ignored.return

 ⁠Values
	name
	
								Name of the probe point
							

	retstr
	
								Return value as a string
							

 ⁠
Name
probe::signal.checkperm — Check being performed on a sent signal

 ⁠Synopsis
signal.checkperm

 ⁠Values
	pid_name
	
								Name of the process receiving the signal
							

	task
	
								A task handle to the signal recipient
							

	sig_name
	
								A string representation of the signal
							

	sinfo
	
								The address of the siginfo structure
							

	name
	
								Name of the probe point
							

	sig
	
								The number of the signal
							

	si_code
	
								Indicates the signal type
							

	sig_pid
	
								The PID of the process receiving the signal
							

 ⁠
Name
probe::signal.checkperm.return — Check performed on a sent signal completed

 ⁠Synopsis
signal.checkperm.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.do_action — Examining or changing a signal action

 ⁠Synopsis
signal.do_action

 ⁠Values
	sigact_addr
	
								The address of the new sigaction struct associated with the signal
							

	sig_name
	
								A string representation of the signal
							

	sa_mask
	
								The new mask of the signal
							

	sa_handler
	
								The new handler of the signal
							

	oldsigact_addr
	
								The address of the old sigaction struct associated with the signal
							

	sig
	
								The signal to be examined/changed
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.do_action.return — Examining or changing a signal action completed

 ⁠Synopsis
signal.do_action.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.flush — Flushing all pending signals for a task

 ⁠Synopsis
signal.flush

 ⁠Values
	task
	
								The task handler of the process performing the flush
							

	pid_name
	
								The name of the process associated with the task performing the flush
							

	name
	
								Name of the probe point
							

	sig_pid
	
								The PID of the process associated with the task performing the flush
							

 ⁠
Name
probe::signal.force_segv — Forcing send of SIGSEGV

 ⁠Synopsis
signal.force_segv

 ⁠Values
	sig_name
	
								A string representation of the signal
							

	pid_name
	
								Name of the process receiving the signal
							

	sig_pid
	
								The PID of the process receiving the signal
							

	name
	
								Name of the probe point
							

	sig
	
								The number of the signal
							

 ⁠
Name
probe::signal.force_segv.return — Forcing send of SIGSEGV complete

 ⁠Synopsis
signal.force_segv.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.handle — Signal handler being invoked

 ⁠Synopsis
signal.handle

 ⁠Values
	name
	
								Name of the probe point
							

	sig
	
								The signal number that invoked the signal handler
							

	sinfo
	
								The address of the siginfo table
							

	ka_addr
	
								The address of the k_sigaction table associated with the signal
							

	sig_mode
	
								Indicates whether the signal was a user-mode or kernel-mode signal
							

	sig_code
	
								The si_code value of the siginfo signal
							

	regs
	
								The address of the kernel-mode stack area (deprecated in SystemTap 2.1)
							

	oldset_addr
	
								The address of the bitmask array of blocked signals (deprecated in SystemTap 2.1)
							

	sig_name
	
								A string representation of the signal
							

 ⁠
Name
probe::signal.handle.return — Signal handler invocation completed

 ⁠Synopsis
signal.handle.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠Description

					(deprecated in SystemTap 2.1)
				

 ⁠
Name
probe::signal.pending — Examining pending signal

 ⁠Synopsis
signal.pending

 ⁠Values
	name
	
								Name of the probe point
							

	sigset_size
	
								The size of the user-space signal set
							

	sigset_add
	
								The address of the user-space signal set (sigset_t)
							

 ⁠Description

					This probe is used to examine a set of signals pending for delivery to a specific thread. This normally occurs when the do_sigpending kernel function is executed.
				

 ⁠
Name
probe::signal.pending.return — Examination of pending signal completed

 ⁠Synopsis
signal.pending.return

 ⁠Values
	name
	
								Name of the probe point
							

	retstr
	
								Return value as a string
							

 ⁠
Name
probe::signal.procmask — Examining or changing blocked signals

 ⁠Synopsis
signal.procmask

 ⁠Values
	name
	
								Name of the probe point
							

	sigset
	
								The actual value to be set for sigset_t (correct?)
							

	how
	
								Indicates how to change the blocked signals; possible values are SIG_BLOCK=0 (for blocking signals), SIG_UNBLOCK=1 (for unblocking signals), and SIG_SETMASK=2 for setting the signal mask.
							

	sigset_addr
	
								The address of the signal set (sigset_t) to be implemented
							

	oldsigset_addr
	
								The old address of the signal set (sigset_t)
							

 ⁠
Name
probe::signal.procmask.return — Examining or changing blocked signals completed

 ⁠Synopsis
signal.procmask.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.send — Signal being sent to a process

 ⁠Synopsis
signal.send

 ⁠Values
	send2queue
	
								Indicates whether the signal is sent to an existing sigqueue (deprecated in SystemTap 2.1)
							

	pid_name
	
								The name of the signal recipient
							

	task
	
								A task handle to the signal recipient
							

	sig_name
	
								A string representation of the signal
							

	sinfo
	
								The address of siginfo struct
							

	shared
	
								Indicates whether the signal is shared by the thread group
							

	si_code
	
								Indicates the signal type
							

	name
	
								The name of the function used to send out the signal
							

	sig
	
								The number of the signal
							

	sig_pid
	
								The PID of the process receiving the signal
							

 ⁠Context

					The signal's sender.
				

 ⁠
Name
probe::signal.send.return — Signal being sent to a process completed (deprecated in SystemTap 2.1)

 ⁠Synopsis
signal.send.return

 ⁠Values
	shared
	
								Indicates whether the sent signal is shared by the thread group.
							

	name
	
								The name of the function used to send out the signal
							

	retstr
	
								The return value to either __group_send_sig_info, specific_send_sig_info, or send_sigqueue
							

	send2queue
	
								Indicates whether the sent signal was sent to an existing sigqueue
							

 ⁠Context

					The signal's sender. (correct?)
				

 ⁠Description

					Possible __group_send_sig_info and specific_send_sig_info return values are as follows;
				

					0 -- The signal is successfully sent to a process, which means that, (1) the signal was ignored by the receiving process, (2) this is a non-RT signal and the system already has one queued, and (3) the signal was successfully added to the sigqueue of the receiving process.
				

					-EAGAIN -- The sigqueue of the receiving process is overflowing, the signal was RT, and the signal was sent by a user using something other than kill.
				

					Possible send_group_sigqueue and send_sigqueue return values are as follows;
				

					0 -- The signal was either successfully added into the sigqueue of the receiving process, or a SI_TIMER entry is already queued (in which case, the overrun count will be simply incremented).
				

					1 -- The signal was ignored by the receiving process.
				

					-1 -- (send_sigqueue only) The task was marked exiting, allowing * posix_timer_event to redirect it to the group leader.
				

 ⁠
Name
probe::signal.send_sig_queue — Queuing a signal to a process

 ⁠Synopsis
signal.send_sig_queue

 ⁠Values
	sig
	
								The queued signal
							

	name
	
								Name of the probe point
							

	sig_pid
	
								The PID of the process to which the signal is queued
							

	pid_name
	
								Name of the process to which the signal is queued
							

	sig_name
	
								A string representation of the signal
							

	sigqueue_addr
	
								The address of the signal queue
							

 ⁠
Name
probe::signal.send_sig_queue.return — Queuing a signal to a process completed

 ⁠Synopsis
signal.send_sig_queue.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.sys_tgkill — Sending kill signal to a thread group

 ⁠Synopsis
signal.sys_tgkill

 ⁠Values
	sig_pid
	
								The PID of the thread receiving the kill signal
							

	sig
	
								The specific kill signal sent to the process
							

	name
	
								Name of the probe point
							

	pid_name
	
								The name of the signal recipient
							

	sig_name
	
								A string representation of the signal
							

	tgid
	
								The thread group ID of the thread receiving the kill signal
							

	task
	
								A task handle to the signal recipient
							

 ⁠Description

					The tgkill call is similar to tkill, except that it also allows the caller to specify the thread group ID of the thread to be signalled. This protects against TID reuse.
				

 ⁠
Name
probe::signal.sys_tgkill.return — Sending kill signal to a thread group completed

 ⁠Synopsis
signal.sys_tgkill.return

 ⁠Values
	name
	
								Name of the probe point
							

	retstr
	
								The return value to either __group_send_sig_info,
							

 ⁠
Name
probe::signal.sys_tkill — Sending a kill signal to a thread

 ⁠Synopsis
signal.sys_tkill

 ⁠Values
	sig_pid
	
								The PID of the process receiving the kill signal
							

	sig
	
								The specific signal sent to the process
							

	name
	
								Name of the probe point
							

	pid_name
	
								The name of the signal recipient
							

	sig_name
	
								A string representation of the signal
							

	task
	
								A task handle to the signal recipient
							

 ⁠Description

					The tkill call is analogous to kill(2), except that it also allows a process within a specific thread group to be targeted. Such processes are targeted through their unique thread IDs (TID).
				

 ⁠
Name
probe::signal.syskill — Sending kill signal to a process

 ⁠Synopsis
signal.syskill

 ⁠Values
	sig_pid
	
								The PID of the process receiving the signal
							

	sig
	
								The specific signal sent to the process
							

	name
	
								Name of the probe point
							

	pid_name
	
								The name of the signal recipient
							

	sig_name
	
								A string representation of the signal
							

	task
	
								A task handle to the signal recipient
							

 ⁠
Name
probe::signal.syskill.return — Sending kill signal completed

 ⁠Synopsis
signal.syskill.return

 ⁠Values

					None
				

 ⁠
Name
probe::signal.systkill.return — Sending kill signal to a thread completed

 ⁠Synopsis
signal.systkill.return

 ⁠Values
	retstr
	
								The return value to either __group_send_sig_info,
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.wakeup — Sleeping process being wakened for signal

 ⁠Synopsis
signal.wakeup

 ⁠Values
	pid_name
	
								Name of the process to wake
							

	resume
	
								Indicates whether to wake up a task in a STOPPED or TRACED state
							

	state_mask
	
								A string representation indicating the mask of task states to wake. Possible values are TASK_INTERRUPTIBLE, TASK_STOPPED, TASK_TRACED, TASK_WAKEKILL, and TASK_INTERRUPTIBLE.
							

	sig_pid
	
								The PID of the process to wake
							

 ⁠Chapter 19. Errno Tapset

			This set of functions is used to handle errno number values. It contains the following functions:
		

 ⁠
Name
function::errno_str — Symbolic string associated with error code

 ⁠Synopsis

errno_str:string(err:long)

 ⁠Arguments
	err
	
								The error number received
							

 ⁠Description

					This function returns the symbolic string associated with the giver error code, such as ENOENT for the number 2, or E#3333 for an out-of-range value such as 3333.
				

 ⁠
Name
function::return_str — Formats the return value as a string

 ⁠Synopsis

return_str:string(format:long,ret:long)

 ⁠Arguments
	format
	
								Variable to determine return type base value
							

	ret
	
								Return value (typically $return)
							

 ⁠Description

					This function is used by the syscall tapset, and returns a string. Set format equal to 1 for a decimal, 2 for hex, 3 for octal.
				

					Note that this function is preferred over returnstr.
				

 ⁠
Name
function::returnstr — Formats the return value as a string

 ⁠Synopsis

returnstr:string(format:long)

 ⁠Arguments
	format
	
								Variable to determine return type base value
							

 ⁠Description

					This function is used by the nd_syscall tapset, and returns a string. Set format equal to 1 for a decimal, 2 for hex, 3 for octal.
				

					Note that this function should only be used in dwarfless probes (i.e. 'kprobe.function(“foo”)'). Other probes should use return_str.
				

 ⁠
Name
function::returnval — Possible return value of probed function

 ⁠Synopsis

returnval:long()

 ⁠Arguments

					None
				

 ⁠Description

					Return the value of the register in which function values are typically returned. Can be used in probes where $return isn't available. This is only a guess of the actual return value and can be totally wrong. Normally only used in dwarfless probes.
				

 ⁠
Name
function::errno_str — Symbolic string associated with error code

 ⁠Synopsis

errno_str:string(err:long)

 ⁠Arguments
	err
	
								The error number received
							

 ⁠Description

					This function returns the symbolic string associated with the giver error code, such as ENOENT for the number 2, or E#3333 for an out-of-range value such as 3333.
				

 ⁠
Name
function::return_str — Formats the return value as a string

 ⁠Synopsis

return_str:string(format:long,ret:long)

 ⁠Arguments
	format
	
								Variable to determine return type base value
							

	ret
	
								Return value (typically $return)
							

 ⁠Description

					This function is used by the syscall tapset, and returns a string. Set format equal to 1 for a decimal, 2 for hex, 3 for octal.
				

					Note that this function is preferred over returnstr.
				

 ⁠
Name
function::returnstr — Formats the return value as a string

 ⁠Synopsis

returnstr:string(format:long)

 ⁠Arguments
	format
	
								Variable to determine return type base value
							

 ⁠Description

					This function is used by the nd_syscall tapset, and returns a string. Set format equal to 1 for a decimal, 2 for hex, 3 for octal.
				

					Note that this function should only be used in dwarfless probes (i.e. 'kprobe.function(“foo”)'). Other probes should use return_str.
				

 ⁠
Name
function::returnval — Possible return value of probed function

 ⁠Synopsis

returnval:long()

 ⁠Arguments

					None
				

 ⁠Description

					Return the value of the register in which function values are typically returned. Can be used in probes where $return isn't available. This is only a guess of the actual return value and can be totally wrong. Normally only used in dwarfless probes.
				

 ⁠Chapter 20. RLIMIT Tapset

			This set of functions is used to handle string which defines resource limits (RLIMIT_*) and returns corresponding number of resource limit. It contains the following functions:
		

 ⁠
Name
function::rlimit_from_str — Symbolic string associated with resource limit code

 ⁠Synopsis

rlimit_from_str:long(lim_str:string)

 ⁠Arguments
	lim_str
	
								The string representation of limit
							

 ⁠Description

					This function returns the number associated with the given string, such as 0 for the string RLIMIT_CPU, or -1 for an out-of-range value.
				

 ⁠
Name
function::rlimit_from_str — Symbolic string associated with resource limit code

 ⁠Synopsis

rlimit_from_str:long(lim_str:string)

 ⁠Arguments
	lim_str
	
								The string representation of limit
							

 ⁠Description

					This function returns the number associated with the given string, such as 0 for the string RLIMIT_CPU, or -1 for an out-of-range value.
				

 ⁠Chapter 21. Device Tapset

			This set of functions is used to handle kernel and userspace device numbers. It contains the following functions:
		

 ⁠
Name
function::MAJOR — Extract major device number from a kernel device number (kdev_t)

 ⁠Synopsis

MAJOR:long(dev:long)

 ⁠Arguments
	dev
	
								Kernel device number to query.
							

 ⁠
Name
function::MINOR — Extract minor device number from a kernel device number (kdev_t)

 ⁠Synopsis

MINOR:long(dev:long)

 ⁠Arguments
	dev
	
								Kernel device number to query.
							

 ⁠
Name
function::MKDEV — Creates a value that can be compared to a kernel device number (kdev_t)

 ⁠Synopsis

MKDEV:long(major:long,minor:long)

 ⁠Arguments
	major
	
								Intended major device number.
							

	minor
	
								Intended minor device number.
							

 ⁠
Name
function::usrdev2kerndev — Converts a user-space device number into the format used in the kernel

 ⁠Synopsis

usrdev2kerndev:long(dev:long)

 ⁠Arguments
	dev
	
								Device number in user-space format.
							

 ⁠
Name
function::MAJOR — Extract major device number from a kernel device number (kdev_t)

 ⁠Synopsis

MAJOR:long(dev:long)

 ⁠Arguments
	dev
	
								Kernel device number to query.
							

 ⁠
Name
function::MINOR — Extract minor device number from a kernel device number (kdev_t)

 ⁠Synopsis

MINOR:long(dev:long)

 ⁠Arguments
	dev
	
								Kernel device number to query.
							

 ⁠
Name
function::MKDEV — Creates a value that can be compared to a kernel device number (kdev_t)

 ⁠Synopsis

MKDEV:long(major:long,minor:long)

 ⁠Arguments
	major
	
								Intended major device number.
							

	minor
	
								Intended minor device number.
							

 ⁠
Name
function::usrdev2kerndev — Converts a user-space device number into the format used in the kernel

 ⁠Synopsis

usrdev2kerndev:long(dev:long)

 ⁠Arguments
	dev
	
								Device number in user-space format.
							

 ⁠Chapter 22. Directory-entry (dentry) Tapset

			This family of functions is used to map kernel VFS directory entry pointers to file or full path names.
		

 ⁠
Name
function::d_name — get the dirent name

 ⁠Synopsis

d_name:string(dentry:long)

 ⁠Arguments
	dentry
	
								Pointer to dentry.
							

 ⁠Description

					Returns the dirent name (path basename).
				

 ⁠
Name
function::d_path — get the full nameidata path

 ⁠Synopsis

d_path:string(nd:long)

 ⁠Arguments
	nd
	
								Pointer to nameidata.
							

 ⁠Description

					Returns the full dirent name (full path to the root), like the kernel d_path function.
				

 ⁠
Name
function::fullpath_struct_file — get the full path

 ⁠Synopsis

fullpath_struct_file:string(task:long,file:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

	file
	
								Pointer to “struct file”.
							

 ⁠Description

					Returns the full dirent name (full path to the root), like the kernel d_path function.
				

 ⁠
Name
function::fullpath_struct_nameidata — get the full nameidata path

 ⁠Synopsis

fullpath_struct_nameidata(nd:)

 ⁠Arguments
	nd
	
								Pointer to “struct nameidata”.
							

 ⁠Description

					Returns the full dirent name (full path to the root), like the kernel (and systemtap-tapset) d_path function, with a “/”.
				

 ⁠
Name
function::fullpath_struct_path — get the full path

 ⁠Synopsis

fullpath_struct_path:string(path:long)

 ⁠Arguments
	path
	
								Pointer to “struct path”.
							

 ⁠Description

					Returns the full dirent name (full path to the root), like the kernel d_path function.
				

 ⁠
Name
function::inode_name — get the inode name

 ⁠Synopsis

inode_name:string(inode:long)

 ⁠Arguments
	inode
	
								Pointer to inode.
							

 ⁠Description

					Returns the first path basename associated with the given inode.
				

 ⁠
Name
function::inode_path — get the path to an inode

 ⁠Synopsis

inode_path:string(inode:long)

 ⁠Arguments
	inode
	
								Pointer to inode.
							

 ⁠Description

					Returns the full path associated with the given inode.
				

 ⁠
Name
function::real_mount — get the 'struct mount' pointer

 ⁠Synopsis

real_mount:long(vfsmnt:long)

 ⁠Arguments
	vfsmnt
	
								Pointer to 'struct vfsmount'
							

 ⁠Description

					Returns the 'struct mount' pointer value for a 'struct vfsmount' pointer.
				

 ⁠
Name
function::reverse_path_walk — get the full dirent path

 ⁠Synopsis

reverse_path_walk:string(dentry:long)

 ⁠Arguments
	dentry
	
								Pointer to dentry.
							

 ⁠Description

					Returns the path name (partial path to mount point).
				

 ⁠
Name
function::task_dentry_path — get the full dentry path

 ⁠Synopsis

task_dentry_path:string(task:long,dentry:long,vfsmnt:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

	dentry
	
								direntry pointer.
							

	vfsmnt
	
								vfsmnt pointer.
							

 ⁠Description

					Returns the full dirent name (full path to the root), like the kernel d_path function.
				

 ⁠
Name
function::d_name — get the dirent name

 ⁠Synopsis

d_name:string(dentry:long)

 ⁠Arguments
	dentry
	
								Pointer to dentry.
							

 ⁠Description

					Returns the dirent name (path basename).
				

 ⁠
Name
function::d_path — get the full nameidata path

 ⁠Synopsis

d_path:string(nd:long)

 ⁠Arguments
	nd
	
								Pointer to nameidata.
							

 ⁠Description

					Returns the full dirent name (full path to the root), like the kernel d_path function.
				

 ⁠
Name
function::fullpath_struct_file — get the full path

 ⁠Synopsis

fullpath_struct_file:string(task:long,file:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

	file
	
								Pointer to “struct file”.
							

 ⁠Description

					Returns the full dirent name (full path to the root), like the kernel d_path function.
				

 ⁠
Name
function::fullpath_struct_nameidata — get the full nameidata path

 ⁠Synopsis

fullpath_struct_nameidata(nd:)

 ⁠Arguments
	nd
	
								Pointer to “struct nameidata”.
							

 ⁠Description

					Returns the full dirent name (full path to the root), like the kernel (and systemtap-tapset) d_path function, with a “/”.
				

 ⁠
Name
function::fullpath_struct_path — get the full path

 ⁠Synopsis

fullpath_struct_path:string(path:long)

 ⁠Arguments
	path
	
								Pointer to “struct path”.
							

 ⁠Description

					Returns the full dirent name (full path to the root), like the kernel d_path function.
				

 ⁠
Name
function::inode_name — get the inode name

 ⁠Synopsis

inode_name:string(inode:long)

 ⁠Arguments
	inode
	
								Pointer to inode.
							

 ⁠Description

					Returns the first path basename associated with the given inode.
				

 ⁠
Name
function::inode_path — get the path to an inode

 ⁠Synopsis

inode_path:string(inode:long)

 ⁠Arguments
	inode
	
								Pointer to inode.
							

 ⁠Description

					Returns the full path associated with the given inode.
				

 ⁠
Name
function::real_mount — get the 'struct mount' pointer

 ⁠Synopsis

real_mount:long(vfsmnt:long)

 ⁠Arguments
	vfsmnt
	
								Pointer to 'struct vfsmount'
							

 ⁠Description

					Returns the 'struct mount' pointer value for a 'struct vfsmount' pointer.
				

 ⁠
Name
function::reverse_path_walk — get the full dirent path

 ⁠Synopsis

reverse_path_walk:string(dentry:long)

 ⁠Arguments
	dentry
	
								Pointer to dentry.
							

 ⁠Description

					Returns the path name (partial path to mount point).
				

 ⁠
Name
function::task_dentry_path — get the full dentry path

 ⁠Synopsis

task_dentry_path:string(task:long,dentry:long,vfsmnt:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

	dentry
	
								direntry pointer.
							

	vfsmnt
	
								vfsmnt pointer.
							

 ⁠Description

					Returns the full dirent name (full path to the root), like the kernel d_path function.
				

 ⁠Chapter 23. Logging Tapset

			This family of functions is used to send simple message strings to various destinations.
		

 ⁠
Name
function::assert — evaluate assertion

 ⁠Synopsis

assert(expression:,msg:)

 ⁠Arguments
	expression
	
								The expression to evaluate
							

	msg
	
								The formatted message string
							

 ⁠Description

					This function checks the expression and aborts the current running probe if expression evaluates to zero. Uses error and may be caught by try{} catch{}.
				

 ⁠
Name
function::error — Send an error message

 ⁠Synopsis

error(msg:string)

 ⁠Arguments
	msg
	
								The formatted message string
							

 ⁠Description

					An implicit end-of-line is added. staprun prepends the string “ERROR:”. Sending an error message aborts the currently running probe. Depending on the MAXERRORS parameter, it may trigger an exit.
				

 ⁠
Name
function::exit — Start shutting down probing script.

 ⁠Synopsis

exit()

 ⁠Arguments

					None
				

 ⁠Description

					This only enqueues a request to start shutting down the script. New probes will not fire (except “end” probes), but all currently running ones may complete their work.
				

 ⁠
Name
function::ftrace — Send a message to the ftrace ring-buffer

 ⁠Synopsis

ftrace(msg:string)

 ⁠Arguments
	msg
	
								The formatted message string
							

 ⁠Description

					If the ftrace ring-buffer is configured & available, see /debugfs/tracing/trace for the message. Otherwise, the message may be quietly dropped. An implicit end-of-line is added.
				

 ⁠
Name
function::log — Send a line to the common trace buffer

 ⁠Synopsis

log(msg:string)

 ⁠Arguments
	msg
	
								The formatted message string
							

 ⁠Description

					This function logs data. log sends the message immediately to staprun and to the bulk transport (relayfs) if it is being used. If the last character given is not a newline, then one is added. This function is not as efficient as printf and should be used only for urgent messages.
				

 ⁠
Name
function::printk — Send a message to the kernel trace buffer

 ⁠Synopsis

printk(level:long,msg:string)

 ⁠Arguments
	level
	
								an integer for the severity level (0=KERN_EMERG ... 7=KERN_DEBUG)
							

	msg
	
								The formatted message string
							

 ⁠Description

					Print a line of text to the kernel dmesg/console with the given severity. An implicit end-of-line is added. This function may not be safely called from all kernel probe contexts, so is restricted to guru mode only.
				

 ⁠
Name
function::warn — Send a line to the warning stream

 ⁠Synopsis

warn(msg:string)

 ⁠Arguments
	msg
	
								The formatted message string
							

 ⁠Description

					This function sends a warning message immediately to staprun. It is also sent over the bulk transport (relayfs) if it is being used. If the last characater is not a newline, the one is added.
				

 ⁠
Name
function::assert — evaluate assertion

 ⁠Synopsis

assert(expression:,msg:)

 ⁠Arguments
	expression
	
								The expression to evaluate
							

	msg
	
								The formatted message string
							

 ⁠Description

					This function checks the expression and aborts the current running probe if expression evaluates to zero. Uses error and may be caught by try{} catch{}.
				

 ⁠
Name
function::error — Send an error message

 ⁠Synopsis

error(msg:string)

 ⁠Arguments
	msg
	
								The formatted message string
							

 ⁠Description

					An implicit end-of-line is added. staprun prepends the string “ERROR:”. Sending an error message aborts the currently running probe. Depending on the MAXERRORS parameter, it may trigger an exit.
				

 ⁠
Name
function::exit — Start shutting down probing script.

 ⁠Synopsis

exit()

 ⁠Arguments

					None
				

 ⁠Description

					This only enqueues a request to start shutting down the script. New probes will not fire (except “end” probes), but all currently running ones may complete their work.
				

 ⁠
Name
function::ftrace — Send a message to the ftrace ring-buffer

 ⁠Synopsis

ftrace(msg:string)

 ⁠Arguments
	msg
	
								The formatted message string
							

 ⁠Description

					If the ftrace ring-buffer is configured & available, see /debugfs/tracing/trace for the message. Otherwise, the message may be quietly dropped. An implicit end-of-line is added.
				

 ⁠
Name
function::log — Send a line to the common trace buffer

 ⁠Synopsis

log(msg:string)

 ⁠Arguments
	msg
	
								The formatted message string
							

 ⁠Description

					This function logs data. log sends the message immediately to staprun and to the bulk transport (relayfs) if it is being used. If the last character given is not a newline, then one is added. This function is not as efficient as printf and should be used only for urgent messages.
				

 ⁠
Name
function::printk — Send a message to the kernel trace buffer

 ⁠Synopsis

printk(level:long,msg:string)

 ⁠Arguments
	level
	
								an integer for the severity level (0=KERN_EMERG ... 7=KERN_DEBUG)
							

	msg
	
								The formatted message string
							

 ⁠Description

					Print a line of text to the kernel dmesg/console with the given severity. An implicit end-of-line is added. This function may not be safely called from all kernel probe contexts, so is restricted to guru mode only.
				

 ⁠
Name
function::warn — Send a line to the warning stream

 ⁠Synopsis

warn(msg:string)

 ⁠Arguments
	msg
	
								The formatted message string
							

 ⁠Description

					This function sends a warning message immediately to staprun. It is also sent over the bulk transport (relayfs) if it is being used. If the last characater is not a newline, the one is added.
				

 ⁠Chapter 24. Queue Statistics Tapset

			This family of functions is used to track performance of queuing systems.
		

 ⁠
Name
function::qs_done — Function to record finishing request

 ⁠Synopsis

qs_done(qname:string)

 ⁠Arguments
	qname
	
								the name of the service that finished
							

 ⁠Description

					This function records that a request originally from the given queue has completed being serviced.
				

 ⁠
Name
function::qs_run — Function to record being moved from wait queue to being serviced

 ⁠Synopsis

qs_run(qname:string)

 ⁠Arguments
	qname
	
								the name of the service being moved and started
							

 ⁠Description

					This function records that the previous enqueued request was removed from the given wait queue and is now being serviced.
				

 ⁠
Name
function::qs_wait — Function to record enqueue requests

 ⁠Synopsis

qs_wait(qname:string)

 ⁠Arguments
	qname
	
								the name of the queue requesting enqueue
							

 ⁠Description

					This function records that a new request was enqueued for the given queue name.
				

 ⁠
Name
function::qsq_blocked — Returns the time reqest was on the wait queue

 ⁠Synopsis

qsq_blocked:long(qname:string,scale:long)

 ⁠Arguments
	qname
	
								queue name
							

	scale
	
								scale variable to take account for interval fraction
							

 ⁠Description

					This function returns the fraction of elapsed time during which one or more requests were on the wait queue.
				

 ⁠
Name
function::qsq_print — Prints a line of statistics for the given queue

 ⁠Synopsis

qsq_print(qname:string)

 ⁠Arguments
	qname
	
								queue name
							

 ⁠Description

					This function prints a line containing the following
				

 ⁠statistics for the given queue

					the queue name, the average rate of requests per second, the average wait queue length, the average time on the wait queue, the average time to service a request, the percentage of time the wait queue was used, and the percentage of time request was being serviced.
				

 ⁠
Name
function::qsq_service_time — Amount of time per request service

 ⁠Synopsis

qsq_service_time:long(qname:string,scale:long)

 ⁠Arguments
	qname
	
								queue name
							

	scale
	
								scale variable to take account for interval fraction
							

 ⁠Description

					This function returns the average time in microseconds required to service a request once it is removed from the wait queue.
				

 ⁠
Name
function::qsq_start — Function to reset the stats for a queue

 ⁠Synopsis

qsq_start(qname:string)

 ⁠Arguments
	qname
	
								the name of the service that finished
							

 ⁠Description

					This function resets the statistics counters for the given queue, and restarts tracking from the moment the function was called. This function is also used to create intialize a queue.
				

 ⁠
Name
function::qsq_throughput — Number of requests served per unit time

 ⁠Synopsis

qsq_throughput:long(qname:string,scale:long)

 ⁠Arguments
	qname
	
								queue name
							

	scale
	
								scale variable to take account for interval fraction
							

 ⁠Description

					This function returns the average number or requests served per microsecond.
				

 ⁠
Name
function::qsq_utilization — Fraction of time that any request was being serviced

 ⁠Synopsis

qsq_utilization:long(qname:string,scale:long)

 ⁠Arguments
	qname
	
								queue name
							

	scale
	
								scale variable to take account for interval fraction
							

 ⁠Description

					This function returns the average time in microseconds that at least one request was being serviced.
				

 ⁠
Name
function::qsq_wait_queue_length — length of wait queue

 ⁠Synopsis

qsq_wait_queue_length:long(qname:string,scale:long)

 ⁠Arguments
	qname
	
								queue name
							

	scale
	
								scale variable to take account for interval fraction
							

 ⁠Description

					This function returns the average length of the wait queue
				

 ⁠
Name
function::qsq_wait_time — Amount of time in queue + service per request

 ⁠Synopsis

qsq_wait_time:long(qname:string,scale:long)

 ⁠Arguments
	qname
	
								queue name
							

	scale
	
								scale variable to take account for interval fraction
							

 ⁠Description

					This function returns the average time in microseconds that it took for a request to be serviced (qs_wait to qa_done).
				

 ⁠
Name
function::qs_done — Function to record finishing request

 ⁠Synopsis

qs_done(qname:string)

 ⁠Arguments
	qname
	
								the name of the service that finished
							

 ⁠Description

					This function records that a request originally from the given queue has completed being serviced.
				

 ⁠
Name
function::qs_run — Function to record being moved from wait queue to being serviced

 ⁠Synopsis

qs_run(qname:string)

 ⁠Arguments
	qname
	
								the name of the service being moved and started
							

 ⁠Description

					This function records that the previous enqueued request was removed from the given wait queue and is now being serviced.
				

 ⁠
Name
function::qs_wait — Function to record enqueue requests

 ⁠Synopsis

qs_wait(qname:string)

 ⁠Arguments
	qname
	
								the name of the queue requesting enqueue
							

 ⁠Description

					This function records that a new request was enqueued for the given queue name.
				

 ⁠
Name
function::qsq_blocked — Returns the time reqest was on the wait queue

 ⁠Synopsis

qsq_blocked:long(qname:string,scale:long)

 ⁠Arguments
	qname
	
								queue name
							

	scale
	
								scale variable to take account for interval fraction
							

 ⁠Description

					This function returns the fraction of elapsed time during which one or more requests were on the wait queue.
				

 ⁠
Name
function::qsq_print — Prints a line of statistics for the given queue

 ⁠Synopsis

qsq_print(qname:string)

 ⁠Arguments
	qname
	
								queue name
							

 ⁠Description

					This function prints a line containing the following
				

 ⁠statistics for the given queue

					the queue name, the average rate of requests per second, the average wait queue length, the average time on the wait queue, the average time to service a request, the percentage of time the wait queue was used, and the percentage of time request was being serviced.
				

 ⁠
Name
function::qsq_service_time — Amount of time per request service

 ⁠Synopsis

qsq_service_time:long(qname:string,scale:long)

 ⁠Arguments
	qname
	
								queue name
							

	scale
	
								scale variable to take account for interval fraction
							

 ⁠Description

					This function returns the average time in microseconds required to service a request once it is removed from the wait queue.
				

 ⁠
Name
function::qsq_start — Function to reset the stats for a queue

 ⁠Synopsis

qsq_start(qname:string)

 ⁠Arguments
	qname
	
								the name of the service that finished
							

 ⁠Description

					This function resets the statistics counters for the given queue, and restarts tracking from the moment the function was called. This function is also used to create intialize a queue.
				

 ⁠
Name
function::qsq_throughput — Number of requests served per unit time

 ⁠Synopsis

qsq_throughput:long(qname:string,scale:long)

 ⁠Arguments
	qname
	
								queue name
							

	scale
	
								scale variable to take account for interval fraction
							

 ⁠Description

					This function returns the average number or requests served per microsecond.
				

 ⁠
Name
function::qsq_utilization — Fraction of time that any request was being serviced

 ⁠Synopsis

qsq_utilization:long(qname:string,scale:long)

 ⁠Arguments
	qname
	
								queue name
							

	scale
	
								scale variable to take account for interval fraction
							

 ⁠Description

					This function returns the average time in microseconds that at least one request was being serviced.
				

 ⁠
Name
function::qsq_wait_queue_length — length of wait queue

 ⁠Synopsis

qsq_wait_queue_length:long(qname:string,scale:long)

 ⁠Arguments
	qname
	
								queue name
							

	scale
	
								scale variable to take account for interval fraction
							

 ⁠Description

					This function returns the average length of the wait queue
				

 ⁠
Name
function::qsq_wait_time — Amount of time in queue + service per request

 ⁠Synopsis

qsq_wait_time:long(qname:string,scale:long)

 ⁠Arguments
	qname
	
								queue name
							

	scale
	
								scale variable to take account for interval fraction
							

 ⁠Description

					This function returns the average time in microseconds that it took for a request to be serviced (qs_wait to qa_done).
				

 ⁠Chapter 25. Random functions Tapset

			These functions deal with random number generation.
		

 ⁠
Name
function::randint — Return a random number between [0,n)

 ⁠Synopsis

randint:long(n:long)

 ⁠Arguments
	n
	
								Number past upper limit of range, not larger than 2**20.
							

 ⁠
Name
function::randint — Return a random number between [0,n)

 ⁠Synopsis

randint:long(n:long)

 ⁠Arguments
	n
	
								Number past upper limit of range, not larger than 2**20.
							

 ⁠Chapter 26. String and data retrieving functions Tapset

			Functions to retrieve strings and other primitive types from the kernel or a user space programs based on addresses. All strings are of a maximum length given by MAXSTRINGLEN.
		

 ⁠
Name
function::atomic_long_read — Retrieves an atomic long variable from kernel memory

 ⁠Synopsis

atomic_long_read:long(addr:long)

 ⁠Arguments
	addr
	
								pointer to atomic long variable
							

 ⁠Description

					Safely perform the read of an atomic long variable. This will be a NOP on kernels that do not have ATOMIC_LONG_INIT set on the kernel config.
				

 ⁠
Name
function::atomic_read — Retrieves an atomic variable from kernel memory

 ⁠Synopsis

atomic_read:long(addr:long)

 ⁠Arguments
	addr
	
								pointer to atomic variable
							

 ⁠Description

					Safely perform the read of an atomic variable.
				

 ⁠
Name
function::kernel_char — Retrieves a char value stored in kernel memory

 ⁠Synopsis

kernel_char:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the char from
							

 ⁠Description

					Returns the char value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::kernel_int — Retrieves an int value stored in kernel memory

 ⁠Synopsis

kernel_int:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the int from
							

 ⁠Description

					Returns the int value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::kernel_long — Retrieves a long value stored in kernel memory

 ⁠Synopsis

kernel_long:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the long from
							

 ⁠Description

					Returns the long value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::kernel_pointer — Retrieves a pointer value stored in kernel memory

 ⁠Synopsis

kernel_pointer:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the pointer from
							

 ⁠Description

					Returns the pointer value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::kernel_short — Retrieves a short value stored in kernel memory

 ⁠Synopsis

kernel_short:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the short from
							

 ⁠Description

					Returns the short value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::kernel_string — Retrieves string from kernel memory

 ⁠Synopsis

kernel_string:string(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from
							

 ⁠Description

					This function returns the null terminated C string from a given kernel memory address. Reports an error on string copy fault.
				

 ⁠
Name
function::kernel_string2 — Retrieves string from kernel memory with alternative error string

 ⁠Synopsis

kernel_string2:string(addr:long,err_msg:string)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from
							

	err_msg
	
								The error message to return when data isn't available
							

 ⁠Description

					This function returns the null terminated C string from a given kernel memory address. Reports the given error message on string copy fault.
				

 ⁠
Name
function::kernel_string2_utf16 — Retrieves UTF-16 string from kernel memory with alternative error string

 ⁠Synopsis

kernel_string2_utf16:string(addr:long,err_msg:string)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from
							

	err_msg
	
								The error message to return when data isn't available
							

 ⁠Description

					This function returns a null terminated UTF-8 string converted from the UTF-16 string at a given kernel memory address. Reports the given error message on string copy fault or conversion error.
				

 ⁠
Name
function::kernel_string2_utf32 — Retrieves UTF-32 string from kernel memory with alternative error string

 ⁠Synopsis

kernel_string2_utf32:string(addr:long,err_msg:string)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from
							

	err_msg
	
								The error message to return when data isn't available
							

 ⁠Description

					This function returns a null terminated UTF-8 string converted from the UTF-32 string at a given kernel memory address. Reports the given error message on string copy fault or conversion error.
				

 ⁠
Name
function::kernel_string_n — Retrieves string of given length from kernel memory

 ⁠Synopsis

kernel_string_n:string(addr:long,n:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from
							

	n
	
								The maximum length of the string (if not null terminated)
							

 ⁠Description

					Returns the C string of a maximum given length from a given kernel memory address. Reports an error on string copy fault.
				

 ⁠
Name
function::kernel_string_quoted — Retrieves and quotes string from kernel memory

 ⁠Synopsis

kernel_string_quoted:string(addr:long)

 ⁠Arguments
	addr
	
								the kernel memory address to retrieve the string from
							

 ⁠Description

					Returns the null terminated C string from a given kernel memory address where any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string. Note that the string will be surrounded by double quotes. If the kernel memory data is not accessible at the given address, the address itself is returned as a string, without double quotes.
				

 ⁠
Name
function::kernel_string_quoted_utf16 — Quote given kernel UTF-16 string.

 ⁠Synopsis

kernel_string_quoted_utf16:string(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from
							

 ⁠Description

					This function combines quoting as per string_quoted and UTF-16 decoding as per kernel_string_utf16.
				

 ⁠
Name
function::kernel_string_quoted_utf32 — Quote given UTF-32 kernel string.

 ⁠Synopsis

kernel_string_quoted_utf32:string(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from
							

 ⁠Description

					This function combines quoting as per string_quoted and UTF-32 decoding as per kernel_string_utf32.
				

 ⁠
Name
function::kernel_string_utf16 — Retrieves UTF-16 string from kernel memory

 ⁠Synopsis

kernel_string_utf16:string(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from
							

 ⁠Description

					This function returns a null terminated UTF-8 string converted from the UTF-16 string at a given kernel memory address. Reports an error on string copy fault or conversion error.
				

 ⁠
Name
function::kernel_string_utf32 — Retrieves UTF-32 string from kernel memory

 ⁠Synopsis

kernel_string_utf32:string(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from
							

 ⁠Description

					This function returns a null terminated UTF-8 string converted from the UTF-32 string at a given kernel memory address. Reports an error on string copy fault or conversion error.
				

 ⁠
Name
function::user_char — Retrieves a char value stored in user space

 ⁠Synopsis

user_char:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the char from
							

 ⁠Description

					Returns the char value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_char_warn — Retrieves a char value stored in user space

 ⁠Synopsis

user_char_warn:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the char from
							

 ⁠Description

					Returns the char value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_int — Retrieves an int value stored in user space

 ⁠Synopsis

user_int:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the int from
							

 ⁠Description

					Returns the int value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_int16 — Retrieves a 16-bit integer value stored in user space

 ⁠Synopsis

user_int16:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the 16-bit integer from
							

 ⁠Description

					Returns the 16-bit integer value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_int32 — Retrieves a 32-bit integer value stored in user space

 ⁠Synopsis

user_int32:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the 32-bit integer from
							

 ⁠Description

					Returns the 32-bit integer value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_int64 — Retrieves a 64-bit integer value stored in user space

 ⁠Synopsis

user_int64:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the 64-bit integer from
							

 ⁠Description

					Returns the 64-bit integer value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_int8 — Retrieves a 8-bit integer value stored in user space

 ⁠Synopsis

user_int8:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the 8-bit integer from
							

 ⁠Description

					Returns the 8-bit integer value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_int_warn — Retrieves an int value stored in user space

 ⁠Synopsis

user_int_warn:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the int from
							

 ⁠Description

					Returns the int value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_long — Retrieves a long value stored in user space

 ⁠Synopsis

user_long:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the long from
							

 ⁠Description

					Returns the long value from a given user space address. Returns zero when user space data is not accessible. Note that the size of the long depends on the architecture of the current user space task (for those architectures that support both 64/32 bit compat tasks).
				

 ⁠
Name
function::user_long_warn — Retrieves a long value stored in user space

 ⁠Synopsis

user_long_warn:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the long from
							

 ⁠Description

					Returns the long value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure. Note that the size of the long depends on the architecture of the current user space task (for those architectures that support both 64/32 bit compat tasks).
				

 ⁠
Name
function::user_short — Retrieves a short value stored in user space

 ⁠Synopsis

user_short:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the short from
							

 ⁠Description

					Returns the short value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_short_warn — Retrieves a short value stored in user space

 ⁠Synopsis

user_short_warn:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the short from
							

 ⁠Description

					Returns the short value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_string — Retrieves string from user space

 ⁠Synopsis

user_string:string(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

 ⁠Description

					Returns the null terminated C string from a given user space memory address. Reports an error on the rare cases when userspace data is not accessible.
				

 ⁠
Name
function::user_string2 — Retrieves string from user space with alternative error string

 ⁠Synopsis

user_string2:string(addr:long,err_msg:string)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

	err_msg
	
								the error message to return when data isn't available
							

 ⁠Description

					Returns the null terminated C string from a given user space memory address. Reports the given error message on the rare cases when userspace data is not accessible.
				

 ⁠
Name
function::user_string2_n_warn — Retrieves string from user space with alternative warning string

 ⁠Synopsis

user_string2_n_warn:string(addr:long,n:long,warn_msg:string)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

	n
	
								the maximum length of the string (if not null terminated)
							

	warn_msg
	
								the warning message to return when data isn't available
							

 ⁠Description

					Returns up to n characters of a C string from a given user space memory address. Reports the given warning message on the rare cases when userspace data is not accessible and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_string2_utf16 — Retrieves UTF-16 string from user memory with alternative error string

 ⁠Synopsis

user_string2_utf16:string(addr:long,err_msg:string)

 ⁠Arguments
	addr
	
								The user address to retrieve the string from
							

	err_msg
	
								The error message to return when data isn't available
							

 ⁠Description

					This function returns a null terminated UTF-8 string converted from the UTF-16 string at a given user memory address. Reports the given error message on string copy fault or conversion error.
				

 ⁠
Name
function::user_string2_utf32 — Retrieves UTF-32 string from user memory with alternative error string

 ⁠Synopsis

user_string2_utf32:string(addr:long,err_msg:string)

 ⁠Arguments
	addr
	
								The user address to retrieve the string from
							

	err_msg
	
								The error message to return when data isn't available
							

 ⁠Description

					This function returns a null terminated UTF-8 string converted from the UTF-32 string at a given user memory address. Reports the given error message on string copy fault or conversion error.
				

 ⁠
Name
function::user_string2_warn — Retrieves string from user space with alternative warning string

 ⁠Synopsis

user_string2_warn:string(addr:long,warn_msg:string)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

	warn_msg
	
								the warning message to return when data isn't available
							

 ⁠Description

					Returns the null terminated C string from a given user space memory address. Reports the given warning message on the rare cases when userspace data is not accessible and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_string_n — Retrieves string of given length from user space

 ⁠Synopsis

user_string_n:string(addr:long,n:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

	n
	
								the maximum length of the string (if not null terminated)
							

 ⁠Description

					Returns the C string of a maximum given length from a given user space address. Reports an error on the rare cases when userspace data is not accessible at the given address.
				

 ⁠
Name
function::user_string_n2 — Retrieves string of given length from user space

 ⁠Synopsis

user_string_n2:string(addr:long,n:long,err_msg:string)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

	n
	
								the maximum length of the string (if not null terminated)
							

	err_msg
	
								the error message to return when data isn't available
							

 ⁠Description

					Returns the C string of a maximum given length from a given user space address. Returns the given error message string on the rare cases when userspace data is not accessible at the given address.
				

 ⁠
Name
function::user_string_n2_quoted — Retrieves and quotes string from user space

 ⁠Synopsis

user_string_n2_quoted:string(addr:long,inlen:long,outlen:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

	inlen
	
								the maximum length of the string to read (if not null terminated)
							

	outlen
	
								the maximum length of the output string
							

 ⁠Description

					Reads up to inlen characters of a C string from the given user space memory address, and returns up to outlen characters, where any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string. Note that the string will be surrounded by double quotes. On the rare cases when userspace data is not accessible at the given address, the address itself is returned as a string, without double quotes.
				

 ⁠
Name
function::user_string_n_quoted — Retrieves and quotes string from user space

 ⁠Synopsis

user_string_n_quoted:string(addr:long,n:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

	n
	
								the maximum length of the string (if not null terminated)
							

 ⁠Description

					Returns up to n characters of a C string from the given user space memory address where any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string. Note that the string will be surrounded by double quotes. On the rare cases when userspace data is not accessible at the given address, the address itself is returned as a string, without double quotes.
				

 ⁠
Name
function::user_string_n_warn — Retrieves string from user space

 ⁠Synopsis

user_string_n_warn:string(addr:long,n:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

	n
	
								the maximum length of the string (if not null terminated)
							

 ⁠Description

					Returns up to n characters of a C string from a given user space memory address. Reports “<unknown>” on the rare cases when userspace data is not accessible and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_string_quoted — Retrieves and quotes string from user space

 ⁠Synopsis

user_string_quoted:string(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

 ⁠Description

					Returns the null terminated C string from a given user space memory address where any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string. Note that the string will be surrounded by double quotes. On the rare cases when userspace data is not accessible at the given address, the address itself is returned as a string, without double quotes.
				

 ⁠
Name
function::user_string_quoted_utf16 — Quote given user UTF-16 string.

 ⁠Synopsis

user_string_quoted_utf16:string(addr:long)

 ⁠Arguments
	addr
	
								The user address to retrieve the string from
							

 ⁠Description

					This function combines quoting as per string_quoted and UTF-16 decoding as per user_string_utf16.
				

 ⁠
Name
function::user_string_quoted_utf32 — Quote given user UTF-32 string.

 ⁠Synopsis

user_string_quoted_utf32:string(addr:long)

 ⁠Arguments
	addr
	
								The user address to retrieve the string from
							

 ⁠Description

					This function combines quoting as per string_quoted and UTF-32 decoding as per user_string_utf32.
				

 ⁠
Name
function::user_string_utf16 — Retrieves UTF-16 string from user memory

 ⁠Synopsis

user_string_utf16:string(addr:long)

 ⁠Arguments
	addr
	
								The user address to retrieve the string from
							

 ⁠Description

					This function returns a null terminated UTF-8 string converted from the UTF-16 string at a given user memory address. Reports an error on string copy fault or conversion error.
				

 ⁠
Name
function::user_string_utf32 — Retrieves UTF-32 string from user memory

 ⁠Synopsis

user_string_utf32:string(addr:long)

 ⁠Arguments
	addr
	
								The user address to retrieve the string from
							

 ⁠Description

					This function returns a null terminated UTF-8 string converted from the UTF-32 string at a given user memory address. Reports an error on string copy fault or conversion error.
				

 ⁠
Name
function::user_string_warn — Retrieves string from user space

 ⁠Synopsis

user_string_warn:string(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

 ⁠Description

					Returns the null terminated C string from a given user space memory address. Reports "" on the rare cases when userspace data is not accessible and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_uint16 — Retrieves an unsigned 16-bit integer value stored in user space

 ⁠Synopsis

user_uint16:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the unsigned 16-bit integer from
							

 ⁠Description

					Returns the unsigned 16-bit integer value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_uint32 — Retrieves an unsigned 32-bit integer value stored in user space

 ⁠Synopsis

user_uint32:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the unsigned 32-bit integer from
							

 ⁠Description

					Returns the unsigned 32-bit integer value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_uint64 — Retrieves an unsigned 64-bit integer value stored in user space

 ⁠Synopsis

user_uint64:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the unsigned 64-bit integer from
							

 ⁠Description

					Returns the unsigned 64-bit integer value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_uint8 — Retrieves an unsigned 8-bit integer value stored in user space

 ⁠Synopsis

user_uint8:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the unsigned 8-bit integer from
							

 ⁠Description

					Returns the unsigned 8-bit integer value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_ulong — Retrieves an unsigned long value stored in user space

 ⁠Synopsis

user_ulong:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the unsigned long from
							

 ⁠Description

					Returns the unsigned long value from a given user space address. Returns zero when user space data is not accessible. Note that the size of the unsigned long depends on the architecture of the current user space task (for those architectures that support both 64/32 bit compat tasks).
				

 ⁠
Name
function::user_ulong_warn — Retrieves an unsigned long value stored in user space

 ⁠Synopsis

user_ulong_warn:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the unsigned long from
							

 ⁠Description

					Returns the unsigned long value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure. Note that the size of the unsigned long depends on the architecture of the current user space task (for those architectures that support both 64/32 bit compat tasks).
				

 ⁠
Name
function::user_ushort — Retrieves an unsigned short value stored in user space

 ⁠Synopsis

user_ushort:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the unsigned short from
							

 ⁠Description

					Returns the unsigned short value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_ushort_warn — Retrieves an unsigned short value stored in user space

 ⁠Synopsis

user_ushort_warn:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the unsigned short from
							

 ⁠Description

					Returns the unsigned short value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure.
				

 ⁠
Name
function::atomic_long_read — Retrieves an atomic long variable from kernel memory

 ⁠Synopsis

atomic_long_read:long(addr:long)

 ⁠Arguments
	addr
	
								pointer to atomic long variable
							

 ⁠Description

					Safely perform the read of an atomic long variable. This will be a NOP on kernels that do not have ATOMIC_LONG_INIT set on the kernel config.
				

 ⁠
Name
function::atomic_read — Retrieves an atomic variable from kernel memory

 ⁠Synopsis

atomic_read:long(addr:long)

 ⁠Arguments
	addr
	
								pointer to atomic variable
							

 ⁠Description

					Safely perform the read of an atomic variable.
				

 ⁠
Name
function::kernel_char — Retrieves a char value stored in kernel memory

 ⁠Synopsis

kernel_char:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the char from
							

 ⁠Description

					Returns the char value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::kernel_int — Retrieves an int value stored in kernel memory

 ⁠Synopsis

kernel_int:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the int from
							

 ⁠Description

					Returns the int value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::kernel_long — Retrieves a long value stored in kernel memory

 ⁠Synopsis

kernel_long:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the long from
							

 ⁠Description

					Returns the long value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::kernel_pointer — Retrieves a pointer value stored in kernel memory

 ⁠Synopsis

kernel_pointer:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the pointer from
							

 ⁠Description

					Returns the pointer value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::kernel_short — Retrieves a short value stored in kernel memory

 ⁠Synopsis

kernel_short:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the short from
							

 ⁠Description

					Returns the short value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::kernel_string — Retrieves string from kernel memory

 ⁠Synopsis

kernel_string:string(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from
							

 ⁠Description

					This function returns the null terminated C string from a given kernel memory address. Reports an error on string copy fault.
				

 ⁠
Name
function::kernel_string2 — Retrieves string from kernel memory with alternative error string

 ⁠Synopsis

kernel_string2:string(addr:long,err_msg:string)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from
							

	err_msg
	
								The error message to return when data isn't available
							

 ⁠Description

					This function returns the null terminated C string from a given kernel memory address. Reports the given error message on string copy fault.
				

 ⁠
Name
function::kernel_string2_utf16 — Retrieves UTF-16 string from kernel memory with alternative error string

 ⁠Synopsis

kernel_string2_utf16:string(addr:long,err_msg:string)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from
							

	err_msg
	
								The error message to return when data isn't available
							

 ⁠Description

					This function returns a null terminated UTF-8 string converted from the UTF-16 string at a given kernel memory address. Reports the given error message on string copy fault or conversion error.
				

 ⁠
Name
function::kernel_string2_utf32 — Retrieves UTF-32 string from kernel memory with alternative error string

 ⁠Synopsis

kernel_string2_utf32:string(addr:long,err_msg:string)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from
							

	err_msg
	
								The error message to return when data isn't available
							

 ⁠Description

					This function returns a null terminated UTF-8 string converted from the UTF-32 string at a given kernel memory address. Reports the given error message on string copy fault or conversion error.
				

 ⁠
Name
function::kernel_string_n — Retrieves string of given length from kernel memory

 ⁠Synopsis

kernel_string_n:string(addr:long,n:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from
							

	n
	
								The maximum length of the string (if not null terminated)
							

 ⁠Description

					Returns the C string of a maximum given length from a given kernel memory address. Reports an error on string copy fault.
				

 ⁠
Name
function::kernel_string_quoted — Retrieves and quotes string from kernel memory

 ⁠Synopsis

kernel_string_quoted:string(addr:long)

 ⁠Arguments
	addr
	
								the kernel memory address to retrieve the string from
							

 ⁠Description

					Returns the null terminated C string from a given kernel memory address where any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string. Note that the string will be surrounded by double quotes. If the kernel memory data is not accessible at the given address, the address itself is returned as a string, without double quotes.
				

 ⁠
Name
function::kernel_string_quoted_utf16 — Quote given kernel UTF-16 string.

 ⁠Synopsis

kernel_string_quoted_utf16:string(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from
							

 ⁠Description

					This function combines quoting as per string_quoted and UTF-16 decoding as per kernel_string_utf16.
				

 ⁠
Name
function::kernel_string_quoted_utf32 — Quote given UTF-32 kernel string.

 ⁠Synopsis

kernel_string_quoted_utf32:string(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from
							

 ⁠Description

					This function combines quoting as per string_quoted and UTF-32 decoding as per kernel_string_utf32.
				

 ⁠
Name
function::kernel_string_utf16 — Retrieves UTF-16 string from kernel memory

 ⁠Synopsis

kernel_string_utf16:string(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from
							

 ⁠Description

					This function returns a null terminated UTF-8 string converted from the UTF-16 string at a given kernel memory address. Reports an error on string copy fault or conversion error.
				

 ⁠
Name
function::kernel_string_utf32 — Retrieves UTF-32 string from kernel memory

 ⁠Synopsis

kernel_string_utf32:string(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from
							

 ⁠Description

					This function returns a null terminated UTF-8 string converted from the UTF-32 string at a given kernel memory address. Reports an error on string copy fault or conversion error.
				

 ⁠
Name
function::user_char — Retrieves a char value stored in user space

 ⁠Synopsis

user_char:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the char from
							

 ⁠Description

					Returns the char value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_char_warn — Retrieves a char value stored in user space

 ⁠Synopsis

user_char_warn:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the char from
							

 ⁠Description

					Returns the char value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_int — Retrieves an int value stored in user space

 ⁠Synopsis

user_int:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the int from
							

 ⁠Description

					Returns the int value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_int16 — Retrieves a 16-bit integer value stored in user space

 ⁠Synopsis

user_int16:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the 16-bit integer from
							

 ⁠Description

					Returns the 16-bit integer value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_int32 — Retrieves a 32-bit integer value stored in user space

 ⁠Synopsis

user_int32:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the 32-bit integer from
							

 ⁠Description

					Returns the 32-bit integer value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_int64 — Retrieves a 64-bit integer value stored in user space

 ⁠Synopsis

user_int64:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the 64-bit integer from
							

 ⁠Description

					Returns the 64-bit integer value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_int8 — Retrieves a 8-bit integer value stored in user space

 ⁠Synopsis

user_int8:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the 8-bit integer from
							

 ⁠Description

					Returns the 8-bit integer value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_int_warn — Retrieves an int value stored in user space

 ⁠Synopsis

user_int_warn:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the int from
							

 ⁠Description

					Returns the int value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_long — Retrieves a long value stored in user space

 ⁠Synopsis

user_long:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the long from
							

 ⁠Description

					Returns the long value from a given user space address. Returns zero when user space data is not accessible. Note that the size of the long depends on the architecture of the current user space task (for those architectures that support both 64/32 bit compat tasks).
				

 ⁠
Name
function::user_long_warn — Retrieves a long value stored in user space

 ⁠Synopsis

user_long_warn:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the long from
							

 ⁠Description

					Returns the long value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure. Note that the size of the long depends on the architecture of the current user space task (for those architectures that support both 64/32 bit compat tasks).
				

 ⁠
Name
function::user_short — Retrieves a short value stored in user space

 ⁠Synopsis

user_short:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the short from
							

 ⁠Description

					Returns the short value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_short_warn — Retrieves a short value stored in user space

 ⁠Synopsis

user_short_warn:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the short from
							

 ⁠Description

					Returns the short value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_string — Retrieves string from user space

 ⁠Synopsis

user_string:string(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

 ⁠Description

					Returns the null terminated C string from a given user space memory address. Reports an error on the rare cases when userspace data is not accessible.
				

 ⁠
Name
function::user_string2 — Retrieves string from user space with alternative error string

 ⁠Synopsis

user_string2:string(addr:long,err_msg:string)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

	err_msg
	
								the error message to return when data isn't available
							

 ⁠Description

					Returns the null terminated C string from a given user space memory address. Reports the given error message on the rare cases when userspace data is not accessible.
				

 ⁠
Name
function::user_string2_n_warn — Retrieves string from user space with alternative warning string

 ⁠Synopsis

user_string2_n_warn:string(addr:long,n:long,warn_msg:string)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

	n
	
								the maximum length of the string (if not null terminated)
							

	warn_msg
	
								the warning message to return when data isn't available
							

 ⁠Description

					Returns up to n characters of a C string from a given user space memory address. Reports the given warning message on the rare cases when userspace data is not accessible and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_string2_utf16 — Retrieves UTF-16 string from user memory with alternative error string

 ⁠Synopsis

user_string2_utf16:string(addr:long,err_msg:string)

 ⁠Arguments
	addr
	
								The user address to retrieve the string from
							

	err_msg
	
								The error message to return when data isn't available
							

 ⁠Description

					This function returns a null terminated UTF-8 string converted from the UTF-16 string at a given user memory address. Reports the given error message on string copy fault or conversion error.
				

 ⁠
Name
function::user_string2_utf32 — Retrieves UTF-32 string from user memory with alternative error string

 ⁠Synopsis

user_string2_utf32:string(addr:long,err_msg:string)

 ⁠Arguments
	addr
	
								The user address to retrieve the string from
							

	err_msg
	
								The error message to return when data isn't available
							

 ⁠Description

					This function returns a null terminated UTF-8 string converted from the UTF-32 string at a given user memory address. Reports the given error message on string copy fault or conversion error.
				

 ⁠
Name
function::user_string2_warn — Retrieves string from user space with alternative warning string

 ⁠Synopsis

user_string2_warn:string(addr:long,warn_msg:string)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

	warn_msg
	
								the warning message to return when data isn't available
							

 ⁠Description

					Returns the null terminated C string from a given user space memory address. Reports the given warning message on the rare cases when userspace data is not accessible and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_string_n — Retrieves string of given length from user space

 ⁠Synopsis

user_string_n:string(addr:long,n:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

	n
	
								the maximum length of the string (if not null terminated)
							

 ⁠Description

					Returns the C string of a maximum given length from a given user space address. Reports an error on the rare cases when userspace data is not accessible at the given address.
				

 ⁠
Name
function::user_string_n2 — Retrieves string of given length from user space

 ⁠Synopsis

user_string_n2:string(addr:long,n:long,err_msg:string)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

	n
	
								the maximum length of the string (if not null terminated)
							

	err_msg
	
								the error message to return when data isn't available
							

 ⁠Description

					Returns the C string of a maximum given length from a given user space address. Returns the given error message string on the rare cases when userspace data is not accessible at the given address.
				

 ⁠
Name
function::user_string_n2_quoted — Retrieves and quotes string from user space

 ⁠Synopsis

user_string_n2_quoted:string(addr:long,inlen:long,outlen:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

	inlen
	
								the maximum length of the string to read (if not null terminated)
							

	outlen
	
								the maximum length of the output string
							

 ⁠Description

					Reads up to inlen characters of a C string from the given user space memory address, and returns up to outlen characters, where any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string. Note that the string will be surrounded by double quotes. On the rare cases when userspace data is not accessible at the given address, the address itself is returned as a string, without double quotes.
				

 ⁠
Name
function::user_string_n_quoted — Retrieves and quotes string from user space

 ⁠Synopsis

user_string_n_quoted:string(addr:long,n:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

	n
	
								the maximum length of the string (if not null terminated)
							

 ⁠Description

					Returns up to n characters of a C string from the given user space memory address where any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string. Note that the string will be surrounded by double quotes. On the rare cases when userspace data is not accessible at the given address, the address itself is returned as a string, without double quotes.
				

 ⁠
Name
function::user_string_n_warn — Retrieves string from user space

 ⁠Synopsis

user_string_n_warn:string(addr:long,n:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

	n
	
								the maximum length of the string (if not null terminated)
							

 ⁠Description

					Returns up to n characters of a C string from a given user space memory address. Reports “<unknown>” on the rare cases when userspace data is not accessible and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_string_quoted — Retrieves and quotes string from user space

 ⁠Synopsis

user_string_quoted:string(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

 ⁠Description

					Returns the null terminated C string from a given user space memory address where any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string. Note that the string will be surrounded by double quotes. On the rare cases when userspace data is not accessible at the given address, the address itself is returned as a string, without double quotes.
				

 ⁠
Name
function::user_string_quoted_utf16 — Quote given user UTF-16 string.

 ⁠Synopsis

user_string_quoted_utf16:string(addr:long)

 ⁠Arguments
	addr
	
								The user address to retrieve the string from
							

 ⁠Description

					This function combines quoting as per string_quoted and UTF-16 decoding as per user_string_utf16.
				

 ⁠
Name
function::user_string_quoted_utf32 — Quote given user UTF-32 string.

 ⁠Synopsis

user_string_quoted_utf32:string(addr:long)

 ⁠Arguments
	addr
	
								The user address to retrieve the string from
							

 ⁠Description

					This function combines quoting as per string_quoted and UTF-32 decoding as per user_string_utf32.
				

 ⁠
Name
function::user_string_utf16 — Retrieves UTF-16 string from user memory

 ⁠Synopsis

user_string_utf16:string(addr:long)

 ⁠Arguments
	addr
	
								The user address to retrieve the string from
							

 ⁠Description

					This function returns a null terminated UTF-8 string converted from the UTF-16 string at a given user memory address. Reports an error on string copy fault or conversion error.
				

 ⁠
Name
function::user_string_utf32 — Retrieves UTF-32 string from user memory

 ⁠Synopsis

user_string_utf32:string(addr:long)

 ⁠Arguments
	addr
	
								The user address to retrieve the string from
							

 ⁠Description

					This function returns a null terminated UTF-8 string converted from the UTF-32 string at a given user memory address. Reports an error on string copy fault or conversion error.
				

 ⁠
Name
function::user_string_warn — Retrieves string from user space

 ⁠Synopsis

user_string_warn:string(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the string from
							

 ⁠Description

					Returns the null terminated C string from a given user space memory address. Reports "" on the rare cases when userspace data is not accessible and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_uint16 — Retrieves an unsigned 16-bit integer value stored in user space

 ⁠Synopsis

user_uint16:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the unsigned 16-bit integer from
							

 ⁠Description

					Returns the unsigned 16-bit integer value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_uint32 — Retrieves an unsigned 32-bit integer value stored in user space

 ⁠Synopsis

user_uint32:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the unsigned 32-bit integer from
							

 ⁠Description

					Returns the unsigned 32-bit integer value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_uint64 — Retrieves an unsigned 64-bit integer value stored in user space

 ⁠Synopsis

user_uint64:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the unsigned 64-bit integer from
							

 ⁠Description

					Returns the unsigned 64-bit integer value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_uint8 — Retrieves an unsigned 8-bit integer value stored in user space

 ⁠Synopsis

user_uint8:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the unsigned 8-bit integer from
							

 ⁠Description

					Returns the unsigned 8-bit integer value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_ulong — Retrieves an unsigned long value stored in user space

 ⁠Synopsis

user_ulong:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the unsigned long from
							

 ⁠Description

					Returns the unsigned long value from a given user space address. Returns zero when user space data is not accessible. Note that the size of the unsigned long depends on the architecture of the current user space task (for those architectures that support both 64/32 bit compat tasks).
				

 ⁠
Name
function::user_ulong_warn — Retrieves an unsigned long value stored in user space

 ⁠Synopsis

user_ulong_warn:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the unsigned long from
							

 ⁠Description

					Returns the unsigned long value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure. Note that the size of the unsigned long depends on the architecture of the current user space task (for those architectures that support both 64/32 bit compat tasks).
				

 ⁠
Name
function::user_ushort — Retrieves an unsigned short value stored in user space

 ⁠Synopsis

user_ushort:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the unsigned short from
							

 ⁠Description

					Returns the unsigned short value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_ushort_warn — Retrieves an unsigned short value stored in user space

 ⁠Synopsis

user_ushort_warn:long(addr:long)

 ⁠Arguments
	addr
	
								the user space address to retrieve the unsigned short from
							

 ⁠Description

					Returns the unsigned short value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure.
				

 ⁠Chapter 27. String and data writing functions Tapset

			The SystemTap guru mode can be used to test error handling in kernel code by simulating faults. The functions in the this tapset provide standard methods of writing to primitive types in the kernel's memory. All the functions in this tapset require the use of guru mode (-g).
		

 ⁠
Name
function::set_kernel_char — Writes a char value to kernel memory

 ⁠Synopsis

set_kernel_char(addr:long,val:long)

 ⁠Arguments
	addr
	
								The kernel address to write the char to
							

	val
	
								The char which is to be written
							

 ⁠Description

					Writes the char value to a given kernel memory address. Reports an error when writing to the given address fails. Requires the use of guru mode (-g).
				

 ⁠
Name
function::set_kernel_int — Writes an int value to kernel memory

 ⁠Synopsis

set_kernel_int(addr:long,val:long)

 ⁠Arguments
	addr
	
								The kernel address to write the int to
							

	val
	
								The int which is to be written
							

 ⁠Description

					Writes the int value to a given kernel memory address. Reports an error when writing to the given address fails. Requires the use of guru mode (-g).
				

 ⁠
Name
function::set_kernel_long — Writes a long value to kernel memory

 ⁠Synopsis

set_kernel_long(addr:long,val:long)

 ⁠Arguments
	addr
	
								The kernel address to write the long to
							

	val
	
								The long which is to be written
							

 ⁠Description

					Writes the long value to a given kernel memory address. Reports an error when writing to the given address fails. Requires the use of guru mode (-g).
				

 ⁠
Name
function::set_kernel_pointer — Writes a pointer value to kernel memory.

 ⁠Synopsis

set_kernel_pointer(addr:long,val:long)

 ⁠Arguments
	addr
	
								The kernel address to write the pointer to
							

	val
	
								The pointer which is to be written
							

 ⁠Description

					Writes the pointer value to a given kernel memory address. Reports an error when writing to the given address fails. Requires the use of guru mode (-g).
				

 ⁠
Name
function::set_kernel_short — Writes a short value to kernel memory

 ⁠Synopsis

set_kernel_short(addr:long,val:long)

 ⁠Arguments
	addr
	
								The kernel address to write the short to
							

	val
	
								The short which is to be written
							

 ⁠Description

					Writes the short value to a given kernel memory address. Reports an error when writing to the given address fails. Requires the use of guru mode (-g).
				

 ⁠
Name
function::set_kernel_string — Writes a string to kernel memory

 ⁠Synopsis

set_kernel_string(addr:long,val:string)

 ⁠Arguments
	addr
	
								The kernel address to write the string to
							

	val
	
								The string which is to be written
							

 ⁠Description

					Writes the given string to a given kernel memory address. Reports an error on string copy fault. Requires the use of guru mode (-g).
				

 ⁠
Name
function::set_kernel_string_n — Writes a string of given length to kernel memory

 ⁠Synopsis

set_kernel_string_n(addr:long,n:long,val:string)

 ⁠Arguments
	addr
	
								The kernel address to write the string to
							

	n
	
								The maximum length of the string
							

	val
	
								The string which is to be written
							

 ⁠Description

					Writes the given string up to a maximum given length to a given kernel memory address. Reports an error on string copy fault. Requires the use of guru mode (-g).
				

 ⁠
Name
function::set_kernel_char — Writes a char value to kernel memory

 ⁠Synopsis

set_kernel_char(addr:long,val:long)

 ⁠Arguments
	addr
	
								The kernel address to write the char to
							

	val
	
								The char which is to be written
							

 ⁠Description

					Writes the char value to a given kernel memory address. Reports an error when writing to the given address fails. Requires the use of guru mode (-g).
				

 ⁠
Name
function::set_kernel_int — Writes an int value to kernel memory

 ⁠Synopsis

set_kernel_int(addr:long,val:long)

 ⁠Arguments
	addr
	
								The kernel address to write the int to
							

	val
	
								The int which is to be written
							

 ⁠Description

					Writes the int value to a given kernel memory address. Reports an error when writing to the given address fails. Requires the use of guru mode (-g).
				

 ⁠
Name
function::set_kernel_long — Writes a long value to kernel memory

 ⁠Synopsis

set_kernel_long(addr:long,val:long)

 ⁠Arguments
	addr
	
								The kernel address to write the long to
							

	val
	
								The long which is to be written
							

 ⁠Description

					Writes the long value to a given kernel memory address. Reports an error when writing to the given address fails. Requires the use of guru mode (-g).
				

 ⁠
Name
function::set_kernel_pointer — Writes a pointer value to kernel memory.

 ⁠Synopsis

set_kernel_pointer(addr:long,val:long)

 ⁠Arguments
	addr
	
								The kernel address to write the pointer to
							

	val
	
								The pointer which is to be written
							

 ⁠Description

					Writes the pointer value to a given kernel memory address. Reports an error when writing to the given address fails. Requires the use of guru mode (-g).
				

 ⁠
Name
function::set_kernel_short — Writes a short value to kernel memory

 ⁠Synopsis

set_kernel_short(addr:long,val:long)

 ⁠Arguments
	addr
	
								The kernel address to write the short to
							

	val
	
								The short which is to be written
							

 ⁠Description

					Writes the short value to a given kernel memory address. Reports an error when writing to the given address fails. Requires the use of guru mode (-g).
				

 ⁠
Name
function::set_kernel_string — Writes a string to kernel memory

 ⁠Synopsis

set_kernel_string(addr:long,val:string)

 ⁠Arguments
	addr
	
								The kernel address to write the string to
							

	val
	
								The string which is to be written
							

 ⁠Description

					Writes the given string to a given kernel memory address. Reports an error on string copy fault. Requires the use of guru mode (-g).
				

 ⁠
Name
function::set_kernel_string_n — Writes a string of given length to kernel memory

 ⁠Synopsis

set_kernel_string_n(addr:long,n:long,val:string)

 ⁠Arguments
	addr
	
								The kernel address to write the string to
							

	n
	
								The maximum length of the string
							

	val
	
								The string which is to be written
							

 ⁠Description

					Writes the given string up to a maximum given length to a given kernel memory address. Reports an error on string copy fault. Requires the use of guru mode (-g).
				

 ⁠Chapter 28. Guru tapsets

			Functions to deliberately interfere with the system's behavior, in order to inject faults or improve observability. All the functions in this tapset require the use of guru mode (-g).
		

 ⁠
Name
function::mdelay — millisecond delay

 ⁠Synopsis

mdelay(ms:long)

 ⁠Arguments
	ms
	
								Number of milliseconds to delay.
							

 ⁠Description

					This function inserts a multi-millisecond busy-delay into a probe handler. It requires guru mode.
				

 ⁠
Name
function::panic — trigger a panic

 ⁠Synopsis

panic(msg:string)

 ⁠Arguments
	msg
	
								message to pass to kernel's panic function
							

 ⁠Description

					This function triggers an immediate panic of the running kernel with a user-specified panic message. It requires guru mode.
				

 ⁠
Name
function::raise — raise a signal in the current thread

 ⁠Synopsis

raise(signo:long)

 ⁠Arguments
	signo
	
								signal number
							

 ⁠Description

					This function calls the kernel send_sig routine on the current thread, with the given raw unchecked signal number. It may raise an error if send_sig failed. It requires guru mode.
				

 ⁠
Name
function::udelay — microsecond delay

 ⁠Synopsis

udelay(us:long)

 ⁠Arguments
	us
	
								Number of microseconds to delay.
							

 ⁠Description

					This function inserts a multi-microsecond busy-delay into a probe handler. It requires guru mode.
				

 ⁠
Name
function::mdelay — millisecond delay

 ⁠Synopsis

mdelay(ms:long)

 ⁠Arguments
	ms
	
								Number of milliseconds to delay.
							

 ⁠Description

					This function inserts a multi-millisecond busy-delay into a probe handler. It requires guru mode.
				

 ⁠
Name
function::panic — trigger a panic

 ⁠Synopsis

panic(msg:string)

 ⁠Arguments
	msg
	
								message to pass to kernel's panic function
							

 ⁠Description

					This function triggers an immediate panic of the running kernel with a user-specified panic message. It requires guru mode.
				

 ⁠
Name
function::raise — raise a signal in the current thread

 ⁠Synopsis

raise(signo:long)

 ⁠Arguments
	signo
	
								signal number
							

 ⁠Description

					This function calls the kernel send_sig routine on the current thread, with the given raw unchecked signal number. It may raise an error if send_sig failed. It requires guru mode.
				

 ⁠
Name
function::udelay — microsecond delay

 ⁠Synopsis

udelay(us:long)

 ⁠Arguments
	us
	
								Number of microseconds to delay.
							

 ⁠Description

					This function inserts a multi-microsecond busy-delay into a probe handler. It requires guru mode.
				

 ⁠Chapter 29. A collection of standard string functions

			Functions to get the length, a substring, getting at individual characters, string seaching, escaping, tokenizing, and converting strings to longs.
		

 ⁠
Name
function::isdigit — Checks for a digit

 ⁠Synopsis

isdigit:long(str:string)

 ⁠Arguments
	str
	
								string to check
							

 ⁠Description

					Checks for a digit (0 through 9) as the first character of a string. Returns non-zero if true, and a zero if false.
				

 ⁠
Name
function::isinstr — Returns whether a string is a substring of another string

 ⁠Synopsis

isinstr:long(s1:string,s2:string)

 ⁠Arguments
	s1
	
								string to search in
							

	s2
	
								substring to find
							

 ⁠Description

					This function returns 1 if string s1 contains s2, otherwise zero.
				

 ⁠
Name
function::str_replace — str_replace Replaces all instances of a substring with another

 ⁠Synopsis

str_replace:string(prnt_str:string,srch_str:string,rplc_str:string)

 ⁠Arguments
	prnt_str
	
								the string to search and replace in
							

	srch_str
	
								the substring which is used to search in prnt_str string
							

	rplc_str
	
								the substring which is used to replace srch_str
							

 ⁠Description

					This function returns the given string with substrings replaced.
				

 ⁠
Name
function::string_quoted — Quotes a given string

 ⁠Synopsis

string_quoted:string(str:string)

 ⁠Arguments
	str
	
								The kernel address to retrieve the string from
							

 ⁠Description

					Returns the quoted string version of the given string, with characters where any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string. Note that the string will be surrounded by double quotes.
				

 ⁠
Name
function::stringat — Returns the char at a given position in the string

 ⁠Synopsis

stringat:long(str:string,pos:long)

 ⁠Arguments
	str
	
								the string to fetch the character from
							

	pos
	
								the position to get the character from (first character is 0)
							

 ⁠Description

					This function returns the character at a given position in the string or zero if the string doesn't have as many characters. Reports an error if pos is out of bounds.
				

 ⁠
Name
function::strlen — Returns the length of a string

 ⁠Synopsis

strlen:long(s:string)

 ⁠Arguments
	s
	
								the string
							

 ⁠Description

					This function returns the length of the string, which can be zero up to MAXSTRINGLEN.
				

 ⁠
Name
function::strtol — strtol - Convert a string to a long

 ⁠Synopsis

strtol:long(str:string,base:long)

 ⁠Arguments
	str
	
								string to convert
							

	base
	
								the base to use
							

 ⁠Description

					This function converts the string representation of a number to an integer. The base parameter indicates the number base to assume for the string (eg. 16 for hex, 8 for octal, 2 for binary).
				

 ⁠
Name
function::substr — Returns a substring

 ⁠Synopsis

substr:string(str:string,start:long,length:long)

 ⁠Arguments
	str
	
								the string to take a substring from
							

	start
	
								starting position of the extracted string (first character is 0)
							

	length
	
								length of string to return
							

 ⁠Description

					Returns the substring of the given string at the given start position with the given length (or smaller if the length of the original string is less than start + length, or length is bigger than MAXSTRINGLEN).
				

 ⁠
Name
function::text_str — Escape any non-printable chars in a string

 ⁠Synopsis

text_str:string(input:string)

 ⁠Arguments
	input
	
								the string to escape
							

 ⁠Description

					This function accepts a string argument, and any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string.
				

 ⁠
Name
function::text_strn — Escape any non-printable chars in a string

 ⁠Synopsis

text_strn:string(input:string,len:long,quoted:long)

 ⁠Arguments
	input
	
								the string to escape
							

	len
	
								maximum length of string to return (0 implies MAXSTRINGLEN)
							

	quoted
	
								put double quotes around the string. If input string is truncated it will have “...” after the second quote
							

 ⁠Description

					This function accepts a string of designated length, and any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string.
				

 ⁠
Name
function::tokenize — Return the next non-empty token in a string

 ⁠Synopsis

tokenize:string(input:string,delim:string)

 ⁠Arguments
	input
	
								string to tokenize. If empty, returns the next non-empty token in the string passed in the previous call to tokenize.
							

	delim
	
								set of characters that delimit the tokens
							

 ⁠Description

					This function returns the next non-empty token in the given input string, where the tokens are delimited by characters in the delim string. If the input string is non-empty, it returns the first token. If the input string is empty, it returns the next token in the string passed in the previous call to tokenize. If no delimiter is found, the entire remaining input string is returned. It returns empty when no more tokens are available.
				

 ⁠
Name
function::isdigit — Checks for a digit

 ⁠Synopsis

isdigit:long(str:string)

 ⁠Arguments
	str
	
								string to check
							

 ⁠Description

					Checks for a digit (0 through 9) as the first character of a string. Returns non-zero if true, and a zero if false.
				

 ⁠
Name
function::isinstr — Returns whether a string is a substring of another string

 ⁠Synopsis

isinstr:long(s1:string,s2:string)

 ⁠Arguments
	s1
	
								string to search in
							

	s2
	
								substring to find
							

 ⁠Description

					This function returns 1 if string s1 contains s2, otherwise zero.
				

 ⁠
Name
function::str_replace — str_replace Replaces all instances of a substring with another

 ⁠Synopsis

str_replace:string(prnt_str:string,srch_str:string,rplc_str:string)

 ⁠Arguments
	prnt_str
	
								the string to search and replace in
							

	srch_str
	
								the substring which is used to search in prnt_str string
							

	rplc_str
	
								the substring which is used to replace srch_str
							

 ⁠Description

					This function returns the given string with substrings replaced.
				

 ⁠
Name
function::string_quoted — Quotes a given string

 ⁠Synopsis

string_quoted:string(str:string)

 ⁠Arguments
	str
	
								The kernel address to retrieve the string from
							

 ⁠Description

					Returns the quoted string version of the given string, with characters where any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string. Note that the string will be surrounded by double quotes.
				

 ⁠
Name
function::stringat — Returns the char at a given position in the string

 ⁠Synopsis

stringat:long(str:string,pos:long)

 ⁠Arguments
	str
	
								the string to fetch the character from
							

	pos
	
								the position to get the character from (first character is 0)
							

 ⁠Description

					This function returns the character at a given position in the string or zero if the string doesn't have as many characters. Reports an error if pos is out of bounds.
				

 ⁠
Name
function::strlen — Returns the length of a string

 ⁠Synopsis

strlen:long(s:string)

 ⁠Arguments
	s
	
								the string
							

 ⁠Description

					This function returns the length of the string, which can be zero up to MAXSTRINGLEN.
				

 ⁠
Name
function::strtol — strtol - Convert a string to a long

 ⁠Synopsis

strtol:long(str:string,base:long)

 ⁠Arguments
	str
	
								string to convert
							

	base
	
								the base to use
							

 ⁠Description

					This function converts the string representation of a number to an integer. The base parameter indicates the number base to assume for the string (eg. 16 for hex, 8 for octal, 2 for binary).
				

 ⁠
Name
function::substr — Returns a substring

 ⁠Synopsis

substr:string(str:string,start:long,length:long)

 ⁠Arguments
	str
	
								the string to take a substring from
							

	start
	
								starting position of the extracted string (first character is 0)
							

	length
	
								length of string to return
							

 ⁠Description

					Returns the substring of the given string at the given start position with the given length (or smaller if the length of the original string is less than start + length, or length is bigger than MAXSTRINGLEN).
				

 ⁠
Name
function::text_str — Escape any non-printable chars in a string

 ⁠Synopsis

text_str:string(input:string)

 ⁠Arguments
	input
	
								the string to escape
							

 ⁠Description

					This function accepts a string argument, and any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string.
				

 ⁠
Name
function::text_strn — Escape any non-printable chars in a string

 ⁠Synopsis

text_strn:string(input:string,len:long,quoted:long)

 ⁠Arguments
	input
	
								the string to escape
							

	len
	
								maximum length of string to return (0 implies MAXSTRINGLEN)
							

	quoted
	
								put double quotes around the string. If input string is truncated it will have “...” after the second quote
							

 ⁠Description

					This function accepts a string of designated length, and any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string.
				

 ⁠
Name
function::tokenize — Return the next non-empty token in a string

 ⁠Synopsis

tokenize:string(input:string,delim:string)

 ⁠Arguments
	input
	
								string to tokenize. If empty, returns the next non-empty token in the string passed in the previous call to tokenize.
							

	delim
	
								set of characters that delimit the tokens
							

 ⁠Description

					This function returns the next non-empty token in the given input string, where the tokens are delimited by characters in the delim string. If the input string is non-empty, it returns the first token. If the input string is empty, it returns the next token in the string passed in the previous call to tokenize. If no delimiter is found, the entire remaining input string is returned. It returns empty when no more tokens are available.
				

 ⁠Chapter 30. Utility functions for using ansi control chars in logs

			Utility functions for logging using ansi control characters. This lets you manipulate the cursor position and character color output and attributes of log messages.
		

 ⁠
Name
function::ansi_clear_screen — Move cursor to top left and clear screen.

 ⁠Synopsis

ansi_clear_screen()

 ⁠Arguments

					None
				

 ⁠Description

					Sends ansi code for moving cursor to top left and then the ansi code for clearing the screen from the cursor position to the end.
				

 ⁠
Name
function::ansi_cursor_hide — Hides the cursor.

 ⁠Synopsis

ansi_cursor_hide()

 ⁠Arguments

					None
				

 ⁠Description

					Sends ansi code for hiding the cursor.
				

 ⁠
Name
function::ansi_cursor_move — Move cursor to new coordinates.

 ⁠Synopsis

ansi_cursor_move(x:long,y:long)

 ⁠Arguments
	x
	
								Row to move the cursor to.
							

	y
	
								Colomn to move the cursor to.
							

 ⁠Description

					Sends ansi code for positioning the cursor at row x and column y. Coordinates start at one, (1,1) is the top-left corner.
				

 ⁠
Name
function::ansi_cursor_restore — Restores a previously saved cursor position.

 ⁠Synopsis

ansi_cursor_restore()

 ⁠Arguments

					None
				

 ⁠Description

					Sends ansi code for restoring the current cursor position previously saved with ansi_cursor_save.
				

 ⁠
Name
function::ansi_cursor_save — Saves the cursor position.

 ⁠Synopsis

ansi_cursor_save()

 ⁠Arguments

					None
				

 ⁠Description

					Sends ansi code for saving the current cursor position.
				

 ⁠
Name
function::ansi_cursor_show — Shows the cursor.

 ⁠Synopsis

ansi_cursor_show()

 ⁠Arguments

					None
				

 ⁠Description

					Sends ansi code for showing the cursor.
				

 ⁠
Name
function::ansi_new_line — Move cursor to new line.

 ⁠Synopsis

ansi_new_line()

 ⁠Arguments

					None
				

 ⁠Description

					Sends ansi code new line.
				

 ⁠
Name
function::ansi_reset_color — Resets Select Graphic Rendition mode.

 ⁠Synopsis

ansi_reset_color()

 ⁠Arguments

					None
				

 ⁠Description

					Sends ansi code to reset foreground, background and color attribute to default values.
				

 ⁠
Name
function::ansi_set_color — Set the ansi Select Graphic Rendition mode.

 ⁠Synopsis

ansi_set_color(fg:long)

 ⁠Arguments
	fg
	
								Foreground color to set.
							

 ⁠Description

					Sends ansi code for Select Graphic Rendition mode for the given forground color. Black (30), Blue (34), Green (32), Cyan (36), Red (31), Purple (35), Brown (33), Light Gray (37).
				

 ⁠
Name
function::ansi_set_color2 — Set the ansi Select Graphic Rendition mode.

 ⁠Synopsis

ansi_set_color2(fg:long,bg:long)

 ⁠Arguments
	fg
	
								Foreground color to set.
							

	bg
	
								Background color to set.
							

 ⁠Description

					Sends ansi code for Select Graphic Rendition mode for the given forground color, Black (30), Blue (34), Green (32), Cyan (36), Red (31), Purple (35), Brown (33), Light Gray (37) and the given background color, Black (40), Red (41), Green (42), Yellow (43), Blue (44), Magenta (45), Cyan (46), White (47).
				

 ⁠
Name
function::ansi_set_color3 — Set the ansi Select Graphic Rendition mode.

 ⁠Synopsis

ansi_set_color3(fg:long,bg:long,attr:long)

 ⁠Arguments
	fg
	
								Foreground color to set.
							

	bg
	
								Background color to set.
							

	attr
	
								Color attribute to set.
							

 ⁠Description

					Sends ansi code for Select Graphic Rendition mode for the given forground color, Black (30), Blue (34), Green (32), Cyan (36), Red (31), Purple (35), Brown (33), Light Gray (37), the given background color, Black (40), Red (41), Green (42), Yellow (43), Blue (44), Magenta (45), Cyan (46), White (47) and the color attribute All attributes off (0), Intensity Bold (1), Underline Single (4), Blink Slow (5), Blink Rapid (6), Image Negative (7).
				

 ⁠
Name
function::indent — returns an amount of space to indent

 ⁠Synopsis

indent:string(delta:long)

 ⁠Arguments
	delta
	
								the amount of space added/removed for each call
							

 ⁠Description

					This function returns a string with appropriate indentation. Call it with a small positive or matching negative delta. Unlike the thread_indent function, the indent does not track individual indent values on a per thread basis.
				

 ⁠
Name
function::indent_depth — returns the global nested-depth

 ⁠Synopsis

indent_depth:long(delta:long)

 ⁠Arguments
	delta
	
								the amount of depth added/removed for each call
							

 ⁠Description

					This function returns a number for appropriate indentation, similar to indent. Call it with a small positive or matching negative delta. Unlike the thread_indent_depth function, the indent does not track individual indent values on a per thread basis.
				

 ⁠
Name
function::thread_indent — returns an amount of space with the current task information

 ⁠Synopsis

thread_indent:string(delta:long)

 ⁠Arguments
	delta
	
								the amount of space added/removed for each call
							

 ⁠Description

					This function returns a string with appropriate indentation for a thread. Call it with a small positive or matching negative delta. If this is the real outermost, initial level of indentation, then the function resets the relative timestamp base to zero. The timestamp is as per provided by the __indent_timestamp function, which by default measures microseconds.
				

 ⁠
Name
function::thread_indent_depth — returns the nested-depth of the current task

 ⁠Synopsis

thread_indent_depth:long(delta:long)

 ⁠Arguments
	delta
	
								the amount of depth added/removed for each call
							

 ⁠Description

					This function returns an integer equal to the nested function-call depth starting from the outermost initial level. This function is useful for saving space (consumed by whitespace) in traces with long nested function calls. Use this function in a similar fashion to thread_indent, i.e., in call-probe, use thread_indent_depth(1) and in return-probe, use thread_indent_depth(-1)
				

 ⁠
Name
function::ansi_clear_screen — Move cursor to top left and clear screen.

 ⁠Synopsis

ansi_clear_screen()

 ⁠Arguments

					None
				

 ⁠Description

					Sends ansi code for moving cursor to top left and then the ansi code for clearing the screen from the cursor position to the end.
				

 ⁠
Name
function::ansi_cursor_hide — Hides the cursor.

 ⁠Synopsis

ansi_cursor_hide()

 ⁠Arguments

					None
				

 ⁠Description

					Sends ansi code for hiding the cursor.
				

 ⁠
Name
function::ansi_cursor_move — Move cursor to new coordinates.

 ⁠Synopsis

ansi_cursor_move(x:long,y:long)

 ⁠Arguments
	x
	
								Row to move the cursor to.
							

	y
	
								Colomn to move the cursor to.
							

 ⁠Description

					Sends ansi code for positioning the cursor at row x and column y. Coordinates start at one, (1,1) is the top-left corner.
				

 ⁠
Name
function::ansi_cursor_restore — Restores a previously saved cursor position.

 ⁠Synopsis

ansi_cursor_restore()

 ⁠Arguments

					None
				

 ⁠Description

					Sends ansi code for restoring the current cursor position previously saved with ansi_cursor_save.
				

 ⁠
Name
function::ansi_cursor_save — Saves the cursor position.

 ⁠Synopsis

ansi_cursor_save()

 ⁠Arguments

					None
				

 ⁠Description

					Sends ansi code for saving the current cursor position.
				

 ⁠
Name
function::ansi_cursor_show — Shows the cursor.

 ⁠Synopsis

ansi_cursor_show()

 ⁠Arguments

					None
				

 ⁠Description

					Sends ansi code for showing the cursor.
				

 ⁠
Name
function::ansi_new_line — Move cursor to new line.

 ⁠Synopsis

ansi_new_line()

 ⁠Arguments

					None
				

 ⁠Description

					Sends ansi code new line.
				

 ⁠
Name
function::ansi_reset_color — Resets Select Graphic Rendition mode.

 ⁠Synopsis

ansi_reset_color()

 ⁠Arguments

					None
				

 ⁠Description

					Sends ansi code to reset foreground, background and color attribute to default values.
				

 ⁠
Name
function::ansi_set_color — Set the ansi Select Graphic Rendition mode.

 ⁠Synopsis

ansi_set_color(fg:long)

 ⁠Arguments
	fg
	
								Foreground color to set.
							

 ⁠Description

					Sends ansi code for Select Graphic Rendition mode for the given forground color. Black (30), Blue (34), Green (32), Cyan (36), Red (31), Purple (35), Brown (33), Light Gray (37).
				

 ⁠
Name
function::ansi_set_color2 — Set the ansi Select Graphic Rendition mode.

 ⁠Synopsis

ansi_set_color2(fg:long,bg:long)

 ⁠Arguments
	fg
	
								Foreground color to set.
							

	bg
	
								Background color to set.
							

 ⁠Description

					Sends ansi code for Select Graphic Rendition mode for the given forground color, Black (30), Blue (34), Green (32), Cyan (36), Red (31), Purple (35), Brown (33), Light Gray (37) and the given background color, Black (40), Red (41), Green (42), Yellow (43), Blue (44), Magenta (45), Cyan (46), White (47).
				

 ⁠
Name
function::ansi_set_color3 — Set the ansi Select Graphic Rendition mode.

 ⁠Synopsis

ansi_set_color3(fg:long,bg:long,attr:long)

 ⁠Arguments
	fg
	
								Foreground color to set.
							

	bg
	
								Background color to set.
							

	attr
	
								Color attribute to set.
							

 ⁠Description

					Sends ansi code for Select Graphic Rendition mode for the given forground color, Black (30), Blue (34), Green (32), Cyan (36), Red (31), Purple (35), Brown (33), Light Gray (37), the given background color, Black (40), Red (41), Green (42), Yellow (43), Blue (44), Magenta (45), Cyan (46), White (47) and the color attribute All attributes off (0), Intensity Bold (1), Underline Single (4), Blink Slow (5), Blink Rapid (6), Image Negative (7).
				

 ⁠
Name
function::indent — returns an amount of space to indent

 ⁠Synopsis

indent:string(delta:long)

 ⁠Arguments
	delta
	
								the amount of space added/removed for each call
							

 ⁠Description

					This function returns a string with appropriate indentation. Call it with a small positive or matching negative delta. Unlike the thread_indent function, the indent does not track individual indent values on a per thread basis.
				

 ⁠
Name
function::indent_depth — returns the global nested-depth

 ⁠Synopsis

indent_depth:long(delta:long)

 ⁠Arguments
	delta
	
								the amount of depth added/removed for each call
							

 ⁠Description

					This function returns a number for appropriate indentation, similar to indent. Call it with a small positive or matching negative delta. Unlike the thread_indent_depth function, the indent does not track individual indent values on a per thread basis.
				

 ⁠
Name
function::thread_indent — returns an amount of space with the current task information

 ⁠Synopsis

thread_indent:string(delta:long)

 ⁠Arguments
	delta
	
								the amount of space added/removed for each call
							

 ⁠Description

					This function returns a string with appropriate indentation for a thread. Call it with a small positive or matching negative delta. If this is the real outermost, initial level of indentation, then the function resets the relative timestamp base to zero. The timestamp is as per provided by the __indent_timestamp function, which by default measures microseconds.
				

 ⁠
Name
function::thread_indent_depth — returns the nested-depth of the current task

 ⁠Synopsis

thread_indent_depth:long(delta:long)

 ⁠Arguments
	delta
	
								the amount of depth added/removed for each call
							

 ⁠Description

					This function returns an integer equal to the nested function-call depth starting from the outermost initial level. This function is useful for saving space (consumed by whitespace) in traces with long nested function calls. Use this function in a similar fashion to thread_indent, i.e., in call-probe, use thread_indent_depth(1) and in return-probe, use thread_indent_depth(-1)
				

 ⁠Chapter 31. SystemTap Translator Tapset

			This family of user-space probe points is used to probe the operation of the SystemTap translator (stap) and run command (staprun). The tapset includes probes to watch the various phases of SystemTap and SystemTap's management of instrumentation cache. It contains the following probe points:
		

 ⁠
Name
probe::stap.cache_add_mod — Adding kernel instrumentation module to cache

 ⁠Synopsis
stap.cache_add_mod

 ⁠Values
	dest_path
	
								the path the .ko file is going to (incl filename)
							

	source_path
	
								the path the .ko file is coming from (incl filename)
							

 ⁠Description

					Fires just before the file is actually moved. Note: if moving fails, cache_add_src and cache_add_nss will not fire.
				

 ⁠
Name
probe::stap.cache_add_nss — Add NSS (Network Security Services) information to cache

 ⁠Synopsis
stap.cache_add_nss

 ⁠Values
	source_path
	
								the path the .sgn file is coming from (incl filename)
							

	dest_path
	
								the path the .sgn file is coming from (incl filename)
							

 ⁠Description

					Fires just before the file is actually moved. Note: stap must compiled with NSS support; if moving the kernel module fails, this probe will not fire.
				

 ⁠
Name
probe::stap.cache_add_src — Adding C code translation to cache

 ⁠Synopsis
stap.cache_add_src

 ⁠Values
	dest_path
	
								the path the .c file is going to (incl filename)
							

	source_path
	
								the path the .c file is coming from (incl filename)
							

 ⁠Description

					Fires just before the file is actually moved. Note: if moving the kernel module fails, this probe will not fire.
				

 ⁠
Name
probe::stap.cache_clean — Removing file from stap cache

 ⁠Synopsis
stap.cache_clean

 ⁠Values
	path
	
								the path to the .ko/.c file being removed
							

 ⁠Description

					Fires just before the call to unlink the module/source file.
				

 ⁠
Name
probe::stap.cache_get — Found item in stap cache

 ⁠Synopsis
stap.cache_get

 ⁠Values
	module_path
	
								the path of the .ko kernel module file
							

	source_path
	
								the path of the .c source file
							

 ⁠Description

					Fires just before the return of get_from_cache, when the cache grab is successful.
				

 ⁠
Name
probe::stap.pass0 — Starting stap pass0 (parsing command line arguments)

 ⁠Synopsis
stap.pass0

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass0 fires after command line arguments have been parsed.
				

 ⁠
Name
probe::stap.pass0.end — Finished stap pass0 (parsing command line arguments)

 ⁠Synopsis
stap.pass0.end

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass0.end fires just before the gettimeofday call for pass1.
				

 ⁠
Name
probe::stap.pass1.end — Finished stap pass1 (parsing scripts)

 ⁠Synopsis
stap.pass1.end

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass1.end fires just before the jump to cleanup if s.last_pass = 1.
				

 ⁠
Name
probe::stap.pass1a — Starting stap pass1 (parsing user script)

 ⁠Synopsis
stap.pass1a

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass1a fires just after the call to gettimeofday, before the user script is parsed.
				

 ⁠
Name
probe::stap.pass1b — Starting stap pass1 (parsing library scripts)

 ⁠Synopsis
stap.pass1b

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass1b fires just before the library scripts are parsed.
				

 ⁠
Name
probe::stap.pass2 — Starting stap pass2 (elaboration)

 ⁠Synopsis
stap.pass2

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass2 fires just after the call to gettimeofday, just before the call to semantic_pass.
				

 ⁠
Name
probe::stap.pass2.end — Finished stap pass2 (elaboration)

 ⁠Synopsis
stap.pass2.end

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass2.end fires just before the jump to cleanup if s.last_pass = 2
				

 ⁠
Name
probe::stap.pass3 — Starting stap pass3 (translation to C)

 ⁠Synopsis
stap.pass3

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass3 fires just after the call to gettimeofday, just before the call to translate_pass.
				

 ⁠
Name
probe::stap.pass3.end — Finished stap pass3 (translation to C)

 ⁠Synopsis
stap.pass3.end

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass3.end fires just before the jump to cleanup if s.last_pass = 3
				

 ⁠
Name
probe::stap.pass4 — Starting stap pass4 (compile C code into kernel module)

 ⁠Synopsis
stap.pass4

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass4 fires just after the call to gettimeofday, just before the call to compile_pass.
				

 ⁠
Name
probe::stap.pass4.end — Finished stap pass4 (compile C code into kernel module)

 ⁠Synopsis
stap.pass4.end

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass4.end fires just before the jump to cleanup if s.last_pass = 4
				

 ⁠
Name
probe::stap.pass5 — Starting stap pass5 (running the instrumentation)

 ⁠Synopsis
stap.pass5

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass5 fires just after the call to gettimeofday, just before the call to run_pass.
				

 ⁠
Name
probe::stap.pass5.end — Finished stap pass5 (running the instrumentation)

 ⁠Synopsis
stap.pass5.end

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass5.end fires just before the cleanup label
				

 ⁠
Name
probe::stap.pass6 — Starting stap pass6 (cleanup)

 ⁠Synopsis
stap.pass6

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass6 fires just after the cleanup label, essentially the same spot as pass5.end
				

 ⁠
Name
probe::stap.pass6.end — Finished stap pass6 (cleanup)

 ⁠Synopsis
stap.pass6.end

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass6.end fires just before main's return.
				

 ⁠
Name
probe::stap.system — Starting a command from stap

 ⁠Synopsis
stap.system

 ⁠Values
	command
	
								the command string to be run by posix_spawn (as sh -c <str>)
							

 ⁠Description

					Fires at the entry of the stap_system command.
				

 ⁠
Name
probe::stap.system.return — Finished a command from stap

 ⁠Synopsis
stap.system.return

 ⁠Values
	ret
	
								a return code associated with running waitpid on the spawned process; a non-zero value indicates error
							

 ⁠Description

					Fires just before the return of the stap_system function, after waitpid.
				

 ⁠
Name
probe::stap.system.spawn — stap spawned new process

 ⁠Synopsis
stap.system.spawn

 ⁠Values
	ret
	
								the return value from posix_spawn
							

	pid
	
								the pid of the spawned process
							

 ⁠Description

					Fires just after the call to posix_spawn.
				

 ⁠
Name
probe::stapio.receive_control_message — Received a control message

 ⁠Synopsis
stapio.receive_control_message

 ⁠Values
	len
	
								the length (in bytes) of the data blob
							

	data
	
								a ptr to a binary blob of data sent as the control message
							

	type
	
								type of message being send; defined in runtime/transport/transport_msgs.h
							

 ⁠Description

					Fires just after a message was receieved and before it's processed.
				

 ⁠
Name
probe::staprun.insert_module — Inserting SystemTap instrumentation module

 ⁠Synopsis
staprun.insert_module

 ⁠Values
	path
	
								the full path to the .ko kernel module about to be inserted
							

 ⁠Description

					Fires just before the call to insert the module.
				

 ⁠
Name
probe::staprun.remove_module — Removing SystemTap instrumentation module

 ⁠Synopsis
staprun.remove_module

 ⁠Values
	name
	
								the stap module name to be removed (without the .ko extension)
							

 ⁠Description

					Fires just before the call to remove the module.
				

 ⁠
Name
probe::staprun.send_control_message — Sending a control message

 ⁠Synopsis
staprun.send_control_message

 ⁠Values
	type
	
								type of message being send; defined in runtime/transport/transport_msgs.h
							

	data
	
								a ptr to a binary blob of data sent as the control message
							

	len
	
								the length (in bytes) of the data blob
							

 ⁠Description

					Fires at the beginning of the send_request function.
				

 ⁠
Name
probe::stap.cache_add_mod — Adding kernel instrumentation module to cache

 ⁠Synopsis
stap.cache_add_mod

 ⁠Values
	dest_path
	
								the path the .ko file is going to (incl filename)
							

	source_path
	
								the path the .ko file is coming from (incl filename)
							

 ⁠Description

					Fires just before the file is actually moved. Note: if moving fails, cache_add_src and cache_add_nss will not fire.
				

 ⁠
Name
probe::stap.cache_add_nss — Add NSS (Network Security Services) information to cache

 ⁠Synopsis
stap.cache_add_nss

 ⁠Values
	source_path
	
								the path the .sgn file is coming from (incl filename)
							

	dest_path
	
								the path the .sgn file is coming from (incl filename)
							

 ⁠Description

					Fires just before the file is actually moved. Note: stap must compiled with NSS support; if moving the kernel module fails, this probe will not fire.
				

 ⁠
Name
probe::stap.cache_add_src — Adding C code translation to cache

 ⁠Synopsis
stap.cache_add_src

 ⁠Values
	dest_path
	
								the path the .c file is going to (incl filename)
							

	source_path
	
								the path the .c file is coming from (incl filename)
							

 ⁠Description

					Fires just before the file is actually moved. Note: if moving the kernel module fails, this probe will not fire.
				

 ⁠
Name
probe::stap.cache_clean — Removing file from stap cache

 ⁠Synopsis
stap.cache_clean

 ⁠Values
	path
	
								the path to the .ko/.c file being removed
							

 ⁠Description

					Fires just before the call to unlink the module/source file.
				

 ⁠
Name
probe::stap.cache_get — Found item in stap cache

 ⁠Synopsis
stap.cache_get

 ⁠Values
	module_path
	
								the path of the .ko kernel module file
							

	source_path
	
								the path of the .c source file
							

 ⁠Description

					Fires just before the return of get_from_cache, when the cache grab is successful.
				

 ⁠
Name
probe::stap.pass0 — Starting stap pass0 (parsing command line arguments)

 ⁠Synopsis
stap.pass0

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass0 fires after command line arguments have been parsed.
				

 ⁠
Name
probe::stap.pass0.end — Finished stap pass0 (parsing command line arguments)

 ⁠Synopsis
stap.pass0.end

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass0.end fires just before the gettimeofday call for pass1.
				

 ⁠
Name
probe::stap.pass1.end — Finished stap pass1 (parsing scripts)

 ⁠Synopsis
stap.pass1.end

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass1.end fires just before the jump to cleanup if s.last_pass = 1.
				

 ⁠
Name
probe::stap.pass1a — Starting stap pass1 (parsing user script)

 ⁠Synopsis
stap.pass1a

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass1a fires just after the call to gettimeofday, before the user script is parsed.
				

 ⁠
Name
probe::stap.pass1b — Starting stap pass1 (parsing library scripts)

 ⁠Synopsis
stap.pass1b

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass1b fires just before the library scripts are parsed.
				

 ⁠
Name
probe::stap.pass2 — Starting stap pass2 (elaboration)

 ⁠Synopsis
stap.pass2

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass2 fires just after the call to gettimeofday, just before the call to semantic_pass.
				

 ⁠
Name
probe::stap.pass2.end — Finished stap pass2 (elaboration)

 ⁠Synopsis
stap.pass2.end

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass2.end fires just before the jump to cleanup if s.last_pass = 2
				

 ⁠
Name
probe::stap.pass3 — Starting stap pass3 (translation to C)

 ⁠Synopsis
stap.pass3

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass3 fires just after the call to gettimeofday, just before the call to translate_pass.
				

 ⁠
Name
probe::stap.pass3.end — Finished stap pass3 (translation to C)

 ⁠Synopsis
stap.pass3.end

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass3.end fires just before the jump to cleanup if s.last_pass = 3
				

 ⁠
Name
probe::stap.pass4 — Starting stap pass4 (compile C code into kernel module)

 ⁠Synopsis
stap.pass4

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass4 fires just after the call to gettimeofday, just before the call to compile_pass.
				

 ⁠
Name
probe::stap.pass4.end — Finished stap pass4 (compile C code into kernel module)

 ⁠Synopsis
stap.pass4.end

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass4.end fires just before the jump to cleanup if s.last_pass = 4
				

 ⁠
Name
probe::stap.pass5 — Starting stap pass5 (running the instrumentation)

 ⁠Synopsis
stap.pass5

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass5 fires just after the call to gettimeofday, just before the call to run_pass.
				

 ⁠
Name
probe::stap.pass5.end — Finished stap pass5 (running the instrumentation)

 ⁠Synopsis
stap.pass5.end

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass5.end fires just before the cleanup label
				

 ⁠
Name
probe::stap.pass6 — Starting stap pass6 (cleanup)

 ⁠Synopsis
stap.pass6

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass6 fires just after the cleanup label, essentially the same spot as pass5.end
				

 ⁠
Name
probe::stap.pass6.end — Finished stap pass6 (cleanup)

 ⁠Synopsis
stap.pass6.end

 ⁠Values
	session
	
								the systemtap_session variable s
							

 ⁠Description

					pass6.end fires just before main's return.
				

 ⁠
Name
probe::stap.system — Starting a command from stap

 ⁠Synopsis
stap.system

 ⁠Values
	command
	
								the command string to be run by posix_spawn (as sh -c <str>)
							

 ⁠Description

					Fires at the entry of the stap_system command.
				

 ⁠
Name
probe::stap.system.return — Finished a command from stap

 ⁠Synopsis
stap.system.return

 ⁠Values
	ret
	
								a return code associated with running waitpid on the spawned process; a non-zero value indicates error
							

 ⁠Description

					Fires just before the return of the stap_system function, after waitpid.
				

 ⁠
Name
probe::stap.system.spawn — stap spawned new process

 ⁠Synopsis
stap.system.spawn

 ⁠Values
	ret
	
								the return value from posix_spawn
							

	pid
	
								the pid of the spawned process
							

 ⁠Description

					Fires just after the call to posix_spawn.
				

 ⁠
Name
probe::stapio.receive_control_message — Received a control message

 ⁠Synopsis
stapio.receive_control_message

 ⁠Values
	len
	
								the length (in bytes) of the data blob
							

	data
	
								a ptr to a binary blob of data sent as the control message
							

	type
	
								type of message being send; defined in runtime/transport/transport_msgs.h
							

 ⁠Description

					Fires just after a message was receieved and before it's processed.
				

 ⁠
Name
probe::staprun.insert_module — Inserting SystemTap instrumentation module

 ⁠Synopsis
staprun.insert_module

 ⁠Values
	path
	
								the full path to the .ko kernel module about to be inserted
							

 ⁠Description

					Fires just before the call to insert the module.
				

 ⁠
Name
probe::staprun.remove_module — Removing SystemTap instrumentation module

 ⁠Synopsis
staprun.remove_module

 ⁠Values
	name
	
								the stap module name to be removed (without the .ko extension)
							

 ⁠Description

					Fires just before the call to remove the module.
				

 ⁠
Name
probe::staprun.send_control_message — Sending a control message

 ⁠Synopsis
staprun.send_control_message

 ⁠Values
	type
	
								type of message being send; defined in runtime/transport/transport_msgs.h
							

	data
	
								a ptr to a binary blob of data sent as the control message
							

	len
	
								the length (in bytes) of the data blob
							

 ⁠Description

					Fires at the beginning of the send_request function.
				

 ⁠Chapter 32. Network File Storage Tapsets

			This family of probe points is used to probe network file storage functions and operations.
		

 ⁠
Name
function::nfsderror — Convert nfsd error number into string

 ⁠Synopsis

nfsderror:string(err:long)

 ⁠Arguments
	err
	
								errnum
							

 ⁠Description

					This function returns a string for the error number passed into the function.
				

 ⁠
Name
probe::nfs.aop.readpage — NFS client synchronously reading a page

 ⁠Synopsis
nfs.aop.readpage

 ⁠Values
	size
	
								number of pages to be read in this execution
							

	i_flag
	
								file flags
							

	file
	
								file argument
							

	ino
	
								inode number
							

	i_size
	
								file length in bytes
							

	dev
	
								device identifier
							

	rsize
	
								read size (in bytes)
							

	__page
	
								the address of page
							

	sb_flag
	
								super block flags
							

	page_index
	
								offset within mapping, can used a page identifier and position identifier in the page frame
							

 ⁠Description

					Read the page over, only fires when a previous async read operation failed
				

 ⁠
Name
probe::nfs.aop.readpages — NFS client reading multiple pages

 ⁠Synopsis
nfs.aop.readpages

 ⁠Values
	nr_pages
	
								number of pages attempted to read in this execution
							

	ino
	
								inode number
							

	file
	
								filp argument
							

	size
	
								number of pages attempted to read in this execution
							

	rsize
	
								read size (in bytes)
							

	dev
	
								device identifier
							

	rpages
	
								read size (in pages)
							

 ⁠Description

					Fires when in readahead way, read several pages once
				

 ⁠
Name
probe::nfs.aop.release_page — NFS client releasing page

 ⁠Synopsis
nfs.aop.release_page

 ⁠Values
	size
	
								release pages
							

	ino
	
								inode number
							

	dev
	
								device identifier
							

	__page
	
								the address of page
							

	page_index
	
								offset within mapping, can used a page identifier and position identifier in the page frame
							

 ⁠Description

					Fires when do a release operation on NFS.
				

 ⁠
Name
probe::nfs.aop.set_page_dirty — NFS client marking page as dirty

 ⁠Synopsis
nfs.aop.set_page_dirty

 ⁠Values
	__page
	
								the address of page
							

	page_flag
	
								page flags
							

 ⁠Description

					This probe attaches to the generic __set_page_dirty_nobuffers function. Thus, this probe is going to fire on many other file systems in addition to the NFS client.
				

 ⁠
Name
probe::nfs.aop.write_begin — NFS client begin to write data

 ⁠Synopsis
nfs.aop.write_begin

 ⁠Values
	__page
	
								the address of page
							

	page_index
	
								offset within mapping, can used a page identifier and position identifier in the page frame
							

	size
	
								write bytes
							

	to
	
								end address of this write operation
							

	ino
	
								inode number
							

	offset
	
								start address of this write operation
							

	dev
	
								device identifier
							

 ⁠Description

					Occurs when write operation occurs on nfs. It prepare a page for writing, look for a request corresponding to the page. If there is one, and it belongs to another file, it flush it out before it tries to copy anything into the page. Also do the same if it finds a request from an existing dropped page
				

 ⁠
Name
probe::nfs.aop.write_end — NFS client complete writing data

 ⁠Synopsis
nfs.aop.write_end

 ⁠Values
	sb_flag
	
								super block flags
							

	__page
	
								the address of page
							

	page_index
	
								offset within mapping, can used a page identifier and position identifier in the page frame
							

	to
	
								end address of this write operation
							

	ino
	
								inode number
							

	i_flag
	
								file flags
							

	size
	
								write bytes
							

	dev
	
								device identifier
							

	offset
	
								start address of this write operation
							

	i_size
	
								file length in bytes
							

 ⁠Description

					Fires when do a write operation on nfs, often after prepare_write
				

					Update and possibly write a cached page of an NFS file.
				

 ⁠
Name
probe::nfs.aop.writepage — NFS client writing a mapped page to the NFS server

 ⁠Synopsis
nfs.aop.writepage

 ⁠Values
	wsize
	
								write size
							

	size
	
								number of pages to be written in this execution
							

	i_flag
	
								file flags
							

	for_kupdate
	
								a flag of writeback_control, indicates if it's a kupdate writeback
							

	ino
	
								inode number
							

	i_size
	
								file length in bytes
							

	dev
	
								device identifier
							

	for_reclaim
	
								a flag of writeback_control, indicates if it's invoked from the page allocator
							

	__page
	
								the address of page
							

	sb_flag
	
								super block flags
							

	page_index
	
								offset within mapping, can used a page identifier and position identifier in the page frame
							

	i_state
	
								inode state flags
							

 ⁠Description

					The priority of wb is decided by the flags for_reclaim and for_kupdate.
				

 ⁠
Name
probe::nfs.aop.writepages — NFS client writing several dirty pages to the NFS server

 ⁠Synopsis
nfs.aop.writepages

 ⁠Values
	for_reclaim
	
								a flag of writeback_control, indicates if it's invoked from the page allocator
							

	wpages
	
								write size (in pages)
							

	nr_to_write
	
								number of pages attempted to be written in this execution
							

	for_kupdate
	
								a flag of writeback_control, indicates if it's a kupdate writeback
							

	ino
	
								inode number
							

	size
	
								number of pages attempted to be written in this execution
							

	wsize
	
								write size
							

	dev
	
								device identifier
							

 ⁠Description

					The priority of wb is decided by the flags for_reclaim and for_kupdate.
				

 ⁠
Name
probe::nfs.fop.aio_read — NFS client aio_read file operation

 ⁠Synopsis
nfs.fop.aio_read

 ⁠Values
	ino
	
								inode number
							

	cache_time
	
								when we started read-caching this inode
							

	file_name
	
								file name
							

	buf
	
								the address of buf in user space
							

	dev
	
								device identifier
							

	pos
	
								current position of file
							

	attrtimeo
	
								how long the cached information is assumed to be valid. We need to revalidate the cached attrs for this inode if jiffies - read_cache_jiffies > attrtimeo.
							

	count
	
								read bytes
							

	parent_name
	
								parent dir name
							

	cache_valid
	
								cache related bit mask flag
							

 ⁠
Name
probe::nfs.fop.aio_write — NFS client aio_write file operation

 ⁠Synopsis
nfs.fop.aio_write

 ⁠Values
	count
	
								read bytes
							

	parent_name
	
								parent dir name
							

	ino
	
								inode number
							

	file_name
	
								file name
							

	buf
	
								the address of buf in user space
							

	dev
	
								device identifier
							

	pos
	
								offset of the file
							

 ⁠
Name
probe::nfs.fop.check_flags — NFS client checking flag operation

 ⁠Synopsis
nfs.fop.check_flags

 ⁠Values
	flag
	
								file flag
							

 ⁠
Name
probe::nfs.fop.flush — NFS client flush file operation

 ⁠Synopsis
nfs.fop.flush

 ⁠Values
	ndirty
	
								number of dirty page
							

	ino
	
								inode number
							

	mode
	
								file mode
							

	dev
	
								device identifier
							

 ⁠
Name
probe::nfs.fop.fsync — NFS client fsync operation

 ⁠Synopsis
nfs.fop.fsync

 ⁠Values
	ndirty
	
								number of dirty pages
							

	ino
	
								inode number
							

	dev
	
								device identifier
							

 ⁠
Name
probe::nfs.fop.llseek — NFS client llseek operation

 ⁠Synopsis
nfs.fop.llseek

 ⁠Values
	ino
	
								inode number
							

	whence
	
								the position to seek from
							

	dev
	
								device identifier
							

	offset
	
								the offset of the file will be repositioned
							

	whence_str
	
								symbolic string representation of the position to seek from
							

 ⁠
Name
probe::nfs.fop.lock — NFS client file lock operation

 ⁠Synopsis
nfs.fop.lock

 ⁠Values
	fl_start
	
								starting offset of locked region
							

	ino
	
								inode number
							

	fl_flag
	
								lock flags
							

	i_mode
	
								file type and access rights
							

	dev
	
								device identifier
							

	fl_end
	
								ending offset of locked region
							

	fl_type
	
								lock type
							

	cmd
	
								cmd arguments
							

 ⁠
Name
probe::nfs.fop.mmap — NFS client mmap operation

 ⁠Synopsis
nfs.fop.mmap

 ⁠Values
	attrtimeo
	
								how long the cached information is assumed to be valid. We need to revalidate the cached attrs for this inode if jiffies - read_cache_jiffies > attrtimeo.
							

	vm_end
	
								the first byte after end address within vm_mm
							

	dev
	
								device identifier
							

	buf
	
								the address of buf in user space
							

	vm_flag
	
								vm flags
							

	cache_time
	
								when we started read-caching this inode
							

	file_name
	
								file name
							

	ino
	
								inode number
							

	cache_valid
	
								cache related bit mask flag
							

	parent_name
	
								parent dir name
							

	vm_start
	
								start address within vm_mm
							

 ⁠
Name
probe::nfs.fop.open — NFS client file open operation

 ⁠Synopsis
nfs.fop.open

 ⁠Values
	flag
	
								file flag
							

	i_size
	
								file length in bytes
							

	dev
	
								device identifier
							

	file_name
	
								file name
							

	ino
	
								inode number
							

 ⁠
Name
probe::nfs.fop.read — NFS client read operation

 ⁠Synopsis
nfs.fop.read

 ⁠Values
	devname
	
								block device name
							

 ⁠Description

					SystemTap uses the vfs.do_sync_read probe to implement this probe and as a result will get operations other than the NFS client read operations.
				

 ⁠
Name
probe::nfs.fop.read_iter — NFS client read_iter file operation

 ⁠Synopsis
nfs.fop.read_iter

 ⁠Values
	ino
	
								inode number
							

	file_name
	
								file name
							

	cache_time
	
								when we started read-caching this inode
							

	pos
	
								current position of file
							

	dev
	
								device identifier
							

	attrtimeo
	
								how long the cached information is assumed to be valid. We need to revalidate the cached attrs for this inode if jiffies - read_cache_jiffies > attrtimeo.
							

	count
	
								read bytes
							

	parent_name
	
								parent dir name
							

	cache_valid
	
								cache related bit mask flag
							

 ⁠
Name
probe::nfs.fop.release — NFS client release page operation

 ⁠Synopsis
nfs.fop.release

 ⁠Values
	ino
	
								inode number
							

	dev
	
								device identifier
							

	mode
	
								file mode
							

 ⁠
Name
probe::nfs.fop.sendfile — NFS client send file operation

 ⁠Synopsis
nfs.fop.sendfile

 ⁠Values
	cache_valid
	
								cache related bit mask flag
							

	ppos
	
								current position of file
							

	count
	
								read bytes
							

	dev
	
								device identifier
							

	attrtimeo
	
								how long the cached information is assumed to be valid. We need to revalidate the cached attrs for this inode if jiffies - read_cache_jiffies > attrtimeo.
							

	ino
	
								inode number
							

	cache_time
	
								when we started read-caching this inode
							

 ⁠
Name
probe::nfs.fop.write — NFS client write operation

 ⁠Synopsis
nfs.fop.write

 ⁠Values
	devname
	
								block device name
							

 ⁠Description

					SystemTap uses the vfs.do_sync_write probe to implement this probe and as a result will get operations other than the NFS client write operations.
				

 ⁠
Name
probe::nfs.fop.write_iter — NFS client write_iter file operation

 ⁠Synopsis
nfs.fop.write_iter

 ⁠Values
	parent_name
	
								parent dir name
							

	count
	
								read bytes
							

	pos
	
								offset of the file
							

	dev
	
								device identifier
							

	file_name
	
								file name
							

	ino
	
								inode number
							

 ⁠
Name
probe::nfs.proc.commit — NFS client committing data on server

 ⁠Synopsis
nfs.proc.commit

 ⁠Values
	size
	
								read bytes in this execution
							

	prot
	
								transfer protocol
							

	version
	
								NFS version
							

	server_ip
	
								IP address of server
							

	bitmask1
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

	offset
	
								the file offset
							

	bitmask0
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

 ⁠Description

					All the nfs.proc.commit kernel functions were removed in kernel commit 200baa in December 2006, so these probes do not exist on Linux 2.6.21 and newer kernels.
				

					Fires when client writes the buffered data to disk. The buffered data is asynchronously written by client earlier. The commit function works in sync way. This probe point does not exist in NFSv2.
				

 ⁠
Name
probe::nfs.proc.commit_done — NFS client response to a commit RPC task

 ⁠Synopsis
nfs.proc.commit_done

 ⁠Values
	status
	
								result of last operation
							

	server_ip
	
								IP address of server
							

	prot
	
								transfer protocol
							

	version
	
								NFS version
							

	count
	
								number of bytes committed
							

	valid
	
								fattr->valid, indicates which fields are valid
							

	timestamp
	
								V4 timestamp, which is used for lease renewal
							

 ⁠Description

					Fires when a reply to a commit RPC task is received or some commit operation error occur (timeout or socket shutdown).
				

 ⁠
Name
probe::nfs.proc.commit_setup — NFS client setting up a commit RPC task

 ⁠Synopsis
nfs.proc.commit_setup

 ⁠Values
	version
	
								NFS version
							

	count
	
								bytes in this commit
							

	prot
	
								transfer protocol
							

	server_ip
	
								IP address of server
							

	bitmask1
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

	bitmask0
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

	offset
	
								the file offset
							

	size
	
								bytes in this commit
							

 ⁠Description

					The commit_setup function is used to setup a commit RPC task. Is is not doing the actual commit operation. It does not exist in NFSv2.
				

 ⁠
Name
probe::nfs.proc.create — NFS client creating file on server

 ⁠Synopsis
nfs.proc.create

 ⁠Values
	server_ip
	
								IP address of server
							

	prot
	
								transfer protocol
							

	version
	
								NFS version (the function is used for all NFS version)
							

	filename
	
								file name
							

	fh
	
								file handle of parent dir
							

	filelen
	
								length of file name
							

	flag
	
								indicates create mode (only for NFSv3 and NFSv4)
							

 ⁠
Name
probe::nfs.proc.handle_exception — NFS client handling an NFSv4 exception

 ⁠Synopsis
nfs.proc.handle_exception

 ⁠Values
	errorcode
	
								indicates the type of error
							

 ⁠Description

					This is the error handling routine for processes for NFSv4.
				

 ⁠
Name
probe::nfs.proc.lookup — NFS client opens/searches a file on server

 ⁠Synopsis
nfs.proc.lookup

 ⁠Values
	bitmask1
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

	bitmask0
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

	filename
	
								the name of file which client opens/searches on server
							

	server_ip
	
								IP address of server
							

	prot
	
								transfer protocol
							

	name_len
	
								the length of file name
							

	version
	
								NFS version
							

 ⁠
Name
probe::nfs.proc.open — NFS client allocates file read/write context information

 ⁠Synopsis
nfs.proc.open

 ⁠Values
	flag
	
								file flag
							

	filename
	
								file name
							

	version
	
								NFS version (the function is used for all NFS version)
							

	prot
	
								transfer protocol
							

	mode
	
								file mode
							

	server_ip
	
								IP address of server
							

 ⁠Description

					Allocate file read/write context information
				

 ⁠
Name
probe::nfs.proc.read — NFS client synchronously reads file from server

 ⁠Synopsis
nfs.proc.read

 ⁠Values
	offset
	
								the file offset
							

	server_ip
	
								IP address of server
							

	flags
	
								used to set task->tk_flags in rpc_init_task function
							

	prot
	
								transfer protocol
							

	count
	
								read bytes in this execution
							

	version
	
								NFS version
							

 ⁠Description

					All the nfs.proc.read kernel functions were removed in kernel commit 8e0969 in December 2006, so these probes do not exist on Linux 2.6.21 and newer kernels.
				

 ⁠
Name
probe::nfs.proc.read_done — NFS client response to a read RPC task

 ⁠Synopsis
nfs.proc.read_done

 ⁠Values
	timestamp
	
								V4 timestamp, which is used for lease renewal
							

	prot
	
								transfer protocol
							

	count
	
								number of bytes read
							

	version
	
								NFS version
							

	status
	
								result of last operation
							

	server_ip
	
								IP address of server
							

 ⁠Description

					Fires when a reply to a read RPC task is received or some read error occurs (timeout or socket shutdown).
				

 ⁠
Name
probe::nfs.proc.read_setup — NFS client setting up a read RPC task

 ⁠Synopsis
nfs.proc.read_setup

 ⁠Values
	offset
	
								the file offset
							

	server_ip
	
								IP address of server
							

	prot
	
								transfer protocol
							

	version
	
								NFS version
							

	count
	
								read bytes in this execution
							

	size
	
								read bytes in this execution
							

 ⁠Description

					The read_setup function is used to setup a read RPC task. It is not doing the actual read operation.
				

 ⁠
Name
probe::nfs.proc.release — NFS client releases file read/write context information

 ⁠Synopsis
nfs.proc.release

 ⁠Values
	flag
	
								file flag
							

	filename
	
								file name
							

	prot
	
								transfer protocol
							

	version
	
								NFS version (the function is used for all NFS version)
							

	mode
	
								file mode
							

	server_ip
	
								IP address of server
							

 ⁠Description

					Release file read/write context information
				

 ⁠
Name
probe::nfs.proc.remove — NFS client removes a file on server

 ⁠Synopsis
nfs.proc.remove

 ⁠Values
	prot
	
								transfer protocol
							

	version
	
								NFS version (the function is used for all NFS version)
							

	server_ip
	
								IP address of server
							

	filelen
	
								length of file name
							

	filename
	
								file name
							

	fh
	
								file handle of parent dir
							

 ⁠
Name
probe::nfs.proc.rename — NFS client renames a file on server

 ⁠Synopsis
nfs.proc.rename

 ⁠Values
	new_fh
	
								file handle of new parent dir
							

	new_filelen
	
								length of new file name
							

	old_name
	
								old file name
							

	version
	
								NFS version (the function is used for all NFS version)
							

	old_fh
	
								file handle of old parent dir
							

	prot
	
								transfer protocol
							

	new_name
	
								new file name
							

	old_filelen
	
								length of old file name
							

	server_ip
	
								IP address of server
							

 ⁠
Name
probe::nfs.proc.rename_done — NFS client response to a rename RPC task

 ⁠Synopsis
nfs.proc.rename_done

 ⁠Values
	timestamp
	
								V4 timestamp, which is used for lease renewal
							

	status
	
								result of last operation
							

	server_ip
	
								IP address of server
							

	prot
	
								transfer protocol
							

	version
	
								NFS version
							

	old_fh
	
								file handle of old parent dir
							

	new_fh
	
								file handle of new parent dir
							

 ⁠Description

					Fires when a reply to a rename RPC task is received or some rename error occurs (timeout or socket shutdown).
				

 ⁠
Name
probe::nfs.proc.rename_setup — NFS client setting up a rename RPC task

 ⁠Synopsis
nfs.proc.rename_setup

 ⁠Values
	fh
	
								file handle of parent dir
							

	prot
	
								transfer protocol
							

	version
	
								NFS version
							

	server_ip
	
								IP address of server
							

 ⁠Description

					The rename_setup function is used to setup a rename RPC task. Is is not doing the actual rename operation.
				

 ⁠
Name
probe::nfs.proc.write — NFS client synchronously writes file to server

 ⁠Synopsis
nfs.proc.write

 ⁠Values
	size
	
								read bytes in this execution
							

	flags
	
								used to set task->tk_flags in rpc_init_task function
							

	prot
	
								transfer protocol
							

	version
	
								NFS version
							

	bitmask1
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

	offset
	
								the file offset
							

	bitmask0
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

	server_ip
	
								IP address of server
							

 ⁠Description

					All the nfs.proc.write kernel functions were removed in kernel commit 200baa in December 2006, so these probes do not exist on Linux 2.6.21 and newer kernels.
				

 ⁠
Name
probe::nfs.proc.write_done — NFS client response to a write RPC task

 ⁠Synopsis
nfs.proc.write_done

 ⁠Values
	server_ip
	
								IP address of server
							

	status
	
								result of last operation
							

	version
	
								NFS version
							

	count
	
								number of bytes written
							

	prot
	
								transfer protocol
							

	valid
	
								fattr->valid, indicates which fields are valid
							

	timestamp
	
								V4 timestamp, which is used for lease renewal
							

 ⁠Description

					Fires when a reply to a write RPC task is received or some write error occurs (timeout or socket shutdown).
				

 ⁠
Name
probe::nfs.proc.write_setup — NFS client setting up a write RPC task

 ⁠Synopsis
nfs.proc.write_setup

 ⁠Values
	size
	
								bytes written in this execution
							

	prot
	
								transfer protocol
							

	version
	
								NFS version
							

	count
	
								bytes written in this execution
							

	bitmask0
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

	bitmask1
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

	offset
	
								the file offset
							

	how
	
								used to set args.stable. The stable value could be: NFS_UNSTABLE,NFS_DATA_SYNC,NFS_FILE_SYNC (in nfs.proc3.write_setup and nfs.proc4.write_setup)
							

	server_ip
	
								IP address of server
							

 ⁠Description

					The write_setup function is used to setup a write RPC task. It is not doing the actual write operation.
				

 ⁠
Name
probe::nfsd.close — NFS server closing a file for client

 ⁠Synopsis
nfsd.close

 ⁠Values
	filename
	
								file name
							

 ⁠Description

					This probe point does not exist in kernels starting with 4.2.
				

 ⁠
Name
probe::nfsd.commit — NFS server committing all pending writes to stable storage

 ⁠Synopsis
nfsd.commit

 ⁠Values
	fh
	
								file handle (the first part is the length of the file handle)
							

	flag
	
								indicates whether this execution is a sync operation
							

	offset
	
								the offset of file
							

	size
	
								read bytes
							

	count
	
								read bytes
							

	client_ip
	
								the ip address of client
							

 ⁠
Name
probe::nfsd.create — NFS server creating a file(regular,dir,device,fifo) for client

 ⁠Synopsis
nfsd.create

 ⁠Values
	fh
	
								file handle (the first part is the length of the file handle)
							

	iap_valid
	
								Attribute flags
							

	filelen
	
								the length of file name
							

	type
	
								file type(regular,dir,device,fifo ...)
							

	filename
	
								file name
							

	iap_mode
	
								file access mode
							

	client_ip
	
								the ip address of client
							

 ⁠Description

					Sometimes nfsd will call nfsd_create_v3 instead of this this probe point.
				

 ⁠
Name
probe::nfsd.createv3 — NFS server creating a regular file or set file attributes for client

 ⁠Synopsis
nfsd.createv3

 ⁠Values
	iap_mode
	
								file access mode
							

	filename
	
								file name
							

	client_ip
	
								the ip address of client
							

	fh
	
								file handle (the first part is the length of the file handle)
							

	createmode
	
								create mode .The possible values could be: NFS3_CREATE_EXCLUSIVE, NFS3_CREATE_UNCHECKED, or NFS3_CREATE_GUARDED
							

	filelen
	
								the length of file name
							

	iap_valid
	
								Attribute flags
							

	verifier
	
								file attributes (atime,mtime,mode). It's used to reset file attributes for CREATE_EXCLUSIVE
							

	truncp
	
								trunp arguments, indicates if the file shouldbe truncate
							

 ⁠Description

					This probepoints is only called by nfsd3_proc_create and nfsd4_open when op_claim_type is NFS4_OPEN_CLAIM_NULL.
				

 ⁠
Name
probe::nfsd.dispatch — NFS server receives an operation from client

 ⁠Synopsis
nfsd.dispatch

 ⁠Values
	xid
	
								transmission id
							

	version
	
								nfs version
							

	proto
	
								transfer protocol
							

	proc
	
								procedure number
							

	client_ip
	
								the ip address of client
							

	prog
	
								program number
							

 ⁠
Name
probe::nfsd.lookup — NFS server opening or searching file for a file for client

 ⁠Synopsis
nfsd.lookup

 ⁠Values
	filename
	
								file name
							

	client_ip
	
								the ip address of client
							

	fh
	
								file handle of parent dir(the first part is the length of the file handle)
							

	filelen
	
								the length of file name
							

 ⁠
Name
probe::nfsd.open — NFS server opening a file for client

 ⁠Synopsis
nfsd.open

 ⁠Values
	fh
	
								file handle (the first part is the length of the file handle)
							

	type
	
								type of file (regular file or dir)
							

	access
	
								indicates the type of open (read/write/commit/readdir...)
							

	client_ip
	
								the ip address of client
							

 ⁠
Name
probe::nfsd.proc.commit — NFS server performing a commit operation for client

 ⁠Synopsis
nfsd.proc.commit

 ⁠Values
	count
	
								read bytes
							

	client_ip
	
								the ip address of client
							

	proto
	
								transfer protocol
							

	size
	
								read bytes
							

	version
	
								nfs version
							

	uid
	
								requester's user id
							

	offset
	
								the offset of file
							

	gid
	
								requester's group id
							

	fh
	
								file handle (the first part is the length of the file handle)
							

 ⁠
Name
probe::nfsd.proc.create — NFS server creating a file for client

 ⁠Synopsis
nfsd.proc.create

 ⁠Values
	proto
	
								transfer protocol
							

	filename
	
								file name
							

	client_ip
	
								the ip address of client
							

	uid
	
								requester's user id
							

	version
	
								nfs version
							

	gid
	
								requester's group id
							

	fh
	
								file handle (the first part is the length of the file handle)
							

	filelen
	
								length of file name
							

 ⁠
Name
probe::nfsd.proc.lookup — NFS server opening or searching for a file for client

 ⁠Synopsis
nfsd.proc.lookup

 ⁠Values
	fh
	
								file handle of parent dir (the first part is the length of the file handle)
							

	gid
	
								requester's group id
							

	filelen
	
								the length of file name
							

	uid
	
								requester's user id
							

	version
	
								nfs version
							

	proto
	
								transfer protocol
							

	filename
	
								file name
							

	client_ip
	
								the ip address of client
							

 ⁠
Name
probe::nfsd.proc.read — NFS server reading file for client

 ⁠Synopsis
nfsd.proc.read

 ⁠Values
	size
	
								read bytes
							

	vec
	
								struct kvec, includes buf address in kernel address and length of each buffer
							

	version
	
								nfs version
							

	uid
	
								requester's user id
							

	count
	
								read bytes
							

	client_ip
	
								the ip address of client
							

	proto
	
								transfer protocol
							

	offset
	
								the offset of file
							

	gid
	
								requester's group id
							

	vlen
	
								read blocks
							

	fh
	
								file handle (the first part is the length of the file handle)
							

 ⁠
Name
probe::nfsd.proc.remove — NFS server removing a file for client

 ⁠Synopsis
nfsd.proc.remove

 ⁠Values
	gid
	
								requester's group id
							

	fh
	
								file handle (the first part is the length of the file handle)
							

	filelen
	
								length of file name
							

	uid
	
								requester's user id
							

	version
	
								nfs version
							

	proto
	
								transfer protocol
							

	filename
	
								file name
							

	client_ip
	
								the ip address of client
							

 ⁠
Name
probe::nfsd.proc.rename — NFS Server renaming a file for client

 ⁠Synopsis
nfsd.proc.rename

 ⁠Values
	uid
	
								requester's user id
							

	tfh
	
								file handler of new path
							

	tname
	
								new file name
							

	filename
	
								old file name
							

	client_ip
	
								the ip address of client
							

	flen
	
								length of old file name
							

	gid
	
								requester's group id
							

	fh
	
								file handler of old path
							

	tlen
	
								length of new file name
							

 ⁠
Name
probe::nfsd.proc.write — NFS server writing data to file for client

 ⁠Synopsis
nfsd.proc.write

 ⁠Values
	offset
	
								the offset of file
							

	gid
	
								requester's group id
							

	vlen
	
								read blocks
							

	fh
	
								file handle (the first part is the length of the file handle)
							

	size
	
								read bytes
							

	vec
	
								struct kvec, includes buf address in kernel address and length of each buffer
							

	stable
	
								argp->stable
							

	version
	
								nfs version
							

	uid
	
								requester's user id
							

	count
	
								read bytes
							

	client_ip
	
								the ip address of client
							

	proto
	
								transfer protocol
							

 ⁠
Name
probe::nfsd.read — NFS server reading data from a file for client

 ⁠Synopsis
nfsd.read

 ⁠Values
	offset
	
								the offset of file
							

	vlen
	
								read blocks
							

	file
	
								argument file, indicates if the file has been opened.
							

	fh
	
								file handle (the first part is the length of the file handle)
							

	count
	
								read bytes
							

	client_ip
	
								the ip address of client
							

	size
	
								read bytes
							

	vec
	
								struct kvec, includes buf address in kernel address and length of each buffer
							

 ⁠
Name
probe::nfsd.rename — NFS server renaming a file for client

 ⁠Synopsis
nfsd.rename

 ⁠Values
	tlen
	
								length of new file name
							

	fh
	
								file handler of old path
							

	flen
	
								length of old file name
							

	client_ip
	
								the ip address of client
							

	filename
	
								old file name
							

	tname
	
								new file name
							

	tfh
	
								file handler of new path
							

 ⁠
Name
probe::nfsd.unlink — NFS server removing a file or a directory for client

 ⁠Synopsis
nfsd.unlink

 ⁠Values
	filelen
	
								the length of file name
							

	fh
	
								file handle (the first part is the length of the file handle)
							

	type
	
								file type (file or dir)
							

	client_ip
	
								the ip address of client
							

	filename
	
								file name
							

 ⁠
Name
probe::nfsd.write — NFS server writing data to a file for client

 ⁠Synopsis
nfsd.write

 ⁠Values
	offset
	
								the offset of file
							

	fh
	
								file handle (the first part is the length of the file handle)
							

	vlen
	
								read blocks
							

	file
	
								argument file, indicates if the file has been opened.
							

	client_ip
	
								the ip address of client
							

	count
	
								read bytes
							

	size
	
								read bytes
							

	vec
	
								struct kvec, includes buf address in kernel address and length of each buffer
							

 ⁠
Name
function::nfsderror — Convert nfsd error number into string

 ⁠Synopsis

nfsderror:string(err:long)

 ⁠Arguments
	err
	
								errnum
							

 ⁠Description

					This function returns a string for the error number passed into the function.
				

 ⁠
Name
probe::nfs.aop.readpage — NFS client synchronously reading a page

 ⁠Synopsis
nfs.aop.readpage

 ⁠Values
	size
	
								number of pages to be read in this execution
							

	i_flag
	
								file flags
							

	file
	
								file argument
							

	ino
	
								inode number
							

	i_size
	
								file length in bytes
							

	dev
	
								device identifier
							

	rsize
	
								read size (in bytes)
							

	__page
	
								the address of page
							

	sb_flag
	
								super block flags
							

	page_index
	
								offset within mapping, can used a page identifier and position identifier in the page frame
							

 ⁠Description

					Read the page over, only fires when a previous async read operation failed
				

 ⁠
Name
probe::nfs.aop.readpages — NFS client reading multiple pages

 ⁠Synopsis
nfs.aop.readpages

 ⁠Values
	nr_pages
	
								number of pages attempted to read in this execution
							

	ino
	
								inode number
							

	file
	
								filp argument
							

	size
	
								number of pages attempted to read in this execution
							

	rsize
	
								read size (in bytes)
							

	dev
	
								device identifier
							

	rpages
	
								read size (in pages)
							

 ⁠Description

					Fires when in readahead way, read several pages once
				

 ⁠
Name
probe::nfs.aop.release_page — NFS client releasing page

 ⁠Synopsis
nfs.aop.release_page

 ⁠Values
	size
	
								release pages
							

	ino
	
								inode number
							

	dev
	
								device identifier
							

	__page
	
								the address of page
							

	page_index
	
								offset within mapping, can used a page identifier and position identifier in the page frame
							

 ⁠Description

					Fires when do a release operation on NFS.
				

 ⁠
Name
probe::nfs.aop.set_page_dirty — NFS client marking page as dirty

 ⁠Synopsis
nfs.aop.set_page_dirty

 ⁠Values
	__page
	
								the address of page
							

	page_flag
	
								page flags
							

 ⁠Description

					This probe attaches to the generic __set_page_dirty_nobuffers function. Thus, this probe is going to fire on many other file systems in addition to the NFS client.
				

 ⁠
Name
probe::nfs.aop.write_begin — NFS client begin to write data

 ⁠Synopsis
nfs.aop.write_begin

 ⁠Values
	__page
	
								the address of page
							

	page_index
	
								offset within mapping, can used a page identifier and position identifier in the page frame
							

	size
	
								write bytes
							

	to
	
								end address of this write operation
							

	ino
	
								inode number
							

	offset
	
								start address of this write operation
							

	dev
	
								device identifier
							

 ⁠Description

					Occurs when write operation occurs on nfs. It prepare a page for writing, look for a request corresponding to the page. If there is one, and it belongs to another file, it flush it out before it tries to copy anything into the page. Also do the same if it finds a request from an existing dropped page
				

 ⁠
Name
probe::nfs.aop.write_end — NFS client complete writing data

 ⁠Synopsis
nfs.aop.write_end

 ⁠Values
	sb_flag
	
								super block flags
							

	__page
	
								the address of page
							

	page_index
	
								offset within mapping, can used a page identifier and position identifier in the page frame
							

	to
	
								end address of this write operation
							

	ino
	
								inode number
							

	i_flag
	
								file flags
							

	size
	
								write bytes
							

	dev
	
								device identifier
							

	offset
	
								start address of this write operation
							

	i_size
	
								file length in bytes
							

 ⁠Description

					Fires when do a write operation on nfs, often after prepare_write
				

					Update and possibly write a cached page of an NFS file.
				

 ⁠
Name
probe::nfs.aop.writepage — NFS client writing a mapped page to the NFS server

 ⁠Synopsis
nfs.aop.writepage

 ⁠Values
	wsize
	
								write size
							

	size
	
								number of pages to be written in this execution
							

	i_flag
	
								file flags
							

	for_kupdate
	
								a flag of writeback_control, indicates if it's a kupdate writeback
							

	ino
	
								inode number
							

	i_size
	
								file length in bytes
							

	dev
	
								device identifier
							

	for_reclaim
	
								a flag of writeback_control, indicates if it's invoked from the page allocator
							

	__page
	
								the address of page
							

	sb_flag
	
								super block flags
							

	page_index
	
								offset within mapping, can used a page identifier and position identifier in the page frame
							

	i_state
	
								inode state flags
							

 ⁠Description

					The priority of wb is decided by the flags for_reclaim and for_kupdate.
				

 ⁠
Name
probe::nfs.aop.writepages — NFS client writing several dirty pages to the NFS server

 ⁠Synopsis
nfs.aop.writepages

 ⁠Values
	for_reclaim
	
								a flag of writeback_control, indicates if it's invoked from the page allocator
							

	wpages
	
								write size (in pages)
							

	nr_to_write
	
								number of pages attempted to be written in this execution
							

	for_kupdate
	
								a flag of writeback_control, indicates if it's a kupdate writeback
							

	ino
	
								inode number
							

	size
	
								number of pages attempted to be written in this execution
							

	wsize
	
								write size
							

	dev
	
								device identifier
							

 ⁠Description

					The priority of wb is decided by the flags for_reclaim and for_kupdate.
				

 ⁠
Name
probe::nfs.fop.aio_read — NFS client aio_read file operation

 ⁠Synopsis
nfs.fop.aio_read

 ⁠Values
	ino
	
								inode number
							

	cache_time
	
								when we started read-caching this inode
							

	file_name
	
								file name
							

	buf
	
								the address of buf in user space
							

	dev
	
								device identifier
							

	pos
	
								current position of file
							

	attrtimeo
	
								how long the cached information is assumed to be valid. We need to revalidate the cached attrs for this inode if jiffies - read_cache_jiffies > attrtimeo.
							

	count
	
								read bytes
							

	parent_name
	
								parent dir name
							

	cache_valid
	
								cache related bit mask flag
							

 ⁠
Name
probe::nfs.fop.aio_write — NFS client aio_write file operation

 ⁠Synopsis
nfs.fop.aio_write

 ⁠Values
	count
	
								read bytes
							

	parent_name
	
								parent dir name
							

	ino
	
								inode number
							

	file_name
	
								file name
							

	buf
	
								the address of buf in user space
							

	dev
	
								device identifier
							

	pos
	
								offset of the file
							

 ⁠
Name
probe::nfs.fop.check_flags — NFS client checking flag operation

 ⁠Synopsis
nfs.fop.check_flags

 ⁠Values
	flag
	
								file flag
							

 ⁠
Name
probe::nfs.fop.flush — NFS client flush file operation

 ⁠Synopsis
nfs.fop.flush

 ⁠Values
	ndirty
	
								number of dirty page
							

	ino
	
								inode number
							

	mode
	
								file mode
							

	dev
	
								device identifier
							

 ⁠
Name
probe::nfs.fop.fsync — NFS client fsync operation

 ⁠Synopsis
nfs.fop.fsync

 ⁠Values
	ndirty
	
								number of dirty pages
							

	ino
	
								inode number
							

	dev
	
								device identifier
							

 ⁠
Name
probe::nfs.fop.llseek — NFS client llseek operation

 ⁠Synopsis
nfs.fop.llseek

 ⁠Values
	ino
	
								inode number
							

	whence
	
								the position to seek from
							

	dev
	
								device identifier
							

	offset
	
								the offset of the file will be repositioned
							

	whence_str
	
								symbolic string representation of the position to seek from
							

 ⁠
Name
probe::nfs.fop.lock — NFS client file lock operation

 ⁠Synopsis
nfs.fop.lock

 ⁠Values
	fl_start
	
								starting offset of locked region
							

	ino
	
								inode number
							

	fl_flag
	
								lock flags
							

	i_mode
	
								file type and access rights
							

	dev
	
								device identifier
							

	fl_end
	
								ending offset of locked region
							

	fl_type
	
								lock type
							

	cmd
	
								cmd arguments
							

 ⁠
Name
probe::nfs.fop.mmap — NFS client mmap operation

 ⁠Synopsis
nfs.fop.mmap

 ⁠Values
	attrtimeo
	
								how long the cached information is assumed to be valid. We need to revalidate the cached attrs for this inode if jiffies - read_cache_jiffies > attrtimeo.
							

	vm_end
	
								the first byte after end address within vm_mm
							

	dev
	
								device identifier
							

	buf
	
								the address of buf in user space
							

	vm_flag
	
								vm flags
							

	cache_time
	
								when we started read-caching this inode
							

	file_name
	
								file name
							

	ino
	
								inode number
							

	cache_valid
	
								cache related bit mask flag
							

	parent_name
	
								parent dir name
							

	vm_start
	
								start address within vm_mm
							

 ⁠
Name
probe::nfs.fop.open — NFS client file open operation

 ⁠Synopsis
nfs.fop.open

 ⁠Values
	flag
	
								file flag
							

	i_size
	
								file length in bytes
							

	dev
	
								device identifier
							

	file_name
	
								file name
							

	ino
	
								inode number
							

 ⁠
Name
probe::nfs.fop.read — NFS client read operation

 ⁠Synopsis
nfs.fop.read

 ⁠Values
	devname
	
								block device name
							

 ⁠Description

					SystemTap uses the vfs.do_sync_read probe to implement this probe and as a result will get operations other than the NFS client read operations.
				

 ⁠
Name
probe::nfs.fop.read_iter — NFS client read_iter file operation

 ⁠Synopsis
nfs.fop.read_iter

 ⁠Values
	ino
	
								inode number
							

	file_name
	
								file name
							

	cache_time
	
								when we started read-caching this inode
							

	pos
	
								current position of file
							

	dev
	
								device identifier
							

	attrtimeo
	
								how long the cached information is assumed to be valid. We need to revalidate the cached attrs for this inode if jiffies - read_cache_jiffies > attrtimeo.
							

	count
	
								read bytes
							

	parent_name
	
								parent dir name
							

	cache_valid
	
								cache related bit mask flag
							

 ⁠
Name
probe::nfs.fop.release — NFS client release page operation

 ⁠Synopsis
nfs.fop.release

 ⁠Values
	ino
	
								inode number
							

	dev
	
								device identifier
							

	mode
	
								file mode
							

 ⁠
Name
probe::nfs.fop.sendfile — NFS client send file operation

 ⁠Synopsis
nfs.fop.sendfile

 ⁠Values
	cache_valid
	
								cache related bit mask flag
							

	ppos
	
								current position of file
							

	count
	
								read bytes
							

	dev
	
								device identifier
							

	attrtimeo
	
								how long the cached information is assumed to be valid. We need to revalidate the cached attrs for this inode if jiffies - read_cache_jiffies > attrtimeo.
							

	ino
	
								inode number
							

	cache_time
	
								when we started read-caching this inode
							

 ⁠
Name
probe::nfs.fop.write — NFS client write operation

 ⁠Synopsis
nfs.fop.write

 ⁠Values
	devname
	
								block device name
							

 ⁠Description

					SystemTap uses the vfs.do_sync_write probe to implement this probe and as a result will get operations other than the NFS client write operations.
				

 ⁠
Name
probe::nfs.fop.write_iter — NFS client write_iter file operation

 ⁠Synopsis
nfs.fop.write_iter

 ⁠Values
	parent_name
	
								parent dir name
							

	count
	
								read bytes
							

	pos
	
								offset of the file
							

	dev
	
								device identifier
							

	file_name
	
								file name
							

	ino
	
								inode number
							

 ⁠
Name
probe::nfs.proc.commit — NFS client committing data on server

 ⁠Synopsis
nfs.proc.commit

 ⁠Values
	size
	
								read bytes in this execution
							

	prot
	
								transfer protocol
							

	version
	
								NFS version
							

	server_ip
	
								IP address of server
							

	bitmask1
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

	offset
	
								the file offset
							

	bitmask0
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

 ⁠Description

					All the nfs.proc.commit kernel functions were removed in kernel commit 200baa in December 2006, so these probes do not exist on Linux 2.6.21 and newer kernels.
				

					Fires when client writes the buffered data to disk. The buffered data is asynchronously written by client earlier. The commit function works in sync way. This probe point does not exist in NFSv2.
				

 ⁠
Name
probe::nfs.proc.commit_done — NFS client response to a commit RPC task

 ⁠Synopsis
nfs.proc.commit_done

 ⁠Values
	status
	
								result of last operation
							

	server_ip
	
								IP address of server
							

	prot
	
								transfer protocol
							

	version
	
								NFS version
							

	count
	
								number of bytes committed
							

	valid
	
								fattr->valid, indicates which fields are valid
							

	timestamp
	
								V4 timestamp, which is used for lease renewal
							

 ⁠Description

					Fires when a reply to a commit RPC task is received or some commit operation error occur (timeout or socket shutdown).
				

 ⁠
Name
probe::nfs.proc.commit_setup — NFS client setting up a commit RPC task

 ⁠Synopsis
nfs.proc.commit_setup

 ⁠Values
	version
	
								NFS version
							

	count
	
								bytes in this commit
							

	prot
	
								transfer protocol
							

	server_ip
	
								IP address of server
							

	bitmask1
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

	bitmask0
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

	offset
	
								the file offset
							

	size
	
								bytes in this commit
							

 ⁠Description

					The commit_setup function is used to setup a commit RPC task. Is is not doing the actual commit operation. It does not exist in NFSv2.
				

 ⁠
Name
probe::nfs.proc.create — NFS client creating file on server

 ⁠Synopsis
nfs.proc.create

 ⁠Values
	server_ip
	
								IP address of server
							

	prot
	
								transfer protocol
							

	version
	
								NFS version (the function is used for all NFS version)
							

	filename
	
								file name
							

	fh
	
								file handle of parent dir
							

	filelen
	
								length of file name
							

	flag
	
								indicates create mode (only for NFSv3 and NFSv4)
							

 ⁠
Name
probe::nfs.proc.handle_exception — NFS client handling an NFSv4 exception

 ⁠Synopsis
nfs.proc.handle_exception

 ⁠Values
	errorcode
	
								indicates the type of error
							

 ⁠Description

					This is the error handling routine for processes for NFSv4.
				

 ⁠
Name
probe::nfs.proc.lookup — NFS client opens/searches a file on server

 ⁠Synopsis
nfs.proc.lookup

 ⁠Values
	bitmask1
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

	bitmask0
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

	filename
	
								the name of file which client opens/searches on server
							

	server_ip
	
								IP address of server
							

	prot
	
								transfer protocol
							

	name_len
	
								the length of file name
							

	version
	
								NFS version
							

 ⁠
Name
probe::nfs.proc.open — NFS client allocates file read/write context information

 ⁠Synopsis
nfs.proc.open

 ⁠Values
	flag
	
								file flag
							

	filename
	
								file name
							

	version
	
								NFS version (the function is used for all NFS version)
							

	prot
	
								transfer protocol
							

	mode
	
								file mode
							

	server_ip
	
								IP address of server
							

 ⁠Description

					Allocate file read/write context information
				

 ⁠
Name
probe::nfs.proc.read — NFS client synchronously reads file from server

 ⁠Synopsis
nfs.proc.read

 ⁠Values
	offset
	
								the file offset
							

	server_ip
	
								IP address of server
							

	flags
	
								used to set task->tk_flags in rpc_init_task function
							

	prot
	
								transfer protocol
							

	count
	
								read bytes in this execution
							

	version
	
								NFS version
							

 ⁠Description

					All the nfs.proc.read kernel functions were removed in kernel commit 8e0969 in December 2006, so these probes do not exist on Linux 2.6.21 and newer kernels.
				

 ⁠
Name
probe::nfs.proc.read_done — NFS client response to a read RPC task

 ⁠Synopsis
nfs.proc.read_done

 ⁠Values
	timestamp
	
								V4 timestamp, which is used for lease renewal
							

	prot
	
								transfer protocol
							

	count
	
								number of bytes read
							

	version
	
								NFS version
							

	status
	
								result of last operation
							

	server_ip
	
								IP address of server
							

 ⁠Description

					Fires when a reply to a read RPC task is received or some read error occurs (timeout or socket shutdown).
				

 ⁠
Name
probe::nfs.proc.read_setup — NFS client setting up a read RPC task

 ⁠Synopsis
nfs.proc.read_setup

 ⁠Values
	offset
	
								the file offset
							

	server_ip
	
								IP address of server
							

	prot
	
								transfer protocol
							

	version
	
								NFS version
							

	count
	
								read bytes in this execution
							

	size
	
								read bytes in this execution
							

 ⁠Description

					The read_setup function is used to setup a read RPC task. It is not doing the actual read operation.
				

 ⁠
Name
probe::nfs.proc.release — NFS client releases file read/write context information

 ⁠Synopsis
nfs.proc.release

 ⁠Values
	flag
	
								file flag
							

	filename
	
								file name
							

	prot
	
								transfer protocol
							

	version
	
								NFS version (the function is used for all NFS version)
							

	mode
	
								file mode
							

	server_ip
	
								IP address of server
							

 ⁠Description

					Release file read/write context information
				

 ⁠
Name
probe::nfs.proc.remove — NFS client removes a file on server

 ⁠Synopsis
nfs.proc.remove

 ⁠Values
	prot
	
								transfer protocol
							

	version
	
								NFS version (the function is used for all NFS version)
							

	server_ip
	
								IP address of server
							

	filelen
	
								length of file name
							

	filename
	
								file name
							

	fh
	
								file handle of parent dir
							

 ⁠
Name
probe::nfs.proc.rename — NFS client renames a file on server

 ⁠Synopsis
nfs.proc.rename

 ⁠Values
	new_fh
	
								file handle of new parent dir
							

	new_filelen
	
								length of new file name
							

	old_name
	
								old file name
							

	version
	
								NFS version (the function is used for all NFS version)
							

	old_fh
	
								file handle of old parent dir
							

	prot
	
								transfer protocol
							

	new_name
	
								new file name
							

	old_filelen
	
								length of old file name
							

	server_ip
	
								IP address of server
							

 ⁠
Name
probe::nfs.proc.rename_done — NFS client response to a rename RPC task

 ⁠Synopsis
nfs.proc.rename_done

 ⁠Values
	timestamp
	
								V4 timestamp, which is used for lease renewal
							

	status
	
								result of last operation
							

	server_ip
	
								IP address of server
							

	prot
	
								transfer protocol
							

	version
	
								NFS version
							

	old_fh
	
								file handle of old parent dir
							

	new_fh
	
								file handle of new parent dir
							

 ⁠Description

					Fires when a reply to a rename RPC task is received or some rename error occurs (timeout or socket shutdown).
				

 ⁠
Name
probe::nfs.proc.rename_setup — NFS client setting up a rename RPC task

 ⁠Synopsis
nfs.proc.rename_setup

 ⁠Values
	fh
	
								file handle of parent dir
							

	prot
	
								transfer protocol
							

	version
	
								NFS version
							

	server_ip
	
								IP address of server
							

 ⁠Description

					The rename_setup function is used to setup a rename RPC task. Is is not doing the actual rename operation.
				

 ⁠
Name
probe::nfs.proc.write — NFS client synchronously writes file to server

 ⁠Synopsis
nfs.proc.write

 ⁠Values
	size
	
								read bytes in this execution
							

	flags
	
								used to set task->tk_flags in rpc_init_task function
							

	prot
	
								transfer protocol
							

	version
	
								NFS version
							

	bitmask1
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

	offset
	
								the file offset
							

	bitmask0
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

	server_ip
	
								IP address of server
							

 ⁠Description

					All the nfs.proc.write kernel functions were removed in kernel commit 200baa in December 2006, so these probes do not exist on Linux 2.6.21 and newer kernels.
				

 ⁠
Name
probe::nfs.proc.write_done — NFS client response to a write RPC task

 ⁠Synopsis
nfs.proc.write_done

 ⁠Values
	server_ip
	
								IP address of server
							

	status
	
								result of last operation
							

	version
	
								NFS version
							

	count
	
								number of bytes written
							

	prot
	
								transfer protocol
							

	valid
	
								fattr->valid, indicates which fields are valid
							

	timestamp
	
								V4 timestamp, which is used for lease renewal
							

 ⁠Description

					Fires when a reply to a write RPC task is received or some write error occurs (timeout or socket shutdown).
				

 ⁠
Name
probe::nfs.proc.write_setup — NFS client setting up a write RPC task

 ⁠Synopsis
nfs.proc.write_setup

 ⁠Values
	size
	
								bytes written in this execution
							

	prot
	
								transfer protocol
							

	version
	
								NFS version
							

	count
	
								bytes written in this execution
							

	bitmask0
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

	bitmask1
	
								V4 bitmask representing the set of attributes supported on this filesystem
							

	offset
	
								the file offset
							

	how
	
								used to set args.stable. The stable value could be: NFS_UNSTABLE,NFS_DATA_SYNC,NFS_FILE_SYNC (in nfs.proc3.write_setup and nfs.proc4.write_setup)
							

	server_ip
	
								IP address of server
							

 ⁠Description

					The write_setup function is used to setup a write RPC task. It is not doing the actual write operation.
				

 ⁠
Name
probe::nfsd.close — NFS server closing a file for client

 ⁠Synopsis
nfsd.close

 ⁠Values
	filename
	
								file name
							

 ⁠Description

					This probe point does not exist in kernels starting with 4.2.
				

 ⁠
Name
probe::nfsd.commit — NFS server committing all pending writes to stable storage

 ⁠Synopsis
nfsd.commit

 ⁠Values
	fh
	
								file handle (the first part is the length of the file handle)
							

	flag
	
								indicates whether this execution is a sync operation
							

	offset
	
								the offset of file
							

	size
	
								read bytes
							

	count
	
								read bytes
							

	client_ip
	
								the ip address of client
							

 ⁠
Name
probe::nfsd.create — NFS server creating a file(regular,dir,device,fifo) for client

 ⁠Synopsis
nfsd.create

 ⁠Values
	fh
	
								file handle (the first part is the length of the file handle)
							

	iap_valid
	
								Attribute flags
							

	filelen
	
								the length of file name
							

	type
	
								file type(regular,dir,device,fifo ...)
							

	filename
	
								file name
							

	iap_mode
	
								file access mode
							

	client_ip
	
								the ip address of client
							

 ⁠Description

					Sometimes nfsd will call nfsd_create_v3 instead of this this probe point.
				

 ⁠
Name
probe::nfsd.createv3 — NFS server creating a regular file or set file attributes for client

 ⁠Synopsis
nfsd.createv3

 ⁠Values
	iap_mode
	
								file access mode
							

	filename
	
								file name
							

	client_ip
	
								the ip address of client
							

	fh
	
								file handle (the first part is the length of the file handle)
							

	createmode
	
								create mode .The possible values could be: NFS3_CREATE_EXCLUSIVE, NFS3_CREATE_UNCHECKED, or NFS3_CREATE_GUARDED
							

	filelen
	
								the length of file name
							

	iap_valid
	
								Attribute flags
							

	verifier
	
								file attributes (atime,mtime,mode). It's used to reset file attributes for CREATE_EXCLUSIVE
							

	truncp
	
								trunp arguments, indicates if the file shouldbe truncate
							

 ⁠Description

					This probepoints is only called by nfsd3_proc_create and nfsd4_open when op_claim_type is NFS4_OPEN_CLAIM_NULL.
				

 ⁠
Name
probe::nfsd.dispatch — NFS server receives an operation from client

 ⁠Synopsis
nfsd.dispatch

 ⁠Values
	xid
	
								transmission id
							

	version
	
								nfs version
							

	proto
	
								transfer protocol
							

	proc
	
								procedure number
							

	client_ip
	
								the ip address of client
							

	prog
	
								program number
							

 ⁠
Name
probe::nfsd.lookup — NFS server opening or searching file for a file for client

 ⁠Synopsis
nfsd.lookup

 ⁠Values
	filename
	
								file name
							

	client_ip
	
								the ip address of client
							

	fh
	
								file handle of parent dir(the first part is the length of the file handle)
							

	filelen
	
								the length of file name
							

 ⁠
Name
probe::nfsd.open — NFS server opening a file for client

 ⁠Synopsis
nfsd.open

 ⁠Values
	fh
	
								file handle (the first part is the length of the file handle)
							

	type
	
								type of file (regular file or dir)
							

	access
	
								indicates the type of open (read/write/commit/readdir...)
							

	client_ip
	
								the ip address of client
							

 ⁠
Name
probe::nfsd.proc.commit — NFS server performing a commit operation for client

 ⁠Synopsis
nfsd.proc.commit

 ⁠Values
	count
	
								read bytes
							

	client_ip
	
								the ip address of client
							

	proto
	
								transfer protocol
							

	size
	
								read bytes
							

	version
	
								nfs version
							

	uid
	
								requester's user id
							

	offset
	
								the offset of file
							

	gid
	
								requester's group id
							

	fh
	
								file handle (the first part is the length of the file handle)
							

 ⁠
Name
probe::nfsd.proc.create — NFS server creating a file for client

 ⁠Synopsis
nfsd.proc.create

 ⁠Values
	proto
	
								transfer protocol
							

	filename
	
								file name
							

	client_ip
	
								the ip address of client
							

	uid
	
								requester's user id
							

	version
	
								nfs version
							

	gid
	
								requester's group id
							

	fh
	
								file handle (the first part is the length of the file handle)
							

	filelen
	
								length of file name
							

 ⁠
Name
probe::nfsd.proc.lookup — NFS server opening or searching for a file for client

 ⁠Synopsis
nfsd.proc.lookup

 ⁠Values
	fh
	
								file handle of parent dir (the first part is the length of the file handle)
							

	gid
	
								requester's group id
							

	filelen
	
								the length of file name
							

	uid
	
								requester's user id
							

	version
	
								nfs version
							

	proto
	
								transfer protocol
							

	filename
	
								file name
							

	client_ip
	
								the ip address of client
							

 ⁠
Name
probe::nfsd.proc.read — NFS server reading file for client

 ⁠Synopsis
nfsd.proc.read

 ⁠Values
	size
	
								read bytes
							

	vec
	
								struct kvec, includes buf address in kernel address and length of each buffer
							

	version
	
								nfs version
							

	uid
	
								requester's user id
							

	count
	
								read bytes
							

	client_ip
	
								the ip address of client
							

	proto
	
								transfer protocol
							

	offset
	
								the offset of file
							

	gid
	
								requester's group id
							

	vlen
	
								read blocks
							

	fh
	
								file handle (the first part is the length of the file handle)
							

 ⁠
Name
probe::nfsd.proc.remove — NFS server removing a file for client

 ⁠Synopsis
nfsd.proc.remove

 ⁠Values
	gid
	
								requester's group id
							

	fh
	
								file handle (the first part is the length of the file handle)
							

	filelen
	
								length of file name
							

	uid
	
								requester's user id
							

	version
	
								nfs version
							

	proto
	
								transfer protocol
							

	filename
	
								file name
							

	client_ip
	
								the ip address of client
							

 ⁠
Name
probe::nfsd.proc.rename — NFS Server renaming a file for client

 ⁠Synopsis
nfsd.proc.rename

 ⁠Values
	uid
	
								requester's user id
							

	tfh
	
								file handler of new path
							

	tname
	
								new file name
							

	filename
	
								old file name
							

	client_ip
	
								the ip address of client
							

	flen
	
								length of old file name
							

	gid
	
								requester's group id
							

	fh
	
								file handler of old path
							

	tlen
	
								length of new file name
							

 ⁠
Name
probe::nfsd.proc.write — NFS server writing data to file for client

 ⁠Synopsis
nfsd.proc.write

 ⁠Values
	offset
	
								the offset of file
							

	gid
	
								requester's group id
							

	vlen
	
								read blocks
							

	fh
	
								file handle (the first part is the length of the file handle)
							

	size
	
								read bytes
							

	vec
	
								struct kvec, includes buf address in kernel address and length of each buffer
							

	stable
	
								argp->stable
							

	version
	
								nfs version
							

	uid
	
								requester's user id
							

	count
	
								read bytes
							

	client_ip
	
								the ip address of client
							

	proto
	
								transfer protocol
							

 ⁠
Name
probe::nfsd.read — NFS server reading data from a file for client

 ⁠Synopsis
nfsd.read

 ⁠Values
	offset
	
								the offset of file
							

	vlen
	
								read blocks
							

	file
	
								argument file, indicates if the file has been opened.
							

	fh
	
								file handle (the first part is the length of the file handle)
							

	count
	
								read bytes
							

	client_ip
	
								the ip address of client
							

	size
	
								read bytes
							

	vec
	
								struct kvec, includes buf address in kernel address and length of each buffer
							

 ⁠
Name
probe::nfsd.rename — NFS server renaming a file for client

 ⁠Synopsis
nfsd.rename

 ⁠Values
	tlen
	
								length of new file name
							

	fh
	
								file handler of old path
							

	flen
	
								length of old file name
							

	client_ip
	
								the ip address of client
							

	filename
	
								old file name
							

	tname
	
								new file name
							

	tfh
	
								file handler of new path
							

 ⁠
Name
probe::nfsd.unlink — NFS server removing a file or a directory for client

 ⁠Synopsis
nfsd.unlink

 ⁠Values
	filelen
	
								the length of file name
							

	fh
	
								file handle (the first part is the length of the file handle)
							

	type
	
								file type (file or dir)
							

	client_ip
	
								the ip address of client
							

	filename
	
								file name
							

 ⁠
Name
probe::nfsd.write — NFS server writing data to a file for client

 ⁠Synopsis
nfsd.write

 ⁠Values
	offset
	
								the offset of file
							

	fh
	
								file handle (the first part is the length of the file handle)
							

	vlen
	
								read blocks
							

	file
	
								argument file, indicates if the file has been opened.
							

	client_ip
	
								the ip address of client
							

	count
	
								read bytes
							

	size
	
								read bytes
							

	vec
	
								struct kvec, includes buf address in kernel address and length of each buffer
							

 ⁠Chapter 33. Speculation

			This family of functions provides the ability to speculative record information and then at a later point in the SystemTap script either commit the information or discard it.
		

 ⁠
Name
function::commit — Write out all output related to a speculation buffer

 ⁠Synopsis

commit(id:long)

 ⁠Arguments
	id
	
								of the buffer to store the information in
							

 ⁠Description

					Output all the output for id in the order that it was entered into the speculative buffer by speculative.
				

 ⁠
Name
function::discard — Discard all output related to a speculation buffer

 ⁠Synopsis

discard(id:long)

 ⁠Arguments
	id
	
								of the buffer to store the information in
							

 ⁠
Name
function::speculate — Store a string for possible output later

 ⁠Synopsis

speculate(id:long,output:string)

 ⁠Arguments
	id
	
								buffer id to store the information in
							

	output
	
								string to write out when commit occurs
							

 ⁠Description

					Add a string to the speculaive buffer for id.
				

 ⁠
Name
function::speculation — Allocate a new id for speculative output

 ⁠Synopsis

speculation:long()

 ⁠Arguments

					None
				

 ⁠Description

					The speculation function is called when a new speculation buffer is needed. It returns an id for the speculative output. There can be multiple threads being speculated on concurrently. This id is used by other speculation functions to keep the threads separate.
				

 ⁠
Name
function::commit — Write out all output related to a speculation buffer

 ⁠Synopsis

commit(id:long)

 ⁠Arguments
	id
	
								of the buffer to store the information in
							

 ⁠Description

					Output all the output for id in the order that it was entered into the speculative buffer by speculative.
				

 ⁠
Name
function::discard — Discard all output related to a speculation buffer

 ⁠Synopsis

discard(id:long)

 ⁠Arguments
	id
	
								of the buffer to store the information in
							

 ⁠
Name
function::speculate — Store a string for possible output later

 ⁠Synopsis

speculate(id:long,output:string)

 ⁠Arguments
	id
	
								buffer id to store the information in
							

	output
	
								string to write out when commit occurs
							

 ⁠Description

					Add a string to the speculaive buffer for id.
				

 ⁠
Name
function::speculation — Allocate a new id for speculative output

 ⁠Synopsis

speculation:long()

 ⁠Arguments

					None
				

 ⁠Description

					The speculation function is called when a new speculation buffer is needed. It returns an id for the speculative output. There can be multiple threads being speculated on concurrently. This id is used by other speculation functions to keep the threads separate.
				

 ⁠Chapter 34. JSON Tapset

			This family of probe points, functions, and macros is used to output data in JSON format. It contains the following probe points, functions, and macros:
		

 ⁠
Name
function::json_add_array — Add an array

 ⁠Synopsis

json_add_array:long(name:string,description:string)

 ⁠Arguments
	name
	
								The name of the array.
							

	description
	
								Array description. An empty string can be used.
							

 ⁠Description

					This function adds a array, setting up everything needed. Arrays contain other metrics, added with json_add_array_numeric_metric or json_add_array_string_metric.
				

 ⁠
Name
function::json_add_array_numeric_metric — Add a numeric metric to an array

 ⁠Synopsis

json_add_array_numeric_metric:long(array_name:string,metric_name:string,metric_description:string,metric_units:string)

 ⁠Arguments
	array_name
	
								The name of the array the numeric metric should be added to.
							

	metric_name
	
								The name of the numeric metric.
							

	metric_description
	
								Metric description. An empty string can be used.
							

	metric_units
	
								Metic units. An empty string can be used.
							

 ⁠Description

					This function adds a numeric metric to an array, setting up everything needed.
				

 ⁠
Name
function::json_add_array_string_metric — Add a string metric to an array

 ⁠Synopsis

json_add_array_string_metric:long(array_name:string,metric_name:string,metric_description:string)

 ⁠Arguments
	array_name
	
								The name of the array the string metric should be added to.
							

	metric_name
	
								The name of the string metric.
							

	metric_description
	
								Metric description. An empty string can be used.
							

 ⁠Description

					This function adds a string metric to an array, setting up everything needed.
				

 ⁠
Name
function::json_add_numeric_metric — Add a numeric metric

 ⁠Synopsis

json_add_numeric_metric:long(name:string,description:string,units:string)

 ⁠Arguments
	name
	
								The name of the numeric metric.
							

	description
	
								Metric description. An empty string can be used.
							

	units
	
								Metic units. An empty string can be used.
							

 ⁠Description

					This function adds a numeric metric, setting up everything needed.
				

 ⁠
Name
function::json_add_string_metric — Add a string metric

 ⁠Synopsis

json_add_string_metric:long(name:string,description:string)

 ⁠Arguments
	name
	
								The name of the string metric.
							

	description
	
								Metric description. An empty string can be used.
							

 ⁠Description

					This function adds a string metric, setting up everything needed.
				

 ⁠
Name
function::json_set_prefix — Set the metric prefix.

 ⁠Synopsis

json_set_prefix:long(prefix:string)

 ⁠Arguments
	prefix
	
								The prefix name to be used.
							

 ⁠Description

					This function sets the “prefix”, which is the name of the base of the metric hierarchy. Calling this function is optional, by default the name of the systemtap module is used.
				

 ⁠
Name
macro::json_output_array_numeric_value — Output a numeric value for metric in an array.

 ⁠Synopsis

@json_output_array_numeric_value(array_name,array_index,metric_name,value)

 ⁠Arguments
	array_name
	
								The name of the array.
							

	array_index
	
								The array index (as a string) indicating where to store the numeric value.
							

	metric_name
	
								The name of the numeric metric.
							

	value
	
								The numeric value to output.
							

 ⁠Description

					The json_output_array_numeric_value macro is designed to be called from the 'json_data' probe in the user's script to output a metric's numeric value that is in an array. This metric should have been added with json_add_array_numeric_metric.
				

 ⁠
Name
macro::json_output_array_string_value — Output a string value for metric in an array.

 ⁠Synopsis

@json_output_array_string_value(array_name,array_index,metric_name,value)

 ⁠Arguments
	array_name
	
								The name of the array.
							

	array_index
	
								The array index (as a string) indicating where to store the string value.
							

	metric_name
	
								The name of the string metric.
							

	value
	
								The string value to output.
							

 ⁠Description

					The json_output_array_string_value macro is designed to be called from the 'json_data' probe in the user's script to output a metric's string value that is in an array. This metric should have been added with json_add_array_string_metric.
				

 ⁠
Name
macro::json_output_data_end — End the json output.

 ⁠Synopsis

@json_output_data_end()

 ⁠Arguments

					None
				

 ⁠Description

					The json_output_data_end macro is designed to be called from the 'json_data' probe from the user's script. It marks the end of the JSON output.
				

 ⁠
Name
macro::json_output_data_start — Start the json output.

 ⁠Synopsis

@json_output_data_start()

 ⁠Arguments

					None
				

 ⁠Description

					The json_output_data_start macro is designed to be called from the 'json_data' probe from the user's script. It marks the start of the JSON output.
				

 ⁠
Name
macro::json_output_numeric_value — Output a numeric value.

 ⁠Synopsis

@json_output_numeric_value(name,value)

 ⁠Arguments
	name
	
								The name of the numeric metric.
							

	value
	
								The numeric value to output.
							

 ⁠Description

					The json_output_numeric_value macro is designed to be called from the 'json_data' probe in the user's script to output a metric's numeric value. This metric should have been added with json_add_numeric_metric.
				

 ⁠
Name
macro::json_output_string_value — Output a string value.

 ⁠Synopsis

@json_output_string_value(name,value)

 ⁠Arguments
	name
	
								The name of the string metric.
							

	value
	
								The string value to output.
							

 ⁠Description

					The json_output_string_value macro is designed to be called from the 'json_data' probe in the user's script to output a metric's string value. This metric should have been added with json_add_string_metric.
				

 ⁠
Name
probe::json_data — Fires whenever JSON data is wanted by a reader.

 ⁠Synopsis
json_data

 ⁠Values

					None
				

 ⁠Context

					This probe fires when the JSON data is about to be read. This probe must gather up data and then call the following macros to output the data in JSON format. First, @json_output_data_start must be called. That call is followed by one or more of the following (one call for each data item): @json_output_string_value, @json_output_numeric_value, @json_output_array_string_value, and @json_output_array_numeric_value. Finally @json_output_data_end must be called.
				

 ⁠
Name
function::json_add_array — Add an array

 ⁠Synopsis

json_add_array:long(name:string,description:string)

 ⁠Arguments
	name
	
								The name of the array.
							

	description
	
								Array description. An empty string can be used.
							

 ⁠Description

					This function adds a array, setting up everything needed. Arrays contain other metrics, added with json_add_array_numeric_metric or json_add_array_string_metric.
				

 ⁠
Name
function::json_add_array_numeric_metric — Add a numeric metric to an array

 ⁠Synopsis

json_add_array_numeric_metric:long(array_name:string,metric_name:string,metric_description:string,metric_units:string)

 ⁠Arguments
	array_name
	
								The name of the array the numeric metric should be added to.
							

	metric_name
	
								The name of the numeric metric.
							

	metric_description
	
								Metric description. An empty string can be used.
							

	metric_units
	
								Metic units. An empty string can be used.
							

 ⁠Description

					This function adds a numeric metric to an array, setting up everything needed.
				

 ⁠
Name
function::json_add_array_string_metric — Add a string metric to an array

 ⁠Synopsis

json_add_array_string_metric:long(array_name:string,metric_name:string,metric_description:string)

 ⁠Arguments
	array_name
	
								The name of the array the string metric should be added to.
							

	metric_name
	
								The name of the string metric.
							

	metric_description
	
								Metric description. An empty string can be used.
							

 ⁠Description

					This function adds a string metric to an array, setting up everything needed.
				

 ⁠
Name
function::json_add_numeric_metric — Add a numeric metric

 ⁠Synopsis

json_add_numeric_metric:long(name:string,description:string,units:string)

 ⁠Arguments
	name
	
								The name of the numeric metric.
							

	description
	
								Metric description. An empty string can be used.
							

	units
	
								Metic units. An empty string can be used.
							

 ⁠Description

					This function adds a numeric metric, setting up everything needed.
				

 ⁠
Name
function::json_add_string_metric — Add a string metric

 ⁠Synopsis

json_add_string_metric:long(name:string,description:string)

 ⁠Arguments
	name
	
								The name of the string metric.
							

	description
	
								Metric description. An empty string can be used.
							

 ⁠Description

					This function adds a string metric, setting up everything needed.
				

 ⁠
Name
function::json_set_prefix — Set the metric prefix.

 ⁠Synopsis

json_set_prefix:long(prefix:string)

 ⁠Arguments
	prefix
	
								The prefix name to be used.
							

 ⁠Description

					This function sets the “prefix”, which is the name of the base of the metric hierarchy. Calling this function is optional, by default the name of the systemtap module is used.
				

 ⁠
Name
macro::json_output_array_numeric_value — Output a numeric value for metric in an array.

 ⁠Synopsis

@json_output_array_numeric_value(array_name,array_index,metric_name,value)

 ⁠Arguments
	array_name
	
								The name of the array.
							

	array_index
	
								The array index (as a string) indicating where to store the numeric value.
							

	metric_name
	
								The name of the numeric metric.
							

	value
	
								The numeric value to output.
							

 ⁠Description

					The json_output_array_numeric_value macro is designed to be called from the 'json_data' probe in the user's script to output a metric's numeric value that is in an array. This metric should have been added with json_add_array_numeric_metric.
				

 ⁠
Name
macro::json_output_array_string_value — Output a string value for metric in an array.

 ⁠Synopsis

@json_output_array_string_value(array_name,array_index,metric_name,value)

 ⁠Arguments
	array_name
	
								The name of the array.
							

	array_index
	
								The array index (as a string) indicating where to store the string value.
							

	metric_name
	
								The name of the string metric.
							

	value
	
								The string value to output.
							

 ⁠Description

					The json_output_array_string_value macro is designed to be called from the 'json_data' probe in the user's script to output a metric's string value that is in an array. This metric should have been added with json_add_array_string_metric.
				

 ⁠
Name
macro::json_output_data_end — End the json output.

 ⁠Synopsis

@json_output_data_end()

 ⁠Arguments

					None
				

 ⁠Description

					The json_output_data_end macro is designed to be called from the 'json_data' probe from the user's script. It marks the end of the JSON output.
				

 ⁠
Name
macro::json_output_data_start — Start the json output.

 ⁠Synopsis

@json_output_data_start()

 ⁠Arguments

					None
				

 ⁠Description

					The json_output_data_start macro is designed to be called from the 'json_data' probe from the user's script. It marks the start of the JSON output.
				

 ⁠
Name
macro::json_output_numeric_value — Output a numeric value.

 ⁠Synopsis

@json_output_numeric_value(name,value)

 ⁠Arguments
	name
	
								The name of the numeric metric.
							

	value
	
								The numeric value to output.
							

 ⁠Description

					The json_output_numeric_value macro is designed to be called from the 'json_data' probe in the user's script to output a metric's numeric value. This metric should have been added with json_add_numeric_metric.
				

 ⁠
Name
macro::json_output_string_value — Output a string value.

 ⁠Synopsis

@json_output_string_value(name,value)

 ⁠Arguments
	name
	
								The name of the string metric.
							

	value
	
								The string value to output.
							

 ⁠Description

					The json_output_string_value macro is designed to be called from the 'json_data' probe in the user's script to output a metric's string value. This metric should have been added with json_add_string_metric.
				

 ⁠
Name
probe::json_data — Fires whenever JSON data is wanted by a reader.

 ⁠Synopsis
json_data

 ⁠Values

					None
				

 ⁠Context

					This probe fires when the JSON data is about to be read. This probe must gather up data and then call the following macros to output the data in JSON format. First, @json_output_data_start must be called. That call is followed by one or more of the following (one call for each data item): @json_output_string_value, @json_output_numeric_value, @json_output_array_string_value, and @json_output_array_numeric_value. Finally @json_output_data_end must be called.
				

 ⁠Chapter 35. Output file switching Tapset

			Utility function to allow switching of output files.
		

 ⁠
Name
function::switch_file — switch to the next output file

 ⁠Synopsis

switch_file()

 ⁠Arguments

					None
				

 ⁠Description

					This function sends a signal to the stapio process, commanding it to rotate to the next output file when output is sent to file(s).
				

 ⁠
Name
function::switch_file — switch to the next output file

 ⁠Synopsis

switch_file()

 ⁠Arguments

					None
				

 ⁠Description

					This function sends a signal to the stapio process, commanding it to rotate to the next output file when output is sent to file(s).
				

 ⁠Appendix A. Revision History

			Revision History
	Revision 7-6	Tue Oct 30 2018	Vladimír Slávik
	
						Release for Red Hat Enterprise Linux 7.6 GA.

				
	Revision 7-5	Tue Jan 09 2018	Vladimír Slávik
	
						Release for Red Hat Enterprise Linux 7.5 Beta.

				
	Revision 7-4	Wed Jul 26 2017	Vladimír Slávik
	
						Release for Red Hat Enterprise Linux 7.4.

				
	Revision 1-4	Wed Oct 19 2016	Robert Krátký
	
						Release for Red Hat Enterprise Linux 7.3.

				
	Revision 1-2	Thu Mar 10 2016	Robert Kratky
	
						Async release for Red Hat Enterprise Linux 7.2.

				
	Revision 1-2	Thu Nov 11 2015	Robert Kratky
	
						Release for Red Hat Enterprise Linux 7.2.

				

	

OEBPS/Common_Content/images/rhlogo.png
E) redhat.

OEBPS/Common_Content/images/dot.png

OEBPS/Common_Content/images/37.png

OEBPS/Common_Content/images/green.png

OEBPS/Common_Content/fonts/overpass_light-web.ttf

OEBPS/Common_Content/fonts/overpass_bold-web.eot

OEBPS/Common_Content/images/38.png

OEBPS/Common_Content/images/36.png

OEBPS/Common_Content/images/stock-home.png

OEBPS/Common_Content/images/28.png

OEBPS/Common_Content/fonts/overpass_bold-web.ttf

OEBPS/Common_Content/images/Enterprise_title_logo.png
E) redhat.

OEBPS/Common_Content/images/Online_title_logo.png
E) redhat.

OEBPS/Common_Content/images/warning.png

OEBPS/Common_Content/images/35.png

OEBPS/Common_Content/fonts/overpass_light-web.eot

OEBPS/Common_Content/images/29.png

OEBPS/Common_Content/images/26.png

OEBPS/Common_Content/images/11.png

OEBPS/Common_Content/images/9.png

OEBPS/Common_Content/images/yellow.png

OEBPS/Common_Content/images/27.png

OEBPS/Common_Content/images/stock-go-back.png

OEBPS/Common_Content/fonts/overpass_bold-web.woff

OEBPS/Common_Content/images/12.png

OEBPS/Common_Content/images/8.png

OEBPS/Common_Content/images/39.png

OEBPS/Common_Content/images/bullet_arrowblue.png

OEBPS/Common_Content/images/24.png

OEBPS/Common_Content/images/title_logo.png
E) redhat.

OEBPS/Common_Content/images/7.png

OEBPS/Common_Content/images/10.png

OEBPS/Common_Content/images/6.png

OEBPS/Common_Content/images/25.png

OEBPS/Common_Content/images/30.png

OEBPS/Common_Content/images/22.png

OEBPS/Common_Content/images/5.png

OEBPS/Common_Content/images/note.png

OEBPS/Common_Content/images/4.png

OEBPS/Common_Content/images/23.png

OEBPS/Common_Content/images/40.png

OEBPS/Common_Content/images/bkgrnd_greydots.png

OEBPS/Common_Content/images/shine.png

OEBPS/Common_Content/images/shade.png

OEBPS/Common_Content/images/image_right.png

OEBPS/Common_Content/images/red.png

OEBPS/Common_Content/images/stock-go-up.png

OEBPS/Common_Content/images/3.png

OEBPS/Common_Content/images/image_left.png
E) redhat.

OEBPS/Common_Content/images/16.png

OEBPS/Common_Content/images/13.png

OEBPS/Common_Content/images/important.png

OEBPS/Common_Content/images/2.png

OEBPS/Common_Content/images/15.png

OEBPS/Common_Content/images/20.png

OEBPS/Common_Content/images/21.png

OEBPS/Common_Content/images/14.png

OEBPS/Common_Content/images/1.png

OEBPS/Common_Content/images/18.png

OEBPS/Common_Content/images/dot2.png

OEBPS/Common_Content/images/documentation.png

OEBPS/Common_Content/images/34.png

OEBPS/Common_Content/images/17.png

OEBPS/Common_Content/images/33.png

OEBPS/Common_Content/images/h1-bg.png

OEBPS/content.opf
 7_TapsetRef SystemTap Tapset Reference The Tapset Reference Guide describes the most common tapset definitions users can apply to SystemTap scripts. Red Hat Enterprise Linux Documentation Vladimír Slávik Robert Krátký William Cohen Don Domingo Jacquelynn East en

OEBPS/Common_Content/images/32.png

OEBPS/Common_Content/images/19.png

OEBPS/Common_Content/images/watermark-draft.png

OEBPS/Common_Content/images/31.png

OEBPS/Common_Content/images/stock-go-forward.png

