Red Hat Enterprise Linux 7
Resource Management Guide

Managing system resources on Red Hat Enterprise Linux 7

		[image:]

	

Marie Doleželová
Red Hat Customer Content Services
mdolezel@redhat.com
Milan Navrátil
Red Hat Customer Content Services

Eva Majoršinová
Red Hat Customer Content Services

Peter Ondrejka
Red Hat Customer Content Services

Douglas Silas
Red Hat Customer Content Services

Martin Prpič
Red Hat Product Security

Rüdiger Landmann
Red Hat Customer Content Services

Legal Notice

		Copyright © 2018 Red Hat, Inc.
	

		This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported License. If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be removed.
	

		Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
	

		Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
	

		Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
	

		Java® is a registered trademark of Oracle and/or its affiliates.
	

		XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
	

		MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
	

		Node.js® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
	

		The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
	

		All other trademarks are the property of their respective owners.
	

Abstract

			Managing system resources on Red Hat Enterprise Linux 7.
		

 ⁠Chapter 1. Introduction to Control Groups (Cgroups)

 ⁠1.1. What are Control Groups

			The control groups, abbreviated as cgroups in this guide, are a Linux kernel feature that allows you to allocate resources — such as CPU time, system memory, network bandwidth, or combinations of these resources — among hierarchically ordered groups of processes running on a system. By using cgroups, system administrators gain fine-grained control over allocating, prioritizing, denying, managing, and monitoring system resources. Hardware resources can be smartly divided up among applications and users, increasing overall efficiency.
		

			Control Groups provide a way to hierarchically group and label processes, and to apply resource limits to them. Traditionally, all processes received similar amounts of system resources that the administrator could modulate with the process niceness value. With this approach, applications that involved a large number of processes received more resources than applications with few processes, regardless of the relative importance of these applications.
		

			Red Hat Enterprise Linux 7 moves the resource management settings from the process level to the application level by binding the system of cgroup hierarchies with the systemd unit tree. Therefore, you can manage system resources with systemctl commands, or by modifying systemd unit files. See Chapter 2, Using Control Groups for details.
		

			In previous versions of Red Hat Enterprise Linux, system administrators built custom cgroup hierarchies with the use of the cgconfig command from the libcgroup package. This package is now deprecated, and it is not recommended to use it since it can easily create conflicts with the default cgroup hierarchy. However, libcgroup is still available to cover for certain specific cases, where systemd is not yet applicable, most notably for using the net-prio subsystem. See Chapter 3, Using libcgroup Tools.
		

			The aforementioned tools provide a high-level interface to interact with cgroup controllers (also known as subsystems) in Linux kernel. The main cgroup controllers for resource management are cpu, memory, and blkio, see Available Controllers in Red Hat Enterprise Linux 7 for the list of controllers enabled by default. For detailed description of resource controllers and their configurable parameters, see Controller-Specific Kernel Documentation.
		

 ⁠1.2. Default Cgroup Hierarchies

			By default, systemd automatically creates a hierarchy of slice, scope and service units to provide a unified structure for the cgroup tree. With the systemctl command, you can further modify this structure by creating custom slices, as shown in Section 2.1, “Creating Control Groups”. Also, systemd automatically mounts hierarchies for important kernel resource controllers (see Available Controllers in Red Hat Enterprise Linux 7) in the /sys/fs/cgroup/ directory.
		
Warning

				The deprecated cgconfig tool from the libcgroup package is available to mount and handle hierarchies for controllers not yet supported by systemd (most notably the net-prio controller). Never use libcgropup tools to modify the default hierarchies mounted by systemd since it would lead to unexpected behavior. The libcgroup library will be removed in future versions of Red Hat Enterprise Linux. For more information on how to use cgconfig, see Chapter 3, Using libcgroup Tools.
			

 ⁠Systemd Unit Types

			All processes running on the system are child processes of the systemd init process. Systemd provides three unit types that are used for the purpose of resource control (for a complete list of systemd's unit types, see the chapter called Managing Services with systemd in Red Hat Enterprise Linux 7 System Administrator's Guide):
		
	
					Service — A process or a group of processes, which systemd started based on a unit configuration file. Services encapsulate the specified processes so that they can be started and stopped as one set. Services are named in the following way:
				
name.service

					Where name stands for the name of the service.
				

	
					Scope — A group of externally created processes. Scopes encapsulate processes that are started and stopped by arbitrary processes through the fork() function and then registered by systemd at runtime. For instance, user sessions, containers, and virtual machines are treated as scopes. Scopes are named as follows:
				
name.scope

					Here, name stands for the name of the scope.
				

	
					Slice — A group of hierarchically organized units. Slices do not contain processes, they organize a hierarchy in which scopes and services are placed. The actual processes are contained in scopes or in services. In this hierarchical tree, every name of a slice unit corresponds to the path to a location in the hierarchy. The dash ("-") character acts as a separator of the path components. For example, if the name of a slice looks as follows:
				
parent-name.slice

					it means that a slice called parent-name.slice is a subslice of the parent.slice. This slice can have its own subslice named parent-name-name2.slice, and so on.
				

					There is one root slice denoted as:
				
-.slice

			Service, scope, and slice units directly map to objects in the cgroup tree. When these units are activated, they map directly to cgroup paths built from the unit names. For example, the ex.service residing in the test-waldo.slice is mapped to the cgroup test.slice/test-waldo.slice/ex.service/.
		

			Services, scopes, and slices are created manually by the system administrator or dynamically by programs. By default, the operating system defines a number of built-in services that are necessary to run the system. Also, there are four slices created by default:
		
	
					-.slice — the root slice;
				

	
					system.slice — the default place for all system services;
				

	
					user.slice — the default place for all user sessions;
				

	
					machine.slice — the default place for all virtual machines and Linux containers.
				

			Note that all user sessions are automatically placed in a separated scope unit, as well as virtual machines and container processes. Furthermore, all users are assigned with an implicit subslice. Besides the above default configuration, the system administrator can define new slices and assign services and scopes to them.
		

			The following tree is a simplified example of a cgroup tree. This output was generated with the systemd-cgls command described in Section 2.4, “Obtaining Information about Control Groups”:
		

├─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 20
├─user.slice
│ └─user-1000.slice
│ └─session-1.scope
│ ├─11459 gdm-session-worker [pam/gdm-password]
│ ├─11471 gnome-session --session gnome-classic
│ ├─11479 dbus-launch --sh-syntax --exit-with-session
│ ├─11480 /bin/dbus-daemon --fork --print-pid 4 --print-address 6 --session
│ ...
│
└─system.slice
 ├─systemd-journald.service
 │ └─422 /usr/lib/systemd/systemd-journald
 ├─bluetooth.service
 │ └─11691 /usr/sbin/bluetoothd -n
 ├─systemd-localed.service
 │ └─5328 /usr/lib/systemd/systemd-localed
 ├─colord.service
 │ └─5001 /usr/libexec/colord
 ├─sshd.service
 │ └─1191 /usr/sbin/sshd -D
 │
 ...

			As you can see, services and scopes contain processes and are placed in slices that do not contain processes of their own. The only exception is PID 1 that is located in the special systemd.slice. Also note that -.slice is not shown as it is implicitly identified with the root of the entire tree.
		

			Service and slice units can be configured with persistent unit files as described in Section 2.3.2, “Modifying Unit Files”, or created dynamically at runtime by API calls to PID 1 (see the section called “Online Documentation” for API reference). Scope units can be created only by the first method. Units created dynamically with API calls are transient and exist only during runtime. Transient units are released automatically as soon as they finish, get deactivated, or the system is rebooted.
		

 ⁠1.3. Resource Controllers in Linux Kernel

			A resource controller, also called a cgroup subsystem, represents a single resource, such as CPU time or memory. The Linux kernel provides a range of resource controllers, that are mounted automatically by systemd. Find the list of currently mounted resource controllers in /proc/cgroups, or use the lssubsys monitoring tool. In Red Hat Enterprise Linux 7, systemd mounts the following controllers by default:
		

 ⁠Available Controllers in Red Hat Enterprise Linux 7
	
					blkio — sets limits on input/output access to and from block devices;
				

	
					cpu — uses the CPU scheduler to provide cgroup tasks access to the CPU. It is mounted together with the cpuacct controller on the same mount;
				

	
					cpuacct — creates automatic reports on CPU resources used by tasks in a cgroup. It is mounted together with the cpu controller on the same mount;
				

	
					cpuset — assigns individual CPUs (on a multicore system) and memory nodes to tasks in a cgroup;
				

	
					devices — allows or denies access to devices for tasks in a cgroup;
				

	
					freezer — suspends or resumes tasks in a cgroup;
				

	
					memory — sets limits on memory use by tasks in a cgroup and generates automatic reports on memory resources used by those tasks;
				

	
					net_cls — tags network packets with a class identifier (classid) that allows the Linux traffic controller (the tc command) to identify packets originating from a particular cgroup task. A subsystem of net_cls, the net_filter (iptables) can also use this tag to perform actions on such packets. The net_filter tags network sockets with a firewall identifier (fwid) that allows the Linux firewall (the iptables command) to identify packets (skb->sk) originating from a particular cgroup task;
				

	
					perf_event — enables monitoring cgroups with the perf tool;
				

	
					hugetlb — allows to use virtual memory pages of large sizes and to enforce resource limits on these pages.
				

			The Linux kernel exposes a wide range of tunable parameters for resource controllers that can be configured with systemd. See the kernel documentation (list of references in the Controller-Specific Kernel Documentation section) for detailed description of these parameters.
		

 ⁠1.4. Additional Resources

			To find more information about resource control under systemd, the unit hierarchy, as well as the kernel resource controllers, see the materials listed below:
		

 ⁠Installed Documentation

 ⁠Cgroup-Related Systemd Documentation

				The following manual pages contain general information on unified cgroup hierarchy under systemd:
			
	
					systemd.resource-control(5) — describes the configuration options for resource control shared by system units.
				

	
					systemd.unit(5) — describes common options of all unit configuration files.
				

	
					systemd.slice(5) — provides general information about .slice units.
				

	
					systemd.scope(5) — provides general information about .scope units.
				

	
					systemd.service(5) — provides general information about .service units.
				

 ⁠Controller-Specific Kernel Documentation

				The kernel-doc package provides a detailed documentation of all resource controllers. This package is included in the Optional subscription channel. Before subscribing to the Optional channel, see the Scope of Coverage Details for Optional software, then follow the steps documented in the article called How to access Optional and Supplementary channels, and -devel packages using Red Hat Subscription Manager (RHSM)? on Red Hat Customer Portal. To install kernel-doc from the Optional channel, type as root:
			
~]# yum install kernel-doc

				After the installation, the following files will appear under the /usr/share/doc/kernel-doc-<kernel_version>/Documentation/cgroups/ directory:
			
	
					blkio subsystem — blkio-controller.txt
				

	
					cpuacct subsystem — cpuacct.txt
				

	
					cpuset subsystem — cpusets.txt
				

	
					devices subsystem — devices.txt
				

	
					freezer subsystem — freezer-subsystem.txt
				

	
					memory subsystem — memory.txt
				

	
					net_cls subsystem — net_cls.txt
				

			Additionally, see the following files on further information about the cpu subsystem:
		
	
					Real-Time scheduling — /usr/share/doc/kernel-doc-<kernel_version>/Documentation/scheduler/sched-rt-group.txt
				

	
					CFS scheduling — /usr/share/doc/kernel-doc-<kernel_version>/Documentation/scheduler/sched-bwc.txt
				

 ⁠Online Documentation
	
					Red Hat Enterprise Linux 7 System Administrator's Guide — The System Administrator's Guide documents relevant information regarding the deployment, configuration, and administration of Red Hat Enterprise Linux 7. This guide contains a detailed explanation of the systemd concepts as well as instructions for service management with systemd.
				

	
					The D-Bus API of systemd — The reference material for D-Bus API commands used to interact with systemd.
				

 ⁠Chapter 2. Using Control Groups

		The following sections provide an overview of tasks related to creation and management of control groups. This guide focuses on utilities provided by systemd that are preferred as a way of cgroup management and will be supported in the future. Previous versions of Red Hat Enterprise Linux used the libcgroup package for creating and managing cgroups. This package is still available to assure backward compatibility (see Warning), but it will not be supported in future versions of Red Hat Enterprise Linux.
	

 ⁠2.1. Creating Control Groups

			From the systemd's perspective, a cgroup is bound to a system unit configurable with a unit file and manageable with systemd's command-line utilities. Depending on the type of application, your resource management settings can be transient or persistent.
		

			To create a transient cgroup for a service, start the service with the systemd-run command. This way, it is possible to set limits on resources consumed by the service during its runtime. Applications can create transient cgroups dynamically by using API calls to systemd. See the section called “Online Documentation” for API reference. Transient unit is removed automatically as soon as the service is stopped.
		

			To assign a persistent cgroup to a service, edit its unit configuration file. The configuration is preserved after the system reboot, so it can be used to manage services that are started automatically. Note that scope units cannot be created in this way.
		

 ⁠2.1.1. Creating Transient Cgroups with systemd-run

				The systemd-run command is used to create and start a transient service or scope unit and run a custom command in the unit. Commands executed in service units are started asynchronously in the background, where they are invoked from the systemd process. Commands run in scope units are started directly from the systemd-run process and thus inherit the execution environment of the caller. Execution in this case is synchronous.
			

				To run a command in a specified cgroup, type as root:
			
~]# systemd-run --unit=name --scope --slice=slice_name command
	
						The name stands for the name you want the unit to be known under. If --unit is not specified, a unit name will be generated automatically. It is recommended to choose a descriptive name, since it will represent the unit in the systemctl output. The name has to be unique during runtime of the unit.
					

	
						Use the optional --scope parameter to create a transient scope unit instead of service unit that is created by default.
					

	
						With the --slice option, you can make your newly created service or scope unit a member of a specified slice. Replace slice_name with the name of an existing slice (as shown in the output of systemctl -t slice), or create a new slice by passing a unique name. By default, services and scopes are created as members of the system.slice.
					

	
						Replace command with the command you wish to execute in the service unit. Place this command at the very end of the systemd-run syntax, so that the parameters of this command are not confused for parameters of systemd-run.
					

				Besides the above options, there are several other parameters available for systemd-run. For example, --description creates a description of the unit, --remain-after-exit allows to collect runtime information after terminating the service's process. The --machine option executes the command in a confined container. See the systemd-run(1) manual page to learn more.
			

 ⁠Example 2.1. Starting a New Service with systemd-run

					Use the following command to run the top utility in a service unit in a new slice called test. Type as root:
				
~]# systemd-run --unit=toptest --slice=test top -b

					The following message is displayed to confirm that you started the service successfully:
				
Running as unit toptest.service

					Now, the name toptest.service can be used to monitor or to modify the cgroup with systemctl commands.
				

 ⁠2.1.2. Creating Persistent Cgroups

				To configure a unit to be started automatically on system boot, execute the systemctl enable command (see the chapter called Managing Services with systemd in Red Hat Enterprise Linux 7 System Administrators Guide). Running this command automatically creates a unit file in the /usr/lib/systemd/system/ directory. To make persistent changes to the cgroup, add or modify configuration parameters in its unit file. For more information, see Section 2.3.2, “Modifying Unit Files”.
			

 ⁠2.2. Removing Control Groups

			Transient cgroups are released automatically as soon as the processes they contain finish. By passing the --remain‑after-exit option to systemd-run you can keep the unit running after its processes finished to collect runtime information. To stop the unit gracefully, type:
		
~]# systemctl stop name.service

			Replace name with the name of the service you wish to stop. To terminate one or more of the unit's processes, type as root:
		
~]# systemctl kill name.service --kill-who=PID,... --signal=signal

			Replace name with a name of the unit, for example httpd.service. Use --kill-who to select which processes from the cgroup you wish to terminate. To kill multiple processes at the same time, pass a comma-separated list of PIDs. Replace signal with the type of POSIX signal you wish to send to specified processes. Default is SIGTERM. For more information, see the systemd.kill manual page.
		

			Persistent cgroups are released when the unit is disabled and its configuration file is deleted by running:
		
~]# systemctl disable name.service

			where name stands for the name of the service to be disabled.
		

 ⁠2.3. Modifying Control Groups

			Each persistent unit supervised by systemd has a unit configuration file in the /usr/lib/systemd/system/ directory. To change parameters of a service unit, modify this configuration file. This can be done either manually or from the command-line interface by using the systemctl set-property command.
		

 ⁠2.3.1. Setting Parameters from the Command-Line Interface

				The systemctl set-property command allows you to persistently change resource control settings during the application runtime. To do so, use the following syntax as root:
			
~]# systemctl set-property name parameter=value

				Replace name with the name of the systemd unit you wish to modify, parameter with a name of the parameter to be changed, and value with a new value you want to assign to this parameter.
			

				Not all unit parameters can be changed at runtime, but most of those related to resource control may, see Section 2.3.2, “Modifying Unit Files” for a complete list. Note that systemctl set-property allows you to change multiple properties at once, which is preferable over setting them individually.
			

				The changes are applied instantly, and written into the unit file so that they are preserved after reboot. You can change this behavior by passing the --runtime option that makes your settings transient:
			
~]# systemctl set-property --runtime name property=value

 ⁠Example 2.2. Using systemctl set-property

					To limit the CPU and memory usage of httpd.service from the command line, type:
				
~]# systemctl set-property httpd.service CPUShares=600 MemoryLimit=500M

					To make this a temporary change, add the --runtime option:
				
~]# systemctl set-property --runtime httpd.service CPUShares=600 MemoryLimit=500M

 ⁠2.3.2. Modifying Unit Files

				Systemd service unit files provide a number of high-level configuration parameters useful for resource management. These parameters communicate with Linux cgroup controllers, that have to be enabled in the kernel. With these parameters, you can manage CPU, memory consumption, block IO, as well as some more fine-grained unit properties.
			

 ⁠Managing CPU

				The cpu controller is enabled by default in the kernel, and consequently every system service receives the same amount of CPU time, regardless of how many processes it contains. This default behavior can be changed with the DefaultControllers parameter in the /etc/systemd/system.conf configuration file. To manage CPU allocation, use the following directive in the [Service] section of the unit configuration file:
			
	CPUShares=value
	
							Replace value with a number of CPU shares. The default value is 1024. By increasing the number, you assign more CPU time to the unit. Setting the value of the CPUShares parameter automatically turns CPUAccounting on in the unit file. Users can thus monitor the usage of the processor with the systemd-cgtop command.
						

				The CPUShares parameter controls the cpu.shares control group parameter. See the description of the cpu controller in Controller-Specific Kernel Documentation to see other CPU-related control parameters.
			

 ⁠Example 2.3. Limiting CPU Consumption of a Unit

					To assign the Apache service 1500 CPU shares instead of the default 1024, create a new /etc/systemd/system/httpd.service.d/cpu.conf configuration file with the following content:
				

[Service]
CPUShares=1500

					To apply the changes, reload systemd's configuration and restart Apache so that the modified service file is taken into account:
				
~]# systemctl daemon-reload
~]# systemctl restart httpd.service

	CPUQuota=value
	
							Replace value with a value of CPU time quota to assign the specified CPU time quota to the processes executed. The value of the CPUQuota parameter, which is expressed in percentage, specifies how much CPU time the unit gets at maximum, relative to the total CPU time available on one CPU.
						

							Values higher than 100% indicate that more than one CPU is used. CPUQuota controls the cpu.max attribute on the unified control group hierarchy, and the legacy cpu.cfs_quota_us attribute. Setting the value of the CPUQuota parameter automatically turns CPUAccounting on in the unit file. Users can thus monitor the usage of the processor with the systemd-cgtop command.
						

 ⁠Example 2.4. Using CPUQuota

					Setting CPUQuota to 20% ensures that the executed processes never get more than 20% CPU time on a single CPU.
				

					To assign the Apache service CPU quota of 20%, add the following content to the /etc/systemd/system/httpd.service.d/cpu.conf configuration file:
				

[Service]
CPUQuota=20%

					To apply the changes, reload systemd's configuration and restart Apache so that the modified service file is taken into account:
				
~]# systemctl daemon-reload
~]# systemctl restart httpd.service

 ⁠Managing Memory

				To enforce limits on the unit's memory consumption, use the following directives in the [Service] section of the unit configuration file:
			
	MemoryLimit=value
	
							Replace value with a limit on maximum memory usage of the processes executed in the cgroup. Use suffixes K, M, G, or T to identify Kilobyte, Megabyte, Gigabyte, or Terabyte as the unit of measurement. Also, the MemoryAccounting parameter has to be enabled for the unit.
						

				The MemoryLimit parameter controls the memory.limit_in_bytes control group parameter. For more information, see the description of the memory controller in Controller-Specific Kernel Documentation.
			

 ⁠Example 2.5. Limiting Memory Consumption of a Unit

					To assign a 1GB memory limit to the Apache service, modify the MemoryLimit setting in the /etc/systemd/system/httpd.service.d/cpu.conf unit file:
				

[Service]
MemoryLimit=1G

					To apply the changes, reload systemd's configuration and restart Apache so that the modified service file is taken into account:
				
~]# systemctl daemon-reload
~]# systemctl restart httpd.service

 ⁠Managing Block IO

				To manage the Block IO, use the following directives in the [Service] section of the unit configuration file. Directives listed below assume that the BlockIOAccounting parameter is enabled:
			
	BlockIOWeight=value
	
							Replace value with a new overall block IO weight for the executed processes. Choose a single value between 10 and 1000, the default setting is 1000.
						

	BlockIODeviceWeight=device_name value
	
							Replace value with a block IO weight for a device specified with device_name. Replace device_name either with a name or with a path to a device. As with BlockIOWeight, it is possible to set a single weight value between 10 and 1000.
						

	BlockIOReadBandwidth=device_name value
	
							This directive allows you to limit a specific bandwidth for a unit. Replace device_name with the name of a device or with a path to a block device node, value stands for a bandwidth rate. Use suffixes K, M, G, or T to specify units of measurement. A value with no suffix is interpreted as bytes per second.
						

	BlockIOWriteBandwidth=device_name value
	
							Limits the write bandwidth for a specified device. Accepts the same arguments as BlockIOReadBandwidth.
						

				Each of the aforementioned directives controls a corresponding cgroup parameter. For other CPU-related control parameters, see the description of the blkio controller in Controller-Specific Kernel Documentation.
			
Note

					Currently, the blkio resource controller does not support buffered write operations. It is primarily targeted at direct I/O, so the services that use buffered write will ignore the limits set with BlockIOWriteBandwidth. On the other hand, buffered read operations are supported, and BlockIOReadBandwidth limits will be applied correctly both on direct and buffered read.
				

 ⁠Example 2.6. Limiting Block IO of a Unit

					To lower the block IO weight for the Apache service accessing the /home/jdoe/ directory, add the following text into the /etc/systemd/system/httpd.service.d/cpu.conf unit file:
				

[Service]
BlockIODeviceWeight=/home/jdoe 750

					To set the maximum bandwidth for Apache reading from the /var/log/ directory to 5MB per second, use the following syntax:
				

[Service]
BlockIOReadBandwith=/var/log 5M

					To apply your changes, reload systemd's configuration and restart Apache so that the modified service file is taken into account:
				
~]# systemctl daemon-reload
~]# systemctl restart httpd.service

 ⁠Managing Other System Resources

				There are several other directives that can be used in the unit file to facilitate resource management:
			
	DeviceAllow=device_name options
	
							This option controls access to specific device nodes. Here, device_name stands for a path to a device node or a device group name as specified in /proc/devices. Replace options with a combination of r, w, and m to allow the unit to read, write, or create device nodes.
						

	DevicePolicy=value
	
							Here, value is one of: strict (only allows the types of access explicitly specified with DeviceAllow), closed (allows access to standard pseudo devices including /dev/null, /dev/zero, /dev/full, /dev/random, and /dev/urandom) or auto (allows access to all devices if no explicit DeviceAllow is present, which is the default behavior)
						

	Slice=slice_name
	
							Replace slice_name with the name of the slice to place the unit in. The default is system.slice. Scope units cannot be arranged in this way, since they are tied to their parent slices.
						

	ExecStartPost=command
	
							Currently, systemd supports only a subset of cgroup features. However, as a workaround, you can use the ExecStartPost= option along with setting the memory.memsw.limit_in_bytes parameter in order to prevent any swap usage for a service. For more information on ExecStartPost=, see the systemd.service(5) man page.
						

 ⁠Example 2.7. Configuring Cgroup Options

					Imagine that you wish to change the memory.memsw.limit_in_bytes setting to the same value as the unit's MemoryLimit= in order to prevent any swap usage for a given example service.
				
ExecStartPost=/bin/bash -c "echo 1G > /sys/fs/cgroup/memory/system.slice/example.service/memory.memsw.limit_in_bytes"

					To apply the change, reload systemd configuration and restart the service so that the modified setting is taken into account:
				
~]# systemctl daemon-reload
~]# systemctl restart example.service

 ⁠2.4. Obtaining Information about Control Groups

			Use the systemctl command to list system units and to view their status. Also, the systemd-cgls command is provided to view the hierarchy of control groups and systemd-cgtop to monitor their resource consumption in real time.
		

 ⁠2.4.1. Listing Units

				Use the following command to list all active units on the system:
			
~]# systemctl list-units

				The list-units option is executed by default, which means that you will receive the same output when you omit this option and execute just:
			
~]$systemctl
UNIT LOAD ACTIVE SUB DESCRIPTION
abrt-ccpp.service loaded active exited Install ABRT coredump hook
abrt-oops.service loaded active running ABRT kernel log watcher
abrt-vmcore.service loaded active exited Harvest vmcores for ABRT
abrt-xorg.service loaded active running ABRT Xorg log watcher
...

				The output displayed above contains five columns:
			
	
						UNIT — the name of the unit that also reflects the unit's position in the cgroup tree. As mentioned in the section called “Systemd Unit Types”, three unit types are relevant for resource control: slice, scope, and service. For a complete list of systemd's unit types, see the chapter called Managing Services with systemd in Red Hat Enterprise Linux 7 System Administrators Guide.
					

	
						LOAD — indicates whether the unit configuration file was properly loaded. If the unit file failed to load, the field contains the state error instead of loaded. Other unit load states are: stub, merged, and masked.
					

	
						ACTIVE — the high-level unit activation state, which is a generalization of SUB.
					

	
						SUB — the low-level unit activation state. The range of possible values depends on the unit type.
					

	
						DESCRIPTION — the description of the unit's content and functionality.
					

				By default, systemctl lists only active units (in terms of high-level activations state in the ACTIVE field). Use the --all option to see inactive units too. To limit the amount of information in the output list, use the --type (-t) parameter that requires a comma-separated list of unit types such as service and slice, or unit load states such as loaded and masked.
			

 ⁠Example 2.8. Using systemctl list-units

					To view a list of all slices used on the system, type:
				
~]$ systemctl -t slice

					To list all active masked services, type:
				
~]$ systemctl -t service,masked

				To list all unit files installed on your system and their status, type:
			
~]$ systemctl list-unit-files

 ⁠2.4.2. Viewing the Control Group Hierarchy

				The aforementioned listing commands do not go beyond the unit level to show the actual processes running in cgroups. Also, the output of systemctl does not show the hierarchy of units. You can achieve both by using the systemd-cgls command that groups the running process according to cgroups. To display the whole cgroup hierarchy on your system, type:
			
~]$ systemd-cgls

				When systemd-cgls is issued without parameters, it returns the entire cgroup hierarchy. The highest level of the cgroup tree is formed by slices and can look as follows:
			

├─system
│ ├─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 20
│ ...
│
├─user
│ ├─user-1000
│ │ └─ ...
│ ├─user-2000
│ │ └─ ...
│ ...
│
└─machine
 ├─machine-1000
 │ └─ ...
 ...

				Note that machine slice is present only if you are running a virtual machine or a container. For more information on the cgroup tree, see the section called “Systemd Unit Types”.
			

				To reduce the output of systemd-cgls, and to view a specified part of the hierarchy, execute:
			
~]$ systemd-cgls name

				Replace name with a name of the resource controller you want to inspect.
			

				As an alternative, use the systemctl status command to display detailed information about a system unit. A cgroup subtree is a part of the output of this command.
			
~]$ systemctl name

				To learn more about systemctl status, see the chapter called Managing Services with systemd in Red Hat Enterprise Linux 7 System Administrators Guide.
			

 ⁠Example 2.9. Viewing the Control Group Hierarchy

					To see a cgroup tree of the memory resource controller, execute:
				
~]$ systemd-cgls memory
memory:
├─ 1 /usr/lib/systemd/systemd --switched-root --system --deserialize 23
├─ 475 /usr/lib/systemd/systemd-journald
...

					The output of the above command lists the services that interact with the selected controller. A different approach is to view a part of the cgroup tree for a certain service, slice, or scope unit:
				
~]# systemctl status httpd.service
httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled)
 Active: active (running) since Sun 2014-03-23 08:01:14 MDT; 33min ago
 Process: 3385 ExecReload=/usr/sbin/httpd $OPTIONS -k graceful (code=exited, status=0/SUCCESS)
 Main PID: 1205 (httpd)
 Status: "Total requests: 0; Current requests/sec: 0; Current traffic: 0 B/sec"
 CGroup: /system.slice/httpd.service
 ├─1205 /usr/sbin/httpd -DFOREGROUND
 ├─3387 /usr/sbin/httpd -DFOREGROUND
 ├─3388 /usr/sbin/httpd -DFOREGROUND
 ├─3389 /usr/sbin/httpd -DFOREGROUND
 ├─3390 /usr/sbin/httpd -DFOREGROUND
 └─3391 /usr/sbin/httpd -DFOREGROUND

...

				Besides the aforementioned tools, systemd also provides the machinectl command dedicated to monitoring Linux containers.
			

 ⁠2.4.3. Viewing Resource Controllers

				The aforementioned systemctl commands enable monitoring the higher-level unit hierarchy, but do not show which resource controllers in Linux kernel are actually used by which processes. This information is stored in dedicated process files, to view it, type as root:
			
~]# cat proc/PID/cgroup

				Where PID stands for the ID of the process you wish to examine. By default, the list is the same for all units started by systemd, since it automatically mounts all default controllers. See the following example:
			
~]# cat proc/27/cgroup
10:hugetlb:/
9:perf_event:/
8:blkio:/
7:net_cls:/
6:freezer:/
5:devices:/
4:memory:/
3:cpuacct,cpu:/
2:cpuset:/
1:name=systemd:/

				By examining this file, you can determine if the process has been placed in the correct cgroups as defined by the systemd unit file specifications.
			

 ⁠2.4.4. Monitoring Resource Consumption

				The systemd-cgls command provides a static snapshot of the cgroup hierarchy. To see a dynamic account of currently running cgroups ordered by their resource usage (CPU, Memory, and IO), use:
			
~]# systemd-cgtop

				The behavior, provided statistics, and control options of systemd-cgtop are akin of those of the top utility. See systemd-cgtop(1) manual page for more information.
			

 ⁠2.5. Additional Resources

			For more information on how to use systemd and related tools to manage system resources on Red Hat Enterprise Linux, see the sources listed below:
		

 ⁠Installed Documentation
Man Pages of Cgroup-Related Systemd Tools
	
					systemd-run(1) — The manual page lists all command-line options of the systemd-run utility.
				

	
					systemctl(1) — The manual page of the systemctl utility that lists available options and commands.
				

	
					systemd-cgls(1) — This manual page lists all command-line options of the systemd-cgls utility.
				

	
					systemd-cgtop(1) — The manual page contains the list of all command-line options of the systemd-cgtop utility.
				

	
					machinectl(1) — This manual page lists all command-line options of the machinectl utility.
				

	
					systemd.kill(5) — This manual page provides an overview of kill configuration options for system units.
				

 ⁠Controller-Specific Kernel Documentation

				The kernel-doc package provides detailed documentation of all resource controllers. This package is included in the Optional subscription channel. Before subscribing to the Optional channel, see the Scope of Coverage Details channel, then follow the steps documented in the article called How to access Optional and Supplementary channels, and -devel packages using Red Hat Subscription Manager (RHSM)? on Red Hat Customer Portal. To install kernel-doc from the Optional channel, type as root:
			
~]# yum install kernel-doc

				After the installation, the following files will appear under the /usr/share/doc/kernel-doc-<kernel_version>/Documentation/cgroups/ directory:
			
	
					blkio subsystem — blkio-controller.txt
				

	
					cpuacct subsystem — cpuacct.txt
				

	
					cpuset subsystem — cpusets.txt
				

	
					devices subsystem — devices.txt
				

	
					freezer subsystem — freezer-subsystem.txt
				

	
					memory subsystem — memory.txt
				

	
					net_cls subsystem — net_cls.txt
				

			Additionally, see the following files on further information about the cpu subsystem:
		
	
					Real-Time scheduling — /usr/share/doc/kernel-doc-<kernel_version>/Documentation/scheduler/sched-rt-group.txt
				

	
					CFS scheduling — /usr/share/doc/kernel-doc-<kernel_version>/Documentation/scheduler/sched-bwc.txt
				

 ⁠Online Documentation
	
					Red Hat Enterprise Linux 7 System Administrators Guide — The System Administrator's Guide documents relevant information regarding the deployment, configuration and administration of Red Hat Enterprise Linux 7. It is oriented towards system administrators with a basic understanding of the system.
				

	
					The D-Bus API of systemd — The reference for D-Bus API commands for accessing systemd.
				

 ⁠Chapter 3. Using libcgroup Tools

		The libcgroup package, which was the main tool for cgroup management in previous versions of Red Hat Enterprise Linux, is now deprecated. To avoid conflicts, do not use libcgroup tools for default resource controllers (listed in Available Controllers in Red Hat Enterprise Linux 7) that are now an exclusive domain of systemd. This leaves a limited space for applying libcgroup tools, use it only when you need to manage controllers not currently supported by systemd, such as net_prio.
	

		The following sections describe how to use libcgroup tools in relevant scenarios without conflicting with the default system of hierarchy.
	
Note

			In order to use libcgroup tools, first ensure the libcgroup and libcgroup-tools packages are installed on your system. To install them, run as root:
		
~]# yum install libcgroup
~]# yum install libcgroup-tools

Note

			The net_prio controller is not compiled in the kernel like the rest of the controllers, rather it is a module that has to be loaded before attempting to mount it. To load this module, type as root:
		
~]# modprobe netprio_cgroup

 ⁠3.1. Mounting a Hierarchy

			To use a kernel resource controller that is not mounted automatically, you have to create a hierarchy that will contain this controller. Add or detach the hierarchy by editing the mount section of the /etc/cgconfig.conf configuration file. This method makes the controller attachment persistent, which means your settings will be preserved after system reboot. As an alternative, use the mount command to create a transient mount only for the current session.
		

 ⁠Using the cgconfig Service

			The cgconfig service installed with the libcgroup-tools package provides a way to mount hierarchies for additional resource controllers. By default, this service is not started automatically. When you start cgconfig, it applies the settings from the /etc/cgconfig.conf configuration file. The configuration is therefore recreated from session to session and becomes persistent. Note that if you stop cgconfig, it unmounts all the hierarchies that it mounted.
		

			The default /etc/cgconfig.conf file installed with the libcgroup package does not contain any configuration settings, only information that systemd mounts the main resource controllers automatically.
		

			Entries of three types can be created in /etc/cgconfig.conf — mount, group, and template. Mount entries are used to create and mount hierarchies as virtual file systems, and attach controllers to those hierarchies. In Red Hat Enterprise Linux 7, default hierarchies are mounted automatically to the /sys/fs/cgroup/ directory, cgconfig is therefore used solely to attach non-default controllers. Mount entries are defined using the following syntax:
		

mount {
 controller_name = /sys/fs/cgroup/controller_name;
 …
}

			Replace controller_name with a name of the kernel resource controller you wish to mount to the hierarchy. See Example 3.1, “Creating a mount entry” for an example.
		

 ⁠Example 3.1. Creating a mount entry

				To attach the net_prio controller to the default cgroup tree, add the following text to the /etc/cgconfig.conf configuration file:
			

mount {
 net_prio = /sys/fs/cgroup/net_prio;
}

				Then restart the cgconfig service to apply the setting:
			
~]# systemctl restart cgconfig.service

			Group entries in /etc/cgconfig.conf can be used to set the parameters of resource controllers. See Section 3.5, “Setting Cgroup Parameters” for more information about group entries.
		

			Template entries in /etc/cgconfig.conf can be used to create a group definition applied to all processes.
		

 ⁠Using the mount Command

			Use the mount command to temporarily mount a hierarchy. To do so, first create a mount point in the /sys/fs/cgroup/ directory where systemd mounts the main resource controllers. Type as root:
		
~]# mkdir /sys/fs/cgroup/name

			Replace name with a name of the new mount destination, usually the name of the controller is used. Next, execute the mount command to mount the hierarchy and simultaneously attach one or more subsystems. Type as root:
		
~]# mount -t cgroup -o controller_name none /sys/fs/cgroup/controller_name

			Replace controller_name with a name of the controller to specify both the device to be mounted as well as the destination folder. The -t cgroup parameter specifies the type of mount.
		

 ⁠Example 3.2. Using the mount command to attach controllers

				To mount a hierarchy for the net_prio controller with use of the mount command, first create the mount point:
			
~]# mkdir /sys/fs/cgroup/net_prio

				Then mount net_prio to the destination you created in the previous step:
			
~]# mount -t cgroup -o net_prio none /sys/fs/cgroup/net_prio

				You can verify whether you attached the hierarchy correctly by listing all available hierarchies along with their current mount points using the lssubsys command (see the section called “Listing Controllers”):
			
~]# lssubsys -am
cpuset /sys/fs/cgroup/cpuset
cpu,cpuacct /sys/fs/cgroup/cpu,cpuacct
memory /sys/fs/cgroup/memory
devices /sys/fs/cgroup/devices
freezer /sys/fs/cgroup/freezer
net_cls /sys/fs/cgroup/net_cls
blkio /sys/fs/cgroup/blkio
perf_event /sys/fs/cgroup/perf_event
hugetlb /sys/fs/cgroup/hugetlb
net_prio /sys/fs/cgroup/net_prio

 ⁠3.2. Unmounting a Hierarchy

			If you mounted a hierarchy by editing the /etc/cgconfig.conf configuration file, you can unmount it simply by removing the configuration directive from the mount section of this configuration file. Then restart the service to apply the new configuration.
		

			Similarly, you can unmount a hierarchy by executing the following command as root:
		
~]# umount /sys/fs/cgroup/controller_name

			Replace controller_name with the name of the hierarchy that contains the resource controller you wish to detach.
		
Warning

				Make sure that you use umount to remove only hierarchies that you mounted yourself manually. Detaching a hierarchy that contains a default controller (listed in Available Controllers in Red Hat Enterprise Linux 7) will most probably lead to complications requiring a system reboot.
			

 ⁠3.3. Creating Control Groups

			Use the cgcreate command to create transient cgroups in hierarchies you created yourself. The syntax for cgcreate is:
		
cgcreate -t uid:gid -a uid:gid -g controllers:path

			where:
		
	
					-t (optional) — specifies a user (by user ID, uid) and a group (by group ID, gid) to own the tasks pseudo-file for this cgroup. This user can add tasks to the cgroup.
				
Note

						Note that the only way to remove a process from a cgroup is to move it to a different cgroup. To be able to move a process, the user has to have write access to the destination cgroup; write access to the source cgroup is not necessary.
					

	
					-a (optional) — specifies a user (by user ID, uid) and a group (by group ID, gid) to own all pseudo-files other than tasks for this cgroup. This user can modify the access to system resources for tasks in this cgroup.
				

	
					-g — specifies the hierarchy in which the cgroup should be created, as a comma-separated list of the controllers associated with hierarchies. The list of controllers is followed by a colon and the path to the child group relative to the hierarchy. Do not include the hierarchy mount point in the path.
				

			Because all cgroups in the same hierarchy have the same controllers, the child group has the same controllers as its parent.
		

			As an alternative, you can create a child of the cgroup directly. To do so, use the mkdir command:
		
~]# mkdir /sys/fs/cgroup/controller/name/child_name

			For example:
		
~]# mkdir /sys/fs/cgroup/net_prio/lab1/group1

 ⁠3.4. Removing Control Groups

			Remove cgroups with the cgdelete command that has syntax similar to that of cgcreate. Enter the following command as root:
		
~]# cgdelete controllers:path

			where:
		
	
					controllers is a comma-separated list of controllers.
				

	
					path is the path to the cgroup relative to the root of the hierarchy.
				

			For example:
		
~]# cgdelete net_prio:/test-subgroup

			cgdelete can also recursively remove all subgroups when the -r option is specified.
		

			Note that when you delete a cgroup, all its processes move to its parent group.
		

 ⁠3.5. Setting Cgroup Parameters

			Modify the parameters of the control groups by editing the /etc/cgconfig.conf configuration file, or by using the cgset command. Changes made to /etc/cgconfig.conf are preserved after reboot, while cgset changes the cgroup parameters only for the current session.
		

 ⁠Modifying /etc/cgconfig.conf

			You can set the controller parameters in the Groups section of /etc/cgconfig.conf. Group entries are defined using the following syntax:
		

group name {
[permissions]
 controller {
 param_name = param_value;
 …
 }
 …
}

			Replace name with the name of your cgroup, controller stands for the name of the controller you wish to modify. You should modify only controllers you mounted yourself, not any of the default controllers mounted automatically by systemd. Replace param_name and param_value with the controller parameter you wish to change and its new value. Note that the permissions section is optional. To define permissions for a group entry, use the following syntax:
		

perm {
 task {
 uid = task_user;
 gid = task_group;
 }
 admin {
 uid = admin_name;
 gid = admin_group;
 }
}

Note

				Restart the cgconfig service for the changes in the /etc/cgconfig.conf to take effect. Restarting this service rebuilds hierarchies specified in the configuration file but does not affect all mounted hierarchies. You can restart a service by executing the systemctl restart command, however, it is recommended to first stop the cgconfig service:
			
~]# systemctl stop cgconfig

				Then open and edit the configuration file. After saving your changes, you can start cgconfig again with the following command:
			
~]# systemctl start cgconfig

 ⁠Using the cgset Command

			Set controller parameters by running the cgset command from a user account with permission to modify the relevant cgroup. Use this only for controllers you mounted manually.
		

			The syntax for cgset is:
		
cgset -r parameter=value path_to_cgroup

			where:
		
	
					parameter is the parameter to be set, which corresponds to the file in the directory of the given cgroup;
				

	
					value is the value for the parameter;
				

	
					path_to_cgroup is the path to the cgroup relative to the root of the hierarchy.
				

			The values that can be set with cgset might depend on values set higher in a particular hierarchy. For example, if group1 is limited to use only CPU 0 on a system, you cannot set group1/subgroup1 to use CPUs 0 and 1, or to use only CPU 1.
		

			It is also possible use cgset to copy the parameters of one cgroup into another, existing cgroup. The syntax to copy parameters with cgset is:
		
cgset --copy-from path_to_source_cgroup path_to_target_cgroup

			where:
		
	
					path_to_source_cgroup is the path to the cgroup whose parameters are to be copied, relative to the root group of the hierarchy;
				

	
					path_to_target_cgroup is the path to the destination cgroup, relative to the root group of the hierarchy.
				

 ⁠3.6. Moving a Process to a Control Group

			Move a process into a cgroup by running the cgclassify command:
		
~]# cgclassify -g controllers:path_to_cgroup pidlist

			where:
		
	
					controllers is a comma-separated list of resource controllers, or /* to launch the process in the hierarchies associated with all available subsystems. Note that if there are multiple cgroups of the same name, the -g option moves the processes in each of those groups.
				

	
					path_to_cgroup is the path to the cgroup within the hierarchy;
				

	
					pidlist is a space-separated list of process identifier (PIDs).
				

			If the -g option is not specified, cgclassify automatically searches /etc/cgrules.conf and uses the first applicable configuration line. According to this line, cgclassify determines the hierarchies and cgroups to move the process under. Note that for the move to be successful, the destination hierarchies have to exist. The subsystems specified in /etc/cgrules.conf has to be also properly configured for the corresponding hierarchy in /etc/cgconfig.conf.
		

			You can also add the --sticky option before the pid to keep any child processes in the same cgroup. If you do not set this option and the cgred service is running, child processes will be allocated to cgroups based on the settings found in /etc/cgrules.conf. The process itself, however, will remain in the cgroup in which you started it.
		

			It is also possible to use the cgred service (which starts the cgrulesengd service) that moves tasks into cgroups according to parameters set in the /etc/cgrules.conf file. Use cgred only to manage manually attached controllers. Entries in the /etc/cgrules.conf file can take one of the two forms:
		
	
					user subsystems control_group;
				

	
					user:command subsystems control_group.
				

			For example:
		

maria			net_prio		/usergroup/staff

			This entry specifies that any processes that belong to the user named maria access the devices subsystem according to the parameters specified in the /usergroup/staff cgroup. To associate particular commands with particular cgroups, add the command parameter, as follows:
		

maria:ftp		devices		/usergroup/staff/ftp

			The entry now specifies that when the user named maria uses the ftp command, the process is automatically moved to the /usergroup/staff/ftp cgroup in the hierarchy that contains the devices subsystem. Note, however, that the daemon moves the process to the cgroup only after the appropriate condition is fulfilled. Therefore, the ftp process can run for a short time in an incorrect group. Furthermore, if the process quickly spawns children while in the incorrect group, these children might not be moved.
		

			Entries in the /etc/cgrules.conf file can include the following extra notation:
		
	
					@ — when prefixed to user, indicates a group instead of an individual user. For example, @admins are all users in the admins group.
				

	
					* — represents "all". For example, * in the subsystem field represents all subsystems.
				

	
					% — represents an item the same as the item on the line above. For example:
				

@adminstaff	net_prio /admingroup
@labstaff	%	 %

 ⁠3.7. Starting a Process in a Control Group

			Launch processes in a manually created cgroup by running the cgexec command. The syntax for cgexec is:
		
cgexec -g controllers:path_to_cgroup command arguments

			where:
		
	
					controllers is a comma-separated list of controllers, or /* to launch the process in the hierarchies associated with all available subsystems. Note that, as with the cgset command described in Section 3.5, “Setting Cgroup Parameters”, if cgroups of the same name exist, the -g option creates processes in each of those groups.
				

	
					path_to_cgroup is the path to the cgroup relative to the hierarchy;
				

	
					command is the command to be executed in the cgroup;
				

	
					arguments are any arguments for the command.
				

			It is also possible to add the --sticky option before the command to keep any child processes in the same cgroup. If you do not set this option and the cgred service is running, child processes will be allocated to cgroups based on the settings found in /etc/cgrules.conf. The process itself, however, will remain in the cgroup in which you started it.
		

 ⁠3.8. Obtaining Information about Control Groups

			The libcgroup-tools package contains several utilities for obtaining information about controllers, control groups, and their parameters.
		

 ⁠Listing Controllers

			To find the controllers that are available in your kernel and information on how they are mounted together to hierarchies, execute:
		
~]$ cat /proc/cgroups

			Alternatively, to find the mount points of particular subsystems, execute the following command:
		
~]$ lssubsys -m controllers

			Here controllers stands for a list of the subsystems in which you are interested. Note that the lssubsys -m command returns only the top-level mount point per each hierarchy.
		

 ⁠Finding Control Groups

			To list the cgroups on a system, execute as root:
		
~]# lscgroup

			To restrict the output to a specific hierarchy, specify a controller and a path in the format controller:path. For example:
		
~]$ lscgroup cpuset:adminusers

			The above command lists only subgroups of the adminusers cgroup in the hierarchy to which the cpuset controller is attached.
		

 ⁠Displaying Parameters of Control Groups

			To display the parameters of specific cgroups, run:
		
~]$ cgget -r parameter list_of_cgroups

			where parameter is a pseudo-file that contains values for a controller, and list_of_cgroups is a list of cgroups separated with spaces.
		

			If you do not know the names of the actual parameters, use a command similar to:
		
~]$ cgget -g cpuset /

 ⁠3.9. Additional Resources

			The definitive documentation for cgroup commands can be found in the manual pages provided with the libcgroup package.
		

 ⁠Installed Documentation

 ⁠The libcgroup-related Man Pages
	
					cgclassify(1) — the cgclassify command is used to move running tasks to one or more cgroups.
				

	
					cgclear(1) — the cgclear command is used to delete all cgroups in a hierarchy.
				

					cgconfig.conf(5) — cgroups are defined in the cgconfig.conf file.
				

	
					cgconfigparser(8) — the cgconfigparser command parses the cgconfig.conf file and mounts hierarchies.
				

	
					cgcreate(1) — the cgcreate command creates new cgroups in hierarchies.
				

	
					cgdelete(1) — the cgdelete command removes specified cgroups.
				

	
					cgexec(1) — the cgexec command runs tasks in specified cgroups.
				

	
					cgget(1) — the cgget command displays cgroup parameters.
				

	
					cgsnapshot(1) — the cgsnapshot command generates a configuration file from existing subsystems.
				

	
					cgred.conf(5) — cgred.conf is the configuration file for the cgred service.
				

	
					cgrules.conf(5) — cgrules.conf contains the rules used for determining when tasks belong to certain cgroups.
				

	
					cgrulesengd(8) — the cgrulesengd service distributes tasks to cgroups.
				

	
					cgset(1) — the cgset command sets parameters for a cgroup.
				

	
					lscgroup(1) — the lscgroup command lists the cgroups in a hierarchy.
				

	
					lssubsys(1) — the lssubsys command lists the hierarchies containing the specified subsystems.
				

 ⁠Chapter 4. Control Group Application Examples

		This chapter provides application examples that take advantage of the cgroup functionality.
	

 ⁠4.1. Prioritizing Database I/O

			Running each instance of a database server inside its own dedicated virtual guest allows you to allocate resources per database based on their priority. Consider the following example: a system is running two database servers inside two KVM guests. One of the databases is a high priority database and the other one a low priority database. When both database servers are run simultaneously, the I/O throughput is decreased to accommodate requests from both databases equally; Figure 4.1, “I/O throughput without resource allocation” indicates this scenario — once the low priority database is started (around time 45), I/O throughput is the same for both database servers.
		

 ⁠[image: I/O throughput without resource allocation]

Figure 4.1. I/O throughput without resource allocation

			To prioritize the high priority database server, it can be assigned to a cgroup with a high number of reserved I/O operations, whereas the low priority database server can be assigned to a cgroup with a low number of reserved I/O operations. To achieve this, follow the steps in Procedure 4.1, “I/O Throughput Prioritization”, all of which are performed on the host system.
		

 ⁠Procedure 4.1. I/O Throughput Prioritization
	
					Make sure resource accounting is on for both services:
				

~]# systemctl set-property db1.service BlockIOAccounting=true
~]# systemctl set-property db2.service BlockIOAccounting=true

	
					Set a ratio of 10:1 for the high and low priority services. Processes running in those service units will use only the resources made available to them
				

~]# systemctl set-property db1.service BlockIOWeight=1000
~]# systemctl set-property db2.service BlockIOWeight=100

			Figure 4.2, “I/O throughput with resource allocation” illustrates the outcome of limiting the low priority database and prioritizing the high priority database. As soon as the database servers are moved to their appropriate cgroups (around time 75), I/O throughput is divided between both servers with the ratio of 10:1.
		

 ⁠[image: I/O throughput with resource allocation]

Figure 4.2. I/O throughput with resource allocation

			Alternatively, block device I/O throttling can be used for the low priority database to limit its number of read and write operations. For more information, see the description of the blkio controller in Controller-Specific Kernel Documentation.
		

 ⁠4.2. Prioritizing Network Traffic

			When running multiple network-related services on a single server system, it is important to define network priorities among these services. Defining the priorities ensures that packets originating from certain services have a higher priority than packets originating from other services. For example, such priorities are useful when a server system simultaneously functions as an NFS and Samba server. The NFS traffic has to be of high priority as users expect high throughput. The Samba traffic can be deprioritized to allow better performance of the NFS server.
		

			The net_prio controller can be used to set network priorities for processes in cgroups. These priorities are then translated into Type of Service (ToS) field bits and embedded into every packet. Follow the steps in Procedure 4.2, “Setting Network Priorities for File Sharing Services” to configure prioritization of two file sharing services (NFS and Samba).
		

 ⁠Procedure 4.2. Setting Network Priorities for File Sharing Services
	
					The net_prio controller is not compiled in the kernel, it is a module that has to be loaded manually. To do so, type:
				

~]# modprobe netprio_cgroup

	
					Attach the net_prio subsystem to the /cgroup/net_prio cgroup:
				

~]# mkdir sys/fs/cgroup/net_prio
~]# mount -t cgroup -o net_prio none sys/fs/cgroup/net_prio

	
					Create two cgroups, one for each service:
				

~]# mkdir sys/fs/cgroup/net_prio/nfs_high
~]# mkdir sys/fs/cgroup/net_prio/samba_low

	
					To automatically move the nfs services to the nfs_high cgroup, add the following line to the /etc/sysconfig/nfs file:
				
CGROUP_DAEMON="net_prio:nfs_high"

					This configuration ensures that nfs service processes are moved to the nfs_high cgroup when the nfs service is started or restarted.
				

	
					The smbd service does not have a configuration file in the /etc/sysconfig directory. To automatically move the smbd service to the samba_low cgroup, add the following line to the /etc/cgrules.conf file:
				
*:smbd net_prio samba_low

					Note that this rule moves every smbd service, not only /usr/sbin/smbd, into the samba_low cgroup.
				

					You can define rules for the nmbd and winbindd services to be moved to the samba_low cgroup in a similar way.
				

	
					Start the cgred service to load the configuration from the previous step:
				

~]# systemctl start cgred
Starting CGroup Rules Engine Daemon: [OK]

	
					For the purposes of this example, let us assume both services use the eth1 network interface. Define network priorities for each cgroup, where 1 denotes low priority and 10 denotes high priority:
				

~]# echo "eth1 1" > /sys/fs/cgroup/net_prio/samba_low/net_prio.ifpriomap
~]# echo "eth1 10" > /sys/fs/cgroup/net_prio/nfs_high/net_prio.ifpriomap

	
					Start the nfs and smb services and check whether their processes have been moved into the correct cgroups:
				

~]# systemctl start smb
Starting SMB services: [OK]
~]# cat /sys/fs/cgroup/net_prio/samba_low/tasks
16122
16124
~]# systemctl start nfs
Starting NFS services: [OK]
Starting NFS quotas: [OK]
Starting NFS mountd: [OK]
Stopping RPC idmapd: [OK]
Starting RPC idmapd: [OK]
Starting NFS daemon: [OK]
~]# cat sys/fs/cgroup/net_prio/nfs_high/tasks
16321
16325
16376

					Network traffic originating from NFS now has higher priority than traffic originating from Samba.
				

			Similar to Procedure 4.2, “Setting Network Priorities for File Sharing Services”, the net_prio subsystem can be used to set network priorities for client applications, for example, Firefox.
		

 ⁠Appendix A. Revision History

			Revision History
	Revision 0.0-1.12	Tue Mar 20 2018	Marie Doleželová
	
						Preparing document for 7.5 GA publication.

				
	Revision 0.0-1.6	Wed Nov 11 2015	Jana Heves
	
						Version for 7.2 GA release.

				
	Revision 0.0-1.4	Thu Feb 19 2015	Radek Bíba
	
						Version for 7.1 GA release. Linux Containers moved to a separate book.

				
	Revision 0.0-1.0	Mon Jul 21 2014	Peter Ondrejka
	
						

				
	Revision 0.0-0.14	Mon May 13 2013	Peter Ondrejka
	
						Version for 7.0 GA release

				

	

OEBPS/Common_Content/images/18.png

OEBPS/Common_Content/images/dot2.png

OEBPS/Common_Content/images/documentation.png

OEBPS/Common_Content/images/h1-bg.png

OEBPS/Common_Content/images/26.png

OEBPS/content.opf
 7_idm140433263485488 Resource Management Guide Managing system resources on Red Hat Enterprise Linux 7. Marie Doleželová Milan Navrátil Eva Majoršinová Peter Ondrejka Douglas Silas Martin Prpič Rüdiger Landmann en

OEBPS/Common_Content/fonts/overpass_light-web.woff

OEBPS/Common_Content/images/shine.png

OEBPS/Common_Content/images/shade.png

OEBPS/images/graph_IO_1.png
e

100

©

»

Mission crtica database server
Low pronty database server

100

OEBPS/images/graph_IO_2.png
Misson crtca database server
Low oy database server

100

sl

san

OEBPS/Common_Content/images/36.png

OEBPS/Common_Content/fonts/overpass_regular-web.eot

OEBPS/Common_Content/images/stock-home.png

OEBPS/Common_Content/images/image_right.png

OEBPS/Common_Content/images/red.png

OEBPS/Common_Content/images/stock-go-up.png

OEBPS/Common_Content/images/32.png

OEBPS/Common_Content/images/rhlogo.png
E) redhat.

OEBPS/Common_Content/images/28.png

OEBPS/Common_Content/images/3.png

OEBPS/Common_Content/images/34.png

OEBPS/Common_Content/images/image_left.png
E) redhat.

OEBPS/Common_Content/fonts/overpass_regular-web.ttf

OEBPS/Common_Content/images/16.png

OEBPS/Common_Content/images/dot.png

OEBPS/Common_Content/images/13.png

OEBPS/Common_Content/images/30.png

OEBPS/Common_Content/images/22.png

OEBPS/Common_Content/images/39.png

OEBPS/Common_Content/images/5.png

OEBPS/Common_Content/fonts/overpass_bold-web.ttf

OEBPS/Common_Content/images/note.png

OEBPS/Common_Content/images/Enterprise_title_logo.png
E) redhat.

OEBPS/Common_Content/images/bullet_arrowblue.png

OEBPS/Common_Content/images/24.png

OEBPS/Common_Content/images/11.png

OEBPS/Common_Content/images/title_logo.png
E) redhat.

OEBPS/Common_Content/images/37.png

OEBPS/Common_Content/images/Online_title_logo.png
E) redhat.

OEBPS/Common_Content/images/7.png

OEBPS/Common_Content/images/warning.png

OEBPS/Common_Content/images/important.png

OEBPS/Common_Content/images/9.png

OEBPS/Common_Content/fonts/overpass_regular-web.woff

OEBPS/Common_Content/images/35.png

OEBPS/Common_Content/images/green.png

OEBPS/Common_Content/fonts/overpass_light-web.ttf

OEBPS/Common_Content/images/19.png

OEBPS/Common_Content/images/17.png

OEBPS/Common_Content/images/yellow.png

OEBPS/Common_Content/images/27.png

OEBPS/Common_Content/images/10.png

OEBPS/Common_Content/images/2.png

OEBPS/Common_Content/images/stock-go-back.png

OEBPS/Common_Content/images/15.png

OEBPS/Common_Content/images/watermark-draft.png

OEBPS/Common_Content/fonts/overpass_bold-web.eot

OEBPS/Common_Content/fonts/portal/nimbus/iconfont.eot

OEBPS/Common_Content/images/20.png

OEBPS/Common_Content/fonts/overpass_light-web.eot

OEBPS/Common_Content/images/33.png

OEBPS/Common_Content/images/29.png

OEBPS/Common_Content/images/4.png

OEBPS/Common_Content/fonts/overpass_bold-web.woff

OEBPS/Common_Content/images/21.png

OEBPS/Common_Content/images/31.png

OEBPS/Common_Content/images/23.png

OEBPS/Common_Content/images/stock-go-forward.png

OEBPS/Common_Content/images/40.png

OEBPS/Common_Content/images/6.png

OEBPS/Common_Content/images/14.png

OEBPS/Common_Content/images/1.png

OEBPS/Common_Content/images/12.png

OEBPS/Common_Content/images/25.png

OEBPS/Common_Content/images/38.png

OEBPS/Common_Content/images/bkgrnd_greydots.png

OEBPS/Common_Content/images/8.png

