
Red Hat Enterprise Linux 6

Virtualization Host Configuration and Guest
Installation Guide

Installing and configuring your virtual environment

Last Updated: 2020-08-19

Red Hat Enterprise Linux 6 Virtualization Host Configuration and Guest
Installation Guide

Installing and configuring your virtual environment

Jiri Herrmann
Red Hat Customer Content Services
jherrman@redhat.com

Yehuda Zimmerman
Red Hat Customer Content Services

Tahlia Richardson
Red Hat Customer Content Services

Dayle Parker
Red Hat Customer Content Services

Laura Bailey
Red Hat Customer Content Services

Scott Radvan
Red Hat Customer Content Services

Legal Notice

Copyright © 2017 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide covers KVM packages, compatibility and restrictions. Also included are host configuration
details and instructions for installing guest virtual machines of different types, PCI device
configuration and SR-IOV.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. WHAT IS IN THIS GUIDE?

CHAPTER 2. SYSTEM REQUIREMENTS

CHAPTER 3. KVM GUEST VIRTUAL MACHINE COMPATIBILITY
3.1. RED HAT ENTERPRISE LINUX 6 SUPPORT LIMITS
3.2. SUPPORTED CPU MODELS

CHAPTER 4. VIRTUALIZATION RESTRICTIONS
4.1. KVM RESTRICTIONS
4.2. APPLICATION RESTRICTIONS
4.3. OTHER RESTRICTIONS

CHAPTER 5. INSTALLING THE VIRTUALIZATION PACKAGES
5.1. CONFIGURING A VIRTUALIZATION HOST INSTALLATION
5.2. INSTALLING VIRTUALIZATION PACKAGES ON AN EXISTING RED HAT ENTERPRISE LINUX SYSTEM

CHAPTER 6. GUEST VIRTUAL MACHINE INSTALLATION OVERVIEW
6.1. GUEST VIRTUAL MACHINE PREREQUISITES AND CONSIDERATIONS
6.2. CREATING GUESTS WITH VIRT-INSTALL
6.3. CREATING GUESTS WITH VIRT-MANAGER
6.4. CREATING GUESTS WITH PXE
6.5. CONNECTING TO VIRTUAL MACHINES

CHAPTER 7. INSTALLING A RED HAT ENTERPRISE LINUX 6 GUEST VIRTUAL MACHINE ON A RED HAT
ENTERPRISE LINUX 6 HOST

7.1. CREATING A RED HAT ENTERPRISE LINUX 6 GUEST WITH LOCAL INSTALLATION MEDIA
7.2. CREATING A RED HAT ENTERPRISE LINUX 6 GUEST WITH A NETWORK INSTALLATION TREE
7.3. CREATING A RED HAT ENTERPRISE LINUX 6 GUEST WITH PXE

CHAPTER 8. VIRTUALIZING RED HAT ENTERPRISE LINUX ON OTHER PLATFORMS
8.1. ON VMWARE ESX
8.2. ON HYPER-V

CHAPTER 9. INSTALLING A FULLY-VIRTUALIZED WINDOWS GUEST
9.1. USING VIRT-INSTALL TO CREATE A GUEST

CHAPTER 10. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS
10.1. INSTALLING THE KVM WINDOWS VIRTIO DRIVERS
10.2. INSTALLING THE DRIVERS ON AN INSTALLED WINDOWS GUEST VIRTUAL MACHINE
10.3. INSTALLING DRIVERS DURING THE WINDOWS INSTALLATION
10.4. USING KVM VIRTIO DRIVERS FOR EXISTING DEVICES
10.5. USING KVM VIRTIO DRIVERS FOR NEW DEVICES

CHAPTER 11. NETWORK CONFIGURATION
11.1. NETWORK ADDRESS TRANSLATION (NAT) WITH LIBVIRT
11.2. DISABLING VHOST-NET
11.3. BRIDGED NETWORKING WITH LIBVIRT

CHAPTER 12. PCI DEVICE ASSIGNMENT
12.1. ASSIGNING A PCI DEVICE WITH VIRSH
12.2. ASSIGNING A PCI DEVICE WITH VIRT-MANAGER
12.3. ASSIGNING A PCI DEVICE WITH VIRT-INSTALL
12.4. DETACHING AN ASSIGNED PCI DEVICE

5
5

6

8
8
8

11
11

12
12

13
13
17

19
19
19

20
27
34

35
35
45
47

51
51
51

53
53

55
55
56
66
73
74

79
79
80
81

82
83
86
89
91

Table of Contents

1

. .

. .

. .

. .

. .

. .

12.5. PCI DEVICE RESTRICTIONS

CHAPTER 13. SR-IOV
13.1. INTRODUCTION
13.2. USING SR-IOV
13.3. TROUBLESHOOTING SR-IOV
13.4. SR-IOV RESTRICTIONS

CHAPTER 14. KVM GUEST TIMING MANAGEMENT
14.1. CONSTANT TIME STAMP COUNTER (TSC)

14.1.1. Configuring Hosts without a Constant Time Stamp Counter
14.2. REQUIRED PARAMETERS FOR RED HAT ENTERPRISE LINUX GUESTS
14.3. USING THE REAL-TIME CLOCK WITH WINDOWS SERVER 2008, WINDOWS SERVER 2008 R2, AND
WINDOWS 7 GUESTS
14.4. STEAL TIME ACCOUNTING

CHAPTER 15. NETWORK BOOTING WITH LIBVIRT
15.1. PREPARING THE BOOT SERVER

15.1.1. Setting up a PXE Boot Server on a Private libvirt Network
15.2. BOOTING A GUEST USING PXE

15.2.1. Using Bridged Networking
15.2.2. Using a Private libvirt Network

CHAPTER 16. REGISTERING THE HYPERVISOR AND VIRTUAL MACHINE
16.1. INSTALLING VIRT-WHO ON THE HOST PHYSICAL MACHINE
16.2. REGISTERING A NEW GUEST VIRTUAL MACHINE
16.3. REMOVING A GUEST VIRTUAL MACHINE ENTRY
16.4. INSTALLING VIRT-WHO MANUALLY
16.5. TROUBLESHOOTING VIRT-WHO

16.5.1. Why is the hypervisor status red?
16.5.2. I have subscription status errors, what do I do?

APPENDIX A. NETKVM DRIVER PARAMETERS
A.1. CONFIGURABLE PARAMETERS FOR NETKVM

APPENDIX B. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING
B.1. LIBVIRTD FAILED TO START
B.2. THE URI FAILED TO CONNECT TO THE HYPERVISOR

B.2.1. Cannot read CA certificate
B.2.2. Failed to connect socket ... : Permission denied
B.2.3. Other Connectivity Errors

B.3. THE GUEST VIRTUAL MACHINE CANNOT BE STARTED: INTERNAL ERROR GUEST CPU IS NOT
COMPATIBLE WITH HOST CPU
B.4. GUEST STARTING FAILS WITH ERROR: MONITOR SOCKET DID NOT SHOW UP
B.5. INTERNAL ERROR CANNOT FIND CHARACTER DEVICE (NULL)
B.6. GUEST VIRTUAL MACHINE BOOTING STALLS WITH ERROR: NO BOOT DEVICE
B.7. VIRTUAL NETWORK DEFAULT HAS NOT BEEN STARTED
B.8. PXE BOOT (OR DHCP) ON GUEST FAILED
B.9. GUEST CAN REACH OUTSIDE NETWORK, BUT CANNOT REACH HOST WHEN USING MACVTAP
INTERFACE
B.10. COULD NOT ADD RULE TO FIXUP DHCP RESPONSE CHECKSUMS ON NETWORK 'DEFAULT'
B.11. UNABLE TO ADD BRIDGE BR0 PORT VNET0: NO SUCH DEVICE
B.12. GUEST IS UNABLE TO START WITH ERROR: WARNING: COULD NOT OPEN /DEV/NET/TUN
B.13. MIGRATION FAILS WITH ERROR: UNABLE TO RESOLVE ADDRESS
B.14. MIGRATION FAILS WITH UNABLE TO ALLOW ACCESS FOR DISK PATH: NO SUCH FILE OR DIRECTORY

92

94
94
95
99

100

101
101
101
102

103
104

105
105
105
106
106
106

108
108

111
111
111

112
112
112

113
113

117
119
121
121
121
122

122
123
124
124
126
127

130
131
131

133
134

Virtualization Host Configuration and Guest Installation Guide

2

. .

B.15. NO GUEST VIRTUAL MACHINES ARE PRESENT WHEN LIBVIRTD IS STARTED
B.16. UNABLE TO CONNECT TO SERVER AT 'HOST:16509': CONNECTION REFUSED ... ERROR: FAILED TO
CONNECT TO THE HYPERVISOR
B.17. COMMON XML ERRORS

B.17.1. Editing Domain Definition
B.17.2. XML Syntax Errors

B.17.2.1. Stray < in the document
B.17.2.2. Unterminated attribute
B.17.2.3. Opening and ending tag mismatch
B.17.2.4. Typographical errors in tags

B.17.3. Logic and Configuration Errors
B.17.3.1. Vanishing parts
B.17.3.2. Incorrect drive device type

APPENDIX C. REVISION HISTORY

135
137

138
139
139
140
140
141
141

142
143
143
143

145

Table of Contents

3

Virtualization Host Configuration and Guest Installation Guide

4

CHAPTER 1. INTRODUCTION

1.1. WHAT IS IN THIS GUIDE?

This guide provides information on installing virtualization software and configuring guest machines on a
Red Hat Enterprise Linux virtualization host.

The initial chapters in this guide outline the prerequisites to enable a Red Hat Enterprise Linux host
machine to deploy virtualization. System requirements, compatible hardware, support and product
restrictions are covered in detail.

Basic host configuration, including mandatory and optional virtualization packages, are covered in
Chapter 5, Installing the Virtualization Packages .

Guest virtual machine installation is covered in detail starting from Chapter 6, Guest Virtual Machine
Installation Overview, with procedures for installing fully virtualized Red Hat Enterprise Linux guests and
Windows paravirtualized guests using virt-manager and virsh.

More detailed information on networking, PCI device configuration, SR-IOV, KVM guest timing
management, and troubleshooting help for libvirt and SR-IOV is included later in the guide.

NOTE

This book provides guidance for virtualization host configuration and guest installation.
For more detailed system configuration information, refer to the Red Hat Enterprise Linux
— Virtualization Administration Guide.

CHAPTER 1. INTRODUCTION

5

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Administration_Guide/index.html

CHAPTER 2. SYSTEM REQUIREMENTS
This chapter lists system requirements for successfully running virtual machines, referred to as VMs on
Red Hat Enterprise Linux 6. Virtualization is available for Red Hat Enterprise Linux 6 on the Intel 64 and
AMD64 architecture.

The KVM hypervisor is provided with Red Hat Enterprise Linux 6.

For information on installing the virtualization packages, see Chapter 5, Installing the Virtualization
Packages.

Minimum system requirements

6 GB free disk space.

2 GB of RAM.

Recommended system requirements

One processor core or hyper-thread for the maximum number of virtualized CPUs in a guest
virtual machine and one for the host.

2 GB of RAM plus additional RAM for virtual machines.

6 GB disk space for the host, plus the required disk space for each virtual machine.

Most guest operating systems will require at least 6GB of disk space, but the additional storage
space required for each guest depends on its image format.

For guest virtual machines using raw images, the guest's total required space (total for raw
format) is equal to or greater than the sum of the space required by the guest's raw image files
(images), the 6GB space required by the host operating system (host), and the swap space that
guest will require (swap).

Equation 2.1. Calculating required space for guest virtual machines using raw images

total for raw format = images + host + swap

For qcow images, you must also calculate the expected maximum storage requirements of the
guest (total for qcow format), as qcow and qcow2 images grow as required. To allow for this
expansion, first multiply the expected maximum storage requirements of the guest (expected
maximum guest storage) by 1.01, and add to this the space required by the host (host), and the
necessary swap space (swap).

Equation 2.2. Calculating required space for guest virtual machines using qcow images

total for qcow format = (expected maximum guest storage * 1.01) + host + swap

Guest virtual machine requirements are further outlined in the Red Hat Enterprise Linux 6 Virtualization
Administration Guide in Chapter 6. Overcommitting with KVM.

Calculating Swap Space

Using swap space can provide additional memory beyond the available physical memory. The swap
partition is used for swapping underused memory to the hard drive to speed up memory performance.
The default size of the swap partition is calculated from the physical RAM of the host.

Virtualization Host Configuration and Guest Installation Guide

6

Red Hat Knowledgebase contains an article on safely and efficiently determining an appropriate size for
the swap partition, available here: https://access.redhat.com/site/solutions/15244.

KVM Requirements

The KVM hypervisor requires:

an Intel processor with the Intel VT-x and Intel 64 extensions for x86-based systems, or

an AMD processor with the AMD-V and the AMD64 extensions.

Refer to the Red Hat Enterprise Linux 6 Virtualization Administration Guide to determine if your
processor has the virtualization extensions.

Storage Support

The guest virtual machine storage methods are:

files on local storage,

physical disk partitions,

locally connected physical LUNs,

LVM partitions,

NFS shared file systems,

iSCSI,

GFS2 clustered file systems,

Fibre Channel-based LUNs, and

Fibre Channel over Ethernet (FCoE).

CHAPTER 2. SYSTEM REQUIREMENTS

7

https://access.redhat.com/site/solutions/15244

CHAPTER 3. KVM GUEST VIRTUAL MACHINE COMPATIBILITY
To verify whether your processor supports the virtualization extensions and for information on enabling
the virtualization extensions if they are disabled, refer to the Red Hat Enterprise Linux Virtualization
Administration Guide.

3.1. RED HAT ENTERPRISE LINUX 6 SUPPORT LIMITS

Red Hat Enterprise Linux 6 servers have certain support limits.

The following URLs explain the processor and memory amount limitations for Red Hat Enterprise Linux:

For host systems: http://www.redhat.com/resourcelibrary/articles/articles-red-hat-enterprise-
linux-6-technology-capabilities-and-limits

For hypervisors: http://www.redhat.com/resourcelibrary/articles/virtualization-limits-rhel-
hypervisors

NOTE

Red Hat Enterprise Linux 6.5 now supports 4TiB of memory per KVM guest.

The following URL is a complete reference showing supported operating systems and host and guest
combinations:

http://www.redhat.com/resourcelibrary/articles/enterprise-linux-virtualization-support

3.2. SUPPORTED CPU MODELS

Every hypervisor has its own policy for which CPU features the guest will see by default. The set of CPU
features presented to the guest by QEMU/KVM depends on the CPU model chosen in the guest virtual
machine configuration. qemu32 and qemu64 are basic CPU models but there are other models (with
additional features) available.

Red Hat Enterprise Linux 6 supports the use of the following QEMU CPU model definitions:

<!-- This is only a partial file, only containing the CPU models. The XML file has more information
(including supported features per model) which you can see when you open the file yourself -->
<cpus>
 <arch name='x86'>
...

 <!-- Intel-based QEMU generic CPU models -->
 <model name='pentium'>
 <model name='486'/>
 </model>

 <model name='pentium2'>
 <model name='pentium'/>
 </model>

 <model name='pentium3'>
 <model name='pentium2'/>

Virtualization Host Configuration and Guest Installation Guide

8

http://www.redhat.com/resourcelibrary/articles/articles-red-hat-enterprise-linux-6-technology-capabilities-and-limits
http://www.redhat.com/resourcelibrary/articles/virtualization-limits-rhel-hypervisors
http://www.redhat.com/resourcelibrary/articles/enterprise-linux-virtualization-support

 </model>

 <model name='pentiumpro'>
 </model>

 <model name='coreduo'>
 <model name='pentiumpro'/>
 <vendor name='Intel'/>
 </model>

 <model name='n270'>
 <model name='coreduo'/>
 </model>

 <model name='core2duo'>
 <model name='n270'/>
 </model>

 <!-- Generic QEMU CPU models -->
 <model name='qemu32'>
 <model name='pentiumpro'/>
 </model>

 <model name='kvm32'>
 <model name='qemu32'/>
 </model>

 <model name='cpu64-rhel5'>
 <model name='kvm32'/>
 </model>

 <model name='cpu64-rhel6'>
 <model name='cpu64-rhel5'/>
 </model>

 <model name='kvm64'>
 <model name='cpu64-rhel5'/>
 </model>

 <model name='qemu64'>
 <model name='kvm64'/>
 </model>

 <!-- Intel CPU models -->
 <model name='Conroe'>
 <model name='pentiumpro'/>
 <vendor name='Intel'/>
 </model>

 <model name='Penryn'>
 <model name='Conroe'/>
 </model>

 <model name='Nehalem'>
 <model name='Penryn'/>
 </model>

CHAPTER 3. KVM GUEST VIRTUAL MACHINE COMPATIBILITY

9

NOTE

A full list of supported CPU models and recognized CPUID flags can also be found using
the qemu-kvm -cpu ? command.

 <model name='Westmere'>
 <model name='Nehalem'/>
 <feature name='aes'/>
 </model>

 <model name='SandyBridge'>
 <model name='Westmere'/>
 </model>

 <model name='Haswell'>
 <model name='SandyBridge'/>
 </model>

 <!-- AMD CPUs -->
 <model name='athlon'>
 <model name='pentiumpro'/>
 <vendor name='AMD'/>
 </model>

 <model name='phenom'>
 <model name='cpu64-rhel5'/>
 <vendor name='AMD'/>
 </model>

 <model name='Opteron_G1'>
 <model name='cpu64-rhel5'/>
 <vendor name='AMD'/>
 </model>

 <model name='Opteron_G2'>
 <model name='Opteron_G1'/>
 </model>

 <model name='Opteron_G3'>
 <model name='Opteron_G2'/>
 </model>

 <model name='Opteron_G4'>
 <model name='Opteron_G2'/>
 </model>

 <model name='Opteron_G5'>
 <model name='Opteron_G4'/>
 </model>
 </arch>
</cpus>

Virtualization Host Configuration and Guest Installation Guide

10

CHAPTER 4. VIRTUALIZATION RESTRICTIONS
This chapter covers additional support and product restrictions of the virtualization packages in Red Hat
Enterprise Linux 6.

4.1. KVM RESTRICTIONS

The following restrictions apply to the KVM hypervisor:

Maximum vCPUs per guest

The maximum amount of virtual CPUs that is supported per guest varies depending on which minor
version of Red Hat Enterprise Linux 6 you are using as a host machine. The release of 6.0 introduced
a maximum of 64, while 6.3 introduced a maximum of 160. As of version 6.7, a maximum of 240
virtual CPUs per guest is supported.

Constant TSC bit

Systems without a Constant Time Stamp Counter require additional configuration. Refer to
Chapter 14, KVM Guest Timing Management for details on determining whether you have a Constant
Time Stamp Counter and configuration steps for fixing any related issues.

Virtualized SCSI devices

SCSI emulation is not supported with KVM in Red Hat Enterprise Linux.

Virtualized IDE devices

KVM is limited to a maximum of four virtualized (emulated) IDE devices per guest virtual machine.

Migration restrictions

Device assignment refers to physical devices that have been exposed to a virtual machine, for the
exclusive use of that virtual machine. Because device assignment uses hardware on the specific host
where the virtual machine runs, migration and save/restore are not supported when device
assignment is in use. If the guest operating system supports hot plugging, assigned devices can be
removed prior to the migration or save/restore operation to enable this feature.

Live migration is only possible between hosts with the same CPU type (that is, Intel to Intel or AMD
to AMD only).

For live migration, both hosts must have the same value set for the No eXecution (NX) bit, either on
or off.

For migration to work, cache=none must be specified for all block devices opened in write mode.

WARNING

Failing to include the cache=none option can result in disk corruption.

Storage restrictions

There are risks associated with giving guest virtual machines write access to entire disks or block

CHAPTER 4. VIRTUALIZATION RESTRICTIONS

11

There are risks associated with giving guest virtual machines write access to entire disks or block
devices (such as /dev/sdb). If a guest virtual machine has access to an entire block device, it can
share any volume label or partition table with the host machine. If bugs exist in the host system's
partition recognition code, this can create a security risk. Avoid this risk by configuring the host
machine to ignore devices assigned to a guest virtual machine.

WARNING

Failing to adhere to storage restrictions can result in risks to security.

Core dumping restrictions

Core dumping uses the same infrastructure as migration and requires more device knowledge and
control than device assignement can provide. Therefore, core dumping is not supported when device
assignment is in use.

4.2. APPLICATION RESTRICTIONS

There are aspects of virtualization which make it unsuitable for certain types of applications.

Applications with high I/O throughput requirements should use the paravirtualized drivers for fully-
virtualized guests. Without the paravirtualized drivers certain applications may be unpredictable under
heavy I/O loads.

The following applications should be avoided due to high I/O requirements:

kdump server

netdump server

You should carefully evaluate applications and tools that heavily utilize I/O or those that require real-
time performance. Consider the paravirtualized drivers or PCI device assignment for increased I/O
performance. Refer to Chapter 10, KVM Paravirtualized (virtio) Drivers for more information on the
paravirtualized drivers for fully virtualized guests. Refer to Chapter 12, PCI Device Assignment for more
information on PCI device assignment.

Applications suffer a small performance loss from running in virtualized environments. The performance
benefits of virtualization through consolidating to newer and faster hardware should be evaluated
against the potential application performance issues associated with using virtualization.

4.3. OTHER RESTRICTIONS

For the list of all other restrictions and issues affecting virtualization read the Red Hat Enterprise Linux 6
Release Notes. The Red Hat Enterprise Linux 6 Release Notes cover the present new features, known
issues and restrictions as they are updated or discovered.

Virtualization Host Configuration and Guest Installation Guide

12

CHAPTER 5. INSTALLING THE VIRTUALIZATION PACKAGES
Before you can use virtualization, the virtualization packages must be installed on your computer.
Virtualization packages can be installed either during the host installation sequence or after host
installation using Subscription Manager.

The KVM hypervisor uses the default Red Hat Enterprise Linux kernel with the kvm kernel module.

5.1. CONFIGURING A VIRTUALIZATION HOST INSTALLATION

This section covers installing virtualization tools and virtualization packages as part of a fresh Red Hat
Enterprise Linux installation.

NOTE

The Red Hat Enterprise Linux Installation Guide covers installing Red Hat Enterprise Linux
in detail.

Procedure 5.1. Installing the virtualization package group

1. Launch the Red Hat Enterprise Linux 6 installation program
Start an interactive Red Hat Enterprise Linux 6 installation from the Red Hat Enterprise Linux
Installation CD-ROM, DVD or PXE.

2. Continue installation up to package selection
Complete the other steps up to the package selection step.

CHAPTER 5. INSTALLING THE VIRTUALIZATION PACKAGES

13

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Installation_Guide/index.html

Figure 5.1. The Red Hat Enterprise Linux package selection screen

Select the Virtualization Host server role to install a platform for guest virtual machines.
Alternatively, ensure that the Customize Now radio button is selected before proceeding, to
specify individual packages.

3. Select the Virtualization package group
This selects the qemu-kvm emulator, virt-manager, libvirt and virt-viewer for installation.

Virtualization Host Configuration and Guest Installation Guide

14

Figure 5.2. The Red Hat Enterprise Linux package selection screen

NOTE

If you wish to create virtual machines in a graphical user interface (virt-manager)
later, you should also select the General Purpose Desktop package group.

4. Customize the packages (if required)
Customize the Virtualization group if you require other virtualization packages.

CHAPTER 5. INSTALLING THE VIRTUALIZATION PACKAGES

15

Figure 5.3. The Red Hat Enterprise Linux package selection screen

Click on the Close button, then the Next button to continue the installation.

When the installation is complete, reboot the system.

IMPORTANT

You require a valid virtualization entitlement to receive updates for the virtualization
packages.

Installing KVM Packages with Kickstart Files

Kickstart files allow for large, automated installations without a user manually installing each individual
host system. This section describes how to create and use a Kickstart file to install Red Hat Enterprise
Linux with the Virtualization packages.

In the %packages section of your Kickstart file, append the following package groups:

@virtualization
@virtualization-client
@virtualization-platform
@virtualization-tools

For more information about Kickstart files, refer to the Red Hat Enterprise Linux Installation Guide .

5.2. INSTALLING VIRTUALIZATION PACKAGES ON AN EXISTING RED

Virtualization Host Configuration and Guest Installation Guide

16

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Installation_Guide/index.html

5.2. INSTALLING VIRTUALIZATION PACKAGES ON AN EXISTING RED
HAT ENTERPRISE LINUX SYSTEM

This section describes the steps for installing the KVM hypervisor on a working Red Hat Enterprise Linux
6 or newer system.

To install the packages, your machines must be registered. To register using Red Hat Subscription
Manager, run the subscription-manager register command and follow the prompts.

If you do not have a valid Red Hat subscription, visit the Red Hat online store to obtain one.

NOTE

Red Hat Network (RHN) has now been deprecated. Subscription Manager should now be
used for registration tasks.

Installing the Virtualization Packages with yum

To use virtualization on Red Hat Enterprise Linux you require at least the qemu-kvm and qemu-img
packages. These packages provide the user-level KVM emulator and disk image manager on the host
Red Hat Enterprise Linux system.

To install the qemu-kvm and qemu-img packages, run the following command:

yum install qemu-kvm qemu-img

Several additional virtualization management packages are also available:

Recommended virtualization packages

python-virtinst

Provides the virt-install command for creating virtual machines.

libvirt

The libvirt package provides the server and host side libraries for interacting with hypervisors and
host systems. The libvirt package provides the libvirtd daemon that handles the library calls,
manages virtual machines and controls the hypervisor.

libvirt-python

The libvirt-python package contains a module that permits applications written in the Python
programming language to use the interface supplied by the libvirt API.

virt-manager

virt-manager, also known as Virtual Machine Manager, provides a graphical tool for administering
virtual machines. It uses libvirt-client library as the management API.

libvirt-client

The libvirt-client package provides the client-side APIs and libraries for accessing libvirt servers. The
libvirt-client package includes the virsh command line tool to manage and control virtual machines
and hypervisors from the command line or a special virtualization shell.

CHAPTER 5. INSTALLING THE VIRTUALIZATION PACKAGES

17

https://www.redhat.com/wapps/store/catalog.html

Install all of these recommended virtualization packages with the following command:

yum install virt-manager libvirt libvirt-python python-virtinst libvirt-client

Installing Virtualization Package Groups

The virtualization packages can also be installed from package groups. The following table describes the
virtualization package groups and what they provide.

NOTE

Note that the qemu-img package is installed as a dependency of the Virtualization
package group if it is not already installed on the system. It can also be installed manually
with the yum install qemu-img command as described previously.

Table 5.1. Virtualization package groups

Package Group Description Mandatory Packages Optional Packages

Virtualization Provides an
environment for hosting
virtual machines

qemu-kvm qemu-guest-agent,
qemu-kvm-tools

Virtualization Client Clients for installing and
managing virtualization
instances

python-virtinst, virt-
manager, virt-viewer

virt-top

Virtualization Platform Provides an interface for
accessing and
controlling virtual
machines and containers

libvirt, libvirt-client, virt-
who, virt-what

fence-virtd-libvirt,
fence-virtd-multicast,
fence-virtd-serial,
libvirt-cim, libvirt-java,
libvirt-qmf, libvirt-snmp,
perl-Sys-Virt

Virtualization Tools Tools for offline virtual
image management

libguestfs libguestfs-java,
libguestfs-tools, virt-v2v

To install a package group, run the yum groupinstall <groupname> command. For instance, to install
the Virtualization Tools package group, run the yum groupinstall "Virtualization Tools" command.

Virtualization Host Configuration and Guest Installation Guide

18

CHAPTER 6. GUEST VIRTUAL MACHINE INSTALLATION
OVERVIEW
After you have installed the virtualization packages on the host system you can create guest operating
systems. This chapter describes the general processes for installing guest operating systems on virtual
machines. You can create guest virtual machines using the New button in virt-manager or use the
command line interface virt-install. Both methods are covered by this chapter.

Detailed installation instructions are available in the following chapters for specific versions of Red Hat
Enterprise Linux and Microsoft Windows.

6.1. GUEST VIRTUAL MACHINE PREREQUISITES AND
CONSIDERATIONS

Various factors should be considered before creating any guest virtual machines. Not only should the
role of a virtual machine be considered before deployment, but regular ongoing monitoring and
assessment based on variable factors (load, amount of clients) should be performed. Some factors
include:

Performance

Guest virtual machines should be deployed and configured based on their intended tasks. Some
guest systems (for instance, guests running a database server) may require special performance
considerations. Guests may require more assigned CPUs or memory based on their role and
projected system load.

Input/Output requirements and types of Input/Output

Some guest virtual machines may have a particularly high I/O requirement or may require further
considerations or projections based on the type of I/O (for instance, typical disk block size access, or
the amount of clients).

Storage

Some guest virtual machines may require higher priority access to storage or faster disk types, or
may require exclusive access to areas of storage. The amount of storage used by guests should also
be regularly monitored and taken into account when deploying and maintaining storage.

Networking and network infrastructure

Depending upon your environment, some guest virtual machines could require faster network links
than other guests. Bandwidth or latency are often factors when deploying and maintaining guests,
especially as requirements or load changes.

Request requirements

SCSI requests can only be issued to guest virtual machines on virtio drives if the virtio drives are
backed by whole disks, and the disk device parameter is set to lun, as shown in the following example:

<devices>
 <emulator>/usr/libexec/qemu-kvm</emulator>
 <disk type='block' device='lun'>

6.2. CREATING GUESTS WITH VIRT-INSTALL

CHAPTER 6. GUEST VIRTUAL MACHINE INSTALLATION OVERVIEW

19

You can use the virt-install command to create guest virtual machines from the command line. virt-
install is used either interactively or as part of a script to automate the creation of virtual machines.
Using virt-install with Kickstart files allows for unattended installation of virtual machines.

The virt-install tool provides a number of options that can be passed on the command line. To see a
complete list of options run the following command:

virt-install --help

Note that you need root privileges in order for virt-install commands to complete successfully. The virt-
install man page also documents each command option and important variables.

qemu-img is a related command which may be used before virt-install to configure storage options.

An important option is the --graphics option which allows graphical installation of a virtual machine.

Example 6.1. Using virt-install to install a Red Hat Enterprise Linux 5 guest virtual machine

This example creates a Red Hat Enterprise Linux 5 guest:

virt-install \
 --name=guest1-rhel5-64 \
 --file=/var/lib/libvirt/images/guest1-rhel5-64.dsk \
 --file-size=8 \
 --nonsparse --graphics spice \
 --vcpus=2 --ram=2048 \
 --location=http://example1.com/installation_tree/RHEL5.6-Server-x86_64/os \
 --network bridge=br0 \
 --os-type=linux \
 --os-variant=rhel5.4

Ensure that you select the correct os-type for your operating system when running this command.

Refer to man virt-install for more examples.

NOTE

When installing a Windows guest with virt-install, the --os-type=windows option is
recommended. This option prevents the CD-ROM from disconnecting when rebooting
during the installation procedure. The --os-variant option further optimizes the
configuration for a specific guest operating system.

After the installation completes, you can connect to the guest operating system. For more information,
see Section 6.5, “Connecting to Virtual Machines”

6.3. CREATING GUESTS WITH VIRT-MANAGER

virt-manager, also known as Virtual Machine Manager, is a graphical tool for creating and managing
guest virtual machines.

Procedure 6.1. Creating a guest virtual machine with virt-manager

Virtualization Host Configuration and Guest Installation Guide

20

1. Open virt-manager
Start virt-manager. Launch the Virtual Machine Manager application from the Applications
menu and System Tools submenu. Alternatively, run the virt-manager command as root.

2. Optional: Open a remote hypervisor
Select the hypervisor and click the Connect button to connect to the remote hypervisor.

3. Create a new virtual machine
The virt-manager window allows you to create a new virtual machine. Click the Create a new
virtual machine button (Figure 6.1, “Virtual Machine Manager window”) to open the New VM
wizard.

Figure 6.1. Virtual Machine Manager window

The New VM wizard breaks down the virtual machine creation process into five steps:

1. Naming the guest virtual machine and choosing the installation type

2. Locating and configuring the installation media

3. Configuring memory and CPU options

4. Configuring the virtual machine's storage

5. Configuring networking, architecture, and other hardware settings

Ensure that virt-manager can access the installation media (whether locally or over the
network) before you continue.

4. Specify name and installation type
The guest virtual machine creation process starts with the selection of a name and installation
type. Virtual machine names can have underscores (_), periods (.), and hyphens (-).

CHAPTER 6. GUEST VIRTUAL MACHINE INSTALLATION OVERVIEW

21

Figure 6.2. Name virtual machine and select installation method

Type in a virtual machine name and choose an installation type:

Local install media (ISO image or CDROM)

This method uses a CD-ROM, DVD, or image of an installation disk (for example, .iso).

Network Install (HTTP, FTP, or NFS)

This method involves the use of a mirrored Red Hat Enterprise Linux or Fedora installation
tree to install a guest. The installation tree must be accessible through either HTTP, FTP, or
NFS.

Network Boot (PXE)

This method uses a Preboot eXecution Environment (PXE) server to install the guest virtual

Virtualization Host Configuration and Guest Installation Guide

22

machine. Setting up a PXE server is covered in the Deployment Guide. To install using
network boot, the guest must have a routable IP address or shared network device. For
information on the required networking configuration for PXE installation, refer to
Section 6.4, “Creating Guests with PXE”.

Import existing disk image

This method allows you to create a new guest virtual machine and import a disk image
(containing a pre-installed, bootable operating system) to it.

Click Forward to continue.

5. Configure installation
Next, configure the OS type and Version of the installation. Ensure that you select the
appropriate OS type for your virtual machine. Depending on the method of installation, provide
the install URL or existing storage path.

Figure 6.3. Remote installation URL

CHAPTER 6. GUEST VIRTUAL MACHINE INSTALLATION OVERVIEW

23

Figure 6.4. Local ISO image installation

6. Configure CPU and memory
The next step involves configuring the number of CPUs and amount of memory to allocate to
the virtual machine. The wizard shows the number of CPUs and amount of memory you can
allocate; configure these settings and click Forward.

Virtualization Host Configuration and Guest Installation Guide

24

Figure 6.5. Configuring CPU and memory

7. Configure storage
Assign storage to the guest virtual machine.

CHAPTER 6. GUEST VIRTUAL MACHINE INSTALLATION OVERVIEW

25

Figure 6.6. Configuring virtual storage

If you chose to import an existing disk image during the first step, virt-manager will skip this
step.

Assign sufficient space for your virtual machine and any applications it requires, then click
Forward to continue.

8. Final configuration
Verify the settings of the virtual machine and click Finish when you are satisfied; doing so will
create the virtual machine with default networking settings, virtualization type, and architecture.

Virtualization Host Configuration and Guest Installation Guide

26

Figure 6.7. Verifying the configuration

If you prefer to further configure the virtual machine's hardware first, check the Customize
configuration before install box first before clicking Finish. Doing so will open another wizard
that will allow you to add, remove, and configure the virtual machine's hardware settings.

After configuring the virtual machine's hardware, click Apply. virt-manager will then create the
virtual machine with your specified hardware settings.

9. After the installation completes, you can connect to the guest operating system. For more
information, see Section 6.5, “Connecting to Virtual Machines”

6.4. CREATING GUESTS WITH PXE

This section provides information on creating guests with PXE.

CHAPTER 6. GUEST VIRTUAL MACHINE INSTALLATION OVERVIEW

27

Requirements

PXE guest installation requires a PXE server running on the same subnet as the guest virtual machines
you wish to install. The method of accomplishing this depends on how the virtual machines are
connected to the network. Contact Support if you require assistance setting up a PXE server.

PXE Installation with virt-install

virt-install PXE installations require both the --network=bridge:installation parameter, where
installation is the name of your bridge, and the --pxe parameter.

By default, if no network is found, the guest virtual machine attempts to boot from alternative bootable
devices. If there is no other bootable device found, the guest pauses. You can use the qemu-kvm boot
parameter reboot-timeout to allow the guest to retry booting if no bootable device is found, like so:

qemu-kvm -boot reboot-timeout=1000

Example 6.2. Fully-virtualized PXE installation with virt-install

virt-install --hvm --connect qemu:///system \
--network=bridge:installation --pxe --graphics spice \
--name rhel6-machine --ram=756 --vcpus=4 \
--os-type=linux --os-variant=rhel6 \
--disk path=/var/lib/libvirt/images/rhel6-machine.img,size=10

Note that the command above cannot be executed in a text-only environment. A fully-virtualized (--
hvm) guest can only be installed in a text-only environment if the --location and --extra-args
"console=console_type" are provided instead of the --graphics spice parameter.

Procedure 6.2. PXE installation with virt-manager

1. Select PXE
Select PXE as the installation method and follow the rest of the steps to configure the OS type,
memory, CPU and storage settings.

Virtualization Host Configuration and Guest Installation Guide

28

Figure 6.8. Selecting the installation method

CHAPTER 6. GUEST VIRTUAL MACHINE INSTALLATION OVERVIEW

29

Figure 6.9. Selecting the installation type

Virtualization Host Configuration and Guest Installation Guide

30

Figure 6.10. Specifying virtualized hardware details

CHAPTER 6. GUEST VIRTUAL MACHINE INSTALLATION OVERVIEW

31

Figure 6.11. Specifying storage details

2. Start the installation
The installation is ready to start.

Virtualization Host Configuration and Guest Installation Guide

32

Figure 6.12. Finalizing virtual machine details

A DHCP request is sent and if a valid PXE server is found the guest virtual machine's installation
processes will start.

After the installation completes, you can connect to the guest operating system. For more information,
see Section 6.5, “Connecting to Virtual Machines”

CHAPTER 6. GUEST VIRTUAL MACHINE INSTALLATION OVERVIEW

33

6.5. CONNECTING TO VIRTUAL MACHINES

After creating a virtual machine, you can connect to its started guest OS. To do so, you can use:

virt-viewer or remote-viewer - For details, see Graphical user interface tools for guest virtual
machine management.

virt-manager - For details, see Managing guests with the Virtual Machine Manager .

The guest's serial console - For details, see Connecting the serial console for the Guest Virtual
Machine.

Virtualization Host Configuration and Guest Installation Guide

34

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html-single/virtualization_administration_guide/index#sub-sect-Starting_suspending_resuming_saving_and_restoring_a_guest_virtual_machine-Starting_a_defined_domain
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_administration_guide/chap-virt-tools
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_administration_guide/chap-Virtualization_Administration_Guide-Managing_guests_with_the_Virtual_Machine_Manager_virt_manager
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_administration_guide/sub-sect-domain_commands-connecting_the_serial_console_for_the_guest_virtual_machine

CHAPTER 7. INSTALLING A RED HAT ENTERPRISE LINUX 6
GUEST VIRTUAL MACHINE ON A RED HAT ENTERPRISE
LINUX 6 HOST
This chapter covers how to install a Red Hat Enterprise Linux 6 guest virtual machine on a Red Hat
Enterprise Linux 6 host.

These procedures assume that the KVM hypervisor and all other required packages are installed and the
host is configured for virtualization.

NOTE

For more information on installing the virtualization packages, refer to Chapter 5,
Installing the Virtualization Packages .

7.1. CREATING A RED HAT ENTERPRISE LINUX 6 GUEST WITH LOCAL
INSTALLATION MEDIA

This procedure covers creating a Red Hat Enterprise Linux 6 guest virtual machine with a locally stored
installation DVD or DVD image. DVD images are available from http://access.redhat.com for Red Hat
Enterprise Linux 6.

Procedure 7.1. Creating a Red Hat Enterprise Linux 6 guest virtual machine with virt-manager

1. Optional: Preparation
Prepare the storage environment for the virtual machine. For more information on preparing
storage, refer to the Red Hat Enterprise Linux 6 Virtualization Administration Guide .

IMPORTANT

Various storage types may be used for storing guest virtual machines. However,
for a virtual machine to be able to use migration features the virtual machine
must be created on networked storage.

Red Hat Enterprise Linux 6 requires at least 1GB of storage space. However, Red Hat
recommends at least 5GB of storage space for a Red Hat Enterprise Linux 6 installation and for
the procedures in this guide.

2. Open virt-manager and start the wizard
Open virt-manager by executing the virt-manager command as root or opening Applications
→ System Tools → Virtual Machine Manager.

CHAPTER 7. INSTALLING A RED HAT ENTERPRISE LINUX 6 GUEST VIRTUAL MACHINE ON A RED HAT ENTERPRISE LINUX 6 HOST

35

http://access.redhat.com

Figure 7.1. The Virtual Machine Manager window

Click on the Create a new virtual machine button to start the new virtualized guest wizard.

Figure 7.2. The Create a new virtual machine button

The New VM window opens.

3. Name the virtual machine
Virtual machine names can contain letters, numbers and the following characters: '_', '.' and '-'.
Virtual machine names must be unique for migration and cannot consist only of numbers.

Choose the Local install media (ISO image or CDROM) radio button.

Virtualization Host Configuration and Guest Installation Guide

36

Figure 7.3. The New VM window - Step 1

Click Forward to continue.

4. Select the installation media
Select the appropriate radio button for your installation media.

CHAPTER 7. INSTALLING A RED HAT ENTERPRISE LINUX 6 GUEST VIRTUAL MACHINE ON A RED HAT ENTERPRISE LINUX 6 HOST

37

Figure 7.4. Locate your install media

If you wish to install from a CD-ROM or DVD, select the Use CDROM or DVD radio button,
and select the appropriate disk drive from the drop-down list of drives available.

If you wish to install from an ISO image, select Use ISO image, and then click the Browse...
button to open the Locate media volume window.

Select the installation image you wish to use, and click Choose Volume.

If no images are displayed in the Locate media volume window, click on the Browse Local
button to browse the host machine for the installation image or DVD drive containing the
installation disk. Select the installation image or DVD drive containing the installation disk
and click Open; the volume is selected for use and you are returned to the Create a new
virtual machine wizard.

IMPORTANT

For ISO image files and guest storage images, the recommended location to
use is /var/lib/libvirt/images/. Any other location may require additional
configuration by SELinux. Refer to the Red Hat Enterprise Linux 6
Virtualization Administration Guide for more details on configuring SELinux.

Virtualization Host Configuration and Guest Installation Guide

38

Select the operating system type and version which match the installation media you have
selected.

Figure 7.5. The New VM window - Step 2

Click Forward to continue.

5. Set RAM and virtual CPUs
Choose appropriate values for the virtual CPUs and RAM allocation. These values affect the
host's and guest's performance. Memory and virtual CPUs can be overcommitted. For more
information on overcommitting, refer to the Red Hat Enterprise Linux 6 Virtualization
Administration Guide.

Virtual machines require sufficient physical memory (RAM) to run efficiently and effectively.
Red Hat supports a minimum of 512MB of RAM for a virtual machine. Red Hat recommends at
least 1024MB of RAM for each logical core.

Assign sufficient virtual CPUs for the virtual machine. If the virtual machine runs a multithreaded
application, assign the number of virtual CPUs the guest virtual machine will require to run
efficiently.

You cannot assign more virtual CPUs than there are physical processors (or hyper-threads)
available on the host system. The number of virtual CPUs available is noted in the Up to X
available field.

CHAPTER 7. INSTALLING A RED HAT ENTERPRISE LINUX 6 GUEST VIRTUAL MACHINE ON A RED HAT ENTERPRISE LINUX 6 HOST

39

Figure 7.6. The new VM window - Step 3

Click Forward to continue.

6. Enable and assign storage
Enable and assign storage for the Red Hat Enterprise Linux 6 guest virtual machine. Assign at
least 5GB for a desktop installation or at least 1GB for a minimal installation.

NOTE

Live and offline migrations require virtual machines to be installed on shared
network storage. For information on setting up shared storage for virtual
machines, refer to the Red Hat Enterprise Linux Virtualization Administration
Guide.

a. With the default local storage
Select the Create a disk image on the computer's hard drive radio button to create a
file-based image in the default storage pool, the /var/lib/libvirt/images/ directory. Enter
the size of the disk image to be created. If the Allocate entire disk now check box is
selected, a disk image of the size specified will be created immediately. If not, the disk
image will grow as it becomes filled.

NOTE

Virtualization Host Configuration and Guest Installation Guide

40

NOTE

Although the storage pool is a virtual container it is limited by two factors:
maximum size allowed to it by qemu-kvm and the size of the disk on the host
physical machine. Storage pools may not exceed the size of the disk on the
host physical machine. The maximum sizes are as follows:

virtio-blk = 2^63 bytes or 8 Exabytes(using raw files or disk)

Ext4 = ~ 16 TB (using 4 KB block size)

XFS = ~8 Exabytes

qcow2 and host file systems keep their own metadata and scalability
should be evaluated/tuned when trying very large image sizes. Using raw
disks means fewer layers that could affect scalability or max size.

Figure 7.7. The New VM window - Step 4

Click Forward to create a disk image on the local hard drive. Alternatively, select Select
managed or other existing storage, then select Browse to configure managed storage.

b. With a storage pool

CHAPTER 7. INSTALLING A RED HAT ENTERPRISE LINUX 6 GUEST VIRTUAL MACHINE ON A RED HAT ENTERPRISE LINUX 6 HOST

41

If you selected Select managed or other existing storage in the previous step to use a
storage pool and clicked Browse, the Locate or create storage volume window will
appear.

Figure 7.8. The Locate or create storage volume window

i. Select a storage pool from the Storage Pools list.

ii. Optional: Click on the New Volume button to create a new storage volume. The Add a
Storage Volume screen will appear. Enter the name of the new storage volume.

Choose a format option from the Format drop-down menu. Format options include
raw, cow, qcow, qcow2, qed, vmdk, and vpc. Adjust other fields as desired.

Virtualization Host Configuration and Guest Installation Guide

42

Figure 7.9. The Add a Storage Volume window

Click Finish to continue.

7. Verify and finish
Verify there were no errors made during the wizard and everything appears as expected.

Select the Customize configuration before install check box to change the guest's storage or
network devices, to use the paravirtualized drivers or to add additional devices.

Click on the Advanced options down arrow to inspect and modify advanced options. For a
standard Red Hat Enterprise Linux 6 installation, none of these options require modification.

CHAPTER 7. INSTALLING A RED HAT ENTERPRISE LINUX 6 GUEST VIRTUAL MACHINE ON A RED HAT ENTERPRISE LINUX 6 HOST

43

Figure 7.10. The New VM window - local storage

Click Finish to continue into the Red Hat Enterprise Linux installation sequence. For more
information on installing Red Hat Enterprise Linux 6 refer to the Red Hat Enterprise Linux 6
Installation Guide.

A Red Hat Enterprise Linux 6 guest virtual machine is now created from an ISO installation disc image.
After the installation completes, you can connect to the guest operating system. For more information,
see Section 6.5, “Connecting to Virtual Machines”

Virtualization Host Configuration and Guest Installation Guide

44

7.2. CREATING A RED HAT ENTERPRISE LINUX 6 GUEST WITH A
NETWORK INSTALLATION TREE

Procedure 7.2. Creating a Red Hat Enterprise Linux 6 guest with virt-manager

1. Optional: Preparation
Prepare the storage environment for the guest virtual machine. For more information on
preparing storage, refer to the Red Hat Enterprise Linux 6 Virtualization Administration Guide .

IMPORTANT

Various storage types may be used for storing guest virtual machines. However,
for a virtual machine to be able to use migration features the virtual machine
must be created on networked storage.

Red Hat Enterprise Linux 6 requires at least 1GB of storage space. However, Red Hat
recommends at least 5GB of storage space for a Red Hat Enterprise Linux 6 installation and for
the procedures in this guide.

2. Open virt-manager and start the wizard
Open virt-manager by executing the virt-manager command as root or opening Applications
→ System Tools → Virtual Machine Manager.

Figure 7.11. The main virt-manager window

CHAPTER 7. INSTALLING A RED HAT ENTERPRISE LINUX 6 GUEST VIRTUAL MACHINE ON A RED HAT ENTERPRISE LINUX 6 HOST

45

Click on the Create a new virtual machine button to start the new virtual machine wizard.

Figure 7.12. The Create a new virtual machine button

The Create a new virtual machine window opens.

3. Name the virtual machine
Virtual machine names can contain letters, numbers and the following characters: '_', '.' and '-'.
Virtual machine names must be unique for migration and cannot consist only of numbers.

Choose the installation method from the list of radio buttons.

Figure 7.13. The New VM window - Step 1

Click Forward to continue.

4. Provide the installation URL, and the Kickstart URL and Kernel options if required.

Virtualization Host Configuration and Guest Installation Guide

46

Figure 7.14. The New VM window - Step 2

Click Forward to continue.

5. The remaining steps are the same as the ISO installation procedure. Continue from Step 5 of
the ISO installation procedure.

7.3. CREATING A RED HAT ENTERPRISE LINUX 6 GUEST WITH PXE

Procedure 7.3. Creating a Red Hat Enterprise Linux 6 guest with virt-manager

1. Optional: Preparation
Prepare the storage environment for the virtual machine. For more information on preparing
storage, refer to the Red Hat Enterprise Linux 6 Virtualization Administration Guide .

IMPORTANT

CHAPTER 7. INSTALLING A RED HAT ENTERPRISE LINUX 6 GUEST VIRTUAL MACHINE ON A RED HAT ENTERPRISE LINUX 6 HOST

47

IMPORTANT

Various storage types may be used for storing guest virtual machines. However,
for a virtual machine to be able to use migration features the virtual machine
must be created on networked storage.

Red Hat Enterprise Linux 6 requires at least 1GB of storage space. However, Red Hat
recommends at least 5GB of storage space for a Red Hat Enterprise Linux 6 installation and for
the procedures in this guide.

2. Open virt-manager and start the wizard
Open virt-manager by executing the virt-manager command as root or opening Applications
→ System Tools → Virtual Machine Manager.

Figure 7.15. The main virt-manager window

Click on the Create new virtualized guest button to start the new virtualized guest wizard.

Figure 7.16. The create new virtualized guest button

The New VM window opens.

Virtualization Host Configuration and Guest Installation Guide

48

3. Name the virtual machine
Virtual machine names can contain letters, numbers and the following characters: '_', '.' and '-'.
Virtual machine names must be unique for migration and cannot consist only of numbers.

Choose the installation method from the list of radio buttons.

Figure 7.17. The New VM window - Step 1

Click Forward to continue.

4. The remaining steps are the same as the ISO installation procedure. Continue from Step 5 of
the ISO installation procedure. From this point, the only difference in this PXE procedure is on
the final New VM screen, which shows the Install: PXE Install field.

CHAPTER 7. INSTALLING A RED HAT ENTERPRISE LINUX 6 GUEST VIRTUAL MACHINE ON A RED HAT ENTERPRISE LINUX 6 HOST

49

Figure 7.18. The New VM window - Step 5 - PXE Install

Virtualization Host Configuration and Guest Installation Guide

50

CHAPTER 8. VIRTUALIZING RED HAT ENTERPRISE LINUX ON
OTHER PLATFORMS
This chapter contains useful reference material for customers running Red Hat Enterprise Linux 6 as a
virtualized operating system on other virtualization hosts.

8.1. ON VMWARE ESX

Red Hat Enterprise Linux 6.0 and onward provide the vmw_balloon driver, a paravirtualized memory
ballooning driver used when running Red Hat Enterprise Linux on VMware hosts. For further information
about this driver, refer to http://kb.VMware.com/selfservice/microsites/search.do?
cmd=displayKC&docType=kc&externalId=1002586.

Red Hat Enterprise Linux 6.3 and onward provide the vmmouse_drv driver, a paravirtualized mouse
driver used when running Red Hat Enterprise Linux on VMware hosts. For further information about this
driver, refer to http://kb.VMware.com/selfservice/microsites/search.do?
cmd=displayKC&docType=kc&externalId=5739104.

Red Hat Enterprise Linux 6.3 and onward provide the vmware_drv driver, a paravirtualized video driver
used when running Red Hat Enterprise Linux on VMware hosts. For further information about this driver,
refer to http://kb.VMware.com/selfservice/microsites/search.do?
cmd=displayKC&docType=kc&externalId=1033557.

Red Hat Enterprise Linux 6.3 and onward provide the vmxnet3 driver, a paravirtualized network adapter
used when running Red Hat Enterprise Linux on VMware hosts. For further information about this driver,
refer to http://kb.VMware.com/selfservice/microsites/search.do?
language=en_US&cmd=displayKC&externalId=1001805.

Red Hat Enterprise Linux 6.4 and onward provide the vmw_pvscsi driver, a paravirtualized SCSI
adapter used when running Red Hat Enterprise Linux on VMware hosts. For further information about
this driver, refer to http://kb.VMware.com/selfservice/microsites/search.do?
language=en_US&cmd=displayKC&externalId=1010398.

8.2. ON HYPER-V

Red Hat Enterprise Linux 6.4 and onward include Microsoft's Linux Integration Services, a set of drivers
that enable synthetic device support in supported virtualized operating systems. Further details about
the drivers provided are available from http://technet.microsoft.com/en-us/library/dn531030.aspx.

IMPORTANT

Note that the built-in Red Hat Enterprise Linux Integration Service drivers for Hyper-V
are sufficient for Red Hat Enterprise Linux guests to run using the high performance
synthetic devices on Hyper-V hosts. These built-in drivers are certified by Red Hat for
this use, and certified configurations can be viewed on the Red Hat Customer Portal .

Therefore, it is not necessary to download and install Linux Integration Services (LIS)
packages, and doing so may limit your Red Hat support, as described in the related
Knowledgebase article.

The following enhancements have been made to allow for easier deployment and management of Red
Hat Enterprise Linux guest virtual machines:

Upgraded VMBUS protocols - VMBUS protocols have been upgraded to Windows 8 level. As

CHAPTER 8. VIRTUALIZING RED HAT ENTERPRISE LINUX ON OTHER PLATFORMS

51

http://kb.vmware.com/selfservice/microsites/search.do?cmd=displayKC&docType=kc&externalId=1002586
http://kb.vmware.com/selfservice/microsites/search.do?cmd=displayKC&docType=kc&externalId=5739104
http://kb.vmware.com/selfservice/microsites/search.do?cmd=displayKC&docType=kc&externalId=1033557
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1001805
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1010398
http://technet.microsoft.com/en-us/library/dn531030.aspx
https://access.redhat.com/ecosystem/search/#/ecosystem/Red Hat Enterprise Linux?sort=sortTitle asc&vendors=Microsoft&category=Server
https://access.redhat.com/articles/1067

Upgraded VMBUS protocols - VMBUS protocols have been upgraded to Windows 8 level. As
part of this work, now VMBUS interrupts can be processed on all available virtual CPUs in the
guest. Furthermore, the signaling protocol between the Red Hat Enterprise Linux guest virtual
machine and the Windows host physical machine has been optimized.

Synthetic frame buffer driver - Provides enhanced graphics performance and superior
resolution for Red Hat Enterprise Linux desktop users.

Live Virtual Machine Backup support - Provisions uninterrupted backup support for live Red Hat
Enterprise Linux guest virtual machines.

Dynamic expansion of fixed size Linux VHDXs - Allows expansion of live mounted fixed size Red
Hat Enterprise Linux VHDXs.

Boot using UEFI - Allows virtual machines to boot using Unified Extensible Firmware Interface
(UEFI) on a Hyper-V 2012 R2 host.

For more information and features, refer to Red Hat Enterprise Linux — Virtualization Administration
Guide and to the following article:" Enabling Linux Support on Windows Server 2012 R2 Hyper-V ".

Virtualization Host Configuration and Guest Installation Guide

52

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Administration_Guide/sect-windows-rhel-guests.html
http://blogs.technet.com/b/virtualization/archive/2013/07/24/enabling-linux-support-on-windows-server-2012-r2-hyper-v.aspx

CHAPTER 9. INSTALLING A FULLY-VIRTUALIZED WINDOWS
GUEST
This chapter describes how to create a fully-virtualized Windows guest using the command-line (virt-
install), launch the operating system's installer inside the guest, and access the installer through virt-
viewer.

To install a Windows operating system on the guest, use the virt-viewer tool. This tool allows you to
display the graphical console of a virtual machine (using the SPICE or VNC protocol). In doing so, virt-
viewer allows you to install a fully-virtualized guest's operating system with that operating system's
installer .

Installing a Windows operating system involves two major steps:

1. Creating the guest virtual machine, using either virt-install or virt-manager.

2. Installing the Windows operating system on the guest virtual machine, using virt-viewer.

Refer to Chapter 6, Guest Virtual Machine Installation Overview for details about creating a guest virtual
machine with virt-install or virt-manager.

Note that this chapter does not describe how to install a Windows operating system on a fully-virtualized
guest. Rather, it only covers how to create the guest and launch the installer within the guest. For
information on how to install a Windows operating system, refer to the relevant Microsoft installation
documentation.

9.1. USING VIRT-INSTALL TO CREATE A GUEST

The virt-install command allows you to create a fully-virtualized guest from a terminal, without the need
for a GUI.

IMPORTANT

Before creating the guest, consider first if the guest needs to use KVM Windows
paravirtualized drivers. If it does, keep in mind that you can do so during or after installing
the Windows operating system on the guest. For more information about paravirtualized
drivers, refer to Chapter 10, KVM Paravirtualized (virtio) Drivers .

For instructions on how to install KVM paravirtualized drivers, refer to Section 10.1,
“Installing the KVM Windows virtio Drivers”.

It is possible to create a fully-virtualized guest with only a single command. To do so, run the following
program (replace the values accordingly):

virt-install \
 --name=guest-name \
 --os-type=windows \
 --network network=default \
 --disk path=path-to-disk,size=disk-size \
 --cdrom=path-to-install-disk \
 --graphics spice --ram=1024

The path-to-disk must be a device (e.g. /dev/sda3) or image file (/var/lib/libvirt/images/name.img). It
must also have enough free space to support the disk-size.

CHAPTER 9. INSTALLING A FULLY-VIRTUALIZED WINDOWS GUEST

53

IMPORTANT

All image files are stored in /var/lib/libvirt/images/ by default. Other directory locations
for file-based images are possible, but may require SELinux configuration. If you run
SELinux in enforcing mode, refer to the Red Hat Enterprise Linux 6 Virtualization
Administration Guide for more information on SELinux.

You can also run virt-install interactively. To do so, use the --prompt command, as in:

virt-install --prompt

Once the fully-virtualized guest is created, virt-viewer will launch the guest and run the operating
system's installer. Refer to the relevant Microsoft installation documentation for instructions on how to
install the operating system.

Virtualization Host Configuration and Guest Installation Guide

54

CHAPTER 10. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS
Paravirtualized drivers enhance the performance of guests, decreasing guest I/O latency and increasing
throughput to near bare-metal levels. It is recommended to use the paravirtualized drivers for fully
virtualized guests running I/O heavy tasks and applications.

Virtio drivers are KVM's paravirtualized device drivers, available for Windows guest virtual machines
running on KVM hosts. These drivers are included in the virtio package. The virtio package supports
block (storage) devices and network interface controllers.

The KVM virtio drivers are automatically loaded and installed on the following:

Red Hat Enterprise Linux 4.8 and newer

Red Hat Enterprise Linux 5.3 and newer

Red Hat Enterprise Linux 6 and newer

Red Hat Enterprise Linux 7 and newer

Some versions of Linux based on the 2.6.27 kernel or newer kernel versions.

Versions of Red Hat Enterprise Linux in the list above detect and install the drivers, additional
installation steps are not required.

In Red Hat Enterprise Linux 3 (3.9 and above), manual installation is required.

NOTE

PCI devices are limited by the virtualized system architecture. Refer to Section 4.1, “KVM
Restrictions” for additional limitations when using assigned devices.

Using KVM virtio drivers, the following Microsoft Windows versions are expected to run similarly to bare-
metal-based systems.

Windows Server 2003 (32-bit and 64-bit versions)

Windows Server 2008 (32-bit and 64-bit versions)

Windows Server 2008 R2 (64-bit only)

Windows 7 (32-bit and 64-bit versions)

Windows Server 2012 (64-bit only)

Windows Server 2012 R2 (64-bit only)

Windows 8 (32-bit and 64-bit versions)

Windows 8.1 (32-bit and 64-bit versions)

10.1. INSTALLING THE KVM WINDOWS VIRTIO DRIVERS

This section covers the installation process for the KVM Windows virtio drivers. The KVM virtio drivers
can be loaded during the Windows installation or installed after the guest is installed.

CHAPTER 10. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

55

You can install the virtio drivers on a guest virtual machine using one of the following methods:

hosting the installation files on a network accessible to the virtual machine

using a virtualized CD-ROM device of the driver installation disk .iso file

using a USB drive, by mounting the same (provided) .ISO file that you would use for the CD-
ROM

using a virtualized floppy device to install the drivers during boot time (required and
recommended only for XP/2003)

This guide describes installation from the paravirtualized installer disk as a virtualized CD-ROM device.

1. Download the drivers
The virtio-win package contains the virtio block and network drivers for all supported Windows
guest virtual machines.

Download and install the virtio-win package on the host with the yum command.

 # yum install virtio-win

The list of virtio-win packages that are supported on Windows operating systems, and the
current certified package version, can be found at the following URL:
windowsservercatalog.com.

Note that the Red Hat Virtualization Hypervisor and Red Hat Enterprise Linux are created on
the same code base so the drivers for the same version (for example, Red Hat Virtualization
Hypervisor 3.3 and Red Hat Enterprise Linux 6.5) are supported for both environments.

The virtio-win package installs a CD-ROM image, virtio-win.iso, in the /usr/share/virtio-win/
directory.

2. Install the virtio drivers
When booting a Windows guest that uses virtio-win devices, the relevant virtio-win device
drivers must already be installed on this guest. The virtio-win drivers are not provided as inbox
drivers in Microsoft's Windows installation kit, so installation of a Windows guest on a virtio-win
storage device (viostor/virtio-scsi) requires that you provide the appropriate driver during the
installation, either directly from the virtio-win.iso or from the supplied Virtual Floppy image
virtio-win<version>.vfd.

10.2. INSTALLING THE DRIVERS ON AN INSTALLED WINDOWS GUEST
VIRTUAL MACHINE

This procedure covers installing the virtio drivers with a virtualized CD-ROM after Windows is installed.

Follow this procedure to add a CD-ROM image with virt-manager and then install the drivers.

Procedure 10.1. Installing from the driver CD-ROM image with virt-manager

1. Open virt-manager and the guest virtual machine
Open virt-manager, then open the guest virtual machine from the list by double-clicking the
guest name.

2. Open the hardware window

Virtualization Host Configuration and Guest Installation Guide

56

http://www.windowsservercatalog.com/results.aspx?text=Red+Hat&bCatID=1282&avc=10&ava=0&OR=5&=Go&chtext=&cstext=&csttext=&chbtext=

Click the lightbulb icon on the toolbar at the top of the window to view virtual hardware details.

Figure 10.1. The virtual hardware details button

Then click the Add Hardware button at the bottom of the new view that appears. This opens a
wizard for adding the new device.

3. Select the device type — for Red Hat Enterprise Linux 6 versions prior to 6.2
Skip this step if you are using Red Hat Enterprise Linux 6.2 or later.

On Red Hat Enterprise Linux 6 versions prior to version 6.2, you must select the type of device
you wish to add. In this case, select Storage from the drop-down menu.

Figure 10.2. The Add new virtual hardware wizard in Red Hat Enterprise Linux 6.1

Click the Finish button to proceed.

4. Select the ISO file
Ensure that the Select managed or other existing storage radio button is selected, and
browse to the virtio driver's .iso image file. The default location for the latest version of the
drivers is /usr/share/virtio-win/virtio-win.iso.

Change the Device type to IDE cdrom and click the Forward button to proceed.

CHAPTER 10. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

57

Figure 10.3. The Add new virtual hardware wizard

5. Finish adding virtual hardware — for Red Hat Enterprise Linux 6 versions prior to 6.2
If you are using Red Hat Enterprise Linux 6.2 or later, skip this step.

On Red Hat Enterprise Linux 6 versions prior to version 6.2, click on the Finish button to finish
adding the virtual hardware and close the wizard.

Virtualization Host Configuration and Guest Installation Guide

58

Figure 10.4. The Add new virtual hardware wizard in Red Hat Enterprise Linux 6.1

6. Reboot
Reboot or start the virtual machine to begin using the driver disc. Virtualized IDE devices require
a restart to for the virtual machine to recognize the new device.

Once the CD-ROM with the drivers is attached and the virtual machine has started, proceed with
Procedure 10.2, “Windows installation on a Windows 7 virtual machine” .

Procedure 10.2. Windows installation on a Windows 7 virtual machine

This procedure installs the drivers on a Windows 7 virtual machine as an example. Adapt the Windows
installation instructions to your guest's version of Windows.

1. Open the Computer Management window
On the desktop of the Windows virtual machine, click the Windows icon at the bottom corner of
the screen to open the Start menu.

Right-click on Computer and select Manage from the pop-up menu.

CHAPTER 10. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

59

Figure 10.5. The Computer Management window

2. Open the Device Manager
Select the Device Manager from the left-most pane. This can be found under Computer
Management > System Tools.

Figure 10.6. The Computer Management window

Virtualization Host Configuration and Guest Installation Guide

60

3. Start the driver update wizard

a. View available system devices
Expand System devices by clicking on the arrow to its left.

Figure 10.7. Viewing available system devices in the Computer Management window

b. Locate the appropriate device
There are up to four drivers available: the balloon driver, the serial driver, the network driver,
and the block driver.

Balloon, the balloon driver, affects the PCI standard RAM Controller in the System
devices group.

vioserial, the serial driver, affects the PCI Simple Communication Controller in the
System devices group.

NetKVM, the network driver, affects the Network adapters group. This driver is only
available if a virtio NIC is configured. Configurable parameters for this driver are
documented in Appendix A, NetKVM Driver Parameters .

viostor, the block driver, affects the Disk drives group. This driver is only available if a
virtio disk is configured.

Right-click on the device whose driver you wish to update, and select Update Driver... from
the pop-up menu.

This example installs the balloon driver, so right-click on PCI standard RAM Controller.

CHAPTER 10. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

61

Figure 10.8. The Computer Management window

c. Open the driver update wizard
From the drop-down menu, select Update Driver Software... to access the driver update
wizard.

Figure 10.9. Opening the driver update wizard

4. Specify how to find the driver
The first page of the driver update wizard asks how you want to search for driver software. Click
on the second option, Browse my computer for driver software.

Virtualization Host Configuration and Guest Installation Guide

62

Figure 10.10. The driver update wizard

5. Select the driver to install

a. Open a file browser
Click on Browse...

Figure 10.11. The driver update wizard

CHAPTER 10. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

63

b. Browse to the location of the driver
A separate driver is provided for each of the various combinations of operating system and
architecture. The drivers are arranged hierarchically according to their driver type, the
operating system, and the architecture on which they will be installed: driver_type/os/arch/.
For example, the Balloon driver for a Windows 7 operating system with an x86 (32-bit)
architecture, resides in the Balloon/w7/x86 directory.

Figure 10.12. The Browse for driver software pop-up window

Once you have navigated to the correct location, click OK.

c. Click Next to continue

Virtualization Host Configuration and Guest Installation Guide

64

Figure 10.13. The Update Driver Software wizard

The following screen is displayed while the driver installs:

Figure 10.14. The Update Driver Software wizard

6. Close the installer
The following screen is displayed when installation is complete:

CHAPTER 10. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

65

Figure 10.15. The Update Driver Software wizard

Click Close to close the installer.

7. Reboot
Reboot the virtual machine to complete the driver installation.

10.3. INSTALLING DRIVERS DURING THE WINDOWS INSTALLATION

This procedure covers installing the virtio drivers during a Windows installation.

This method allows a Windows guest virtual machine to use the virtio drivers for the default storage
device.

Procedure 10.3. Installing virtio drivers during the Windows installation

1. Install the virtio-win package
Use the following command to install the virtio-win package:

yum install virtio-win

2. Create the guest virtual machine

IMPORTANT

Create the virtual machine, as normal, without starting the virtual machine. Follow
one of the procedures below.

Select one of the following guest-creation methods, and follow the instructions.

Virtualization Host Configuration and Guest Installation Guide

66

a. Create the guest virtual machine with virsh
This method attaches the virtio driver floppy disk to a Windows guest before the installation.

If the virtual machine is created from an XML definition file with virsh, use the virsh define
command not the virsh create command.

i. Create, but do not start, the virtual machine. Refer to the Red Hat Enterprise Linux
Virtualization Administration Guide for details on creating virtual machines with the
virsh command.

ii. Add the driver disk as a virtualized floppy disk with the virsh command. This example
can be copied and used if there are no other virtualized floppy devices attached to the
guest virtual machine. Note that vm_name should be replaced with the name of the
virtual machine.

virsh attach-disk vm_name /usr/share/virtio-win/virtio-win.vfd fda --type floppy

You can now continue with Step 3.

b. Create the guest virtual machine with virt-manager and changing the disk type

i. At the final step of the virt-manager guest creation wizard, check the Customize
configuration before install check box.

Figure 10.16. The virt-manager guest creation wizard

Click on the Finish button to continue.

CHAPTER 10. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

67

ii. Open the Add Hardware wizard
Click the Add Hardware button in the bottom left of the new panel.

iii. Select storage device
Storage is the default selection in the Hardware type list.

Figure 10.17. The Add new virtual hardware wizard

Ensure the Select managed or other existing storage radio button is selected. Click
Browse....

Figure 10.18. Select managed or existing storage

In the new window that opens, click Browse Local. Navigate to /usr/share/virtio-
win/virtio-win.vfd, and click Select to confirm.

Change Device type to Floppy disk, and click Finish to continue.

Figure 10.19. Change the Device type

Virtualization Host Configuration and Guest Installation Guide

68

iv. Confirm settings
Review the device settings.

Figure 10.20. The virtual machine hardware information window

You have now created a removable device accessible by your virtual machine.

v. Change the hard disk type
To change the hard disk type from IDE Disk to Virtio Disk, we must first remove the
existing hard disk, Disk 1. Select the disk and click on the Remove button.

CHAPTER 10. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

69

Figure 10.21. The virtual machine hardware information window

Add a new virtual storage device by clicking Add Hardware. Then, change the Device
type from IDE disk to Virtio Disk. Click Finish to confirm the operation.

Figure 10.22. The virtual machine hardware information window

Virtualization Host Configuration and Guest Installation Guide

70

vi. Ensure settings are correct
Review the settings for VirtIO Disk 1.

Figure 10.23. The virtual machine hardware information window

When you are satisfied with the configuration details, click the Begin Installation
button.

You can now continue with Step 3.

c. Create the guest virtual machine with virt-install
Append the following parameter exactly as listed below to add the driver disk to the
installation with the virt-install command:

--disk path=/usr/share/virtio-win/virtio-win.vfd,device=floppy

IMPORTANT

If the device you wish to add is a disk (that is, not a floppy or a cdrom), you
will also need to add the bus=virtio option to the end of the --disk
parameter, like so:

--disk path=/usr/share/virtio-win/virtio-win.vfd,device=disk,bus=virtio

According to the version of Windows you are installing, append one of the following options
to the virt-install command:

CHAPTER 10. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

71

--os-variant win2k3

--os-variant win7

You can now continue with Step 3.

3. Additional steps for driver installation
During the installation, additional steps are required to install drivers, depending on the type of
Windows guest.

a. Windows Server 2003
Before the installation blue screen repeatedly press F6 for third party drivers.

Figure 10.24. The Windows Setup screen

Press S to install additional device drivers.

Figure 10.25. The Windows Setup screen

Virtualization Host Configuration and Guest Installation Guide

72

Figure 10.26. The Windows Setup screen

Press Enter to continue the installation.

b. Windows Server 2008
Follow the same procedure for Windows Server 2003, but when the installer prompts you
for the driver, click on Load Driver, point the installer to Drive A: and pick the driver that
suits your guest operating system and architecture.

10.4. USING KVM VIRTIO DRIVERS FOR EXISTING DEVICES

You can modify an existing hard disk device attached to the guest to use the virtio driver instead of the
virtualized IDE driver. The example shown in this section edits libvirt configuration files. Note that the
guest virtual machine does not need to be shut down to perform these steps, however the change will
not be applied until the guest is completely shut down and rebooted.

Procedure 10.4. Using KVM virtio drivers for existing devices

1. Ensure that you have installed the appropriate driver (viostor), as described in Section 10.1,
“Installing the KVM Windows virtio Drivers”, before continuing with this procedure.

2. Run the virsh edit <guestname> command as root to edit the XML configuration file for your
device. For example, virsh edit guest1. The configuration files are located in /etc/libvirt/qemu.

3. Below is a file-based block device using the virtualized IDE driver. This is a typical entry for a
virtual machine not using the virtio drivers.

<disk type='file' device='disk'>
 <source file='/var/lib/libvirt/images/disk1.img'/>
 <target dev='hda' bus='ide'/>
</disk>

4. Change the entry to use the virtio device by modifying the bus= entry to virtio. Note that if the
disk was previously IDE it will have a target similar to hda, hdb, or hdc and so on. When changing
to bus=virtio the target needs to be changed to vda, vdb, or vdc accordingly.

CHAPTER 10. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

73

<disk type='file' device='disk'>
 <source file='/var/lib/libvirt/images/disk1.img'/>
 <target dev='vda' bus='virtio'/>
</disk>

5. Remove the address tag inside the disk tags. This must be done for this procedure to work.
Libvirt will regenerate the address tag appropriately the next time the virtual machine is
started.

Alternatively, virt-manager, virsh attach-disk or virsh attach-interface can add a new device using the
virtio drivers.

Refer to the libvirt website for more details on using Virtio: http://www.linux-kvm.org/page/Virtio

10.5. USING KVM VIRTIO DRIVERS FOR NEW DEVICES

This procedure covers creating new devices using the KVM virtio drivers with virt-manager.

Alternatively, the virsh attach-disk or virsh attach-interface commands can be used to attach devices
using the virtio drivers.

IMPORTANT

Ensure the drivers have been installed on the Windows guest before proceeding to install
new devices. If the drivers are unavailable the device will not be recognized and will not
work.

Procedure 10.5. Adding a storage device using the virtio storage driver

1. Open the guest virtual machine by double clicking on the name of the guest in virt-manager.

2. Open the Show virtual hardware details tab by clicking the lightbulb button.

Figure 10.27. The Show virtual hardware details tab

3. In the Show virtual hardware details tab, click on the Add Hardware button.

4. Select hardware type
Select Storage as the Hardware type.

Virtualization Host Configuration and Guest Installation Guide

74

http://www.linux-kvm.org/page/Virtio

Figure 10.28. The Add new virtual hardware wizard

5. Select the storage device and driver
Create a new disk image or select a storage pool volume.

Set the Device type to Virtio disk to use the virtio drivers.

CHAPTER 10. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

75

Figure 10.29. The Add new virtual hardware wizard

Click Finish to complete the procedure.

Procedure 10.6. Adding a network device using the virtio network driver

1. Open the guest virtual machine by double clicking on the name of the guest in virt-manager.

2. Open the Show virtual hardware details tab by clicking the lightbulb button.

Figure 10.30. The Show virtual hardware details tab

3. In the Show virtual hardware details tab, click on the Add Hardware button.

4. Select hardware type
Select Network as the Hardware type.

Virtualization Host Configuration and Guest Installation Guide

76

Figure 10.31. The Add new virtual hardware wizard

5. Select the network device and driver
Set the Device model to virtio to use the virtio drivers. Choose the desired Host device.

CHAPTER 10. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS

77

Figure 10.32. The Add new virtual hardware wizard

Click Finish to complete the procedure.

Once all new devices are added, reboot the virtual machine. Windows virtual machines may not
recognize the devices until the guest is rebooted.

Virtualization Host Configuration and Guest Installation Guide

78

CHAPTER 11. NETWORK CONFIGURATION
This chapter provides an introduction to the common networking configurations used by libvirt based
guest virtual machines. For additional information, consult the libvirt network architecture
documentation: http://libvirt.org/intro.html.

Red Hat Enterprise Linux 6 supports the following networking setups for virtualization:

virtual networks using Network Address Translation (NAT)

directly allocated physical devices using PCI device assignment

directly allocated virtual functions using PCIe SR-IOV

bridged networks

You must enable NAT, network bridging or directly assign a PCI device to allow external hosts access to
network services on guest virtual machines.

11.1. NETWORK ADDRESS TRANSLATION (NAT) WITH LIBVIRT

One of the most common methods for sharing network connections is to use Network Address
Translation (NAT) forwarding (also known as virtual networks).

Host Configuration

Every standard libvirt installation provides NAT-based connectivity to virtual machines as the default
virtual network. Verify that it is available with the virsh net-list --all command.

virsh net-list --all
Name State Autostart

default active yes

If it is missing, the example XML configuration file can be reloaded and activated:

virsh net-define /usr/share/libvirt/networks/default.xml

The default network is defined from /usr/share/libvirt/networks/default.xml

Mark the default network to automatically start:

virsh net-autostart default
Network default marked as autostarted

Start the default network:

virsh net-start default
Network default started

Once the libvirt default network is running, you will see an isolated bridge device. This device does not
have any physical interfaces added. The new device uses NAT and IP forwarding to connect to the
physical network. Do not add new interfaces.

CHAPTER 11. NETWORK CONFIGURATION

79

http://libvirt.org/intro.html

brctl show
bridge name bridge id STP enabled interfaces
virbr0 8000.000000000000 yes

libvirt adds iptables rules which allow traffic to and from guest virtual machines attached to the virbr0
device in the INPUT, FORWARD, OUTPUT and POSTROUTING chains. libvirt then attempts to enable
the ip_forward parameter. Some other applications may disable ip_forward, so the best option is to add
the following to /etc/sysctl.conf.

 net.ipv4.ip_forward = 1

Guest Virtual Machine Configuration

Once the host configuration is complete, a guest virtual machine can be connected to the virtual
network based on its name. To connect a guest to the 'default' virtual network, the following could be
used in the XML configuration file (such as /etc/libvirtd/qemu/myguest.xml) for the guest:

<interface type='network'>
 <source network='default'/>
</interface>

NOTE

Defining a MAC address is optional. If you do not define one, a MAC address is
automatically generated and used as the MAC address of the bridge device used by the
network. Manually setting the MAC address may be useful to maintain consistency or
easy reference throughout your environment, or to avoid the very small chance of a
conflict.

<interface type='network'>
 <source network='default'/>
 <mac address='00:16:3e:1a:b3:4a'/>
</interface>

11.2. DISABLING VHOST-NET

The vhost-net module is a kernel-level back end for virtio networking that reduces virtualization
overhead by moving virtio packet processing tasks out of user space (the qemu process) and into the
kernel (the vhost-net driver). vhost-net is only available for virtio network interfaces. If the vhost-net
kernel module is loaded, it is enabled by default for all virtio interfaces, but can be disabled in the
interface configuration in the case that a particular workload experiences a degradation in performance
when vhost-net is in use.

Specifically, when UDP traffic is sent from a host machine to a guest virtual machine on that host,
performance degradation can occur if the guest virtual machine processes incoming data at a rate
slower than the host machine sends it. In this situation, enabling vhost-net causes the UDP socket's
receive buffer to overflow more quickly, which results in greater packet loss. It is therefore better to
disable vhost-net in this situation to slow the traffic, and improve overall performance.

To disable vhost-net, edit the <interface> sub-element in the guest virtual machine's XML
configuration file and define the network as follows:

<interface type="network">

Virtualization Host Configuration and Guest Installation Guide

80

 ...
 <model type="virtio"/>
 <driver name="qemu"/>
 ...
</interface>

Setting the driver name to qemu forces packet processing into qemu user space, effectively disabling
vhost-net for that interface.

11.3. BRIDGED NETWORKING WITH LIBVIRT

Bridged networking (also known as physical device sharing) is used to dedicate a physical device to a
virtual machine. Bridging is often used for more advanced setups and on servers with multiple network
interfaces.

To create a bridge (br0) based on the eth0 interface, execute the following command on the host:

virsh iface-bridge eth0 br0

IMPORTANT

NetworkManager does not support bridging. NetworkManager must be disabled to use
networking with the network scripts (located in the /etc/sysconfig/network-scripts/
directory).

chkconfig NetworkManager off
chkconfig network on
service NetworkManager stop
service network start

If you do not want to disable NetworkManager entirely, add " NM_CONTROLLED=no" to
the ifcfg-* network script being used for the bridge.

CHAPTER 11. NETWORK CONFIGURATION

81

CHAPTER 12. PCI DEVICE ASSIGNMENT
Red Hat Enterprise Linux 6 exposes three classes of device to its virtual machines:

Emulated devices are purely virtual devices that mimic real hardware, allowing unmodified guest
operating systems to work with them using their standard in-box drivers.

Virtio devices are purely virtual devices designed to work optimally in a virtual machine. Virtio
devices are similar to emulated devices, however, non-Linux virtual machines do not include the
drivers they require by default. Virtualization management software like the Virtual Machine
Manager (virt-manager) and the Red Hat Enterprise Virtualization Hypervisor install these
drivers automatically for supported non-Linux guest operating systems.

Assigned devices are physical devices that are exposed to the virtual machine. This method is
also known as 'passthrough'. Device assignment allows virtual machines exclusive access to PCI
devices for a range of tasks, and allows PCI devices to appear and behave as if they were
physically attached to the guest operating system.

Device assignment is supported on PCI Express devices, except graphics cards. Parallel PCI
devices may be supported as assigned devices, but they have severe limitations due to security
and system configuration conflicts.

Red Hat Enterprise Linux 6 supports 32 PCI device slots per virtual machine, and 8 PCI functions per
device slot. This gives a theoretical maximum of 256 configurable PCI functions per guest.

However, this theoretical maximum is subject to the following limitations:

Each virtual machine supports a maximum of 8 assigned device functions.

4 PCI device slots are configured with 5 emulated devices (two devices are in slot 1) by default.
However, users can explicitly remove 2 of the emulated devices that are configured by default if
the guest operating system does not require them for operation (the video adapter device in
slot 2; and the memory balloon driver device in the lowest available slot, usually slot 3). This
gives users a supported functional maximum of 30 PCI device slots per virtual machine.

Red Hat Enterprise Linux 6.0 and newer supports hot plugging assigned PCI devices into virtual
machines. However, PCI device hot plugging operates at the slot level and therefore does not support
multi-function PCI devices. Multi-function PCI devices are recommended for static device configuration
only.

NOTE

Red Hat Enterprise Linux 6.0 limited guest operating system driver access to a device's
standard and extended configuration space. Limitations that were present in Red Hat
Enterprise Linux 6.0 were significantly reduced in Red Hat Enterprise Linux 6.1, and
enable a much larger set of PCI Express devices to be successfully assigned to KVM
guests.

Secure device assignment also requires interrupt remapping support. If a platform does not support
interrupt remapping, device assignment will fail. To use device assignment without interrupt remapping
support in a development environment, set the allow_unsafe_assigned_interrupts KVM module
parameter to 1.

PCI device assignment is only available on hardware platforms supporting either Intel VT-d or AMD

Virtualization Host Configuration and Guest Installation Guide

82

PCI device assignment is only available on hardware platforms supporting either Intel VT-d or AMD
IOMMU. These Intel VT-d or AMD IOMMU specifications must be enabled in BIOS for PCI device
assignment to function.

Procedure 12.1. Preparing an Intel system for PCI device assignment

1. Enable the Intel VT-d specifications
The Intel VT-d specifications provide hardware support for directly assigning a physical device
to a virtual machine. These specifications are required to use PCI device assignment with Red
Hat Enterprise Linux.

The Intel VT-d specifications must be enabled in the BIOS. Some system manufacturers disable
these specifications by default. The terms used to refer to these specifications can differ
between manufacturers; consult your system manufacturer's documentation for the
appropriate terms.

2. Activate Intel VT-d in the kernel
Activate Intel VT-d in the kernel by adding the intel_iommu=on parameter to the kernel line in
the /boot/grub/grub.conf file.

The example below is a modified grub.conf file with Intel VT-d activated.

default=0
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Red Hat Enterprise Linux Server (2.6.32-330.x86_645)
 root (hd0,0)
 kernel /vmlinuz-2.6.32-330.x86_64 ro root=/dev/VolGroup00/LogVol00 rhgb quiet
intel_iommu=on
 initrd /initrd-2.6.32-330.x86_64.img

3. Ready to use
Reboot the system to enable the changes. Your system is now capable of PCI device
assignment.

Procedure 12.2. Preparing an AMD system for PCI device assignment

1. Enable the AMD IOMMU specifications
The AMD IOMMU specifications are required to use PCI device assignment in Red Hat
Enterprise Linux. These specifications must be enabled in the BIOS. Some system
manufacturers disable these specifications by default.

2. Enable IOMMU kernel support
Append amd_iommu=on to the kernel command line in /boot/grub/grub.conf so that AMD
IOMMU specifications are enabled at boot.

3. Ready to use
Reboot the system to enable the changes. Your system is now capable of PCI device
assignment.

12.1. ASSIGNING A PCI DEVICE WITH VIRSH

These steps cover assigning a PCI device to a virtual machine on a KVM hypervisor.

CHAPTER 12. PCI DEVICE ASSIGNMENT

83

This example uses a PCIe network controller with the PCI identifier code, pci_0000_01_00_0, and a fully
virtualized guest machine named guest1-rhel6-64.

Procedure 12.3. Assigning a PCI device to a guest virtual machine with virsh

1. Identify the device
First, identify the PCI device designated for device assignment to the virtual machine. Use the
lspci command to list the available PCI devices. You can refine the output of lspci with grep.

This example uses the Ethernet controller highlighted in the following output:

lspci | grep Ethernet
00:19.0 Ethernet controller: Intel Corporation 82567LM-2 Gigabit Network Connection
01:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)
01:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)

This Ethernet controller is shown with the short identifier 00:19.0. We need to find out the full
identifier used by virsh in order to assign this PCI device to a virtual machine.

To do so, combine the virsh nodedev-list command with the grep command to list all devices
of a particular type (pci) that are attached to the host machine. Then look at the output for the
string that maps to the short identifier of the device you wish to use.

This example highlights the string that maps to the Ethernet controller with the short identifier
00:19.0. Note that the : and . characters are replaced with underscores in the full identifier.

virsh nodedev-list --cap pci
pci_0000_00_00_0
pci_0000_00_01_0
pci_0000_00_03_0
pci_0000_00_07_0
pci_0000_00_10_0
pci_0000_00_10_1
pci_0000_00_14_0
pci_0000_00_14_1
pci_0000_00_14_2
pci_0000_00_14_3
pci_0000_00_19_0
pci_0000_00_1a_0
pci_0000_00_1a_1
pci_0000_00_1a_2
pci_0000_00_1a_7
pci_0000_00_1b_0
pci_0000_00_1c_0
pci_0000_00_1c_1
pci_0000_00_1c_4
pci_0000_00_1d_0
pci_0000_00_1d_1
pci_0000_00_1d_2
pci_0000_00_1d_7
pci_0000_00_1e_0
pci_0000_00_1f_0
pci_0000_00_1f_2
pci_0000_00_1f_3
pci_0000_01_00_0

Virtualization Host Configuration and Guest Installation Guide

84

pci_0000_01_00_1
pci_0000_02_00_0
pci_0000_02_00_1
pci_0000_06_00_0
pci_0000_07_02_0
pci_0000_07_03_0

Record the PCI device number that maps to the device you want to use; this is required in other
steps.

2. Review device information
Information on the domain, bus, and function are available from output of the virsh nodedev-
dumpxml command:

virsh nodedev-dumpxml pci_0000_00_19_0
<device>
 <name>pci_0000_00_19_0</name>
 <parent>computer</parent>
 <driver>
 <name>e1000e</name>
 </driver>
 <capability type='pci'>
 <domain>0</domain>
 <bus>0</bus>
 <slot>25</slot>
 <function>0</function>
 <product id='0x1502'>82579LM Gigabit Network Connection</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 <capability type='virt_functions'>
 </capability>
 </capability>
</device>

3. Determine required configuration details
Refer to the output from the virsh nodedev-dumpxml pci_0000_00_19_0 command for the
values required for the configuration file.

Optionally, convert slot and function values to hexadecimal values (from decimal) to get the PCI
bus addresses. Append "0x" to the beginning of the output to tell the computer that the value is
a hexadecimal number.

The example device has the following values: bus = 0, slot = 25 and function = 0. The decimal
configuration uses those three values:

bus='0'
slot='25'
function='0'

If you want to convert to hexadecimal values, you can use the printf utility to convert from
decimal values, as shown in the following example:

$ printf %x 0
0
$ printf %x 25

CHAPTER 12. PCI DEVICE ASSIGNMENT

85

19
$ printf %x 0
0

The example device would use the following hexadecimal values in the configuration file:

bus='0x0'
slot='0x19'
function='0x0'

4. Add configuration details
Run virsh edit, specifying the virtual machine name, and add a device entry in the <source>
section to assign the PCI device to the guest virtual machine.

virsh edit guest1-rhel6-64
<hostdev mode='subsystem' type='pci' managed='yes'>
 <source>
 <address domain='0x0' bus='0x0' slot='0x19' function='0x0'/>
 </source>
</hostdev>

Alternately, run virsh attach-device, specifying the virtual machine name and the guest's XML
file:

virsh attach-device guest1-rhel6-64 file.xml

5. Allow device management
Set an SELinux boolean to allow the management of the PCI device from the virtual machine:

setsebool -P virt_use_sysfs 1

6. Start the virtual machine

virsh start guest1-rhel6-64

The PCI device should now be successfully assigned to the virtual machine, and accessible to the guest
operating system.

12.2. ASSIGNING A PCI DEVICE WITH VIRT-MANAGER

PCI devices can be added to guest virtual machines using the graphical virt-manager tool. The following
procedure adds a Gigabit Ethernet controller to a guest virtual machine.

Procedure 12.4. Assigning a PCI device to a guest virtual machine using virt-manager

1. Open the hardware settings
Open the guest virtual machine and click the Add Hardware button to add a new device to the
virtual machine.

Virtualization Host Configuration and Guest Installation Guide

86

Figure 12.1. The virtual machine hardware information window

2. Select a PCI device
Select PCI Host Device from the Hardware list on the left.

Select an unused PCI device. Note that selecting PCI devices presently in use on the host
causes errors. In this example, a spare 82576 network device is used. Click Finish to complete
setup.

CHAPTER 12. PCI DEVICE ASSIGNMENT

87

Figure 12.2. The Add new virtual hardware wizard

3. Add the new device
The setup is complete and the guest virtual machine now has direct access to the PCI device.

Virtualization Host Configuration and Guest Installation Guide

88

Figure 12.3. The virtual machine hardware information window

12.3. ASSIGNING A PCI DEVICE WITH VIRT-INSTALL

To use virt-install to assign a PCI device, use the --host-device parameter.

Procedure 12.5. Assigning a PCI device to a virtual machine with virt-install

1. Identify the device
Identify the PCI device designated for device assignment to the guest virtual machine.

lspci | grep Ethernet
00:19.0 Ethernet controller: Intel Corporation 82567LM-2 Gigabit Network Connection
01:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)
01:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)

The virsh nodedev-list command lists all devices attached to the system, and identifies each
PCI device with a string. To limit output to only PCI devices, run the following command:

virsh nodedev-list --cap pci
pci_0000_00_00_0

CHAPTER 12. PCI DEVICE ASSIGNMENT

89

pci_0000_00_01_0
pci_0000_00_03_0
pci_0000_00_07_0
pci_0000_00_10_0
pci_0000_00_10_1
pci_0000_00_14_0
pci_0000_00_14_1
pci_0000_00_14_2
pci_0000_00_14_3
pci_0000_00_19_0
pci_0000_00_1a_0
pci_0000_00_1a_1
pci_0000_00_1a_2
pci_0000_00_1a_7
pci_0000_00_1b_0
pci_0000_00_1c_0
pci_0000_00_1c_1
pci_0000_00_1c_4
pci_0000_00_1d_0
pci_0000_00_1d_1
pci_0000_00_1d_2
pci_0000_00_1d_7
pci_0000_00_1e_0
pci_0000_00_1f_0
pci_0000_00_1f_2
pci_0000_00_1f_3
pci_0000_01_00_0
pci_0000_01_00_1
pci_0000_02_00_0
pci_0000_02_00_1
pci_0000_06_00_0
pci_0000_07_02_0
pci_0000_07_03_0

Record the PCI device number; the number is needed in other steps.

Information on the domain, bus and function are available from output of the virsh nodedev-
dumpxml command:

virsh nodedev-dumpxml pci_0000_01_00_0
<device>
 <name>pci_0000_01_00_0</name>
 <parent>pci_0000_00_01_0</parent>
 <driver>
 <name>igb</name>
 </driver>
 <capability type='pci'>
 <domain>0</domain>
 <bus>1</bus>
 <slot>0</slot>
 <function>0</function>
 <product id='0x10c9'>82576 Gigabit Network Connection</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 <capability type='virt_functions'>

Virtualization Host Configuration and Guest Installation Guide

90

 </capability>
 </capability>
</device>

2. Add the device
Use the PCI identifier output from the virsh nodedev command as the value for the --host-
device parameter.

virt-install \
--name=guest1-rhel6-64 \
--disk path=/var/lib/libvirt/images/guest1-rhel6-64.img,size=8 \
--nonsparse --graphics spice \
--vcpus=2 --ram=2048 \
--location=http://example1.com/installation_tree/RHEL6.1-Server-x86_64/os \
--nonetworks \
--os-type=linux \
--os-variant=rhel6 \
--host-device=pci_0000_01_00_0

3. Complete the installation
Complete the guest installation. The PCI device should be attached to the guest.

12.4. DETACHING AN ASSIGNED PCI DEVICE

When a host PCI device has been assigned to a guest machine, the host can no longer use the device.
Read this section to learn how to detach the device from the guest with virsh or virt-manager so it is
available for host use.

Procedure 12.6. Detaching a PCI device from a guest with virsh

1. Detach the device
Use the following command to detach the PCI device from the guest by removing it in the
guest's XML file:

virsh detach-device name_of_guest file.xml

2. Re-attach the device to the host (optional)
If the device is in managed mode, skip this step. The device will be returned to the host
automatically.

If the device is not using managed mode, use the following command to re-attach the PCI
device to the host machine:

virsh nodedev-reattach device

For example, to re-attach the pci_0000_01_00_0 device to the host:

virsh nodedev-reattach pci_0000_01_00_0

The device is now available for host use.

Procedure 12.7. Detaching a PCI Device from a guest with virt-manager

CHAPTER 12. PCI DEVICE ASSIGNMENT

91

1. Open the virtual hardware details screen
In virt-manager, double-click on the virtual machine that contains the device. Select the Show
virtual hardware details button to display a list of virtual hardware.

Figure 12.4. The virtual hardware details button

2. Select and remove the device
Select the PCI device to be detached from the list of virtual devices in the left panel.

Figure 12.5. Selecting the PCI device to be detached

Click the Remove button to confirm. The device is now available for host use.

12.5. PCI DEVICE RESTRICTIONS

Red Hat Enterprise Linux 6 supports 32 PCI device slots per virtual machine, and 8 PCI functions per
device slot. This gives a theoretical maximum of 256 PCI functions per guest when multi-function
capabilities are enabled.

However, this theoretical maximum is subject to the following limitations:

Each virtual machine supports a maximum of 8 assigned device functions.

4 PCI device slots are configured with 5 emulated devices (two devices are in slot 1) by default.

Virtualization Host Configuration and Guest Installation Guide

92

4 PCI device slots are configured with 5 emulated devices (two devices are in slot 1) by default.
However, users can explicitly remove 2 of the emulated devices that are configured by default if
the guest operating system does not require them for operation (the video adapter device in
slot 2; and the memory balloon driver device in the lowest available slot, usually slot 3). This
gives users a supported functional maximum of 30 PCI device slots per virtual machine.

The following restrictions also apply to PCI device assignment:

PCI device assignment (attaching PCI devices to virtual machines) requires host systems to
have AMD IOMMU or Intel VT-d support to enable device assignment of PCIe devices.

For parallel/legacy PCI, only single devices behind a PCI bridge are supported.

Multiple PCIe endpoints connected through a non-root PCIe switch require ACS support in the
PCIe bridges of the PCIe switch. To disable this restriction, edit the /etc/libvirt/qemu.conf file
and insert the line:

Red Hat Enterprise Linux 6 has limited PCI configuration space access by guest device drivers.
This limitation could cause drivers that are dependent on PCI configuration space to fail
configuration.

Red Hat Enterprise Linux 6.2 introduced interrupt remapping as a requirement for PCI device
assignment. If your platform does not provide support for interrupt remapping, circumvent the
KVM check for this support with the following command as the root user at the command line
prompt:

echo 1 > /sys/module/kvm/parameters/allow_unsafe_assigned_interrupts

relaxed_acs_check=1

CHAPTER 12. PCI DEVICE ASSIGNMENT

93

CHAPTER 13. SR-IOV

13.1. INTRODUCTION

Developed by the PCI-SIG (PCI Special Interest Group), the Single Root I/O Virtualization (SR-IOV)
specification is a standard for a type of PCI device assignment that can share a single device to multiple
virtual machines. SR-IOV improves device performance for virtual machines.

Figure 13.1. How SR-IOV works

SR-IOV enables a Single Root Function (for example, a single Ethernet port), to appear as multiple,
separate, physical devices. A physical device with SR-IOV capabilities can be configured to appear in
the PCI configuration space as multiple functions. Each device has its own configuration space complete
with Base Address Registers (BARs).

SR-IOV uses two PCI functions:

Physical Functions (PFs) are full PCIe devices that include the SR-IOV capabilities. Physical
Functions are discovered, managed, and configured as normal PCI devices. Physical Functions
configure and manage the SR-IOV functionality by assigning Virtual Functions.

Virtual Functions (VFs) are simple PCIe functions that only process I/O. Each Virtual Function is
derived from a Physical Function. The number of Virtual Functions a device may have is limited
by the device hardware. A single Ethernet port, the Physical Device, may map to many Virtual
Functions that can be shared to virtual machines.

The hypervisor can map one or more Virtual Functions to a virtual machine. The Virtual Function's
configuration space is then mapped to the configuration space presented to the guest.

Each Virtual Function can only be mapped to a single guest at a time, as Virtual Functions require real
hardware resources. A virtual machine can have multiple Virtual Functions. A Virtual Function appears as
a network card in the same way as a normal network card would appear to an operating system.

The SR-IOV drivers are implemented in the kernel. The core implementation is contained in the PCI
subsystem, but there must also be driver support for both the Physical Function (PF) and Virtual
Function (VF) devices. An SR-IOV capable device can allocate VFs from a PF. The VFs appear as PCI
devices which are backed on the physical PCI device by resources such as queues and register sets.

Virtualization Host Configuration and Guest Installation Guide

94

Advantages of SR-IOV

SR-IOV devices can share a single physical port with multiple virtual machines.

Virtual Functions have near-native performance and provide better performance than paravirtualized
drivers and emulated access. Virtual Functions provide data protection between virtual machines on the
same physical server as the data is managed and controlled by the hardware.

These features allow for increased virtual machine density on hosts within a data center.

SR-IOV is better able to utilize the bandwidth of devices with multiple guests.

13.2. USING SR-IOV

This section covers the use of PCI passthrough to assign a Virtual Function of an SR-IOV capable
multiport network card to a virtual machine as a network device.

SR-IOV Virtual Functions (VFs) can be assigned to virtual machines by adding a device entry in
<hostdev> with the virsh edit or virsh attach-device command. However, this can be problematic
because unlike a regular network device, an SR-IOV VF network device does not have a permanent
unique MAC address, and is assigned a new MAC address each time the host is rebooted. Because of
this, even if the guest is assigned the same VF after a reboot, when the host is rebooted the guest
determines its network adapter to have a new MAC address. As a result, the guest believes there is new
hardware connected each time, and will usually require re-configuration of the guest's network settings.

libvirt-0.9.10 and later contains the <interface type='hostdev'> interface device. Using this interface
device, libvirt will first perform any network-specific hardware/switch initialization indicated (such as
setting the MAC address, VLAN tag, or 802.1Qbh virtualport parameters), then perform the PCI device
assignment to the guest.

Using the <interface type='hostdev'> interface device requires:

an SR-IOV-capable network card,

host hardware that supports either the Intel VT-d or the AMD IOMMU extensions, and

the PCI address of the VF to be assigned.

For a list of network interface cards (NICs) with SR-IOV support, see
https://access.redhat.com/articles/1390483 .

IMPORTANT

Assignment of an SR-IOV device to a virtual machine requires that the host hardware
supports the Intel VT-d or the AMD IOMMU specification.

To attach an SR-IOV network device on an Intel or an AMD system, follow this procedure:

Procedure 13.1. Attach an SR-IOV network device on an Intel or AMD system

1. Enable Intel VT-d or the AMD IOMMU specifications in the BIOS and kernel
On an Intel system, enable Intel VT-d in the BIOS if it is not enabled already. Refer to
Procedure 12.1, “Preparing an Intel system for PCI device assignment” for procedural help on
enabling Intel VT-d in the BIOS and kernel.

Skip this step if Intel VT-d is already enabled and working.

CHAPTER 13. SR-IOV

95

https://access.redhat.com/articles/1390483

On an AMD system, enable the AMD IOMMU specifications in the BIOS if they are not enabled
already. Refer to Procedure 12.2, “Preparing an AMD system for PCI device assignment” for
procedural help on enabling IOMMU in the BIOS.

2. Verify support
Verify if the PCI device with SR-IOV capabilities is detected. This example lists an Intel 82576
network interface card which supports SR-IOV. Use the lspci command to verify whether the
device was detected.

lspci
03:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)
03:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)

Note that the output has been modified to remove all other devices.

3. Start the SR-IOV kernel modules
If the device is supported the driver kernel module should be loaded automatically by the kernel.
Optional parameters can be passed to the module using the modprobe command. The Intel
82576 network interface card uses the igb driver kernel module.

modprobe igb [<option>=<VAL1>,<VAL2>,]
lsmod |grep igb
igb 87592 0
dca 6708 1 igb

4. Activate Virtual Functions
The max_vfs parameter of the igb module allocates the maximum number of Virtual Functions.
The max_vfs parameter causes the driver to spawn, up to the value of the parameter in, Virtual
Functions. For this particular card the valid range is 0 to 7.

Remove the module to change the variable.

modprobe -r igb

Restart the module with the max_vfs set to 7 or any number of Virtual Functions up to the
maximum supported by your device.

modprobe igb max_vfs=7

5. Make the Virtual Functions persistent
Add the line options igb max_vfs=7 to any file in /etc/modprobe.d to make the Virtual
Functions persistent. For example:

echo "options igb max_vfs=7" >>/etc/modprobe.d/igb.conf

6. Inspect the new Virtual Functions
Using the lspci command, list the newly added Virtual Functions attached to the Intel 82576
network device. (Alternatively, use grep to search for Virtual Function, to search for devices
that support Virtual Functions.)

lspci | grep 82576
0b:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)
0b:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection(rev 01)

Virtualization Host Configuration and Guest Installation Guide

96

0b:10.0 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.1 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.2 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.3 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.4 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.5 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.6 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.7 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:11.0 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:11.1 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:11.2 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:11.3 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:11.4 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:11.5 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)

The identifier for the PCI device is found with the -n parameter of the lspci command. The
Physical Functions correspond to 0b:00.0 and 0b:00.1. All Virtual Functions have Virtual
Function in the description.

7. Verify devices exist with virsh
The libvirt service must recognize the device before adding a device to a virtual machine. libvirt
uses a similar notation to the lspci output. All punctuation characters, ; and ., in lspci output are
changed to underscores (_).

Use the virsh nodedev-list command and the grep command to filter the Intel 82576 network
device from the list of available host devices. 0b is the filter for the Intel 82576 network devices
in this example. This may vary for your system and may result in additional devices.

virsh nodedev-list | grep 0b
pci_0000_0b_00_0
pci_0000_0b_00_1
pci_0000_0b_10_0
pci_0000_0b_10_1
pci_0000_0b_10_2
pci_0000_0b_10_3
pci_0000_0b_10_4
pci_0000_0b_10_5
pci_0000_0b_10_6
pci_0000_0b_11_7
pci_0000_0b_11_1
pci_0000_0b_11_2
pci_0000_0b_11_3
pci_0000_0b_11_4
pci_0000_0b_11_5

The serial numbers for the Virtual Functions and Physical Functions should be in the list.

8. Get device details with virsh
The pci_0000_0b_00_0 is one of the Physical Functions and pci_0000_0b_10_0 is the first
corresponding Virtual Function for that Physical Function. Use the virsh nodedev-dumpxml
command to get advanced output for both devices.

virsh nodedev-dumpxml pci_0000_0b_00_0
<device>
 <name>pci_0000_0b_00_0</name>

CHAPTER 13. SR-IOV

97

 <parent>pci_0000_00_01_0</parent>
 <driver>
 <name>igb</name>
 </driver>
 <capability type='pci'>
 <domain>0</domain>
 <bus>11</bus>
 <slot>0</slot>
 <function>0</function>
 <product id='0x10c9'>82576 Gigabit Network Connection</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 </capability>
</device>

virsh nodedev-dumpxml pci_0000_0b_10_0
<device>
 <name>pci_0000_0b_10_0</name>
 <parent>pci_0000_00_01_0</parent>
 <driver>
 <name>igbvf</name>
 </driver>
 <capability type='pci'>
 <domain>0</domain>
 <bus>11</bus>
 <slot>16</slot>
 <function>0</function>
 <product id='0x10ca'>82576 Virtual Function</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 </capability>
</device>

This example adds the Virtual Function pci_0000_0b_10_0 to the virtual machine in Step 9.
Note the bus, slot and function parameters of the Virtual Function: these are required for
adding the device.

Copy these parameters into a temporary XML file, such as /tmp/new-interface.xml for example.

NOTE

 <interface type='hostdev' managed='yes'>
 <source>
 <address type='pci' domain='0' bus='11' slot='16' function='0'/>
 </source>
 </interface>

Virtualization Host Configuration and Guest Installation Guide

98

NOTE

If you do not specify a MAC address, one will be automatically generated. The
<virtualport> element is only used when connecting to an 802.11Qbh hardware
switch. The <vlan> element is new for Red Hat Enterprise Linux 6.4 and this will
transparently put the guest's device on the VLAN tagged 42.

When the virtual machine starts, it should see a network device of the type
provided by the physical adapter, with the configured MAC address. This MAC
address will remain unchanged across host and guest reboots.

The following <interface> example shows the syntax for the optional <mac
address>, <virtualport>, and <vlan> elements. In practice, use either the <vlan>
or <virtualport> element, not both simultaneously as shown in the example:

9. Add the Virtual Function to the virtual machine
Add the Virtual Function to the virtual machine using the following command with the
temporary file created in the previous step. This attaches the new device immediately and saves
it for subsequent guest restarts.

virsh attach-device MyGuest /tmp/new-interface.xml --config

Using the --config option ensures the new device is available after future guest restarts.

The virtual machine detects a new network interface card. This new card is the Virtual Function of the
SR-IOV device.

13.3. TROUBLESHOOTING SR-IOV

This section contains solutions for problems which may affect SR-IOV.

Error starting the guest

When starting a configured virtual machine, an error occurs as follows:

virsh start test
error: Failed to start domain test

...
 <devices>
 ...
 <interface type='hostdev' managed='yes'>
 <source>
 <address type='pci' domain='0' bus='11' slot='16' function='0'/>
 </source>
 <mac address='52:54:00:6d:90:02'>
 <vlan>
 <tag id='42'/>
 </vlan>
 <virtualport type='802.1Qbh'>
 <parameters profileid='finance'/>
 </virtualport>
 </interface>
 ...
 </devices>

CHAPTER 13. SR-IOV

99

error: internal error unable to start guest: char device redirected to
/dev/pts/2
get_real_device: /sys/bus/pci/devices/0000:03:10.0/config: Permission denied
init_assigned_device: Error: Couldn't get real device (03:10.0)!
Failed to initialize assigned device host=03:10.0

This error is often caused by a device that is already assigned to another guest or to the host itself.

Error migrating, saving, or dumping the guest

Attempts to migrate and dump the virtual machine cause an error similar to the following:

virsh dump --crash 5 /tmp/vmcore
error: Failed to core dump domain 5 to /tmp/vmcore
error: internal error unable to execute QEMU command 'migrate': An undefined
error has occurred

Because device assignment uses hardware on the specific host where the virtual machine was
started, guest migration and save are not supported when device assignment is in use. Currently, the
same limitation also applies to core-dumping a guest; this may change in the future.

13.4. SR-IOV RESTRICTIONS

SR-IOV is only thoroughly tested with the following devices:

Intel® 82576NS Gigabit Ethernet Controller (igb driver)

Intel® 82576EB Gigabit Ethernet Controller (igb driver)

Intel® 82599ES 10 Gigabit Ethernet Controller (ixgbe driver)

Intel® 82599EB 10 Gigabit Ethernet Controller (ixgbe driver)

Other SR-IOV devices may work but have not been tested at the time of release

Virtualization Host Configuration and Guest Installation Guide

100

CHAPTER 14. KVM GUEST TIMING MANAGEMENT
Virtualization involves several challenges for time keeping in guest virtual machines.

Interrupts cannot always be delivered simultaneously and instantaneously to all guest virtual
machines. This is because interrupts in virtual machines are not true interrupts - they are
injected into the guest virtual machine by the host machine.

The host may be running another guest virtual machine, or a different process. Thereofore, the
precise timing typically required by interrupts may not always be possible.

Guest virtual machines without accurate time keeping may experience issues with network applications
and processes, as session validity, migration, and other network activities rely on timestamps to remain
correct.

KVM avoids these issues by providing guest virtual machines with a paravirtualized clock (kvm-clock).
However, it is still important to test timing before attempting activities that may be affected by time
keeping inaccuracies, such as guest migration.

IMPORTANT

To avoid the problems described above, the Network Time Protocol (NTP) should be
configured on the host and the guest virtual machines. On guests using Red Hat
Enterprise Linux 6 and earlier, NTP is implemented by the ntpd service. For more
information, see the Red Hat Enterprise 6 Deployment Guide .

14.1. CONSTANT TIME STAMP COUNTER (TSC)

Modern Intel and AMD CPUs provide a constant Time Stamp Counter (TSC). The count frequency of
the constant TSC does not vary when the CPU core itself changes frequency, for example to comply
with a power saving policy. A CPU with a constant TSC frequency is necessary in order to use the TSC as
a clock source for KVM guests.

Your CPU has a constant Time Stamp Counter if the constant_tsc flag is present. To determine if your
CPU has the constant_tsc flag run the following command:

$ cat /proc/cpuinfo | grep constant_tsc

If any output is given your CPU has the constant_tsc bit. If no output is given follow the instructions
below.

14.1.1. Configuring Hosts without a Constant Time Stamp Counter

Systems without a constant TSC frequency cannot use the TSC as a clock source for virtual machines,
and require additional configuration. Power management features interfere with accurate time keeping
and must be disabled for guest virtual machines to accurately keep time with KVM.

IMPORTANT

These instructions are for AMD revision F CPUs only.

If the CPU lacks the constant_tsc bit, disable all power management features (BZ#513138). Each
system has several timers it uses to keep time. The TSC is not stable on the host, which is sometimes

CHAPTER 14. KVM GUEST TIMING MANAGEMENT

101

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/ch-Configuring_NTP_Using_ntpd.html
https://bugzilla.redhat.com/show_bug.cgi?id=513138

caused by cpufreq changes, deep C state, or migration to a host with a faster TSC. Deep C sleep states
can stop the TSC. To prevent the kernel using deep C states append processor.max_cstate=1 to the
kernel boot options in the grub.conf file on the host:

title Red Hat Enterprise Linux (2.6.32-330.x86_64)
 root (hd0,0)
 kernel /vmlinuz-2.6.32-330.x86_64 ro root=/dev/VolGroup00/LogVol00 rhgb quiet \
 processor.max_cstate=1

Disable cpufreq (only necessary on hosts without the constant_tsc) by editing the
/etc/sysconfig/cpuspeed configuration file and change the MIN_SPEED and MAX_SPEED variables
to the highest frequency available. Valid limits can be found in the
/sys/devices/system/cpu/cpu*/cpufreq/scaling_available_frequencies files.

14.2. REQUIRED PARAMETERS FOR RED HAT ENTERPRISE LINUX
GUESTS

For certain Red Hat Enterprise Linux guest virtual machines, additional kernel parameters are required.
These parameters can be set by appending them to the end of the /kernel line in the
/boot/grub/grub.conf file of the guest virtual machine.

The table below lists versions of Red Hat Enterprise Linux and the parameters required on the specified
systems.

Table 14.1. Kernel parameter requirements

Red Hat Enterprise Linux version Additional guest kernel parameters

7.0 and later on AMD64 and Intel 64 systems with
kvm-clock

Additional parameters are not required

6.1 and later on AMD64 and Intel 64 systems with
kvm-clock

Additional parameters are not required

6.0 on AMD64 and Intel 64 systems with kvm-clock Additional parameters are not required

6.0 on AMD64 and Intel 64 systems without kvm-
clock

notsc lpj=n

5.5 AMD64/Intel 64 with kvm-clock Additional parameters are not required

5.5 AMD64 and Intel 64 systems without kvm-clock notsc lpj=n

5.5 on 32-bit AMD and Intel systems with kvm-clock Additional parameters are not required

5.5 on 32-bit AMD and Intel systems without kvm-
clock

clocksource=acpi_pm lpj=n

5.4 on AMD64 and Intel 64 systems notsc

5.4 on 32-bit AMD and Intel systems clocksource=acpi_pm

Virtualization Host Configuration and Guest Installation Guide

102

5.3 on AMD64 and Intel 64 systems notsc

5.3 on 32-bit AMD and Intel systems clocksource=acpi_pm

Red Hat Enterprise Linux version Additional guest kernel parameters

NOTE

The lpj parameter requires a numeric value equal to the loops per jiffy value of the
specific CPU on which the guest virtual machine runs. If you do not know this value, do not
set the lpj parameter.

WARNING

The divider kernel parameter was previously recommended for Red Hat Enterprise
Linux 4 and 5 guest virtual machines that did not have high responsiveness
requirements, or exist on systems with high guest density. It is no longer
recommended for use with guests running Red Hat Enterprise Linux 4, or Red Hat
Enterprise Linux 5 versions prior to version 5.8.

divider can improve throughput on Red Hat Enterprise Linux 5 versions equal to or
later than 5.8 by lowering the frequency of timer interrupts. For example, if
HZ=1000, and divider is set to 10 (that is, divider=10), the number of timer
interrupts per period changes from the default value (1000) to 100 (the default
value, 1000, divided by the divider value, 10).

BZ#698842 details a bug in the way that the divider parameter interacts with
interrupt and tick recording. This bug is fixed as of Red Hat Enterprise Linux 5.8.
However, the divider parameter can still cause kernel panic in guests using Red Hat
Enterprise Linux 4, or Red Hat Enterprise Linux 5 versions prior to version 5.8.

This parameter was not implemented in Red Hat Enterprise Linux 3, so this bug does
not affect Red Hat Enterprise Linux 3 guests.

Red Hat Enterprise Linux 6 does not have a fixed-frequency clock interrupt; it
operates in tickless mode and uses the timer dynamically as required. The divider
parameter is therefore not useful for Red Hat Enterprise Linux 6, and Red Hat
Enterprise Linux 6 guests are not affected by this bug.

14.3. USING THE REAL-TIME CLOCK WITH WINDOWS SERVER 2008,
WINDOWS SERVER 2008 R2, AND WINDOWS 7 GUESTS

Windows uses both the Real-Time Clock (RTC) and the Time Stamp Counter (TSC). For Windows guest
virtual machines the Real-Time Clock can be used instead of the TSC for all time sources, which resolves
guest timing issues.

CHAPTER 14. KVM GUEST TIMING MANAGEMENT

103

https://bugzilla.redhat.com/show_bug.cgi?id=698842

The boot.ini file is no longer used as of Windows Server 2008 and newer. Windows Server 2008,
Windows Server 2008 R2, and Windows 7 do not use the TSC as a time source if the hypervisor-
present bit is set. The Red Hat Enterprise Linux 6 KVM hypervisor enables this CPUID bit by default, so
it is no longer necessary to use the Boot Configuration Data Editor (bcdedit.exe) to modify the
Windows boot parameters.

Procedure 14.1. Using the Real-Time Clock with Windows Server 2008 R2 and Windows 7 guests

1. Open the Windows guest virtual machine.

2. Open the Accessories menu of the start menu. Right click on the Command Prompt
application, select Run as Administrator.

3. Confirm the security exception, if prompted.

4. Set the boot manager to use the platform clock. This should instruct Windows to use the PM
timer for the primary clock source. The system UUID ({default} in the example below) should be
changed if the system UUID is different than the default boot device.

C:\Windows\system32>bcdedit /set {default} USEPLATFORMCLOCK on
The operation completed successfully

This fix should improve time keeping for Windows Server 2008 R2 and Windows 7 guests. Windows
2008 (non-R2) does not support the USEPLATFORMCLOCK parameter, but already uses the Real-
Time Clock by default.

14.4. STEAL TIME ACCOUNTING

Steal time is the amount of CPU time desired by a guest virtual machine that is not provided by the host.
Steal time occurs when the host allocates these resources elsewhere: for example, to another guest.

Steal time is reported in the CPU time fields in /proc/stat as st. It is automatically reported by utilities
such as top and vmstat, and cannot be switched off.

Large amounts of steal time indicate CPU contention, which can reduce guest performance. To relieve
CPU contention, increase the guest's CPU priority or CPU quota, or run fewer guests on the host.

Virtualization Host Configuration and Guest Installation Guide

104

CHAPTER 15. NETWORK BOOTING WITH LIBVIRT
Guest virtual machines can be booted with PXE enabled. PXE allows guest virtual machines to boot and
load their configuration off the network itself. This section demonstrates some basic configuration steps
to configure PXE guests with libvirt.

This section does not cover the creation of boot images or PXE servers. It is used to explain how to
configure libvirt, in a private or bridged network, to boot a guest virtual machine with PXE booting
enabled.

WARNING

These procedures are provided only as an example. Ensure that you have sufficient
backups before proceeding.

15.1. PREPARING THE BOOT SERVER

To perform the steps in this chapter you will need:

A PXE Server (DHCP and TFTP) - This can be a libvirt internal server, manually-configured
dhcpd and tftpd, dnsmasq, a server configured by Cobbler, or some other server.

Boot images - for example, PXELINUX configured manually or by Cobbler.

15.1.1. Setting up a PXE Boot Server on a Private libvirt Network

This example uses the default network. Perform the following steps:

Procedure 15.1. Configuring the PXE boot server

1. Place the PXE boot images and configuration in /var/lib/tftp.

2. Run the following commands:

virsh net-destroy default
virsh net-edit default

3. Edit the <ip> element in the configuration file for the default network to include the appropriate
address, network mask, DHCP address range, and boot file, where BOOT_FILENAME represents
the file name you are using to boot the guest virtual machine.

<ip address='192.168.122.1' netmask='255.255.255.0'>
 <tftp root='/var/lib/tftp' />
 <dhcp>
 <range start='192.168.122.2' end='192.168.122.254' />
 <bootp file='BOOT_FILENAME' />
 </dhcp>
</ip>

CHAPTER 15. NETWORK BOOTING WITH LIBVIRT

105

4. Boot the guest using PXE (refer to Section 15.2, “Booting a Guest Using PXE”).

15.2. BOOTING A GUEST USING PXE

This section demonstrates how to boot a guest virtual machine with PXE.

15.2.1. Using Bridged Networking

Procedure 15.2. Booting a guest using PXE and bridged networking

1. Ensure bridging is enabled such that the PXE boot server is available on the network.

2. Boot a guest virtual machine with PXE booting enabled. You can use the virt-install command
to create a new virtual machine with PXE booting enabled, as shown in the following example
command:

virt-install --pxe --network bridge=breth0 --prompt

Alternatively, ensure that the guest network is configured to use your bridged network, and that
the XML guest configuration file has a <boot dev='network'/> element inside the <os>
element, as shown in the following example:

<os>
 <type arch='x86_64' machine='rhel6.2.0'>hvm</type>
 <boot dev='network'/>
 <boot dev='hd'/>
</os>
<interface type='bridge'>
 <mac address='52:54:00:5a:ad:cb'/>
 <source bridge='breth0'/>
 <target dev='vnet0'/>
 <alias name='net0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>
</interface>

15.2.2. Using a Private libvirt Network

Procedure 15.3. Using a private libvirt network

1. Configure PXE booting on libvirt as shown in Section 15.1.1, “Setting up a PXE Boot Server on a
Private libvirt Network”.

2. Boot a guest virtual machine using libvirt with PXE booting enabled. You can use the virt-install
command to create/install a new virtual machine using PXE:

virt-install --pxe --network network=default --prompt

Alternatively, ensure that the guest network is configured to use your bridged network, and that the
XML guest configuration file has a <boot dev='network'/> element inside the <os> element, as shown in
the following example:

<os>

Virtualization Host Configuration and Guest Installation Guide

106

 <type arch='x86_64' machine='rhel6.2.0'>hvm</type>
 <boot dev='network'/>
 <boot dev='hd'/>
</os>

Also ensure that the guest virtual machine is connected to the private network:

<interface type='network'>
 <mac address='52:54:00:66:79:14'/>
 <source network='default'/>
 <target dev='vnet0'/>
 <alias name='net0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>
</interface>

CHAPTER 15. NETWORK BOOTING WITH LIBVIRT

107

CHAPTER 16. REGISTERING THE HYPERVISOR AND VIRTUAL
MACHINE
Red Hat Enterprise Linux 6 and 7 require that every guest virtual machine is mapped to a specific
hypervisor in order to ensure that every guest is allocated the same level of subscription service. To do
this you need to install a subscription agent that automatically detects all guest Virtual Machines (VMs)
on each KVM hypervisor that is installed and registered, which in turn will create a mapping file that sits
on the host. This mapping file ensures that all guest VMs receive the following benefits:

Subscriptions specific to virtual systems are readily available and can be applied to all of the
associated guest VMs.

All subscription benefits that can be inherited from the hypervisor are readily available and can
be applied to all of the associated guest VMs.

NOTE

The information provided in this chapter is specific to Red Hat Enterprise Linux
subscriptions only. If you also have a Red Hat Virtualization subscription, or a Red Hat
Satellite subscription, you should also consult the virt-who information provided with
those subscriptions. More information on Red Hat Subscription Management can also be
found in the Red Hat Subscription Management Guide found on the customer portal.

16.1. INSTALLING VIRT-WHO ON THE HOST PHYSICAL MACHINE

1. Register the KVM hypervisor
Register the KVM Hypervisor by running the subscription-manager register [options]
command in a terminal as the root user on the host physical machine. More options are available
using the # subscription-manager register --help menu. In cases where you are using a user
name and password, use the credentials that are known to the subscription manager. If this is
your very first time subscribing and you do not have a user account, contact customer support.
For example to register the VM as 'admin' with 'secret' as a password, you would send the
following command:

[root@rhel-server ~]# subscription-manager register --username=admin --password=secret -
-auto-attach --type=hypervisor

2. Install the virt-who packages
Install the virt-who packages, by running the following command in a terminal as root on the
host physical machine:

[root@rhel-server ~]# yum install virt-who

3. Create a virt-who configuration file
Add a configuration file in the /etc/virt-who.d/ directory. It does not matter what the name of
the file is, but you should give it a name that makes sense and the file must be located in the
/etc/virt-who.d/ directory. Inside that file add the following snippet and remember to save the
file before closing it.

[libvirt]
type=libvirt

Virtualization Host Configuration and Guest Installation Guide

108

https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/1/html/RHSM/index.html

4. Start the virt-who service
Start the virt-who service by running the following command in a terminal as root on the host
physical machine:

[root@virt-who ~]# service virt-who start
[root@virt-who ~]# chkconfig virt-who on

5. Confirm virt-who service is receiving guest information
At this point, the virt-who service will start collecting a list of domains from the host. Check the
/var/log/rhsm/rhsm.log file on the host physical machine to confirm that the file contains a list
of the guest VMs. For example:

2015-05-28 12:33:31,424 DEBUG: Libvirt domains found: [{'guestId': '58d59128-cfbb-4f2c-
93de-230307db2ce0', 'attributes': {'active': 0, 'virtWhoType': 'libvirt', 'hypervisorType':
'QEMU'}, 'state': 5}]

Procedure 16.1. Managing the subscription on the customer portal

1. Subscribing the hypervisor
As the virtual machines will be receiving the same subscription benefits as the hypervisor, it is
important that the hypervisor has a valid subscription and that the subscription is available for
the VMs to use.

a. Login to the customer portal
Login to the Red Hat customer portal https://access.redhat.com/ and click the
Subscriptions button at the top of the page.

b. Click the Systems link
In the Subscriber Inventory section (towards the bottom of the page), click Systems link.

c. Select the hypervisor
On the Systems page, there is a table of all subscribed systems. Click on the name of the
hypervisor (localhost.localdomain for example). In the details page that opens, click Attach
a subscription and select all the subscriptions listed. Click Attach Selected. This will attach
the host's physical subscription to the hypervisor so that the guests can benefit from the
subscription.

2. Subscribing the guest virtual machines - first time use
This step is for those who have a new subscription and have never subscribed a guest virtual
machine before. If you are adding virtual machines, skip this step. To consume the subscription
assigned to the hypervisor profile on the machine running the virt-who service, auto subscribe
by running the following command in a terminal, on the guest virtual machine as root.

[root@virt-who ~]# subscription-manager attach --auto

3. Subscribing additional guest virtual machines
If you just subscribed a for the first time, skip this step. If you are adding additional virtual
machines, it should be noted that running this command will not necessarily re-attach the same
subscriptions to the guest virtual machine. This is because removing all subscriptions then
allowing auto attach to resolve what is necessary for a given guest virtual machine may result in
different subscriptions consumed than before. This may not have any effect on your system, but
it is something you should be aware about. If you used a manual attachment procedure to attach
the virtual machine, which is not described below, you will need to re-attach those virtual

CHAPTER 16. REGISTERING THE HYPERVISOR AND VIRTUAL MACHINE

109

https://access.redhat.com/

machines manually as the auto-attach will not work. Use the following command as root in a
terminal to first remove the subscriptions for the old guests and then use the auto-attach to
attach subscriptions to all the guests. Run these commands on the guest virtual machine.

[root@virt-who ~]# subscription-manager remove --all
[root@virt-who ~]# subscription-manager attach --auto

4. Confirm subscriptions are attached
Confirm that the subscription is attached to the hypervisor by running the following command
as root in a terminal on the guest virtual machine:

[root@virt-who ~]# subscription-manager list --consumed

Output similar to the following will be displayed. Pay attention to the Subscription Details. It
should say 'Subscription is current'.

[root@virt-who ~]# subscription-manager list --consumed
+---+
 Consumed Subscriptions
+---+
Subscription Name: Awesome OS with unlimited virtual guests
Provides: Awesome OS Server Bits
SKU: awesomeos-virt-unlimited
Contract: 0
Account: ######### Your account number #####
Serial: ######### Your serial number ######

Pool ID: XYZ123
Provides Management: No
Active: True
Quantity Used: 1
Service Level:
Service Type:

Status Details: Subscription is current
Subscription Type:
Starts: 01/01/2015
Ends: 12/31/2015
System Type: Virtual

The ID for the subscription to attach to the system is displayed here. You will need this ID if you
need to attach the subscription manually.

Indicates if your subscription is current. If your subscription is not current, an error message
appears. One example is Guest has not been reported on any host and is using a temporary
unmapped guest subscription. In this case the guest needs to be subscribed. In other cases, use
the information as indicated in Section 16.5.2, “I have subscription status errors, what do I do?”.

5. Register additional guests
When you install new guest VMs on the hypervisor, you must register the new VM and use the
subscription attached to the hypervisor, by running the following commands in a terminal as root
on the guest virtual machine:

Virtualization Host Configuration and Guest Installation Guide

110

[root@server1 ~]# subscription-manager register
[root@server1 ~]# subscription-manager attach --auto
[root@server1 ~]# subscription-manager list --consumed

16.2. REGISTERING A NEW GUEST VIRTUAL MACHINE

In cases where a new guest virtual machine is to be created on a host that is already registered and
running, the virt-who service must also be running. This ensures that the virt-who service maps the
guest to a hypervisor, so the system is properly registered as a virtual system. To register the virtual
machine, run the following command as root in a terminal:

[root@virt-server ~]# subscription-manager register --username=admin --password=secret --auto-
attach

16.3. REMOVING A GUEST VIRTUAL MACHINE ENTRY

If the guest virtual machine is running, unregister the system, by running the following command in a
terminal window as root on the guest:

[root@virt-guest ~]# subscription-manager unregister

If the system has been deleted, however, the virtual service cannot tell whether the service is deleted or
paused. In that case, you must manually remove the system from the server side, using the following
steps:

1. Login to the Subscription Manager
The Subscription Manager is located on the Red Hat Customer Portal . Login to the Customer
Portal using your user name and password, by clicking the login icon at the top of the screen.

2. Click the Subscriptions tab
Click the Subscriptions tab.

3. Click the Systems link
Scroll down the page and click the Systems link.

4. Delete the system
To delete the system profile, locate the specified system's profile in the table, select the check
box beside its name and click Delete.

16.4. INSTALLING VIRT-WHO MANUALLY

This section will describe how to manually attach the subscription provided by the hypervisor.

Procedure 16.2. How to attach a subscription manually

1. List subscription information and find the Pool ID
First you need to list the available subscriptions which are of the virtual type. Run the following
command in a terminal as root:

[root@server1 ~]# subscription-manager list --avail --match-installed | grep 'Virtual' -B12
Subscription Name: Red Hat Enterprise Linux ES (Basic for Virtualization)
Provides: Red Hat Beta

CHAPTER 16. REGISTERING THE HYPERVISOR AND VIRTUAL MACHINE

111

https://access.redhat.com/

 Oracle Java (for RHEL Server)
 Red Hat Enterprise Linux Server
SKU: -------
Pool ID: XYZ123
Available: 40
Suggested: 1
Service Level: Basic
Service Type: L1-L3
Multi-Entitlement: No
Ends: 01/02/2017
System Type: Virtual

Note the Pool ID displayed. Copy this ID as you will need it in the next step.

2. Attach the subscription with the Pool ID
Using the Pool ID you copied in the previous step run the attach command. Replace the Pool ID
XYZ123 with the Pool ID you retrieved. Run the following command in a terminal as root:

[root@server1 ~]# subscription-manager attach --pool=XYZ123

Successfully attached a subscription for: Red Hat Enterprise Linux ES (Basic for
Virtualization)

16.5. TROUBLESHOOTING VIRT-WHO

This section provides information on troubleshooting virt-who.

16.5.1. Why is the hypervisor status red?

Scenario: On the server side, you deploy a guest on a hypervisor that does not have a subscription. 24
hours later, the hypervisor displays its status as red. To remedy this situation you must get a subscription
for that hypervisor. Or, permanently migrate the guest to a hypervisor with a subscription.

16.5.2. I have subscription status errors, what do I do?

Scenario: Any of the following error messages display:

System not properly subscribed

Status unknown

Late binding of a guest to a hypervisor through virt-who (host/guest mapping)

To find the reason for the error open the virt-who log file, named rhsm.log, located in the
/var/log/rhsm/ directory.

Virtualization Host Configuration and Guest Installation Guide

112

APPENDIX A. NETKVM DRIVER PARAMETERS
After the NetKVM driver is installed, you can configure it to better suit your environment. The
parameters listed in this section can be configured in the Windows Device Manager (devmgmt.msc).

IMPORTANT

Modifying the driver's parameters causes Windows to reload that driver. This interrupts
existing network activity.

Procedure A.1. Configuring NetKVM Parameters

1. Open Device Manager
Click on the Start button. In the right-hand pane, right-click on Computer, and click Manage. If
prompted, click Continue on the User Account Control window. This opens the Computer
Management window.

In the left-hand pane of the Computer Management window, click Device Manager.

2. Locate the correct device
In the central pane of the Computer Management window, click on the + symbol beside
Network adapters.

Under the list of Red Hat VirtIO Ethernet Adapter devices, double-click on NetKVM. This
opens the Properties window for that device.

3. View device parameters
In the Properties window, click on the Advanced tab.

4. Modify device parameters
Click on the parameter you wish to modify to display the options for that parameter.

Modify the options as appropriate, then click on OK to save your changes.

A.1. CONFIGURABLE PARAMETERS FOR NETKVM

Logging parameters

Logging.Enable

A Boolean value that determines whether logging is enabled. The default value is 1 (enabled).

Logging.Level

An integer that defines the logging level. As the integer increases, so does the verbosity of the log.
The default value is 0 (errors only). 1-2 adds configuration messages. 3-4 adds packet flow
information. 5-6 adds interrupt and DPC level trace information.

IMPORTANT

High logging levels will slow down your guest virtual machine.

Logging.Statistics(sec)

An integer that defines whether log statistics are printed, and the time in seconds between each

APPENDIX A. NETKVM DRIVER PARAMETERS

113

An integer that defines whether log statistics are printed, and the time in seconds between each
periodical statistics printout. The default value is 0 (no logging statistics).

Initial parameters

Assign MAC

A string that defines the locally-administered MAC address for the paravirtualized NIC. This is not set
by default.

Init.ConnectionRate(Mb)

An integer that represents the connection rate in megabytes. The default value for Windows 2008
and later is 10000.

Init.Do802.1PQ

A Boolean value that enables Priority/VLAN tag population and removal support. The default value is
1 (enabled).

Init.UseMergedBuffers

A Boolean value that enables merge-able RX buffers. The default value is 1 (enabled).

Init.UsePublishEvents

A Boolean value that enables published event use. The default value is 1 (enabled).

Init.MTUSize

An integer that defines the maximum transmission unit (MTU). The default value is 1500. Any value
from 500 to 65500 is acceptable.

Init.IndirectTx

Controls whether indirect ring descriptors are in use. The default value is Disable, which disables use
of indirect ring descriptors. Other valid values are Enable, which enables indirect ring descriptor
usage; and Enable*, which enables conditional use of indirect ring descriptors.

Init.MaxTxBuffers

An integer that represents the amount of TX ring descriptors that will be allocated. The default value
is 1024. Valid values are: 16, 32, 64, 128, 256, 512, or 1024.

Init.MaxRxBuffers

An integer that represents the amount of RX ring descriptors that will be allocated. The default value
is 256. Valid values are: 16, 32, 64, 128, 256, 512, or 1024.

Offload.Tx.Checksum

Specifies the TX checksum offloading mode.

In Red Hat Enterprise Linux 6.4 and onward, the valid values for this parameter are All (the default),
which enables IP, TCP and UDP checksum offloading for both IPv4 and IPv6; TCP/UDP(v4,v6),
which enables TCP and UDP checksum offloading for both IPv4 and IPv6; TCP/UDP(v4), which
enables TCP and UDP checksum offloading for IPv4 only; and TCP(v4), which enables only TCP
checksum offloading for IPv4 only.

In Red Hat Enterprise Linux 6.3 and earlier, the valid values for this parameter are TCP/UDP (the

Virtualization Host Configuration and Guest Installation Guide

114

In Red Hat Enterprise Linux 6.3 and earlier, the valid values for this parameter are TCP/UDP (the
default value), which enables TCP and UDP checksum offload; TCP, which enables only TCP
checksum offload; or Disable, which disables TX checksum offload.

Offload.Tx.LSO

A Boolean value that enables TX TCP Large Segment Offload (LSO). The default value is 1
(enabled).

Offload.Rx.Checksum

Specifies the RX checksum offloading mode.

In Red Hat Enterprise Linux 6.4 and onward, the valid values for this parameter are All (the default),
which enables IP, TCP and UDP checksum offloading for both IPv4 and IPv6; TCP/UDP(v4,v6),
which enables TCP and UDP checksum offloading for both IPv4 and IPv6; TCP/UDP(v4), which
enables TCP and UDP checksum offloading for IPv4 only; and TCP(v4), which enables only TCP
checksum offloading for IPv4 only.

In Red Hat Enterprise Linux 6.3 and earlier, the valid values are Disable (the default), which disables
RX checksum offloading; All, which enables TCP, UDP, and IP checksum offloading; TCP/UDP, which
enables TCP and UDP checksum offloading; and TCP, which enables only TCP checksum offloading.

Test and debug parameters

IMPORTANT

Test and debug parameters should only be used for testing or debugging; they should
not be used in production.

TestOnly.DelayConnect(ms)

The period for which to delay connection upon startup, in milliseconds. The default value is 0.

TestOnly.DPCChecking

Sets the DPC checking mode. 0 (the default) disables DPC checking. 1 enables DPC checking; each
hang test verifies DPC activity and acts as if the DPC was spawned. 2 clears the device interrupt
status and is otherwise identical to 1.

TestOnly.Scatter-Gather

A Boolean value that determines whether scatter-gather functionality is enabled. The default value is
1 (enabled). Setting this value to 0 disables scatter-gather functionality and all dependent
capabilities.

TestOnly.InterruptRecovery

A Boolean value that determines whether interrupt recovery is enabled. The default value is 1
(enabled).

TestOnly.PacketFilter

A Boolean value that determines whether packet filtering is enabled. The default value is 1 (enabled).

TestOnly.BatchReceive

A Boolean value that determines whether packets are received in batches, or singularly. The default

APPENDIX A. NETKVM DRIVER PARAMETERS

115

A Boolean value that determines whether packets are received in batches, or singularly. The default
value is 1, which enables batched packet receipt.

TestOnly.Promiscuous

A Boolean value that determines whether promiscuous mode is enabled. The default value is 0
(disabled).

TestOnly.AnalyzeIPPackets

A Boolean value that determines whether the checksum fields of outgoing IP packets are tested and
verified for debugging purposes. The default value is 0 (no checking).

TestOnly.RXThrottle

An integer that determines the number of receive packets handled in a single DPC. The default value
is 1000.

TestOnly.UseSwTxChecksum

A Boolean value that determines whether hardware checksumming is enabled. The default value is 0
(disabled).

Virtualization Host Configuration and Guest Installation Guide

116

APPENDIX B. COMMON LIBVIRT ERRORS AND
TROUBLESHOOTING
This appendix documents common libvirt-related problems and errors along with instructions for
dealing with them.

Locate the error on the table below and follow the corresponding link under Solution for detailed
troubleshooting information.

Table B.1. Common libvirt errors

Error Description of problem Solution

libvirtd Failed to Start The libvirt daemon failed to start.
However, there is no information
about this error in
/var/log/messages.

Section B.1, “libvirtd failed to
start”

Cannot read CA certificate This is one of several errors that
occur when the URI fails to
connect to the hypervisor.

Section B.2, “The URI Failed to
Connect to the Hypervisor”

Failed to connect socket ... :
Permission denied

This is one of several errors that
occur when the URI fails to
connect to the hypervisor.

Section B.2, “The URI Failed to
Connect to the Hypervisor”

Other connectivity errors These are other errors that occur
when the URI fails to connect to
the hypervisor.

Section B.2, “The URI Failed to
Connect to the Hypervisor”

Internal error guest CPU is
not compatible with host
CPU

The guest virtual machine cannot
be started because the host and
guest processors are different.

Section B.3, “The guest virtual
machine cannot be started:
internal error guest CPU is
not compatible with host
CPU”

Failed to create domain from
vm.xml error: monitor socket
did not show up.:
Connection refused

The guest virtual machine (or
domain) starting fails and returns
this error or similar.

Section B.4, “Guest starting fails
with error: monitor socket did
not show up”

Internal error cannot find
character device (null)

This error can occur when
attempting to connect a guest's
console. It reports that there is no
serial console configured for the
guest virtual machine.

Section B.5, “Internal error
cannot find character device
(null)”

APPENDIX B. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING

117

No boot device After building a guest virtual
machine from an existing disk
image, the guest booting stalls.
However, the guest can start
successfully using the QEMU
command directly.

Section B.6, “Guest virtual
machine booting stalls with error:
No boot device”

The virtual network "default"
has not been started

If the default network (or other
locally-created network) is unable
to start, any virtual machine
configured to use that network
for its connectivity will also fail to
start.

Section B.7, “Virtual network
default has not been started”

PXE boot (or DHCP) on guest
failed

A guest virtual machine starts
successfully, but is unable to
acquire an IP address from DHCP,
boot using the PXE protocol, or
both. This is often a result of a
long forward delay time set for the
bridge, or when the iptables
package and kernel do not
support checksum mangling rules.

Section B.8, “PXE Boot (or
DHCP) on Guest Failed”

Guest can reach outside network,
but cannot reach host when using
macvtap interface

A guest can communicate with
other guests, but cannot connect
to the host machine after being
configured to use a macvtap (or
type='direct') network interface.

This is actually not an error — it is
the defined behavior of macvtap.

Section B.9, “Guest Can Reach
Outside Network, but Cannot
Reach Host when Using macvtap
Interface”

Could not add rule to fixup
DHCP response checksums
on network 'default'

This warning message is almost
always harmless, but is often
mistakenly seen as evidence of a
problem.

Section B.10, “Could not add rule
to fixup DHCP response
checksums on network 'default'”

Unable to add bridge br0
port vnet0: No such device

This error message or the similar
Failed to add tap interface to
bridge 'br0': No such device
reveal that the bridge device
specified in the guest's (or
domain's) <interface> definition
does not exist.

Section B.11, “Unable to add
bridge br0 port vnet0: No such
device”

Error Description of problem Solution

Virtualization Host Configuration and Guest Installation Guide

118

Warning: could not open
/dev/net/tun: no virtual
network emulation qemu-
kvm: -netdev
tap,script=/etc/my-qemu-
ifup,id=hostnet0: Device 'tap'
could not be initialized

The guest virtual machine does
not start after configuring a
type='ethernet' (or 'generic
ethernet') interface in the host
system. This error or similar
appears either in libvirtd.log,
/var/log/libvirt/qemu/name_of
_guest.log, or in both.

Section B.12, “Guest is Unable to
Start with Error: warning: could
not open /dev/net/tun”

Unable to resolve address
name_of_host service
'49155': Name or service not
known

QEMU guest migration fails and
this error message appears with
an unfamiliar host name.

Section B.13, “Migration Fails with
Error: unable to resolve
address”

Unable to allow access for
disk path
/var/lib/libvirt/images/qemu.i
mg: No such file or directory

A guest virtual machine cannot be
migrated because libvirt cannot
access the disk image(s).

Section B.14, “Migration Fails with
Unable to allow access for
disk path: No such file or
directory”

No guest virtual machines are
present when libvirtd is started

The libvirt daemon is successfully
started, but no guest virtual
machines appear to be present
when running virsh list --all.

Section B.15, “No Guest Virtual
Machines are Present when
libvirtd is Started”

Unable to connect to server
at 'host:16509': Connection
refused ... error: failed to
connect to the hypervisor

While libvirtd should listen on
TCP ports for connections, the
connection to the hypervisor fails.

Section B.16, “Unable to connect
to server at 'host:16509':
Connection refused ... error: failed
to connect to the hypervisor”

Common XML errors libvirt uses XML documents to
store structured data. Several
common errors occur with XML
documents when they are passed
to libvirt through the API. This
entry provides instructions for
editing guest XML definitions,
and details common errors in
XML syntax and configuration.

Section B.17, “Common XML
Errors”

Error Description of problem Solution

B.1. LIBVIRTD FAILED TO START

Symptom

The libvirt daemon does not start automatically. Starting the libvirt daemon manually fails as well:

/etc/init.d/libvirtd start
* Caching service dependencies ... [ok]
* Starting libvirtd ...
/usr/sbin/libvirtd: error: Unable to initialize network sockets. Check /var/log/messages or run

APPENDIX B. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING

119

without --daemon for more info.
* start-stop-daemon: failed to start `/usr/sbin/libvirtd' [!!]
* ERROR: libvirtd failed to start

Moreover, there is not 'more info' about this error in /var/log/messages.

Investigation

Change libvirt's logging in /etc/libvirt/libvirtd.conf by uncommenting the line below. To uncomment
the line, open the /etc/libvirt/libvirtd.conf file in a text editor, remove the hash (or #) symbol from
the beginning of the following line, and save the change:

log_outputs="3:syslog:libvirtd"

NOTE

This line is commented out by default to prevent libvirt from producing excessive log
messages. After diagnosing the problem, it is recommended to comment this line
again in the /etc/libvirt/libvirtd.conf file.

Restart libvirt to determine if this has solved the problem.

If libvirtd still does not start successfully, an error similar to the following will be shown in the
/var/log/messages file:

The libvirtd man page shows that the missing cacert.pem file is used as TLS authority when libvirt is
run in Listen for TCP/IP connections mode. This means the --listen parameter is being passed.

Solution

Configure the libvirt daemon's settings with one of the following methods:

Install a CA certificate.

NOTE

For more information on CA certificates and configuring system
authentication, refer to the Configuring Authentication chapter in the Red
Hat Enterprise Linux 6 Deployment Guide.

Do not use TLS; use bare TCP instead. In /etc/libvirt/libvirtd.conf set listen_tls = 0 and
listen_tcp = 1. The default values are listen_tls = 1 and listen_tcp = 0.

Do not pass the --listen parameter. In /etc/sysconfig/libvirtd.conf change the
LIBVIRTD_ARGS variable.

Feb 6 17:22:09 bart libvirtd: 17576: info : libvirt version: 0.9.9
Feb 6 17:22:09 bart libvirtd: 17576: error : virNetTLSContextCheckCertFile:92: Cannot read CA
certificate '/etc/pki/CA/cacert.pem': No such file or directory
Feb 6 17:22:09 bart /etc/init.d/libvirtd[17573]: start-stop-daemon: failed to start `/usr/sbin/libvirtd'
Feb 6 17:22:09 bart /etc/init.d/libvirtd[17565]: ERROR: libvirtd failed to start

Virtualization Host Configuration and Guest Installation Guide

120

B.2. THE URI FAILED TO CONNECT TO THE HYPERVISOR

Several different errors can occur when connecting to the server (for example, when running virsh).

B.2.1. Cannot read CA certificate

Symptom

When running a command, the following error (or similar) appears:

$ virsh -c name_of_uri list
error: Cannot read CA certificate '/etc/pki/CA/cacert.pem': No such file or directory
error: failed to connect to the hypervisor

Investigation

The error message is misleading about the actual cause. This error can be caused by a variety of
factors, such as an incorrectly specified URI, or a connection that is not configured.

Solution

Incorrectly specified URI

When specifying qemu://system or qemu://session as a connection URI, virsh attempts to
connect to host names system or session respectively. This is because virsh recognizes the text
after the second forward slash as the host.

Use three forward slashes to connect to the local host. For example, specifying qemu:///system
instructs virsh connect to the system instance of libvirtd on the local host.

When a host name is specified, the QEMU transport defaults to TLS. This results in certificates.

Connection is not configured

The URI is correct (for example, qemu[+tls]://server/system) but the certificates are not set up
properly on your machine. For information on configuring TLS, see Setting up libvirt for TLS
available from the libvirt website.

B.2.2. Failed to connect socket ... : Permission denied

Symptom

When running a virsh command, the following error (or similar) appears:

$ virsh -c qemu:///system list
error: Failed to connect socket to '/var/run/libvirt/libvirt-sock': Permission denied
error: failed to connect to the hypervisor

Investigation

Without any host name specified, the connection to QEMU uses UNIX sockets by default. If there is
no error running this command as root, the UNIX socket options in /etc/libvirt/libvirtd.conf are likely
misconfigured.

Solution

APPENDIX B. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING

121

http://wiki.libvirt.org/page/TLSSetup

To connect as a non-root user using UNIX sockets, configure the following options in
/etc/libvirt/libvirtd.conf:

NOTE

The user running virsh must be a member of the group specified in the
unix_sock_group option.

B.2.3. Other Connectivity Errors

Unable to connect to server at server:port: Connection refused

The daemon is not running on the server or is configured not to listen, using configuration option
listen_tcp or listen_tls.

End of file while reading data: nc: using stream socket: Input/output error

If you specified ssh transport, the daemon is likely not running on the server. Solve this error by
verifying that the daemon is running on the server.

B.3. THE GUEST VIRTUAL MACHINE CANNOT BE STARTED: INTERNAL

ERROR GUEST CPU IS NOT COMPATIBLE WITH HOST CPU

Symptom

Running on an Intel Core i7 processor (which virt-manager refers to as Nehalem, or the older Core 2
Duo, referred to as Penryn), a KVM guest (or domain) is created using virt-manager. After
installation, the guest's processor is changed to match the host's CPU. The guest is then unable to
start and reports this error:

2012-02-06 17:49:15.985+0000: 20757: error : qemuBuildCpuArgStr:3565 : internal error guest
CPU is not compatible with host CPU

Additionally, clicking Copy host CPU configuration in virt-manager shows Pentium III instead of
Nehalem or Penryn.

Investigation

The /usr/share/libvirt/cpu_map.xml file lists the flags that define each CPU model. The Nehalem
and Penryn definitions contain this:

As a result, the NX (or No eXecute) flag needs to be presented to identify the CPU as Nehalem or
Penryn. However, in /proc/cpuinfo, this flag is missing.

Solution

Nearly all new BIOSes allow enabling or disabling of the No eXecute bit. However, if disabled, some

unix_sock_group = <group>
unix_sock_ro_perms = <perms>
unix_sock_rw_perms = <perms>

<feature name='nx'/>

Virtualization Host Configuration and Guest Installation Guide

122

Nearly all new BIOSes allow enabling or disabling of the No eXecute bit. However, if disabled, some
CPUs do not report this flag and thus libvirt detects a different CPU. Enabling this functionality
instructs libvirt to report the correct CPU. Refer to your hardware documentation for further
instructions on this subject.

B.4. GUEST STARTING FAILS WITH ERROR: MONITOR SOCKET DID NOT SHOW

UP

Symptom

The guest virtual machine (or domain) starting fails with this error (or similar):

virsh -c qemu:///system create name_of_guest.xml error: Failed to create domain from
name_of_guest.xml error: monitor socket did not show up.: Connection refused

Investigation

This error message shows:

1. libvirt is working;

2. The QEMU process failed to start up; and

3. libvirt quits when trying to connect QEMU or the QEMU agent monitor socket.

To understand the error details, examine the guest log:

cat /var/log/libvirt/qemu/name_of_guest.log
LC_ALL=C PATH=/sbin:/usr/sbin:/bin:/usr/bin QEMU_AUDIO_DRV=none /usr/bin/qemu-kvm -S -
M pc -enable-kvm -m 768 -smp 1,sockets=1,cores=1,threads=1 -name name_of_guest -uuid
ebfaadbe-e908-ba92-fdb8-3fa2db557a42 -nodefaults -chardev
socket,id=monitor,path=/var/lib/libvirt/qemu/name_of_guest.monitor,server,nowait -mon
chardev=monitor,mode=readline -no-reboot -boot c -kernel /var/lib/libvirt/boot/vmlinuz -initrd
/var/lib/libvirt/boot/initrd.img -append
method=http://www.example.com/pub/product/release/version/x86_64/os/ -drive
file=/var/lib/libvirt/images/name_of_guest.img,if=none,id=drive-ide0-0-0,boot=on -device ide-
drive,bus=ide.0,unit=0,drive=drive-ide0-0-0,id=ide0-0-0 -device virtio-net-
pci,vlan=0,id=net0,mac=52:40:00:f4:f1:0a,bus=pci.0,addr=0x4 -net
tap,fd=42,vlan=0,name=hostnet0 -chardev pty,id=serial0 -device isa-serial,chardev=serial0 -usb -
vnc 127.0.0.1:0 -k en-gb -vga cirrus -device virtio-balloon-pci,id=balloon0,bus=pci.0,
addr=0x3
char device redirected to /dev/pts/1
qemu: could not load kernel '/var/lib/libvirt/boot/vmlinuz':
Permission denied

Solution

The guest log contains the details needed to fix the error.

If a host is shut down while the guest is still running a libvirt version prior to 0.9.5, the libvirt-guest's
init script attempts to perform a managed save of the guest. If the managed save was incomplete
(for example, due to loss of power before the managed save image was flushed to disk), the save
image is corrupted and will not be loaded by QEMU. The older version of libvirt does not recognize

APPENDIX B. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING

123

the corruption, making the problem perpetual. In this case, the guest log will show an attempt to use -
incoming as one of its arguments, meaning that libvirt is trying to start QEMU by migrating in the
saved state file.

This problem can be fixed by running virsh managedsave-remove name_of_guest to remove the
corrupted managed save image. Newer versions of libvirt take steps to avoid the corruption in the
first place, as well as adding virsh start --force-boot name_of_guest to bypass any managed save
image.

B.5. INTERNAL ERROR CANNOT FIND CHARACTER DEVICE (NULL)

Symptom

This error message appears when attempting to connect to a guest virtual machine's console:

virsh console test2 Connected to domain test2 Escape character is ^] error: internal error cannot
find character device (null)

Investigation

This error message shows that there is no serial console configured for the guest virtual machine.

Solution

Set up a serial console in the guest's XML file.

Procedure B.1. Setting up a serial console in the guest's XML

1. Add the following XML to the guest virtual machine's XML using virsh edit:

2. Set up the console in the guest kernel command line.

To do this, either log in to the guest virtual machine to edit the /boot/grub/grub.conf file
directly, or use the virt-edit command line tool. Add the following to the guest kernel
command line:

console=ttyS0,115200

3. Run the followings command:

virsh start vm && virsh console vm

B.6. GUEST VIRTUAL MACHINE BOOTING STALLS WITH ERROR: NO

BOOT DEVICE

<serial type='pty'>
 <target port='0'/>
</serial>
<console type='pty'>
 <target type='serial' port='0'/>
</console>

Virtualization Host Configuration and Guest Installation Guide

124

Symptom

After building a guest virtual machine from an existing disk image, the guest booting stalls with the
error message No boot device. However, the guest virtual machine can start successfully using the
QEMU command directly.

Investigation

The disk's bus type is not specified in the command for importing the existing disk image:

virt-install \
--connect qemu:///system \
--ram 2048 -n rhel_64 \
--os-type=linux --os-variant=rhel5 \
--disk path=/root/RHEL-Server-5.8-64-virtio.qcow2,device=disk,format=qcow2 \
--vcpus=2 --graphics spice --noautoconsole --import

However, the command line used to boot up the guest virtual machine using QEMU directly shows
that it uses virtio for its bus type:

ps -ef | grep qemu
/usr/libexec/qemu-kvm -monitor stdio -drive file=/root/RHEL-Server-5.8-32-
virtio.qcow2,index=0,if=virtio,media=disk,cache=none,format=qcow2 -net
nic,vlan=0,model=rtl8139,macaddr=00:30:91:aa:04:74 -net tap,vlan=0,script=/etc/qemu-
ifup,downscript=no -m 2048 -smp 2,cores=1,threads=1,sockets=2 -cpu qemu64,+sse2 -soundhw
ac97 -rtc-td-hack -M rhel5.6.0 -usbdevice tablet -vnc :10 -boot c -no-kvm-pit-reinjection

Note the bus= in the guest's XML generated by libvirt for the imported guest:

<domain type='qemu'>
 <name>rhel_64</name>
 <uuid>6cd34d52-59e3-5a42-29e4-1d173759f3e7</uuid>
 <memory>2097152</memory>
 <currentMemory>2097152</currentMemory>
 <vcpu>2</vcpu>
 <os>
 <type arch='x86_64' machine='rhel5.4.0'>hvm</type>
 <boot dev='hd'/>
 </os>
 <features>
 <acpi/>
 <apic/>
 <pae/>
 </features>
 <clock offset='utc'>
 <timer name='pit' tickpolicy='delay'/>
 </clock>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>restart</on_crash>
 <devices>
 <emulator>/usr/libexec/qemu-kvm</emulator>
 <disk type='file' device='disk'>
 <driver name='qemu' type='qcow2' cache='none'/>
 <source file='/root/RHEL-Server-5.8-64-virtio.qcow2'/>
 <emphasis role="bold"><target dev='hda' bus='ide'/></emphasis>

APPENDIX B. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING

125

The bus type for the disk is set as ide, which is the default value set by libvirt. This is the incorrect
bus type, and has caused the unsuccessful boot for the imported guest.

Solution

Procedure B.2. Correcting the disk bus type

1. Undefine the imported guest, then re-import it with bus=virtio and the following:

virsh destroy rhel_64
virsh undefine rhel_64
virt-install \
--connect qemu:///system \
--ram 1024 -n rhel_64 -r 2048 \
--os-type=linux --os-variant=rhel5 \
--disk path=/root/RHEL-Server-5.8-64-virtio.qcow2,device=disk,bus=virtio,format=qcow2 \
--vcpus=2 --graphics spice --noautoconsole --import

2. Edit the imported guest's XML using virsh edit and correct the disk bus type.

B.7. VIRTUAL NETWORK DEFAULT HAS NOT BEEN STARTED

Symptom

Normally, the configuration for a virtual network named default is installed as part of the libvirt
package, and is configured to autostart when libvirtd is started.

If the default network (or any other locally-created network) is unable to start, any virtual machine
configured to use that network for its connectivity will also fail to start, resulting in this error
message:

Virtual network default has not been started

 <address type='drive' controller='0' bus='0' unit='0'/>
 </disk>
 <controller type='ide' index='0'/>
 <interface type='bridge'>
 <mac address='54:52:00:08:3e:8c'/>
 <source bridge='br0'/>
 </interface>
 <serial type='pty'>
 <target port='0'/>
 </serial>
 <console type='pty'>
 <target port='0'/>
 </console>
 <input type='mouse' bus='ps2'/>
 <graphics type='vnc' port='-1' autoport='yes' keymap='en-us'/>
 <video>
 <model type='cirrus' vram='9216' heads='1'/>
 </video>
 </devices>
 </domain>

Virtualization Host Configuration and Guest Installation Guide

126

Investigation

One of the most common reasons for a libvirt virtual network's failure to start is that the dnsmasq
instance required to serve DHCP and DNS requests from clients on that network has failed to start.

To determine if this is the cause, run virsh net-start default from a root shell to start the default
virtual network.

If this action does not successfully start the virtual network, open /var/log/libvirt/libvirtd.log to view
the complete error log message.

If a message similar to the following appears, the problem is likely a systemwide dnsmasq instance
that is already listening on libvirt's bridge, and is preventing libvirt's own dnsmasq instance from
doing so. The most important parts to note in the error message are dnsmasq and exit status 2:

Could not start virtual network default: internal error
Child process (/usr/sbin/dnsmasq --strict-order --bind-interfaces
--pid-file=/var/run/libvirt/network/default.pid --conf-file=
--except-interface lo --listen-address 192.168.122.1
--dhcp-range 192.168.122.2,192.168.122.254
--dhcp-leasefile=/var/lib/libvirt/dnsmasq/default.leases
--dhcp-lease-max=253 --dhcp-no-override) status unexpected: exit status 2

Solution

If the machine is not using dnsmasq to serve DHCP for the physical network, disable dnsmasq
completely.

If it is necessary to run dnsmasq to serve DHCP for the physical network, edit the
/etc/dnsmasq.conf file. Add or uncomment the first line, as well as one of the two lines following that
line. Do not add or uncomment all three lines:

After making this change and saving the file, restart the systemwide dnsmasq service.

Next, start the default network with the virsh net-start default command.

Start the virtual machines.

B.8. PXE BOOT (OR DHCP) ON GUEST FAILED

Symptom

A guest virtual machine starts successfully, but is then either unable to acquire an IP address from
DHCP or boot using the PXE protocol, or both. There are two common causes of this error: having a
long forward delay time set for the bridge, and when the iptables package and kernel do not support
checksum mangling rules.

Long forward delay time on bridge

Investigation

This is the most common cause of this error. If the guest network interface is connecting to a
bridge device that has STP (Spanning Tree Protocol) enabled, as well as a long forward delay

bind-interfaces
interface=name_of_physical_interface
listen-address=chosen_IP_address

APPENDIX B. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING

127

set, the bridge will not forward network packets from the guest virtual machine onto the
bridge until at least that number of forward delay seconds have elapsed since the guest
connected to the bridge. This delay allows the bridge time to watch traffic from the interface
and determine the MAC addresses behind it, and prevent forwarding loops in the network
topology.

If the forward delay is longer than the timeout of the guest's PXE or DHCP client, then the
client's operation will fail, and the guest will either fail to boot (in the case of PXE) or fail to
acquire an IP address (in the case of DHCP).

Solution

If this is the case, change the forward delay on the bridge to 0, or disable STP on the bridge.

NOTE

This solution applies only if the bridge is not used to connect multiple networks,
but just to connect multiple endpoints to a single network (the most common
use case for bridges used by libvirt).

If the guest has interfaces connecting to a libvirt-managed virtual network, edit the definition
for the network, and restart it. For example, edit the default network with the following
command:

virsh net-edit default

Add the following attributes to the <bridge> element:

NOTE

delay='0' and stp='on' are the default settings for virtual networks, so this step
is only necessary if the configuration has been modified from the default.

If the guest interface is connected to a host bridge that was configured outside of libvirt,
change the delay setting.

Add or edit the following lines in the /etc/sysconfig/network-scripts/ifcfg-name_of_bridge
file to turn STP on with a 0 second delay:

After changing the configuration file, restart the bridge device:

NOTE

<name_of_bridge='virbr0' delay='0' stp='on'/>

STP=on
DELAY=0

/sbin/ifdown name_of_bridge
/sbin/ifup name_of_bridge

Virtualization Host Configuration and Guest Installation Guide

128

NOTE

If name_of_bridge is not the root bridge in the network, that bridge's delay will
eventually reset to the delay time configured for the root bridge. In this case,
the only solution is to disable STP completely on name_of_bridge.

The iptables package and kernel do not support checksum mangling rules

Investigation

This message is only a problem if all four of the following conditions are true:

The guest is using virtio network devices.

If so, the configuration file will contain model type='virtio'

The host has the vhost-net module loaded.

This is true if ls /dev/vhost-net does not return an empty result.

The guest is attempting to get an IP address from a DHCP server that is running
directly on the host.

The iptables version on the host is older than 1.4.10.

iptables 1.4.10 was the first version to add the libxt_CHECKSUM extension. This is the
case if the following message appears in the libvirtd logs:

warning: Could not add rule to fixup DHCP response checksums on network default
warning: May need to update iptables package and kernel to support CHECKSUM
rule.

IMPORTANT

Unless all of the other three conditions in this list are also true, the
above warning message can be disregarded, and is not an indicator of
any other problems.

When these conditions occur, UDP packets sent from the host to the guest have uncomputed
checksums. This makes the host's UDP packets seem invalid to the guest's network stack.

Solution

To solve this problem, invalidate any of the four points above. The best solution is to update
the host iptables and kernel to iptables-1.4.10 or later where possible. Otherwise, the most
specific fix is to disable the vhost-net driver for this particular guest. To do this, edit the guest
configuration with this command:

virsh edit name_of_guest

Change or add a <driver> line to the <interface> section:

<interface type='network'>
 <model type='virtio'/>

APPENDIX B. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING

129

Save the changes, shut down the guest, and then restart it.

If this problem is still not resolved, the issue may be due to a conflict between firewalld and
the default libvirt network.

To fix this, stop firewalld with the service firewalld stop command, then restart libvirt with
the service libvirtd restart command.

B.9. GUEST CAN REACH OUTSIDE NETWORK, BUT CANNOT REACH
HOST WHEN USING MACVTAP INTERFACE

Symptom

A guest virtual machine can communicate with other guests, but cannot connect to the host machine
after being configured to use a macvtap (also known as type='direct') network interface.

Investigation

Even when not connecting to a Virtual Ethernet Port Aggregator (VEPA) or VN-Link capable switch,
macvtap interfaces can be useful. Setting the mode of such an interface to bridge allows the guest
to be directly connected to the physical network in a very simple manner without the setup issues (or
NetworkManager incompatibility) that can accompany the use of a traditional host bridge device.

However, when a guest virtual machine is configured to use a type='direct' network interface such as
macvtap, despite having the ability to communicate with other guests and other external hosts on
the network, the guest cannot communicate with its own host.

This situation is actually not an error — it is the defined behavior of macvtap. Due to the way in which
the host's physical Ethernet is attached to the macvtap bridge, traffic into that bridge from the
guests that is forwarded to the physical interface cannot be bounced back up to the host's IP stack.
Additionally, traffic from the host's IP stack that is sent to the physical interface cannot be bounced
back up to the macvtap bridge for forwarding to the guests.

Solution

Use libvirt to create an isolated network, and create a second interface for each guest virtual
machine that is connected to this network. The host and guests can then directly communicate over
this isolated network, while also maintaining compatibility with NetworkManager.

Procedure B.3. Creating an isolated network with libvirt

1. Add and save the following XML in the /tmp/isolated.xml file. If the 192.168.254.0/24
network is already in use elsewhere on your network, you can choose a different network.

 <driver name='qemu'/>
 ...
</interface>

<network>
 <name>isolated</name>
 <ip address='192.168.254.1' netmask='255.255.255.0'>
 <dhcp>
 <range start='192.168.254.2' end='192.168.254.254' />

Virtualization Host Configuration and Guest Installation Guide

130

2. Create the network with this command: virsh net-define /tmp/isolated.xml

3. Set the network to autostart with the virsh net-autostart isolated command.

4. Start the network with the virsh net-start isolated command.

5. Using virsh edit name_of_guest, edit the configuration of each guest that uses macvtap
for its network connection and add a new <interface> in the <devices> section similar to the
following (note the <model type='virtio'/> line is optional to include):

6. Shut down, then restart each of these guests.

The guests are now able to reach the host at the address 192.168.254.1, and the host will be able to
reach the guests at the IP address they acquired from DHCP (alternatively, you can manually
configure the IP addresses for the guests). Since this new network is isolated to only the host and
guests, all other communication from the guests will use the macvtap interface.

B.10. COULD NOT ADD RULE TO FIXUP DHCP RESPONSE
CHECKSUMS ON NETWORK 'DEFAULT'

Symptom

This message appears:

Could not add rule to fixup DHCP response checksums on network 'default'

Investigation

Although this message appears to be evidence of an error, it is almost always harmless.

Solution

Unless the problem you are experiencing is that the guest virtual machines are unable to acquire IP
addresses through DHCP, this message can be ignored.

If this is the case, refer to Section B.8, “PXE Boot (or DHCP) on Guest Failed” for further details on
this situation.

B.11. UNABLE TO ADD BRIDGE BR0 PORT VNET0: NO SUCH DEVICE

Symptom

The following error message appears:

Unable to add bridge name_of_bridge port vnet0: No such device

 </dhcp>
 </ip>
</network>

<interface type='network'>
 <source network='isolated'/>
 <model type='virtio'/>
</interface>

APPENDIX B. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING

131

For example, if the bridge name is br0, the error message will appear as:

Unable to add bridge br0 port vnet0: No such device

In libvirt versions 0.9.6 and earlier, the same error appears as:

Failed to add tap interface to bridge name_of_bridge: No such device

Or for example, if the bridge is named br0:

Failed to add tap interface to bridge 'br0': No such device

Investigation

Both error messages reveal that the bridge device specified in the guest's (or domain's) <interface>
definition does not exist.

To verify the bridge device listed in the error message does not exist, use the shell command ip addr
showbr0.

A message similar to this confirms the host has no bridge by that name:

br0: error fetching interface information: Device not found

If this is the case, continue to the solution.

However, if the resulting message is similar to the following, the issue exists elsewhere:

 3: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state
UNKNOWN
 link/ether 1b:c4:94:cf:fd:17 brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.1/24 brd 192.168.122.255 scope global br0

Solution

Edit the existing bridge or create a new bridge with virsh

Use virsh to either edit the settings of an existing bridge or network, or to add the bridge device
to the host system configuration.

Edit the existing bridge settings using virsh

Use virsh edit name_of_guest to change the <interface> definition to use a bridge or
network that already exists.

For example, change type='bridge' to type='network', and <source bridge='br0'/> to
<source network='default'/>.

Create a host bridge using virsh

For libvirt version 0.9.8 and later, a bridge device can be created with the virsh iface-bridge
command. This will create a bridge device br0 with eth0, the physical network interface which
is set as part of a bridge, attached:

virsh iface-bridge eth0 br0

Virtualization Host Configuration and Guest Installation Guide

132

Optional: If desired, remove this bridge and restore the original eth0 configuration with this
command:

virsh iface-unbridge br0

Create a host bridge manually

For older versions of libvirt, it is possible to manually create a bridge device on the host. Refer to
Section 11.3, “Bridged Networking with libvirt” for instructions.

B.12. GUEST IS UNABLE TO START WITH ERROR: WARNING: COULD NOT

OPEN /DEV/NET/TUN

Symptom

The guest virtual machine does not start after configuring a type='ethernet' (also known as 'generic
ethernet') interface in the host system. An error appears either in libvirtd.log,
/var/log/libvirt/qemu/name_of_guest.log, or in both, similar to the below message:

warning: could not open /dev/net/tun: no virtual network emulation qemu-kvm: -netdev
tap,script=/etc/my-qemu-ifup,id=hostnet0: Device 'tap' could not be initialized

Investigation

Use of the generic ethernet interface type (<interface type='ethernet'>) is discouraged, because
using it requires lowering the level of host protection against potential security flaws in QEMU and its
guests. However, it is sometimes necessary to use this type of interface to take advantage of some
other facility that is not yet supported directly in libvirt. For example, openvswitch was not
supported in libvirt until libvirt-0.9.11, so in older versions of libvirt, <interface type='ethernet'> was
the only way to connect a guest to an openvswitch bridge.

However, if you configure a <interface type='ethernet'> interface without making any other changes
to the host system, the guest virtual machine will not start successfully.

The reason for this failure is that for this type of interface, a script called by QEMU needs to
manipulate the tap device. However, with type='ethernet' configured, in an attempt to lock down
QEMU, libvirt and SELinux have put in place several checks to prevent this. (Normally, libvirt
performs all of the tap device creation and manipulation, and passes an open file descriptor for the
tap device to QEMU.)

Solution

Reconfigure the host system to be compatible with the generic ethernet interface.

Procedure B.4. Reconfiguring the host system to use the generic ethernet interface

1. Set SELinux to permissive by configuring SELINUX=permissive in /etc/selinux/config:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.

APPENDIX B. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING

133

disabled - No SELinux policy is loaded.
SELINUX=permissive
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=targeted

2. From a root shell, run the command setenforce permissive.

3. In /etc/libvirt/qemu.conf add or edit the following lines:

clear_emulator_capabilities = 0

user = "root"

group = "root"

cgroup_device_acl = [
 "/dev/null", "/dev/full", "/dev/zero",
 "/dev/random", "/dev/urandom",
 "/dev/ptmx", "/dev/kvm", "/dev/kqemu",
 "/dev/rtc", "/dev/hpet", "/dev/net/tun",

4. Restart libvirtd.

IMPORTANT

Since each of these steps significantly decreases the host's security protections
against QEMU guest domains, this configuration should only be used if there is no
alternative to using <interface type='ethernet'>.

NOTE

For more information on SELinux, refer to the Red Hat Enterprise Linux 6 Security-
Enhanced Linux User Guide.

B.13. MIGRATION FAILS WITH ERROR: UNABLE TO RESOLVE ADDRESS

Symptom

QEMU guest migration fails and this error message appears:

virsh migrate qemu qemu+tcp://192.168.122.12/system
 error: Unable to resolve address name_of_host service '49155': Name or service not known

For example, if the destination host name is "newyork", the error message will appear as:

virsh migrate qemu qemu+tcp://192.168.122.12/system
error: Unable to resolve address 'newyork' service '49155': Name or service not known

Virtualization Host Configuration and Guest Installation Guide

134

However, this error looks strange as we did not use "newyork" host name anywhere.

Investigation

During migration, libvirtd running on the destination host creates a URI from an address and port
where it expects to receive migration data and sends it back to libvirtd running on the source host.

In this case, the destination host (192.168.122.12) has its name set to 'newyork'. For some reason,
libvirtd running on that host is unable to resolve the name to an IP address that could be sent back
and still be useful. For this reason, it returned the 'newyork' host name hoping the source libvirtd
would be more successful with resolving the name. This can happen if DNS is not properly configured
or /etc/hosts has the host name associated with local loopback address (127.0.0.1).

Note that the address used for migration data cannot be automatically determined from the address
used for connecting to destination libvirtd (for example, from qemu+tcp://192.168.122.12/system).
This is because to communicate with the destination libvirtd, the source libvirtd may need to use
network infrastructure different from that which virsh (possibly running on a separate machine)
requires.

Solution

The best solution is to configure DNS correctly so that all hosts involved in migration are able to
resolve all host names.

If DNS cannot be configured to do this, a list of every host used for migration can be added manually
to the /etc/hosts file on each of the hosts. However, it is difficult to keep such lists consistent in a
dynamic environment.

If the host names cannot be made resolvable by any means, virsh migrate supports specifying the
migration host:

virsh migrate qemu qemu+tcp://192.168.122.12/system tcp://192.168.122.12

Destination libvirtd will take the tcp://192.168.122.12 URI and append an automatically generated
port number. If this is not desirable (because of firewall configuration, for example), the port number
can be specified in this command:

virsh migrate qemu qemu+tcp://192.168.122.12/system tcp://192.168.122.12:12345

Another option is to use tunnelled migration. Tunnelled migration does not create a separate
connection for migration data, but instead tunnels the data through the connection used for
communication with destination libvirtd (for example, qemu+tcp://192.168.122.12/system):

virsh migrate qemu qemu+tcp://192.168.122.12/system --p2p --tunnelled

B.14. MIGRATION FAILS WITH UNABLE TO ALLOW ACCESS FOR DISK PATH: NO

SUCH FILE OR DIRECTORY

Symptom

A guest virtual machine (or domain) cannot be migrated because libvirt cannot access the disk
image(s):

APPENDIX B. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING

135

virsh migrate qemu qemu+tcp://name_of_host/system
error: Unable to allow access for disk path /var/lib/libvirt/images/qemu.img: No such file or
directory

For example, if the destination host name is "newyork", the error message will appear as:

virsh migrate qemu qemu+tcp://newyork/system
error: Unable to allow access for disk path /var/lib/libvirt/images/qemu.img: No such file or
directory

Investigation

By default, migration only transfers the in-memory state of a running guest (such as memory or CPU
state). Although disk images are not transferred during migration, they need to remain accessible at
the same path by both hosts.

Solution

Set up and mount shared storage at the same location on both hosts. The simplest way to do this is
to use NFS:

Procedure B.5. Setting up shared storage

1. Set up an NFS server on a host serving as shared storage. The NFS server can be one of the
hosts involved in the migration, as long as all hosts involved are accessing the shared storage
through NFS.

mkdir -p /exports/images
cat >>/etc/exports <<EOF
/exports/images 192.168.122.0/24(rw,no_root_squash)
EOF

2. Mount the exported directory at a common location on all hosts running libvirt. For example,
if the IP address of the NFS server is 192.168.122.1, mount the directory with the following
commands:

cat >>/etc/fstab <<EOF
192.168.122.1:/exports/images /var/lib/libvirt/images nfs auto 0 0
EOF
mount /var/lib/libvirt/images

NOTE

It is not possible to export a local directory from one host using NFS and mount it at
the same path on another host — the directory used for storing disk images must be
mounted from shared storage on both hosts. If this is not configured correctly, the
guest virtual machine may lose access to its disk images during migration, because
the source host's libvirt daemon may change the owner, permissions, and SELinux
labels on the disk images after it successfully migrates the guest to its destination.

If libvirt detects that the disk images are mounted from a shared storage location, it
will not make these changes.

Virtualization Host Configuration and Guest Installation Guide

136

B.15. NO GUEST VIRTUAL MACHINES ARE PRESENT WHEN LIBVIRTD
IS STARTED

Symptom

The libvirt daemon is successfully started, but no guest virtual machines appear to be present.

virsh list --all
 Id Name State
--
#

Investigation

There are various possible causes of this problem. Performing these tests will help to determine the
cause of this situation:

Verify KVM kernel modules

Verify that KVM kernel modules are inserted in the kernel:

lsmod | grep kvm
kvm_intel 121346 0
kvm 328927 1 kvm_intel

If you are using an AMD machine, verify the kvm_amd kernel modules are inserted in the kernel
instead, using the similar command lsmod | grep kvm_amd in the root shell.

If the modules are not present, insert them using the modprobe <modulename> command.

NOTE

Although it is uncommon, KVM virtualization support may be compiled into the
kernel. In this case, modules are not needed.

Verify virtualization extensions

Verify that virtualization extensions are supported and enabled on the host:

egrep "(vmx|svm)" /proc/cpuinfo
flags : fpu vme de pse tsc ... svm ... skinit wdt npt lbrv svm_lock nrip_save
flags : fpu vme de pse tsc ... svm ... skinit wdt npt lbrv svm_lock nrip_save

Enable virtualization extensions in your hardware's firmware configuration within the BIOS setup.
Refer to your hardware documentation for further details on this.

Verify client URI configuration

Verify that the URI of the client is configured as desired:

virsh uri
vbox:///system

For example, this message shows the URI is connected to the VirtualBox hypervisor, not QEMU,

APPENDIX B. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING

137

For example, this message shows the URI is connected to the VirtualBox hypervisor, not QEMU,
and reveals a configuration error for a URI that is otherwise set to connect to a QEMU hypervisor.
If the URI was correctly connecting to QEMU, the same message would appear instead as:

virsh uri
qemu:///system

This situation occurs when there are other hypervisors present, which libvirt may speak to by
default.

Solution

After performing these tests, use the following command to view a list of guest virtual machines:

virsh list --all

B.16. UNABLE TO CONNECT TO SERVER AT 'HOST:16509':
CONNECTION REFUSED ... ERROR: FAILED TO CONNECT TO THE
HYPERVISOR

Symptom

While libvirtd should listen on TCP ports for connections, the connections fail:

virsh -c qemu+tcp://host/system
error: unable to connect to server at 'host:16509': Connection refused
error: failed to connect to the hypervisor

The libvirt daemon is not listening on TCP ports even after changing configuration in
/etc/libvirt/libvirtd.conf:

grep listen_ /etc/libvirt/libvirtd.conf
listen_tls = 1
listen_tcp = 1
listen_addr = "0.0.0.0"

However, the TCP ports for libvirt are still not open after changing configuration:

netstat -lntp | grep libvirtd
#

Investigation

The libvirt daemon was started without the --listen option. Verify this by running this command:

ps aux | grep libvirtd
root 27314 0.0 0.0 1000920 18304 ? Sl Feb16 1:19 libvirtd --daemon

The output does not contain the --listen option.

Solution

Virtualization Host Configuration and Guest Installation Guide

138

Start the daemon with the --listen option.

To do this, modify the /etc/sysconfig/libvirtd file and uncomment the following line:

#LIBVIRTD_ARGS="--listen"

Then restart the libvirtd service with this command:

/etc/init.d/libvirtd restart

B.17. COMMON XML ERRORS

The libvirt tool uses XML documents to store structured data. A variety of common errors occur with
XML documents when they are passed to libvirt through the API. Several common XML errors —
including misformatted XML, inappropriate values, and missing elements — are detailed below.

B.17.1. Editing Domain Definition

Although it is not recommended, it is sometimes necessary to edit a guest virtual machine's (or a
domain's) XML file manually. To access the guest's XML for editing, use the following command:

virsh edit name_of_guest.xml

This command opens the file in a text editor with the current definition of the guest virtual machine.
After finishing the edits and saving the changes, the XML is reloaded and parsed by libvirt. If the XML is
correct, the following message is displayed:

virsh edit name_of_guest.xml

Domain name_of_guest.xml XML configuration edited.

IMPORTANT

When using the edit command in virsh to edit an XML document, save all changes before
exiting the editor.

After saving the XML file, use the xmllint command to validate that the XML is well-formed, or the virt-
xml-validate command to check for usage problems:

xmllint --noout config.xml

virt-xml-validate config.xml

If no errors are returned, the XML description is well-formed and matches the libvirt schema. While the
schema does not catch all constraints, fixing any reported errors will further troubleshooting.

XML documents stored by libvirt

These documents contain definitions of states and configurations for the guests. These documents
are automatically generated and should not be edited manually. Errors in these documents contain
the file name of the broken document. The file name is valid only on the host machine defined by the

APPENDIX B. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING

139

URI, which may refer to the machine the command was run on.

Errors in files created by libvirt are rare. However, one possible source of these errors is a
downgrade of libvirt — while newer versions of libvirt can always read XML generated by older
versions, older versions of libvirt may be confused by XML elements added in a newer version.

B.17.2. XML Syntax Errors

Syntax errors are caught by the XML parser. The error message contains information for identifying the
problem.

This example error message from the XML parser consists of three lines — the first line denotes the
error message, and the two following lines contain the context and location of the XML code containing
the error. The third line contains an indicator showing approximately where the error lies on the line
above it:

error: (name_of_guest.xml):6: StartTag: invalid element name
<vcpu>2</vcpu><
-----------------^

Information contained in this message:

(name_of_guest.xml)

This is the file name of the document that contains the error. File names in parentheses are
symbolic names to describe XML documents parsed from memory, and do not directly
correspond to files on disk. File names that are not contained in parentheses are local files that
reside on the target of the connection.

6

This is the line number in the XML file that contains the error.

StartTag: invalid element name

This is the error message from the libxml2 parser, which describes the specific XML error.

B.17.2.1. Stray < in the document

Symptom

The following error occurs:

error: (name_of_guest.xml):6: StartTag: invalid element name
<vcpu>2</vcpu><
-----------------^

Investigation

This error message shows that the parser expects a new element name after the < symbol on line 6
of a guest's XML file.

Ensure line number display is enabled in your text editor. Open the XML file, and locate the text on
line 6:

Virtualization Host Configuration and Guest Installation Guide

140

<domain type='kvm'>
 <name>name_of_guest</name>
<memory>524288</memory>
<vcpu>2</vcpu><

This snippet of a guest's XML file contains an extra < in the document:

Solution

Remove the extra < or finish the new element.

B.17.2.2. Unterminated attribute

Symptom

The following error occurs:

error: (name_of_guest.xml):2: Unescaped '<' not allowed in attributes values
<name>name_of_guest</name>
--^

Investigation

This snippet of a guest's XML file contains an unterminated element attribute value:

<domain type='kvm>
<name>name_of_guest</name>

In this case, 'kvm' is missing a second quotation mark. Strings of attribute values, such as quotation
marks and apostrophes, must be opened and closed, similar to XML start and end tags.

Solution

Correctly open and close all attribute value strings.

B.17.2.3. Opening and ending tag mismatch

Symptom

The following error occurs:

error: (name_of_guest.xml):61: Opening and ending tag mismatch: clock line 16 and domain
</domain>
---------^

Investigation

The error message above contains three clues to identify the offending tag:

The message following the last colon, clock line 16 and domain, reveals that <clock> contains a
mismatched tag on line 16 of the document. The last hint is the pointer in the context part of the
message, which identifies the second offending tag.

Unpaired tags must be closed with />. The following snippet does not follow this rule and has
produced the error message shown above:

APPENDIX B. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING

141

<domain type='kvm'>
 ...
 <clock offset='utc'>

This error is caused by mismatched XML tags in the file. Every XML tag must have a matching start
and end tag.

Other examples of mismatched XML tags

The following examples produce similar error messages and show variations of mismatched XML
tags.

This snippet contains an unended pair tag for <features>:

<domain type='kvm'>
 ...
 <features>
 <acpi/>
 <pae/>
 ...
 </domain>

This snippet contains an end tag (</name>) without a corresponding start tag:

<domain type='kvm'>
 </name>
 ...
</domain>

Solution

Ensure all XML tags start and end correctly.

B.17.2.4. Typographical errors in tags

Symptom

The following error message appears:

error: (name_of_guest.xml):1: Specification mandate value for attribute ty
<domain ty pe='kvm'>
-----------^

Investigation

XML errors are easily caused by a simple typographical error. This error message highlights the XML
error — in this case, an extra white space within the word type — with a pointer.

<domain ty pe='kvm'>

These XML examples will not parse correctly because of typographical errors such as a missing
special character, or an additional character:

<domain type 'kvm'>

Virtualization Host Configuration and Guest Installation Guide

142

<dom#ain type='kvm'>

Solution

To identify the problematic tag, read the error message for the context of the file, and locate the
error with the pointer. Correct the XML and save the changes.

B.17.3. Logic and Configuration Errors

A well-formatted XML document can contain errors that are correct in syntax but libvirt cannot parse.
Many of these errors exist, with two of the most common cases outlined below.

B.17.3.1. Vanishing parts

Symptom

Parts of the change you have made do not show up and have no effect after editing or defining the
domain. The define or edit command works, but when dumping the XML once again, the change
disappears.

Investigation

This error likely results from a broken construct or syntax that libvirt does not parse. The libvirt tool
will generally only look for constructs it knows but ignore everything else, resulting in some of the
XML changes vanishing after libvirt parses the input.

Solution

Validate the XML input before passing it to the edit or define commands. The libvirt developers
maintain a set of XML schemas bundled with libvirt which define the majority of the constructs
allowed in XML documents used by libvirt.

Validate libvirt XML files using the following command:

virt-xml-validate libvirt.xml

If this command passes, libvirt will likely understand all constructs from your XML, except if the
schemas cannot detect options which are valid only for a given hypervisor. For example, any XML
generated by libvirt as a result of a virsh dump command should validate without error.

B.17.3.2. Incorrect drive device type

Symptom

The definition of the source image for the CD-ROM virtual drive is not present, despite being added:

virsh dumpxml domain
<domain type='kvm'>
 ...
 <disk type='block' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <target dev='hdc' bus='ide'/>
 <readonly/>

APPENDIX B. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING

143

 </disk>
 ...
</domain>

Solution

Correct the XML by adding the missing <source> parameter as follows:

<disk type='block' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <source file='/path/to/image.iso'/>
 <target dev='hdc' bus='ide'/>
 <readonly/>
</disk>

A type='block' disk device expects that the source is a physical device. To use the disk with an image
file, use type='file' instead.

Virtualization Host Configuration and Guest Installation Guide

144

APPENDIX C. REVISION HISTORY

Revision 0.5-45 Fri Mar 10 2017 Jiri Herrmann
Updates for the 6.9 GA release

Revision 0.5-43 Mon Jan 02 2017 Jiri Herrmann
Updates for the 6.9 Beta release

Revision 0.5-42 Mon May 02 2016 Jiri Herrmann
Multiple updates for the 6.8 GA release

Revision 0.5-41 Tue Mar 01 2016 Jiri Herrmann
Multiple updates for the 6.8 beta release

Revision 0.5-40 Thu Oct 08 2015 Jiri Herrmann
Cleaned up the Revision History

Revision 0.5-39 Wed Apr 29 2015 Dayle Parker
Republishing for 6.7 Beta.

APPENDIX C. REVISION HISTORY

145

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. WHAT IS IN THIS GUIDE?

	CHAPTER 2. SYSTEM REQUIREMENTS
	CHAPTER 3. KVM GUEST VIRTUAL MACHINE COMPATIBILITY
	3.1. RED HAT ENTERPRISE LINUX 6 SUPPORT LIMITS
	3.2. SUPPORTED CPU MODELS

	CHAPTER 4. VIRTUALIZATION RESTRICTIONS
	4.1. KVM RESTRICTIONS
	4.2. APPLICATION RESTRICTIONS
	4.3. OTHER RESTRICTIONS

	CHAPTER 5. INSTALLING THE VIRTUALIZATION PACKAGES
	5.1. CONFIGURING A VIRTUALIZATION HOST INSTALLATION
	5.2. INSTALLING VIRTUALIZATION PACKAGES ON AN EXISTING RED HAT ENTERPRISE LINUX SYSTEM

	CHAPTER 6. GUEST VIRTUAL MACHINE INSTALLATION OVERVIEW
	6.1. GUEST VIRTUAL MACHINE PREREQUISITES AND CONSIDERATIONS
	6.2. CREATING GUESTS WITH VIRT-INSTALL
	6.3. CREATING GUESTS WITH VIRT-MANAGER
	6.4. CREATING GUESTS WITH PXE
	6.5. CONNECTING TO VIRTUAL MACHINES

	CHAPTER 7. INSTALLING A RED HAT ENTERPRISE LINUX 6 GUEST VIRTUAL MACHINE ON A RED HAT ENTERPRISE LINUX 6 HOST
	7.1. CREATING A RED HAT ENTERPRISE LINUX 6 GUEST WITH LOCAL INSTALLATION MEDIA
	7.2. CREATING A RED HAT ENTERPRISE LINUX 6 GUEST WITH A NETWORK INSTALLATION TREE
	7.3. CREATING A RED HAT ENTERPRISE LINUX 6 GUEST WITH PXE

	CHAPTER 8. VIRTUALIZING RED HAT ENTERPRISE LINUX ON OTHER PLATFORMS
	8.1. ON VMWARE ESX
	8.2. ON HYPER-V

	CHAPTER 9. INSTALLING A FULLY-VIRTUALIZED WINDOWS GUEST
	9.1. USING VIRT-INSTALL TO CREATE A GUEST

	CHAPTER 10. KVM PARAVIRTUALIZED (VIRTIO) DRIVERS
	10.1. INSTALLING THE KVM WINDOWS VIRTIO DRIVERS
	10.2. INSTALLING THE DRIVERS ON AN INSTALLED WINDOWS GUEST VIRTUAL MACHINE
	10.3. INSTALLING DRIVERS DURING THE WINDOWS INSTALLATION
	10.4. USING KVM VIRTIO DRIVERS FOR EXISTING DEVICES
	10.5. USING KVM VIRTIO DRIVERS FOR NEW DEVICES

	CHAPTER 11. NETWORK CONFIGURATION
	11.1. NETWORK ADDRESS TRANSLATION (NAT) WITH LIBVIRT
	11.2. DISABLING VHOST-NET
	11.3. BRIDGED NETWORKING WITH LIBVIRT

	CHAPTER 12. PCI DEVICE ASSIGNMENT
	12.1. ASSIGNING A PCI DEVICE WITH VIRSH
	12.2. ASSIGNING A PCI DEVICE WITH VIRT-MANAGER
	12.3. ASSIGNING A PCI DEVICE WITH VIRT-INSTALL
	12.4. DETACHING AN ASSIGNED PCI DEVICE
	12.5. PCI DEVICE RESTRICTIONS

	CHAPTER 13. SR-IOV
	13.1. INTRODUCTION
	13.2. USING SR-IOV
	13.3. TROUBLESHOOTING SR-IOV
	13.4. SR-IOV RESTRICTIONS

	CHAPTER 14. KVM GUEST TIMING MANAGEMENT
	14.1. CONSTANT TIME STAMP COUNTER (TSC)
	14.1.1. Configuring Hosts without a Constant Time Stamp Counter

	14.2. REQUIRED PARAMETERS FOR RED HAT ENTERPRISE LINUX GUESTS
	14.3. USING THE REAL-TIME CLOCK WITH WINDOWS SERVER 2008, WINDOWS SERVER 2008 R2, AND WINDOWS 7 GUESTS
	14.4. STEAL TIME ACCOUNTING

	CHAPTER 15. NETWORK BOOTING WITH LIBVIRT
	15.1. PREPARING THE BOOT SERVER
	15.1.1. Setting up a PXE Boot Server on a Private libvirt Network

	15.2. BOOTING A GUEST USING PXE
	15.2.1. Using Bridged Networking
	15.2.2. Using a Private libvirt Network

	CHAPTER 16. REGISTERING THE HYPERVISOR AND VIRTUAL MACHINE
	16.1. INSTALLING VIRT-WHO ON THE HOST PHYSICAL MACHINE
	16.2. REGISTERING A NEW GUEST VIRTUAL MACHINE
	16.3. REMOVING A GUEST VIRTUAL MACHINE ENTRY
	16.4. INSTALLING VIRT-WHO MANUALLY
	16.5. TROUBLESHOOTING VIRT-WHO
	16.5.1. Why is the hypervisor status red?
	16.5.2. I have subscription status errors, what do I do?

	APPENDIX A. NETKVM DRIVER PARAMETERS
	A.1. CONFIGURABLE PARAMETERS FOR NETKVM

	APPENDIX B. COMMON LIBVIRT ERRORS AND TROUBLESHOOTING
	B.1. LIBVIRTD FAILED TO START
	B.2. THE URI FAILED TO CONNECT TO THE HYPERVISOR
	B.2.1. Cannot read CA certificate
	B.2.2. Failed to connect socket ... : Permission denied
	B.2.3. Other Connectivity Errors

	B.3. THE GUEST VIRTUAL MACHINE CANNOT BE STARTED: INTERNAL ERROR GUEST CPU IS NOT COMPATIBLE WITH HOST CPU
	B.4. GUEST STARTING FAILS WITH ERROR: MONITOR SOCKET DID NOT SHOW UP
	B.5. INTERNAL ERROR CANNOT FIND CHARACTER DEVICE (NULL)
	B.6. GUEST VIRTUAL MACHINE BOOTING STALLS WITH ERROR: NO BOOT DEVICE
	B.7. VIRTUAL NETWORK DEFAULT HAS NOT BEEN STARTED
	B.8. PXE BOOT (OR DHCP) ON GUEST FAILED
	B.9. GUEST CAN REACH OUTSIDE NETWORK, BUT CANNOT REACH HOST WHEN USING MACVTAP INTERFACE
	B.10. COULD NOT ADD RULE TO FIXUP DHCP RESPONSE CHECKSUMS ON NETWORK 'DEFAULT'
	B.11. UNABLE TO ADD BRIDGE BR0 PORT VNET0: NO SUCH DEVICE
	B.12. GUEST IS UNABLE TO START WITH ERROR: WARNING: COULD NOT OPEN /DEV/NET/TUN
	B.13. MIGRATION FAILS WITH ERROR: UNABLE TO RESOLVE ADDRESS
	B.14. MIGRATION FAILS WITH UNABLE TO ALLOW ACCESS FOR DISK PATH: NO SUCH FILE OR DIRECTORY
	B.15. NO GUEST VIRTUAL MACHINES ARE PRESENT WHEN LIBVIRTD IS STARTED
	B.16. UNABLE TO CONNECT TO SERVER AT 'HOST:16509': CONNECTION REFUSED ... ERROR: FAILED TO CONNECT TO THE HYPERVISOR
	B.17. COMMON XML ERRORS
	B.17.1. Editing Domain Definition
	B.17.2. XML Syntax Errors
	B.17.2.1. Stray < in the document
	B.17.2.2. Unterminated attribute
	B.17.2.3. Opening and ending tag mismatch
	B.17.2.4. Typographical errors in tags

	B.17.3. Logic and Configuration Errors
	B.17.3.1. Vanishing parts
	B.17.3.2. Incorrect drive device type

	APPENDIX C. REVISION HISTORY

