
Red Hat Enterprise Linux 6

Resource Management Guide

Managing system resources on Red Hat Enterprise Linux 6
Edition 6

Last Updated: 2020-12-09

Red Hat Enterprise Linux 6 Resource Management Guide

Managing system resources on Red Hat Enterprise Linux 6
Edition 6

Milan Navrátil
Red Hat Customer Content Services
mnavrati@redhat.com

Peter Ondrejka
Red Hat Customer Content Services

Eva Majoršinová
Red Hat Customer Content Services

Martin Prpič
Red Hat Product Security

Rüdiger Landmann
Red Hat Customer Content Services

Douglas Silas
Red Hat Customer Content Services

Legal Notice

Copyright © 2016 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Managing system resources on Red Hat Enterprise Linux 6.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION TO CONTROL GROUPS (CGROUPS)
1.1. HOW CONTROL GROUPS ARE ORGANIZED

The Linux Process Model
The Cgroup Model

1.2. RELATIONSHIPS BETWEEN SUBSYSTEMS, HIERARCHIES, CONTROL GROUPS AND TASKS
Rule 1
Rule 2
Rule 3
Rule 4

1.3. IMPLICATIONS FOR RESOURCE MANAGEMENT

CHAPTER 2. USING CONTROL GROUPS
2.1. THE CGCONFIG SERVICE

2.1.1. The /etc/cgconfig.conf File
2.1.2. The /etc/cgconfig.d/ Directory

2.2. CREATING A HIERARCHY AND ATTACHING SUBSYSTEMS
Alternative method

2.3. ATTACHING SUBSYSTEMS TO, AND DETACHING THEM FROM, AN EXISTING HIERARCHY
Alternative method

2.4. UNMOUNTING A HIERARCHY
2.5. CREATING CONTROL GROUPS

Alternative method
2.6. REMOVING CONTROL GROUPS
2.7. SETTING PARAMETERS

Alternative method
2.8. MOVING A PROCESS TO A CONTROL GROUP

Alternative method
2.8.1. The cgred Service

2.9. STARTING A PROCESS IN A CONTROL GROUP
Alternative method
2.9.1. Starting a Service in a Control Group
2.9.2. Process Behavior in the Root Control Group

2.10. GENERATING THE /ETC/CGCONFIG.CONF FILE
2.10.1. Blacklisting Parameters
2.10.2. Whitelisting Parameters

2.11. OBTAINING INFORMATION ABOUT CONTROL GROUPS
2.11.1. Finding a Process
2.11.2. Finding a Subsystem
2.11.3. Finding Hierarchies
2.11.4. Finding Control Groups
2.11.5. Displaying Parameters of Control Groups

2.12. UNLOADING CONTROL GROUPS
2.13. USING THE NOTIFICATION API
2.14. ADDITIONAL RESOURCES

CHAPTER 3. SUBSYSTEMS AND TUNABLE PARAMETERS
3.1. BLKIO

3.1.1. Proportional Weight Division Tunable Parameters
3.1.2. I/O Throttling Tunable Parameters
3.1.3. blkio Common Tunable Parameters
3.1.4. Example Usage

4
4
4
4
5
5
6
6
7
8

9
9
9

12
12
13
14
14
15
15
16
16
16
18
18
19
19
21
21
22
22
23
24
24
25
25
25
26
26
26
26
27
28

29
29
29
30
31

33

Table of Contents

1

. .

. .

3.2. CPU
3.2.1. CFS Tunable Parameters
3.2.2. RT Tunable Parameters
3.2.3. Example Usage

3.3. CPUACCT
3.4. CPUSET
3.5. DEVICES
3.6. FREEZER
3.7. MEMORY

3.7.1. Example Usage
3.8. NET_CLS
3.9. NET_PRIO
3.10. NS
3.11. PERF_EVENT
3.12. COMMON TUNABLE PARAMETERS
3.13. ADDITIONAL RESOURCES

CHAPTER 4. CONTROL GROUP APPLICATION EXAMPLES
4.1. PRIORITIZING DATABASE I/O
4.2. PRIORITIZING NETWORK TRAFFIC
4.3. PER-GROUP DIVISION OF CPU AND MEMORY RESOURCES

Alternative method

APPENDIX A. REVISION HISTORY

34
34
36
37
37
38
40
42
42
47
50
51
51
52
52
53

55
55
56
58
61

63

Resource Management Guide

2

Table of Contents

3

CHAPTER 1. INTRODUCTION TO CONTROL GROUPS
(CGROUPS)
Red Hat Enterprise Linux 6 provides a new kernel feature: control groups, which are called by their
shorter name cgroups in this guide. Cgroups allow you to allocate resources — such as CPU time, system
memory, network bandwidth, or combinations of these resources — among user-defined groups of tasks
(processes) running on a system. You can monitor the cgroups you configure, deny cgroups access to
certain resources, and even reconfigure your cgroups dynamically on a running system. The cgconfig
(control group config) service can be configured to start up at boot time and reestablish your predefined
cgroups, thus making them persistent across reboots.

By using cgroups, system administrators gain fine-grained control over allocating, prioritizing, denying,
managing, and monitoring system resources. Hardware resources can be appropriately divided up
among tasks and users, increasing overall efficiency.

1.1. HOW CONTROL GROUPS ARE ORGANIZED

Cgroups are organized hierarchically, like processes, and child cgroups inherit some of the attributes of
their parents. However, there are differences between the two models.

The Linux Process Model
All processes on a Linux system are child processes of a common parent: the init process, which is
executed by the kernel at boot time and starts other processes (which may in turn start child processes
of their own). Because all processes descend from a single parent, the Linux process model is a single
hierarchy, or tree.

Additionally, every Linux process except init inherits the environment (such as the PATH variable) [1] and
certain other attributes (such as open file descriptors) of its parent process.

The Cgroup Model
Cgroups are similar to processes in that:

they are hierarchical, and

child cgroups inherit certain attributes from their parent cgroup.

The fundamental difference is that many different hierarchies of cgroups can exist simultaneously on a
system. If the Linux process model is a single tree of processes, then the cgroup model is one or more
separate, unconnected trees of tasks (i.e. processes).

Multiple separate hierarchies of cgroups are necessary because each hierarchy is attached to one or
more subsystems. A subsystem[2] represents a single resource, such as CPU time or memory. Red Hat
Enterprise Linux 6 provides ten cgroup subsystems, listed below by name and function.

Available Subsystems in Red Hat Enterprise Linux

blkio — this subsystem sets limits on input/output access to and from block devices such as
physical drives (disk, solid state, or USB).

cpu — this subsystem uses the scheduler to provide cgroup tasks access to the CPU.

cpuacct — this subsystem generates automatic reports on CPU resources used by tasks in a
cgroup.

cpuset — this subsystem assigns individual CPUs (on a multicore system) and memory nodes to

Resource Management Guide

4

cpuset — this subsystem assigns individual CPUs (on a multicore system) and memory nodes to
tasks in a cgroup.

devices — this subsystem allows or denies access to devices by tasks in a cgroup.

freezer — this subsystem suspends or resumes tasks in a cgroup.

memory — this subsystem sets limits on memory use by tasks in a cgroup and generates
automatic reports on memory resources used by those tasks.

net_cls — this subsystem tags network packets with a class identifier (classid) that allows the
Linux traffic controller (tc) to identify packets originating from a particular cgroup task.

net_prio — this subsystem provides a way to dynamically set the priority of network traffic per
network interface.

ns — the namespace subsystem.

perf_event — this subsystem identifies cgroup membership of tasks and can be used for
performance analysis.

NOTE

You may come across the term resource controller or simply controller in cgroup
literature such as the man pages or kernel documentation. Both of these terms are
synonymous with “subsystem” and arise from the fact that a subsystem typically
schedules a resource or applies a limit to the cgroups in the hierarchy it is attached to.

The definition of a subsystem (resource controller) is quite general: it is something that
acts upon a group of tasks, i.e. processes.

1.2. RELATIONSHIPS BETWEEN SUBSYSTEMS, HIERARCHIES,
CONTROL GROUPS AND TASKS

Remember that system processes are called tasks in cgroup terminology.

Here are a few simple rules governing the relationships between subsystems, hierarchies of cgroups, and
tasks, along with explanations of the consequences of those rules.

Rule 1
A single hierarchy can have one or more subsystems attached to it.

As a consequence, the cpu and memory subsystems (or any number of subsystems) can be attached to
a single hierarchy, as long as each one is not attached to any other hierarchy which has any other
subsystems attached to it already (see Rule 2).

CHAPTER 1. INTRODUCTION TO CONTROL GROUPS (CGROUPS)

5

Figure 1.1. Rule 1

Rule 2
Any single subsystem (such as cpu) cannot be attached to more than one hierarchy if one of those
hierarchies has a different subsystem attached to it already.

As a consequence, the cpu subsystem can never be attached to two different hierarchies if one of those
hierarchies already has the memory subsystem attached to it. However, a single subsystem can be
attached to two hierarchies if both of those hierarchies have only that subsystem attached.

Figure 1.2. Rule 2—The numbered bullets represent a time sequence in which the subsystems are
attached.

Rule 3
Each time a new hierarchy is created on the systems, all tasks on the system are initially members of the

Resource Management Guide

6

default cgroup of that hierarchy, which is known as the root cgroup. For any single hierarchy you create,
each task on the system can be a member of exactly one cgroup in that hierarchy. A single task may be
in multiple cgroups, as long as each of those cgroups is in a different hierarchy. As soon as a task
becomes a member of a second cgroup in the same hierarchy, it is removed from the first cgroup in that
hierarchy. At no time is a task ever in two different cgroups in the same hierarchy.

As a consequence, if the cpu and memory subsystems are attached to a hierarchy named cpu_mem_cg,
and the net_cls subsystem is attached to a hierarchy named net, then a running httpd process could be a
member of any one cgroup in cpu_mem_cg, and any one cgroup in net.

The cgroup in cpu_mem_cg that the httpd process is a member of might restrict its CPU time to half of
that allotted to other processes, and limit its memory usage to a maximum of 1024 MB. Additionally, the
cgroup in net that the httpd process is a member of might limit its transmission rate to 30 MB/s
(megabytes per second).

When the first hierarchy is created, every task on the system is a member of at least one cgroup: the root
cgroup. When using cgroups, therefore, every system task is always in at least one cgroup.

Figure 1.3. Rule 3

Rule 4
Any process (task) on the system which forks itself creates a child task. A child task automatically
inherits the cgroup membership of its parent but can be moved to different cgroups as needed. Once
forked, the parent and child processes are completely independent.

As a consequence, consider the httpd task that is a member of the cgroup named half_cpu_1gb_max in
the cpu_and_mem hierarchy, and a member of the cgroup trans_rate_30 in the net hierarchy. When that
httpd process forks itself, its child process automatically becomes a member of the half_cpu_1gb_max
cgroup, and the trans_rate_30 cgroup. It inherits the exact same cgroups its parent task belongs to.

From that point forward, the parent and child tasks are completely independent of each other: changing
the cgroups that one task belongs to does not affect the other. Neither will changing cgroups of a parent
task affect any of its grandchildren in any way. To summarize: any child task always initially inherits
memberships to the exact same cgroups as their parent task, but those memberships can be changed or
removed later.

CHAPTER 1. INTRODUCTION TO CONTROL GROUPS (CGROUPS)

7

Figure 1.4. Rule 4—The numbered bullets represent a time sequence in which the task forks.

1.3. IMPLICATIONS FOR RESOURCE MANAGEMENT

Because a task can belong to only a single cgroup in any one hierarchy, there is only one way
that a task can be limited or affected by any single subsystem. This is logical: a feature, not a
limitation.

You can group several subsystems together so that they affect all tasks in a single hierarchy.
Because cgroups in that hierarchy have different parameters set, those tasks will be affected
differently.

It may sometimes be necessary to refactor a hierarchy. An example would be removing a
subsystem from a hierarchy that has several subsystems attached, and attaching it to a new,
separate hierarchy.

Conversely, if the need for splitting subsystems among separate hierarchies is reduced, you can
remove a hierarchy and attach its subsystems to an existing one.

The design allows for simple cgroup usage, such as setting a few parameters for specific tasks in
a single hierarchy, such as one with just the cpu and memory subsystems attached.

The design also allows for highly specific configuration: each task (process) on a system could
be a member of each hierarchy, each of which has a single attached subsystem. Such a
configuration would give the system administrator absolute control over all parameters for
every single task.

[1] The parent process is able to alter the environment before passing it to a child process.

[2] You should be aware that subsystems are also called resource controllers, or simply controllers, in the libcgroup
man pages and other documentation.

Resource Management Guide

8

CHAPTER 2. USING CONTROL GROUPS
As explained in Chapter 3, Subsystems and Tunable Parameters , control groups and the subsystems to
which they relate can be manipulated using shell commands and utilities. However, the easiest way to
work with cgroups is to install the libcgroup package, which contains a number of cgroup-related
command line utilities and their associated man pages. It is possible to mount hierarchies and set cgroup
parameters (non-persistently) using shell commands and utilities available on any system. However,
using the libcgroup-provided utilities simplifies the process and extends your capabilities. Therefore,
this guide focuses on libcgroup commands throughout. In most cases, we have included the equivalent
shell commands to help describe the underlying mechanism. However, we recommend that you use
the libcgroup commands wherever practical.

NOTE

In order to use cgroups, first ensure the libcgroup package is installed on your system by
running, as root:

~]# yum install libcgroup

2.1. THE CGCONFIG SERVICE

The cgconfig service installed with the libcgroup package provides a convenient way to create
hierarchies, attach subsystems to hierarchies, and manage cgroups within those hierarchies. It is
recommended that you use cgconfig to manage hierarchies and cgroups on your system.

The cgconfig service is not started by default on Red Hat Enterprise Linux 6. When you start the service
with chkconfig, it reads the cgroup configuration file — /etc/cgconfig.conf. Cgroups are therefore
recreated from session to session and remain persistent. Depending on the contents of the
configuration file, cgconfig can create hierarchies, mount necessary file systems, create cgroups, and
set subsystem parameters for each group.

The default /etc/cgconfig.conf file installed with the libcgroup package creates and mounts an
individual hierarchy for each subsystem, and attaches the subsystems to these hierarchies. The
cgconfig service also allows to create configuration files in the /etc/cgconfig.d/ directory and to invoke
them from /etc/cgconfig.conf.

If you stop the cgconfig service (with the service cgconfig stop command), it unmounts all the
hierarchies that it mounted.

2.1.1. The /etc/cgconfig.conf File

The /etc/cgconfig.conf file contains two major types of entries — mount and group. Mount entries
create and mount hierarchies as virtual file systems, and attach subsystems to those hierarchies. Mount
entries are defined using the following syntax:

The libcgroup package automatically creates a default /etc/cgconfig.conf file when it is installed. The
default configuration file looks as follows:

mount {
 subsystem = /cgroup/hierarchy;
 …
}

CHAPTER 2. USING CONTROL GROUPS

9

mount {
 cpuset = /cgroup/cpuset;
 cpu = /cgroup/cpu;
 cpuacct = /cgroup/cpuacct;
 memory = /cgroup/memory;
 devices = /cgroup/devices;
 freezer = /cgroup/freezer;
 net_cls = /cgroup/net_cls;
 blkio = /cgroup/blkio;
}

The subsystems listed in the above configuration are automatically mounted to their respective
hierarchies under the /cgroup/ directory. It is recommended to use these default hierarchies for
specifying control groups. However, in certain cases you may need to create hierarchies manually, for
example when they were deleted before, or it is beneficial to have a single hierarchy for multiple
subsystems (as in Section 4.3, “Per-group Division of CPU and Memory Resources”). Note that multiple
subsystems can be mounted to a single hierarchy, but each subsystem can be mounted only once. See
Example 2.1, “Creating a mount entry” for an example of creating a hierarchy.

Example 2.1. Creating a mount entry

The following example creates a hierarchy for the cpuset subsystem:

the equivalent of the shell commands:

~]# mkdir /cgroup/red
~]# mount -t cgroup -o cpuset red /cgroup/red

Since each subsystem can be mounted only once, the above commands would fail if cpuset is
already mounted.

Group entries create cgroups and set subsystem parameters. Group entries are defined using the
following syntax:

Note that the permissions section is optional. To define permissions for a group entry, use the
following syntax:

mount {
 cpuset = /cgroup/red;
}

group <name> {
 [<permissions>]
 <controller> {
 <param name> = <param value>;
 …
 }
 …
}

perm {
 task {
 uid = <task user>;

Resource Management Guide

10

See Example 2.2, “Creating a group entry” for example usage:

Example 2.2. Creating a group entry

The following example creates a cgroup for SQL daemons, with permissions for users in the
sqladmin group to add tasks to the cgroup and the root user to modify subsystem parameters:

When combined with the example of the mount entry in Example 2.1, “Creating a mount entry” , the
equivalent shell commands are:

~]# mkdir -p /cgroup/red/daemons/sql
~]# chown root:root /cgroup/red/daemons/sql/*
~]# chown root:sqladmin /cgroup/red/daemons/sql/tasks
~]# echo $(cgget -n -v -r cpuset.mems /) > /cgroup/red/daemons/cpuset.mems
~]# echo $(cgget -n -v -r cpuset.cpus /) > /cgroup/red/daemons/cpuset.cpus
~]# echo 0 > /cgroup/red/daemons/sql/cpuset.mems
~]# echo 0 > /cgroup/red/daemons/sql/cpuset.cpus

NOTE

 gid = <task group>;
 }
 admin {
 uid = <admin name>;
 gid = <admin group>;
 }
}

group daemons {
 cpuset {
 cpuset.mems = 0;
 cpuset.cpus = 0;
 }
}
group daemons/sql {
 perm {
 task {
 uid = root;
 gid = sqladmin;
 } admin {
 uid = root;
 gid = root;
 }
 }
 cpuset {
 cpuset.mems = 0;
 cpuset.cpus = 0;
 }
}

CHAPTER 2. USING CONTROL GROUPS

11

NOTE

You must restart the cgconfig service for the changes in the /etc/cgconfig.conf file to
take effect. However, note that restarting this service causes the entire cgroup hierarchy
to be rebuilt, which removes any previously existing cgroups (for example, any existing
cgroups used by libvirtd). To restart the cgconfig service, use the following command:

~]# service cgconfig restart

When you install the libcgroup package, a sample configuration file is written to /etc/cgconfig.conf. The
hash symbols ('#') at the start of each line comment that line out and make it invisible to the cgconfig
service.

2.1.2. The /etc/cgconfig.d/ Directory

The /etc/cgconfig.d/ directory is reserved for storing configuration files for specific applications and
use cases. These files should be created with the .conf suffix and adhere to the same syntax rules as
/etc/cgconfig.conf.

The cgconfig service first parses the /etc/cgconfig.conf file and then continues with files in the
/etc/cgconfig.d/ directory. Note that the order of file parsing is not defined, because it does not make a
difference provided that each configuration file is unique. Therefore, do not define the same group or
template in multiple configuration files, otherwise they would interfere with each other.

Storing specific configuration files in a separate directory makes them easily reusable. If an application is
shipped with a dedicated configuration file, you can easily set up cgroups for the application just by
copying its configuration file to /etc/cgconfig.d/.

2.2. CREATING A HIERARCHY AND ATTACHING SUBSYSTEMS

WARNING

The following instructions, which cover creating a new hierarchy and attaching
subsystems to it, assume that cgroups are not already configured on your system. In
this case, these instructions will not affect the operation of the system. Changing
the tunable parameters in a cgroup with tasks, however, can immediately affect
those tasks. This guide alerts you the first time it illustrates changing a tunable
cgroup parameter that can affect one or more tasks.

On a system on which cgroups are already configured (either manually, or by the
cgconfig service) these commands fail unless you first unmount existing
hierarchies, which affects the operation of the system. Do not experiment with
these instructions on production systems.

To create a hierarchy and attach subsystems to it, edit the mount section of the /etc/cgconfig.conf file
as root. Entries in the mount section have the following format:

subsystem = /cgroup/hierarchy;

Resource Management Guide

12

When cgconfig next starts, it will create the hierarchy and attach the subsystems to it.

The following example creates a hierarchy called cpu_and_mem and attaches the cpu, cpuset,
cpuacct, and memory subsystems to it.

Alternative method
You can also use shell commands and utilities to create hierarchies and attach subsystems to them.

Create a mount point for the hierarchy as root. Include the name of the cgroup in the mount point:

~]# mkdir /cgroup/name

For example:

~]# mkdir /cgroup/cpu_and_mem

Next, use the mount command to mount the hierarchy and simultaneously attach one or more
subsystems. For example:

~]# mount -t cgroup -o subsystems name /cgroup/name

Where subsystems is a comma‑separated list of subsystems and name is the name of the hierarchy. Brief
descriptions of all available subsystems are listed in Available Subsystems in Red Hat Enterprise Linux ,
and Chapter 3, Subsystems and Tunable Parameters provides a detailed reference.

Example 2.3. Using the mount command to attach subsystems

In this example, a directory named /cgroup/cpu_and_mem already exists and will serve as the mount
point for the hierarchy that you create. Attach the cpu, cpuset, and memory subsystems to a
hierarchy named cpu_and_mem, and mount the cpu_and_mem hierarchy on
/cgroup/cpu_and_mem:

~]# mount -t cgroup -o cpu,cpuset,memory cpu_and_mem /cgroup/cpu_and_mem

You can list all available subsystems along with their current mount points (i.e. where the hierarchy
they are attached to is mounted) with the lssubsys [3] command:

~]# lssubsys -am
cpu,cpuset,memory /cgroup/cpu_and_mem
net_cls
ns
cpuacct
devices
freezer
blkio

mount {
 cpuset = /cgroup/cpu_and_mem;
 cpu = /cgroup/cpu_and_mem;
 cpuacct = /cgroup/cpu_and_mem;
 memory = /cgroup/cpu_and_mem;
}

CHAPTER 2. USING CONTROL GROUPS

13

This output indicates that:

the cpu, cpuset, and memory subsystems are attached to a hierarchy mounted on
/cgroup/cpu_and_mem, and

the net_cls, ns, cpuacct, devices, freezer, and blkio subsystems are as yet unattached to
any hierarchy, as illustrated by the lack of a corresponding mount point.

2.3. ATTACHING SUBSYSTEMS TO, AND DETACHING THEM FROM, AN
EXISTING HIERARCHY

To add a subsystem to an existing hierarchy, detach it from an existing hierarchy, or move it to a different
hierarchy, edit the mount section of the /etc/cgconfig.conf file as root, using the same syntax
described in Section 2.2, “Creating a Hierarchy and Attaching Subsystems” . When cgconfig next starts,
it will reorganize the subsystems according to the hierarchies that you specify.

Alternative method
To add an unattached subsystem to an existing hierarchy, remount the hierarchy. Include the extra
subsystem in the mount command, together with the remount option.

Example 2.4. Remounting a hierarchy to add a subsystem

The lssubsys command shows cpu, cpuset, and memory subsystems attached to the
cpu_and_mem hierarchy:

~]# lssubsys -am
cpu,cpuset,memory /cgroup/cpu_and_mem
net_cls
ns
cpuacct
devices
freezer
blkio

Remount the cpu_and_mem hierarchy, using the remount option, and include cpuacct in the list of
subsystems:

~]# mount -t cgroup -o remount,cpu,cpuset,cpuacct,memory cpu_and_mem
/cgroup/cpu_and_mem

The lssubsys command now shows cpuacct attached to the cpu_and_mem hierarchy:

~]# lssubsys -am
cpu,cpuacct,cpuset,memory /cgroup/cpu_and_mem
net_cls
ns
devices
freezer
blkio

Analogously, you can detach a subsystem from an existing hierarchy by remounting the hierarchy and

Resource Management Guide

14

Analogously, you can detach a subsystem from an existing hierarchy by remounting the hierarchy and
omitting the subsystem name from the -o options. For example, to then detach the cpuacct subsystem,
simply remount and omit it:

~]# mount -t cgroup -o remount,cpu,cpuset,memory cpu_and_mem /cgroup/cpu_and_mem

2.4. UNMOUNTING A HIERARCHY

You can unmount a hierarchy of cgroups with the umount command:

~]# umount /cgroup/name

For example:

~]# umount /cgroup/cpu_and_mem

If the hierarchy is currently empty (that is, it contains only the root cgroup) the hierarchy is deactivated
when it is unmounted. If the hierarchy contains any other cgroups, the hierarchy remains active in the
kernel even though it is no longer mounted.

To remove a hierarchy, ensure that all child cgroups are removed before you unmount the hierarchy, or
use the cgclear command which can deactivate a hierarchy even when it is not empty — refer to
Section 2.12, “Unloading Control Groups” .

2.5. CREATING CONTROL GROUPS

Use the cgcreate command to create cgroups. The syntax for cgcreate is:

cgcreate -t uid:gid -a uid:gid -g subsystems:path

where:

-t (optional) — specifies a user (by user ID, uid) and a group (by group ID, gid) to own the tasks
pseudofile for this cgroup. This user can add tasks to the cgroup.

NOTE

Note that the only way to remove a task from a cgroup is to move it to a different
cgroup. To move a task, the user has to have write access to the destination
cgroup; write access to the source cgroup is not necessary.

-a (optional) — specifies a user (by user ID, uid) and a group (by group ID, gid) to own all
pseudofiles other than tasks for this cgroup. This user can modify access of the tasks in this
cgroup to system resources.

-g — specifies the hierarchy in which the cgroup should be created, as a comma‑separated list of
subsystems associated with hierarchies. If the subsystems in this list are in different hierarchies,
the group is created in each of these hierarchies. The list of hierarchies is followed by a colon
and the path to the child group relative to the hierarchy. Do not include the hierarchy mount
point in the path.

For example, the cgroup located in the directory /cgroup/cpu_and_mem/lab1/ is called just
lab1 — its path is already uniquely determined because there is at most one hierarchy for a given

CHAPTER 2. USING CONTROL GROUPS

15

subsystem. Note also that the group is controlled by all the subsystems that exist in the
hierarchies in which the cgroup is created, even though these subsystems have not been
specified in the cgcreate command — refer to Example 2.5, “cgcreate usage” .

Because all cgroups in the same hierarchy have the same controllers, the child group has the same
controllers as its parent.

Example 2.5. cgcreate usage

Consider a system where the cpu and memory subsystems are mounted together in the
cpu_and_mem hierarchy, and the net_cls controller is mounted in a separate hierarchy called net.
Run the following command:

~]# cgcreate -g cpu,net_cls:/test-subgroup

The cgcreate command creates two groups named test-subgroup, one in the cpu_and_mem
hierarchy and one in the net hierarchy. The test-subgroup group in the cpu_and_mem hierarchy is
controlled by the memory subsystem, even though it was not specified in the cgcreate command.

Alternative method
To create a child of the cgroup directly, use the mkdir command:

~]# mkdir /cgroup/hierarchy/name/child_name

For example:

~]# mkdir /cgroup/cpu_and_mem/group1

2.6. REMOVING CONTROL GROUPS

Use cgdelete to remove cgroups. It has similar syntax as cgcreate. Run the following command:

cgdelete subsystems:path

where:

subsystems is a comma‑separated list of subsystems.

path is the path to the cgroup relative to the root of the hierarchy.

For example:

~]# cgdelete cpu,net_cls:/test-subgroup

cgdelete can also recursively remove all subgroups with the option -r.

When you delete a cgroup, all its tasks move to its parent group.

2.7. SETTING PARAMETERS

Set subsystem parameters by running the cgset command from a user account with permission to
modify the relevant cgroup. For example, if cpuset is mounted to /cgroup/cpu_and_mem/ and the

Resource Management Guide

16

/cgroup/cpu_and_mem/group1 subdirectory exists, specify the CPUs to which this group has access
with the following command:

cpu_and_mem]# cgset -r cpuset.cpus=0-1 group1

The syntax for cgset is:

cgset -r parameter=value path_to_cgroup

where:

parameter is the parameter to be set, which corresponds to the file in the directory of the given
cgroup.

value is the value for the parameter.

path_to_cgroup is the path to the cgroup relative to the root of the hierarchy . For example, to
set the parameter of the root group (if the cpuacct subsystem is mounted to
/cgroup/cpu_and_mem/), change to the /cgroup/cpu_and_mem/ directory, and run:

cpu_and_mem]# cgset -r cpuacct.usage=0 /

Alternatively, because . is relative to the root group (that is, the root group itself) you could also
run:

cpu_and_mem]# cgset -r cpuacct.usage=0 .

Note, however, that / is the preferred syntax.

NOTE

Only a small number of parameters can be set for the root group (such as the
cpuacct.usage parameter shown in the examples above). This is because a root
group owns all of the existing resources, therefore, it would make no sense to
limit all existing processes by defining certain parameters, for example the
cpuset.cpu parameter.

To set the parameter of group1, which is a subgroup of the root group, run:

cpu_and_mem]# cgset -r cpuacct.usage=0 group1

A trailing slash after the name of the group (for example, cpuacct.usage=0 group1/) is
optional.

The values that you can set with cgset might depend on values set higher in a particular hierarchy. For
example, if group1 is limited to use only CPU 0 on a system, you cannot set group1/subgroup1 to use
CPUs 0 and 1, or to use only CPU 1.

You can also use cgset to copy the parameters of one cgroup into another existing cgroup. For
example:

cpu_and_mem]# cgset --copy-from group1/ group2/

CHAPTER 2. USING CONTROL GROUPS

17

The syntax to copy parameters with cgset is:

cgset --copy-from path_to_source_cgroup path_to_target_cgroup

where:

path_to_source_cgroup is the path to the cgroup whose parameters are to be copied, relative to
the root group of the hierarchy.

path_to_target_cgroup is the path to the destination cgroup, relative to the root group of
the hierarchy.

Ensure that any mandatory parameters for the various subsystems are set before you copy parameters
from one group to another, or the command will fail. For more information on mandatory parameters,
refer to Important.

Alternative method
To set parameters in a cgroup directly, insert values into the relevant subsystem pseudofile using the
echo command. In the following example, the echo command inserts the value of 0-1 into the
cpuset.cpus pseudofile of the cgroup group1:

~]# echo 0-1 > /cgroup/cpu_and_mem/group1/cpuset.cpus

With this value in place, the tasks in this cgroup are restricted to CPUs 0 and 1 on the system.

2.8. MOVING A PROCESS TO A CONTROL GROUP

Move a process into a cgroup by running the cgclassify command, for example:

~]# cgclassify -g cpu,memory:group1 1701

The syntax for cgclassify is:

cgclassify -g subsystems:path_to_cgroup pidlist

where:

subsystems is a comma‑separated list of subsystems, or * to launch the process in the
hierarchies associated with all available subsystems. Note that if cgroups of the same name exist
in multiple hierarchies, the -g option moves the processes in each of those groups. Ensure that
the cgroup exists within each of the hierarchies whose subsystems you specify here.

path_to_cgroup is the path to the cgroup within its hierarchies.

pidlist is a space-separated list of process identifier (PIDs).

If the -g option is not specified, cgclassify automatically searches the /etc/cgrules.conf file (see
Section 2.8.1, “The cgred Service”) and uses the first applicable configuration line. According to this line,
cgclassify determines the hierarchies and cgroups to move the process under. Note that for the move
to be successful, the destination hierarchies must exist. The subsystems specified in /etc/cgrules.conf
also have to be properly configured for the corresponding hierarchy in /etc/cgconfig.conf.

You can also add the --sticky option before the pid to keep any child processes in the same cgroup. If
you do not set this option and the cgred service is running, child processes are allocated to cgroups

Resource Management Guide

18

based on the settings found in /etc/cgrules.conf. However, the parent process remains in the cgroup in
which it was first started.

Using cgclassify, you can move several processes simultaneously. For example, this command moves
the processes with PIDs 1701 and 1138 into cgroup group1/:

~]# cgclassify -g cpu,memory:group1 1701 1138

Note that the PIDs to be moved are separated by spaces and that the specified groups should be in
different hierarchies.

Alternative method
To move a process into a cgroup directly, write its PID to the tasks file of the cgroup. For example, to
move a process with the PID 1701 into a cgroup at /cgroup/cpu_and_mem/group1/:

~]# echo 1701 > /cgroup/cpu_and_mem/group1/tasks

2.8.1. The cgred Service

Cgred is a service (which starts the cgrulesengd service) that moves tasks into cgroups according to
parameters set in the /etc/cgrules.conf file. Entries in the /etc/cgrules.conf file can take one of these
two forms:

user subsystems control_group

user:command subsystems control_group

Replace user with a user name or a group name prefixed with the "@" character. Replace subsystems
with a comma‑separated list of subsystem names, control_group represents a path to the cgroup, and
command stands for a process name or a full command path of a process.

For example:

This entry specifies that any processes that belong to the user named maria access the devices
subsystem according to the parameters specified in the /usergroup/staff cgroup. To associate
particular commands with particular cgroups, add the command parameter, as follows:

The entry now specifies that when the user named maria uses the ftp command, the process is
automatically moved to the /usergroup/staff/ftp cgroup in the hierarchy that contains the devices
subsystem. Note, however, that the daemon moves the process to the cgroup only after the
appropriate condition is fulfilled. Therefore, the ftp process might run for a short time in the wrong
group. Furthermore, if the process quickly spawns children while in the wrong group, these children
might not be moved.

Entries in the /etc/cgrules.conf file can include the following extra notation:

@ — indicates a group instead of an individual user. For example, @admins are all users in the
admins group.

maria devices /usergroup/staff

maria:ftp devices /usergroup/staff/ftp

CHAPTER 2. USING CONTROL GROUPS

19

* — represents "all". For example, * in the subsystem field represents all mounted subsystems.

% — represents an item that is the same as the item on the line above.

For example, the entries specified in the /etc/cgrules.conf file can have the following form:

The above configuration ensures that processes owned by the adminstaff and labstaff access the
devices subsystem according to the limits set in the admingroup cgroup.

Rules specified in /etc/cgrules.conf can be linked to templates configured either in the
/etc/cgconfig.conf file or in configuration files stored in the /etc/cgconfig.d/ directory, allowing for
flexible cgroup assignment and creation.

For example, specify the following template in /etc/cgconfig.conf:

template users/%g/%u {
 cpuacct{
 }
 cpu {
 cpu.shares = "1000";
 }
 }

Then use the users/%g/%u template in the third row of a /etc/cgrules.conf entry, which can look as
follows:

The %g and %u variables used above are automatically replaced with group and user name depending
on the owner of the ftp process. If the process belongs to peter from the adminstaff group, the above
path is translated to users/adminstaff/peter. The cgred service then searches for this directory, and if it
does not exist, cgred creates it and assigns the process to users/adminstaff/peter/tasks. Note that
template rules apply only to definitions of templates in configuration files, so even if "group
users/adminstaff/peter" was defined in /etc/cgconfig.conf, it would be ignored in favor of " template
users/%g/%u".

There are several other variables that can be used for specifying cgroup paths in templates:

%u — is replaced with the name of the user who owns the current process. If name resolution
fails, UID is used instead.

%U — is replaced with the UID of the specified user who owns the current process.

%g — is replaced with the name of the user group that owns the current process, or with the GID
if name resolution fails.

%G — is replaced with the GID of the cgroup that owns the current process.

%p — is replaced with the name of the current process. PID is used in case of name resolution
failure.

%P — is replaced with the PID of the current processes.

@adminstaff devices /admingroup
@labstaff % %

peter:ftp cpu users/%g/%u

Resource Management Guide

20

2.9. STARTING A PROCESS IN A CONTROL GROUP

IMPORTANT

Some subsystems have mandatory parameters that must be set before you can move a
task into a cgroup which uses any of those subsystems. For example, before you move a
task into a cgroup which uses the cpuset subsystem, the cpuset.cpus and cpuset.mems
parameters must be defined for that cgroup.

The examples in this section illustrate the correct syntax for the command, but only work
on systems on which the relevant mandatory parameters have been set for any
controllers used in the examples. If you have not already configured the relevant
controllers, you cannot copy example commands directly from this section and expect
them to work on your system.

Refer to Chapter 3, Subsystems and Tunable Parameters for a description of which
parameters are mandatory for given subsystems.

Launch processes in a cgroup by running the cgexec command. For example, this command launches
the firefox web browser within the group1 cgroup, subject to the limitations imposed on that group by
the cpu subsystem:

~]# cgexec -g cpu:group1 firefox http://www.redhat.com

The syntax for cgexec is:

cgexec -g subsystems:path_to_cgroup command arguments

where:

subsystems is a comma‑separated list of subsystems, or * to launch the process in the
hierarchies associated with all available subsystems. Note that, as with cgset described in
Section 2.7, “Setting Parameters”, if cgroups of the same name exist in multiple hierarchies, the
-g option creates processes in each of those groups. Ensure that the cgroup exists within each
of the hierarchies whose subsystems you specify here.

path_to_cgroup is the path to the cgroup relative to the hierarchy.

command is the command to run.

arguments are any arguments for the command.

You can also add the --sticky option before the command to keep any child processes in the same
cgroup. If you do not set this option and the cgred service is running, child processes will be allocated to
cgroups based on the settings found in /etc/cgrules.conf. The process itself, however, will remain in the
cgroup in which you started it.

Alternative method
When you start a new process, it inherits the group of its parent process. Therefore, an alternative
method for starting a process in a particular cgroup is to move your shell process to that group (refer to
Section 2.8, “Moving a Process to a Control Group”), and then launch the process from that shell. For
example:

CHAPTER 2. USING CONTROL GROUPS

21

~]# echo $$ > /cgroup/cpu_and_mem/group1/tasks
~]# firefox

Note that after exiting firefox, your existing shell is still in the group1 cgroup. Therefore, an even better
way would be:

~]# sh -c "echo \$$ > /cgroup/cpu_and_mem/group1/tasks && firefox"

2.9.1. Starting a Service in a Control Group

You can start certain services in a cgroup. Services that can be started in cgroups must:

use a /etc/sysconfig/servicename file

use the daemon() function from /etc/init.d/functions to start the service

To make an eligible service start in a cgroup, edit its file in the /etc/sysconfig directory to include an
entry in the form CGROUP_DAEMON="subsystem:control_group" where subsystem is a subsystem
associated with a particular hierarchy, and control_group is a cgroup in that hierarchy. For example:

If cpuset is mounted to /cgroup/cpu_and_mem/, the above configuration translates to
/cgroup/cpu_and_mem/group1.

2.9.2. Process Behavior in the Root Control Group

Certain blkio and cpu configuration options affect processes (tasks) running in the root cgroup in a
different way than those in a subgroup. Consider the following example:

1. Create two subgroups under one root group: /rootgroup/red/ and /rootgroup/blue/

2. In each subgroup and in the root group, define the cpu.shares configuration option and set it to
1.

In the scenario configured above, one process placed in each group (that is, one task in
/rootgroup/tasks, /rootgroup/red/tasks and /rootgroup/blue/tasks) consumes 33.33% of the CPU:

/rootgroup/ process: 33.33%
/rootgroup/blue/ process: 33.33%
/rootgroup/red/ process: 33.33%

Any other processes placed in subgroups blue and red result in the 33.33% percent of the CPU
assigned to that specific subgroup to be split among the multiple processes in that subgroup.

However, multiple processes placed in the root group cause the CPU resource to be split per process,
rather than per group. For example, if /rootgroup/ contains three processes, /rootgroup/red/ contains
one process and /rootgroup/blue/ contains one process, and the cpu.shares option is set to 1 in all
groups, the CPU resource is divided as follows:

/rootgroup/ processes: 20% + 20% + 20%
/rootgroup/blue/ process: 20%
/rootgroup/red/ process: 20%

CGROUP_DAEMON="cpuset:group1"

Resource Management Guide

22

Therefore, it is recommended to move all processes from the root group to a specific subgroup when
using the blkio and cpu configuration options which divide an available resource based on a weight or a
share (for example, cpu.shares or blkio.weight). To move all tasks from the root group into a specific
subgroup, you can use the following commands:

rootgroup]# cat tasks >> red/tasks
rootgroup]# echo > tasks

2.10. GENERATING THE /ETC/CGCONFIG.CONF FILE

Configuration for the /etc/cgconfig.conf file can be generated from the current cgroup configuration
using the cgsnapshot utility. This utility takes a snapshot of the current state of all subsystems and their
cgroups and returns their configuration as it would appear in the /etc/cgconfig.conf file. Example 2.6,
“Using the cgsnapshot utility” shows an example usage of the cgsnapshot utility.

Example 2.6. Using the cgsnapshot utility

Configure cgroups on the system using the following commands:

~]# mkdir /cgroup/cpu
~]# mount -t cgroup -o cpu cpu /cgroup/cpu
~]# mkdir /cgroup/cpu/lab1
~]# mkdir /cgroup/cpu/lab2
~]# echo 2 > /cgroup/cpu/lab1/cpu.shares
~]# echo 3 > /cgroup/cpu/lab2/cpu.shares
~]# echo 5000000 > /cgroup/cpu/lab1/cpu.rt_period_us
~]# echo 4000000 > /cgroup/cpu/lab1/cpu.rt_runtime_us
~]# mkdir /cgroup/cpuacct
~]# mount -t cgroup -o cpuacct cpuacct /cgroup/cpuacct

The above commands mounted two subsystems and created two cgroups, for the cpu subsystem,
with specific values for some of their parameters. Executing the cgsnapshot command (with the -s
option and an empty /etc/cgsnapshot_blacklist.conf file[4]) then produces the following output:

~]$ cgsnapshot -s
Configuration file generated by cgsnapshot
mount {
 cpu = /cgroup/cpu;
 cpuacct = /cgroup/cpuacct;
}

group lab2 {
 cpu {
 cpu.rt_period_us="1000000";
 cpu.rt_runtime_us="0";
 cpu.shares="3";
 }
}

group lab1 {
 cpu {
 cpu.rt_period_us="5000000";
 cpu.rt_runtime_us="4000000";

CHAPTER 2. USING CONTROL GROUPS

23

 cpu.shares="2";
 }
}

The -s option used in the example above tells cgsnapshot to ignore all warnings in the output file
caused by parameters not being defined in the blacklist or whitelist of the cgsnapshot utility. For
more information on parameter blacklisting, refer to Section 2.10.1, “Blacklisting Parameters”. For
more information on parameter whitelisting, refer to Section 2.10.2, “Whitelisting Parameters”.

By default, the output generated by cgsnapshot is returned on the standard output. Use the -f option
to specify a file to which the output should be redirected. For example:

~]$ cgsnapshot -f ~/test/cgconfig_test.conf

WARNING

When using the -f option, note that it overwrites any content in the file you specify.
Therefore, it is recommended not to direct the output straight to the
/etc/cgconfig.conf file.

The cgsnapshot utility can also create configuration files per subsystem. By specifying the name of a
subsystem, the output will consist of the corresponding configuration for that subsystem:

~]$ cgsnapshot cpuacct
Configuration file generated by cgsnapshot
mount {
 cpuacct = /cgroup/cpuacct;
}

2.10.1. Blacklisting Parameters

The cgsnapshot utility allows parameter blacklisting. If a parameter is blacklisted, it does not appear in
the output generated by cgsnapshot. By default, the /etc/cgsnapshot_blacklist.conf file is checked
for blacklisted parameters. If a parameter is not present in the blacklist, the whitelist is checked. To
specify a different blacklist, use the -b option. For example:

~]$ cgsnapshot -b ~/test/my_blacklist.conf

2.10.2. Whitelisting Parameters

The cgsnapshot utility also allows parameter whitelisting. If a parameter is whitelisted, it appears in the
output generated by cgsnapshot. If a parameter is neither blacklisted or whitelisted, a warning appears
informing of this:

Resource Management Guide

24

~]$ cgsnapshot -f ~/test/cgconfig_test.conf
WARNING: variable cpu.rt_period_us is neither blacklisted nor whitelisted
WARNING: variable cpu.rt_runtime_us is neither blacklisted nor whitelisted

By default, there is no whitelist configuration file. To specify which file to use as a whitelist, use the -w
option. For example:

~]$ cgsnapshot -w ~/test/my_whitelist.conf

Specifying the -t option tells cgsnapshot to generate a configuration with parameters from the whitelist
only.

2.11. OBTAINING INFORMATION ABOUT CONTROL GROUPS

There are several ways to find and monitor control groups, subsystems, and hierarchies configured on
your system.

2.11.1. Finding a Process

To find the cgroup to which a process belongs, run:

~]$ ps -O cgroup

Or, if you know the PID for the process, run:

~]$ cat /proc/PID/cgroup

where PID stands for a PID of the inspected process.

2.11.2. Finding a Subsystem

To find out what subsystems are available in your kernel and how they are mounted together into
hierarchies, run:

~]$ cat /proc/cgroups
#subsys_name hierarchy num_cgroups enabled
cpuset 2 1 1
ns 0 1 1
cpu 3 1 1
cpuacct 4 1 1
memory 5 1 1
devices 6 1 1
freezer 7 1 1
net_cls 8 1 1
blkio 9 3 1
perf_event 0 1 1
net_prio 0 1 1

In the example output above, the hierarchy column lists IDs of the existing hierarchies on the system.
Subsystems with the same hierarchy ID are attached to the same hierarchy. The num_cgroup column
lists the number of existing cgroups in the hierarchy that uses a particular subsystem. The enabled
column reports the value of 1 if a particular subsystem is enabled, or 0 if it is not.

CHAPTER 2. USING CONTROL GROUPS

25

Or, to find the mount points of particular subsystems, run:

~]$ lssubsys -m subsystems

where subsystems is a list of the subsystems in which you are interested. Note that the lssubsys -m
command returns only the top-level mount point per each hierarchy.

2.11.3. Finding Hierarchies

It is recommended that you mount hierarchies under the /cgroup/ directory. Assuming this is the case on
your system, list or browse the contents of that directory to obtain a list of hierarchies. If the tree utility
is installed on your system, run it to obtain an overview of all hierarchies and the cgroups within them:

~]$ tree /cgroup

2.11.4. Finding Control Groups

To list the cgroups on a system, run:

~]$ lscgroup

You can restrict the output to a specific hierarchy by specifying a controller and path in the format
controller:path. For example:

~]$ lscgroup cpuset:group1

lists only subgroups of the group1 cgroup in the hierarchy to which the cpuset subsystem is attached.

2.11.5. Displaying Parameters of Control Groups

To display the parameters of specific cgroups, run:

~]$ cgget -r parameter list_of_cgroups

where parameter is a pseudofile that contains values for a subsystem, and list_of_cgroups is a list of
cgroups separated with spaces. For example:

~]$ cgget -r cpuset.cpus -r memory.limit_in_bytes group1 group2

displays the values of cpuset.cpus and memory.limit_in_bytes for cgroups group1 and group2.

If you do not know the names of the parameters themselves, use a command like:

~]$ cgget -g cpuset /

2.12. UNLOADING CONTROL GROUPS

Resource Management Guide

26

WARNING

The cgclear command destroys all cgroups in all hierarchies. If you do not have
these hierarchies stored in a configuration file, you will not be able to readily
reconstruct them.

To clear an entire cgroup file system, use the cgclear command.

All tasks in the cgroup are reallocated to the root node of the hierarchies, all cgroups are removed, and
the file system itself is unmounted from the system, destroying all previously mounted hierarchies.
Finally, the directory where the cgroup file system was mounted is removed.

NOTE

Using the mount command to create cgroups (as opposed to creating them using the
cgconfig service) results in the creation of an entry in the /etc/mtab file (the mounted
file systems table). This change is also reflected in the /proc/mounts file. However, the
unloading of cgroups with the cgclear command, along with other cgconfig commands,
uses a direct kernel interface which does not reflect its changes into the /etc/mtab file
and only writes the new information into the /proc/mounts file. After unloading cgroups
with the cgclear command, the unmounted cgroups can still be visible in the /etc/mtab
file, and, consequently, displayed when the mount command is executed. Refer to the
/proc/mounts file for an accurate listing of all mounted cgroups.

2.13. USING THE NOTIFICATION API

The cgroups notification API allows user space applications to receive notifications about the changing
status of a cgroup. Currently, the notification API only supports monitoring of the Out of Memory
(OOM) control file: memory.oom_control. To create a notification handler, write a C program using the
following instructions:

1. Using the eventfd() function, create a file descriptor for event notifications. For more
information, refer to the eventfd(2) man page.

2. To monitor the memory.oom_control file, open it using the open() function. For more
information, refer to the open(2) man page.

3. Use the write() function to write the following arguments to the cgroup.event_control file of
the cgroup whose memory.oom_control file you are monitoring:

<event_file_descriptor> <OOM_control_file_descriptor>

where:

event_file_descriptor is used to open the cgroup.event_control file,

and OOM_control_file_descriptor is used to open the respective memory.oom_control file.

For more information on writing to a file, refer to the write(1) man page.

CHAPTER 2. USING CONTROL GROUPS

27

When the above program is started, it will be notified of any OOM situation in the cgroup it is
monitoring. Note that OOM notifications only work in non-root cgroups.

For more information on the memory.oom_control tunable parameter, refer to Section 3.7, “memory” .
For more information on configuring notifications for OOM control, refer to Example 3.3, “OOM Control
and Notifications”.

2.14. ADDITIONAL RESOURCES

The ultimate documentation for cgroup commands is available on the manual pages provided with the
libcgroup package. The section numbers are specified in the list of man pages below.

The libcgroup Man Pages

man 1 cgclassify — the cgclassify command is used to move running tasks to one or more
cgroups.

man 1 cgclear — the cgclear command is used to delete all cgroups in a hierarchy.

man 5 cgconfig.conf — cgroups are defined in the cgconfig.conf file.

man 8 cgconfigparser — the cgconfigparser command parses the cgconfig.conf file and
mounts hierarchies.

man 1 cgcreate — the cgcreate command creates new cgroups in hierarchies.

man 1 cgdelete — the cgdelete command removes specified cgroups.

man 1 cgexec — the cgexec command runs tasks in specified cgroups.

man 1 cgget — the cgget command displays cgroup parameters.

man 1 cgsnapshot — the cgsnapshot command generates a configuration file from existing
subsystems.

man 5 cgred.conf — cgred.conf is the configuration file for the cgred service.

man 5 cgrules.conf — cgrules.conf contains the rules used for determining when tasks belong
to certain cgroups.

man 8 cgrulesengd — the cgrulesengd service distributes tasks to cgroups.

man 1 cgset — the cgset command sets parameters for a cgroup.

man 1 lscgroup — the lscgroup command lists the cgroups in a hierarchy.

man 1 lssubsys — the lssubsys command lists the hierarchies containing the specified
subsystems.

[3] The lssubsys command is one of the utilities provided by the libcgroup package. You have to install libcgroup
to use it: refer to Chapter 2, Using Control Groups if you are unable to run lssubsys.

[4] The cpu.shares parameter is specified in the /etc/cgsnapshot_blacklist.conf file by default, which would
cause it to be omitted in the generated output in Example 2.6, “Using the cgsnapshot utility”. Thus, for the
purposes of the example, an empty /etc/cgsnapshot_blacklist.conf file is used.

Resource Management Guide

28

CHAPTER 3. SUBSYSTEMS AND TUNABLE PARAMETERS
Subsystems are kernel modules that are aware of cgroups. Typically, they are resource controllers that
allocate varying levels of system resources to different cgroups. However, subsystems could be
programmed for any other interaction with the kernel where the need exists to treat different groups of
processes differently. The application programming interface (API) to develop new subsystems is
documented in cgroups.txt in the kernel documentation, installed on your system at
/usr/share/doc/kernel-doc-kernel-version/Documentation/cgroups/ (provided by the kernel-doc
package). The latest version of the cgroups documentation is also available online at
http://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt. Note, however, that the features in
the latest documentation might not match those available in the kernel installed on your system.

State objects that contain the subsystem parameters for a cgroup are represented as pseudofiles within
the cgroup virtual file system. These pseudofiles can be manipulated by shell commands or their
equivalent system calls. For example, cpuset.cpus is a pseudofile that specifies which CPUs a cgroup is
permitted to access. If /cgroup/cpuset/webserver is a cgroup for the web server that runs on a system,
and the following command is executed,

~]# echo 0,2 > /cgroup/cpuset/webserver/cpuset.cpus

the value 0,2 is written to the cpuset.cpus pseudofile and therefore limits any tasks whose PIDs are
listed in /cgroup/cpuset/webserver/tasks to use only CPU 0 and CPU 2 on the system.

3.1. BLKIO

The Block I/O (blkio) subsystem controls and monitors access to I/O on block devices by tasks in
cgroups. Writing values to some of these pseudofiles limits access or bandwidth, and reading values
from some of these pseudofiles provides information on I/O operations.

The blkio subsystem offers two policies for controlling access to I/O:

Proportional weight division — implemented in the Completely Fair Queuing (CFQ) I/O
scheduler, this policy allows you to set weights to specific cgroups. This means that each cgroup
has a set percentage (depending on the weight of the cgroup) of all I/O operations reserved.
For more information, refer to Section 3.1.1, “Proportional Weight Division Tunable Parameters”

I/O throttling (Upper limit) — this policy is used to set an upper limit for the number of I/O
operations performed by a specific device. This means that a device can have a limited rate of
read or write operations. For more information, refer to Section 3.1.2, “I/O Throttling Tunable
Parameters”

IMPORTANT

Currently, the Block I/O subsystem does not work for buffered write operations. It is
primarily targeted at direct I/O, although it works for buffered read operations.

3.1.1. Proportional Weight Division Tunable Parameters

blkio.weight

specifies the relative proportion (weight) of block I/O access available by default to a cgroup, in the
range from 100 to 1000. This value is overridden for specific devices by the blkio.weight_device
parameter. For example, to assign a default weight of 500 to a cgroup for access to block devices,
run:

CHAPTER 3. SUBSYSTEMS AND TUNABLE PARAMETERS

29

http://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

~]# echo 500 > blkio.weight

blkio.weight_device

specifies the relative proportion (weight) of I/O access on specific devices available to a cgroup, in
the range from 100 to 1000. The value of this parameter overrides the value of the blkio.weight
parameter for the devices specified. Values take the format of major:minor weight, where major and
minor are device types and node numbers specified in Linux Allocated Devices , otherwise known as
the Linux Devices List and available from https://www.kernel.org/doc/html/v4.11/admin-
guide/devices.html. For example, to assign a weight of 500 to a cgroup for access to /dev/sda, run:

~]# echo 8:0 500 > blkio.weight_device

In the Linux Allocated Devices notation, 8:0 represents /dev/sda.

3.1.2. I/O Throttling Tunable Parameters

blkio.throttle.read_bps_device

specifies the upper limit on the number of read operations a device can perform. The rate of the read
operations is specified in bytes per second. Entries have three fields: major, minor, and
bytes_per_second. Major and minor are device types and node numbers specified in Linux Allocated
Devices, and bytes_per_second is the upper limit rate at which read operations can be performed. For
example, to allow the /dev/sda device to perform read operations at a maximum of 10 MBps, run:

~]# echo "8:0 10485760" > /cgroup/blkio/test/blkio.throttle.read_bps_device

blkio.throttle.read_iops_device

specifies the upper limit on the number of read operations a device can perform. The rate of the read
operations is specified in operations per second. Entries have three fields: major, minor, and
operations_per_second. Major and minor are device types and node numbers specified in Linux
Allocated Devices, and operations_per_second is the upper limit rate at which read operations can be
performed. For example, to allow the /dev/sda device to perform a maximum of 10 read operations
per second, run:

~]# echo "8:0 10" > /cgroup/blkio/test/blkio.throttle.read_iops_device

blkio.throttle.write_bps_device

specifies the upper limit on the number of write operations a device can perform. The rate of the
write operations is specified in bytes per second. Entries have three fields: major, minor, and
bytes_per_second. Major and minor are device types and node numbers specified in Linux Allocated
Devices, and bytes_per_second is the upper limit rate at which write operations can be performed. For
example, to allow the /dev/sda device to perform write operations at a maximum of 10 MBps, run:

~]# echo "8:0 10485760" > /cgroup/blkio/test/blkio.throttle.write_bps_device

blkio.throttle.write_iops_device

specifies the upper limit on the number of write operations a device can perform. The rate of the
write operations is specified in operations per second. Entries have three fields: major, minor, and
operations_per_second. Major and minor are device types and node numbers specified in Linux

Resource Management Guide

30

https://www.kernel.org/doc/html/v4.11/admin-guide/devices.html

Allocated Devices, and operations_per_second is the upper limit rate at which write operations can be
performed. For example, to allow the /dev/sda device to perform a maximum of 10 write operations
per second, run:

~]# echo "8:0 10" > /cgroup/blkio/test/blkio.throttle.write_iops_device

blkio.throttle.io_serviced

reports the number of I/O operations performed on specific devices by a cgroup as seen by the
throttling policy. Entries have four fields: major, minor, operation, and number. Major and minor are
device types and node numbers specified in Linux Allocated Devices , operation represents the type
of operation (read, write, sync, or async) and number represents the number of operations.

blkio.throttle.io_service_bytes

reports the number of bytes transferred to or from specific devices by a cgroup. The only difference
between blkio.io_service_bytes and blkio.throttle.io_service_bytes is that the former is not
updated when the CFQ scheduler is operating on a request queue. Entries have four fields: major,
minor, operation, and bytes. Major and minor are device types and node numbers specified in Linux
Allocated Devices, operation represents the type of operation (read, write, sync, or async) and
bytes is the number of transferred bytes.

3.1.3. blkio Common Tunable Parameters

The following parameters may be used for either of the policies listed in Section 3.1, “blkio”.

blkio.reset_stats

resets the statistics recorded in the other pseudofiles. Write an integer to this file to reset the
statistics for this cgroup.

blkio.time

reports the time that a cgroup had I/O access to specific devices. Entries have three fields: major,
minor, and time. Major and minor are device types and node numbers specified in Linux Allocated
Devices, and time is the length of time in milliseconds (ms).

blkio.sectors

reports the number of sectors transferred to or from specific devices by a cgroup. Entries have three
fields: major, minor, and sectors. Major and minor are device types and node numbers specified in
Linux Allocated Devices , and sectors is the number of disk sectors.

blkio.avg_queue_size

reports the average queue size for I/O operations by a cgroup, over the entire length of time of the
group's existence. The queue size is sampled every time a queue for this cgroup receives a timeslice.
Note that this report is available only if CONFIG_DEBUG_BLK_CGROUP=y is set on the system.

blkio.group_wait_time

reports the total time (in nanoseconds — ns) a cgroup spent waiting for a timeslice for one of its
queues. The report is updated every time a queue for this cgroup gets a timeslice, so if you read this
pseudofile while the cgroup is waiting for a timeslice, the report will not contain time spent waiting
for the operation currently queued. Note that this report is available only if
CONFIG_DEBUG_BLK_CGROUP=y is set on the system.

CHAPTER 3. SUBSYSTEMS AND TUNABLE PARAMETERS

31

blkio.empty_time

reports the total time (in nanoseconds — ns) a cgroup spent without any pending requests. The
report is updated every time a queue for this cgroup has a pending request, so if you read this
pseudofile while the cgroup has no pending requests, the report will not contain time spent in the
current empty state. Note that this report is available only if CONFIG_DEBUG_BLK_CGROUP=y is
set on the system.

blkio.idle_time

reports the total time (in nanoseconds — ns) the scheduler spent idling for a cgroup in anticipation of
a better request than the requests already in other queues or from other groups. The report is
updated every time the group is no longer idling, so if you read this pseudofile while the cgroup is
idling, the report will not contain time spent in the current idling state. Note that this report is
available only if CONFIG_DEBUG_BLK_CGROUP=y is set on the system.

blkio.dequeue

reports the number of times requests for I/O operations by a cgroup were dequeued by specific
devices. Entries have three fields: major, minor, and number. Major and minor are device types and
node numbers specified in Linux Allocated Devices , and number is the number of times requests by
the group were dequeued. Note that this report is available only if
CONFIG_DEBUG_BLK_CGROUP=y is set on the system.

blkio.io_serviced

reports the number of I/O operations performed on specific devices by a cgroup as seen by the CFQ
scheduler. Entries have four fields: major, minor, operation, and number. Major and minor are device
types and node numbers specified in Linux Allocated Devices , operation represents the type of
operation (read, write, sync, or async) and number represents the number of operations.

blkio.io_service_bytes

reports the number of bytes transferred to or from specific devices by a cgroup as seen by the CFQ
scheduler. Entries have four fields: major, minor, operation, and bytes. Major and minor are device
types and node numbers specified in Linux Allocated Devices , operation represents the type of
operation (read, write, sync, or async) and bytes is the number of transferred bytes.

blkio.io_service_time

reports the total time between request dispatch and request completion for I/O operations on
specific devices by a cgroup as seen by the CFQ scheduler. Entries have four fields: major, minor,
operation, and time. Major and minor are device types and node numbers specified in Linux Allocated
Devices, operation represents the type of operation (read, write, sync, or async) and time is the
length of time in nanoseconds (ns). The time is reported in nanoseconds rather than a larger unit so
that this report is meaningful even for solid-state devices.

blkio.io_wait_time

reports the total time I/O operations on specific devices by a cgroup spent waiting for service in the
scheduler queues. When you interpret this report, note:

the time reported can be greater than the total time elapsed, because the time reported is
the cumulative total of all I/O operations for the cgroup rather than the time that the cgroup
itself spent waiting for I/O operations. To find the time that the group as a whole has spent
waiting, use the blkio.group_wait_time parameter.

if the device has a queue_depth > 1, the time reported only includes the time until the

Resource Management Guide

32

if the device has a queue_depth > 1, the time reported only includes the time until the
request is dispatched to the device, not any time spent waiting for service while the device
reorders requests.

Entries have four fields: major, minor, operation, and time. Major and minor are device types and node
numbers specified in Linux Allocated Devices , operation represents the type of operation (read,
write, sync, or async) and time is the length of time in nanoseconds (ns). The time is reported in
nanoseconds rather than a larger unit so that this report is meaningful even for solid-state devices.

blkio.io_merged

reports the number of BIOS requests merged into requests for I/O operations by a cgroup. Entries
have two fields: number and operation. Number is the number of requests, and operation represents
the type of operation (read, write, sync, or async).

blkio.io_queued

reports the number of requests queued for I/O operations by a cgroup. Entries have two fields:
number and operation. Number is the number of requests, and operation represents the type of
operation (read, write, sync, or async).

3.1.4. Example Usage

Refer to Example 3.1, “blkio proportional weight division” for a simple test of running two dd threads in
two different cgroups with various blkio.weight values.

Example 3.1. blkio proportional weight division

1. Mount the blkio subsystem:

~]# mount -t cgroup -o blkio blkio /cgroup/blkio/

2. Create two cgroups for the blkio subsystem:

~]# mkdir /cgroup/blkio/test1/
~]# mkdir /cgroup/blkio/test2/

3. Set blkio weights in the previously created cgroups:

~]# echo 1000 > /cgroup/blkio/test1/blkio.weight
~]# echo 500 > /cgroup/blkio/test2/blkio.weight

4. Create two large files:

~]# dd if=/dev/zero of=file_1 bs=1M count=4000
~]# dd if=/dev/zero of=file_2 bs=1M count=4000

The above commands create two files (file_1 and file_2) of size 4 GB.

5. For each of the test cgroups, execute a dd command (which reads the contents of a file and
outputs it to the null device) on one of the large files:

CHAPTER 3. SUBSYSTEMS AND TUNABLE PARAMETERS

33

~]# cgexec -g blkio:test1 time dd if=file_1 of=/dev/null
~]# cgexec -g blkio:test2 time dd if=file_2 of=/dev/null

Both commands will output their completion time once they have finished.

6. Simultaneously with the two running dd threads, you can monitor the performance in real
time by using the iotop utility. To install the iotop utility, execute, as root, the yum install
iotop command. The following is an example of the output as seen in the iotop utility while
running the previously started dd threads:

Total DISK READ: 83.16 M/s | Total DISK WRITE: 0.00 B/s
 TIME TID PRIO USER DISK READ DISK WRITE SWAPIN IO COMMAND
15:18:04 15071 be/4 root 27.64 M/s 0.00 B/s 0.00 % 92.30 % dd if=file_2
of=/dev/null
15:18:04 15069 be/4 root 55.52 M/s 0.00 B/s 0.00 % 88.48 % dd if=file_1
of=/dev/null

In order to get the most accurate result in Example 3.1, “blkio proportional weight division” , prior to the
execution of the dd commands, flush all file system buffers and free pagecache, dentries and inodes
using the following commands:

~]# sync
~]# echo 3 > /proc/sys/vm/drop_caches

Additionally, you can enable group isolation which provides stronger isolation between groups at the
expense of throughput. When group isolation is disabled, fairness can be expected only for a sequential
workload. By default, group isolation is enabled and fairness can be expected for random I/O workloads
as well. To enable group isolation, use the following command:

~]# echo 1 > /sys/block/<disk_device>/queue/iosched/group_isolation

where <disk_device> stands for the name of the desired device, for example sda.

3.2. CPU

The cpu subsystem schedules CPU access to cgroups. Access to CPU resources can be scheduled
using two schedulers:

Completely Fair Scheduler (CFS) — a proportional share scheduler which divides the CPU time
(CPU bandwidth) proportionately between groups of tasks (cgroups) depending on the
priority/weight of the task or shares assigned to cgroups. For more information about resource
limiting using CFS, refer to Section 3.2.1, “CFS Tunable Parameters” .

Real-Time scheduler (RT) — a task scheduler that provides a way to specify the amount of CPU
time that real-time tasks can use. For more information about resource limiting of real-time
tasks, refer to Section 3.2.2, “RT Tunable Parameters” .

3.2.1. CFS Tunable Parameters

In CFS, a cgroup can get more than its share of CPU if there are enough idle CPU cycles available in the
system, due to the work conserving nature of the scheduler. This is usually the case for cgroups that
consume CPU time based on relative shares. Ceiling enforcement can be used for cases when a hard

Resource Management Guide

34

limit on the amount of CPU that a cgroup can utilize is required (that is, tasks cannot use more than a
set amount of CPU time).

The following options can be used to configure ceiling enforcement or relative sharing of CPU:

Ceiling Enforcement Tunable Parameters

cpu.cfs_period_us

specifies a period of time in microseconds (µs, represented here as "us") for how regularly a cgroup's
access to CPU resources should be reallocated. If tasks in a cgroup should be able to access a single
CPU for 0.2 seconds out of every 1 second, set cpu.cfs_quota_us to 200000 and
cpu.cfs_period_us to 1000000. The upper limit of the cpu.cfs_quota_us parameter is 1 second and
the lower limit is 1000 microseconds.

cpu.cfs_quota_us

specifies the total amount of time in microseconds (µs, represented here as "us") for which all tasks
in a cgroup can run during one period (as defined by cpu.cfs_period_us). As soon as tasks in a
cgroup use up all the time specified by the quota, they are throttled for the remainder of the time
specified by the period and not allowed to run until the next period. If tasks in a cgroup should be
able to access a single CPU for 0.2 seconds out of every 1 second, set cpu.cfs_quota_us to 200000
and cpu.cfs_period_us to 1000000. Note that the quota and period parameters operate on a CPU
basis. To allow a process to fully utilize two CPUs, for example, set cpu.cfs_quota_us to 200000 and
cpu.cfs_period_us to 100000.

Setting the value in cpu.cfs_quota_us to -1 indicates that the cgroup does not adhere to any CPU
time restrictions. This is also the default value for every cgroup (except the root cgroup).

cpu.stat

reports CPU time statistics using the following values:

nr_periods — number of period intervals (as specified in cpu.cfs_period_us) that have
elapsed.

nr_throttled — number of times tasks in a cgroup have been throttled (that is, not allowed to
run because they have exhausted all of the available time as specified by their quota).

throttled_time — the total time duration (in nanoseconds) for which tasks in a cgroup have
been throttled.

Relative Shares Tunable Parameters

cpu.shares

contains an integer value that specifies a relative share of CPU time available to the tasks in a
cgroup. For example, tasks in two cgroups that have cpu.shares set to 100 will receive equal CPU
time, but tasks in a cgroup that has cpu.shares set to 200 receive twice the CPU time of tasks in a
cgroup where cpu.shares is set to 100. The value specified in the cpu.shares file must be 2 or
higher.

Note that shares of CPU time are distributed per all CPU cores on multi-core systems. Even if a
cgroup is limited to less than 100% of CPU on a multi-core system, it may use 100% of each
individual CPU core. Consider the following example: if cgroup A is configured to use 25% and
cgroup B 75% of the CPU, starting four CPU-intensive processes (one in A and three in B) on a
system with four cores results in the following division of CPU shares:

CHAPTER 3. SUBSYSTEMS AND TUNABLE PARAMETERS

35

Table 3.1. CPU share division

PID cgroup CPU CPU share

100 A 0 100% of CPU0

101 B 1 100% of CPU1

102 B 2 100% of CPU2

103 B 3 100% of CPU3

Using relative shares to specify CPU access has two implications on resource management that
should be considered:

Because the CFS does not demand equal usage of CPU, it is hard to predict how much CPU
time a cgroup will be allowed to utilize. When tasks in one cgroup are idle and are not using
any CPU time, the leftover time is collected in a global pool of unused CPU cycles. Other
cgroups are allowed to borrow CPU cycles from this pool.

The actual amount of CPU time that is available to a cgroup can vary depending on the
number of cgroups that exist on the system. If a cgroup has a relative share of 1000 and two
other cgroups have a relative share of 500, the first cgroup receives 50% of all CPU time in
cases when processes in all cgroups attempt to use 100% of the CPU. However, if another
cgroup is added with a relative share of 1000, the first cgroup is only allowed 33% of the CPU
(the rest of the cgroups receive 16.5%, 16.5%, and 33% of CPU).

3.2.2. RT Tunable Parameters

The RT scheduler works in a similar way to the ceiling enforcement control of the CFS (for more
information, refer to Section 3.2.1, “CFS Tunable Parameters”) but limits CPU access to real-time tasks
only. The amount of time for which real-time task can access the CPU is decided by allocating a run
time and a period for each cgroup. All tasks in a cgroup are then allowed to access the CPU for the
defined period of time for one run time (for example, tasks in a cgroup can be allowed to run 0.1 seconds
in every 1 second). Please note that the following parameters take into account all available logical
CPUs, therefore the access times specified with these parameters are in fact multiplied by the number
of CPUs.

cpu.rt_period_us

applicable to real-time scheduling tasks only, this parameter specifies a period of time in
microseconds (µs, represented here as "us") for how regularly a cgroup's access to CPU resources is
reallocated.

cpu.rt_runtime_us

applicable to real-time scheduling tasks only, this parameter specifies a period of time in
microseconds (µs, represented here as "us") for the longest continuous period in which the tasks in a
cgroup have access to CPU resources. Establishing this limit prevents tasks in one cgroup from
monopolizing CPU time. As mentioned above, the access times are multiplied by the number of
logical CPUs. For example, setting cpu.rt_runtime_us to 200000 and cpu.rt_period_us to 1000000
translates to the task being able to access a single CPU for 0.4 seconds out of every 1 second on
systems with two CPUs (0.2 x 2), or 0.8 seconds on systems with four CPUs (0.2 x 4).

Resource Management Guide

36

3.2.3. Example Usage

Example 3.2. Limiting CPU access

The following examples assume you have an existing hierarchy of cgroups configured and the cpu
subsystem mounted on your system:

To allow one cgroup to use 25% of a single CPU and a different cgroup to use 75% of that
same CPU, use the following commands:

~]# echo 250 > /cgroup/cpu/blue/cpu.shares
~]# echo 750 > /cgroup/cpu/red/cpu.shares

To limit a cgroup to fully utilize a single CPU, use the following commands:

~]# echo 10000 > /cgroup/cpu/red/cpu.cfs_quota_us
~]# echo 10000 > /cgroup/cpu/red/cpu.cfs_period_us

To limit a cgroup to utilize 10% of a single CPU, use the following commands:

~]# echo 10000 > /cgroup/cpu/red/cpu.cfs_quota_us
~]# echo 100000 > /cgroup/cpu/red/cpu.cfs_period_us

On a multi-core system, to allow a cgroup to fully utilize two CPU cores, use the following
commands:

~]# echo 200000 > /cgroup/cpu/red/cpu.cfs_quota_us
~]# echo 100000 > /cgroup/cpu/red/cpu.cfs_period_us

3.3. CPUACCT

The CPU Accounting (cpuacct) subsystem generates automatic reports on CPU resources used by the
tasks in a cgroup, including tasks in child groups. Three reports are available:

cpuacct.usage

reports the total CPU time (in nanoseconds) consumed by all tasks in this cgroup (including tasks
lower in the hierarchy).

NOTE

To reset the value in cpuacct.usage, execute the following command:

~]# echo 0 > /cgroup/cpuacct/cpuacct.usage

The above command also resets values in cpuacct.usage_percpu.

cpuacct.stat

reports the user and system CPU time consumed by all tasks in this cgroup (including tasks lower in
the hierarchy) in the following way:

CHAPTER 3. SUBSYSTEMS AND TUNABLE PARAMETERS

37

user — CPU time consumed by tasks in user mode.

system — CPU time consumed by tasks in system (kernel) mode.

CPU time is reported in the units defined by the USER_HZ variable.

cpuacct.usage_percpu

reports the CPU time (in nanoseconds) consumed on each CPU by all tasks in this cgroup (including
tasks lower in the hierarchy).

3.4. CPUSET

The cpuset subsystem assigns individual CPUs and memory nodes to cgroups. Each cpuset can be
specified according to the following parameters, each one in a separate pseudofile within the cgroup
virtual file system:

IMPORTANT

Some subsystems have mandatory parameters that must be set before you can move a
task into a cgroup which uses any of those subsystems. For example, before you move a
task into a cgroup which uses the cpuset subsystem, the cpuset.cpus and cpuset.mems
parameters must be defined for that cgroup.

cpuset.cpus (mandatory)

specifies the CPUs that tasks in this cgroup are permitted to access. This is a comma-separated list,
with dashes ("-") to represent ranges. For example,

represents CPUs 0, 1, 2, and 16.

cpuset.mems (mandatory)

specifies the memory nodes that tasks in this cgroup are permitted to access. This is a comma-
separated list in the ASCII format, with dashes ("-") to represent ranges. For example,

represents memory nodes 0, 1, 2, and 16.

cpuset.memory_migrate

contains a flag (0 or 1) that specifies whether a page in memory should migrate to a new node if the
values in cpuset.mems change. By default, memory migration is disabled (0) and pages stay on the
node to which they were originally allocated, even if the node is no longer among the nodes specified
in cpuset.mems. If enabled (1), the system migrates pages to memory nodes within the new
parameters specified by cpuset.mems, maintaining their relative placement if possible — for
example, pages on the second node on the list originally specified by cpuset.mems are allocated to
the second node on the new list specified by cpuset.mems, if the place is available.

cpuset.cpu_exclusive

contains a flag (0 or 1) that specifies whether cpusets other than this one and its parents and

0-2,16

0-2,16

Resource Management Guide

38

contains a flag (0 or 1) that specifies whether cpusets other than this one and its parents and
children can share the CPUs specified for this cpuset. By default (0), CPUs are not allocated
exclusively to one cpuset.

cpuset.mem_exclusive

contains a flag (0 or 1) that specifies whether other cpusets can share the memory nodes specified
for the cpuset. By default (0), memory nodes are not allocated exclusively to one cpuset. Reserving
memory nodes for the exclusive use of a cpuset (1) is functionally the same as enabling a memory
hardwall with the cpuset.mem_hardwall parameter.

cpuset.mem_hardwall

contains a flag (0 or 1) that specifies whether kernel allocations of memory page and buffer data
should be restricted to the memory nodes specified for the cpuset. By default (0), page and buffer
data is shared across processes belonging to multiple users. With a hardwall enabled (1), each tasks'
user allocation can be kept separate.

cpuset.memory_pressure

a read-only file that contains a running average of the memory pressure created by the processes in
the cpuset. The value in this pseudofile is automatically updated when
cpuset.memory_pressure_enabled is enabled, otherwise, the pseudofile contains the value 0.

cpuset.memory_pressure_enabled

contains a flag (0 or 1) that specifies whether the system should compute the memory pressure
created by the processes in the cgroup. Computed values are output to cpuset.memory_pressure
and represent the rate at which processes attempt to free in-use memory, reported as an integer
value of attempts to reclaim memory per second, multiplied by 1000.

cpuset.memory_spread_page

contains a flag (0 or 1) that specifies whether file system buffers should be spread evenly across the
memory nodes allocated to the cpuset. By default (0), no attempt is made to spread memory pages
for these buffers evenly, and buffers are placed on the same node on which the process that created
them is running.

cpuset.memory_spread_slab

contains a flag (0 or 1) that specifies whether kernel slab caches for file input/output operations
should be spread evenly across the cpuset. By default (0), no attempt is made to spread kernel slab
caches evenly, and slab caches are placed on the same node on which the process that created them
is running.

cpuset.sched_load_balance

contains a flag (0 or 1) that specifies whether the kernel will balance loads across the CPUs in the
cpuset. By default (1), the kernel balances loads by moving processes from overloaded CPUs to less
heavily used CPUs.

Note, however, that setting this flag in a cgroup has no effect if load balancing is enabled in any
parent cgroup, as load balancing is already being carried out at a higher level. Therefore, to disable
load balancing in a cgroup, disable load balancing also in each of its parents in the hierarchy. In this
case, you should also consider whether load balancing should be enabled for any siblings of the
cgroup in question.

cpuset.sched_relax_domain_level

CHAPTER 3. SUBSYSTEMS AND TUNABLE PARAMETERS

39

contains an integer between -1 and a small positive value, which represents the width of the range of
CPUs across which the kernel should attempt to balance loads. This value is meaningless if
cpuset.sched_load_balance is disabled.

The precise effect of this value varies according to system architecture, but the following values are
typical:

Values of cpuset.sched_relax_domain_level

Value Effect

-1 Use the system default value for load balancing

0 Do not perform immediate load balancing; balance
loads only periodically

1 Immediately balance loads across threads on the
same core

2 Immediately balance loads across cores in the same
package or book (in case of s390x architectures)

3 Immediately balance loads across books in the
same package (available only for s390x
architectures)

4 Immediately balance loads across CPUs on the
same node or blade

5 Immediately balance loads across several CPUs on
architectures with non-uniform memory access
(NUMA)

6 Immediately balance loads across all CPUs on
architectures with NUMA

NOTE

With the release of Red Hat Enterprise Linux 6.1 the BOOK scheduling domain has
been added to the list of supported domain levels. This change affected the meaning
of cpuset.sched_relax_domain_level values. Please note that the effect of values
from 3 to 5 changed. For example, to get the old effect of value 3, which was
"Immediately balance loads across CPUs on the same node or blade" the value 4
needs to be selected. Similarly, the old 4 is now 5, and the old 5 is now 6.

3.5. DEVICES

The devices subsystem allows or denies access to devices by tasks in a cgroup.

IMPORTANT

Resource Management Guide

40

IMPORTANT

The Device Whitelist (devices) subsystem is considered to be a Technology Preview in
Red Hat Enterprise Linux 6.

Technology Preview features are currently not supported under Red Hat
Enterprise Linux 6 subscription services, might not be functionally complete and are
generally not suitable for production use. However, Red Hat includes these features in
the operating system as a customer convenience and to increase the features' exposure.
You might find these features useful in a non-production environment and are also
welcome to provide feedback and functionality suggestions for a Technology Preview
feature before it becomes fully supported.

devices.allow

specifies devices to which tasks in a cgroup have access. Each entry has four fields: type, major,
minor, and access. The values used in the type, major, and minor fields correspond to device types
and node numbers specified in Linux Allocated Devices , otherwise known as the Linux Devices List
and available from https://www.kernel.org/doc/html/v4.11/admin-guide/devices.html.

type

type can have one of the following three values:

a — applies to all devices, both character devices and block devices

b — specifies a block device

c — specifies a character device

major, minor

major and minor are device node numbers specified by Linux Allocated Devices . The major and
minor numbers are separated by a colon. For example, 8 is the major number that specifies Small
Computer System Interface (SCSI) disk drives, and the minor number 1 specifies the first
partition on the first SCSI disk drive; therefore 8:1 fully specifies this partition, corresponding to a
file system location of /dev/sda1.

* can stand for all major or all minor device nodes, for example 9:* (all RAID devices) or *:* (all
devices).

access

access is a sequence of one or more of the following letters:

r — allows tasks to read from the specified device

w — allows tasks to write to the specified device

m — allows tasks to create device files that do not yet exist

For example, when access is specified as r, tasks can only read from the specified device, but when
access is specified as rw, tasks can read from and write to the device.

devices.deny

specifies devices that tasks in a cgroup cannot access. The syntax of entries is identical with
devices.allow.

CHAPTER 3. SUBSYSTEMS AND TUNABLE PARAMETERS

41

https://www.kernel.org/doc/html/v4.11/admin-guide/devices.html

devices.list

reports the devices for which access controls have been set for tasks in this cgroup.

3.6. FREEZER

The freezer subsystem suspends or resumes tasks in a cgroup.

freezer.state

freezer.state is only available in non-root cgroups and has three possible values:

FROZEN — tasks in the cgroup are suspended.

FREEZING — the system is in the process of suspending tasks in the cgroup.

THAWED — tasks in the cgroup have resumed.

To suspend a specific process:

1. Move that process to a cgroup in a hierarchy which has the freezer subsystem attached to it.

2. Freeze that particular cgroup to suspend the process contained in it.

It is not possible to move a process into a suspended (frozen) cgroup.

Note that while the FROZEN and THAWED values can be written to freezer.state, FREEZING cannot
be written, only read.

3.7. MEMORY

The memory subsystem generates automatic reports on memory resources used by the tasks in a
cgroup, and sets limits on memory use of those tasks:

NOTE

Resource Management Guide

42

NOTE

By default, the memory subsystem uses 40 bytes of memory per physical page on
x86_64 systems. These resources are consumed even if memory is not used in any
hierarchy. If you do not plan to use the memory subsystem, you can disable it to reduce
the resource consumption of the kernel.

To permanently disable the memory subsystem, open the /boot/grub/grub.conf
configuration file as root and append the following text to the line that starts with the
kernel keyword:

cgroup_disable=memory

For more information on working with /boot/grub/grub.conf, see the Configuring the
GRUB Boot Loader chapter in the Red Hat Enterprise Linux 6 Deployment Guide .

To temporarily disable the memory subsystem for a single session, perform the following
steps when starting the system:

1. At the GRUB boot screen, press any key to enter the GRUB interactive menu.

2. Select Red Hat Enterprise Linux with the version of the kernel that you want to
boot and press the a key to modify the kernel parameters.

3. Type cgroup_disable=memory at the end of the line and press Enter to exit
GRUB edit mode.

With cgroup_disable=memory enabled, memory is not visible as an individually
mountable subsystem and it is not automatically mounted when mounting all cgroups in a
single hierarchy. Please note that memory is currently the only subsystem that can be
effectively disabled with cgroup_disable to save resources. Using this option with other
subsystems only disables their usage, but does not cut their resource consumption.
However, other subsystems do not consume as much resources as the memory
subsystem.

The following tunable parameters are available for the memory subsystem:

memory.stat

reports a wide range of memory statistics, as described in the following table:

Table 3.2. Values reported by memory.stat

Statistic Description

cache page cache, including tmpfs (shmem), in bytes

rss anonymous and swap cache, not including tmpfs (shmem), in bytes

mapped_file size of memory-mapped mapped files, including tmpfs (shmem), in
bytes

pgpgin number of pages paged into memory

CHAPTER 3. SUBSYSTEMS AND TUNABLE PARAMETERS

43

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Deployment_Guide/index.html#s3-kernel-boot-loader-grub

pgpgout number of pages paged out of memory

swap swap usage, in bytes

active_anon anonymous and swap cache on active least-recently-used (LRU) list,
including tmpfs (shmem), in bytes

inactive_anon anonymous and swap cache on inactive LRU list, including tmpfs
(shmem), in bytes

active_file file-backed memory on active LRU list, in bytes

inactive_file file-backed memory on inactive LRU list, in bytes

unevictable memory that cannot be reclaimed, in bytes

hierarchical_memory_limit memory limit for the hierarchy that contains the memory cgroup, in
bytes

hierarchical_memsw_limit memory plus swap limit for the hierarchy that contains the memory
cgroup, in bytes

Statistic Description

Additionally, each of these files other than hierarchical_memory_limit and
hierarchical_memsw_limit has a counterpart prefixed total_ that reports not only on the cgroup,
but on all its children as well. For example, swap reports the swap usage by a cgroup and total_swap
reports the total swap usage by the cgroup and all its child groups.

When you interpret the values reported by memory.stat, note how the various statistics inter-relate:

active_anon + inactive_anon = anonymous memory + file cache for tmpfs + swap cache

Therefore, active_anon + inactive_anon ≠ rss, because rss does not include tmpfs.

active_file + inactive_file = cache - size of tmpfs

memory.usage_in_bytes

reports the total current memory usage by processes in the cgroup (in bytes).

memory.memsw.usage_in_bytes

reports the sum of current memory usage plus swap space used by processes in the cgroup (in
bytes).

memory.max_usage_in_bytes

reports the maximum memory used by processes in the cgroup (in bytes).

memory.memsw.max_usage_in_bytes

reports the maximum amount of memory and swap space used by processes in the cgroup (in bytes).

Resource Management Guide

44

memory.limit_in_bytes

sets the maximum amount of user memory (including file cache). If no units are specified, the value is
interpreted as bytes. However, it is possible to use suffixes to represent larger units — k or K for
kilobytes, m or M for megabytes, and g or G for gigabytes. For example, to set the limit to 1 gigabyte,
execute:

~]# echo 1G > /cgroup/memory/lab1/memory.limit_in_bytes

You cannot use memory.limit_in_bytes to limit the root cgroup; you can only apply values to groups
lower in the hierarchy.

Write -1 to memory.limit_in_bytes to remove any existing limits.

memory.memsw.limit_in_bytes

sets the maximum amount for the sum of memory and swap usage. If no units are specified, the value
is interpreted as bytes. However, it is possible to use suffixes to represent larger units — k or K for
kilobytes, m or M for megabytes, and g or G for gigabytes.

You cannot use memory.memsw.limit_in_bytes to limit the root cgroup; you can only apply values
to groups lower in the hierarchy.

Write -1 to memory.memsw.limit_in_bytes to remove any existing limits.

IMPORTANT

It is important to set the memory.limit_in_bytes parameter before setting the
memory.memsw.limit_in_bytes parameter: attempting to do so in the reverse order
results in an error. This is because memory.memsw.limit_in_bytes becomes available
only after all memory limitations (previously set in memory.limit_in_bytes) are
exhausted.

Consider the following example: setting memory.limit_in_bytes = 2G and
memory.memsw.limit_in_bytes = 4G for a certain cgroup will allow processes in that
cgroup to allocate 2 GB of memory and, once exhausted, allocate another 2 GB of
swap only. The memory.memsw.limit_in_bytes parameter represents the sum of
memory and swap. Processes in a cgroup that does not have the
memory.memsw.limit_in_bytes parameter set can potentially use up all the available
swap (after exhausting the set memory limitation) and trigger an Out Of Memory
situation caused by the lack of available swap.

The order in which the memory.limit_in_bytes and memory.memsw.limit_in_bytes
parameters are set in the /etc/cgconfig.conf file is important as well. The following is
a correct example of such a configuration:

memory {
 memory.limit_in_bytes = 1G;
 memory.memsw.limit_in_bytes = 1G;
}

memory.failcnt

reports the number of times that the memory limit has reached the value set in
memory.limit_in_bytes.

CHAPTER 3. SUBSYSTEMS AND TUNABLE PARAMETERS

45

memory.memsw.failcnt

reports the number of times that the memory plus swap space limit has reached the value set in
memory.memsw.limit_in_bytes.

memory.soft_limit_in_bytes

enables flexible sharing of memory. Under normal circumstances, control groups are allowed to use
as much of the memory as needed, constrained only by their hard limits set with the
memory.limit_in_bytes parameter. However, when the system detects memory contention or low
memory, control groups are forced to restrict their consumption to their soft limits. To set the soft
limit for example to 256 MB, execute:

~]# echo 256M > /cgroup/memory/lab1/memory.soft_limit_in_bytes

This parameter accepts the same suffixes as memory.limit_in_bytes to represent units. To have any
effect, the soft limit must be set below the hard limit. If lowering the memory usage to the soft limit
does not solve the contention, cgroups are pushed back as much as possible to make sure that one
control group does not starve the others of memory. Note that soft limits take effect over a long
period of time, since they involve reclaiming memory for balancing between memory cgroups.

memory.force_empty

when set to 0, empties memory of all pages used by tasks in the cgroup. This interface can only be
used when the cgroup has no tasks. If memory cannot be freed, it is moved to a parent cgroup if
possible. Use the memory.force_empty parameter before removing a cgroup to avoid moving out-
of-use page caches to its parent cgroup.

memory.swappiness

sets the tendency of the kernel to swap out process memory used by tasks in this cgroup instead of
reclaiming pages from the page cache. This is the same tendency, calculated the same way, as set in
/proc/sys/vm/swappiness for the system as a whole. The default value is 60. Values lower than 60
decrease the kernel's tendency to swap out process memory, values greater than 60 increase the
kernel's tendency to swap out process memory, and values greater than 100 permit the kernel to
swap out pages that are part of the address space of the processes in this cgroup.

Note that a value of 0 does not prevent process memory being swapped out; swap out might still
happen when there is a shortage of system memory because the global virtual memory management
logic does not read the cgroup value. To lock pages completely, use mlock() instead of cgroups.

You cannot change the swappiness of the following groups:

the root cgroup, which uses the swappiness set in /proc/sys/vm/swappiness.

a cgroup that has child groups below it.

memory.move_charge_at_immigrate

allows moving charges associated with a task along with task migration. Charging is a way of giving a
penalty to cgroups which access shared pages too often. These penalties, also called charges, are by
default not moved when a task migrates from one cgroup to another. The pages allocated from the
original cgroup still remain charged to it; the charge is dropped when the page is freed or reclaimed.

With memory.move_charge_at_immigrate enabled, the pages associated with a task are taken
from the old cgroup and charged to the new cgroup. The following example shows how to enable
memory.move_charge_at_immigrate:

Resource Management Guide

46

~]# echo 1 > /cgroup/memory/lab1/memory.move_charge_at_immigrate

Charges are moved only when the moved task is a leader of a thread group. If there is not enough
memory for the task in the destination cgroup, an attempt to reclaim memory is performed. If the
reclaim is not successful, the task migration is aborted.

To disable memory.move_charge_at_immigrate, execute:

~]# echo 0 > /cgroup/memory/lab1/memory.move_charge_at_immigrate

memory.use_hierarchy

contains a flag (0 or 1) that specifies whether memory usage should be accounted for throughout a
hierarchy of cgroups. If enabled (1), the memory subsystem reclaims memory from the children of
and process that exceeds its memory limit. By default (0), the subsystem does not reclaim memory
from a task's children.

memory.oom_control

contains a flag (0 or 1) that enables or disables the Out of Memory killer for a cgroup. If enabled (0),
tasks that attempt to consume more memory than they are allowed are immediately killed by the
OOM killer. The OOM killer is enabled by default in every cgroup using the memory subsystem; to
disable it, write 1 to the memory.oom_control file:

 ~]# echo 1 > /cgroup/memory/lab1/memory.oom_control

When the OOM killer is disabled, tasks that attempt to use more memory than they are allowed are
paused until additional memory is freed.

The memory.oom_control file also reports the OOM status of the current cgroup under the
under_oom entry. If the cgroup is out of memory and tasks in it are paused, the under_oom entry
reports the value 1.

The memory.oom_control file is capable of reporting an occurrence of an OOM situation using the
notification API. For more information, refer to Section 2.13, “Using the Notification API” and
Example 3.3, “OOM Control and Notifications”.

3.7.1. Example Usage

Example 3.3. OOM Control and Notifications

The following example demonstrates how the OOM killer takes action when a task in a cgroup
attempts to use more memory than allowed, and how a notification handler can report OOM
situations:

1. Attach the memory subsystem to a hierarchy and create a cgroup:

~]# mount -t cgroup -o memory memory /cgroup/memory
~]# mkdir /cgroup/memory/blue

2. Set the amount of memory which tasks in the blue cgroup can use to 100 MB:

~]# echo 104857600 > memory.limit_in_bytes

CHAPTER 3. SUBSYSTEMS AND TUNABLE PARAMETERS

47

3. Change into the blue directory and make sure the OOM killer is enabled:

~]# cd /cgroup/memory/blue
blue]# cat memory.oom_control
oom_kill_disable 0
under_oom 0

4. Move the current shell process into the tasks file of the blue cgroup so that all other
processes started in this shell are automatically moved to the blue cgroup:

blue]# echo $$ > tasks

5. Start a test program that attempts to allocate a large amount of memory exceeding the limit
you set in step 2. As soon as the blue cgroup runs out of free memory, the OOM killer kills
the test program and reports Killed to the standard output:

blue]# ~/mem-hog
Killed

The following is an example of such a test program[5]:

6. Disable the OOM killer and rerun the test program. This time, the test program remains
paused waiting for additional memory to be freed:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#define KB (1024)
#define MB (1024 * KB)
#define GB (1024 * MB)

int main(int argc, char *argv[])
{
 char *p;

again:
 while ((p = (char *)malloc(GB)))
 memset(p, 0, GB);

 while ((p = (char *)malloc(MB)))
 memset(p, 0, MB);

 while ((p = (char *)malloc(KB)))
 memset(p, 0,
 KB);

 sleep(1);

 goto again;

 return 0;
}

Resource Management Guide

48

blue]# echo 1 > memory.oom_control
blue]# ~/mem-hog

7. While the test program is paused, note that the under_oom state of the cgroup has
changed to indicate that the cgroup is out of available memory:

~]# cat /cgroup/memory/blue/memory.oom_control
oom_kill_disable 1
under_oom 1

Reenabling the OOM killer immediately kills the test program.

8. To receive notifications about every OOM situation, create a program as specified in
Section 2.13, “Using the Notification API” . For example[6]:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/eventfd.h>
#include <errno.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

static inline void die(const char *msg)
{
 fprintf(stderr, "error: %s: %s(%d)\n", msg, strerror(errno), errno);
 exit(EXIT_FAILURE);
}

static inline void usage(void)
{
 fprintf(stderr, "usage: oom_eventfd_test <cgroup.event_control>
<memory.oom_control>\n");
 exit(EXIT_FAILURE);
}

#define BUFSIZE 256

int main(int argc, char *argv[])
{
 char buf[BUFSIZE];
 int efd, cfd, ofd, rb, wb;
 uint64_t u;

 if (argc != 3)
 usage();

 if ((efd = eventfd(0, 0)) == -1)
 die("eventfd");

 if ((cfd = open(argv[1], O_WRONLY)) == -1)
 die("cgroup.event_control");

 if ((ofd = open(argv[2], O_RDONLY)) == -1)

CHAPTER 3. SUBSYSTEMS AND TUNABLE PARAMETERS

49

The above program detects OOM situations in a cgroup specified as an argument on the
command line and reports them using the mem_cgroup oom event received string to the
standard output.

9. Run the above notification handler program in a separate console, specifying the blue
cgroup's control files as arguments:

~]$./oom_notification /cgroup/memory/blue/cgroup.event_control
/cgroup/memory/blue/memory.oom_control

10. In a different console, run the mem_hog test program to create an OOM situation to see
the oom_notification program report it in the standard output:

blue]# ~/mem-hog

3.8. NET_CLS

The net_cls subsystem tags network packets with a class identifier (classid) that allows the Linux traffic
controller (tc) to identify packets originating from a particular cgroup. The traffic controller can be
configured to assign different priorities to packets from different cgroups.

net_cls.classid

net_cls.classid contains a single value that indicates a traffic control handle. The value of classid
read from the net_cls.classid file is presented in the decimal format while the value to be written to
the file is expected in the hexadecimal format. For example, 0x100001 represents the handle
conventionally written as 10:1 in the format used by the ip utility. In the net_cls.classid file, it would
be represented by the number 1048577.

The format for these handles is: 0xAAAABBBB, where AAAA is the major number in hexadecimal and
BBBB is the minor number in hexadecimal. You can omit any leading zeroes; 0x10001 is the same as
0x00010001, and represents 1:1. The following is an example of setting a 10:1 handle in the
net_cls.classid file:

 die("memory.oom_control");

 if ((wb = snprintf(buf, BUFSIZE, "%d %d", efd, ofd)) >= BUFSIZE)
 die("buffer too small");

 if (write(cfd, buf, wb) == -1)
 die("write cgroup.event_control");

 if (close(cfd) == -1)
 die("close cgroup.event_control");

 for (;;) {
 if (read(efd, &u, sizeof(uint64_t)) != sizeof(uint64_t))
 die("read eventfd");

 printf("mem_cgroup oom event received\n");
 }

 return 0;
}

Resource Management Guide

50

~]# echo 0x100001 > /cgroup/net_cls/red/net_cls.classid
~]# cat /cgroup/net_cls/red/net_cls.classid
1048577

Refer to the man page for tc to learn how to configure the traffic controller to use the handles that the
net_cls adds to network packets.

3.9. NET_PRIO

The Network Priority (net_prio) subsystem provides a way to dynamically set the priority of network
traffic per each network interface for applications within various cgroups. A network's priority is a
number assigned to network traffic and used internally by the system and network devices. Network
priority is used to differentiate packets that are sent, queued, or dropped. The tc command may be used
to set a network's priority (setting the network priority via the tc command is outside the scope of this
guide; for more information, refer to the tc man page).

Typically, an application sets the priority of its traffic via the SO_PRIORITY socket option. However,
applications are often not coded to set the priority value, or the application's traffic is site-specific and
does not provide a defined priority.

Using the net_prio subsystem in a cgroup allows the administrator to assign a process to a specific
cgroup which defines the priority of outgoing traffic on a given network interface.

The following tunable parameters are available for net_prio:

net_prio.prioidx

a read-only file which contains a unique integer value that the kernel uses as an internal
representation of this cgroup.

net_prio.ifpriomap

contains a map of priorities assigned to traffic originating from processes in this group and leaving
the system on various interfaces. This map is represented by a list of pairs in the form
<network_interface> <priority>:

~]# cat /cgroup/net_prio/iscsi/net_prio.ifpriomap
eth0 5
eth1 4
eth2 6

Contents of the net_prio.ifpriomap file can be modified by echoing a string into the file using the
above format, for example:

~]# echo "eth0 5" > /cgroup/net_prio/iscsi/net_prio.ifpriomap

The above command forces any traffic originating from processes belonging to the iscsi net_prio
cgroup, and with traffic outgoing on the eth0 network interface, to have the priority set to the value
of 5. The parent cgroup also has a writable net_prio.ifpriomap file that can be used to set a system
default priority.

3.10. NS

The ns subsystem provides a way to group processes into separate namespaces. Within a particular

CHAPTER 3. SUBSYSTEMS AND TUNABLE PARAMETERS

51

The ns subsystem provides a way to group processes into separate namespaces. Within a particular
namespace, processes can interact with each other but are isolated from processes running in other
namespaces. These separate namespaces are sometimes referred to as containers when used for
operating-system-level virtualization.

3.11. PERF_EVENT

When the perf_event subsystem is attached to a hierarchy, all cgroups in that hierarchy can be used to
group processes and threads which can then be monitored with the perf tool, as opposed to monitoring
each process or thread separately or per-CPU. Cgroups which use the perf_event subsystem do not
contain any special tunable parameters other than the common parameters listed in Section 3.12,
“Common Tunable Parameters”.

For additional information on how tasks in a cgroup can be monitored using the perf tool, refer to the
Red Hat Enterprise Linux Developer Guide, available from
http://access.redhat.com/site/documentation/Red_Hat_Enterprise_Linux/.

3.12. COMMON TUNABLE PARAMETERS

The following parameters are present in every created cgroup, regardless of the subsystem that the
cgroup is using:

tasks

contains a list of processes, represented by their PIDs, that are running in a cgroup. The list of PIDs is
not guaranteed to be ordered or unique (that is, it may contain duplicate entries). Writing a PID into
the tasks file of a cgroup moves that process into that cgroup.

cgroup.procs

contains a list of thread groups, represented by their TGIDs, that are running in a cgroup. The list of
TGIDs is not guaranteed to be ordered or unique (that is, it may contain duplicate entries). Writing a
TGID into the cgroup.procs file of a cgroup moves that thread group into that cgroup.

cgroup.event_control

along with the cgroup notification API, allows notifications to be sent about a changing status of a
cgroup.

notify_on_release

contains a Boolean value, 1 or 0, that either enables or disables the execution of the release agent. If
the notify_on_release parameter is enabled, the kernel executes the contents of the release_agent
file when a cgroup no longer contains any tasks (that is, the cgroup's tasks file contained some PIDs
and those PIDs were removed, leaving the file empty). A path to the empty cgroup is provided as an
argument to the release agent.

The default value of the notify_on_release parameter in the root cgroup is 0. All non-root cgroups
inherit the value in notify_on_release from their parent cgroup.

release_agent (present in the root cgroup only)

contains a command to be executed when a “notify on release” is triggered. Once a cgroup is emptied
of all processes, and the notify_on_release flag is enabled, the kernel runs the command in the
release_agent file and supplies it with a relative path (relative to the root cgroup) to the emptied
cgroup as an argument. The release agent can be used, for example, to automatically remove empty
cgroups; for more information, see Example 3.4, “Automatically removing empty cgroups” .

Resource Management Guide

52

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Developer_Guide/index.html#perf-using

Example 3.4. Automatically removing empty cgroups

Follow these steps to configure automatic removal of any emptied cgroup from the cpu cgroup:

1. Create a shell script that removes empty cpu cgroups, place it in, for example,
/usr/local/bin, and make it executable.

~]# cat /usr/local/bin/remove-empty-cpu-cgroup.sh
#!/bin/sh
rmdir /cgroup/cpu/$1
~]# chmod +x /usr/local/bin/remove-empty-cpu-cgroup.sh

The $1 variable contains a relative path to the emptied cgroup.

2. In the cpu cgroup, enable the notify_on_release flag:

~]# echo 1 > /cgroup/cpu/notify_on_release

3. In the cpu cgroup, specify a release agent to be used:

~]# echo "/usr/local/bin/remove-empty-cpu-cgroup.sh" > /cgroup/cpu/release_agent

4. Test your configuration to make sure emptied cgroups are properly removed:

cpu]# pwd; ls
/cgroup/cpu
cgroup.event_control cgroup.procs cpu.cfs_period_us cpu.cfs_quota_us
cpu.rt_period_us cpu.rt_runtime_us cpu.shares cpu.stat libvirt notify_on_release
release_agent tasks
cpu]# cat notify_on_release
1
cpu]# cat release_agent
/usr/local/bin/remove-empty-cpu-cgroup.sh
cpu]# mkdir blue; ls
blue cgroup.event_control cgroup.procs cpu.cfs_period_us cpu.cfs_quota_us
cpu.rt_period_us cpu.rt_runtime_us cpu.shares cpu.stat libvirt notify_on_release
release_agent tasks
cpu]# cat blue/notify_on_release
1
cpu]# cgexec -g cpu:blue dd if=/dev/zero of=/dev/null bs=1024k &
[1] 8623
cpu]# cat blue/tasks
8623
cpu]# kill -9 8623
cpu]# ls
cgroup.event_control cgroup.procs cpu.cfs_period_us cpu.cfs_quota_us
cpu.rt_period_us cpu.rt_runtime_us cpu.shares cpu.stat libvirt notify_on_release
release_agent tasks

3.13. ADDITIONAL RESOURCES

Subsystem-Specific Kernel Documentation

CHAPTER 3. SUBSYSTEMS AND TUNABLE PARAMETERS

53

Subsystem-Specific Kernel Documentation

All of the following files are located under the /usr/share/doc/kernel-
doc-<kernel_version>/Documentation/cgroups/ directory (provided by the kernel-doc package).

blkio subsystem — blkio-controller.txt

cpuacct subsystem — cpuacct.txt

cpuset subsystem — cpusets.txt

devices subsystem — devices.txt

freezer subsystem — freezer-subsystem.txt

memory subsystem — memory.txt

net_prio subsystem — net_prio.txt

Additionally, refer to the following files for further information about the cpu subsystem:

Real-Time scheduling — /usr/share/doc/kernel-
doc-<kernel_version>/Documentation/scheduler/sched-rt-group.txt

CFS scheduling — /usr/share/doc/kernel-
doc-<kernel_version>/Documentation/scheduler/sched-bwc.txt

[5] Source code provided by Red Hat Engineer František Hrbata.

[6] Source code provided by Red Hat Engineer František Hrbata.

Resource Management Guide

54

CHAPTER 4. CONTROL GROUP APPLICATION EXAMPLES
This chapter provides application examples that take advantage of the cgroup functionality.

4.1. PRIORITIZING DATABASE I/O

Running each instance of a database server inside its own dedicated virtual guest allows you to allocate
resources per database based on their priority. Consider the following example: a system is running two
database servers inside two KVM guests. One of the databases is a high priority database and the other
one a low priority database. When both database servers are run simultaneously, the I/O throughput is
decreased to accommodate requests from both databases equally; Figure 4.1, “I/O throughput without
resource allocation” indicates this scenario — once the low priority database is started (around time 45),
I/O throughput is the same for both database servers.

Figure 4.1. I/O throughput without resource allocation

To prioritize the high priority database server, it can be assigned to a cgroup with a high number of
reserved I/O operations, whereas the low priority database server can be assigned to a cgroup with a low
number of reserved I/O operations. To achieve this, follow the steps in Procedure 4.1, “I/O throughput
prioritization”, all of which are performed on the host system.

Procedure 4.1. I/O throughput prioritization

1. Attach the blkio subsystem to the /cgroup/blkio cgroup:

~]# mkdir /cgroup/blkio
~]# mount -t cgroup -o blkio blkio /cgroup/blkio

2. Create a high and low priority cgroup:

~]# mkdir /cgroup/blkio/high_prio
~]# mkdir /cgroup/blkio/low_prio

3. Acquire the PIDs of the processes that represent both virtual guests (in which the database
servers are running) and move them to their specific cgroup. In our example, VM_high
represents a virtual guest running a high priority database server, and VM_low represents a
virtual guest running a low priority database server. For example:

~]# ps -eLf | grep qemu | grep VM_high | awk '{print $4}' | while read pid; do echo $pid >>
/cgroup/blkio/high_prio/tasks; done

CHAPTER 4. CONTROL GROUP APPLICATION EXAMPLES

55

~]# ps -eLf | grep qemu | grep VM_low | awk '{print $4}' | while read pid; do echo $pid >>
/cgroup/blkio/low_prio/tasks; done

4. Set a ratio of 10:1 for the high_prio and low_prio cgroups. Processes in those cgroups (that is,
processes running the virtual guests that have been added to those cgroups in the previous
step) will immediately use only the resources made available to them.

~]# echo 1000 > /cgroup/blkio/high_prio/blkio.weight
~]# echo 100 > /cgroup/blkio/low_prio/blkio.weight

In our example, the low priority cgroup permits the low priority database server to use only
about 10% of the I/O operations, whereas the high priority cgroup permits the high priority
database server to use about 90% of the I/O operations.

Figure 4.2, “I/O throughput with resource allocation” illustrates the outcome of limiting the low priority
database and prioritizing the high priority database. As soon as the database servers are moved to their
appropriate cgroups (around time 75), I/O throughput is divided among both servers with the ratio of
10:1.

Figure 4.2. I/O throughput with resource allocation

Alternatively, block device I/O throttling can be used for the low priority database to limit its number of
read and write operation. For more information on the blkio subsystem, refer to Section 3.1, “blkio”.

4.2. PRIORITIZING NETWORK TRAFFIC

When running multiple network-related services on a single server system, it is important to define
network priorities between these services. Defining these priorities ensures that packets originating
from certain services have a higher priority than packets originating from other services. For example,
such priorities are useful when a server system simultaneously functions as an NFS and Samba server.
The NFS traffic must be of high priority as users expect high throughput. The Samba traffic can be
deprioritized to allow better performance of the NFS server.

The net_prio subsystem can be used to set network priorities for processes in cgroups. These priorities
are then translated into Type Of Service (TOS) bits and embedded into every packet. Follow the steps
in Procedure 4.2, “Setting Network Priorities for File Sharing Services” to configure prioritization of two
file sharing services (NFS and Samba).

Procedure 4.2. Setting Network Priorities for File Sharing Services

1. The net_prio subsystem is not compiled in the kernel, it is a module that must be loaded

Resource Management Guide

56

1. The net_prio subsystem is not compiled in the kernel, it is a module that must be loaded
manually. To do so, type:

~]# modprobe net_prio

2. Attach the net_prio subsystem to the /cgroup/net_prio cgroup:

~]# mkdir /cgroup/net_prio
~]# mount -t cgroup -o net_prio net_prio /cgroup/net_prio

3. Create two cgroups, one for each service:

~]# mkdir /cgroup/net_prio/nfs_high
~]# mkdir /cgroup/net_prio/samba_low

4. To automatically move the nfs services to the nfs_high cgroup, add the following line to the
/etc/sysconfig/nfs file:

CGROUP_DAEMON="net_prio:nfs_high"

This configuration ensures that nfs service processes are moved to the nfs_high cgroup when
the nfs service is started or restarted. For more information about moving service processes to
cgroups, refer to Section 2.9.1, “Starting a Service in a Control Group” .

5. The smbd daemon does not have a configuration file in the /etc/sysconfig directory. To
automatically move the smbd daemon to the samba_low cgroup, add the following line to the
/etc/cgrules.conf file:

*:smbd net_prio samba_low

Note that this rule moves every smbd daemon, not only /usr/sbin/smbd, into the samba_low
cgroup.

You can define rules for the nmbd and winbindd daemons to be moved to the samba_low
cgroup in a similar way.

6. Start the cgred service to load the configuration from the previous step:

~]# service cgred start
Starting CGroup Rules Engine Daemon: [OK]

7. For the purposes of this example, let us assume both services use the eth1 network interface.
Define network priorities for each cgroup, where 1 denotes low priority and 10 denotes high
priority:

~]# echo "eth1 1" > /cgroup/net_prio/samba_low
~]# echo "eth1 10" > /cgroup/net_prio/nfs_high

8. Start the nfs and smb services and check whether their processes have been moved into the
correct cgroups:

~]# service smb start
Starting SMB services: [OK]

CHAPTER 4. CONTROL GROUP APPLICATION EXAMPLES

57

~]# cat /cgroup/net_prio/samba_low
16122
16124
~]# service nfs start
Starting NFS services: [OK]
Starting NFS quotas: [OK]
Starting NFS mountd: [OK]
Stopping RPC idmapd: [OK]
Starting RPC idmapd: [OK]
Starting NFS daemon: [OK]
~]# cat /cgroup/net_prio/nfs_high
16321
16325
16376

Network traffic originating from NFS now has higher priority than traffic originating from
Samba.

Similar to Procedure 4.2, “Setting Network Priorities for File Sharing Services” , the net_prio subsystem
can be used to set network priorities for client applications, for example, Firefox.

4.3. PER-GROUP DIVISION OF CPU AND MEMORY RESOURCES

When a large amount of users use a single system, it is practical to provide certain users with more
resources than others. Consider the following example: in a hypothetical company, there are three
departments — finance, sales, and engineering. Because engineers use the system and its resources for
more tasks than the other departments, it is logical that they have more resources available in case all
departments are running CPU and memory intensive tasks.

Cgroups provide a way to limit the resources per each system group of users. For this example, assume
that the following users have been created on the system:

~]$ grep home /etc/passwd
martin:x:500:500::/home/martin:/bin/bash
john:x:501:501::/home/john:/bin/bash
mark:x:502:502::/home/mark:/bin/bash
peter:x:503:503::/home/peter:/bin/bash
jenn:x:504:504::/home/jenn:/bin/bash
mike:x:505:505::/home/mike:/bin/bash

These users have been assigned to the following system groups:

~]$ grep -e "50[678]" /etc/group
finance:x:506:jenn,john
sales:x:507:mark,martin
engineering:x:508:peter,mike

For this example to work properly, you must have the libcgroup package installed. Using the
/etc/cgconfig.conf and /etc/cgrules.conf files, you can create a hierarchy and a set of rules which
determine the amount of resources for each user. To achieve this, follow the steps in Procedure 4.3,
“Per-group CPU and memory resource management”.

Procedure 4.3. Per-group CPU and memory resource management

1. In the /etc/cgconfig.conf file, configure the following subsystems to be mounted and cgroups

Resource Management Guide

58

1. In the /etc/cgconfig.conf file, configure the following subsystems to be mounted and cgroups
to be created:

mount {
 cpu = /cgroup/cpu_and_mem;
 cpuacct = /cgroup/cpu_and_mem;
 memory = /cgroup/cpu_and_mem;
}

group finance {
 cpu {
 cpu.shares="250";
 }
 cpuacct {
 cpuacct.usage="0";
 }
 memory {
 memory.limit_in_bytes="2G";
 memory.memsw.limit_in_bytes="3G";
 }
}

group sales {
 cpu {
 cpu.shares="250";
 }
 cpuacct {
 cpuacct.usage="0";
 }
 memory {
 memory.limit_in_bytes="4G";
 memory.memsw.limit_in_bytes="6G";
 }
}

group engineering {
 cpu {
 cpu.shares="500";
 }
 cpuacct {
 cpuacct.usage="0";
 }
 memory {
 memory.limit_in_bytes="8G";
 memory.memsw.limit_in_bytes="16G";
 }
}

When loaded, the above configuration file mounts the cpu, cpuacct, and memory subsystems
to a single cpu_and_mem cgroup. For more information on these subsystems, refer to
Chapter 3, Subsystems and Tunable Parameters . Next, it creates a hierarchy in cpu_and_mem
which contains three cgroups: sales, finance, and engineering. In each of these cgroups, custom
parameters are set for each subsystem:

cpu — the cpu.shares parameter determines the share of CPU resources available to each
process in all cgroups. Setting the parameter to 250, 250, and 500 in the finance, sales, and

CHAPTER 4. CONTROL GROUP APPLICATION EXAMPLES

59

engineering cgroups respectively means that processes started in these groups will split the
resources with a 1:1:2 ratio. Note that when a single process is running, it consumes as much
CPU as necessary no matter which cgroup it is placed in. The CPU limitation only comes into
effect when two or more processes compete for CPU resources.

cpuacct — the cpuacct.usage="0" parameter is used to reset values stored in the
cpuacct.usage and cpuacct.usage_percpu files. These files report total CPU time (in
nanoseconds) consumed by all processes in a cgroup.

memory — the memory.limit_in_bytes parameter represents the amount of memory that
is made available to all processes within a certain cgroup. In our example, processes started
in the finance cgroup have 2 GB of memory available, processes in the sales group have
4 GB of memory available, and processes in the engineering group have 8 GB of memory
available. The memory.memsw.limit_in_bytes parameter specifies the total amount of
memory and swap space processes may use. Should a process in the finance cgroup hit the
2 GB memory limit, it is allowed to use another 1 GB of swap space, thus totaling the
configured 3 GB.

2. To define the rules which the cgrulesengd daemon uses to move processes to specific
cgroups, configure the /etc/cgrules.conf in the following way:

#<user/group> <controller(s)> <cgroup>
@finance cpu,cpuacct,memory finance
@sales cpu,cpuacct,memory sales
@engineering cpu,cpuacct,memory engineering

The above configuration creates rules that assign a specific system group (for example,
@finance) the resource controllers it may use (for example, cpu, cpuacct, memory) and a
cgroup (for example, finance) which contains all processes originating from that system group.

In our example, when the cgrulesengd daemon, started via the service cgred start command,
detects a process that is started by a user that belongs to the finance system group (for
example, jenn), that process is automatically moved to the
/cgroup/cpu_and_mem/finance/tasks file and is subjected to the resource limitations set in
the finance cgroup.

3. Start the cgconfig service to create the hierarchy of cgroups and set the needed parameters in
all created cgroups:

~]# service cgconfig start
Starting cgconfig service: [OK]

Start the cgred service to let the cgrulesengd daemon detect any processes started in system
groups configured in the /etc/cgrules.conf file:

~]# service cgred start
Starting CGroup Rules Engine Daemon: [OK]

Note that cgred is the name of the service that starts the cgrulesengd daemon.

4. To make all of the changes above persistent across reboots, configure the cgconfig and cgred
services to be started by default:

~]# chkconfig cgconfig on
~]# chkconfig cgred on

Resource Management Guide

60

To test whether this setup works, execute a CPU or memory intensive process and observe the results,
for example, using the top utility. To test the CPU resource management, execute the following dd
command under each user:

~]$ dd if=/dev/zero of=/dev/null bs=1024k

The above command reads the /dev/zero and outputs it to the /dev/null in chunks of 1024 KB. When
the top utility is launched, you can see results similar to these:

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
8201 peter 20 0 103m 1676 556 R 24.9 0.2 0:04.18 dd
8202 mike 20 0 103m 1672 556 R 24.9 0.2 0:03.47 dd
8199 jenn 20 0 103m 1676 556 R 12.6 0.2 0:02.87 dd
8200 john 20 0 103m 1676 556 R 12.6 0.2 0:02.20 dd
8197 martin 20 0 103m 1672 556 R 12.6 0.2 0:05.56 dd
8198 mark 20 0 103m 1672 556 R 12.3 0.2 0:04.28 dd
⋮

All processes have been correctly assigned to their cgroups and are only allowed to consume CPU
resource made available to them. If all but two processes, which belong to the finance and engineering
cgroups, are stopped, the remaining resources are evenly split between both processes:

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
8202 mike 20 0 103m 1676 556 R 66.4 0.2 0:06.35 dd
8200 john 20 0 103m 1672 556 R 33.2 0.2 0:05.08 dd
⋮

Alternative method
Because the cgrulesengd daemon moves a process to a cgroup only after the appropriate conditions
set by the rules in /etc/cgrules.conf have been fulfilled, that process may be running for a few
milliseconds in an incorrect cgroup. An alternative way to move processes to their specified cgroups is to
use the pam_cgroup.so PAM module. This module moves processes to available cgroups according to
rules defined in the /etc/cgrules.conf file. Follow the steps in Procedure 4.4, “Using a PAM module to
move processes to cgroups” to configure the pam_cgroup.so PAM module. Note that the libcgroup-
pam package that provides this module is available form the Optional subscription channel. Before
subscribing to this channel please see the Scope of Coverage Details. If you decide to install packages
from the channel, follow the steps documented in the article called How to access Optional and
Supplementary channels, and -devel packages using Red Hat Subscription Manager (RHSM)? on
Red Hat Customer Portal.

Procedure 4.4. Using a PAM module to move processes to cgroups

1. Install the libcgroup-pam package from the optional Red Hat Enterprise Linux Yum repository:

~]# yum install libcgroup-pam --enablerepo=rhel-6-server-optional-rpms

2. Ensure that the PAM module has been installed and exists:

~]# ls /lib64/security/pam_cgroup.so
/lib64/security/pam_cgroup.so

Note that on 32-bit systems, the module is placed in the /lib/security directory.

3. Add the following line to the /etc/pam.d/su file to use the pam_cgroup.so module each time

CHAPTER 4. CONTROL GROUP APPLICATION EXAMPLES

61

https://access.redhat.com/support/offerings/production/scope_moredetail/
https://access.redhat.com/solutions/392003

3. Add the following line to the /etc/pam.d/su file to use the pam_cgroup.so module each time
the su command is executed:

session optional pam_cgroup.so

4. Configure the /etc/cgconfig.conf and /etc/cgrules.conf files as in Procedure 4.3, “Per-group
CPU and memory resource management”.

5. Log out all users that are affected by the cgroup settings in the /etc/cgrules.conf file to apply
the above configuration.

When using the pam_cgroup.so PAM module, you may disable the cgred service.

Resource Management Guide

62

APPENDIX A. REVISION HISTORY

Revision 1.0-31 Thu Apr 28 2016 Jana Heves
Red Hat Enterprise Linux 6.8 GA release of the Resource Management Guide

Revision 1.0-29 Tue May 12 2015 Radek Bíba
Asynchronous update.

Revision 1.0-26 Thu Oct 10 2014 Peter Ondrejka
Red Hat Enterprise Linux 6.6 GA release of the Resource Management Guide

Revision 1.0-16 Thu Feb 21 2013 Martin Prpič
Red Hat Enterprise Linux 6.4 GA release of the Resource Management Guide

Revision 1.0-7 Wed Jun 20 2012 Martin Prpič
Red Hat Enterprise Linux 6.3 GA release of the Resource Management Guide.

Revision 1.0-6 Tue Dec 6 2011 Martin Prpič
Red Hat Enterprise Linux 6.2 GA release of the Resource Management Guide

Revision 1.0-5 Thu May 19 2011 Martin Prpič
Red Hat Enterprise Linux 6.1 GA release of the Resource Management Guide

Revision 1.0-0 Tue Nov 9 2010 Rüdiger Landmann
Feature-complete version for GA

APPENDIX A. REVISION HISTORY

63

	Table of Contents
	CHAPTER 1. INTRODUCTION TO CONTROL GROUPS (CGROUPS)
	1.1. HOW CONTROL GROUPS ARE ORGANIZED
	The Linux Process Model
	The Cgroup Model

	1.2. RELATIONSHIPS BETWEEN SUBSYSTEMS, HIERARCHIES, CONTROL GROUPS AND TASKS
	Rule 1
	Rule 2
	Rule 3
	Rule 4

	1.3. IMPLICATIONS FOR RESOURCE MANAGEMENT

	CHAPTER 2. USING CONTROL GROUPS
	2.1. THE CGCONFIG SERVICE
	2.1.1. The /etc/cgconfig.conf File
	2.1.2. The /etc/cgconfig.d/ Directory

	2.2. CREATING A HIERARCHY AND ATTACHING SUBSYSTEMS
	Alternative method

	2.3. ATTACHING SUBSYSTEMS TO, AND DETACHING THEM FROM, AN EXISTING HIERARCHY
	Alternative method

	2.4. UNMOUNTING A HIERARCHY
	2.5. CREATING CONTROL GROUPS
	Alternative method

	2.6. REMOVING CONTROL GROUPS
	2.7. SETTING PARAMETERS
	Alternative method

	2.8. MOVING A PROCESS TO A CONTROL GROUP
	Alternative method
	2.8.1. The cgred Service

	2.9. STARTING A PROCESS IN A CONTROL GROUP
	Alternative method
	2.9.1. Starting a Service in a Control Group
	2.9.2. Process Behavior in the Root Control Group

	2.10. GENERATING THE /ETC/CGCONFIG.CONF FILE
	2.10.1. Blacklisting Parameters
	2.10.2. Whitelisting Parameters

	2.11. OBTAINING INFORMATION ABOUT CONTROL GROUPS
	2.11.1. Finding a Process
	2.11.2. Finding a Subsystem
	2.11.3. Finding Hierarchies
	2.11.4. Finding Control Groups
	2.11.5. Displaying Parameters of Control Groups

	2.12. UNLOADING CONTROL GROUPS
	2.13. USING THE NOTIFICATION API
	2.14. ADDITIONAL RESOURCES

	CHAPTER 3. SUBSYSTEMS AND TUNABLE PARAMETERS
	3.1. BLKIO
	3.1.1. Proportional Weight Division Tunable Parameters
	3.1.2. I/O Throttling Tunable Parameters
	3.1.3. blkio Common Tunable Parameters
	3.1.4. Example Usage

	3.2. CPU
	3.2.1. CFS Tunable Parameters
	3.2.2. RT Tunable Parameters
	3.2.3. Example Usage

	3.3. CPUACCT
	3.4. CPUSET
	3.5. DEVICES
	3.6. FREEZER
	3.7. MEMORY
	3.7.1. Example Usage

	3.8. NET_CLS
	3.9. NET_PRIO
	3.10. NS
	3.11. PERF_EVENT
	3.12. COMMON TUNABLE PARAMETERS
	3.13. ADDITIONAL RESOURCES

	CHAPTER 4. CONTROL GROUP APPLICATION EXAMPLES
	4.1. PRIORITIZING DATABASE I/O
	4.2. PRIORITIZING NETWORK TRAFFIC
	4.3. PER-GROUP DIVISION OF CPU AND MEMORY RESOURCES
	Alternative method

	APPENDIX A. REVISION HISTORY

