‘® redhat.

Red Hat Enterprise Linux 6

Developer Guide

An introduction to application development tools in Red Hat Enterprise Linux 6

Last Updated: 2017-10-20

Red Hat Enterprise Linux 6 Developer Guide

An introduction to application development tools in Red Hat Enterprise Linux 6

Robert Kratky
Red Hat Customer Content Services
rkratky@redhat.com

Don Domingo
Red Hat Customer Content Services

Jacquelynn East
Red Hat Customer Content Services

Legal Notice

Copyright © 2016 Red Hat, Inc. and others.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes the different features and utilities that make Red Hat Enterprise Linux 6 an
ideal enterprise platform for application development.

http://creativecommons.org/licenses/by-sa/3.0/

CHAPTER 1. COLLABORATING

1.1.
1

1.2.

Table of Contents

GIT

.1.1. Installing and Configuring Git

Installing the git Package
Configuring the Default Text Editor
Setting Up User Information

.1.2. Creating a New Repository

Initializing an Empty Repository
Importing Data to a Repository

.1.3. Cloning an Existing Repository
.1.4. Adding, Renaming, and Deleting Files

Adding Files and Directories
Renaming Files and Directories
Deleting Files and Directories

.1.5. Viewing Changes

Viewing the Current Status
Viewing Differences

.1.6. Committing Changes
.1.7. Sharing Changes

Pushing Changes to a Public Repository
Creating Patches from Individual Commits

.1.8. Updating a Repository
.1.9. Additional Resources

Installed Documentation
Online Documentation
APACHE SUBVERSION (SVN)

1.2.1. Installing and Configuring Subversion

Installing the subversion Package
Setting Up the Default Editor

1.2.2. Creating a New Repository

Initializing an Empty Repository
Importing Data to a Repository

1.2.3. Checking Out a Working Copy
1.2.4. Adding, Renaming, and Deleting Files

Adding a File or Directory
Renaming a File or Directory
Deleting a File or Directory

1.2.5. Viewing Changes

Viewing the Status
Viewing Differences

1.2.6. Committing Changes
1.2.7. Updating a Working Copy
1.2.8. Additional Resources

1.3.

Installed Documentation
Online Documentation

CONCURRENT VERSIONS SYSTEM (CVS)

1.3.1. Installing and Configuring CVS

Installing the cvs Package
Setting Up the Default Editor

1.3.2. Creating a New Repository

Initializing an Empty Repository

Table of Contents

© © © ©W 000 W O NN NN O OO

QT G QT G G U G Gy
© 00 0 00 00 0 0O N N NO O oo b~ P WWMNDODN 2 4 4 a4 a4 24000 0 o o

Developer Guide

Importing Data to a Repository
1.3.3. Checking Out a Working Copy
1.3.4. Adding and Deleting Files

Adding a File

Deleting a File
1.3.5. Viewing Changes

Viewing the Status

Viewing Differences
1.3.6. Committing Changes
1.3.7. Updating a Working Copy
1.3.8. Additional Resources

Installed Documentation

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORTcciiiiiiiiiannnnn

2.1. COMPATIBILITY
2.1.1. Static Linking
2.2. LIBRARY AND RUNTIME DETAILS
2.2.1. The GNU C++ Standard Library
2.2.1.1. Additional information
2.2.2. Boost
2.2.2.1. Additional Information
2.2.3.Qt
2.2.3.1. Qt Updates
2.2.3.2. Qt Creator
2.2.3.3. Qt Library Documentation
2.2.4. KDE Development Framework
2.2.4.1. KDE4 Architecture
2.2.4.2. kdelibs Documentation
2.2.5. GNOME Power Manager
2.2.5.1. GNOME Power Management Version Guide
2.2.5.2. API Changes for glib
2.2.5.3. API Changes for GTK+
2.2.6. NSS Shared Databases
2.2.6.1. Backwards Compatibility
2.2.6.2. NSS Shared Databases Documentation
2.2.7. Python
2.2.7.1. Python Updates
2.2.7.2. Python Documentation
2.2.8. Java
2.2.8.1. Java Documentation
2.2.9. Ruby
2.2.9.1. Ruby Documentation
2.2.10. Perl
2.2.10.1. Perl Updates
2.2.10.2. Installation
2.2.10.3. Perl Documentation

CHAPTER 3. COMPILING AND BUILDING iiiii it iia e cnnnnnns

3.1. GNU COMPILER COLLECTION (GCCQ)
3.1.1. Language Compatibility
3.1.2. Object Compatibility and Interoperability
3.1.3. Running GCC
3.1.3.1. Simple C Usage

19
20
20
20
21
21
21
22
23
23
24
24

25
25
25
26
26
26
26
27
27
27
28
28
28
29
30
30
30
31
32
34
34
34
34
35
35
36
36
36
37
37
37
39
40

42
42
42
44
45
45

3.1.3.2. Simple C++ Usage
3.1.3.3. Simple Multi-File Usage
3.1.3.4. Recommended Optimization Options
3.1.3.5. Using Profile Feedback to Tune Optimization Heuristics
3.1.3.6. Using 32-bit compilers on a 64-bit host
3.1.4. GCC Documentation
3.2. AUTOTOOLS
3.2.1. Autotools Plug-in for Eclipse
3.2.2. Configuration Script
3.2.3. Autotools Documentation
3.3. BUILD-ID UNIQUE IDENTIFICATION OF BINARIES

CHAPTERA4.DEBUGGINGcciitiiiii e tiatneneraerasnaennnnnens

4.1. ELF EXECUTABLE BINARIES
4.2. INSTALLING DEBUGINFO PACKAGES
4.2.1. Installing Debuginfo Packages for Core Files Analysis
4.3. GDB
4.3.1. Simple GDB
4.3.2. Running GDB
4.3.3. Conditional Breakpoints
4.3.4. Forked Execution
4.3.5. Debugging Individual Threads
4.3.6. Alternative User Interfaces for GDB
4.4. VARIABLE TRACKING AT ASSIGNMENTS
4.5. PYTHON PRETTY-PRINTERS

CHAPTER 5. PROFILING ..ot e sttt n et a s na e naanens

5.1. VALGRIND
5.1.1. Valgrind Tools
5.1.2. Using Valgrind
5.1.3. Additional information
5.2. OPROFILE
5.2.1. Using OProfile
5.2.2. OProfile in Red Hat Enterprise Linux 7
5.2.2.1. New Features
5.2.2.2. Known Problems and Limitiations
5.2.3. OProfile Documentation
5.3. SYSTEMTAP
5.3.1. Additional Information
5.4. PERFORMANCE COUNTERS FOR LINUX (PCL) TOOLS AND PERF
5.4.1. Perf Tool Commands
5.4.2. Using Perf
5.5. FTRACE
5.5.1. Using ftrace
5.5.2. ftrace Documentation

CHAPTER 6. DOCUMENTATIONTOOLSo iiiiiii it e iiinaenannnenns

6.1. DOXYGEN
6.1.1. Doxygen Supported Output and Languages
6.1.2. Getting Started
6.1.3. Running Doxygen
6.1.4. Documenting the Sources
6.1.5. Resources

Table of Contents

45
46
47
48
49
51
51
52
52
52
53

................... 54

54
55
56
58
59
61
62
63
65
69
70
70

................... 74

74
74
75
75
75
76
78
78
78
79
79
79
80
80
80
83
83
84

85
85
85
86
87
91

Developer Guide

APPENDIX A. APPENDIX ... ittt ittt ittt et taa e saaaesaaesancsannesaneeannesnneennnnns
A.1. MALLOPT
malloc_trim
malloc_stats
Further Information

Table of Contents

Developer Guide

CHAPTER 1. COLLABORATING

Effective revision control is essential to all multi-developer projects. It allows all developers in a team to
create, review, revise, and document code in a systematic and orderly manner. Red Hat

Enterprise Linux 6 supports three of the most popular open-source revision control systems: Git, SVN,
and CVS.

The following sections provide a brief overview and references to relevant documentation for each tool.

1.1. GIT

Git is a distributed revision control system with a peer-to-peer architecture. As opposed to centralized
version control systems with a client-server model, Git ensures that each working copy of a Git
repository is its exact copy with complete revision history. This not only allows you to work on and
contribute to projects without the need to have permission to push your changes to their official
repositories, but also makes it possible for you to work with no network connection.

1.1.1. Installing and Configuring Git

Installing the git Package
In Red Hat Enterprise Linux 6, Git is provided by the git package. To install the git package and all its
dependencies on your system, type the following at a shell prompt as root:

I ~]# yum install git

Configuring the Default Text Editor

Certain Git commands, such as git commit, require the user to write a short message or make some
changes in an external text editor. To determine which text editor to start, Git attempts to read the value
of the GIT_EDITOR environment variable, the core.editor configuration option, the VISUAL
environment variable, and finally the EDITOR environment variable in this particular order. If none of
these options and variables are specified, the git command starts vi as a reasonable default option.

To change the value of the core.editor configuration option in order to specify a different text editor,
type the following at a shell prompt:

I git config --global core.editor command
Replace command with the command to be used to start the selected text editor.

Example 1.1. Configuring the Default Text Editor

To configure Git to use vim as the default text editor, type the following at a shell prompt:

I ~]$ git config --global core.editor vim

Setting Up User Information
In Git, each commit (or revision) is associated with the full name and email of the person responsible for
it. By default, Git uses an identity based on the user name and the host name.

To change the full name associated with your Git commits, type the following at a shell prompt:

CHAPTER 1. COLLABORATING

I git config --global user.name "full name"
To change the email address associated with your Git commits, type:

I git config --global user.email "email address"

Example 1.2. Setting Up User Information

To configure Git to use John Doe as your full name and john@example.com as your email
address, type the following at a shell prompt:

~]% git config --global user.name "John Doe"
~]%$ git config --global user.email "john@example.com"

1.1.2. Creating a New Repository

A repository is a place where Git stores all files that are under revision control, as well as additional data
related to these files, such as the complete history of changes or information about who made those
changes and when. Unlike in centralized revision control systems like Subversion or CVS, a Git
repository and a working directory are usually the same. A typical Git repository also only stores a single
project and when publicly accessible, it allows anyone to create its clone with a complete revision
history.

Initializing an Empty Repository

To create a new, empty Git repository, change to the directory in which you want to keep the repository
and type the following at a shell prompt:

I git init
This creates a hidden directory named . git in which all repository information is stored.
Importing Data to a Repository

To put an existing project under revision control, create a Git repository in the directory with the project
and run the following command:

I git add

This marks all files and directories in the current working directory as ready to be added to the Git
repository. To proceed and actually add this content to the repository, commit the changes by typing the
following at a shell prompt:

I git commit [-m "commit message"]

Replace commit message with a short description of your revision. If you omit the -m option, this
command allows you to write the commit message in an external text editor. For information on how to
configure the default text editor, see the section called “Configuring the Default Text Editor”.

1.1.3. Cloning an Existing Repository

To clone an existing Git repository, type the following at a shell prompt:

Developer Guide

I git clone git_repository [directory]

Replace git_repository with a URL or a path to the Git repository you want to clone, and directory with a
path to the directory in which you want to store the clone.

1.1.4. Adding, Renaming, and Deleting Files

Adding Files and Directories
To add an existing file to a Git repository and put it under revision control, change to the directory with
your local Git repository and type the following at a shell prompt:

I git add file...

Replace file with the file or files you want to add. This command marks the selected file or files as ready
to be added to the Git repository. Similarly, to add all files that are stored in a certain directory to a Git
repository, type:

I git add directory...

Replace directory with the directory or directories you want to add. This command marks all files in the
selected directory or directories as ready to be added to the Git repository.

To proceed and actually add this content to the repository, commit the changes as described in
Section 1.1.6, “Committing Changes”.

Renaming Files and Directories
To rename an existing file or directory in a Git repository, change to the directory with your local Git
repository and type the following at a shell prompt:

I git mv old name new_name

Replace old_name with the current name of the file or directory and new_name with the new name. This
command renames the selected file or directory and marks it as ready to be renamed in the Git
repository.

To proceed and actually rename the content in the repository, commit the changes as described in
Section 1.1.6, “Committing Changes”.

Deleting Files and Directories

To delete an existing file from a Git repository, change to the directory with your local Git repository and
type the following at a shell prompt:

I git rm file...

Replace file with the file or files you want to delete. This command deletes all selected files and marks
them as ready to be deleted form the Git repository. Similarly, to delete all files that are stored in a
certain directory from a Git repository, type:

I git rm -r directory...

Replace directory with the directory or directories you want to delete. This command deletes all selected
directories and marks them as ready to be deleted from the Git repository.

CHAPTER 1. COLLABORATING

To proceed and actually delete this content from the repository, commit the changes as described in
Section 1.1.6, “Committing Changes”.
1.1.5. Viewing Changes

Viewing the Current Status
To determine the current status of your local Git repository, change to the directory with the repository
and type the following command at a shell prompt:

I git status

This command displays information about all uncommitted changes in the repository (new file,
renamed, deleted, or modified) and tells you which changes will be applied the next time you
commit them. For information on how to commit your changes, see Section 1.1.6, “Committing
Changes”.

Viewing Differences

To view all changes in a Git repository, change to the directory with the repository and type the following
at a shell prompt:

I git diff

This command displays changes between the files in the repository and their latest revision. If you are
only interested in changes in a particular file, supply its name on the command line as follows:

I git diff file...

Replace file with the file or files you want to view.

1.1.6. Committing Changes

To apply your changes to a Git repository and create a new revision, change to the directory with the
repository and type the following command at a shell prompt:

I git commit [-m "commit message"]

Replace commit message with a short description of your revision. This command commits all changes
in files that are explicitly marked as ready to be committed. To commit changes in all files that are under
revision control, add the -a command line option as follows:

I git commit -a [-m "commit message"]

Note that if you omit the -m option, the command allows you to write the commit message in an external
text editor. For information on how to configure the default text editor, see the section called “Configuring
the Default Text Editor”.

1.1.7. Sharing Changes

Unlike in centralized version control systems such as CVS or Subversion, when working with Git, project
contributors usually do not make their changes in a single, central repository. Instead, they either create
a publicly accessible clone of their local repository, or submit their changes to others over email as
patches.

Developer Guide

Pushing Changes to a Public Repository
To push your changes to a publicly accessible Git repository, change to the directory with your local
repository and type the following at a shell prompt:

I git push remote_repository

Replace remote_repository with the name of the remote repository you want to push your changes to.
Note that the repository from which you originally cloned your local copy is automatically named origin.

Creating Patches from Individual Commits
To create patches from your commits, change to the directory with your local Git repository and type the
following at a shell prompt:

I git format-patch remote_repository

Replace remote_repository with the name of the remote repository from which you made your local copy.
This creates a patch for each commit that is not present in this remote repository.

1.1.8. Updating a Repository

To update your local copy of a Git repository and get the latest changes from a remote repository,
change to the directory with your local Git repository and type the following at a shell prompt:

I git fetch remote_repository

Replace remote_repository with the name of the remote repository. This command fetches information
about the current status of the remote repository, allowing you to review these changes before applying
them to your local copy. To proceed and merge these changes with what you have in your local Git
repository, type:

I git merge remote_repository

Alternatively, you can perform both these steps at the same time by using the following command
instead:

I git pull remote_repository

1.1.9. Additional Resources

A detailed description of Git and its features is beyond the scope of this book. For more information
about this revision control system, see the resources listed below.

Installed Documentation

e gittutorial(7) — The manual page named gittutorial provides a brief introduction to Git and its
usage.

e gittutorial-2(7) — The manual page named gittutorial-2 provides the second part of a brief
introduction to Git and its usage.

e @it User's Manual — HTML documentation for Git is located at /usr/share/doc/git -
1.7.1/user-manual.html.

10

CHAPTER 1. COLLABORATING

Online Documentation
e Pro Git— The online version of the Pro Git book provides a detailed description of Git, its

concepts and its usage.

1.2. APACHE SUBVERSION (SVN)

Apache Subversion, commonly abbreviated as SVN, is a centralized version control system with a
client-server architecture. It is a successor to the older Concurrent Versions System (CVS), preserves the
same development model, and addresses problems often encountered with CVS.

1.2.1. Installing and Configuring Subversion

Installing the subversion Package

In Red Hat Enterprise Linux 6, Subversion is provided by the subversion package. To install the
subversion package and all its dependencies on your system, type the following at a shell prompt as
root:

I yum install subversion

This installs a command line Subversion client, a Subversion server, and other related tools to the
system.

Setting Up the Default Editor

When using Subversion on the command line, certain commands such as svn import or svnh commit
require the user to write a short log message. To determine which text editor to start, the svn client
application first reads the contents of the environment variable $SVN_EDITOR, then reads more general
environment variables $VISUAL and SEDITOR, and if none of these is set, it reports an error.

To persistently change the value of the $SVN_EDITOR environment variable, run the following command:
I echo "export SVN_EDITOR=command" >> ~/.bashrc

This adds the export SVN_EDITOR=command line to your ~/ .bashrc file. Replace command with a
command that runs the editor of your choice (for example, emacs). Note that for this change to take

effect in the current shell session, you must execute the commands in ~/ . bashrc by typing the
following at a shell prompt:

I . ~/.bashrc
Example 1.3. Setting up the default text editor
To configure the Subversion client to use Emacs as a text editor, type:

~]$ echo "export SVN_EDITOR=emacs" >> ~/.bashrc
~1$. ~/.bashrc

1.2.2. Creating a New Repository

A Subversion repository is a central place to store files and directories that are under revision control, as
well as additional data such as a complete history of changes or information about who made those

11

http://git-scm.com/book

Developer Guide

changes and when. A typical Subversion repository stores multiple projects in separate subdirectories.
When publicly accessible, it allows several developers to create a working copy of any of the
subdirectories, make changes, and share these changes with others by committing them back to the
repository.

Initializing an Empty Repository
To create a new, empty Subversion repository in a directory of your choice, run the following command:

I svnadmin create path

Note that pathis an absolute or relative path to the directory in which you want to store the repository (for
example, /var/svn/). If the directory does not exist, svnadmin create creates it for you.

Example 1.4. Initializing a new Subversion repository

To create an empty Subversion repository in the ~/svn/ directory, type:

I ~]$ svnadmin create svn

Importing Data to a Repository
To put an existing project under revision control, run the following command:

I svn import local_path svn_repository/remote_path [-m "commit message"]

Note that local_path is an absolute or relative path to the directory in which you keep the project (use .
for the current working directory), svn_repository is a URL of the Subversion repository, and remote_path
is the target directory in the Subversion repository (for example, project/trunk).

Example 1.5. Importing a project to a Subversion repository

Imagine that the directory with your project has the following contents:

~]1$ 1s myproject
AUTHORS doc INSTALL LICENSE Makefile README src TODO

Also imagine that you have an empty Subversion repository in ~/svn/ (in this example,
/home/john/svn/). To import the project under project/trunk in this repository, type:

~1% svn import myproject file:///home/john/svn/project/trunk -m "Initial

import."

Adding project/AUTHORS

Adding project/doc

Adding project/doc/index.html
Adding project/INSTALL

Adding project/src

1.2.3. Checking Out a Working Copy

To check out a working copy of a project in a Subversion repository, run the following command:

12

CHAPTER 1. COLLABORATING

I svn checkout svn_repository/remote_path [directory]

This creates a new directory called directory with a working copy of a project in it. Note that
svn_repository is a URL of the Subversion repository and remote_path is the subdirectory in which the
project is stored.

Example 1.6. Checking out a working copy

Imagine that you have a Subversion repository in the ~/svn/ directory (in this case,
/home/john/svn/) and that this repository contains the latest version of a project in the
project/trunk subdirectory. To check out a working copy of this project, type:

project/AUTHORS
project/doc
project/doc/index.html
project/INSTALL
project/src

>> > > >

‘ ~]% svn checkout svn:///home/john/svn/project/trunk project

1.2.4. Adding, Renaming, and Deleting Files

Adding a File or Directory
To add an existing file to a Subversion repository and put it under revision control, change to the directory
with its working copy and run the following command:

I svn add file..
Similarly, to add a directory and all files that are in it, type:
I svn add directory..

This schedules the files and directories for addition to the Subversion repository. To proceed and actually
add this content to the repository, run the svn commit command as described in Section 1.2.6,
“Committing Changes”.

Example 1.7. Adding a file to a Subversion repository

Imagine that the directory with your working copy of a Subversion repository has the following
contents:

project]$ 1s
AUTHORS ChangelLog doc INSTALL LICENSE Makefile README src TODO

With the exception of ChangeLog, all files and directories within this directory are already under
revision control. To schedule this file for addition to the Subversion repository, type:

project]$ svn add ChangelLog
A ChangelLog

13

Developer Guide

Renaming a File or Directory
To rename an existing file or directory in a Subversion repository, change to the directory with its working
copy and run the following command:

I svn move old _name new_name

This creates a duplicate of the original file or directory, schedules it for addition, and automatically
deletes the original. To proceed and actually rename the content in the Subversion repository, run the
svn commit command as described in Section 1.2.6, “Committing Changes”.

Example 1.8. Renaming a file in a Subversion repository

Imagine that the directory with your working copy of a Subversion repository has the following
contents:

project]$ 1s
AUTHORS ChangelLog doc INSTALL LICENSE Makefile README src TODO

All files in this directory are under revision control. To schedule the LICENSE file for renaming to
COPYING, type:

project]$ svn move LICENSE COPYING
A COPYING
D LICENSE

Note that svn move automatically renames the file in your working copy:

project]$ 1s
AUTHORS ChangelLog COPYING doc INSTALL Makefile README src TODO

Deleting a File or Directory

To remove a file from a Subversion repository, change to the directory with its working copy and run the
following command:

I svh delete file..

Similarly, to remove a directory and all files that are in it, type:

I svnh delete directory..

This schedules the files and directories for removal from the Subversion repository. To proceed and
actually remove this content from the repository, run the svn commit command as described in
Section 1.2.6, “Committing Changes”.

Example 1.9. Deleting a file from a Subversion repository

Imagine that the directory with your working copy of a Subversion repository has the following
contents:

project]$ 1s
AUTHORS ChangelLog COPYING doc INSTALL Makefile README src TODO

14

CHAPTER 1. COLLABORATING

All files in this directory are under revision control. To schedule the TODO file for removal from the
SVN repository, type:

project]$ svn delete TODO
D TODO

Note that svn delete automatically deletes the file from your working copy:

project]$ 1s
AUTHORS ChangelLog COPYING doc INSTALL Makefile README src

1.2.5. Viewing Changes

Viewing the Status
To determine the current status of a working copy, change to the directory with the working copy and run
the following command:

I svn status

This displays information about all changes to the working copy (A for a file that is scheduled for
addition, D for a file that is scheduled for removal, M for a file that contains local changes, C for a file with
unresolved conflicts, ? for a file that is not under revision control).

Example 1.10. Viewing the status of a working copy

Imagine that the directory with your working copy of a Subversion repository has the following
contents:

project]$ 1s
I AUTHORS ChangeLog COPYING doc INSTALL Makefile README src
With the exception of ChangeLog, which is scheduled for addition to the Subversion repository, all
files and directories within this directory are already under revision control. The TODO file, which is
also under revision control, has been scheduled for removal and is no longer present in the working
copy. The LICENSE file has been renamed to COPYING, and Makefile contains local changes. To
display the status of such a working copy, type:

project]$ svn status
D LICENSE

D TODO

A Changelog
A + COPYING

M Makefile

Viewing Differences
To view differences between a working copy and the checked out content, change to the directory with
the working copy and run the following command:

I svn diff [file.]

15

Developer Guide

This displays changes to all files in the working copy. If you are only interested in changes to a particular
file, supply the file name on the command line.

Example 1.11. Viewing changes to a working copy

Imagine that the directory with your working copy of a Subversion repository has the following
contents:

project]$ 1s
AUTHORS ChangelLog COPYING CVS doc INSTALL Makefile README src

All files in this directory are under revision control and Makefile contains local changes. To view
these changes, type:

project]$ svn diff Makefile
Index: Makefile

--- Makefile (revision 1)
+++ Makefile (working copy)
@@ -153,7 +153,7 @@

-rmdir $(manldir)

clean:

- -rm -f $(MAN1)

+ -rm -f $(MAN1) $(MAN7)
%.1: %.pl

$(POD2MAN) --section=1 --release="Version $(VERSION)" \

1.2.6. Committing Changes

To share your changes with others and commit them to a Subversion repository, change to the directory
with its working copy and run the following command:

svn commit [-m "commit message"]

Note that unless you specify the commit message on the command line, Subversion opens an external
text editor for you to write it. For information on how to determine which editor to start, see Section 1.2.1,
“Installing and Configuring Subversion”.

16

Example 1.12. Committing changes to a Subversion repository

Imagine that the directory with your working copy of a Subversion repository has the following
contents:

project]$ 1s

AUTHORS ChangeLog COPYING doc INSTALL Makefile README src
In this working copy, ChangeLog is scheduled for addition to the Subversion repository, Makefile
already is under revision control and contains local changes, and the TODO file, which is also under
revision control, has been scheduled for removal and is no longer present in the working copy.

CHAPTER 1. COLLABORATING

Subversion repository, type:

Adding COPYING
Adding Changelog
Deleting LICENSE
Sending Makefile
Deleting TODO
Transmitting file data ..

project]$ svn commit -m "Updated the makefile."
Committed revision 2.

‘ Additionally, the LICENSE file has been renamed to COPYING. To commit these changes to the

1.2.7. Updating a Working Copy

To update a working copy and get the latest changes from a Subversion repository, change to the
directory with the working copy and run the following command:

I svn update

Example 1.13. Updating a working copy

Imagine that the directory with your working copy of a Subversion repository has the following
contents:

project]$ 1s

AUTHORS doc INSTALL LICENSE Makefile README src TODO
Also imagine that somebody recently added ChangelLog to the repository, removed the TODO file
from it, changed the name of LICENSE to COPYING, and made some changes to Makefile. To
update this working copy, type:

myproject]$ svn update
D LICENSE

D TODO

A COPYING

A Changelog

M Makefile

Updated to revision 2.

1.2.8. Additional Resources

A detailed description of all supported features is beyond the scope of this book. For more information,
see the resources listed below.

Installed Documentation

e svn help — The output of the svn help command provides detailed information on the svn
usage.

e svnadmin help — The output of the svnadmin help command provides detailed
information on the svnadmin usage.

17

Developer Guide

Online Documentation

e Version Control with Subversion — The official Subversion website refers to the Version Control
with Subversion manual, which provides an in-depth description of Subversion, its administration
and its usage.

1.3. CONCURRENT VERSIONS SYSTEM (CVS)

Concurrent Versions System, commonly abbreviated as CVS, is a centralized version control system
with a client-server architecture. It is a successor to the older Revision Control System (RCS), and allows
multiple developers to cooperate on the same project while keeping track of every change made to the
files that are under revision control.

1.3.1. Installing and Configuring CVS

Installing the cvs Package
In Red Hat Enterprise Linux 6, CVS is provided by the cvs package. To install the cvs package and all its
dependencies on your system, type the following at a shell prompt as root:

I yum install cvs

This installs a command line CVS client, a CVS server, and other related tools to the system.

Setting Up the Default Editor

When using CVS on the command line, certain commands such as cvs import or cvs commit
require the user to write a short log message. To determine which text editor to start, the cvs client
application first reads the contents of the environment variable $CVSEDITOR, then reads the more
general environment variable $EDITOR, and if none of these is set, it startsvi.

To persistently change the value of the $CVSEDITOR environment variable, run the following command:
I echo "export CVSEDITOR=command" >> ~/.bashrc
This adds the export CVSEDITOR=command line to your~/.bashrc file. Replace command with a
command that runs the editor of your choice (for example, emacs). Note that for this change to take
effect in the current shell session, you must execute the commands in ~/ . bashrc by typing the
following at a shell prompt:
I . ~/.bashrc

Example 1.14. Setting up the default text editor

To configure the CVS client to use Emacs as a text editor, type:

~]$ echo "export CVSEDITOR=emacs" >> ~/.bashrc
~1$. ~/.bashrc

1.3.2. Creating a New Repository

A CVS repository is a central place to store files and directories that are under revision control, as well as
additional data such as a complete history of changes or information about who made those changes

18

http://svnbook.red-bean.com/

CHAPTER 1. COLLABORATING

and when. A typical CVS repository stores multiple projects in separate subdirectories called modules.
When publicly accessible, it allows several developers to create a working copy of any of the modules,
make changes, and share these changes with others by committing them back to the repository.

Initializing an Empty Repository
To create a new, empty CVS repository in a directory of your choice, run the following command:

I cvs -d path init

Note that path must be an absolute path to the directory in which you want to store the repository (for
example, /var/cvs/). Alternatively, you can specify this path by changing the value of the $CVSROOT
environment variable:

I export CVSROOT=path

This allows you to omit the path from cvs init and other CVS-related commands:

I cvs init

Example 1.15. Initializing a new CVS repository

To create an empty CVS repository in the ~/cvs/ directory, type:

~]$ export CVSROOT=~/cvs
~]1$ cvs init

Importing Data to a Repository
To put an existing project under revision control, change to the directory in which the project is stored
and run the following command:
cvs [-d cvs_repository] import [-m "commit message"] module vendor_tag
release_tag

Note that cvs_repository is a path to the CVS repository, module is the subdirectory in which you want to
import the project (such as project), and vendor_tag and release_tag are vendor and release tags.

Example 1.16. Importing a project to a CVS repository

Imagine that the directory with your project has the following contents:

~]1$ 1s myproject

AUTHORS doc INSTALL LICENSE Makefile README src TODO
Also imagine that you have an empty CVS repository in ~/cvs/. To import the project under
project in this repository with vendor tag mycompany and release tag init, type:

myproject]$ export CVSROOT=~/cvs

myproject]$ cvs import -m "Initial import." project mycompany init
N project/Makefile

N project/AUTHORS

N project/LICENSE

19

Developer Guide

N project/TODO
N project/INSTALL

1.3.3. Checking Out a Working Copy

To check out a working copy of a project in a CVS repository, run the following command:
I cvs -d cvs_repository checkout module

This creates a new directory called module with a working copy of a project in it. Note that cvs_repository
is a URL of the CVS repository and module is the subdirectory in which the project is stored (such as
project). Alternatively, you can set the $CVSROOT environment variable as follows:

I export CVSROOT=cvs_repository
Then you can use the cvs checkout command without the -d option:

cvs checkout module

| Example 1.17. Checking out a working copy

Imagine that you have a CVS repository in ~/cvs/ and that this repository contains a module named
project. To check out a working copy of this module, type:

~]$ cvs checkout project

cvs checkout: Updating project
U project/AUTHORS

U project/INSTALL

U project/LICENSE

U project/Makefile

u

~]$ export CVSROOT=~/cvs
project/TODO

1.3.4. Adding and Deleting Files
Adding a File

To add an existing file to a CVS repository and put it under revision control, change to the directory with
its working copy and run the following command:

I cvs add file..

This schedules the file for addition to the CVS repository. To proceed and actually add the file to the
repository, run the cvs commit command as described in Section 1.3.6, “Committing Changes”.

Example 1.18. Adding a file to a CVS repository

Imagine that the directory with your working copy of a CVS repository has the following contents:

20

CHAPTER 1. COLLABORATING

project]$ 1s
AUTHORS ChangeLog CVS doc INSTALL LICENSE Makefile README src
TODO

With the exception of ChangeLog, all files and directories within this directory are already under
revision control. To schedule this file for addition to the CVS repository, type:

project]$ cvs add ChangelLog
cvs add: scheduling file "ChangeLog' for addition
cvs add: use 'cvs commit' to add this file permanently

Deleting a File
To remove a file from a CVS repository, change to the directory with its working copy and delete it
locally:

I rm file..
Then schedule this file for removal by using the following command:
I cvs remove file..

To proceed and actually remove the file from the repository, run the cvs commit command as
described in Section 1.3.6, “Committing Changes”.

Example 1.19. Removing a file from a CVS repository

Imagine that the directory with your working copy of a CVS repository has the following contents:

project]$ 1s
AUTHORS ChangeLog CVS doc INSTALL LICENSE Makefile README src
TODO

All files in this directory are under revision control. To schedule the TODO file for removal from the
CVS repository, type:

project]$ rm TODO

project]$ cvs remove TODO

cvs remove: scheduling "TODO' for removal

cvs remove: use 'cvs commit' to remove this file permanently

1.3.5. Viewing Changes

Viewing the Status
To determine the current status of a working copy, change to the directory with the working copy and run
the following command:

I cvs status

This displays detailed information about each file that is under revision control, including its current

21

Developer Guide

status (such as Up-to-date, Locally Added, Locally Removed, or Locally Modified) and
revision. However, if you are only interested in what has changed in your working copy, you can simplify
the output by typing the following at a shell prompt:

cvs status 2>/dev/null | grep Status: | grep -v Up-to-date

Example 1.20. Viewing the status of a working copy

Imagine that the directory with your working copy of a CVS repository has the following contents:

project]$ 1s
I AUTHORS ChangeLog CVS doc INSTALL LICENSE Makefile README src
With the exception of ChangeLog, which is scheduled for addition to the CVS repository, all files and
directories within this directory are already under revision control. The TODO file, which is also under
revision control, has been scheduled for removal and is no longer present in the working copy.
Finally, Makefile contains local changes. To display the status of such a working copy, type:

project]$ cvs status 2>/dev/null | grep Status: | grep -v Up-to-date

File: Changelog Status: Locally Added
File: Makefile Status: Locally Modified
File: no file TODO Status: Locally Removed

Viewing Differences
To view differences between a working copy and the checked out content, change to the directory with
the working copy and run the following command:

cvs diff [file.]

This displays changes to all files in the working copy. If you are only interested in changes to a particular
file, supply the file name on the command line.

22

Example 1.21. Viewing changes to a working copy

Imagine that the directory with your working copy of a CVS repository has the following contents:

project]$ 1s
AUTHORS ChangeLog CVS doc INSTALL LICENSE Makefile README src

All files in this directory are under revision control and Makefile contains local changes. To view
these changes, type:

project]$ cvs diff

cvs diff: Diffing

cvs diff: ChangeLog is a new entry, no comparison available
Index: Makefile

RCS file: /home/john/cvs/project/Makefile,v
retrieving revision 1.1.1.1

diff -r1.1.1.1 Makefile

156¢c156

< -rm -f $(MAN1)

CHAPTER 1. COLLABORATING

> -rm -f $(MAN1) $(MAN7)
cvs diff: TODO was removed, no comparison available
cvs diff: Diffing doc

1.3.6. Committing Changes

To share your changes with others and commit them to a CVS repository, change to the directory with its
working copy and run the following command:

I cvs commit [-m "commit message"]

Note that unless you specify the commit message on the command line, CVS opens an external text
editor (vi by default) for you to write it. For information on how to determine which editor to start, see
Section 1.3.1, “Installing and Configuring CVS”.

Example 1.22. Committing changes to a CVS repository

Imagine that the directory with your working copy of a CVS repository has the following contents:

project]$ 1s
AUTHORS ChangeLog CVS doc INSTALL LICENSE Makefile README src

In this working copy, ChangeLog is scheduled for addition to the CVS repository, Makefile already
is under revision control and contains local changes, and the TODO file, which is also under revision
control, has been scheduled for removal and is no longer present in the working copy. To commit
these changes to the CVS repository, type:

project]$ cvs commit -m "Updated the makefile."
cvs commit: Examining
cvs commit: Examining doc

RCS file: /home/john/cvsroot/project/ChangelLog, Vv
done

Checking in ChangelLog;
/home/john/cvsroot/project/ChangeLog,v <-- ChangelLog
initial revision: 1.1

done

Checking in Makefile;
/home/john/cvsroot/project/Makefile,v <-- Makefile
new revision: 1.2; previous revision: 1.1

done

Removing TODO;

/home/john/cvsroot/project/TODO,v <-- TODO

new revision: delete; previous revision: 1.1.1.1
done

1.3.7. Updating a Working Copy

23

Developer Guide

To update a working copy and get the latest changes from a CVS repository, change to the directory with
the working copy and run the following command:

I cvs update

Example 1.23. Updating a working copy

Imagine that the directory with your working copy of a CVS repository has the following contents:

project]$ 1s

AUTHORS CVS doc INSTALL LICENSE Makefile README src TODO
Also imagine that somebody recently added ChangelLog to the repository, removed the TODO file
from it, and made some changes to Makefile. To update this working copy, type:

myproject]$ cvs update

cvs update: Updating

U Changelog

U Makefile

cvs update: TODO is no longer in the repository
cvs update: Updating doc

cvs update: Updating src

1.3.8. Additional Resources

A detailed description of all supported features is beyond the scope of this book. For more information,
see the resources listed below.

Installed Documentation

e cvs(1) — The manual page for the cvs client program provides detailed information on its usage.

24

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT

Red Hat Enterprise Linux 6 supports the development of custom applications in a wide variety of
programming languages using proven, industrial-strength tools. This chapter describes the runtime
support libraries provided in Red Hat Enterprise Linux 6.

2.1. COMPATIBILITY

Compatibility specifies the portability of binary objects and source code across different instances of a
computer operating environment. Officially, Red Hat supports current release and two consecutive prior
versions. This means that applications built on Red Hat Enterprise Linux 4 and Red Hat Enterprise Linux
5 will continue to run on Red Hat Enterprise Linux 6 as long as they comply with Red Hat guidelines
(using the symbols that have been white-listed, for example).

Red Hat understands that as an enterprise platform, customers rely on long-term deployment of their
applications. For this reason, applications built against C/C++ libraries with the help of compatibility
libraries continue to be supported for ten years.

There are two types of compatibility:

Source Compatibility

Source compatibility specifies that code will compile and execute in a consistent and predictable way
across different instances of the operating environment. This type of compatibility is defined by
conformance with specified Application Programming Interfaces (APIs).

Binary Compatibility

Binary Compatibility specifies that compiled binaries in the form of executables and Dynamic Shared
Objects (DSOs) will run correctly across different instances of the operating environment. This type of
compatibility is defined by conformance with specified Application Binary Interfaces (ABIs).

NOTE

Compilation of code using -devel packages from the Optional channel is not supported by
Red Hat because libraries in the Optional channel are only provided for internal use by
the operating system. They are not intended for general application development.

Among other things, this means that security issues in these libraries are only addressed
if base operating system components provided by Red Hat are affected. It also means
that you may not be able to easily determine whether the built application only uses
libraries supported for use by non-Red Hat applications. Therefore, it is recommended to
build software on systems that do not have packages from Optional channels installed.

.'-’-)

For further information regarding this and all levels of compatibility between core and non-core libraries,
see Red Hat Enterprise Linux Life Cycle and the general Red Hat Enterprise Linux Application
Compatibility Policies.

2.1.1. Static Linking

Static linking is emphatically discouraged for all Red Hat Enterprise Linux releases. Static linking causes
far more problems than it solves, and should be avoided at all costs.

The main drawback of static linking is that it is only guaranteed to work on the system on which it was

25

https://access.redhat.com/support/policy/updates/errata/
https://access.redhat.com/solutions/5154

Developer Guide

built, and even then only until the next release of glibc or libstdc++ (in the case of C++). There is no
forward or backward compatibility with a static build. Furthermore, any security fixes (or general-purpose
fixes) in subsequent updates to the libraries will not be available unless the affected statically linked
executables are re-linked.
A few more reasons why static linking should be avoided are:

e Larger memory footprint.

e Slower application startup time.

e Reduced glibc features with static linking.

e Security measures like load address randomization cannot be used.

e Dynamic loading of shared objects outside of glibc is not supported.

NOTE

The compat-glibc package is included with Red Hat Enterprise Linux 6, but it is not a
runtime package and therefore not required for running anything. It is solely a
development package, containing header files and dummy libraries for linking. This allows
compiling and linking packages to run in older Red Hat Enterprise Linux versions (using
compat-gcc-* against those headers and libraries). Running rpm -qpi compat -
glibc-* will provide some information on how to use this package.

2.2. LIBRARY AND RUNTIME DETAILS

2.2.1. The GNU C++ Standard Library

The libstdc++ package contains the GNU C++ Standard Library, which is an ongoing project to
implement the ISO 14882 Standard C++ library.

Installing the libstdc++ package will provide just enough to satisfy link dependencies (that is, only shared
library files). To make full use of all available libraries and header files for C++ development, you must
install libstdc++-devel as well. The libstdc++-devel package also contains a GNU-specific
implementation of the Standard Template Library (STL).

For Red Hat Enterprise Linux 4, 5, and 6, the C++ language and runtime implementation has remained
stable, and thus no compatibility libraries are required for 1ibstdc++.
2.2.1.1. Additional information

To use the man pages for library components, install the libstdc++-docs package. This will provide man
page information for nearly all resources provided by the library; for example, to view information about
the vector container, use its fully-qualified component name: man std: :vector.

The libstdc++-docs package also provides manuals and reference information in HTML form in the
following directory: /usr/share/doc/libstdc++-docs-version/html/spine.html.

2.2.2. Boost

The boost package contains a large number of free peer-reviewed portable C++ source libraries. These
libraries are suitable for tasks such as portable file-system access and time or date abstraction,

26

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT

serialization, unit testing, thread creation and multi-process synchronization, parsing, graphing, regular
expression manipulation, and many others.

Installing the boost package will provide just enough libraries to satisfy link dependencies (that is, only
shared library files). To make full use of all available libraries and header files for C++ development, you
must install boost-devel as well.

The boost package is actually a meta-package, containing many library sub-packages. These sub-
packages can also be installed individually to provide finer inter-package dependency tracking.

The meta-package does not include dependencies for packages for static linking or packages that
depend on the underlying Message Passing Interface (MPI) support.

MPI support is provided in two forms: one for the default Open MPI implementation (package boost-
openmpi) and another for the alternate MPICH2 implementation (package boost-mpich2). The selection
of the underlying MPI library in use is up to the user and depends on specific hardware details and user
preferences. Please note that these packages can be installed in parallel because installed files have
unique directory locations.

If static linkage cannot be avoided, the boost-static package will install the necessary static libraries.
Both thread-enabled and single-threaded libraries are provided.

2.2.2.1. Additional Information

The boost-doc package provides manuals and reference information in HTML form located in the
following directory: /usr/share/doc/boost-doc-version/index.html.

The main site for the development of Boost is http://boost.org.

2.2.3. Qt

The qt package provides the Qt (pronounced "cute") cross-platform application development framework
used in the development of GUI programs. Aside from being a popular "widget toolkit", Qt is also used
for developing non-GUI programs such as console tools and servers. Qt was used in the development of
notable projects such as Google Earth, KDE, Opera, OPIE, VoxOx, Skype, VLC media player and
VirtualBox. It is produced by Nokia's Qt Development Frameworks division, which came into being after
Nokia's acquisition of the Norwegian company Trolltech, the original producer of Qt, on June 17, 2008.

Qt uses standard C++ but makes extensive use of a special pre-processor called the Meta Object
Compiler (MOC) to enrich the language. Qt can also be used in other programming languages via
language bindings. It runs on all major platforms and has extensive internationalization support. Non-GUI
Qt features include SQL database access, XML parsing, thread management, network support, and a
unified cross-platform API for file handling.

Distributed under the terms of the GNU Lesser General Public License (among others), Qt is free and

open source software. The Red Hat Enterprise Linux 6 version of Qt supports a wide range of compilers,
including the GCC C++ compiler and the Visual Studio suite.

2.2.3.1. Qt Updates

Some of the improvements the Red Hat Enterprise Linux 6 version of Qt include:
e Advanced user experience

o Advanced Graphics Effects: options for opacity, drop-shadows, blur, colorization, and
other similar effects

27

http://boost.org

Developer Guide

o Animation and State Machine: create simple or complex animations without the hassle of
managing complex code

o Gesture and multi-touch support
e Support for new platforms
o Windows 7, Mac OSX 10.6, and other desktop platforms are now supported
o Added support for mobile development; Qt is optimized for the upcoming Maemo 6 platform,
and will soon be ported to Maemo 5. In addition, Qt now supports the Symbian platform, with
integration for the S60 framework.

o Added support for Real-Time Operating Systems such as QNX and VxWorks

e Improved performance, featuring added support for hardware-accelerated rendering (along with
other rendering updates)

e Updated cross-platform IDE
For more details on updates to Qt included in Red Hat Enterprise Linux 6, see the following links:
e http://doc.qt.nokia.com/4.6/qt4-6-intro.html

e http://doc.qt.nokia.com/4.6/qt4-intro.html

2.2.3.2. Qt Creator

Qt Creator is a cross-platform IDE tailored to the requirements of Qt developers. It includes the following
graphical tools:

e An advanced C++ code editor

e Integrated GUI layout and forms designer
e Project and build management tools

e Integrated, context-sensitive help system
e Visual debugger

e Rapid code navigation tools

2.2.3.3. Qt Library Documentation

The qt -doc package provides HTML manuals and references located in
/usr/share/doc/qt4/html/. This package also provides the Qt Reference Documentation, which is
an excellent starting point for development within the Qt framework.

You can also install further demos and examples from qt-demos and qt-examples. To get an
overview of the capabilities of the Qt framework, see /usr/bin/qtdemo-qt4 (provided by qt -demos).

2.2.4. KDE Development Framework

28

http://doc.qt.nokia.com/4.6/qt4-6-intro.html
http://doc.qt.nokia.com/4.6/qt4-intro.html

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT

The kdelibs-devel package provides the KDE libraries, which build on Qt to provide a framework for
making application development easier. The KDE development framework also helps provide
consistency across the KDE desktop environment.

2.2.4.1. KDE4 Architecture

The KDE development framework's architecture in Red Hat Enterprise Linux 6 uses KDE4, which is built
on the following technologies:

Plasma

Plasma replaces KDesktop in KDE4. Its implementation is based on the Qt Graphics View
Framework, which was introduced in Qt 4.2. For more information about Plasma, see
http://techbase.kde.org/Development/Architecture/KDE4/Plasma.

Sonnet

Sonnet is a multilingual spell-checking application that supports automatic language detection,
primary/backup dictionaries, and other useful features. It replaces kspell2 in KDE4.

KIO

The KIO library provides a framework for network-transparent file handling, allowing users to easily
access files through network-transparent protocols. It also helps provides standard file dialogs.

KJS/KHTML

KJS and KHTML are fully-fledged JavaScript and HTML engines used by different applications native
to KDE4 (such as konqueror).

Solid

Solid is a hardware and network awareness framework that allows you to develop applications with
hardware interaction features. lts comprehensive API provides the necessary abstraction to support
cross-platform application development. For more information, see
http://techbase.kde.org/Development/Architecture/KDE4/Solid.

Phonon

Phonon is a multimedia framework that helps you develop applications with multimedia
functionalities. It facilitates the usage of media capabilities within KDE. For more information, see
http://techbase.kde.org/Development/Architecture/KDE4/Phonon.

Telepathy

Telepathy provides a real-time communication and collaboration framework within KDE4. Its primary
function is to tighten integration between different components within KDE. For a brief overview on
the project, see http://community.kde.org/Real-Time_Communication_and_Collaboration.

Akonadi

Akonadi provides a framework for centralizing storage of Parallel Infrastructure Management (PIM)
components. For more information, see
http://techbase.kde.org/Development/Architecture/KDE4/Akonadi.

Online Help within KDE4

KDE4 also features an easy-to-use Qt-based framework for adding online help capabilities to
applications. Such capabilities include tooltips, hover-help information, and khelpcenter manuals.

29

http://techbase.kde.org/Development/Architecture/KDE4/Plasma
http://techbase.kde.org/Development/Architecture/KDE4/Solid
http://techbase.kde.org/Development/Architecture/KDE4/Phonon
http://community.kde.org/Real-Time_Communication_and_Collaboration
http://techbase.kde.org/Development/Architecture/KDE4/Akonadi

Developer Guide

For a brief overview on online help within KDE4, see
http://techbase.kde.org/Development/Architecture/KDE4/Providing_Online_Help.

KXMLGUI

KXMLGUI is a framework for designing user interfaces using XML. This framework allows you to
design Ul elements based on "actions" (defined by the developer) without having to revise source
code. For more information, see
https://techbase.kde.org/Development/Architecture/KDE3/XMLGUI_Technology.

Strigi

Strigi is a desktop search daemon compatible with many desktop environments and operating
systems. It uses its own jstream system which allows for deep indexing of files. For more information
on the development of Strigi, see http://www.vandenoever.info/software/strigi/.

KNewStuff2

KNewStuff2 is a collaborative data sharing library used by many KDE4 applications. For more
information, see http://techbase.kde.org/Projects/KNS2.

2.2.4.2. kdelibs Documentation

The kdelibs-apidocs package provides HTML documentation for the KDE development framework
in /usr/share/doc/HTML/en/kdelibs4-apidocs/. The following links also provide details on
KDE-related programming tasks:

e hitp://techbase.kde.org/
e http://techbase.kde.org/Development/Tutorials
e http://techbase.kde.org/Development/FAQs

e http://api.kde.org

2.2.5. GNOME Power Manager

The backend program of the GNOME power management infrastructure is gnome - power -manager. It
was introduced in Red Hat Enterprise Linux 5 and provides a complete and integrated solution to power
management under the GNOME desktop environment. In Red Hat Enterprise Linux 6, the storage-
handling parts of hal was replaced by udisks, and the 1ibgnomeprint stack was replaced by print
support in gtk2.

2.2.5.1. GNOME Power Management Version Guide

This section will detail what versions of gnome - power -management are shipped with the various
Red Hat Enterprise Linux versions.

In general, however, Red Hat Enterprise Linux 4 ships with GNOME 2.8, Red Hat Enterprise Linux 5
ships with GNOME 2.16, and Red Hat Enterprise Linux 6 ships with GNOME 2.28.

Table 2.1. Desktop Components Comparison

30

http://techbase.kde.org/Development/Architecture/KDE4/Providing_Online_Help
https://techbase.kde.org/Development/Architecture/KDE3/XMLGUI_Technology
http://www.vandenoever.info/software/strigi/
http://techbase.kde.org/Projects/KNS2
http://techbase.kde.org/
http://techbase.kde.org/Development/Tutorials
http://techbase.kde.org/Development/FAQs
http://api.kde.org

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT

Red Hat Enterprise Linux Version

GNOME Power
Management Desktop
Components

hal 04.2 0.5.8 0.5.14
udisks N/A N/A 1.0.1
glib2 247 2.12.3 2.22.5
gtk2 2413 2.10.4 2.18.9
gnome-vfs2 2.8.2 2.16.2 2.24.2
libglade?2 24.0 2.6.0 26.4
libgnomecanvas 2.8.0 2.14.0 2.26.0
gnome-desktop 2.8.0 2.16.0 2.28.2
gnome-media 2.8.0 2.16.1 2.29.91
gnome-python2 2.6.0 2.16.0 2.28.0
libgnome 2.8.0 2.16.0 2.28.0
libgnomeui 2.8.0 2.16.0 2.241
libgnomeprint22 2.8.0 2.121 N/A
libgnomeprintui22 2.8.0 2.121 N/A
gnome-session 2.8.0 2.16.0 2.28.0
gnome-power-manager N/A 2.16.0 2.28.3
gnome-applets 2.8.0 2.16.0 2.28.0
gnome-panel 2.8.1 2.16.1 2.30.2

2.2.5.2. API Changes for glib

There are a number of API changes for glib between versions.

Version 2.4 to Version 2.12

31

Developer Guide

Some of the differences in glib between version 2.4 and 2.12 (or between Red Hat Enterprise Linux 4
and Red Hat Enterprise Linux 5) are:

GOption (a command line option parser)
GKeyFile (a key/ini file parser)

GObject toggle references
GMappedFile (a map wrapper)

GSlice (a fast memory allocator)
GBookmarkFile (a bookmark file parser)
Base64 encoding support

Native atomic ops on s390

Updated Unicode support to 5

Atomic reference counting for GObject

Version 2.12 to Version 2.22

Some of the differences in glib between version 2.12 and 2.22 (or between Red Hat Enterprise Linux 5
and Red Hat Enterprise Linux 6) are:

GSequence (a list data structure that is implemented as a balanced tree)
GRegex (a PCRE regex wrapper)

Support for monotonic clocks

XDG user dirs support

GIO (a VFS library to replace gnome-vfs)

GChecksum (support for hash algorithms such as MD5 and SHA-256)
GTest (a test framework)

Support for sockets and network 10 in GIO

GHashTable performance improvements

GMarkup performance improvements

Documentation for glib, including indexes of new and deprecated APIs, is shipped in the glib2-devel
package.

2.2.5.3. API Changes for GTK+

There are a number of API changes for GTK+ between versions.

Version 2.4 to Version 2.10

Some of the differences in GTK+ between version 2.4 and 2.10 (or between Red Hat Enterprise Linux 4
and Red Hat Enterprise Linux 5) are:

32

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT

GtklconView
GtkAboutDialog
GtkCellView
GtkFileChooserButton
GtkMenuToolButton
GtkAssistant
GtkLinkButton
GtkRecentChooser
GtkCellRendererCombo
GtkCellRendererProgress
GtkCellRendererAccel
GtkCellRendererSpin
GtkStatuslcon

Printing Support

Notebook tab DND support
Ellipsisation support in labels, progressbars and treeviews
Support rotated text

Improved themability

Version 2.10 to Version 2.18

Some of the differences in GTK+ between version 2.10 and 2.18 (or between Red Hat Enterprise Linux 4
and Red Hat Enterprise Linux 5) are:

GtkScaleButton
GtkVolumeButton

GtkInfoBar

GtkBuilder to replace libglade
New tooltips API
GtkMountOperation
gtk_show_uri

Scale marks

Links in labels

33

Developer Guide

e Support runtime font configuration changes
e Use GIO

Documentation for GTK+, including indexes of new and deprecated APIs, is shipped in the gtk2-devel
package.

2.2.6. NSS Shared Databases

The NSS shared database format, introduced on NSS 3.12, is now available in Red Hat
Enterprise Linux 6. This encompasses a number of new features and components to improve access
and usability.

Included, is the NSS certificate and key database which are now sqlite-based and allow for concurrent
access. The legacy key3.db and cert8.db are also replaced with new SQL databases called
key4.db and cert9.db. These new databases will store PKCS #11 token objects, which are the same
as what is currently stored in cert8.db and key3. db.

Having support for shared databases enables a system-wide NSS database. It resides in
/etc/pki/nssdb where globally trusted CA certificates become accessible to all applications. The
command rv = NSS_InitReadWrite("sql:/etc/pki/nssdb"); initializes NSS for applications.
If the application is run with root privileges, then the system-wide database is available on a read and
write basis. However, if it is run with normal user privileges it becomes read only.

Additionally, a PEM PKCS #11 module for NSS allows applications to load into memory certificates and
keys stored in PEM-formatted files (for example, those produced by openssl).

2.2.6.1. Backwards Compatibility

The binary compatibility guarantees made by NSS upstream are preserved in NSS for Red Hat
Enterprise Linux 6. This guarantee states that NSS used in Red Hat Enterprise Linux 6 is backwards
compatible with all older NSS 3.x shared libraries. Therefore, a program linked with an older NSS 3.x
shared library will work without recompiling or relinking, and any applications that restrict the use of NSS
APIs to the NSS Public Functions remain compatible with future versions of the NSS shared libraries.

2.2.6.2. NSS Shared Databases Documentation

Mozilla's wiki page explains the system-wide database rationale in great detail and can be accessed
http://wiki.mozilla.org/NSS_Shared_DB_And_LINUX.

2.2.7. Python

The python package adds support for the Python programming language. This package provides the
object and cached bytecode files required to enable runtime support for basic Python programs. It also
contains the python interpreter and the pydoc documentation tool. The python-devel package
contains the libraries and header files required for developing Python extensions.

Red Hat Enterprise Linux also ships with numerous python-related packages. By convention, the
names of these packages have a python prefix or suffix. Such packages are either library extensions or
python bindings to an existing library. For instance, dbus-python is a Python language binding for D-
Bus.

Note that both cached bytecode (* . pyc/* . pyo files) and compiled extension modules (* . so files) are
incompatible between Python 2.4 (used in Red Hat Enterprise Linux 5) and Python 2.6 (used in Red Hat
Enterprise Linux 6). As such, you will be required to rebuild any extension modules you use that are not

34

http://wiki.mozilla.org/NSS_Shared_DB_And_LINUX

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT

part of Red Hat Enterprise Linux.

2.2.7.1. Python Updates

The Red Hat Enterprise Linux 6 version of Python features various language changes. For information
about these changes, see the following project resources:

e What's New in Python 2.5: http://docs.python.org/whatsnew/2.5.html
e What's New in Python 2.6: http://docs.python.org/whatsnew/2.6.html

Both resources also contain advice on porting code developed using previous Python versions.

2.2.7.2. Python Documentation

For more information about Python, see man python. You can also install python-docs, which
provides HTML manuals and references in the following location:

file:///usr/share/doc/python-docs-version/html/index.html

For details on library and language components, use pydoc component_name. For example, pydoc
math will display the following information about themath Python module:

Help on module math:

NAME
math

FILE
/usr/1ib64/python2.6/1ib-dynload/mathmodule. so

DESCRIPTION
This module is always available. It provides access to the
mathematical functions defined by the C standard.
FUNCTIONS
acos[...]
acos(x)

Return the arc cosine (measured in radians) of x.

acosh[...]
acosh(x)

Return the hyperbolic arc cosine (measured in radians) of x.

asin(...)
asin(x)

Return the arc sine (measured in radians) of x.

asinh[...]
asinh(x)

Return the hyperbolic arc sine (measured in radians) of x.

35

http://docs.python.org/whatsnew/2.5.html
http://docs.python.org/whatsnew/2.6.html

Developer Guide

The main site for the Python development project is hosted on python.org.

2.2.8. Java

The java-1.6.0-openjdk package adds support for the Java programming language. This package
provides the java interpreter. The java-1.6.0-openjdk-devel package contains the javac compiler, as
well as the libraries and header files required for developing Java extensions.

Similarly, Red Hat Enterprise Linux also provides Java 7 via the java-1.7.0-openjdk* packages and
Java 8 via the java-1.8.0-openjdk* packages.

2.2.8.1. Java Documentation

For more information about Java, see man java. Some associated utilities also have their own
respective man pages.

You can also install other Java documentation packages for more details about specific Java utilities. By
convention, such documentation packages have the javadoc suffix (for example, dbus-java-javadoc).

The main site for the development of Java is hosted on http://openjdk.java.net/. The main site for the
library runtime of Java is hosted on http://icediea.classpath.org.

2.2.9. Ruby

The ruby package provides the Ruby interpreter and adds support for the Ruby programming language.
The ruby-devel package contains the libraries and header files required for developing Ruby
extensions.

Red Hat Enterprise Linux also ships with numerous ruby-related packages. By convention, the names
of these packages have a ruby or rubygem prefix or suffix. Such packages are either library extensions
or Ruby bindings to an existing library.

Examples of ruby-related packages include:
e ruby-flexmock
e rubygem-flexmock
e rubygems
e ruby-irb
e ruby-libguestfs
e ruby-libs
e ruby-gpid
e ruby-rdoc
e ruby-ri
e ruby-saslwrapper

e ruby-static

36

http://python.org
http://openjdk.java.net/
http://icedtea.classpath.org

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT

e ruby-tcltk

For information about updates to the Ruby language in Red Hat Enterprise Linux 6, see the following
resources:

e file:///usr/share/doc/ruby-version/NEWS

e file:///usr/share/doc/ruby-version/NEWS-version

2.2.9.1. Ruby Documentation

For more information about Ruby, see man ruby. You can also install ruby-docs, which provides
HTML manuals and references in the following location:

file:///usr/share/doc/ruby-docs-version/

The main site for the development of Ruby is hosted on http://www.ruby-lang.org. The http://www.ruby-
doc.org site also contains Ruby documentation.

2.2.10. Perl

The perl package adds support for the Perl programming language. This package provides Perl core
modules, the Perl Language Interpreter, and the PerlDoc tool.

Red Hat also provides various perl modules in package form; these packages are named with the
perl-* prefix. These modules provide stand-alone applications, language extensions, Perl libraries,
and external library bindings.

2.2.10.1. Perl Updates

For a full list of the differences between the Perl versions see the following documents:

Perl 5.12 Updates
Perl 5.12 has the following updates:

e Perl conforms closer to the Unicode standard.

Experimental APls allow Perl to be extended with "pluggable" keywords and syntax.
e Perl will be able to keep accurate time well past the "Y2038" barrier.

e Package version numbers can be directly specified in "package" statements.

e Perl warns the user about the use of depreciated features by default.

The Perl 5.12 delta can be accessed at http://perldoc.perl.org/perl5120delta.html.

Perl 5.14 Updates
Perl 5.14 has the following updates:

e Unicode 6.0 support.
e Improved support for IPv6.

e Easier auto-configuration of the CPAN client.

37

http://www.ruby-lang.org
http://www.ruby-doc.org
http://perldoc.perl.org/perl5120delta.html

Developer Guide

A new /r flag that makes s/// substitutions non-destructive.

New regular expression flags to control whether matched strings should be treated as ASCII
or Unicode.

New package Foo { } syntax.
Less memory and CPU usage than previous releases.

A number of bug fixes.

The Perl 5.14 delta can be accessed at http://perldoc.perl.org/perl5140delta.html.

Perl 5.16 Updates
Perl 5.14 has the following updates:

38

Support for Unicode 6.1.
$$ variable is writable.

Improved debugger.
Accessing Unicode database files directly is now depreciated; use Unicode::UCD instead.
Version::Requirements is depreciated in favor of CPAN:: Meta::Requirements.
A number of perl4 libraries are removed:

o abbrev.pl

o assert.pl

o bigfloat.pl

o bigint.pl

o bigrat.pl

o cacheout.pl

o complete.pl

o ctime.pl

o dotsh.pl

o exceptions.pl

o fastcwd.pl

o flush.pl

o getcwd.pl

o getopt.pl

o getopts.pl

http://perldoc.perl.org/perl5140delta.html

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT

o hostname.pl
o importenv.pl
o lib/find{,depth}.pl
o look.pl

o newgetopt.pl
o open2.pl

o open3.pl

o pwd.pl

o hellwords.pl
o stat.pl

o tainted.pl

o termcap.pl

o

timelocal.pl

The Perl 5.16 delta can be accessed at http://perldoc.perl.org/perl5160delta.html.

2.2.10.2. Installation

Perl's capabilities can be extended by installing additional modules. These modules come in the
following forms:

Official Red Hat RPM

The official module packages can be installed with yum or rpm from the Red Hat Enterprise Linux
repositories. They are installed to /usr/share/per15 and either /usr/1ib/per15 for 32bit
architectures or /usr/1ib64/per15 for 64bit architectures.

Modules from CPAN

Use the cpan tool provided by the perl-CPAN package to install modules directly from the CPAN
website. They are installed to /usr/local/share/per15 and either /fusr/local/lib/perl5 for
32bit architectures or /usr/local/1ib64/per15 for 64bit architectures.

Third party module package

Third party modules are installed to /usr/share/per15/vendor_perl and either
/usr/1lib/perl5/vendor_perl for 32bit architectures or /usr/1ib64/perl5/vendor_perl
for 64bit architectures.

Custom module package / manually installed module

These should be placed in the same directories as third-party modules. That is,
/usr/share/perl5/vendor_perl and either /usr/1lib/per15/vendor_perl for 32bit

architectures or /usr/1ib64/perl5/vendor_perl for 64bit architectures.

39

http://perldoc.perl.org/perl5160delta.html

Developer Guide

'g WARNING
If an official version of a module is already installed, installing its non-official version

can create conflicts in the /usr/share/man directory.

2.2.10.3. Perl Documentation

The perldoc tool provides documentation on language and core modules. To learn more about a
module, use perldoc module_name. For example, perldoc CGI will display the following
information about the CGI core module:

NAME
CGI - Handle Common Gateway Interface requests and responses

SYNOPSIS
use CGI;

my $gq = CGI->new;

[...]

DESCRIPTION

CGI.pm is a stable, complete and mature solution for processing and
preparing HTTP requests and responses. Major features including
processing form submissions, file uploads, reading and writing cookies,
guery string generation and manipulation, and processing and preparing
HTTP headers. Some HTML generation utilities are included as well.

[...]

PROGRAMMING STYLE

There are two styles of programming with CGI.pm, an object-oriented
style and a function-oriented style. 1In the object-oriented style you
create one or more CGI objects and then use object methods to create the

various elements of the page. Each CGI object starts out with the list of

named parameters that were passed to your CGI script by the server.
[...]

For details on Perl functions, use perldoc -f function_name . For example, perldoc -f split wil
display the following information about the split function:

split /PATTERN/, EXPR, LIMIT

split /PATTERN/,EXPR

split /PATTERN/

split Splits the string EXPR into a list of strings and returns
that list. By default, empty leading fields are preserved, and empty

trailing ones are deleted. (If all fields are empty, they are considered

to be trailing.)

40

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT

In scalar context, returns the number of fields found. In scalar and
void context it splits into the @_ array. Use of split in scalar and void
context is deprecated, however, because it clobbers your subroutine
arguments.

If EXPR is omitted, splits the $_ string. If PATTERN is also
omitted, splits on whitespace (after skipping any leading whitespace).

Anything matching PATTERN is taken to be a delimiter separating the
fields. (Note that the delimiter may be longer than one character.)

[...]

Current PerlDoc documentation can be found on perldoc.perl.org.

Core and external modules are documented on the Comprehensive Perl Archive Network.

41

http://perldoc.perl.org/
http://www.cpan.org/

Developer Guide

CHAPTER 3. COMPILING AND BUILDING

Red Hat Enterprise Linux 6 includes many packages used for software development, including tools for
compiling and building source code. This chapter discusses several of these packages and tools used to
compile source code.

3.1. GNU COMPILER COLLECTION (GCC)
The GNU Compiler Collection (GCC) is a set of tools for compiling a variety of programming languages
(including C, C++, ObjectiveC, ObjectiveC++, Fortran, and Ada) into highly optimized machine code.

These tools include various compilers (like gcc and g++), run-time libraries (like 1ibgcc, 1ibstdc++,
libgfortran, and 1ibgomp), and miscellaneous other utilities.

3.1.1. Language Compatibility

Application Binary Interfaces specified by the GNU C, C++, Fortran and Java Compiler include:

e (Calling conventions. These specify how arguments are passed to functions and how results are
returned from functions.

e Register usage conventions. These specify how processor registers are allocated and used.

e Object file formats. These specify the representation of binary object code.

e Size, layout, and alignment of data types. These specify how data is laid out in memory.

e |Interfaces provided by the runtime environment. Where the documented semantics do not
change from one version to another they must be kept available and use the same name at all

times.

The default system C compiler included with Red Hat Enterprise Linux 6 is largely compatible with the
C99 ABI standard. Deviations from the C99 standard in GCC 4.4 are tracked online.

In addition to the C ABI, the Application Binary Interface for the GNU C++ Compiler specifies the binary
interfaces required to support the C++ language, such as:

e Name mangling and demangling

e Creation and propagation of exceptions

e Formatting of run-time type information

e Constructors and destructors

e Layout, alignment, and padding of classes and derived classes

e Virtual function implementation details, such as the layout and alignment of virtual tables

The default system C++ compiler included with Red Hat Enterprise Linux 6 conforms to the C++ ABI
defined by the Itanium C++ ABI (1.86).

Although every effort has been made to keep each version of GCC compatible with previous releases,
some incompatibilities do exist.

ABI incompatibilities between Red Hat Enterprise Linux 6 and Red Hat Enterprise Linux 5

42

http://gcc.gnu.org/gcc-4.4/c99status.html
http://www.codesourcery.com/cxx-abi/

CHAPTER 3. COMPILING AND BUILDING

The following is a list of known incompatibilities between the Red Hat Enterprise Linux 6 and 5
toolchains.

e Passing/returning structs with flexible array members by value changed in some cases on
Intel 64 and AMDG64.

e Passing/returning of unions with long double members by value changed in some cases on
Intel 64 and AMDG64.

e Passing/returning structs with complex float member by value changed in some cases on
Intel 64 and AMDG64.

e Passing of 256-bit vectors on x86, Intel 64 and AMDG64 platforms changed when -mavx is used.

e There have been multiple changes in passing of _Decimal{32,64,128} types and aggregates
containing those by value on several targets.

e Packing of packed char bitfields changed in some cases.

ABI incompatibilities between Red Hat Enterprise Linux 5 and Red Hat Enterprise Linux 4

The following is a list of known incompatibilities between the Red Hat Enterprise Linux 5 and 4
toolchains.

e There have been changes in the library interface specified by the C++ ABI for thread-safe
initialization of function-scope static variables.

e On Intel 64 and AMDG64, the medium model for building applications where data segment
exceeds 4GB, was redesigned to match the latest ABI draft at the time. The ABI change results
in incompatibility among medium model objects.

The compiler flag -Wabi can be used to get diagnostics indicating where these constructs appear in
source code, though it will not catch every single case. This flag is especially useful for C++ code to
warn whenever the compiler generates code that is known to be incompatible with the vendor-neutral
C++ ABI.

Excluding the incompatibilities listed above, the GCC C and C++ language ABIls are mostly ABI
compatible. The vast majority of source code will not encounter any of the known issues, and can be
considered compatible.

Compatible ABIs allow the objects created by compiling source code to be portable to other systems. In
particular, for Red Hat Enterprise Linux, this allows for upward compatibility. Upward compatibility is
defined as the ability to link shared libraries and objects, created using a version of the compilers in a
particular Red Hat Enterprise Linux release, with no problems. This includes new objects compiled on
subsequent Red Hat Enterprise Linux releases.

The C ABIl is considered to be stable, and has been so since at least Red Hat Enterprise Linux 3 (again,
barring any incompatibilities mentioned in the above lists). Libraries built on Red Hat Enterprise Linux 3
and later can be linked to objects created on a subsequent environment (Red Hat Enterprise Linux 4,
Red Hat Enterprise Linux 5, and Red Hat Enterprise Linux 6).

The C++ ABI is considered to be stable, but less stable than the C ABI, and only as of Red Hat
Enterprise Linux 4 (corresponding to GCC version 3.4 and above.). As with C, this is only an upward
compatibility. Libraries built on Red Hat Enterprise Linux 4 and above can be linked to objects created on
a subsequent environment (Red Hat Enterprise Linux 5, and Red Hat Enterprise Linux 6).

To force GCC to generate code compatible with the C++ ABI in Red Hat Enterprise Linux releases prior
to Red Hat Enterprise Linux 4, some developers have used the -fabi-version=1 option. This practice

43

Developer Guide

is not recommended. Objects created this way are indistinguishable from objects conforming to the
current stable ABI, and can be linked (incorrectly) amongst the different ABls, especially when using new
compilers to generate code to be linked with old libraries that were built with tools prior to Red Hat
Enterprise Linux 4.

! WARNING
The above incompatibilities make it incredibly difficult to maintain ABI shared library

sanity between releases, especially when developing custom libraries with multiple
dependencies outside of the core libraries. Therefore, if shared libraries are
developed, it is highly recommend that a new version is built for each Red Hat
Enterprise Linux release.

3.1.2. Object Compatibility and Interoperability

Two items that are important are the changes and enhancements in the underlying tools used by the
compiler, and the compatibility between the different versions of a language's compiler.

Changes and new features in tools like 1d (distributed as part of the binutils package) or in the
dynamic loader (1d. so, distributed as part of the glibc package) can subtly change the object files that
the compiler produces. These changes mean that object files moving to the current release of Red Hat
Enterprise Linux from previous releases may lose functionality, behave differently at runtime, or
otherwise interoperate in a diminished capacity. Known problem areas include:

e 1d --build-id

In Red Hat Enterprise Linux 6 this is passed to 1d by default, whereas Red Hat
Enterprise Linux 5 1d doesn't recognize it.

e as .cfi_sections support

In Red Hat Enterprise Linux 6 this directive allows .debug_frame, .eh_frame or both to be
omitted from .cfi* directives. In Red Hat Enterprise Linux 5 only .eh_frame is omitted.

e as, 1d, 1d. so, and gdb STB_GNU_UNIQUE and %gnu_unique_symbol support

In Red Hat Enterprise Linux 6 more debug information is generated and stored in object files.
This information relies on new features detailed in the DWARF standard, and also on new
extensions not yet standardized. In Red Hat Enterprise Linux 5, tools like as, 1d, gdb, objdump,
and readelf may not be prepared for this new information and may fail to interoperate with
objects created with the newer tools. In addition, Red Hat Enterprise Linux 5 produced object
files do not support these new features; these object files may be handled by Red Hat
Enterprise Linux 6 tools in a sub-optimal manner.

An outgrowth of this enhanced debug information is that the debuginfo packages that ship with
system libraries allow you to do useful source level debugging into system libraries if they are

installed. See Section 4.2, “Installing Debuginfo Packages” for more information on debuginfo
packages.

Object file changes, such as the ones listed above, may interfere with the portable use of prelink.

44

CHAPTER 3. COMPILING AND BUILDING

3.1.3. Running GCC

To compile using GCC tools, first install the binutils and gcc packages. Doing so will also install several
dependencies.

In brief, the tools work via the gcc command. This is the main driver for the compiler. It can be used from

the command line to pre-process or compile a source file, link object files and libraries, or perform a
combination thereof. By default, gcc takes care of the details and links in the provided 1ibgcc library.

Conversely, using GCC tools from the command line interface consumes less system resources. This

also allows finer-grained control over compilers; GCC's command line tools can even be used outside of
the graphical mode (runlevel 5).

3.1.3.1. Simple C Usage

Basic compilation of a C language program using GCC is easy. Start with the following simple program:
Example 3.1. hello.c
#include <stdio.h>

int main()
printf ("Hello world!\n");
return 0;

{
}
The following procedure illustrates the compilation process for C in its most basic form.

Procedure 3.1. Compiling a 'Hello World' C Program

1. Compile Example 3.1, “hello.c” into an executable with:
I ~]$ gcc hello.c -o hello

Ensure that the resulting binary hello is in the same directory as hello.c.

2. Run the hello binary, that is, . /hello.

3.1.3.2. Simple C++ Usage

Basic compilation of a C++ language program using GCC is similar. Start with the following simple
program:

Example 3.2. hello.cc
#include <iostream>
using namespace std;
int main()

{

cout << "Hello World!" << endl;
return 0;

(o

45

Developer Guide

The following procedure illustrates the compilation process for C++ in its most basic form.

Procedure 3.2. Compiling a 'Hello World' C++ Program

1. Compile Example 3.2, “hello.cc” into an executable with:
I ~]1$ g++ hello.cc -o hello
Ensure that the resulting binary hello is in the same directory as hello.cc.

2. Run the hello binary, that is, . /hello.

3.1.3.3. Simple Multi-File Usage

To use basic compilation involving multiple files or object files, start with the following two source files:

Example 3.3. one.c
#include <stdio.h>
void hello()

{
printf("Hello world!\n");
}

int main()
hello();

return 0;

Example 3.4. two.c

extern void hello();
{

3

The following procedure illustrates a simple, multi-file compilation process in its most basic form.

Procedure 3.3. Compiling a Program with Multiple Source Files

1. Compile Example 3.3, “one.c” into an executable with:
I ~]$ gcc -c one.c -0 one.o

Ensure that the resulting binary one. o is in the same directory as one.c.

2. Compile Example 3.4, “two.c” into an executable with:
I ~]$ gcc -c two.c -0 two.o

Ensure that the resulting binary two. o is in the same directory as two.c.

46

CHAPTER 3. COMPILING AND BUILDING

3. Compile the two object files one .o and two. o into a single executable with:
I ~]%$ gcc one.o two.o -0 hello

Ensure that the resulting binary hello is in the same directory as one .o and two.o.

4. Run the hello binary, that is, . /hello.

3.1.3.4. Recommended Optimization Options

Different projects require different optimization options. There is no one-size-fits-all approach when it
comes to optimization, but here are a few guidelines to keep in mind.

Instruction selection and tuning

It is very important to choose the correct architecture for instruction scheduling. By default GCC
produces code optimized for the most common processors, but if the CPU on which your code will run is
known, the corresponding -mtune= option to optimize the instruction scheduling, and -march= option
to optimize the instruction selection should be used.

The option -mtune= optimizes instruction scheduling to fit your architecture by tuning everything except
the ABI and the available instruction set. This option will not choose particular instructions, but instead
will tune your program in such a way that executing on a particular architecture will be optimized. For
example, if an Intel Core2 CPU will predominantly be used, choose -mtune=core2. If the wrong choice
is made, the program will still run, but not optimally on the given architecture. The architecture on which
the program will most likely run should always be chosen.

The option -march= optimizes instruction selection. As such, it is important to choose correctly as
choosing incorrectly will cause your program to fail. This option selects the instruction set used when
generating code. For example, if the program will be run on an AMD K8 core based CPU, choose -
march=k8. Specifying the architecture with this option will imply -mtune=.

The -mtune= and -march= commands should only be used for tuning and selecting instructions within
a given architecture, not to generate code for a different architecture (also known as cross-compiling).
For example, this is not to be used to generate PowerPC code from an Intel 64 and AMD64 platform.

For a complete list of the available options for both -march= and -mtune=, see the GCC documentation
available here: GCC 4.4.4 Manual: Hardware Models and Configurations

General purpose optimization flags

The compiler flag -02 is a good middle of the road option to generate fast code. It produces the best

optimized code when the resulting code size is not large. Use this when unsure what would best suit.

When code size is not an issue, -03 is preferable. This option produces code that is slightly larger but
runs faster because of a more frequent inline of functions. This is ideal for floating point intensive code.

The other general purpose optimization flag is -0s. This flag also optimizes for size, and produces faster
code in situations where a smaller footprint will increase code locality, thereby reducing cache misses.

Use -frecord-gcc-switches when compiling objects. This records the options used to build objects
into objects themselves. After an object is built, it determines which set of options were used to build it.
The set of options are then recorded in a section called . GCC.command . 1ine within the object and can
be examined with the following:

I $ gcc -frecord-gcc-switches -03 -Wall hello.c -o hello

47

http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcc/Submodel-Options.html#Submodel-Options

Developer Guide

$ readelf --string-dump=.GCC.command.line hello
String dump of section '.GCC.command.line':

[0] hello.c

[8] -mtune=generic

[17] -03

[1b] -wall

[21] -frecord-gcc-switches

It is very important to test and try different options with a representative data set. Often, different
modules or objects can be compiled with different optimization flags in order to produce optimal results.
See Section 3.1.3.5, “Using Profile Feedback to Tune Optimization Heuristics” for additional optimization
tuning.

3.1.3.5. Using Profile Feedback to Tune Optimization Heuristics

During the transformation of a typical set of source code into an executable, tens of hundreds of choices
must be made about the importance of speed in one part of code over another, or code size as opposed
to code speed. By default, these choices are made by the compiler using reasonable heuristics, tuned
over time to produce the optimum runtime performance. However, GCC also has a way to teach the
compiler to optimize executables for a specific machine in a specific production environment. This
feature is called profile feedback.

Profile feedback is used to tune optimizations such as:
e |Inlining

e Branch prediction

e Instruction scheduling
e Inter-procedural constant propagation
e Determining of hot or cold functions

Profile feedback compiles a program first to generate a program that is run and analyzed and then a
second time to optimize with the gathered data.

Procedure 3.4. Using Profile Feedback

1. The application must be instrumented to produce profiling information by compiling it with -
fprofile-generate.

2. Run the application to accumulate and save the profiling information.
3. Recompile the application with -fprofile-use.

Step three will use the profile information gathered in step one to tune the compiler's heuristics while
optimizing the code into a final executable.

Procedure 3.5. Compiling a Program with Profiling Feedback

1. Compile source. c to include profiling instrumentation:
gcc source.c -fprofile-generate -02 -o executable

2. Run executable to gather profiling information:

48

CHAPTER 3. COMPILING AND BUILDING

./executable
3. Recompile and optimize source. c with profiling information gathered in step one:
gcc source.c -fprofile-use -02 -o executable

Multiple data collection runs, as seen in step two, will accumulate data into the profiling file instead of
replacing it. This allows the executable in step two to be run multiple times with additional representative
data in order to collect even more information.

The executable must run with representative levels of both the machine being used and a respective
data set large enough for the input required. This ensures optimal results are achieved.

By default, GCC will generate the profile data into the directory where step one was performed. To
generate this information elsewhere, compile with -fprofile-dir=DIR where DIR is the preferred

output directory.

! WARNING
The format of the compiler feedback data file changes between compiler versions. It

is imperative that the program compilation is repeated with each version of the
compiler.

3.1.3.6. Using 32-bit compilers on a 64-bit host

On a 64-bit host, GCC will build executables that can only run on 64-bit hosts. However, GCC can be
used to build executables that will run both on 64-bit hosts and on 32-bit hosts.

To build 32-bit binaries on a 64-bit host, first install 32-bit versions of any supporting libraries the
executable may require. This must at least include supporting libraries for glibc and 1ibgcc, and
libstdc++ if the program is a C++ program. On Intel 64 and AMD64, this can be done with:

yum install glibc-devel.i686 libgcc.i686 libstdc++-devel.i686

There may be cases where it is useful to to install additional 32-bit libraries that a program may require.
For example, if a program uses the db4-devel libraries to build, the 32-bit version of these libraries can
be installed with:

yum install db4-devel.i686

NOTE

The .1686 suffix on the x86 platform (as opposed to x86 - 64) specifies a 32-bit version
of the given package. For PowerPC architectures, the suffix is ppc (as opposed to
ppcé64).

After the 32-bit libraries have been installed, the -m32 option can be passed to the compiler and linker to
produce 32-bit executables. Provided the supporting 32-bit libraries are installed on the 64-bit system,
this executable will be able to run on both 32-bit systems and 64-bit systems.

49

Developer Guide

Procedure 3.6. Compiling a 32-bit Program on a 64-bit Host

1. On a 64-bit system, compile hello. c into a 64-bit executable with:

gcc hello.c -o hello64

2. Ensure that the resulting executable is a 64-bit binary:

$ file hello64

hello64: ELF 64-bit LSB executable, x86-64, version 1
(GNU/Linux), dynamically linked (uses shared libs), for GNU/Linux
2.6.18, not stripped

$ 1dd hello64

linux-vdso.so0.1 => (0x00007fff242dde00)

libc.so0.6 => /1ib64/1ibc.s0.6 (Ox00007f0721514000)

/1ib64/1d-1inux-x86-64.s50.2 (Ox00007f0721893000)

The command file on a 64-bit executable will include ELF 64-bit in its output, and 1dd will
list /1ib64/1ibc.so.6 as the main C library linked.

3. On a 64-bit system, compile hello. c into a 32-bit executable with:

gcc -m32 hello.c -o hello32

4. Ensure that the resulting executable is a 32-bit binary:

$ file hello32

hello32: ELF 32-bit LSB executable, Intel 80386,
version 1 (GNU/Linux), dynamically linked (uses shared libs), for
GNU/Linux 2.6.18, not stripped

$ 1dd hello32

linux-gate.so.1 => (Ox007eb000O)

libc.so0.6 => /l1lib/libc.s0.6 (0x00b13000)

/1ib/1d-1inux.s0.2 (0x00cd7000)

The command file on a 32-bit executable will include ELF 32-bit in its output, and 1dd will
list /1ib/1ibc.so.6 as the main C library linked.

If you have not installed the 32-bit supporting libraries you will get an error similar to this for C code:

$ gcc -m32 hello32.c -0 hello32
/usr/bin/1d: crtl.0: No such file: No such file or directory
collect2: 1d returned 1 exit status

A similar error would be triggered on C++ code:

50

$ g++ -m32 hello32.cc -0 hello32-c++
In file included from /usr/include/features.h:385,

from /usr/lib/gcc/x86_64-redhat-

linux/4.4.4/../../../../include/c++/4.4.4/x86_64-redhat-
linux/32/bits/os_defines.h:39,

from /usr/lib/gcc/x86_64-redhat-

linux/4.4.4/../../../../include/c++/4.4.4/x86_64-redhat-
linux/32/bits/c++config.h:243,

CHAPTER 3. COMPILING AND BUILDING

from /usr/lib/gcc/x86_64-redhat-
linux/4.4.4/../../../../include/c++/4.4.4/iostream:39,

from hello32.cc:1:
/usr/include/gnu/stubs.h:7:27: error: gnu/stubs-32.h: No such file or
directory

These errors indicate that the supporting 32-bit libraries have not been properly installed as explained at
the beginning of this section.

Also important is to note that building with -m32 will in not adapt or convert a program to resolve any
issues arising from 32/64-bit incompatibilities. For tips on writing portable code and converting from 32-
bits to 64-bits, see the paper entitled Porting to 64-bit GNU/Linux Systems in the Proceedings of the
2003 GCC Developers Summit.

3.1.4. GCC Documentation
For more information about GCC compilers, see the man pages for cpp, gcc, g++, gcj, and gfortran.
The following online user manuals are also available:

e GCC 4.4.4 Manual

e GCC 4.4.4 GNU Fortran Manual

e GCC 4.4.4 GCJ Manual

e GCC 4.4.4 CPP Manual

e GCC 4.4.4 GNAT Reference Manual

e GCC 4.4.4 GNAT User's Guide

e GCC 4.4.4 GNU OpenMP Manual

The main site for the development of GCC is gcc.gnu.org.

3.2. AUTOTOOLS

GNU Autotools is a suite of command line tools that allow developers to build applications on different
systems, regardless of the installed packages or even Linux distribution. These tools aid developers in
creating a configure script. This script runs prior to builds and creates the top-level Makefiles
required to build the application. The configure script may perform tests on the current system, create
additional files, or run other directives as per parameters provided by the builder.

The Autotools suite's most commonly-used tools are:

autoconf

Generates the configure script from an input file (configure.ac, for example)

automake
Creates the Makefile for a project on a specific system

autoscan

51

ftp://gcc.gnu.org/pub/gcc/summit/2003/Porting to 64 bit.pdf
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcc
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gfortran
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcj
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/cpp
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gnat_rm
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gnat_ugn_unw
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/libgomp
http://gcc.gnu.org

Developer Guide

Generates a preliminary input file (that is, configure.scan), which can be edited to create a final
configure.ac to be used by autoconf

All tools in the Autotools suite are part of the Development Tools group package. You can install this
package group to install the entire Autotools suite, or use yum to install any tools in the suite as you
wish.

3.2.1. Autotools Plug-in for Eclipse

The Autotools suite is also integrated into the Eclipse IDE via the Autotools plug-in. This plug-in provides
an Eclipse graphical user interface for Autotools, which is suitable for most C/C++ projects.

As of Red Hat Enterprise Linux 6, this plug-in only supports two templates for new C/C++ projects:
e An empty project
e A "hello world" application

The empty project template is used when importing projects into the C/C++ Development Toolkit that
already support Autotools. Future updates to the Autotools plug-in will include additional graphical user
interfaces (wizards, for example) for creating shared libraries and other complex scenarios.

The Red Hat Enterprise Linux 6 version of the Autotools plug-in also does not integrate git or
mercurial into Eclipse. As such, Autotools projects that use git repositories will be required to be
checked out outside the Eclipse workspace. Afterwards, you can specify the source location for such
projects in Eclipse. Any repository manipulation (commits, or updates for example) are done via the
command line.

3.2.2. Configuration Script

The most crucial function of Autotools is the creation of the configure script. This script tests systems

for tools, input files, and other features it can use in order to build the project '] The configure script
generates a Makefile which allows the make tool to build the project based on the system
configuration.

To create the configure script, first create an input file. Then feed it to an Autotools utility in order to
create the configure script. This input file is typically configure.ac or Makefile.am; the former is
usually processed by autoconf, while the later is fed to automake.

If a Makefile.am input file is available, the automake utility creates a Makefile template (that is,
Makefile. in), which may see information collected at configuration time. For example, the
Makefile may have to link to a particular library if and only ifthat library is already installed. When the
configure script runs, automake will use the Makefile. in templates to create a Makefile.

If a configure.ac file is available instead, then autoconf will automatically create the configure
script based on the macros invoked by configure.ac. To create a preliminary configure.ac, use
the autoscan utility and edit the file accordingly.

3.2.3. Autotools Documentation

Red Hat Enterprise Linux 6 includes man pages for autoconf, automake, autoscan and most tools
included in the Autotools suite. In addition, the Autotools community provides extensive documentation
on autoconf and automake on the following websites:

52

CHAPTER 3. COMPILING AND BUILDING

e http://www.gnu.org/software/autoconf/manual/autoconf.html

e http://www.gnu.org/software/autoconf/manual/automake.html
The following is an online book describing the use of Autotools. Although the above online
documentation is the recommended and most up to date information on Autotools, this book is a good
alternative and introduction.

e http://sourceware.org/autobook/
For information on how to create Autotools input files, see:

e http://www.gnu.org/software/autoconf/manual/autoconf.html#Making-configure-Scripts

e hitp://www.gnu.org/software/autoconf/manual/automake.html#lnvoking-Automake

The following upstream example also illustrates the use of Autotools in a simple hello program:

e http://www.gnu.org/software/hello/manual/hello.html

3.3. BUILD-ID UNIQUE IDENTIFICATION OF BINARIES

Each executable or shared library built with Red Hat Enterprise Linux Server 6 or later is assigned a
unique identification 160-bit SHA-1 string, generated as a checksum of selected parts of the binary. This
allows two builds of the same program on the same host to always produce consistent build-ids and
binary content.

Display the build-id of a binary with the following command:

$ eu-readelf -n /bin/bash

[...]

Note section [3] '.note.gnu.build-id' of 36 bytes at offset 0x274:
Owner Data size Type
GNU 20 GNU_BUILD_ID

Build ID: efdd0b5e69b0742fabe5bad0771df4d1df2459d1

Unique identificators of binaries are useful in cases such as analysing core files, documented
Section 4.2.1, “Installing Debuginfo Packages for Core Files Analysis”.

[1] For information about tests that configure can perform, see the following link:

http://www.gnu.org/software/autoconf/manual/autoconf.html#Existing-Tests

53

http://www.gnu.org/software/autoconf/manual/autoconf.html
http://www.gnu.org/software/autoconf/manual/automake.html
http://sourceware.org/autobook/
http://www.gnu.org/software/autoconf/manual/autoconf.html#Making-configure-Scripts
http://www.gnu.org/software/autoconf/manual/automake.html#Invoking-Automake
http://www.gnu.org/software/hello/manual/hello.html
http://www.gnu.org/software/autoconf/manual/autoconf.html#Existing-Tests

Developer Guide

CHAPTER 4. DEBUGGING

Useful, well-written software generally goes through several different phases of application development,
allowing ample opportunity for mistakes to be made. Some phases come with their own set of
mechanisms to detect errors. For example, during compilation an elementary semantic analysis is often
performed to make sure objects, such as variables and functions, are adequately described.

The error-checking mechanisms performed during each application development phase aims to catch

simple and obvious mistakes in code. The debugging phase helps to bring more subtle errors to light that
fell through the cracks during routine code inspection.

4.1. ELF EXECUTABLE BINARIES
Red Hat Enterprise Linux uses ELF for executable binaries, shared libraries, or debuginfo files. Within
these debuginfo ELF files, the DWARF format is used. Version 3 of DWARF is used in ELF files (that is,
gcc -gis equivalent to gcc -gdwarf-3). DWARF debuginfo includes:

e names of all the compiled functions and variables, including their target addresses in binaries

e source files used for compilation, including their source line numbers

e |ocal variables location

IMPORTANT

STABS is occasionally used with UNIX. STABS is an older, less capable format. Its use is
discouraged by Red Hat. GCC and GDB support STABS production and consumption on
a best effort basis only.

Within these ELF files, the GCC debuginfo level is also used. The default is level 2, where macro
information is not present; level 3 has C/C++ macro definitions included, but the debuginfo can be very
large with this setting. The command for the default gcc -g is the same as gcc -g2. To change the
macro information to level three, use gcc -g3.

There are multiple levels of debuginfo available. Use the command readelf -WS file to see which
sections are used in a file.

Table 4.1. debuginfo levels

Binary State Command

Stripped strip file Only the symbols required for
runtime linkage with shared
or libraries are present.
gcc -s -o file ELF section in use: .dynsym
ELF symbols gcc -o file Only the names of functions and

variables are present, no binding
to the source files and no types.

ELF section in use: .symtab

54

CHAPTER 4. DEBUGGING

Binary State Command

DWARF debuginfo with macros gcc -g -o file The source file names and line
numbers are known, including

types.

*

ELF section in use: .debug_

DWARF debuginfo with macros gcc -g3 -o file Similar to gcc -g but the
macros are known to GDB.

ELF section in use:
.debug_macro

NOTE

GDB never interprets the source files, it only displays them as text. Use gcc -g and its
variants to store the information into DWARF.

Compiling a program or library with gcc -rdynamic is discouraged. For specific symbols, use gcc -
W1, --dynamic-list=... instead.Ifgcc -rdynamic is used, the strip command or -s gcc
option have no effect. This is because all ELF symbols are kept in the binary for possible runtime linkage
with shared libraries.

ELF symbols can be read by the readelf -s file command.
DWARF symbols are read by the readelf -w file command.

The command readelf -wi fileis a good verification of debuginfo, compiled within your program.
The commands strip file or gcc -s are commonly accidentally executed on the output during
various compilation stages of the program.

The readelf -w file command can also be used to show a special section called . eh_frame with a
format and purpose is similar to the DWARF section .debug_frame. The .eh_frame section is used
for runtime C++ exception resolution and is present even if -g gcc option was not used. It is kept in the
primary RPM and is never present in the debuginfo RPMs.

Debuginfo RPMs contain the sections . symtab and .debug_*. Neither .eh_frame, .eh_frame_hdr,
nor .dynsym are moved or present in debuginfo RPMs as those sections are needed during program
runtime.

4.2. INSTALLING DEBUGINFO PACKAGES

Red Hat Enterprise Linux also provides -debuginfo packages for all architecture-dependent RPMs
included in the operating system. A packagename -
debuginfo-version-release.architecture.rpmpackage contains detailed information about
the relationship of the package source files and the final installed binary. The debuginfo packages
contain both . debug files, which in turn contain DWARF debuginfo and the source files used for
compiling the binary packages.

55

Developer Guide

NOTE

Most of the debugger functionality is missed if attempting to debug a package without
having its debuginfo equivalent installed. For example, the names of exported shared
library functions will still be available, but the matching source file lines will not be without
the debuginfo package installed.

Use gcc compilation option -g for your own programs. The debugging experience is better if no
optimizations (gcc option -0, such as -02) is applied with -g.

For Red Hat Enterprise Linux 6, the debuginfo packages are now available on a new channel on the
Red Hat Network. To install the -debuginfo package of a package (that is, typically packagename -
debuginfo), first the machine has to be subscribed to the corresponding Debuginfo channel. For
example, for Red Hat Enterprise Server 6, the corresponding channel would be Red Hat
Enterprise Linux Server Debuginfo (v. 6).

Red Hat Enterprise Linux system packages are compiled with optimizations (gcc option -02). This
means that some variables will be displayed as <optimized out>. Stepping through code will 'jump'a
little but a crash can still be analyzed. If some debugging information is missing because of the
optimizations, the right variable information can be found by disassembling the code and matching it to
the source manually. This is applicable only in exceptional cases and is not suitable for regular
debugging.

For system packages, GDB informs the user if it is missing some debuginfo packages that limit its
functionality.

gdb 1s

[...]

Reading symbols from /bin/ls...(no debugging symbols found)...done.
Missing separate debuginfos, use: debuginfo-install coreutils-8.4-
16.e16.x86_64

(gdb) ¢

If the system package to be debugged is known, use the command suggested by GDB above. It will also
automatically install all the debug packages packagename depends on.

I # debuginfo-install packagename

4.2.1. Installing Debuginfo Packages for Core Files Analysis

A core file is a representation of the memory image at the time of a process crash. For bug reporting of
system program crashes, Red Hat recommends the use of the ABRT tool, explained in the Automatic
Bug Reporting Tool chapter in the Red Hat Deployment Guide. If ABRT is not suitable for your purposes,
the steps it automates are explained here.

Iftheulimit -c¢ unlimited setting is in use when a process crashes, the core file is dumped into the
current directory. The core file contains only the memory areas modified by the process from the original
state of disk files. In order to perform a full analysis of a crash, a core file is required to have:

e the core file itself
e the executable binary which has crashed, such as /usr/sbhin/sendmail

e all the shared libraries loaded in the binary when it crashed

56

CHAPTER 4. DEBUGGING

e .debug files and source files (both stored in debuginfo RPMs) for the executable and all of its
loaded libraries

For a proper analysis, either the exact version-release.architecture for all the RPMs involved or
the same build of your own compiled binaries is needed. At the time of the crash, the application may
have already recompiled or been updated by yum on the disk, rendering the files inappropriate for the
core file analysis.

The core file contains build-ids of all the binaries involved. For more information on build-id, see
Section 3.3, “build-id Unique Identification of Binaries”. The contents of the core file can be displayed by:

$ eu-unstrip -n --core=./core.9814

0x400000+0x207000 2818b2009547f780a5639c904cded443e564973e@0x400284
/bin/sleep /usr/lib/debug/bin/sleep.debug [exe]
OX7Tff26FffOOO0+0Xx1000
1e2a683b7d877576970e4275d41a6aaec280795e@0x7fff26fff340 . - linux-
vdso.so.1

0x35e7e00000+0x3b6000
374addlead31cchb449779bc7ee7877de3377e5ad@0x35e7e00280 /1ib64/1ibc-
2.14.90.s0 /usr/lib/debug/1ib64/1ibc-2.14.90.s0.debug libc.so0.6
Ox35e7a00000+0x224000
3ed9e61c2b7e707ce244816335776afa2ad0307d@0x35e7a001d8 /1ib64/1d-2.14.90.s0
/usr/lib/debug/1ib64/1d-2.14.90.s0.debug 1ld-linux-x86-64.s0.2

The meaning of the columns in each line are:

e The in-memory address where the specific binary was mapped to (for example, 0x400000 in
the first line).

e The size of the binary (for example, +0x207000 in the first line).

e The 160-bit SHA-1 build-id of the binary (for example,
2818b2009547f780a5639c904cded443e564973e in the first line).

e The in-memory address where the build-id bytes were stored (for example, @0x400284 in the
first line).

e The on-disk binary file, if available (for example, /bin/sleep in the first line). This was found
by eu-unstrip for this module.

e The on-disk debuginfo file, if available (for example, /usr/1ib/debug/bin/sleep.debug).
However, best practice is to use the binary file reference instead.

e The shared library name as stored in the shared library list in the core file (for example,
libc.so.6 in the third line).

For each build-id (for example, ab/cdef0123456789012345678901234567890123) a symbolic link
is included in its debuginfo RPM. Using the /bin/sleep executable above as an example, the
coreutils-debuginfo RPM contains, among other files:

lrwxrwxrwx 1 root root 24 Nov 29 17:07 /usr/lib/debug/.build-
1d/28/18b2009547f780a5639c904cded443e564973e -> ../../../../../bin/sleep*
lrwxrwxrwx 1 root root 21 Nov 29 17:07 /usr/lib/debug/.build-
1d/28/18b2009547f780a5639c904cded443e564973e.debug ->
../../bin/sleep.debug

57

Developer Guide

In some cases (such as loading a core file), GDB does not know the name, version, or release of a
name-debuginfo-version-release.rpm package; it only knows the build-id. In such cases, GDB
suggests a different command:

gdb -c ./core
[...]

Missing separate debuginfo for the main executable filename
Try: yum --disablerepo='*"' --enablerepo='*debug*' install
/usr/lib/debug/.build-id/ef/ddOb5e69b0742fa5e5bad0771df4d1df2459d1

The version-release.architecture of the binary package packagename-debuginfo-version-
release.architecture.rpm must be an exact match. If it differs then GDB cannot use the debuginfo
package. Even the same version-release.architecture from a different build leads to an incompatible
debuginfo package. If GDB reports a missing debuginfo, ensure to recheck:

rpm -q packagename packagename-debuginfo

The version-release.architecture definitions should match.

rpm -V packagename packagename-debuginfo

This command should produce no output, except possibly modified configuration files of
packagename, for example.

rpm -qi packagename packagename-debuginfo

The version-release.architecture should display matching information for Vendor, Build Date, and
Build Host. For example, using a CentOS debuginfo RPM for a Red Hat Enterprise Linux RPM
package will not work.

If the required build-id is known, the following command can query which RPM contains it:

$ repoquery --disablerepo='*' --enablerepo='*-debug*' -qf
/usr/1lib/debug/.build-id/ef/ddOb5e69b0742fa5e5bad0771df4d1df2459d1

For example, a version of an executable which matches the core file can be installed by:

yum --enablerepo='*-debug*' install $(eu-unstrip -n --core=./core.9814 |
sed -e "s#A[A]F \N(..\)\([M@]1*\).*$#/usr/1lib/debug/.build-id/\1/\2#p' -e
's/$/.debug/")

Similar methods are available if the binaries are not packaged into RPMs and stored in yum repositories.
It is possible to create local repositories with custom application builds by using
/usr/bin/createrepo.

4.3. GDB

Fundamentally, like most debuggers, GDB manages the execution of compiled code in a very closely
controlled environment. This environment makes possible the following fundamental mechanisms
necessary to the operation of GDB:

e Inspect and modify memory within the code being debugged (for example, reading and setting
variables).

58

CHAPTER 4. DEBUGGING

e Control the execution state of the code being debugged, principally whether it's running or
stopped.

e Detect the execution of particular sections of code (for example, stop running code when it
reaches a specified area of interest to the programmer).

e Detect access to particular areas of memory (for example, stop running code when it accesses
a specified variable).

e Execute portions of code (from an otherwise stopped program) in a controlled manner.
e Detect various programmatic asynchronous events such as signals.

The operation of these mechanisms rely mostly on information produced by a compiler. For example, to
view the value of a variable, GDB has to know:

e The location of the variable in memory
e The nature of the variable

This means that displaying a double-precision floating point value requires a very different process from
displaying a string of characters. For something complex like a structure, GDB has to know not only the
characteristics of each individual elements in the structure, but the morphology of the structure as well.

GDB requires the following items in order to fully function:

Debug Information

Much of GDB's operations rely on a program's debug information. While this information generally
comes from compilers, much of it is necessary only while debugging a program, that is, it is not used
during the program's normal execution. For this reason, compilers do not always make that
information available by default — GCC, for instance, must be explicitly instructed to provide this
debugging information with the -g flag.

To make full use of GDB's capabilities, it is highly advisable to make the debug information available
first to GDB. GDB can only be of very limited use when run against code with no available debug
information.

Source Code

One of the most useful features of GDB (or any other debugger) is the ability to associate events and
circumstances in program execution with their corresponding location in source code. This location
normally refers to a specific line or series of lines in a source file. This, of course, would require that a
program's source code be available to GDB at debug time.

4.3.1. Simple GDB

GDB literally contains dozens of commands. This section describes the most fundamental ones.

br (breakpoint)

The breakpoint command instructs GDB to halt execution upon reaching a