
Red Hat Enterprise Linux 6

Developer Guide

An introduction to application development tools in Red Hat Enterprise Linux 6

Last Updated: 2017-10-20

Red Hat Enterprise Linux 6 Developer Guide

An introduction to application development tools in Red Hat Enterprise Linux 6

Robert Krátký
Red Hat Customer Content Services
rkratky@redhat.com

Don Domingo
Red Hat Customer Content Services

Jacquelynn East
Red Hat Customer Content Services

Legal Notice

Copyright © 2016 Red Hat, Inc. and others.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes the different features and utilities that make Red Hat Enterprise Linux 6 an
ideal enterprise platform for application development.

http://creativecommons.org/licenses/by-sa/3.0/

. .

Table of Contents

CHAPTER 1. COLLABORATING
1.1. GIT

1.1.1. Installing and Configuring Git
Installing the git Package
Configuring the Default Text Editor
Setting Up User Information

1.1.2. Creating a New Repository
Initializing an Empty Repository
Importing Data to a Repository

1.1.3. Cloning an Existing Repository
1.1.4. Adding, Renaming, and Deleting Files

Adding Files and Directories
Renaming Files and Directories
Deleting Files and Directories

1.1.5. Viewing Changes
Viewing the Current Status
Viewing Differences

1.1.6. Committing Changes
1.1.7. Sharing Changes

Pushing Changes to a Public Repository
Creating Patches from Individual Commits

1.1.8. Updating a Repository
1.1.9. Additional Resources

Installed Documentation
Online Documentation

1.2. APACHE SUBVERSION (SVN)
1.2.1. Installing and Configuring Subversion

Installing the subversion Package
Setting Up the Default Editor

1.2.2. Creating a New Repository
Initializing an Empty Repository
Importing Data to a Repository

1.2.3. Checking Out a Working Copy
1.2.4. Adding, Renaming, and Deleting Files

Adding a File or Directory
Renaming a File or Directory
Deleting a File or Directory

1.2.5. Viewing Changes
Viewing the Status
Viewing Differences

1.2.6. Committing Changes
1.2.7. Updating a Working Copy
1.2.8. Additional Resources

Installed Documentation
Online Documentation

1.3. CONCURRENT VERSIONS SYSTEM (CVS)
1.3.1. Installing and Configuring CVS

Installing the cvs Package
Setting Up the Default Editor

1.3.2. Creating a New Repository
Initializing an Empty Repository

6
6
6
6
6
6
7
7
7
7
8
8
8
8
9
9
9
9
9

10
10
10
10
10
11
11
11
11
11
11
12
12
12
13
13
14
14
15
15
15
16
17
17
17
18
18
18
18
18
18
19

Table of Contents

1

. .

. .

Importing Data to a Repository
1.3.3. Checking Out a Working Copy
1.3.4. Adding and Deleting Files

Adding a File
Deleting a File

1.3.5. Viewing Changes
Viewing the Status
Viewing Differences

1.3.6. Committing Changes
1.3.7. Updating a Working Copy
1.3.8. Additional Resources

Installed Documentation

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT
2.1. COMPATIBILITY

2.1.1. Static Linking
2.2. LIBRARY AND RUNTIME DETAILS

2.2.1. The GNU C++ Standard Library
2.2.1.1. Additional information

2.2.2. Boost
2.2.2.1. Additional Information

2.2.3. Qt
2.2.3.1. Qt Updates
2.2.3.2. Qt Creator
2.2.3.3. Qt Library Documentation

2.2.4. KDE Development Framework
2.2.4.1. KDE4 Architecture
2.2.4.2. kdelibs Documentation

2.2.5. GNOME Power Manager
2.2.5.1. GNOME Power Management Version Guide
2.2.5.2. API Changes for glib
2.2.5.3. API Changes for GTK+

2.2.6. NSS Shared Databases
2.2.6.1. Backwards Compatibility
2.2.6.2. NSS Shared Databases Documentation

2.2.7. Python
2.2.7.1. Python Updates
2.2.7.2. Python Documentation

2.2.8. Java
2.2.8.1. Java Documentation

2.2.9. Ruby
2.2.9.1. Ruby Documentation

2.2.10. Perl
2.2.10.1. Perl Updates
2.2.10.2. Installation
2.2.10.3. Perl Documentation

CHAPTER 3. COMPILING AND BUILDING
3.1. GNU COMPILER COLLECTION (GCC)

3.1.1. Language Compatibility
3.1.2. Object Compatibility and Interoperability
3.1.3. Running GCC

3.1.3.1. Simple C Usage

19
20
20
20
21
21
21
22
23
23
24
24

25
25
25
26
26
26
26
27
27
27
28
28
28
29
30
30
30
31
32
34
34
34
34
35
35
36
36
36
37
37
37
39
40

42
42
42
44
45
45

Developer Guide

2

. .

. .

. .

3.1.3.2. Simple C++ Usage
3.1.3.3. Simple Multi-File Usage
3.1.3.4. Recommended Optimization Options
3.1.3.5. Using Profile Feedback to Tune Optimization Heuristics
3.1.3.6. Using 32-bit compilers on a 64-bit host

3.1.4. GCC Documentation
3.2. AUTOTOOLS

3.2.1. Autotools Plug-in for Eclipse
3.2.2. Configuration Script
3.2.3. Autotools Documentation

3.3. BUILD-ID UNIQUE IDENTIFICATION OF BINARIES

CHAPTER 4. DEBUGGING
4.1. ELF EXECUTABLE BINARIES
4.2. INSTALLING DEBUGINFO PACKAGES

4.2.1. Installing Debuginfo Packages for Core Files Analysis
4.3. GDB

4.3.1. Simple GDB
4.3.2. Running GDB
4.3.3. Conditional Breakpoints
4.3.4. Forked Execution
4.3.5. Debugging Individual Threads
4.3.6. Alternative User Interfaces for GDB

4.4. VARIABLE TRACKING AT ASSIGNMENTS
4.5. PYTHON PRETTY-PRINTERS

CHAPTER 5. PROFILING
5.1. VALGRIND

5.1.1. Valgrind Tools
5.1.2. Using Valgrind
5.1.3. Additional information

5.2. OPROFILE
5.2.1. Using OProfile
5.2.2. OProfile in Red Hat Enterprise Linux 7

5.2.2.1. New Features
5.2.2.2. Known Problems and Limitiations

5.2.3. OProfile Documentation
5.3. SYSTEMTAP

5.3.1. Additional Information
5.4. PERFORMANCE COUNTERS FOR LINUX (PCL) TOOLS AND PERF

5.4.1. Perf Tool Commands
5.4.2. Using Perf

5.5. FTRACE
5.5.1. Using ftrace
5.5.2. ftrace Documentation

CHAPTER 6. DOCUMENTATION TOOLS
6.1. DOXYGEN

6.1.1. Doxygen Supported Output and Languages
6.1.2. Getting Started
6.1.3. Running Doxygen
6.1.4. Documenting the Sources
6.1.5. Resources

45
46
47
48
49
51
51
52
52
52
53

54
54
55
56
58
59
61
62
63
65
69
70
70

74
74
74
75
75
75
76
78
78
78
79
79
79
80
80
80
83
83
84

85
85
85
85
86
87
91

Table of Contents

3

. .

. .

. .

APPENDIX A. APPENDIX
A.1. MALLOPT

malloc_trim
malloc_stats
Further Information

APPENDIX B. REVISION HISTORY

INDEX

92
92
92
93
93

94

95

Developer Guide

4

Table of Contents

5

CHAPTER 1. COLLABORATING
Effective revision control is essential to all multi-developer projects. It allows all developers in a team to
create, review, revise, and document code in a systematic and orderly manner. Red Hat
Enterprise Linux 6 supports three of the most popular open-source revision control systems: Git, SVN,
and CVS.

The following sections provide a brief overview and references to relevant documentation for each tool.

1.1. GIT

Git is a distributed revision control system with a peer-to-peer architecture. As opposed to centralized
version control systems with a client-server model, Git ensures that each working copy of a Git
repository is its exact copy with complete revision history. This not only allows you to work on and
contribute to projects without the need to have permission to push your changes to their official
repositories, but also makes it possible for you to work with no network connection.

1.1.1. Installing and Configuring Git

Installing the git Package
In Red Hat Enterprise Linux 6, Git is provided by the git package. To install the git package and all its
dependencies on your system, type the following at a shell prompt as root:

~]# yum install git

Configuring the Default Text Editor
Certain Git commands, such as git commit, require the user to write a short message or make some
changes in an external text editor. To determine which text editor to start, Git attempts to read the value
of the GIT_EDITOR environment variable, the core.editor configuration option, the VISUAL
environment variable, and finally the EDITOR environment variable in this particular order. If none of
these options and variables are specified, the git command starts vi as a reasonable default option.

To change the value of the core.editor configuration option in order to specify a different text editor,
type the following at a shell prompt:

git config --global core.editor command

Replace command with the command to be used to start the selected text editor.

Example 1.1. Configuring the Default Text Editor

To configure Git to use vim as the default text editor, type the following at a shell prompt:

~]$ git config --global core.editor vim

Setting Up User Information
In Git, each commit (or revision) is associated with the full name and email of the person responsible for
it. By default, Git uses an identity based on the user name and the host name.

To change the full name associated with your Git commits, type the following at a shell prompt:

Developer Guide

6

git config --global user.name "full name"

To change the email address associated with your Git commits, type:

git config --global user.email "email_address"

Example 1.2. Setting Up User Information

To configure Git to use John Doe as your full name and john@example.com as your email
address, type the following at a shell prompt:

~]$ git config --global user.name "John Doe"
~]$ git config --global user.email "john@example.com"

1.1.2. Creating a New Repository

A repository is a place where Git stores all files that are under revision control, as well as additional data
related to these files, such as the complete history of changes or information about who made those
changes and when. Unlike in centralized revision control systems like Subversion or CVS, a Git
repository and a working directory are usually the same. A typical Git repository also only stores a single
project and when publicly accessible, it allows anyone to create its clone with a complete revision
history.

Initializing an Empty Repository
To create a new, empty Git repository, change to the directory in which you want to keep the repository
and type the following at a shell prompt:

git init

This creates a hidden directory named .git in which all repository information is stored.

Importing Data to a Repository
To put an existing project under revision control, create a Git repository in the directory with the project
and run the following command:

git add .

This marks all files and directories in the current working directory as ready to be added to the Git
repository. To proceed and actually add this content to the repository, commit the changes by typing the
following at a shell prompt:

git commit [-m "commit message"]

Replace commit message with a short description of your revision. If you omit the -m option, this
command allows you to write the commit message in an external text editor. For information on how to
configure the default text editor, see the section called “Configuring the Default Text Editor”.

1.1.3. Cloning an Existing Repository

To clone an existing Git repository, type the following at a shell prompt:

CHAPTER 1. COLLABORATING

7

git clone git_repository [directory]

Replace git_repository with a URL or a path to the Git repository you want to clone, and directory with a
path to the directory in which you want to store the clone.

1.1.4. Adding, Renaming, and Deleting Files

Adding Files and Directories
To add an existing file to a Git repository and put it under revision control, change to the directory with
your local Git repository and type the following at a shell prompt:

git add file...

Replace file with the file or files you want to add. This command marks the selected file or files as ready
to be added to the Git repository. Similarly, to add all files that are stored in a certain directory to a Git
repository, type:

git add directory...

Replace directory with the directory or directories you want to add. This command marks all files in the
selected directory or directories as ready to be added to the Git repository.

To proceed and actually add this content to the repository, commit the changes as described in
Section 1.1.6, “Committing Changes”.

Renaming Files and Directories
To rename an existing file or directory in a Git repository, change to the directory with your local Git
repository and type the following at a shell prompt:

git mv old_name new_name

Replace old_name with the current name of the file or directory and new_name with the new name. This
command renames the selected file or directory and marks it as ready to be renamed in the Git
repository.

To proceed and actually rename the content in the repository, commit the changes as described in
Section 1.1.6, “Committing Changes”.

Deleting Files and Directories
To delete an existing file from a Git repository, change to the directory with your local Git repository and
type the following at a shell prompt:

git rm file...

Replace file with the file or files you want to delete. This command deletes all selected files and marks
them as ready to be deleted form the Git repository. Similarly, to delete all files that are stored in a
certain directory from a Git repository, type:

git rm -r directory...

Replace directory with the directory or directories you want to delete. This command deletes all selected
directories and marks them as ready to be deleted from the Git repository.

Developer Guide

8

To proceed and actually delete this content from the repository, commit the changes as described in
Section 1.1.6, “Committing Changes”.

1.1.5. Viewing Changes

Viewing the Current Status
To determine the current status of your local Git repository, change to the directory with the repository
and type the following command at a shell prompt:

git status

This command displays information about all uncommitted changes in the repository (new file,
renamed, deleted, or modified) and tells you which changes will be applied the next time you
commit them. For information on how to commit your changes, see Section 1.1.6, “Committing
Changes”.

Viewing Differences
To view all changes in a Git repository, change to the directory with the repository and type the following
at a shell prompt:

git diff

This command displays changes between the files in the repository and their latest revision. If you are
only interested in changes in a particular file, supply its name on the command line as follows:

git diff file...

Replace file with the file or files you want to view.

1.1.6. Committing Changes

To apply your changes to a Git repository and create a new revision, change to the directory with the
repository and type the following command at a shell prompt:

git commit [-m "commit message"]

Replace commit message with a short description of your revision. This command commits all changes
in files that are explicitly marked as ready to be committed. To commit changes in all files that are under
revision control, add the -a command line option as follows:

git commit -a [-m "commit message"]

Note that if you omit the -m option, the command allows you to write the commit message in an external
text editor. For information on how to configure the default text editor, see the section called “Configuring
the Default Text Editor”.

1.1.7. Sharing Changes

Unlike in centralized version control systems such as CVS or Subversion, when working with Git, project
contributors usually do not make their changes in a single, central repository. Instead, they either create
a publicly accessible clone of their local repository, or submit their changes to others over email as
patches.

CHAPTER 1. COLLABORATING

9

Pushing Changes to a Public Repository
To push your changes to a publicly accessible Git repository, change to the directory with your local
repository and type the following at a shell prompt:

git push remote_repository

Replace remote_repository with the name of the remote repository you want to push your changes to.
Note that the repository from which you originally cloned your local copy is automatically named origin.

Creating Patches from Individual Commits
To create patches from your commits, change to the directory with your local Git repository and type the
following at a shell prompt:

git format-patch remote_repository

Replace remote_repository with the name of the remote repository from which you made your local copy.
This creates a patch for each commit that is not present in this remote repository.

1.1.8. Updating a Repository

To update your local copy of a Git repository and get the latest changes from a remote repository,
change to the directory with your local Git repository and type the following at a shell prompt:

git fetch remote_repository

Replace remote_repository with the name of the remote repository. This command fetches information
about the current status of the remote repository, allowing you to review these changes before applying
them to your local copy. To proceed and merge these changes with what you have in your local Git
repository, type:

git merge remote_repository

Alternatively, you can perform both these steps at the same time by using the following command
instead:

git pull remote_repository

1.1.9. Additional Resources

A detailed description of Git and its features is beyond the scope of this book. For more information
about this revision control system, see the resources listed below.

Installed Documentation

gittutorial(7) — The manual page named gittutorial provides a brief introduction to Git and its
usage.

gittutorial-2(7) — The manual page named gittutorial-2 provides the second part of a brief
introduction to Git and its usage.

Git User's Manual — HTML documentation for Git is located at /usr/share/doc/git-
1.7.1/user-manual.html.

Developer Guide

10

Online Documentation

Pro Git — The online version of the Pro Git book provides a detailed description of Git, its
concepts and its usage.

1.2. APACHE SUBVERSION (SVN)

Apache Subversion, commonly abbreviated as SVN, is a centralized version control system with a
client-server architecture. It is a successor to the older Concurrent Versions System (CVS), preserves the
same development model, and addresses problems often encountered with CVS.

1.2.1. Installing and Configuring Subversion

Installing the subversion Package
In Red Hat Enterprise Linux 6, Subversion is provided by the subversion package. To install the
subversion package and all its dependencies on your system, type the following at a shell prompt as
root:

yum install subversion

This installs a command line Subversion client, a Subversion server, and other related tools to the
system.

Setting Up the Default Editor
When using Subversion on the command line, certain commands such as svn import or svn commit
require the user to write a short log message. To determine which text editor to start, the svn client
application first reads the contents of the environment variable $SVN_EDITOR, then reads more general
environment variables $VISUAL and $EDITOR, and if none of these is set, it reports an error.

To persistently change the value of the $SVN_EDITOR environment variable, run the following command:

echo "export SVN_EDITOR=command" >> ~/.bashrc

This adds the export SVN_EDITOR=command line to your ~/.bashrc file. Replace command with a
command that runs the editor of your choice (for example, emacs). Note that for this change to take
effect in the current shell session, you must execute the commands in ~/.bashrc by typing the
following at a shell prompt:

. ~/.bashrc

Example 1.3. Setting up the default text editor

To configure the Subversion client to use Emacs as a text editor, type:

~]$ echo "export SVN_EDITOR=emacs" >> ~/.bashrc
~]$. ~/.bashrc

1.2.2. Creating a New Repository

A Subversion repository is a central place to store files and directories that are under revision control, as
well as additional data such as a complete history of changes or information about who made those

CHAPTER 1. COLLABORATING

11

http://git-scm.com/book

changes and when. A typical Subversion repository stores multiple projects in separate subdirectories.
When publicly accessible, it allows several developers to create a working copy of any of the
subdirectories, make changes, and share these changes with others by committing them back to the
repository.

Initializing an Empty Repository
To create a new, empty Subversion repository in a directory of your choice, run the following command:

svnadmin create path

Note that path is an absolute or relative path to the directory in which you want to store the repository (for
example, /var/svn/). If the directory does not exist, svnadmin create creates it for you.

Example 1.4. Initializing a new Subversion repository

To create an empty Subversion repository in the ~/svn/ directory, type:

~]$ svnadmin create svn

Importing Data to a Repository
To put an existing project under revision control, run the following command:

svn import local_path svn_repository/remote_path [-m "commit message"]

Note that local_path is an absolute or relative path to the directory in which you keep the project (use .
for the current working directory), svn_repository is a URL of the Subversion repository, and remote_path
is the target directory in the Subversion repository (for example, project/trunk).

Example 1.5. Importing a project to a Subversion repository

Imagine that the directory with your project has the following contents:

~]$ ls myproject
AUTHORS doc INSTALL LICENSE Makefile README src TODO

Also imagine that you have an empty Subversion repository in ~/svn/ (in this example,
/home/john/svn/). To import the project under project/trunk in this repository, type:

~]$ svn import myproject file:///home/john/svn/project/trunk -m "Initial
import."
Adding project/AUTHORS
Adding project/doc
Adding project/doc/index.html
Adding project/INSTALL
Adding project/src
...

1.2.3. Checking Out a Working Copy

To check out a working copy of a project in a Subversion repository, run the following command:

Developer Guide

12

svn checkout svn_repository/remote_path [directory]

This creates a new directory called directory with a working copy of a project in it. Note that
svn_repository is a URL of the Subversion repository and remote_path is the subdirectory in which the
project is stored.

Example 1.6. Checking out a working copy

Imagine that you have a Subversion repository in the ~/svn/ directory (in this case,
/home/john/svn/) and that this repository contains the latest version of a project in the
project/trunk subdirectory. To check out a working copy of this project, type:

~]$ svn checkout svn:///home/john/svn/project/trunk project
A project/AUTHORS
A project/doc
A project/doc/index.html
A project/INSTALL
A project/src
...

1.2.4. Adding, Renaming, and Deleting Files

Adding a File or Directory
To add an existing file to a Subversion repository and put it under revision control, change to the directory
with its working copy and run the following command:

svn add file…

Similarly, to add a directory and all files that are in it, type:

svn add directory…

This schedules the files and directories for addition to the Subversion repository. To proceed and actually
add this content to the repository, run the svn commit command as described in Section 1.2.6,
“Committing Changes”.

Example 1.7. Adding a file to a Subversion repository

Imagine that the directory with your working copy of a Subversion repository has the following
contents:

project]$ ls
AUTHORS ChangeLog doc INSTALL LICENSE Makefile README src TODO

With the exception of ChangeLog, all files and directories within this directory are already under
revision control. To schedule this file for addition to the Subversion repository, type:

project]$ svn add ChangeLog
A ChangeLog

CHAPTER 1. COLLABORATING

13

Renaming a File or Directory
To rename an existing file or directory in a Subversion repository, change to the directory with its working
copy and run the following command:

svn move old_name new_name

This creates a duplicate of the original file or directory, schedules it for addition, and automatically
deletes the original. To proceed and actually rename the content in the Subversion repository, run the
svn commit command as described in Section 1.2.6, “Committing Changes”.

Example 1.8. Renaming a file in a Subversion repository

Imagine that the directory with your working copy of a Subversion repository has the following
contents:

project]$ ls
AUTHORS ChangeLog doc INSTALL LICENSE Makefile README src TODO

All files in this directory are under revision control. To schedule the LICENSE file for renaming to
COPYING, type:

project]$ svn move LICENSE COPYING
A COPYING
D LICENSE

Note that svn move automatically renames the file in your working copy:

project]$ ls
AUTHORS ChangeLog COPYING doc INSTALL Makefile README src TODO

Deleting a File or Directory
To remove a file from a Subversion repository, change to the directory with its working copy and run the
following command:

svn delete file…

Similarly, to remove a directory and all files that are in it, type:

svn delete directory…

This schedules the files and directories for removal from the Subversion repository. To proceed and
actually remove this content from the repository, run the svn commit command as described in
Section 1.2.6, “Committing Changes”.

Example 1.9. Deleting a file from a Subversion repository

Imagine that the directory with your working copy of a Subversion repository has the following
contents:

project]$ ls
AUTHORS ChangeLog COPYING doc INSTALL Makefile README src TODO

Developer Guide

14

All files in this directory are under revision control. To schedule the TODO file for removal from the
SVN repository, type:

project]$ svn delete TODO
D TODO

Note that svn delete automatically deletes the file from your working copy:

project]$ ls
AUTHORS ChangeLog COPYING doc INSTALL Makefile README src

1.2.5. Viewing Changes

Viewing the Status
To determine the current status of a working copy, change to the directory with the working copy and run
the following command:

svn status

This displays information about all changes to the working copy (A for a file that is scheduled for
addition, D for a file that is scheduled for removal, M for a file that contains local changes, C for a file with
unresolved conflicts, ? for a file that is not under revision control).

Example 1.10. Viewing the status of a working copy

Imagine that the directory with your working copy of a Subversion repository has the following
contents:

project]$ ls
AUTHORS ChangeLog COPYING doc INSTALL Makefile README src

With the exception of ChangeLog, which is scheduled for addition to the Subversion repository, all
files and directories within this directory are already under revision control. The TODO file, which is
also under revision control, has been scheduled for removal and is no longer present in the working
copy. The LICENSE file has been renamed to COPYING, and Makefile contains local changes. To
display the status of such a working copy, type:

project]$ svn status
D LICENSE
D TODO
A ChangeLog
A + COPYING
M Makefile

Viewing Differences
To view differences between a working copy and the checked out content, change to the directory with
the working copy and run the following command:

svn diff [file…]

CHAPTER 1. COLLABORATING

15

This displays changes to all files in the working copy. If you are only interested in changes to a particular
file, supply the file name on the command line.

Example 1.11. Viewing changes to a working copy

Imagine that the directory with your working copy of a Subversion repository has the following
contents:

project]$ ls
AUTHORS ChangeLog COPYING CVS doc INSTALL Makefile README src

All files in this directory are under revision control and Makefile contains local changes. To view
these changes, type:

project]$ svn diff Makefile
Index: Makefile
===
--- Makefile (revision 1)
+++ Makefile (working copy)
@@ -153,7 +153,7 @@
 -rmdir $(man1dir)

clean:
- -rm -f $(MAN1)
+ -rm -f $(MAN1) $(MAN7)

%.1: %.pl
 $(POD2MAN) --section=1 --release="Version $(VERSION)" \

1.2.6. Committing Changes

To share your changes with others and commit them to a Subversion repository, change to the directory
with its working copy and run the following command:

svn commit [-m "commit message"]

Note that unless you specify the commit message on the command line, Subversion opens an external
text editor for you to write it. For information on how to determine which editor to start, see Section 1.2.1,
“Installing and Configuring Subversion”.

Example 1.12. Committing changes to a Subversion repository

Imagine that the directory with your working copy of a Subversion repository has the following
contents:

project]$ ls
AUTHORS ChangeLog COPYING doc INSTALL Makefile README src

In this working copy, ChangeLog is scheduled for addition to the Subversion repository, Makefile
already is under revision control and contains local changes, and the TODO file, which is also under
revision control, has been scheduled for removal and is no longer present in the working copy.

Developer Guide

16

Additionally, the LICENSE file has been renamed to COPYING. To commit these changes to the
Subversion repository, type:

project]$ svn commit -m "Updated the makefile."
Adding COPYING
Adding ChangeLog
Deleting LICENSE
Sending Makefile
Deleting TODO
Transmitting file data ..
Committed revision 2.

1.2.7. Updating a Working Copy

To update a working copy and get the latest changes from a Subversion repository, change to the
directory with the working copy and run the following command:

svn update

Example 1.13. Updating a working copy

Imagine that the directory with your working copy of a Subversion repository has the following
contents:

project]$ ls
AUTHORS doc INSTALL LICENSE Makefile README src TODO

Also imagine that somebody recently added ChangeLog to the repository, removed the TODO file
from it, changed the name of LICENSE to COPYING, and made some changes to Makefile. To
update this working copy, type:

myproject]$ svn update
D LICENSE
D TODO
A COPYING
A Changelog
M Makefile
Updated to revision 2.

1.2.8. Additional Resources

A detailed description of all supported features is beyond the scope of this book. For more information,
see the resources listed below.

Installed Documentation

svn help — The output of the svn help command provides detailed information on the svn
usage.

svnadmin help — The output of the svnadmin help command provides detailed
information on the svnadmin usage.

CHAPTER 1. COLLABORATING

17

Online Documentation

Version Control with Subversion — The official Subversion website refers to the Version Control
with Subversion manual, which provides an in-depth description of Subversion, its administration
and its usage.

1.3. CONCURRENT VERSIONS SYSTEM (CVS)

Concurrent Versions System, commonly abbreviated as CVS, is a centralized version control system
with a client-server architecture. It is a successor to the older Revision Control System (RCS), and allows
multiple developers to cooperate on the same project while keeping track of every change made to the
files that are under revision control.

1.3.1. Installing and Configuring CVS

Installing the cvs Package
In Red Hat Enterprise Linux 6, CVS is provided by the cvs package. To install the cvs package and all its
dependencies on your system, type the following at a shell prompt as root:

yum install cvs

This installs a command line CVS client, a CVS server, and other related tools to the system.

Setting Up the Default Editor
When using CVS on the command line, certain commands such as cvs import or cvs commit
require the user to write a short log message. To determine which text editor to start, the cvs client
application first reads the contents of the environment variable $CVSEDITOR, then reads the more
general environment variable $EDITOR, and if none of these is set, it starts vi.

To persistently change the value of the $CVSEDITOR environment variable, run the following command:

echo "export CVSEDITOR=command" >> ~/.bashrc

This adds the export CVSEDITOR=command line to your ~/.bashrc file. Replace command with a
command that runs the editor of your choice (for example, emacs). Note that for this change to take
effect in the current shell session, you must execute the commands in ~/.bashrc by typing the
following at a shell prompt:

. ~/.bashrc

Example 1.14. Setting up the default text editor

To configure the CVS client to use Emacs as a text editor, type:

~]$ echo "export CVSEDITOR=emacs" >> ~/.bashrc
~]$. ~/.bashrc

1.3.2. Creating a New Repository

A CVS repository is a central place to store files and directories that are under revision control, as well as
additional data such as a complete history of changes or information about who made those changes

Developer Guide

18

http://svnbook.red-bean.com/

and when. A typical CVS repository stores multiple projects in separate subdirectories called modules.
When publicly accessible, it allows several developers to create a working copy of any of the modules,
make changes, and share these changes with others by committing them back to the repository.

Initializing an Empty Repository
To create a new, empty CVS repository in a directory of your choice, run the following command:

cvs -d path init

Note that path must be an absolute path to the directory in which you want to store the repository (for
example, /var/cvs/). Alternatively, you can specify this path by changing the value of the $CVSROOT
environment variable:

export CVSROOT=path

This allows you to omit the path from cvs init and other CVS-related commands:

cvs init

Example 1.15. Initializing a new CVS repository

To create an empty CVS repository in the ~/cvs/ directory, type:

~]$ export CVSROOT=~/cvs
~]$ cvs init

Importing Data to a Repository
To put an existing project under revision control, change to the directory in which the project is stored
and run the following command:

cvs [-d cvs_repository] import [-m "commit message"] module vendor_tag
release_tag

Note that cvs_repository is a path to the CVS repository, module is the subdirectory in which you want to
import the project (such as project), and vendor_tag and release_tag are vendor and release tags.

Example 1.16. Importing a project to a CVS repository

Imagine that the directory with your project has the following contents:

~]$ ls myproject
AUTHORS doc INSTALL LICENSE Makefile README src TODO

Also imagine that you have an empty CVS repository in ~/cvs/. To import the project under
project in this repository with vendor tag mycompany and release tag init, type:

myproject]$ export CVSROOT=~/cvs
myproject]$ cvs import -m "Initial import." project mycompany init
N project/Makefile
N project/AUTHORS
N project/LICENSE

CHAPTER 1. COLLABORATING

19

N project/TODO
N project/INSTALL
...

1.3.3. Checking Out a Working Copy

To check out a working copy of a project in a CVS repository, run the following command:

cvs -d cvs_repository checkout module

This creates a new directory called module with a working copy of a project in it. Note that cvs_repository
is a URL of the CVS repository and module is the subdirectory in which the project is stored (such as
project). Alternatively, you can set the $CVSROOT environment variable as follows:

export CVSROOT=cvs_repository

Then you can use the cvs checkout command without the -d option:

cvs checkout module

Example 1.17. Checking out a working copy

Imagine that you have a CVS repository in ~/cvs/ and that this repository contains a module named
project. To check out a working copy of this module, type:

~]$ export CVSROOT=~/cvs
~]$ cvs checkout project
cvs checkout: Updating project
U project/AUTHORS
U project/INSTALL
U project/LICENSE
U project/Makefile
U project/TODO

1.3.4. Adding and Deleting Files

Adding a File
To add an existing file to a CVS repository and put it under revision control, change to the directory with
its working copy and run the following command:

cvs add file…

This schedules the file for addition to the CVS repository. To proceed and actually add the file to the
repository, run the cvs commit command as described in Section 1.3.6, “Committing Changes”.

Example 1.18. Adding a file to a CVS repository

Imagine that the directory with your working copy of a CVS repository has the following contents:

Developer Guide

20

project]$ ls
AUTHORS ChangeLog CVS doc INSTALL LICENSE Makefile README src
TODO

With the exception of ChangeLog, all files and directories within this directory are already under
revision control. To schedule this file for addition to the CVS repository, type:

project]$ cvs add ChangeLog
cvs add: scheduling file `ChangeLog' for addition
cvs add: use 'cvs commit' to add this file permanently

Deleting a File
To remove a file from a CVS repository, change to the directory with its working copy and delete it
locally:

rm file…

Then schedule this file for removal by using the following command:

cvs remove file…

To proceed and actually remove the file from the repository, run the cvs commit command as
described in Section 1.3.6, “Committing Changes”.

Example 1.19. Removing a file from a CVS repository

Imagine that the directory with your working copy of a CVS repository has the following contents:

project]$ ls
AUTHORS ChangeLog CVS doc INSTALL LICENSE Makefile README src
TODO

All files in this directory are under revision control. To schedule the TODO file for removal from the
CVS repository, type:

project]$ rm TODO
project]$ cvs remove TODO
cvs remove: scheduling `TODO' for removal
cvs remove: use 'cvs commit' to remove this file permanently

1.3.5. Viewing Changes

Viewing the Status
To determine the current status of a working copy, change to the directory with the working copy and run
the following command:

cvs status

This displays detailed information about each file that is under revision control, including its current

CHAPTER 1. COLLABORATING

21

status (such as Up-to-date, Locally Added, Locally Removed, or Locally Modified) and
revision. However, if you are only interested in what has changed in your working copy, you can simplify
the output by typing the following at a shell prompt:

cvs status 2>/dev/null | grep Status: | grep -v Up-to-date

Example 1.20. Viewing the status of a working copy

Imagine that the directory with your working copy of a CVS repository has the following contents:

project]$ ls
AUTHORS ChangeLog CVS doc INSTALL LICENSE Makefile README src

With the exception of ChangeLog, which is scheduled for addition to the CVS repository, all files and
directories within this directory are already under revision control. The TODO file, which is also under
revision control, has been scheduled for removal and is no longer present in the working copy.
Finally, Makefile contains local changes. To display the status of such a working copy, type:

project]$ cvs status 2>/dev/null | grep Status: | grep -v Up-to-date
File: ChangeLog Status: Locally Added
File: Makefile Status: Locally Modified
File: no file TODO Status: Locally Removed

Viewing Differences
To view differences between a working copy and the checked out content, change to the directory with
the working copy and run the following command:

cvs diff [file…]

This displays changes to all files in the working copy. If you are only interested in changes to a particular
file, supply the file name on the command line.

Example 1.21. Viewing changes to a working copy

Imagine that the directory with your working copy of a CVS repository has the following contents:

project]$ ls
AUTHORS ChangeLog CVS doc INSTALL LICENSE Makefile README src

All files in this directory are under revision control and Makefile contains local changes. To view
these changes, type:

project]$ cvs diff
cvs diff: Diffing .
cvs diff: ChangeLog is a new entry, no comparison available
Index: Makefile
===
RCS file: /home/john/cvs/project/Makefile,v
retrieving revision 1.1.1.1
diff -r1.1.1.1 Makefile
156c156
< -rm -f $(MAN1)

Developer Guide

22

> -rm -f $(MAN1) $(MAN7)
cvs diff: TODO was removed, no comparison available
cvs diff: Diffing doc
...

1.3.6. Committing Changes

To share your changes with others and commit them to a CVS repository, change to the directory with its
working copy and run the following command:

cvs commit [-m "commit message"]

Note that unless you specify the commit message on the command line, CVS opens an external text
editor (vi by default) for you to write it. For information on how to determine which editor to start, see
Section 1.3.1, “Installing and Configuring CVS”.

Example 1.22. Committing changes to a CVS repository

Imagine that the directory with your working copy of a CVS repository has the following contents:

project]$ ls
AUTHORS ChangeLog CVS doc INSTALL LICENSE Makefile README src

In this working copy, ChangeLog is scheduled for addition to the CVS repository, Makefile already
is under revision control and contains local changes, and the TODO file, which is also under revision
control, has been scheduled for removal and is no longer present in the working copy. To commit
these changes to the CVS repository, type:

project]$ cvs commit -m "Updated the makefile."
cvs commit: Examining .
cvs commit: Examining doc
...
RCS file: /home/john/cvsroot/project/ChangeLog,v
done
Checking in ChangeLog;
/home/john/cvsroot/project/ChangeLog,v <-- ChangeLog
initial revision: 1.1
done
Checking in Makefile;
/home/john/cvsroot/project/Makefile,v <-- Makefile
new revision: 1.2; previous revision: 1.1
done
Removing TODO;
/home/john/cvsroot/project/TODO,v <-- TODO
new revision: delete; previous revision: 1.1.1.1
done

1.3.7. Updating a Working Copy

CHAPTER 1. COLLABORATING

23

To update a working copy and get the latest changes from a CVS repository, change to the directory with
the working copy and run the following command:

cvs update

Example 1.23. Updating a working copy

Imagine that the directory with your working copy of a CVS repository has the following contents:

project]$ ls
AUTHORS CVS doc INSTALL LICENSE Makefile README src TODO

Also imagine that somebody recently added ChangeLog to the repository, removed the TODO file
from it, and made some changes to Makefile. To update this working copy, type:

myproject]$ cvs update
cvs update: Updating .
U ChangeLog
U Makefile
cvs update: TODO is no longer in the repository
cvs update: Updating doc
cvs update: Updating src

1.3.8. Additional Resources

A detailed description of all supported features is beyond the scope of this book. For more information,
see the resources listed below.

Installed Documentation

cvs(1) — The manual page for the cvs client program provides detailed information on its usage.

Developer Guide

24

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT
Red Hat Enterprise Linux 6 supports the development of custom applications in a wide variety of
programming languages using proven, industrial-strength tools. This chapter describes the runtime
support libraries provided in Red Hat Enterprise Linux 6.

2.1. COMPATIBILITY

Compatibility specifies the portability of binary objects and source code across different instances of a
computer operating environment. Officially, Red Hat supports current release and two consecutive prior
versions. This means that applications built on Red Hat Enterprise Linux 4 and Red Hat Enterprise Linux
5 will continue to run on Red Hat Enterprise Linux 6 as long as they comply with Red Hat guidelines
(using the symbols that have been white-listed, for example).

Red Hat understands that as an enterprise platform, customers rely on long-term deployment of their
applications. For this reason, applications built against C/C++ libraries with the help of compatibility
libraries continue to be supported for ten years.

There are two types of compatibility:

Source Compatibility

Source compatibility specifies that code will compile and execute in a consistent and predictable way
across different instances of the operating environment. This type of compatibility is defined by
conformance with specified Application Programming Interfaces (APIs).

Binary Compatibility

Binary Compatibility specifies that compiled binaries in the form of executables and Dynamic Shared
Objects (DSOs) will run correctly across different instances of the operating environment. This type of
compatibility is defined by conformance with specified Application Binary Interfaces (ABIs).

NOTE

Compilation of code using -devel packages from the Optional channel is not supported by
Red Hat because libraries in the Optional channel are only provided for internal use by
the operating system. They are not intended for general application development.

Among other things, this means that security issues in these libraries are only addressed
if base operating system components provided by Red Hat are affected. It also means
that you may not be able to easily determine whether the built application only uses
libraries supported for use by non-Red Hat applications. Therefore, it is recommended to
build software on systems that do not have packages from Optional channels installed.

For further information regarding this and all levels of compatibility between core and non-core libraries,
see Red Hat Enterprise Linux Life Cycle and the general Red Hat Enterprise Linux Application
Compatibility Policies.

2.1.1. Static Linking

Static linking is emphatically discouraged for all Red Hat Enterprise Linux releases. Static linking causes
far more problems than it solves, and should be avoided at all costs.

The main drawback of static linking is that it is only guaranteed to work on the system on which it was

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT

25

https://access.redhat.com/support/policy/updates/errata/
https://access.redhat.com/solutions/5154

built, and even then only until the next release of glibc or libstdc++ (in the case of C++). There is no
forward or backward compatibility with a static build. Furthermore, any security fixes (or general-purpose
fixes) in subsequent updates to the libraries will not be available unless the affected statically linked
executables are re-linked.

A few more reasons why static linking should be avoided are:

Larger memory footprint.

Slower application startup time.

Reduced glibc features with static linking.

Security measures like load address randomization cannot be used.

Dynamic loading of shared objects outside of glibc is not supported.

NOTE

The compat-glibc package is included with Red Hat Enterprise Linux 6, but it is not a
runtime package and therefore not required for running anything. It is solely a
development package, containing header files and dummy libraries for linking. This allows
compiling and linking packages to run in older Red Hat Enterprise Linux versions (using
compat-gcc-* against those headers and libraries). Running rpm -qpi compat-
glibc-* will provide some information on how to use this package.

2.2. LIBRARY AND RUNTIME DETAILS

2.2.1. The GNU C++ Standard Library

The libstdc++ package contains the GNU C++ Standard Library, which is an ongoing project to
implement the ISO 14882 Standard C++ library.

Installing the libstdc++ package will provide just enough to satisfy link dependencies (that is, only shared
library files). To make full use of all available libraries and header files for C++ development, you must
install libstdc++-devel as well. The libstdc++-devel package also contains a GNU-specific
implementation of the Standard Template Library (STL).

For Red Hat Enterprise Linux 4, 5, and 6, the C++ language and runtime implementation has remained
stable, and thus no compatibility libraries are required for libstdc++.

2.2.1.1. Additional information

To use the man pages for library components, install the libstdc++-docs package. This will provide man
page information for nearly all resources provided by the library; for example, to view information about
the vector container, use its fully-qualified component name: man std::vector.

The libstdc++-docs package also provides manuals and reference information in HTML form in the
following directory: /usr/share/doc/libstdc++-docs-version/html/spine.html.

2.2.2. Boost

The boost package contains a large number of free peer-reviewed portable C++ source libraries. These
libraries are suitable for tasks such as portable file-system access and time or date abstraction,

Developer Guide

26

serialization, unit testing, thread creation and multi-process synchronization, parsing, graphing, regular
expression manipulation, and many others.

Installing the boost package will provide just enough libraries to satisfy link dependencies (that is, only
shared library files). To make full use of all available libraries and header files for C++ development, you
must install boost-devel as well.

The boost package is actually a meta-package, containing many library sub-packages. These sub-
packages can also be installed individually to provide finer inter-package dependency tracking.

The meta-package does not include dependencies for packages for static linking or packages that
depend on the underlying Message Passing Interface (MPI) support.

MPI support is provided in two forms: one for the default Open MPI implementation (package boost-
openmpi) and another for the alternate MPICH2 implementation (package boost-mpich2). The selection
of the underlying MPI library in use is up to the user and depends on specific hardware details and user
preferences. Please note that these packages can be installed in parallel because installed files have
unique directory locations.

If static linkage cannot be avoided, the boost-static package will install the necessary static libraries.
Both thread-enabled and single-threaded libraries are provided.

2.2.2.1. Additional Information

The boost-doc package provides manuals and reference information in HTML form located in the
following directory: /usr/share/doc/boost-doc-version/index.html.

The main site for the development of Boost is http://boost.org.

2.2.3. Qt

The qt package provides the Qt (pronounced "cute") cross-platform application development framework
used in the development of GUI programs. Aside from being a popular "widget toolkit", Qt is also used
for developing non-GUI programs such as console tools and servers. Qt was used in the development of
notable projects such as Google Earth, KDE, Opera, OPIE, VoxOx, Skype, VLC media player and
VirtualBox. It is produced by Nokia's Qt Development Frameworks division, which came into being after
Nokia's acquisition of the Norwegian company Trolltech, the original producer of Qt, on June 17, 2008.

Qt uses standard C++ but makes extensive use of a special pre-processor called the Meta Object
Compiler (MOC) to enrich the language. Qt can also be used in other programming languages via
language bindings. It runs on all major platforms and has extensive internationalization support. Non-GUI
Qt features include SQL database access, XML parsing, thread management, network support, and a
unified cross-platform API for file handling.

Distributed under the terms of the GNU Lesser General Public License (among others), Qt is free and
open source software. The Red Hat Enterprise Linux 6 version of Qt supports a wide range of compilers,
including the GCC C++ compiler and the Visual Studio suite.

2.2.3.1. Qt Updates

Some of the improvements the Red Hat Enterprise Linux 6 version of Qt include:

Advanced user experience

Advanced Graphics Effects: options for opacity, drop-shadows, blur, colorization, and
other similar effects

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT

27

http://boost.org

Animation and State Machine: create simple or complex animations without the hassle of
managing complex code

Gesture and multi-touch support

Support for new platforms

Windows 7, Mac OSX 10.6, and other desktop platforms are now supported

Added support for mobile development; Qt is optimized for the upcoming Maemo 6 platform,
and will soon be ported to Maemo 5. In addition, Qt now supports the Symbian platform, with
integration for the S60 framework.

Added support for Real-Time Operating Systems such as QNX and VxWorks

Improved performance, featuring added support for hardware-accelerated rendering (along with
other rendering updates)

Updated cross-platform IDE

For more details on updates to Qt included in Red Hat Enterprise Linux 6, see the following links:

http://doc.qt.nokia.com/4.6/qt4-6-intro.html

http://doc.qt.nokia.com/4.6/qt4-intro.html

2.2.3.2. Qt Creator

Qt Creator is a cross-platform IDE tailored to the requirements of Qt developers. It includes the following
graphical tools:

An advanced C++ code editor

Integrated GUI layout and forms designer

Project and build management tools

Integrated, context-sensitive help system

Visual debugger

Rapid code navigation tools

2.2.3.3. Qt Library Documentation

The qt-doc package provides HTML manuals and references located in
/usr/share/doc/qt4/html/. This package also provides the Qt Reference Documentation, which is
an excellent starting point for development within the Qt framework.

You can also install further demos and examples from qt-demos and qt-examples. To get an
overview of the capabilities of the Qt framework, see /usr/bin/qtdemo-qt4 (provided by qt-demos).

2.2.4. KDE Development Framework

Developer Guide

28

http://doc.qt.nokia.com/4.6/qt4-6-intro.html
http://doc.qt.nokia.com/4.6/qt4-intro.html

The kdelibs-devel package provides the KDE libraries, which build on Qt to provide a framework for
making application development easier. The KDE development framework also helps provide
consistency across the KDE desktop environment.

2.2.4.1. KDE4 Architecture

The KDE development framework's architecture in Red Hat Enterprise Linux 6 uses KDE4, which is built
on the following technologies:

Plasma

Plasma replaces KDesktop in KDE4. Its implementation is based on the Qt Graphics View
Framework, which was introduced in Qt 4.2. For more information about Plasma, see
http://techbase.kde.org/Development/Architecture/KDE4/Plasma.

Sonnet

Sonnet is a multilingual spell-checking application that supports automatic language detection,
primary/backup dictionaries, and other useful features. It replaces kspell2 in KDE4.

KIO

The KIO library provides a framework for network-transparent file handling, allowing users to easily
access files through network-transparent protocols. It also helps provides standard file dialogs.

KJS/KHTML

KJS and KHTML are fully-fledged JavaScript and HTML engines used by different applications native
to KDE4 (such as konqueror).

Solid

Solid is a hardware and network awareness framework that allows you to develop applications with
hardware interaction features. Its comprehensive API provides the necessary abstraction to support
cross-platform application development. For more information, see
http://techbase.kde.org/Development/Architecture/KDE4/Solid.

Phonon

Phonon is a multimedia framework that helps you develop applications with multimedia
functionalities. It facilitates the usage of media capabilities within KDE. For more information, see
http://techbase.kde.org/Development/Architecture/KDE4/Phonon.

Telepathy

Telepathy provides a real-time communication and collaboration framework within KDE4. Its primary
function is to tighten integration between different components within KDE. For a brief overview on
the project, see http://community.kde.org/Real-Time_Communication_and_Collaboration.

Akonadi

Akonadi provides a framework for centralizing storage of Parallel Infrastructure Management (PIM)
components. For more information, see
http://techbase.kde.org/Development/Architecture/KDE4/Akonadi.

Online Help within KDE4

KDE4 also features an easy-to-use Qt-based framework for adding online help capabilities to
applications. Such capabilities include tooltips, hover-help information, and khelpcenter manuals.

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT

29

http://techbase.kde.org/Development/Architecture/KDE4/Plasma
http://techbase.kde.org/Development/Architecture/KDE4/Solid
http://techbase.kde.org/Development/Architecture/KDE4/Phonon
http://community.kde.org/Real-Time_Communication_and_Collaboration
http://techbase.kde.org/Development/Architecture/KDE4/Akonadi

For a brief overview on online help within KDE4, see
http://techbase.kde.org/Development/Architecture/KDE4/Providing_Online_Help.

KXMLGUI

KXMLGUI is a framework for designing user interfaces using XML. This framework allows you to
design UI elements based on "actions" (defined by the developer) without having to revise source
code. For more information, see
https://techbase.kde.org/Development/Architecture/KDE3/XMLGUI_Technology.

Strigi

Strigi is a desktop search daemon compatible with many desktop environments and operating
systems. It uses its own jstream system which allows for deep indexing of files. For more information
on the development of Strigi, see http://www.vandenoever.info/software/strigi/.

KNewStuff2

KNewStuff2 is a collaborative data sharing library used by many KDE4 applications. For more
information, see http://techbase.kde.org/Projects/KNS2.

2.2.4.2. kdelibs Documentation

The kdelibs-apidocs package provides HTML documentation for the KDE development framework
in /usr/share/doc/HTML/en/kdelibs4-apidocs/. The following links also provide details on
KDE-related programming tasks:

http://techbase.kde.org/

http://techbase.kde.org/Development/Tutorials

http://techbase.kde.org/Development/FAQs

http://api.kde.org

2.2.5. GNOME Power Manager

The backend program of the GNOME power management infrastructure is gnome-power-manager. It
was introduced in Red Hat Enterprise Linux 5 and provides a complete and integrated solution to power
management under the GNOME desktop environment. In Red Hat Enterprise Linux 6, the storage-
handling parts of hal was replaced by udisks, and the libgnomeprint stack was replaced by print
support in gtk2.

2.2.5.1. GNOME Power Management Version Guide

This section will detail what versions of gnome-power-management are shipped with the various
Red Hat Enterprise Linux versions.

In general, however, Red Hat Enterprise Linux 4 ships with GNOME 2.8, Red Hat Enterprise Linux 5
ships with GNOME 2.16, and Red Hat Enterprise Linux 6 ships with GNOME 2.28.

Table 2.1. Desktop Components Comparison

Developer Guide

30

http://techbase.kde.org/Development/Architecture/KDE4/Providing_Online_Help
https://techbase.kde.org/Development/Architecture/KDE3/XMLGUI_Technology
http://www.vandenoever.info/software/strigi/
http://techbase.kde.org/Projects/KNS2
http://techbase.kde.org/
http://techbase.kde.org/Development/Tutorials
http://techbase.kde.org/Development/FAQs
http://api.kde.org

Red Hat Enterprise Linux Version

GNOME Power
Management Desktop
Components

4 5 6

hal 0.4.2 0.5.8 0.5.14

udisks N/A N/A 1.0.1

glib2 2.4.7 2.12.3 2.22.5

gtk2 2.4.13 2.10.4 2.18.9

gnome-vfs2 2.8.2 2.16.2 2.24.2

libglade2 2.4.0 2.6.0 2.6.4

libgnomecanvas 2.8.0 2.14.0 2.26.0

gnome-desktop 2.8.0 2.16.0 2.28.2

gnome-media 2.8.0 2.16.1 2.29.91

gnome-python2 2.6.0 2.16.0 2.28.0

libgnome 2.8.0 2.16.0 2.28.0

libgnomeui 2.8.0 2.16.0 2.24.1

libgnomeprint22 2.8.0 2.12.1 N/A

libgnomeprintui22 2.8.0 2.12.1 N/A

gnome-session 2.8.0 2.16.0 2.28.0

gnome-power-manager N/A 2.16.0 2.28.3

gnome-applets 2.8.0 2.16.0 2.28.0

gnome-panel 2.8.1 2.16.1 2.30.2

2.2.5.2. API Changes for glib

There are a number of API changes for glib between versions.

Version 2.4 to Version 2.12

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT

31

Some of the differences in glib between version 2.4 and 2.12 (or between Red Hat Enterprise Linux 4
and Red Hat Enterprise Linux 5) are:

GOption (a command line option parser)

GKeyFile (a key/ini file parser)

GObject toggle references

GMappedFile (a map wrapper)

GSlice (a fast memory allocator)

GBookmarkFile (a bookmark file parser)

Base64 encoding support

Native atomic ops on s390

Updated Unicode support to 5

Atomic reference counting for GObject

Version 2.12 to Version 2.22

Some of the differences in glib between version 2.12 and 2.22 (or between Red Hat Enterprise Linux 5
and Red Hat Enterprise Linux 6) are:

GSequence (a list data structure that is implemented as a balanced tree)

GRegex (a PCRE regex wrapper)

Support for monotonic clocks

XDG user dirs support

GIO (a VFS library to replace gnome-vfs)

GChecksum (support for hash algorithms such as MD5 and SHA-256)

GTest (a test framework)

Support for sockets and network IO in GIO

GHashTable performance improvements

GMarkup performance improvements

Documentation for glib, including indexes of new and deprecated APIs, is shipped in the glib2-devel
package.

2.2.5.3. API Changes for GTK+

There are a number of API changes for GTK+ between versions.

Version 2.4 to Version 2.10

Some of the differences in GTK+ between version 2.4 and 2.10 (or between Red Hat Enterprise Linux 4
and Red Hat Enterprise Linux 5) are:

Developer Guide

32

GtkIconView

GtkAboutDialog

GtkCellView

GtkFileChooserButton

GtkMenuToolButton

GtkAssistant

GtkLinkButton

GtkRecentChooser

GtkCellRendererCombo

GtkCellRendererProgress

GtkCellRendererAccel

GtkCellRendererSpin

GtkStatusIcon

Printing Support

Notebook tab DND support

Ellipsisation support in labels, progressbars and treeviews

Support rotated text

Improved themability

Version 2.10 to Version 2.18

Some of the differences in GTK+ between version 2.10 and 2.18 (or between Red Hat Enterprise Linux 4
and Red Hat Enterprise Linux 5) are:

GtkScaleButton

GtkVolumeButton

GtkInfoBar

GtkBuilder to replace libglade

New tooltips API

GtkMountOperation

gtk_show_uri

Scale marks

Links in labels

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT

33

Support runtime font configuration changes

Use GIO

Documentation for GTK+, including indexes of new and deprecated APIs, is shipped in the gtk2-devel
package.

2.2.6. NSS Shared Databases

The NSS shared database format, introduced on NSS 3.12, is now available in Red Hat
Enterprise Linux 6. This encompasses a number of new features and components to improve access
and usability.

Included, is the NSS certificate and key database which are now sqlite-based and allow for concurrent
access. The legacy key3.db and cert8.db are also replaced with new SQL databases called
key4.db and cert9.db. These new databases will store PKCS #11 token objects, which are the same
as what is currently stored in cert8.db and key3.db.

Having support for shared databases enables a system-wide NSS database. It resides in
/etc/pki/nssdb where globally trusted CA certificates become accessible to all applications. The
command rv = NSS_InitReadWrite("sql:/etc/pki/nssdb"); initializes NSS for applications.
If the application is run with root privileges, then the system-wide database is available on a read and
write basis. However, if it is run with normal user privileges it becomes read only.

Additionally, a PEM PKCS #11 module for NSS allows applications to load into memory certificates and
keys stored in PEM-formatted files (for example, those produced by openssl).

2.2.6.1. Backwards Compatibility

The binary compatibility guarantees made by NSS upstream are preserved in NSS for Red Hat
Enterprise Linux 6. This guarantee states that NSS used in Red Hat Enterprise Linux 6 is backwards
compatible with all older NSS 3.x shared libraries. Therefore, a program linked with an older NSS 3.x
shared library will work without recompiling or relinking, and any applications that restrict the use of NSS
APIs to the NSS Public Functions remain compatible with future versions of the NSS shared libraries.

2.2.6.2. NSS Shared Databases Documentation

Mozilla's wiki page explains the system-wide database rationale in great detail and can be accessed
http://wiki.mozilla.org/NSS_Shared_DB_And_LINUX.

2.2.7. Python

The python package adds support for the Python programming language. This package provides the
object and cached bytecode files required to enable runtime support for basic Python programs. It also
contains the python interpreter and the pydoc documentation tool. The python-devel package
contains the libraries and header files required for developing Python extensions.

Red Hat Enterprise Linux also ships with numerous python-related packages. By convention, the
names of these packages have a python prefix or suffix. Such packages are either library extensions or
python bindings to an existing library. For instance, dbus-python is a Python language binding for D-
Bus.

Note that both cached bytecode (*.pyc/*.pyo files) and compiled extension modules (*.so files) are
incompatible between Python 2.4 (used in Red Hat Enterprise Linux 5) and Python 2.6 (used in Red Hat
Enterprise Linux 6). As such, you will be required to rebuild any extension modules you use that are not

Developer Guide

34

http://wiki.mozilla.org/NSS_Shared_DB_And_LINUX

part of Red Hat Enterprise Linux.

2.2.7.1. Python Updates

The Red Hat Enterprise Linux 6 version of Python features various language changes. For information
about these changes, see the following project resources:

What's New in Python 2.5: http://docs.python.org/whatsnew/2.5.html

What's New in Python 2.6: http://docs.python.org/whatsnew/2.6.html

Both resources also contain advice on porting code developed using previous Python versions.

2.2.7.2. Python Documentation

For more information about Python, see man python. You can also install python-docs, which
provides HTML manuals and references in the following location:

file:///usr/share/doc/python-docs-version/html/index.html

For details on library and language components, use pydoc component_name. For example, pydoc
math will display the following information about the math Python module:

Help on module math:

NAME
 math

FILE
 /usr/lib64/python2.6/lib-dynload/mathmodule.so

DESCRIPTION
 This module is always available. It provides access to the
 mathematical functions defined by the C standard.

FUNCTIONS
 acos[...]
 acos(x)

 Return the arc cosine (measured in radians) of x.

 acosh[...]
 acosh(x)

 Return the hyperbolic arc cosine (measured in radians) of x.

 asin(...)
 asin(x)

 Return the arc sine (measured in radians) of x.

 asinh[...]
 asinh(x)

 Return the hyperbolic arc sine (measured in radians) of x.

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT

35

http://docs.python.org/whatsnew/2.5.html
http://docs.python.org/whatsnew/2.6.html

The main site for the Python development project is hosted on python.org.

2.2.8. Java

The java-1.6.0-openjdk package adds support for the Java programming language. This package
provides the java interpreter. The java-1.6.0-openjdk-devel package contains the javac compiler, as
well as the libraries and header files required for developing Java extensions.

Similarly, Red Hat Enterprise Linux also provides Java 7 via the java-1.7.0-openjdk* packages and
Java 8 via the java-1.8.0-openjdk* packages.

2.2.8.1. Java Documentation

For more information about Java, see man java. Some associated utilities also have their own
respective man pages.

You can also install other Java documentation packages for more details about specific Java utilities. By
convention, such documentation packages have the javadoc suffix (for example, dbus-java-javadoc).

The main site for the development of Java is hosted on http://openjdk.java.net/. The main site for the
library runtime of Java is hosted on http://icedtea.classpath.org.

2.2.9. Ruby

The ruby package provides the Ruby interpreter and adds support for the Ruby programming language.
The ruby-devel package contains the libraries and header files required for developing Ruby
extensions.

Red Hat Enterprise Linux also ships with numerous ruby-related packages. By convention, the names
of these packages have a ruby or rubygem prefix or suffix. Such packages are either library extensions
or Ruby bindings to an existing library.

Examples of ruby-related packages include:

ruby-flexmock

rubygem-flexmock

rubygems

ruby-irb

ruby-libguestfs

ruby-libs

ruby-qpid

ruby-rdoc

ruby-ri

ruby-saslwrapper

ruby-static

Developer Guide

36

http://python.org
http://openjdk.java.net/
http://icedtea.classpath.org

ruby-tcltk

For information about updates to the Ruby language in Red Hat Enterprise Linux 6, see the following
resources:

file:///usr/share/doc/ruby-version/NEWS

file:///usr/share/doc/ruby-version/NEWS-version

2.2.9.1. Ruby Documentation

For more information about Ruby, see man ruby. You can also install ruby-docs, which provides
HTML manuals and references in the following location:

file:///usr/share/doc/ruby-docs-version/

The main site for the development of Ruby is hosted on http://www.ruby-lang.org. The http://www.ruby-
doc.org site also contains Ruby documentation.

2.2.10. Perl

The perl package adds support for the Perl programming language. This package provides Perl core
modules, the Perl Language Interpreter, and the PerlDoc tool.

Red Hat also provides various perl modules in package form; these packages are named with the
perl-* prefix. These modules provide stand-alone applications, language extensions, Perl libraries,
and external library bindings.

2.2.10.1. Perl Updates

For a full list of the differences between the Perl versions see the following documents:

Perl 5.12 Updates

Perl 5.12 has the following updates:

Perl conforms closer to the Unicode standard.

Experimental APIs allow Perl to be extended with "pluggable" keywords and syntax.

Perl will be able to keep accurate time well past the "Y2038" barrier.

Package version numbers can be directly specified in "package" statements.

Perl warns the user about the use of depreciated features by default.

The Perl 5.12 delta can be accessed at http://perldoc.perl.org/perl5120delta.html.

Perl 5.14 Updates

Perl 5.14 has the following updates:

Unicode 6.0 support.

Improved support for IPv6.

Easier auto-configuration of the CPAN client.

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT

37

http://www.ruby-lang.org
http://www.ruby-doc.org
http://perldoc.perl.org/perl5120delta.html

A new /r flag that makes s/// substitutions non-destructive.

New regular expression flags to control whether matched strings should be treated as ASCII
or Unicode.

New package Foo { } syntax.

Less memory and CPU usage than previous releases.

A number of bug fixes.

The Perl 5.14 delta can be accessed at http://perldoc.perl.org/perl5140delta.html.

Perl 5.16 Updates

Perl 5.14 has the following updates:

Support for Unicode 6.1.

$$ variable is writable.

Improved debugger.

Accessing Unicode database files directly is now depreciated; use Unicode::UCD instead.

Version::Requirements is depreciated in favor of CPAN::Meta::Requirements.

A number of perl4 libraries are removed:

abbrev.pl

assert.pl

bigfloat.pl

bigint.pl

bigrat.pl

cacheout.pl

complete.pl

ctime.pl

dotsh.pl

exceptions.pl

fastcwd.pl

flush.pl

getcwd.pl

getopt.pl

getopts.pl

Developer Guide

38

http://perldoc.perl.org/perl5140delta.html

hostname.pl

importenv.pl

lib/find{,depth}.pl

look.pl

newgetopt.pl

open2.pl

open3.pl

pwd.pl

hellwords.pl

stat.pl

tainted.pl

termcap.pl

timelocal.pl

The Perl 5.16 delta can be accessed at http://perldoc.perl.org/perl5160delta.html.

2.2.10.2. Installation

Perl's capabilities can be extended by installing additional modules. These modules come in the
following forms:

Official Red Hat RPM

The official module packages can be installed with yum or rpm from the Red Hat Enterprise Linux
repositories. They are installed to /usr/share/perl5 and either /usr/lib/perl5 for 32bit
architectures or /usr/lib64/perl5 for 64bit architectures.

Modules from CPAN

Use the cpan tool provided by the perl-CPAN package to install modules directly from the CPAN
website. They are installed to /usr/local/share/perl5 and either /usr/local/lib/perl5 for
32bit architectures or /usr/local/lib64/perl5 for 64bit architectures.

Third party module package

Third party modules are installed to /usr/share/perl5/vendor_perl and either
/usr/lib/perl5/vendor_perl for 32bit architectures or /usr/lib64/perl5/vendor_perl
for 64bit architectures.

Custom module package / manually installed module

These should be placed in the same directories as third-party modules. That is,
/usr/share/perl5/vendor_perl and either /usr/lib/perl5/vendor_perl for 32bit
architectures or /usr/lib64/perl5/vendor_perl for 64bit architectures.

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT

39

http://perldoc.perl.org/perl5160delta.html

WARNING

If an official version of a module is already installed, installing its non-official version
can create conflicts in the /usr/share/man directory.

2.2.10.3. Perl Documentation

The perldoc tool provides documentation on language and core modules. To learn more about a
module, use perldoc module_name. For example, perldoc CGI will display the following
information about the CGI core module:

 NAME
 CGI - Handle Common Gateway Interface requests and responses

 SYNOPSIS
 use CGI;

 my $q = CGI->new;

 [...]

 DESCRIPTION
 CGI.pm is a stable, complete and mature solution for processing and
preparing HTTP requests and responses. Major features including
processing form submissions, file uploads, reading and writing cookies,
query string generation and manipulation, and processing and preparing
HTTP headers. Some HTML generation utilities are included as well.

 [...]

 PROGRAMMING STYLE
 There are two styles of programming with CGI.pm, an object-oriented
style and a function-oriented style. In the object-oriented style you
create one or more CGI objects and then use object methods to create the
various elements of the page. Each CGI object starts out with the list of
named parameters that were passed to your CGI script by the server.

 [...]

For details on Perl functions, use perldoc -f function_name . For example, perldoc -f split wil
display the following information about the split function:

 split /PATTERN/,EXPR,LIMIT
 split /PATTERN/,EXPR
 split /PATTERN/
 split Splits the string EXPR into a list of strings and returns
that list. By default, empty leading fields are preserved, and empty
trailing ones are deleted. (If all fields are empty, they are considered
to be trailing.)

Developer Guide

40

 In scalar context, returns the number of fields found. In scalar and
void context it splits into the @_ array. Use of split in scalar and void
context is deprecated, however, because it clobbers your subroutine
arguments.

 If EXPR is omitted, splits the $_ string. If PATTERN is also
omitted, splits on whitespace (after skipping any leading whitespace).
Anything matching PATTERN is taken to be a delimiter separating the
fields. (Note that the delimiter may be longer than one character.)

 [...]

Current PerlDoc documentation can be found on perldoc.perl.org.

Core and external modules are documented on the Comprehensive Perl Archive Network.

CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT

41

http://perldoc.perl.org/
http://www.cpan.org/

CHAPTER 3. COMPILING AND BUILDING
Red Hat Enterprise Linux 6 includes many packages used for software development, including tools for
compiling and building source code. This chapter discusses several of these packages and tools used to
compile source code.

3.1. GNU COMPILER COLLECTION (GCC)

The GNU Compiler Collection (GCC) is a set of tools for compiling a variety of programming languages
(including C, C++, ObjectiveC, ObjectiveC++, Fortran, and Ada) into highly optimized machine code.
These tools include various compilers (like gcc and g++), run-time libraries (like libgcc, libstdc++,
libgfortran, and libgomp), and miscellaneous other utilities.

3.1.1. Language Compatibility

Application Binary Interfaces specified by the GNU C, C++, Fortran and Java Compiler include:

Calling conventions. These specify how arguments are passed to functions and how results are
returned from functions.

Register usage conventions. These specify how processor registers are allocated and used.

Object file formats. These specify the representation of binary object code.

Size, layout, and alignment of data types. These specify how data is laid out in memory.

Interfaces provided by the runtime environment. Where the documented semantics do not
change from one version to another they must be kept available and use the same name at all
times.

The default system C compiler included with Red Hat Enterprise Linux 6 is largely compatible with the
C99 ABI standard. Deviations from the C99 standard in GCC 4.4 are tracked online.

In addition to the C ABI, the Application Binary Interface for the GNU C++ Compiler specifies the binary
interfaces required to support the C++ language, such as:

Name mangling and demangling

Creation and propagation of exceptions

Formatting of run-time type information

Constructors and destructors

Layout, alignment, and padding of classes and derived classes

Virtual function implementation details, such as the layout and alignment of virtual tables

The default system C++ compiler included with Red Hat Enterprise Linux 6 conforms to the C++ ABI
defined by the Itanium C++ ABI (1.86).

Although every effort has been made to keep each version of GCC compatible with previous releases,
some incompatibilities do exist.

ABI incompatibilities between Red Hat Enterprise Linux 6 and Red Hat Enterprise Linux 5

Developer Guide

42

http://gcc.gnu.org/gcc-4.4/c99status.html
http://www.codesourcery.com/cxx-abi/

The following is a list of known incompatibilities between the Red Hat Enterprise Linux 6 and 5
toolchains.

Passing/returning structs with flexible array members by value changed in some cases on
Intel 64 and AMD64.

Passing/returning of unions with long double members by value changed in some cases on
Intel 64 and AMD64.

Passing/returning structs with complex float member by value changed in some cases on
Intel 64 and AMD64.

Passing of 256-bit vectors on x86, Intel 64 and AMD64 platforms changed when -mavx is used.

There have been multiple changes in passing of _Decimal{32,64,128} types and aggregates
containing those by value on several targets.

Packing of packed char bitfields changed in some cases.

ABI incompatibilities between Red Hat Enterprise Linux 5 and Red Hat Enterprise Linux 4

The following is a list of known incompatibilities between the Red Hat Enterprise Linux 5 and 4
toolchains.

There have been changes in the library interface specified by the C++ ABI for thread-safe
initialization of function-scope static variables.

On Intel 64 and AMD64, the medium model for building applications where data segment
exceeds 4GB, was redesigned to match the latest ABI draft at the time. The ABI change results
in incompatibility among medium model objects.

The compiler flag -Wabi can be used to get diagnostics indicating where these constructs appear in
source code, though it will not catch every single case. This flag is especially useful for C++ code to
warn whenever the compiler generates code that is known to be incompatible with the vendor-neutral
C++ ABI.

Excluding the incompatibilities listed above, the GCC C and C++ language ABIs are mostly ABI
compatible. The vast majority of source code will not encounter any of the known issues, and can be
considered compatible.

Compatible ABIs allow the objects created by compiling source code to be portable to other systems. In
particular, for Red Hat Enterprise Linux, this allows for upward compatibility. Upward compatibility is
defined as the ability to link shared libraries and objects, created using a version of the compilers in a
particular Red Hat Enterprise Linux release, with no problems. This includes new objects compiled on
subsequent Red Hat Enterprise Linux releases.

The C ABI is considered to be stable, and has been so since at least Red Hat Enterprise Linux 3 (again,
barring any incompatibilities mentioned in the above lists). Libraries built on Red Hat Enterprise Linux 3
and later can be linked to objects created on a subsequent environment (Red Hat Enterprise Linux 4,
Red Hat Enterprise Linux 5, and Red Hat Enterprise Linux 6).

The C++ ABI is considered to be stable, but less stable than the C ABI, and only as of Red Hat
Enterprise Linux 4 (corresponding to GCC version 3.4 and above.). As with C, this is only an upward
compatibility. Libraries built on Red Hat Enterprise Linux 4 and above can be linked to objects created on
a subsequent environment (Red Hat Enterprise Linux 5, and Red Hat Enterprise Linux 6).

To force GCC to generate code compatible with the C++ ABI in Red Hat Enterprise Linux releases prior
to Red Hat Enterprise Linux 4, some developers have used the -fabi-version=1 option. This practice

CHAPTER 3. COMPILING AND BUILDING

43

is not recommended. Objects created this way are indistinguishable from objects conforming to the
current stable ABI, and can be linked (incorrectly) amongst the different ABIs, especially when using new
compilers to generate code to be linked with old libraries that were built with tools prior to Red Hat
Enterprise Linux 4.

WARNING

The above incompatibilities make it incredibly difficult to maintain ABI shared library
sanity between releases, especially when developing custom libraries with multiple
dependencies outside of the core libraries. Therefore, if shared libraries are
developed, it is highly recommend that a new version is built for each Red Hat
Enterprise Linux release.

3.1.2. Object Compatibility and Interoperability

Two items that are important are the changes and enhancements in the underlying tools used by the
compiler, and the compatibility between the different versions of a language's compiler.

Changes and new features in tools like ld (distributed as part of the binutils package) or in the
dynamic loader (ld.so, distributed as part of the glibc package) can subtly change the object files that
the compiler produces. These changes mean that object files moving to the current release of Red Hat
Enterprise Linux from previous releases may lose functionality, behave differently at runtime, or
otherwise interoperate in a diminished capacity. Known problem areas include:

ld --build-id

In Red Hat Enterprise Linux 6 this is passed to ld by default, whereas Red Hat
Enterprise Linux 5 ld doesn't recognize it.

as .cfi_sections support

In Red Hat Enterprise Linux 6 this directive allows .debug_frame, .eh_frame or both to be
omitted from .cfi* directives. In Red Hat Enterprise Linux 5 only .eh_frame is omitted.

as, ld, ld.so, and gdb STB_GNU_UNIQUE and %gnu_unique_symbol support

In Red Hat Enterprise Linux 6 more debug information is generated and stored in object files.
This information relies on new features detailed in the DWARF standard, and also on new
extensions not yet standardized. In Red Hat Enterprise Linux 5, tools like as, ld, gdb, objdump,
and readelf may not be prepared for this new information and may fail to interoperate with
objects created with the newer tools. In addition, Red Hat Enterprise Linux 5 produced object
files do not support these new features; these object files may be handled by Red Hat
Enterprise Linux 6 tools in a sub-optimal manner.

An outgrowth of this enhanced debug information is that the debuginfo packages that ship with
system libraries allow you to do useful source level debugging into system libraries if they are
installed. See Section 4.2, “Installing Debuginfo Packages” for more information on debuginfo
packages.

Object file changes, such as the ones listed above, may interfere with the portable use of prelink.

Developer Guide

44

3.1.3. Running GCC

To compile using GCC tools, first install the binutils and gcc packages. Doing so will also install several
dependencies.

In brief, the tools work via the gcc command. This is the main driver for the compiler. It can be used from
the command line to pre-process or compile a source file, link object files and libraries, or perform a
combination thereof. By default, gcc takes care of the details and links in the provided libgcc library.

Conversely, using GCC tools from the command line interface consumes less system resources. This
also allows finer-grained control over compilers; GCC's command line tools can even be used outside of
the graphical mode (runlevel 5).

3.1.3.1. Simple C Usage

Basic compilation of a C language program using GCC is easy. Start with the following simple program:

Example 3.1. hello.c

The following procedure illustrates the compilation process for C in its most basic form.

Procedure 3.1. Compiling a 'Hello World' C Program

1. Compile Example 3.1, “hello.c” into an executable with:

~]$ gcc hello.c -o hello

Ensure that the resulting binary hello is in the same directory as hello.c.

2. Run the hello binary, that is, ./hello.

3.1.3.2. Simple C++ Usage

Basic compilation of a C++ language program using GCC is similar. Start with the following simple
program:

Example 3.2. hello.cc

#include <stdio.h>
int main()
{
 printf ("Hello world!\n");
 return 0;
}

#include <iostream>
using namespace std;
int main()
{
 cout << "Hello World!" << endl;
 return 0;
}

CHAPTER 3. COMPILING AND BUILDING

45

The following procedure illustrates the compilation process for C++ in its most basic form.

Procedure 3.2. Compiling a 'Hello World' C++ Program

1. Compile Example 3.2, “hello.cc” into an executable with:

~]$ g++ hello.cc -o hello

Ensure that the resulting binary hello is in the same directory as hello.cc.

2. Run the hello binary, that is, ./hello.

3.1.3.3. Simple Multi-File Usage

To use basic compilation involving multiple files or object files, start with the following two source files:

Example 3.3. one.c

Example 3.4. two.c

The following procedure illustrates a simple, multi-file compilation process in its most basic form.

Procedure 3.3. Compiling a Program with Multiple Source Files

1. Compile Example 3.3, “one.c” into an executable with:

~]$ gcc -c one.c -o one.o

Ensure that the resulting binary one.o is in the same directory as one.c.

2. Compile Example 3.4, “two.c” into an executable with:

~]$ gcc -c two.c -o two.o

Ensure that the resulting binary two.o is in the same directory as two.c.

#include <stdio.h>
void hello()
{
 printf("Hello world!\n");
}

extern void hello();
int main()
{
 hello();
 return 0;
}

Developer Guide

46

3. Compile the two object files one.o and two.o into a single executable with:

~]$ gcc one.o two.o -o hello

Ensure that the resulting binary hello is in the same directory as one.o and two.o.

4. Run the hello binary, that is, ./hello.

3.1.3.4. Recommended Optimization Options

Different projects require different optimization options. There is no one-size-fits-all approach when it
comes to optimization, but here are a few guidelines to keep in mind.

Instruction selection and tuning

It is very important to choose the correct architecture for instruction scheduling. By default GCC
produces code optimized for the most common processors, but if the CPU on which your code will run is
known, the corresponding -mtune= option to optimize the instruction scheduling, and -march= option
to optimize the instruction selection should be used.

The option -mtune= optimizes instruction scheduling to fit your architecture by tuning everything except
the ABI and the available instruction set. This option will not choose particular instructions, but instead
will tune your program in such a way that executing on a particular architecture will be optimized. For
example, if an Intel Core2 CPU will predominantly be used, choose -mtune=core2. If the wrong choice
is made, the program will still run, but not optimally on the given architecture. The architecture on which
the program will most likely run should always be chosen.

The option -march= optimizes instruction selection. As such, it is important to choose correctly as
choosing incorrectly will cause your program to fail. This option selects the instruction set used when
generating code. For example, if the program will be run on an AMD K8 core based CPU, choose -
march=k8. Specifying the architecture with this option will imply -mtune=.

The -mtune= and -march= commands should only be used for tuning and selecting instructions within
a given architecture, not to generate code for a different architecture (also known as cross-compiling).
For example, this is not to be used to generate PowerPC code from an Intel 64 and AMD64 platform.

For a complete list of the available options for both -march= and -mtune=, see the GCC documentation
available here: GCC 4.4.4 Manual: Hardware Models and Configurations

General purpose optimization flags

The compiler flag -O2 is a good middle of the road option to generate fast code. It produces the best
optimized code when the resulting code size is not large. Use this when unsure what would best suit.

When code size is not an issue, -O3 is preferable. This option produces code that is slightly larger but
runs faster because of a more frequent inline of functions. This is ideal for floating point intensive code.

The other general purpose optimization flag is -Os. This flag also optimizes for size, and produces faster
code in situations where a smaller footprint will increase code locality, thereby reducing cache misses.

Use -frecord-gcc-switches when compiling objects. This records the options used to build objects
into objects themselves. After an object is built, it determines which set of options were used to build it.
The set of options are then recorded in a section called .GCC.command.line within the object and can
be examined with the following:

$ gcc -frecord-gcc-switches -O3 -Wall hello.c -o hello

CHAPTER 3. COMPILING AND BUILDING

47

http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcc/Submodel-Options.html#Submodel-Options

It is very important to test and try different options with a representative data set. Often, different
modules or objects can be compiled with different optimization flags in order to produce optimal results.
See Section 3.1.3.5, “Using Profile Feedback to Tune Optimization Heuristics” for additional optimization
tuning.

3.1.3.5. Using Profile Feedback to Tune Optimization Heuristics

During the transformation of a typical set of source code into an executable, tens of hundreds of choices
must be made about the importance of speed in one part of code over another, or code size as opposed
to code speed. By default, these choices are made by the compiler using reasonable heuristics, tuned
over time to produce the optimum runtime performance. However, GCC also has a way to teach the
compiler to optimize executables for a specific machine in a specific production environment. This
feature is called profile feedback.

Profile feedback is used to tune optimizations such as:

Inlining

Branch prediction

Instruction scheduling

Inter-procedural constant propagation

Determining of hot or cold functions

Profile feedback compiles a program first to generate a program that is run and analyzed and then a
second time to optimize with the gathered data.

Procedure 3.4. Using Profile Feedback

1. The application must be instrumented to produce profiling information by compiling it with -
fprofile-generate.

2. Run the application to accumulate and save the profiling information.

3. Recompile the application with -fprofile-use.

Step three will use the profile information gathered in step one to tune the compiler's heuristics while
optimizing the code into a final executable.

Procedure 3.5. Compiling a Program with Profiling Feedback

1. Compile source.c to include profiling instrumentation:

gcc source.c -fprofile-generate -O2 -o executable

2. Run executable to gather profiling information:

$ readelf --string-dump=.GCC.command.line hello
String dump of section '.GCC.command.line':
 [0] hello.c
 [8] -mtune=generic
 [17] -O3
 [1b] -Wall
 [21] -frecord-gcc-switches

Developer Guide

48

./executable

3. Recompile and optimize source.c with profiling information gathered in step one:

gcc source.c -fprofile-use -O2 -o executable

Multiple data collection runs, as seen in step two, will accumulate data into the profiling file instead of
replacing it. This allows the executable in step two to be run multiple times with additional representative
data in order to collect even more information.

The executable must run with representative levels of both the machine being used and a respective
data set large enough for the input required. This ensures optimal results are achieved.

By default, GCC will generate the profile data into the directory where step one was performed. To
generate this information elsewhere, compile with -fprofile-dir=DIR where DIR is the preferred
output directory.

WARNING

The format of the compiler feedback data file changes between compiler versions. It
is imperative that the program compilation is repeated with each version of the
compiler.

3.1.3.6. Using 32-bit compilers on a 64-bit host

On a 64-bit host, GCC will build executables that can only run on 64-bit hosts. However, GCC can be
used to build executables that will run both on 64-bit hosts and on 32-bit hosts.

To build 32-bit binaries on a 64-bit host, first install 32-bit versions of any supporting libraries the
executable may require. This must at least include supporting libraries for glibc and libgcc, and
libstdc++ if the program is a C++ program. On Intel 64 and AMD64, this can be done with:

yum install glibc-devel.i686 libgcc.i686 libstdc++-devel.i686

There may be cases where it is useful to to install additional 32-bit libraries that a program may require.
For example, if a program uses the db4-devel libraries to build, the 32-bit version of these libraries can
be installed with:

yum install db4-devel.i686

NOTE

The .i686 suffix on the x86 platform (as opposed to x86-64) specifies a 32-bit version
of the given package. For PowerPC architectures, the suffix is ppc (as opposed to
ppc64).

After the 32-bit libraries have been installed, the -m32 option can be passed to the compiler and linker to
produce 32-bit executables. Provided the supporting 32-bit libraries are installed on the 64-bit system,
this executable will be able to run on both 32-bit systems and 64-bit systems.

CHAPTER 3. COMPILING AND BUILDING

49

Procedure 3.6. Compiling a 32-bit Program on a 64-bit Host

1. On a 64-bit system, compile hello.c into a 64-bit executable with:

gcc hello.c -o hello64

2. Ensure that the resulting executable is a 64-bit binary:

The command file on a 64-bit executable will include ELF 64-bit in its output, and ldd will
list /lib64/libc.so.6 as the main C library linked.

3. On a 64-bit system, compile hello.c into a 32-bit executable with:

gcc -m32 hello.c -o hello32

4. Ensure that the resulting executable is a 32-bit binary:

The command file on a 32-bit executable will include ELF 32-bit in its output, and ldd will
list /lib/libc.so.6 as the main C library linked.

If you have not installed the 32-bit supporting libraries you will get an error similar to this for C code:

A similar error would be triggered on C++ code:

 $ file hello64
 hello64: ELF 64-bit LSB executable, x86-64, version 1
(GNU/Linux), dynamically linked (uses shared libs), for GNU/Linux
2.6.18, not stripped
 $ ldd hello64
 linux-vdso.so.1 => (0x00007fff242dd000)
 libc.so.6 => /lib64/libc.so.6 (0x00007f0721514000)
 /lib64/ld-linux-x86-64.so.2 (0x00007f0721893000)

 $ file hello32
 hello32: ELF 32-bit LSB executable, Intel 80386,
version 1 (GNU/Linux), dynamically linked (uses shared libs), for
GNU/Linux 2.6.18, not stripped
 $ ldd hello32
 linux-gate.so.1 => (0x007eb000)
 libc.so.6 => /lib/libc.so.6 (0x00b13000)
 /lib/ld-linux.so.2 (0x00cd7000)

 $ gcc -m32 hello32.c -o hello32
 /usr/bin/ld: crt1.o: No such file: No such file or directory
 collect2: ld returned 1 exit status

$ g++ -m32 hello32.cc -o hello32-c++
In file included from /usr/include/features.h:385,
 from /usr/lib/gcc/x86_64-redhat-
linux/4.4.4/../../../../include/c++/4.4.4/x86_64-redhat-
linux/32/bits/os_defines.h:39,
 from /usr/lib/gcc/x86_64-redhat-
linux/4.4.4/../../../../include/c++/4.4.4/x86_64-redhat-
linux/32/bits/c++config.h:243,

Developer Guide

50

These errors indicate that the supporting 32-bit libraries have not been properly installed as explained at
the beginning of this section.

Also important is to note that building with -m32 will in not adapt or convert a program to resolve any
issues arising from 32/64-bit incompatibilities. For tips on writing portable code and converting from 32-
bits to 64-bits, see the paper entitled Porting to 64-bit GNU/Linux Systems in the Proceedings of the
2003 GCC Developers Summit.

3.1.4. GCC Documentation

For more information about GCC compilers, see the man pages for cpp, gcc, g++, gcj, and gfortran.

The following online user manuals are also available:

GCC 4.4.4 Manual

GCC 4.4.4 GNU Fortran Manual

GCC 4.4.4 GCJ Manual

GCC 4.4.4 CPP Manual

GCC 4.4.4 GNAT Reference Manual

GCC 4.4.4 GNAT User's Guide

GCC 4.4.4 GNU OpenMP Manual

The main site for the development of GCC is gcc.gnu.org.

3.2. AUTOTOOLS

GNU Autotools is a suite of command line tools that allow developers to build applications on different
systems, regardless of the installed packages or even Linux distribution. These tools aid developers in
creating a configure script. This script runs prior to builds and creates the top-level Makefiles
required to build the application. The configure script may perform tests on the current system, create
additional files, or run other directives as per parameters provided by the builder.

The Autotools suite's most commonly-used tools are:

autoconf

Generates the configure script from an input file (configure.ac, for example)

automake

Creates the Makefile for a project on a specific system

autoscan

 from /usr/lib/gcc/x86_64-redhat-
linux/4.4.4/../../../../include/c++/4.4.4/iostream:39,
 from hello32.cc:1:
/usr/include/gnu/stubs.h:7:27: error: gnu/stubs-32.h: No such file or
directory

CHAPTER 3. COMPILING AND BUILDING

51

ftp://gcc.gnu.org/pub/gcc/summit/2003/Porting to 64 bit.pdf
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcc
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gfortran
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcj
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/cpp
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gnat_rm
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/gnat_ugn_unw
http://gcc.gnu.org/onlinedocs/gcc-4.4.4/libgomp
http://gcc.gnu.org

Generates a preliminary input file (that is, configure.scan), which can be edited to create a final
configure.ac to be used by autoconf

All tools in the Autotools suite are part of the Development Tools group package. You can install this
package group to install the entire Autotools suite, or use yum to install any tools in the suite as you
wish.

3.2.1. Autotools Plug-in for Eclipse

The Autotools suite is also integrated into the Eclipse IDE via the Autotools plug-in. This plug-in provides
an Eclipse graphical user interface for Autotools, which is suitable for most C/C++ projects.

As of Red Hat Enterprise Linux 6, this plug-in only supports two templates for new C/C++ projects:

An empty project

A "hello world" application

The empty project template is used when importing projects into the C/C++ Development Toolkit that
already support Autotools. Future updates to the Autotools plug-in will include additional graphical user
interfaces (wizards, for example) for creating shared libraries and other complex scenarios.

The Red Hat Enterprise Linux 6 version of the Autotools plug-in also does not integrate git or
mercurial into Eclipse. As such, Autotools projects that use git repositories will be required to be
checked out outside the Eclipse workspace. Afterwards, you can specify the source location for such
projects in Eclipse. Any repository manipulation (commits, or updates for example) are done via the
command line.

3.2.2. Configuration Script

The most crucial function of Autotools is the creation of the configure script. This script tests systems

for tools, input files, and other features it can use in order to build the project [1]. The configure script
generates a Makefile which allows the make tool to build the project based on the system
configuration.

To create the configure script, first create an input file. Then feed it to an Autotools utility in order to
create the configure script. This input file is typically configure.ac or Makefile.am; the former is
usually processed by autoconf, while the later is fed to automake.

If a Makefile.am input file is available, the automake utility creates a Makefile template (that is,
Makefile. in), which may see information collected at configuration time. For example, the
Makefile may have to link to a particular library if and only if that library is already installed. When the
configure script runs, automake will use the Makefile. in templates to create a Makefile.

If a configure.ac file is available instead, then autoconf will automatically create the configure
script based on the macros invoked by configure.ac. To create a preliminary configure.ac, use
the autoscan utility and edit the file accordingly.

3.2.3. Autotools Documentation

Red Hat Enterprise Linux 6 includes man pages for autoconf, automake, autoscan and most tools
included in the Autotools suite. In addition, the Autotools community provides extensive documentation
on autoconf and automake on the following websites:

Developer Guide

52

http://www.gnu.org/software/autoconf/manual/autoconf.html

http://www.gnu.org/software/autoconf/manual/automake.html

The following is an online book describing the use of Autotools. Although the above online
documentation is the recommended and most up to date information on Autotools, this book is a good
alternative and introduction.

http://sourceware.org/autobook/

For information on how to create Autotools input files, see:

http://www.gnu.org/software/autoconf/manual/autoconf.html#Making-configure-Scripts

http://www.gnu.org/software/autoconf/manual/automake.html#Invoking-Automake

The following upstream example also illustrates the use of Autotools in a simple hello program:

http://www.gnu.org/software/hello/manual/hello.html

3.3. BUILD-ID UNIQUE IDENTIFICATION OF BINARIES

Each executable or shared library built with Red Hat Enterprise Linux Server 6 or later is assigned a
unique identification 160-bit SHA-1 string, generated as a checksum of selected parts of the binary. This
allows two builds of the same program on the same host to always produce consistent build-ids and
binary content.

Display the build-id of a binary with the following command:

$ eu-readelf -n /bin/bash
[...]
Note section [3] '.note.gnu.build-id' of 36 bytes at offset 0x274:
 Owner Data size Type
 GNU 20 GNU_BUILD_ID
 Build ID: efdd0b5e69b0742fa5e5bad0771df4d1df2459d1

Unique identificators of binaries are useful in cases such as analysing core files, documented
Section 4.2.1, “Installing Debuginfo Packages for Core Files Analysis”.

[1] For information about tests that configure can perform, see the following link:

http://www.gnu.org/software/autoconf/manual/autoconf.html#Existing-Tests

CHAPTER 3. COMPILING AND BUILDING

53

http://www.gnu.org/software/autoconf/manual/autoconf.html
http://www.gnu.org/software/autoconf/manual/automake.html
http://sourceware.org/autobook/
http://www.gnu.org/software/autoconf/manual/autoconf.html#Making-configure-Scripts
http://www.gnu.org/software/autoconf/manual/automake.html#Invoking-Automake
http://www.gnu.org/software/hello/manual/hello.html
http://www.gnu.org/software/autoconf/manual/autoconf.html#Existing-Tests

CHAPTER 4. DEBUGGING
Useful, well-written software generally goes through several different phases of application development,
allowing ample opportunity for mistakes to be made. Some phases come with their own set of
mechanisms to detect errors. For example, during compilation an elementary semantic analysis is often
performed to make sure objects, such as variables and functions, are adequately described.

The error-checking mechanisms performed during each application development phase aims to catch
simple and obvious mistakes in code. The debugging phase helps to bring more subtle errors to light that
fell through the cracks during routine code inspection.

4.1. ELF EXECUTABLE BINARIES

Red Hat Enterprise Linux uses ELF for executable binaries, shared libraries, or debuginfo files. Within
these debuginfo ELF files, the DWARF format is used. Version 3 of DWARF is used in ELF files (that is,
gcc -g is equivalent to gcc -gdwarf-3). DWARF debuginfo includes:

names of all the compiled functions and variables, including their target addresses in binaries

source files used for compilation, including their source line numbers

local variables location

IMPORTANT

STABS is occasionally used with UNIX. STABS is an older, less capable format. Its use is
discouraged by Red Hat. GCC and GDB support STABS production and consumption on
a best effort basis only.

Within these ELF files, the GCC debuginfo level is also used. The default is level 2, where macro
information is not present; level 3 has C/C++ macro definitions included, but the debuginfo can be very
large with this setting. The command for the default gcc -g is the same as gcc -g2. To change the
macro information to level three, use gcc -g3.

There are multiple levels of debuginfo available. Use the command readelf -WS file to see which
sections are used in a file.

Table 4.1. debuginfo levels

Binary State Command Notes

Stripped strip file

or

gcc -s -o file

Only the symbols required for
runtime linkage with shared
libraries are present.

ELF section in use: .dynsym

ELF symbols gcc -o file Only the names of functions and
variables are present, no binding
to the source files and no types.

ELF section in use: .symtab

Developer Guide

54

DWARF debuginfo with macros gcc -g -o file The source file names and line
numbers are known, including
types.

ELF section in use: .debug_*

DWARF debuginfo with macros gcc -g3 -o file Similar to gcc -g but the
macros are known to GDB.

ELF section in use:
.debug_macro

Binary State Command Notes

NOTE

GDB never interprets the source files, it only displays them as text. Use gcc -g and its
variants to store the information into DWARF.

Compiling a program or library with gcc -rdynamic is discouraged. For specific symbols, use gcc -
Wl, --dynamic-list=... instead. If gcc -rdynamic is used, the strip command or -s gcc
option have no effect. This is because all ELF symbols are kept in the binary for possible runtime linkage
with shared libraries.

ELF symbols can be read by the readelf -s file command.

DWARF symbols are read by the readelf -w file command.

The command readelf -wi file is a good verification of debuginfo, compiled within your program.
The commands strip file or gcc -s are commonly accidentally executed on the output during
various compilation stages of the program.

The readelf -w file command can also be used to show a special section called .eh_frame with a
format and purpose is similar to the DWARF section .debug_frame. The .eh_frame section is used
for runtime C++ exception resolution and is present even if -g gcc option was not used. It is kept in the
primary RPM and is never present in the debuginfo RPMs.

Debuginfo RPMs contain the sections .symtab and .debug_*. Neither .eh_frame, .eh_frame_hdr,
nor .dynsym are moved or present in debuginfo RPMs as those sections are needed during program
runtime.

4.2. INSTALLING DEBUGINFO PACKAGES

Red Hat Enterprise Linux also provides -debuginfo packages for all architecture-dependent RPMs
included in the operating system. A packagename-
debuginfo-version-release.architecture.rpm package contains detailed information about
the relationship of the package source files and the final installed binary. The debuginfo packages
contain both .debug files, which in turn contain DWARF debuginfo and the source files used for
compiling the binary packages.

CHAPTER 4. DEBUGGING

55

NOTE

Most of the debugger functionality is missed if attempting to debug a package without
having its debuginfo equivalent installed. For example, the names of exported shared
library functions will still be available, but the matching source file lines will not be without
the debuginfo package installed.

Use gcc compilation option -g for your own programs. The debugging experience is better if no
optimizations (gcc option -O, such as -O2) is applied with -g.

For Red Hat Enterprise Linux 6, the debuginfo packages are now available on a new channel on the
Red Hat Network. To install the -debuginfo package of a package (that is, typically packagename-
debuginfo), first the machine has to be subscribed to the corresponding Debuginfo channel. For
example, for Red Hat Enterprise Server 6, the corresponding channel would be Red Hat
Enterprise Linux Server Debuginfo (v. 6).

Red Hat Enterprise Linux system packages are compiled with optimizations (gcc option -O2). This
means that some variables will be displayed as <optimized out>. Stepping through code will 'jump' a
little but a crash can still be analyzed. If some debugging information is missing because of the
optimizations, the right variable information can be found by disassembling the code and matching it to
the source manually. This is applicable only in exceptional cases and is not suitable for regular
debugging.

For system packages, GDB informs the user if it is missing some debuginfo packages that limit its
functionality.

gdb ls
[...]
Reading symbols from /bin/ls...(no debugging symbols found)...done.
Missing separate debuginfos, use: debuginfo-install coreutils-8.4-
16.el6.x86_64
(gdb) q

If the system package to be debugged is known, use the command suggested by GDB above. It will also
automatically install all the debug packages packagename depends on.

debuginfo-install packagename

4.2.1. Installing Debuginfo Packages for Core Files Analysis

A core file is a representation of the memory image at the time of a process crash. For bug reporting of
system program crashes, Red Hat recommends the use of the ABRT tool, explained in the Automatic
Bug Reporting Tool chapter in the Red Hat Deployment Guide. If ABRT is not suitable for your purposes,
the steps it automates are explained here.

If the ulimit -c unlimited setting is in use when a process crashes, the core file is dumped into the
current directory. The core file contains only the memory areas modified by the process from the original
state of disk files. In order to perform a full analysis of a crash, a core file is required to have:

the core file itself

the executable binary which has crashed, such as /usr/sbin/sendmail

all the shared libraries loaded in the binary when it crashed

Developer Guide

56

.debug files and source files (both stored in debuginfo RPMs) for the executable and all of its
loaded libraries

For a proper analysis, either the exact version-release.architecture for all the RPMs involved or
the same build of your own compiled binaries is needed. At the time of the crash, the application may
have already recompiled or been updated by yum on the disk, rendering the files inappropriate for the
core file analysis.

The core file contains build-ids of all the binaries involved. For more information on build-id, see
Section 3.3, “build-id Unique Identification of Binaries”. The contents of the core file can be displayed by:

$ eu-unstrip -n --core=./core.9814
0x400000+0x207000 2818b2009547f780a5639c904cded443e564973e@0x400284
/bin/sleep /usr/lib/debug/bin/sleep.debug [exe]
0x7fff26fff000+0x1000
1e2a683b7d877576970e4275d41a6aaec280795e@0x7fff26fff340 . - linux-
vdso.so.1
0x35e7e00000+0x3b6000
374add1ead31ccb449779bc7ee7877de3377e5ad@0x35e7e00280 /lib64/libc-
2.14.90.so /usr/lib/debug/lib64/libc-2.14.90.so.debug libc.so.6
0x35e7a00000+0x224000
3ed9e61c2b7e707ce244816335776afa2ad0307d@0x35e7a001d8 /lib64/ld-2.14.90.so
/usr/lib/debug/lib64/ld-2.14.90.so.debug ld-linux-x86-64.so.2

The meaning of the columns in each line are:

The in-memory address where the specific binary was mapped to (for example, 0x400000 in
the first line).

The size of the binary (for example, +0x207000 in the first line).

The 160-bit SHA-1 build-id of the binary (for example,
2818b2009547f780a5639c904cded443e564973e in the first line).

The in-memory address where the build-id bytes were stored (for example, @0x400284 in the
first line).

The on-disk binary file, if available (for example, /bin/sleep in the first line). This was found
by eu-unstrip for this module.

The on-disk debuginfo file, if available (for example, /usr/lib/debug/bin/sleep.debug).
However, best practice is to use the binary file reference instead.

The shared library name as stored in the shared library list in the core file (for example,
libc.so.6 in the third line).

For each build-id (for example, ab/cdef0123456789012345678901234567890123) a symbolic link
is included in its debuginfo RPM. Using the /bin/sleep executable above as an example, the
coreutils-debuginfo RPM contains, among other files:

lrwxrwxrwx 1 root root 24 Nov 29 17:07 /usr/lib/debug/.build-
id/28/18b2009547f780a5639c904cded443e564973e -> ../../../../../bin/sleep*
lrwxrwxrwx 1 root root 21 Nov 29 17:07 /usr/lib/debug/.build-
id/28/18b2009547f780a5639c904cded443e564973e.debug ->
../../bin/sleep.debug

CHAPTER 4. DEBUGGING

57

In some cases (such as loading a core file), GDB does not know the name, version, or release of a
name-debuginfo-version-release.rpm package; it only knows the build-id. In such cases, GDB
suggests a different command:

gdb -c ./core
[...]
Missing separate debuginfo for the main executable filename
Try: yum --disablerepo='*' --enablerepo='*debug*' install
/usr/lib/debug/.build-id/ef/dd0b5e69b0742fa5e5bad0771df4d1df2459d1

The version-release.architecture of the binary package packagename-debuginfo-version-
release.architecture.rpm must be an exact match. If it differs then GDB cannot use the debuginfo
package. Even the same version-release.architecture from a different build leads to an incompatible
debuginfo package. If GDB reports a missing debuginfo, ensure to recheck:

rpm -q packagename packagename-debuginfo

The version-release.architecture definitions should match.

rpm -V packagename packagename-debuginfo

This command should produce no output, except possibly modified configuration files of
packagename, for example.

rpm -qi packagename packagename-debuginfo

The version-release.architecture should display matching information for Vendor, Build Date, and
Build Host. For example, using a CentOS debuginfo RPM for a Red Hat Enterprise Linux RPM
package will not work.

If the required build-id is known, the following command can query which RPM contains it:

$ repoquery --disablerepo='*' --enablerepo='*-debug*' -qf
/usr/lib/debug/.build-id/ef/dd0b5e69b0742fa5e5bad0771df4d1df2459d1

For example, a version of an executable which matches the core file can be installed by:

yum --enablerepo='*-debug*' install $(eu-unstrip -n --core=./core.9814 |
sed -e 's#^[^]* \(..\)\([^@]*\).*$#/usr/lib/debug/.build-id/\1/\2#p' -e
's/$/.debug/')

Similar methods are available if the binaries are not packaged into RPMs and stored in yum repositories.
It is possible to create local repositories with custom application builds by using
/usr/bin/createrepo.

4.3. GDB

Fundamentally, like most debuggers, GDB manages the execution of compiled code in a very closely
controlled environment. This environment makes possible the following fundamental mechanisms
necessary to the operation of GDB:

Inspect and modify memory within the code being debugged (for example, reading and setting
variables).

Developer Guide

58

Control the execution state of the code being debugged, principally whether it's running or
stopped.

Detect the execution of particular sections of code (for example, stop running code when it
reaches a specified area of interest to the programmer).

Detect access to particular areas of memory (for example, stop running code when it accesses
a specified variable).

Execute portions of code (from an otherwise stopped program) in a controlled manner.

Detect various programmatic asynchronous events such as signals.

The operation of these mechanisms rely mostly on information produced by a compiler. For example, to
view the value of a variable, GDB has to know:

The location of the variable in memory

The nature of the variable

This means that displaying a double-precision floating point value requires a very different process from
displaying a string of characters. For something complex like a structure, GDB has to know not only the
characteristics of each individual elements in the structure, but the morphology of the structure as well.

GDB requires the following items in order to fully function:

Debug Information

Much of GDB's operations rely on a program's debug information. While this information generally
comes from compilers, much of it is necessary only while debugging a program, that is, it is not used
during the program's normal execution. For this reason, compilers do not always make that
information available by default — GCC, for instance, must be explicitly instructed to provide this
debugging information with the -g flag.

To make full use of GDB's capabilities, it is highly advisable to make the debug information available
first to GDB. GDB can only be of very limited use when run against code with no available debug
information.

Source Code

One of the most useful features of GDB (or any other debugger) is the ability to associate events and
circumstances in program execution with their corresponding location in source code. This location
normally refers to a specific line or series of lines in a source file. This, of course, would require that a
program's source code be available to GDB at debug time.

4.3.1. Simple GDB

GDB literally contains dozens of commands. This section describes the most fundamental ones.

br (breakpoint)

The breakpoint command instructs GDB to halt execution upon reaching a specified point in the
execution. That point can be specified a number of ways, but the most common are just as the line
number in the source file, or the name of a function. Any number of breakpoints can be in effect
simultaneously. This is frequently the first command issued after starting GDB.

r (run)

CHAPTER 4. DEBUGGING

59

The run command starts the execution of the program. If run is executed with any arguments, those
arguments are passed on to the executable as if the program has been started normally. Users
normally issue this command after setting breakpoints.

Before an executable is started, or once the executable stops at, for example, a breakpoint, the state of
many aspects of the program can be inspected. The following commands are a few of the more common
ways things can be examined.

p (print)

The print command displays the value of the argument given, and that argument can be almost
anything relevant to the program. Usually, the argument is the name of a variable of any complexity,
from a simple single value to a structure. An argument can also be an expression valid in the current
language, including the use of program variables and library functions, or functions defined in the
program being tested.

bt (backtrace)

The backtrace displays the chain of function calls used up until the execution was terminated. This
is useful for investigating serious bugs (such as segmentation faults) with elusive causes.

l (list)

When execution is stopped, the list command shows the line in the source code corresponding to
where the program stopped.

The execution of a stopped program can be resumed in a number of ways. The following are the most
common.

c (continue)

The continue command restarts the execution of the program, which will continue to execute until it
encounters a breakpoint, runs into a specified or emergent condition (for example, an error), or
terminates.

n (next)

Like continue, the next command also restarts execution; however, in addition to the stopping
conditions implicit in the continue command, next will also halt execution at the next sequential
line of code in the current source file.

s (step)

Like next, the step command also halts execution at each sequential line of code in the current
source file. However, if execution is currently stopped at a source line containing a function call, GDB
stops execution after entering the function call (rather than executing it).

fini (finish)

Like the aforementioned commands, the finish command resumes executions, but halts when
execution returns from a function.

Finally, two essential commands:

q (quit)

Developer Guide

60

This terminates the execution.

h (help)

The help command provides access to its extensive internal documentation. The command takes
arguments: help breakpoint (or h br), for example, shows a detailed description of the
breakpoint command. See the help output of each command for more detailed information.

4.3.2. Running GDB

This section will describe a basic execution of GDB, using the following simple program:

hello.c

The following procedure illustrates the debugging process in its most basic form.

Procedure 4.1. Debugging a 'Hello World' Program

1. Compile hello.c into an executable with the debug flag set, as in:

gcc -g -o hello hello.c

Ensure that the resulting binary hello is in the same directory as hello.c.

2. Run gdb on the hello binary, that is, gdb hello.

3. After several introductory comments, gdb will display the default GDB prompt:

(gdb)

4. The variable hello is global, so it can be seen even before the main procedure starts:

Note that the print targets hello[0] and *hello require the evaluation of an expression, as
does, for example, *(hello + 1):

#include <stdio.h>

char hello[] = { "Hello, World!" };

int
main()
{
 fprintf (stdout, "%s\n", hello);
 return (0);
}

gdb) p hello
$1 = "Hello, World!"
(gdb) p hello[0]
$2 = 72 'H'
(gdb) p *hello
$3 = 72 'H'
(gdb)

CHAPTER 4. DEBUGGING

61

5. Next, list the source:

The list reveals that the fprintf call is on line 8. Apply a breakpoint on that line and resume
the code:

6. Finally, use the next command to step past the fprintf call, executing it:

The following sections describe more complex applications of GDB.

4.3.3. Conditional Breakpoints

In many real-world cases, a program may perform its task well during the first few thousand times; it may
then start crashing or encountering errors during its eight thousandth iteration of the task. Debugging
programs like this can be difficult, as it is hard to imagine a programmer with the patience to issue a
continue command thousands of times just to get to the iteration that crashed.

Situations like this are common in real life, which is why GDB allows programmers to attach conditions to
a breakpoint. For example, consider the following program:

simple.c

(gdb) p *(hello + 1)
$4 = 101 'e'

(gdb) l
1 #include <stdio.h>
2
3 char hello[] = { "Hello, World!" };
4
5 int
6 main()
7 {
8 fprintf (stdout, "%s\n", hello);
9 return (0);
10 }

(gdb) br 8
Breakpoint 1 at 0x80483ed: file hello.c, line 8.
(gdb) r
Starting program: /home/moller/tinkering/gdb-manual/hello

Breakpoint 1, main () at hello.c:8
8 fprintf (stdout, "%s\n", hello);

(gdb) n
Hello, World!
9 return (0);

#include <stdio.h>

main()
{
 int i;

Developer Guide

62

To set a conditional breakpoint at the GDB prompt:

With this condition, the program execution will eventually stop with the following output:

Inspect the breakpoint information (using info br) to review the breakpoint status:

4.3.4. Forked Execution

Among the more challenging bugs confronting programmers is where one program (the parent) makes
an independent copy of itself (a fork). That fork then creates a child process which, in turn, fails.
Debugging the parent process may or may not be useful. Often the only way to get to the bug may be by
debugging the child process, but this is not always possible.

The set follow-fork-mode feature is used to overcome this barrier allowing programmers to follow
a a child process instead of the parent process.

set follow-fork-mode parent

The original process is debugged after a fork. The child process runs unimpeded. This is the default.

set follow-fork-mode child

The new process is debugged after a fork. The parent process runs unimpeded.

show follow-fork-mode

Display the current debugger response to a fork call.

 for (i = 0;; i++) {
fprintf (stdout, "i = %d\n", i);
 }
}

(gdb) br 8 if i == 8936
Breakpoint 1 at 0x80483f5: file iterations.c, line 8.
(gdb) r

i = 8931
i = 8932
i = 8933
i = 8934
i = 8935

Breakpoint 1, main () at iterations.c:8
8 fprintf (stdout, "i = %d\n", i);

(gdb) info br
Num Type Disp Enb Address What
1 breakpoint keep y 0x080483f5 in main at iterations.c:8
 stop only if i == 8936
 breakpoint already hit 1 time

CHAPTER 4. DEBUGGING

63

Use the set detach-on-fork command to debug both the parent and the child processes after a fork,
or retain debugger control over them both.

set detach-on-fork on

The child process (or parent process, depending on the value of follow-fork-mode) will be
detached and allowed to run independently. This is the default.

set detach-on-fork off

Both processes will be held under the control of GDB. One process (child or parent, depending on the
value of follow-fork-mode) is debugged as usual, while the other is suspended.

show detach-on-fork

Show whether detach-on-fork mode is on or off.

Consider the following program:

fork.c

This program, compiled with the command gcc -g fork.c -o fork -lpthread and examined
under GDB will show:

#include <unistd.h>

int main()
{
 pid_t pid;
 const char *name;

 pid = fork();
 if (pid == 0)
 {
 name = "I am the child";
 }
 else
 {
 name = "I am the parent";
 }
 return 0;
}

gdb ./fork
[...]
(gdb) break main
Breakpoint 1 at 0x4005dc: file fork.c, line 8.
(gdb) run
[...]
Breakpoint 1, main () at fork.c:8
8 pid = fork();
(gdb) next
Detaching after fork from child process 3840.
9 if (pid == 0)
(gdb) next
15 name = "I am the parent";

Developer Guide

64

GDB followed the parent process and allowed the child process (process 3840) to continue execution.

The following is the same test using set follow-fork-mode child.

GDB switched to the child process here.

This can be permanent by adding the setting to the appropriate .gdbinit.

For example, if set follow-fork-mode ask is added to ~/.gdbinit, then ask mode becomes the
default mode.

4.3.5. Debugging Individual Threads

GDB has the ability to debug individual threads, and to manipulate and examine them independently.
This functionality is not enabled by default. To do so use set non-stop on and set target-
async on. These can be added to .gdbinit. Once that functionality is turned on, GDB is ready to
conduct thread debugging.

For example, the following program creates two threads. These two threads, along with the original
thread executing main makes a total of three threads.

three-threads.c

(gdb) next
17 return 0;
(gdb) print name
$1 = 0x400717 "I am the parent"

(gdb) set follow-fork-mode child
(gdb) break main
Breakpoint 1 at 0x4005dc: file fork.c, line 8.
(gdb) run
[...]
Breakpoint 1, main () at fork.c:8
8 pid = fork();
(gdb) next
[New process 3875]
[Thread debugging using libthread_db enabled]
[Switching to Thread 0x7ffff7fd5720 (LWP 3875)]
9 if (pid == 0)
(gdb) next
11 name = "I am the child";
(gdb) next
17 return 0;
(gdb) print name
$2 = 0x400708 "I am the child"
(gdb)

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

pthread_t thread;

void* thread3 (void* d)

CHAPTER 4. DEBUGGING

65

Compile this program in order to examine it under GDB.

First set breakpoints on all thread functions; thread1, thread2, and main.

Then run the program.

{
 int count3 = 0;

 while(count3 < 1000){
 sleep(10);
 printf("Thread 3: %d\n", count3++);
 }
 return NULL;
}

void* thread2 (void* d)
{
 int count2 = 0;

 while(count2 < 1000){
 printf("Thread 2: %d\n", count2++);
 }
 return NULL;
}

int main (){

 pthread_create (&thread, NULL, thread2, NULL);
 pthread_create (&thread, NULL, thread3, NULL);

 //Thread 1
 int count1 = 0;

 while(count1 < 1000){
 printf("Thread 1: %d\n", count1++);
 }

 pthread_join(thread,NULL);
 return 0;
}

gcc -g three-threads.c -o three-threads -lpthread
gdb ./three-threads

(gdb) break thread3
Breakpoint 1 at 0x4006c0: file three-threads.c, line 9.
(gdb) break thread2
Breakpoint 2 at 0x40070c: file three-threads.c, line 20.
(gdb) break main
Breakpoint 3 at 0x40074a: file three-threads.c, line 30.

(gdb) run
[...]
Breakpoint 3, main () at three-threads.c:30

Developer Guide

66

Note that the command info threads provides a summary of the program's threads and some details
about their current state. In this case there is only one thread that has been created so far.

Continue execution some more.

Here, two more threads are created. The star indicates the thread currently under focus. Also, the newly
created threads have hit the breakpoint set for them in their initialization functions. Namely, thread2()
and thread3().

To begin real thread debugging, use the thread <thread number> command to switch the focus to
another thread.

30 pthread_create (&thread, NULL, thread2, NULL);
[...]
(gdb) info threads
* 1 Thread 0x7ffff7fd5720 (LWP 4620) main () at three-threads.c:30
(gdb)

(gdb) next
[New Thread 0x7ffff7fd3710 (LWP 4687)]
31 pthread_create (&thread, NULL, thread3, NULL);
(gdb)
Breakpoint 2, thread2 (d=0x0) at three-threads.c:20
20 int count2 = 0;
next
[New Thread 0x7ffff75d2710 (LWP 4688)]
34 int count1 = 0;
(gdb)
Breakpoint 1, thread3 (d=0x0) at three-threads.c:9
9 int count3 = 0;
info threads
 3 Thread 0x7ffff75d2710 (LWP 4688) thread3 (d=0x0) at three-threads.c:9
 2 Thread 0x7ffff7fd3710 (LWP 4687) thread2 (d=0x0) at three-
threads.c:20
* 1 Thread 0x7ffff7fd5720 (LWP 4620) main () at three-threads.c:34

(gdb) thread 2
[Switching to thread 2 (Thread 0x7ffff7fd3710 (LWP 4687))]#0 thread2
(d=0x0)
 at three-threads.c:20
20 int count2 = 0;
(gdb) list
15 return NULL;
16 }
17
18 void* thread2 (void* d)
19 {
20 int count2 = 0;
21
22 while(count2 < 1000){
23 printf("Thread 2: %d\n", count2++);
24 }

CHAPTER 4. DEBUGGING

67

Thread 2 stopped at line 20 in its function thread2().

Above, a few lines of thread2 printed the counter count2 and left thread 2 at line 23 as is seen by the
output of 'info threads'.

Now thread3.

Thread three is a little different in that it has a sleep statement and executes slowly. Think of it as a
representation of an uninteresting IO thread. Because this thread is uninteresting, continue its execution
uninterrupted, using the continue.

(gdb) next
22 while(count2 < 1000){
(gdb) print count2
$1 = 0
(gdb) next
23 printf("Thread 2: %d\n", count2++);
(gdb) next
Thread 2: 0
22 while(count2 < 1000){
(gdb) next
23 printf("Thread 2: %d\n", count2++);
(gdb) print count2
$2 = 1
(gdb) info threads
 3 Thread 0x7ffff75d2710 (LWP 4688) thread3 (d=0x0) at three-threads.c:9
* 2 Thread 0x7ffff7fd3710 (LWP 4687) thread2 (d=0x0) at three-
threads.c:23
 1 Thread 0x7ffff7fd5720 (LWP 4620) main () at three-threads.c:34
(gdb)

(gdb) thread 3
[Switching to thread 3 (Thread 0x7ffff75d2710 (LWP 4688))]#0 thread3
(d=0x0)
 at three-threads.c:9
9 int count3 = 0;
(gdb) list
4
5 pthread_t thread;
6
7 void* thread3 (void* d)
8 {
9 int count3 = 0;
10
11 while(count3 < 1000){
12 sleep(10);
13 printf("Thread 3: %d\n", count3++);
(gdb)

(gdb) continue &
(gdb) Thread 3: 0
Thread 3: 1
Thread 3: 2
Thread 3: 3

Developer Guide

68

Take note of the & at the end of the continue. This allows the GDB prompt to return so other
commands can be executed. Using the interrupt, execution can be stopped should thread 3 become
interesting again.

It is also possible to go back to the original main thread and examine it some more.

As can be seen from the output of info threads, the other threads are where they were left, unaffected by
the debugging of thread 1.

4.3.6. Alternative User Interfaces for GDB

GDB uses the command line as its default interface. However, it also has an API called machine
interface (MI). MI allows IDE developers to create other user interfaces to GDB.

Some examples of these interfaces are:

Eclipse (CDT)

(gdb) interrupt
[Thread 0x7ffff75d2710 (LWP 4688)] #3 stopped.
0x000000343f4a6a6d in nanosleep () at
../sysdeps/unix/syscall-template.S:82
82 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)

(gdb) thread 1
[Switching to thread 1 (Thread 0x7ffff7fd5720 (LWP 4620))]#0 main ()
 at three-threads.c:34
34 int count1 = 0;
(gdb) next
36 while(count1 < 1000){
(gdb) next
37 printf("Thread 1: %d\n", count1++);
(gdb) next
Thread 1: 0
36 while(count1 < 1000){
(gdb) next
37 printf("Thread 1: %d\n", count1++);
(gdb) next
Thread 1: 1
36 while(count1 < 1000){
(gdb) next
37 printf("Thread 1: %d\n", count1++);
(gdb) next
Thread 1: 2
36 while(count1 < 1000){
(gdb) print count1
$3 = 3
(gdb) info threads
 3 Thread 0x7ffff75d2710 (LWP 4688) 0x000000343f4a6a6d in nanosleep ()
 at ../sysdeps/unix/syscall-template.S:82
 2 Thread 0x7ffff7fd3710 (LWP 4687) thread2 (d=0x0) at three-
threads.c:23
* 1 Thread 0x7ffff7fd5720 (LWP 4620) main () at three-threads.c:36
(gdb)

CHAPTER 4. DEBUGGING

69

A graphical debugger interface integrated with the Eclipse development environment. More
information can be found at the Eclipse website.

Nemiver

A graphical debugger interface which is well suited to the GNOME Desktop Environment. More
information can be found at the Nemiver website

Emacs

A GDB interface which is integrated with the emacs. More information can be found at the Emacs
website

4.4. VARIABLE TRACKING AT ASSIGNMENTS

Variable Tracking at Assignments (VTA) is a new infrastructure included in GCC used to improve
variable tracking during optimizations. This allows GCC to produce more precise, meaningful, and useful
debugging information for GDB, SystemTap, and other debugging tools.

When GCC compiles code with optimizations enabled, variables are renamed, moved around, or even
removed altogether. As such, optimized compiling can cause a debugger to report that some variables
have been <optimized out>. With VTA enabled, optimized code is internally annotated to ensure that
optimization passes to transparently keep track of each variable's value, regardless of whether the
variable is moved or removed. The effect of this is more parameter and variable values available, even
for the optimized (gcc -O2 -g built) code. It also displays the <optimized out> message less.

VTA's benefits are more pronounced when debugging applications with inlined functions. Without VTA,
optimization could completely remove some arguments of an inlined function, preventing the debugger
from inspecting its value. With VTA, optimization will still happen, and appropriate debugging information
will be generated for any missing arguments.

VTA is enabled by default when compiling code with optimizations and debugging information enabled
(that is, gcc -O -g or, more commonly, gcc -O2 -g). To disable VTA during such builds, add the -
fno-var-tracking-assignments. In addition, the VTA infrastructure includes the new gcc option -
fcompare-debug. This option tests code compiled by GCC with debug information and without debug
information: the test passes if the two binaries are identical. This test ensures that executable code is not
affected by any debugging options, which further ensures that there are no hidden bugs in the debug
code. Note that -fcompare-debug adds significant cost in compilation time. See man gcc for details
about this option.

For more information about the infrastructure and development of VTA, see A Plan to Fix Local Variable
Debug Information in GCC, available at the following link:

http://gcc.gnu.org/wiki/Var_Tracking_Assignments

A slide deck version of this whitepaper is also available at
http://people.redhat.com/aoliva/papers/vta/slides.pdf.

4.5. PYTHON PRETTY-PRINTERS

The GDB command print outputs comprehensive debugging information for a target application. GDB
aims to provide as much debugging data as it can to users; however, this means that for highly complex
programs the amount of data can become very cryptic.

Developer Guide

70

http://www.eclipse.org/cdt/
http://projects.gnome.org/nemiver/
http://www.gnu.org/software/libtool/manual/emacs/GDB-Graphical-Interface.html
http://gcc.gnu.org/wiki/Var_Tracking_Assignments
http://people.redhat.com/aoliva/papers/vta/slides.pdf

In addition, GDB does not provide any tools that help decipher GDB print output. GDB does not even
empower users to easily create tools that can help decipher program data. This makes the practice of
reading and understanding debugging data quite arcane, particularly for large, complex projects.

For most developers, the only way to customize GDB print output (and make it more meaningful) is to
revise and recompile GDB. However, very few developers can actually do this. Further, this practice will
not scale well, particularly if the developer must also debug other programs that are heterogeneous and
contain equally complex debugging data.

To address this, the Red Hat Enterprise Linux 6 version of GDB is now compatible with Python pretty-
printers. This allows the retrieval of more meaningful debugging data by leaving the introspection,
printing, and formatting logic to a third-party Python script.

Compatibility with Python pretty-printers gives you the chance to truly customize GDB output as you see
fit. This makes GDB a more viable debugging solution to a wider range of projects, since you now have
the flexibility to adapt GDB output as required, and with greater ease. Further, developers with intimate
knowledge of a project and a specific programming language are best qualified in deciding what kind of
output is meaningful, allowing them to improve the usefulness of that output.

The Python pretty-printers implementation allows users to automatically inspect, format, and print
program data according to specification. These specifications are written as rules implemented via
Python scripts. This offers the following benefits:

Safe

To pass program data to a set of registered Python pretty-printers, the GDB development team added
hooks to the GDB printing code. These hooks were implemented with safety in mind: the built-in GDB
printing code is still intact, allowing it to serve as a default fallback printing logic. As such, if no
specialized printers are available, GDB will still print debugging data the way it always did. This ensures
that GDB is backwards-compatible; users who do not require pretty-printers can still continue using GDB.

Highly Customizable

This new "Python-scripted" approach allows users to distill as much knowledge as required into specific
printers. As such, a project can have an entire library of printer scripts that parses program data in a
unique manner specific to its user's requirements. There is no limit to the number of printers a user can
build for a specific project; what's more, being able to customize debugging data script by script offers
users an easier way to re-use and re-purpose printer scripts — or even a whole library of them.

Easy to Learn

The best part about this approach is its lower barrier to entry. Python scripting is comparatively easy to
learn and has a large library of free documentation available online. In addition, most programmers
already have basic to intermediate experience in Python scripting, or in scripting in general.

Here is a small example of a pretty printer. Consider the following C++ program:

fruit.cc

enum Fruits {Orange, Apple, Banana};

class Fruit
{
 int fruit;

 public:
 Fruit (int f)
 {

CHAPTER 4. DEBUGGING

71

This is compiled with the command g++ -g fruit.cc -o fruit. Now, examine this program with
GDB.

The output of {fruit = 1} is correct because that is the internal representation of 'fruit' in the data
structure 'Fruit'. However, this is not easily read by humans as it is difficult to tell which fruit the integer 1
represents.

To solve this problem, write the following pretty printer:

 fruit = f;
 }
};

int main()
{
 Fruit myFruit(Apple);
 return 0; // line 17
}

gdb ./fruit
[...]
(gdb) break 17
Breakpoint 1 at 0x40056d: file fruit.cc, line 17.
(gdb) run

Breakpoint 1, main () at fruit.cc:17
17 return 0; // line 17
(gdb) print myFruit
$1 = {fruit = 1}

fruit.py

class FruitPrinter:
 def __init__(self, val):
 self.val = val

 def to_string (self):
 fruit = self.val['fruit']

 if (fruit == 0):
 name = "Orange"
 elif (fruit == 1):
 name = "Apple"
 elif (fruit == 2):
 name = "Banana"
 else:
 name = "unknown"
 return "Our fruit is " + name

def lookup_type (val):
 if str(val.type) == 'Fruit':
 return FruitPrinter(val)
 return None

gdb.pretty_printers.append (lookup_type)

Developer Guide

72

Examine this printer from the bottom up.

The line gdb.pretty_printers.append (lookup_type) adds the function lookup_type to
GDB's list of printer lookup functions.

The function lookup_type is responsible for examining the type of object to be printed, and returning
an appropriate pretty printer. The object is passed by GDB in the parameter val. val.type is an
attribute which represents the type of the pretty printer.

FruitPrinter is where the actual work is done. More specifically in the to_string function of that
Class. In this function, the integer fruit is retrieved using the python dictionary syntax
self.val['fruit']. Then the name is determined using that value. The string returned by this
function is the string that will be printed to the user.

After creating fruit.py, it must then be loaded into GDB with the following command:

(gdb) python execfile("fruit.py")

The GDB and Python Pretty-Printers whitepaper provides more details on this feature. This whitepaper
also includes details and examples on how to write your own Python pretty-printer as well as how to
import it into GDB. See the following link for more information:

http://sourceware.org/gdb/onlinedocs/gdb/Pretty-Printing.html

CHAPTER 4. DEBUGGING

73

http://sourceware.org/gdb/onlinedocs/gdb/Pretty-Printing.html

CHAPTER 5. PROFILING
Developers profile programs to focus attention on the areas of the program that have the largest impact
on performance. The types of data collected include what section of the program consumes the most
processor time, and where memory is allocated. Profiling collects data from the actual program
execution. Thus, the quality of the data collect is influenced by the actual tasks being performed by the
program. The tasks performed during profiling should be representative of actual use; this ensures that
problems arising from realistic use of the program are addressed during development.

Red Hat Enterprise Linux 6 includes a number of different tools (Valgrind, OProfile, perf, and
SystemTap) to collect profiling data. Each tool is suitable for performing specific types of profile runs, as
described in the following sections.

5.1. VALGRIND

Valgrind is an instrumentation framework for building dynamic analysis tools that can be used to profile
applications in detail. The default installation alrready provides five standard tools. Valgrind tools are
generally used to investigate memory management and threading problems. The Valgrind suite also
includes tools that allow the building of new profiling tools as required.

Valgrind provides instrumentation for user-space binaries to check for errors, such as the use of
uninitialized memory, improper allocation/freeing of memory, and improper arguments for systemcalls. Its
profiling tools can be used by normal users on most binaries; however, compared to other profilers,
Valgrind profile runs are significantly slower. To profile a binary, Valgrind rewrites its executable and
instruments the rewritten binary. Valgrind's tools are most useful for looking for memory-related issues
in user-space programs; it is not suitable for debugging time-specific issues or kernel-space
instrumentation and debugging.

Valgrind reports are most useful and accurate whhen debuginfo packages are installed for the programs
or libraries under investigation. See Section 4.2, “Installing Debuginfo Packages”.

5.1.1. Valgrind Tools

The Valgrind suite is composed of the following tools:

memcheck

This tool detects memory management problems in programs by checking all reads from and writes
to memory and intercepting all system calls to malloc, new, free, and delete. memcheck is
perhaps the most used Valgrind tool, as memory management problems can be difficult to detect
using other means. Such problems often remain undetected for long periods, eventually causing
crashes that are difficult to diagnose.

cachegrind

cachegrind is a cache profiler that accurately pinpoints sources of cache misses in code by
performing a detailed simulation of the I1, D1 and L2 caches in the CPU. It shows the number of
cache misses, memory references, and instructions accruing to each line of source code;
cachegrind also provides per-function, per-module, and whole-program summaries, and can even
show counts for each individual machine instructions.

callgrind

Like cachegrind, callgrind can model cache behavior. However, the main purpose of
callgrind is to record callgraphs data for the executed code.

Developer Guide

74

massif

massif is a heap profiler; it measures how much heap memory a program uses, providing information
on heap blocks, heap administration overheads, and stack sizes. Heap profilers are useful in finding
ways to reduce heap memory usage. On systems that use virtual memory, programs with optimized
heap memory usage are less likely to run out of memory, and may be faster as they require less
paging.

helgrind

In programs that use the POSIX pthreads threading primitives, helgrind detects synchronization
errors. Such errors are:

Misuses of the POSIX pthreads API

Potential deadlocks arising from lock ordering problems

Data races (that is, accessing memory without adequate locking)

Valgrind also allows you to develop your own profiling tools. In line with this, Valgrind includes the
lackey tool, which is a sample that can be used as a template for generating your own tools.

5.1.2. Using Valgrind

The valgrind package and its dependencies install all the necessary tools for performing a Valgrind
profile run. To profile a program with Valgrind, use:

~]$ valgrind --tool=toolname program

See Section 5.1.1, “Valgrind Tools” for a list of arguments for toolname. In addition to the suite of
Valgrind tools, none is also a valid argument for toolname; this argument allows you to run a program
under Valgrind without performing any profiling. This is useful for debugging or benchmarking Valgrind
itself.

You can also instruct Valgrind to send all of its information to a specific file. To do so, use the option --
log-file=filename. For example, to check the memory usage of the executable file hello and send
profile information to output, use:

~]$ valgrind --tool=memcheck --log-file=output hello

See Section 5.1.3, “Additional information” for more information on Valgrind, along with other available
documentation on the Valgrind suite of tools.

5.1.3. Additional information

For more extensive information on Valgrind, see man valgrind. Red Hat Enterprise Linux also
provides a comprehensive Valgrind Documentation book available as PDF and HTML in:

/usr/share/doc/valgrind-version/valgrind_manual.pdf

/usr/share/doc/valgrind-version/html/index.html

5.2. OPROFILE

CHAPTER 5. PROFILING

75

OProfile is a low overhead, system-wide performance monitoring tool provided by the oprofile package.
It uses the performance monitoring hardware on the processor to retrieve information about the kernel
and executables on the system, such as when memory is referenced, the number of second-level cache
requests, and the number of hardware interrupts received. OProfile is also able to profile applications
that run in a Java Virtual Machine (JVM).

The following is a selection of the tools provided by OProfile. Note that the legacy opcontrol tool and
the new operf tool are mutually exclusive.

ophelp

Displays available events for the system’s processor along with a brief description of each.

operf

Intended to replace opcontrol. The operf tool uses the Linux Performance Events subsystem,
allowing you to target your profiling more precisely, as a single process or system-wide, and allowing
OProfile to co-exist better with other tools using the performance monitoring hardware on your
system. Unlike opcontrol, no initial setup is required, and it can be used without the root privileges
unless the --system-wide option is in use.

opimport

Converts sample database files from a foreign binary format to the native format for the system. Only
use this option when analyzing a sample database from a different architecture.

opannotate

Creates an annotated source for an executable if the application was compiled with debugging
symbols.

opreport

Retrieves profile data.

opcontrol

This tool is used to start and stop the OProfile daemon (oprofiled) and configure a profile session.

oprofiled

Runs as a daemon to periodically write sample data to disk.

Legacy mode (opcontrol, oprofiled, and post-processing tools) remains available, but it is no longer
the recommended profiling method. For a detailed description of the legacy mode, see the Configuring
OProfile Using Legacy Mode chapter in the System Administrator's Guide.

5.2.1. Using OProfile

operf is the recommended tool for collecting profiling data. The tool does not require any initial
configuration, and all options are passed to it on the command line. Unlike the legacy opcontrol tool,
operf can run without root privileges. See the Using operf chapter in the System Administrator's Guide
for detailed instructions on how to use the operf tool.

Example 5.1. Using operf to Profile a Java Program

Developer Guide

76

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/System_Administrators_Guide/#s1-oprofile-configuring
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/System_Administrators_Guide/#s1-using-operf

In the following example, the operf tool is used to collect profiling data from a Java (JIT) program,
and the opreport tool is then used to output per-symbol data.

1. Install the demonstration Java program used in this example. It is a part of the java-1.8.0-
openjdk-demo package, which is included in the Optional channel. See Enabling
Supplementary and Optional Repositories for instructions on how to use the Optional
channel. When the Optional channel is enabled, install the package:

~]# yum install java-1.8.0-openjdk-demo

2. Install the oprofile-jit package for OProfile to be able to collect profiling data from Java
programs:

~]# yum install oprofile-jit

3. Create a directory for OProfile data:

~]$ mkdir ~/oprofile_data

4. Change into the directory with the demonstration program:

~]$ cd /usr/lib/jvm/java-1.8.0-
openjdk/demo/applets/MoleculeViewer/

5. Start the profiling:

~]$ operf -d ~/oprofile_data appletviewer \
-J"-agentpath:/usr/lib64/oprofile/libjvmti_oprofile.so"
example2.html

6. Change into the home directory and analyze the collected data:

~]$ cd

~]$ opreport --symbols --threshold 0.5

A sample output may look like the following:

$ opreport --symbols --threshold 0.5
Using /home/rkratky/oprofile_data/samples/ for samples directory.

WARNING! Some of the events were throttled. Throttling occurs when
the initial sample rate is too high, causing an excessive number
of
interrupts. Decrease the sampling frequency. Check the directory
/home/rkratky/oprofile_data/samples/current/stats/throttled
for the throttled event names.

warning: /dm_crypt could not be found.
warning: /e1000e could not be found.
warning: /kvm could not be found.
CPU: Intel Ivy Bridge microarchitecture, speed 3600 MHz

CHAPTER 5. PROFILING

77

https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/1/html/RHSM/supplementary-repos.html

(estimated)
Counted CPU_CLK_UNHALTED events (Clock cycles when not halted)
with a unit mask of 0x00 (No unit mask) count 100000
samples % image name symbol name
14270 57.1257 libjvm.so /usr/lib/jvm/java-
1.8.0-openjdk-1.8.0.51-
1.b16.el7_1.x86_64/jre/lib/amd64/server/libjvm.so
3537 14.1593 23719.jo Interpreter
690 2.7622 libc-2.17.so fgetc
581 2.3259 libX11.so.6.3.0
/usr/lib64/libX11.so.6.3.0
364 1.4572 libpthread-2.17.so pthread_getspecific
130 0.5204 libfreetype.so.6.10.0
/usr/lib64/libfreetype.so.6.10.0
128 0.5124 libc-2.17.so __memset_sse2

5.2.2. OProfile in Red Hat Enterprise Linux 7

OProfile 0.9.9, which is included in Red Hat Enterprise Linux 7, contains a number of improvements
over previous versions. The new version also supports the utilization of the Linux Performance Events
subsystem using the new operf command.

5.2.2.1. New Features

A new operf program is now available that allows non-root users to profile single processes. This can
also be used for system-wide profiling, but in this case, root authority is required.

OProfile 0.9.9 now supports the following:

IBM POWER8 processors

Intel Haswell processors

IBM zEnterprise EC12 (zEC12) processor

AMD Generic Performance Events

IBM Power ISA 2.07 Architected Events

5.2.2.2. Known Problems and Limitiations

OProfile 0.9.9 has a few known problems and limitations. These are:

AMD Instruction Based Sampling (IBS) is not currently supported with the new operf program.
Use the legacy opcontrol commands for IBS profiling.

The type of the sample header mtime field has changed to u64, which makes it impossible to
process sample data acquired using previous versions of OProfile.

opcontrol fails to allocate the hardware performance counters it needs if the NMI watchdog is
enabled. The NMI watchdog, which monitors system interrupts, uses the perf tool, which
reserves all performance counters.

Developer Guide

78

5.2.3. OProfile Documentation

For more extensive information on OProfile, see the oprofile(1) manual page. Red Hat Enterprise Linux
also provides two comprehensive guides to OProfile in
file:///usr/share/doc/oprofile-version/:

OProfile Manual

A comprehensive manual with detailed instructions on the setup and use of OProfile is found at
file:///usr/share/doc/oprofile-version/oprofile.html

OProfile Internals

Documentation on the internal workings of OProfile, useful for programmers interested in contributing
to the OProfile upstream, can be found at
file:///usr/share/doc/oprofile-version/internals.html

5.3. SYSTEMTAP

SystemTap is a useful instrumentation platform for probing running processes and kernel activity on the
Linux system. To execute a probe:

1. Write SystemTap scripts that specify which system events (for example, virtual file system
reads, packet transmissions) should trigger specified actions (for example, print, parse, or
otherwise manipulate data).

2. SystemTap translates the script into a C program, which it compiles into a kernel module.

3. SystemTap loads the kernel module to perform the actual probe.

SystemTap scripts are useful for monitoring system operation and diagnosing system issues with
minimal intrusion into the normal operation of the system. You can quickly instrument running system
test hypotheses without having to recompile and re-install instrumented code. To compile a SystemTap
script that probes kernel-space, SystemTap uses information from three different kernel information
packages:

kernel-variant-devel-version

kernel-variant-debuginfo-version

kernel-debuginfo-common-arch-version

NOTE

The kernel information package in Red Hat Enterprise Linux 6 is now named kernel-
debuginfo-common-arch-version. It was originally kernel-debuginfo-common-version in
Red Hat Enterprise Linux 5.

These kernel information packages must match the kernel to be probed. In addition, to compile
SystemTap scripts for multiple kernels, the kernel information packages of each kernel must also be
installed.

5.3.1. Additional Information

For more detailed information about SystemTap, see the following Red Hat documentation:

CHAPTER 5. PROFILING

79

SystemTap Beginner's Guide

SystemTap Tapset Reference

5.4. PERFORMANCE COUNTERS FOR LINUX (PCL) TOOLS AND PERF

Performance Counters for Linux (PCL) is a new kernel-based subsystem that provides a framework for
collecting and analyzing performance data. These events will vary based on the performance monitoring
hardware and the software configuration of the system. Red Hat Enterprise Linux 6 includes this kernel
subsystem to collect data and the user-space tool perf to analyze the collected performance data.

The PCL subsystem can be used to measure hardware events, including retired instructions and
processor clock cycles. It can also measure software events, including major page faults and context
switches. For example, PCL counters can compute the Instructions Per Clock (IPC) from a process's
counts of instructions retired and processor clock cycles. A low IPC ratio indicates the code makes poor
use of the CPU. Other hardware events can also be used to diagnose poor CPU performance.

Performance counters can also be configured to record samples. The relative frequency of samples can
be used to identify which regions of code have the greatest impact on performance.

5.4.1. Perf Tool Commands

Useful perf commands include the following:

perf stat

This perf command provides overall statistics for common performance events, including
instructions executed and clock cycles consumed. Options allow selection of events other than the
default measurement events.

perf record

This perf command records performance data into a file which can be later analyzed using perf
report.

perf report

This perf command reads the performance data from a file and analyzes the recorded data.

perf list

This perf command lists the events available on a particular machine. These events will vary based
on the performance monitoring hardware and the software configuration of the system.

Use perf help to obtain a complete list of perf commands. To retrieve man page information on each
perf command, use perf help command.

5.4.2. Using Perf

Using the basic PCL infrastructure for collecting statistics or samples of program execution is relatively
straightforward. This section provides simple examples of overall statistics and sampling.

To collect statistics on make and its children, use the following command:

perf stat -- make all

Developer Guide

80

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/SystemTap_Beginners_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/SystemTap_Tapset_Reference/index.html

The perf command collects a number of different hardware and software counters. It then prints the
following information:

Performance counter stats for 'make all':

 244011.782059 task-clock-msecs # 0.925 CPUs
 53328 context-switches # 0.000 M/sec
 515 CPU-migrations # 0.000 M/sec
 1843121 page-faults # 0.008 M/sec
 789702529782 cycles # 3236.330 M/sec
 1050912611378 instructions # 1.331 IPC
 275538938708 branches # 1129.203 M/sec
 2888756216 branch-misses # 1.048 %
 4343060367 cache-references # 17.799 M/sec
 428257037 cache-misses # 1.755 M/sec

 263.779192511 seconds time elapsed

The perf tool can also record samples. For example, to record data on the make command and its
children, use:

perf record -- make all

This prints out the file in which the samples are stored, along with the number of samples collected:

[perf record: Woken up 42 times to write data]
[perf record: Captured and wrote 9.753 MB perf.data (~426109 samples)]

As of Red Hat Enterprise Linux 6.4, a new functionality to the {} group syntax has been added that
allows the creation of event groups based on the way they are specified on the command line.

The current --group or -g options remain the same; if it is specified for record, stat, or top command,
all the specified events become members of a single group with the first event as a group leader.

The new {} group syntax allows the creation of a group like:

perf record -e '{cycles, faults}' ls

The above results in a single event group containing cycles and faults events, with the cycles event as
the group leader.

All groups are created with regards to threads and CPUs. As such, recording an event group within two
threads on a server with four CPUs will create eight separate groups.

It is possible to use a standard event modifier for a group. This spans over all events in the group and
updates each event modifier settings.

perf record -r '{faults:k,cache-references}:p'

The above command results in the :kp modifier being used for faults, and the :p modifier being used for
the cache-references event.

Performance Counters for Linux (PCL) Tools conflict with OProfile

CHAPTER 5. PROFILING

81

Both OProfile and Performance Counters for Linux (PCL) use the same hardware Performance
Monitoring Unit (PMU). If OProfile is currently running while attempting to use the PCL perf command,
an error message like the following occurs when starting OProfile:

Error: open_counter returned with 16 (Device or resource busy). /bin/dmesg
may provide additional information.

Fatal: Not all events could be opened.

To use the perf command, first shut down OProfile:

opcontrol --deinit

You can then analyze perf.data to determine the relative frequency of samples. The report output
includes the command, object, and function for the samples. Use perf report to output an analysis of
perf.data. For example, the following command produces a report of the executable that consumes
the most time:

perf report --sort=comm

The resulting output:

Samples: 1083783860000
#
Overhead Command
........
#
 48.19% xsltproc
 44.48% pdfxmltex
 6.01% make
 0.95% perl
 0.17% kernel-doc
 0.05% xmllint
 0.05% cc1
 0.03% cp
 0.01% xmlto
 0.01% sh
 0.01% docproc
 0.01% ld
 0.01% gcc
 0.00% rm
 0.00% sed
 0.00% git-diff-files
 0.00% bash
 0.00% git-diff-index

The column on the left shows the relative frequency of the samples. This output shows that make spends
most of this time in xsltproc and the pdfxmltex. To reduce the time for the make to complete, focus
on xsltproc and pdfxmltex. To list the functions executed by xsltproc, run:

perf report -n --comm=xsltproc

This generates:

Developer Guide

82

comm: xsltproc
Samples: 472520675377
#
Overhead Samples Shared Object Symbol
........
#
 45.54%215179861044 libxml2.so.2.7.6 [.]
xmlXPathCmpNodesExt
 11.63%54959620202 libxml2.so.2.7.6 [.]
xmlXPathNodeSetAdd__internal_alias
 8.60%40634845107 libxml2.so.2.7.6 [.]
xmlXPathCompOpEval
 4.63%21864091080 libxml2.so.2.7.6 [.]
xmlXPathReleaseObject
 2.73%12919672281 libxml2.so.2.7.6 [.]
xmlXPathNodeSetSort__internal_alias
 2.60%12271959697 libxml2.so.2.7.6 [.] valuePop
 2.41%11379910918 libxml2.so.2.7.6 [.]
xmlXPathIsNaN__internal_alias
 2.19%10340901937 libxml2.so.2.7.6 [.]
valuePush__internal_alias

5.5. FTRACE

The ftrace framework provides users with several tracing capabilities, accessible through an interface
much simpler than SystemTap's. This framework uses a set of virtual files in the debugfs file system;
these files enable specific tracers. The ftrace function tracer outputs each function called in the kernel
in real time; other tracers within the ftrace framework can also be used to analyze wakeup latency,
task switches, kernel events, and the like.

You can also add new tracers for ftrace, making it a flexible solution for analyzing kernel events. The
ftrace framework is useful for debugging or analyzing latencies and performance issues that take place
outside of user-space. Unlike other profilers documented in this guide, ftrace is a built-in feature of the
kernel.

5.5.1. Using ftrace

The Red Hat Enterprise Linux 6 kernels have been configured with the CONFIG_FTRACE=y option. This
option provides the interfaces required by ftrace. To use ftrace, mount the debugfs file system as
follows:

mount -t debugfs nodev /sys/kernel/debug

All the ftrace utilities are located in /sys/kernel/debug/tracing/. View the
/sys/kernel/debug/tracing/available_tracers file to find out what tracers are available for
your kernel:

cat /sys/kernel/debug/tracing/available_tracers

power wakeup irqsoff function sysprof sched_switch initcall nop

CHAPTER 5. PROFILING

83

To use a specific tracer, write it to /sys/kernel/debug/tracing/current_tracer. For example,
wakeup traces and records the maximum time it takes for the highest-priority task to be scheduled after
the task wakes up. To use it:

echo wakeup > /sys/kernel/debug/tracing/current_tracer

To start or stop tracing, write to /sys/kernel/debug/tracing/tracing_on, as in:

echo 1 > /sys/kernel/debug/tracing/tracing_on (enables tracing)

echo 0 > /sys/kernel/debug/tracing/tracing_on (disables tracing)

The results of the trace can be viewed from the following files:

/sys/kernel/debug/tracing/trace

This file contains human-readable trace output.

/sys/kernel/debug/tracing/trace_pipe

This file contains the same output as /sys/kernel/debug/tracing/trace, but is meant to be
piped into a command. Unlike /sys/kernel/debug/tracing/trace, reading from this file
consumes its output.

5.5.2. ftrace Documentation

The ftrace framework is fully documented in the following files:

ftrace - Function Tracer: file:///usr/share/doc/kernel-
doc-version/Documentation/trace/ftrace.txt

function tracer guts: file:///usr/share/doc/kernel-
doc-version/Documentation/trace/ftrace-design.txt

Developer Guide

84

CHAPTER 6. DOCUMENTATION TOOLS
Red Hat Enterprise Linux 6 offers the Doxygen tool for generating documentation from source code and
for writing standalone documentation.

6.1. DOXYGEN

Doxygen is a documentation tool that creates reference material both online in HTML and offline in Latex.
It does this from a set of documented source files which makes it easy to keep the documentation
consistent and correct with the source code.

6.1.1. Doxygen Supported Output and Languages

Doxygen has support for output in:

RTF (MS Word)

PostScript

Hyperlinked PDF

Compressed HTML

Unix man pages

Doxygen supports the following programming languages:

C

C++

C#

Objective -C

IDL

Java

VHDL

PHP

Python

Fortran

D

6.1.2. Getting Started

Doxygen uses a configuration file to determine its settings, therefore it is paramount that this be created
correctly. Each project requires its own configuration file. The most painless way to create the
configuration file is with the command doxygen -g config-file. This creates a template
configuration file that can be easily edited. The variable config-file is the name of the configuration file. If

CHAPTER 6. DOCUMENTATION TOOLS

85

it is committed from the command it is called Doxyfile by default. Another useful option while creating the
configuration file is the use of a minus sign (-) as the file name. This is useful for scripting as it will cause
Doxygen to attempt to read the configuration file from standard input (stdin).

The configuration file consists of a number of variables and tags, similar to a simple Makefile. For
example:

TAGNAME = VALUE1 VALUE2...

For the most part these can be left alone but should it be required to edit them see the configuration page
of the Doxygen documentation website for an extensive explanation of all the tags available. There is
also a GUI interface called doxywizard. If this is the preferred method of editing then documentation for
this function can be found on the Doxywizard usage page of the Doxygen documentation website.

There are eight tags that are useful to become familiar with.

INPUT

For small projects consisting mainly of C or C++ source and header files it is not required to change
anything. However, if the project is large and consists of a source directory or tree, then assign the root
directory or directories to the INPUT tag.

FILE_PATTERNS

File patterns (for example, *.cpp or *.h) can be added to this tag allowing only files that match one of
the patterns to be parsed.

RECURSIVE

Setting this to yes will allow recursive parsing of a source tree.

EXCLUDE and EXCLUDE_PATTERNS

These are used to further fine-tune the files that are parsed by adding file patterns to avoid. For
example, to omit all test directories from a source tree, use EXCLUDE_PATTERNS = */test/*.

EXTRACT_ALL

When this is set to yes, doxygen will pretend that everything in the source files is documented to give an
idea of how a fully documented project would look. However, warnings regarding undocumented
members will not be generated in this mode; set it back to no when finished to correct this.

SOURCE_BROWSER and INLINE_SOURCES

By setting the SOURCE_BROWSER tag to yes doxygen will generate a cross-reference to analyze a piece
of software's definition in its source files with the documentation existing about it. These sources can
also be included in the documentation by setting INLINE_SOURCES to yes.

6.1.3. Running Doxygen

Running doxygen config-file creates html, rtf, latex, xml, and / or man directories in
whichever directory doxygen is started in, containing the documentation for the corresponding filetype.

HTML OUTPUT

This documentation can be viewed with a HTML browser that supports cascading style sheets (CSS), as
well as DHTML and Javascript for some sections. Point the browser (for example, Mozilla, Safari,
Konqueror, or Internet Explorer 6) to the index.html in the html directory.

Developer Guide

86

http://www.stack.nl/~dimitri/doxygen/config.html
http://www.stack.nl/~dimitri/doxygen/doxywizard_usage.html

LaTeX OUTPUT

Doxygen writes a Makefile into the latex directory in order to make it easy to first compile the Latex
documentation. To do this, use a recent teTeX distribution. What is contained in this directory depends
on whether the USE_PDFLATEX is set to no. Where this is true, typing make while in the latex directory
generates refman.dvi. This can then be viewed with xdvi or converted to refman.ps by typing make
ps. Note that this requires dvips.

There are a number of commands that may be useful. The command make ps_2on1 prints two pages
on one physical page. It is also possible to convert to a PDF if a ghostscript interpreter is installed by
using the command make pdf. Another valid command is make pdf_2on1. When doing this set
PDF_HYPERLINKS and USE_PDFLATEX tags to yes as this will cause Makefile will only contain a
target to build refman.pdf directly.

RTF OUTPUT

This file is designed to import into Microsoft Word by combining the RTF output into a single file:
refman.rtf. Some information is encoded using fields but this can be shown by selecting all (CTRL+A
or Edit -> select all) and then right-click and select the toggle fields option from the drop down
menu.

XML OUTPUT

The output into the xml directory consists of a number of files, each compound gathered by doxygen, as
well as an index.xml. An XSLT script, combine.xslt, is also created that is used to combine all the
XML files into a single file. Along with this, two XML schema files are created, index.xsd for the index
file, and compound.xsd for the compound files, which describe the possible elements, their attributes,
and how they are structured.

MAN PAGE OUTPUT

The documentation from the man directory can be viewed with the man program after ensuring the
manpath has the correct man directory in the man path. Be aware that due to limitations with the man
page format, information such as diagrams, cross-references and formulas will be lost.

6.1.4. Documenting the Sources

There are three main steps to document the sources.

1. First, ensure that EXTRACT_ALL is set to no so warnings are correctly generated and
documentation is built properly. This allows doxygen to create documentation for documented
members, files, classes and namespaces.

2. There are two ways this documentation can be created:

A special documentation block

This comment block, containing additional marking so Doxygen knows it is part of the
documentation, is in either C or C++. It consists of a brief description, or a detailed
description. Both of these are optional. What is not optional, however, is the in body
description. This then links together all the comment blocks found in the body of the method
or function.

NOTE

While more than one brief or detailed description is allowed, this is not
recommended as the order is not specified.

CHAPTER 6. DOCUMENTATION TOOLS

87

The following will detail the ways in which a comment block can be marked as a detailed
description:

C-style comment block, starting with two asterisks (*) in the JavaDoc style.

C-style comment block using the Qt style, consisting of an exclamation mark (!) instead
of an extra asterisk.

The beginning asterisks on the documentation lines can be left out in both cases if that is
preferred.

A blank beginning and end line in C++ also acceptable, with either three forward slashes
or two forward slashes and an exclamation mark.

or

Alternatively, in order to make the comment blocks more visible a line of asterisks or
forward slashes can be used.

or

Note that the two forwards slashes at the end of the normal comment block start a special
comment block.

There are three ways to add a brief description to documentation.

To add a brief description use \brief above one of the comment blocks. This brief
section ends at the end of the paragraph and any further paragraphs are the detailed
descriptions.

/**
 * ... documentation ...
 */

/*!
 * ... documentation ...
 */

///
/// ... documentation
///

//!
//! ... documentation ...
//!

///
/// ... documentation ...
///

/**//**
 * ... documentation ...
 ***/

Developer Guide

88

By setting JAVADOC_AUTOBRIEF to yes, the brief description will only last until the first
dot followed by a space or new line. Consequentially limiting the brief description to a
single sentence.

This can also be used with the above mentioned three-slash comment blocks (///).

The third option is to use a special C++ style comment, ensuring this does not span more
than one line.

or

The blank line in the above example is required to separate the brief description and the
detailed description, and JAVADOC_AUTOBRIEF must to be set to no.

Examples of how a documented piece of C++ code using the Qt style can be found on the
Doxygen documentation website

It is also possible to have the documentation after members of a file, struct, union, class, or
enum. To do this add a < marker in the comment block.\

Or in a Qt style as:

or

or

/*! \brief brief documentation.
 * brief documentation.
 *
 * detailed documentation.
 */

/** Brief documentation. Detailed documentation continues *
from here.
 */

/// Brief documentation.
/** Detailed documentation. */

//! Brief documentation.

//! Detailed documentation //! starts here

int var; /*!< detailed description after the member */

int var; /**< detailed description after the member */

int var; //!< detailed description after the member
 //!<

int var; ///< detailed description after the member
 ///<

CHAPTER 6. DOCUMENTATION TOOLS

89

http://www.stack.nl/~dimitri/doxygen/docblocks.html

For brief descriptions after a member use:

or

Examples of these and how the HTML is produced can be viewed on the Doxygen
documentation website

Documentation at other places

While it is preferable to place documentation in front of the code it is documenting, at times it
is only possible to put it in a different location, especially if a file is to be documented; after all
it is impossible to place the documentation in front of a file. This is best avoided unless it is
absolutely necessary as it can lead to some duplication of information.

To do this it is important to have a structural command inside the documentation block.
Structural commands start with a backslash (\) or an at-sign (@) for JavaDoc and are
followed by one or more parameters.

In the above example the command \class is used. This indicates that the comment block
contains documentation for the class 'Test'. Others are:

\struct: document a C-struct

\union: document a union

\enum: document an enumeration type

\fn: document a function

\var: document a variable, typedef, or enum value

\def: document a #define

\typedef: document a type definition

\file: document a file

\namespace: document a namespace

\package: document a Java package

\interface: document an IDL interface

int var; //!< brief description after the member

int var; ///< brief description after the member

/*! \class Test
 \brief A test class.

 A more detailed description of class.
 */

Developer Guide

90

http://www.stack.nl/~dimitri/doxygen/docblocks.html

3. Next, the contents of a special documentation block is parsed before being written to the HTML
and / Latex output directories. This includes:

1. Special commands are executed.

2. Any white space and asterisks (*) are removed.

3. Blank lines are taken as new paragraphs.

4. Words are linked to their corresponding documentation. Where the word is preceded by a
percent sign (%) the percent sign is removed and the word remains.

5. Where certain patterns are found in the text, links to members are created. Examples of this
can be found on the automatic link generation page on the Doxygen documentation website.

6. When the documentation is for Latex, HTML tags are interpreted and converted to Latex
equivalents. A list of supported HTML tags can be found on the HTML commands page on
the Doxygen documentation website.

6.1.5. Resources

More information can be found on the Doxygen website.

Doxygen homepage

Doxygen introduction

Doxygen documentation

Output formats

CHAPTER 6. DOCUMENTATION TOOLS

91

http://www.stack.nl/~dimitri/doxygen/autolink.html
http://www.stack.nl/~dimitri/doxygen/htmlcmds.html
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/starting.html
http://www.stack.nl/~dimitri/doxygen/docblocks.html
http://www.stack.nl/~dimitri/doxygen/output.html

APPENDIX A. APPENDIX

A.1. MALLOPT

mallopt is a library call that allows a program to change the behavior of the malloc memory allocator.

Example A.1. Allocator heuristics

An allocator has heuristics to determine long versus short lived objects. For the former, it attempts to
allocate with mmap. For the later, it attempts to allocate with sbrk.

In order to override these heuristics, set M_MMAP_THRESHOLD.

In multi-threaded applications, the allocator creates multiple arenas in response to lock contention in
existing arenas. This can improve the performance significantly for some multi-threaded applications at
the cost of an increase in memory usage. To keep this under control, limit the number of arenas that can
be created by using the mallopt interface.

The allocator has limits on the number of arenas it can create. For 32bit targets, it will create 2 * # core
arenas; for 64bit targets, it will create 8 * # core arenas. mallopt allows the developer to override those
limits.

Example A.2. mallopt

To ensure no more than eight arenas are created, issue the following library call:

mallopt (M_ARENA_MAX, 8);

The first argument for mallopt can be:

M_MXFAST

M_TRIM_THRESHOLD

M_TOP_PAD

M_MMAP_THRESHOLD

M_MMAP_MAX

M_CHECK_ACTION

M_PERTURB

M_ARENA_TEST

M_ARENA_MAX

Specific definitions for the above can be found at http://www.makelinux.net/man/3/M/mallopt.

malloc_trim

Developer Guide

92

http://www.makelinux.net/man/3/M/mallopt

malloc_trim is a library call that requests the allocator return any unused memory back to the
operating system. This is normally automatic when an object is freed. However, in some cases when
freeing small objects, glibc might not immediately release the memory back to the operating system. It
does this so that the free memory can be used to satisfy upcoming memory allocation requests as it is
expensive to allocate from and release memory back to the operating system.

malloc_stats

malloc_stats is used to dump information about the allocator's internal state to stderr. Using
mallinfo is similar to this, but it places the state into a structure instead.

Further Information

More information on mallopt can be found at http://www.makelinux.net/man/3/M/mallopt and
http://www.gnu.org/software/libc/manual/html_node/Malloc-Tunable-Parameters.html.

APPENDIX A. APPENDIX

93

http://www.makelinux.net/man/3/M/mallopt
http://www.gnu.org/software/libc/manual/html_node/Malloc-Tunable-Parameters.html

APPENDIX B. REVISION HISTORY

Revision 6-9.3 Thu 25 May 2017 Vladimír Slávik
Removal of section on distributed compiling.

Revision 6-9.2 Mon 3 April 2017 Robert Krátký
Release of the Developer Guide for Red Hat_Enterprise Linux 6.9

Revision 2-60 Wed 4 May 2016 Robert Krátký
Release of the Developer Guide for Red Hat_Enterprise Linux 6.8

Revision 2-56 Tue Jul 6 2015 Robert Krátký
Release of the Developer Guide for Red Hat_Enterprise Linux 6.7

Revision 2-55 Wed Apr 15 2015 Robert Krátký
Release of the Developer Guide for Red Hat_Enterprise Linux 6.7 Beta

Revision 2-54 Tue Dec 16 2014 Robert Krátký
Update to sort order on the Red Hat Customer Portal.

Revision 2-52 Wed Nov 11 2014 Robert Krátký
Re-release for RHSCL 1.2 and DTS 3.0.

Revision 2-51 Fri Oct 10 2014 Robert Krátký
Release of the Developer Guide for Red Hat_Enterprise Linux 6.6

Developer Guide

94

INDEX

A

advantages

Python pretty-printers

debugging, Python Pretty-Printers

Akonadi

KDE Development Framework

libraries and runtime support, KDE4 Architecture

architecture, KDE4

KDE Development Framework

libraries and runtime support, KDE4 Architecture

Autotools

compiling and building, Autotools

B

backtrace

tools

GNU debugger, Simple GDB

Boost

libraries and runtime support, Boost

boost-doc

Boost

libraries and runtime support, Additional Information

breakpoint

fundamentals

GNU debugger, Simple GDB

breakpoints (conditional)

GNU debugger, Conditional Breakpoints

build-id

compiling and building, build-id Unique Identification of Binaries

building

INDEX

95

compiling and building, Compiling and Building

C

C++ Standard Library, GNU

libraries and runtime support, The GNU C++ Standard Library

cachegrind

tools

Valgrind, Valgrind Tools

callgrind

tools

Valgrind, Valgrind Tools

Collaborating, Collaborating

commands

fundamentals

GNU debugger, Simple GDB

profiling

Valgrind, Valgrind Tools

tools

Performance Counters for Linux (PCL) and perf, Perf Tool Commands

commonly-used commands

Autotools

compiling and building, Autotools

compatibility

libraries and runtime support, Compatibility

compiling a C Hello World program

usage

GCC, Simple C Usage

compiling a C++ Hello World program

usage

GCC, Simple C++ Usage

compiling and building

Autotools, Autotools

Developer Guide

96

commonly-used commands, Autotools

configuration script, Configuration Script

documentation, Autotools Documentation

plug-in for Eclipse, Autotools Plug-in for Eclipse

templates (supported), Autotools Plug-in for Eclipse

build-id, build-id Unique Identification of Binaries

GNU Compiler Collection, GNU Compiler Collection (GCC)

documentation, GCC Documentation

required packages, Running GCC

usage, Running GCC

introduction, Compiling and Building

conditional breakpoints

GNU debugger, Conditional Breakpoints

configuration script

Autotools

compiling and building, Configuration Script

continue

tools

GNU debugger, Simple GDB

D

debugfs file system

profiling

ftrace, ftrace

debugging

debuginfo-packages, Installing Debuginfo Packages

installation, Installing Debuginfo Packages

GNU debugger, GDB

fundamental mechanisms, GDB

GDB, GDB

requirements, GDB

introduction, Debugging

Python pretty-printers, Python Pretty-Printers

advantages, Python Pretty-Printers

debugging output (formatted), Python Pretty-Printers

INDEX

97

documentation, Python Pretty-Printers

pretty-printers, Python Pretty-Printers

variable tracking at assignments (VTA), Variable Tracking at Assignments

debugging a Hello World program

usage

GNU debugger, Running GDB

debugging output (formatted)

Python pretty-printers

debugging, Python Pretty-Printers

debuginfo-packages

debugging, Installing Debuginfo Packages

documentation

Autotools

compiling and building, Autotools Documentation

Boost

libraries and runtime support, Additional Information

GNU C++ Standard Library

libraries and runtime support, Additional information

GNU Compiler Collection

compiling and building, GCC Documentation

Java

libraries and runtime support, Java Documentation

KDE Development Framework

libraries and runtime support, kdelibs Documentation

OProfile

profiling, OProfile Documentation

Perl

libraries and runtime support, Perl Documentation

profiling

ftrace, ftrace Documentation

Python

libraries and runtime support, Python Documentation

Developer Guide

98

Python pretty-printers

debugging, Python Pretty-Printers

Qt

libraries and runtime support, Qt Library Documentation

Ruby

libraries and runtime support, Ruby Documentation

SystemTap

profiling, Additional Information

Valgrind

profiling, Additional information

Documentation

Doxygen, Doxygen

Docment sources, Documenting the Sources

Getting Started, Getting Started

Resources, Resources

Running Doxygen, Running Doxygen

Supported output and languages, Doxygen Supported Output and Languages

Documentation Tools, Documentation Tools

Doxygen

Documentation, Doxygen

document sources, Documenting the Sources

Getting Started, Getting Started

Resources, Resources

Running Doxygen, Running Doxygen

Supported output and languages, Doxygen Supported Output and Languages

E

execution (forked)

GNU debugger, Forked Execution

F

finish

tools

GNU debugger, Simple GDB

INDEX

99

forked execution

GNU debugger, Forked Execution

formatted debugging output

Python pretty-printers

debugging, Python Pretty-Printers

framework (ftrace)

profiling

ftrace, ftrace

ftrace

profiling, ftrace

debugfs file system, ftrace

documentation, ftrace Documentation

framework (ftrace), ftrace

usage, Using ftrace

function tracer

profiling

ftrace, ftrace

fundamental commands

fundamentals

GNU debugger, Simple GDB

fundamental mechanisms

GNU debugger

debugging, GDB

fundamentals

GNU debugger, Simple GDB

G

gcc

GNU Compiler Collection

compiling and building, GNU Compiler Collection (GCC)

GCC C

usage

Developer Guide

100

compiling a C Hello World program, Simple C Usage

GCC C++

usage

compiling a C++ Hello World program, Simple C++ Usage

GDB

GNU debugger

debugging, GDB

Git

configuration, Installing and Configuring Git

documentation, Additional Resources

installation, Installing and Configuring Git

overview, Git

usage, Creating a New Repository

GNOME Power Manager

libraries and runtime support, GNOME Power Manager

gnome-power-manager

GNOME Power Manager

libraries and runtime support, GNOME Power Manager

GNU C++ Standard Library

libraries and runtime support, The GNU C++ Standard Library

GNU Compiler Collection

compiling and building, GNU Compiler Collection (GCC)

GNU debugger

conditional breakpoints, Conditional Breakpoints

debugging, GDB

execution (forked), Forked Execution

forked execution, Forked Execution

fundamentals, Simple GDB

breakpoint, Simple GDB

commands, Simple GDB

halting an executable, Simple GDB

inspecting the state of an executable, Simple GDB

starting an executable, Simple GDB

interfaces (CLI and machine), Alternative User Interfaces for GDB

INDEX

101

thread and threaded debugging, Debugging Individual Threads

tools, Simple GDB

backtrace, Simple GDB

continue, Simple GDB

finish, Simple GDB

help, Simple GDB

list, Simple GDB

next, Simple GDB

print, Simple GDB

quit, Simple GDB

step, Simple GDB

usage, Running GDB

debugging a Hello World program, Running GDB

variations and environments, Alternative User Interfaces for GDB

H

halting an executable

fundamentals

GNU debugger, Simple GDB

helgrind

tools

Valgrind, Valgrind Tools

help

tools

GNU debugger, Simple GDB

I

inspecting the state of an executable

fundamentals

GNU debugger, Simple GDB

installation

debuginfo-packages

debugging, Installing Debuginfo Packages

interfaces (CLI and machine)

Developer Guide

102

GNU debugger, Alternative User Interfaces for GDB

introduction

compiling and building, Compiling and Building

debugging, Debugging

libraries and runtime support, Libraries and Runtime Support

profiling, Profiling

SystemTap, SystemTap

ISO 14482 Standard C++ library

GNU C++ Standard Library

libraries and runtime support, The GNU C++ Standard Library

J

Java

libraries and runtime support, Java

K

KDE Development Framework

libraries and runtime support, KDE Development Framework

KDE4 architecture

KDE Development Framework

libraries and runtime support, KDE4 Architecture

kdelibs-devel

KDE Development Framework

libraries and runtime support, KDE Development Framework

kernel information packages

profiling

SystemTap, SystemTap

KHTML

KDE Development Framework

libraries and runtime support, KDE4 Architecture

KIO

KDE Development Framework

libraries and runtime support, KDE4 Architecture

INDEX

103

KJS

KDE Development Framework

libraries and runtime support, KDE4 Architecture

KNewStuff2

KDE Development Framework

libraries and runtime support, KDE4 Architecture

KXMLGUI

KDE Development Framework

libraries and runtime support, KDE4 Architecture

L

libraries

runtime support, Libraries and Runtime Support

libraries and runtime support

Boost, Boost

boost-doc, Additional Information

documentation, Additional Information

message passing interface (MPI), Boost

meta-package, Boost

C++ Standard Library, GNU, The GNU C++ Standard Library

compatibility, Compatibility

GNOME Power Manager, GNOME Power Manager

gnome-power-manager, GNOME Power Manager

GNU C++ Standard Library, The GNU C++ Standard Library

documentation, Additional information

ISO 14482 Standard C++ library, The GNU C++ Standard Library

libstdc++-devel, The GNU C++ Standard Library

libstdc++-docs, Additional information

Standard Template Library, The GNU C++ Standard Library

introduction, Libraries and Runtime Support

Java, Java

documentation, Java Documentation

KDE Development Framework, KDE Development Framework

Akonadi, KDE4 Architecture

documentation, kdelibs Documentation

Developer Guide

104

KDE4 architecture, KDE4 Architecture

kdelibs-devel, KDE Development Framework

KHTML, KDE4 Architecture

KIO, KDE4 Architecture

KJS, KDE4 Architecture

KNewStuff2, KDE4 Architecture

KXMLGUI, KDE4 Architecture

Phonon, KDE4 Architecture

Plasma, KDE4 Architecture

Solid, KDE4 Architecture

Sonnet, KDE4 Architecture

Strigi, KDE4 Architecture

Telepathy, KDE4 Architecture

libstdc++, The GNU C++ Standard Library

Perl, Perl

documentation, Perl Documentation

module installation, Installation

updates, Perl Updates

Python, Python

documentation, Python Documentation

updates, Python Updates

Qt, Qt

documentation, Qt Library Documentation

meta object compiler (MOC), Qt

Qt Creator, Qt Creator

qt-doc, Qt Library Documentation

updates, Qt Updates

widget toolkit, Qt

Ruby, Ruby

documentation, Ruby Documentation

ruby-devel, Ruby

Library and Runtime Details

NSS Shared Databases, NSS Shared Databases

Backwards Compatibility, Backwards Compatibility

Documentation, NSS Shared Databases Documentation

libstdc++

libraries and runtime support, The GNU C++ Standard Library

INDEX

105

libstdc++-devel

GNU C++ Standard Library

libraries and runtime support, The GNU C++ Standard Library

libstdc++-docs

GNU C++ Standard Library

libraries and runtime support, Additional information

list

tools

GNU debugger, Simple GDB

Performance Counters for Linux (PCL) and perf, Perf Tool Commands

M

machine interface

GNU debugger, Alternative User Interfaces for GDB

mallopt, mallopt

massif

tools

Valgrind, Valgrind Tools

mechanisms

GNU debugger

debugging, GDB

memcheck

tools

Valgrind, Valgrind Tools

message passing interface (MPI)

Boost

libraries and runtime support, Boost

meta object compiler (MOC)

Qt

libraries and runtime support, Qt

meta-package

Boost

Developer Guide

106

libraries and runtime support, Boost

module installation

Perl

libraries and runtime support, Installation

N

next

tools

GNU debugger, Simple GDB

NSS Shared Datagbases

Library and Runtime Details, NSS Shared Databases

Backwards Compatibility, Backwards Compatibility

Documentation, NSS Shared Databases Documentation

O

OProfile

profiling, OProfile

documentation, OProfile Documentation

usage, Using OProfile

P

perf

profiling

Performance Counters for Linux (PCL) and perf, Performance Counters for Linux (PCL)
Tools and perf

usage

Performance Counters for Linux (PCL) and perf, Using Perf

Performance Counters for Linux (PCL) and perf

profiling, Performance Counters for Linux (PCL) Tools and perf

subsystem (PCL), Performance Counters for Linux (PCL) Tools and perf

tools, Perf Tool Commands

commands, Perf Tool Commands

list, Perf Tool Commands

record, Perf Tool Commands

INDEX

107

report, Perf Tool Commands

stat, Perf Tool Commands

usage, Using Perf

perf, Using Perf

Perl

libraries and runtime support, Perl

Phonon

KDE Development Framework

libraries and runtime support, KDE4 Architecture

Plasma

KDE Development Framework

libraries and runtime support, KDE4 Architecture

plug-in for Eclipse

Autotools

compiling and building, Autotools Plug-in for Eclipse

pretty-printers

Python pretty-printers

debugging, Python Pretty-Printers

print

tools

GNU debugger, Simple GDB

profiling

conflict between perf and oprofile, Using Perf

ftrace, ftrace

introduction, Profiling

OProfile, OProfile

Performance Counters for Linux (PCL) and perf, Performance Counters for Linux (PCL) Tools
and perf

SystemTap, SystemTap

Valgrind, Valgrind

Python

libraries and runtime support, Python

Python pretty-printers

Developer Guide

108

debugging, Python Pretty-Printers

Q

Qt

libraries and runtime support, Qt

Qt Creator

Qt

libraries and runtime support, Qt Creator

qt-doc

Qt

libraries and runtime support, Qt Library Documentation

quit

tools

GNU debugger, Simple GDB

R

record

tools

Performance Counters for Linux (PCL) and perf, Perf Tool Commands

report

tools

Performance Counters for Linux (PCL) and perf, Perf Tool Commands

required packages

GNU Compiler Collection

compiling and building, Running GCC

profiling

SystemTap, SystemTap

requirements

GNU debugger

debugging, GDB

Revision control, Collaborating

Ruby

INDEX

109

libraries and runtime support, Ruby

ruby-devel

Ruby

libraries and runtime support, Ruby

runtime support

libraries, Libraries and Runtime Support

S

scripts (SystemTap scripts)

profiling

SystemTap, SystemTap

Solid

KDE Development Framework

libraries and runtime support, KDE4 Architecture

Sonnet

KDE Development Framework

libraries and runtime support, KDE4 Architecture

Standard Template Library

GNU C++ Standard Library

libraries and runtime support, The GNU C++ Standard Library

starting an executable

fundamentals

GNU debugger, Simple GDB

stat

tools

Performance Counters for Linux (PCL) and perf, Perf Tool Commands

step

tools

GNU debugger, Simple GDB

Strigi

KDE Development Framework

Developer Guide

110

libraries and runtime support, KDE4 Architecture

subsystem (PCL)

profiling

Performance Counters for Linux (PCL) and perf, Performance Counters for Linux (PCL)
Tools and perf

supported templates

Autotools

compiling and building, Autotools Plug-in for Eclipse

SystemTap

profiling, SystemTap

documentation, Additional Information

introduction, SystemTap

kernel information packages, SystemTap

required packages, SystemTap

scripts (SystemTap scripts), SystemTap

T

Telepathy

KDE Development Framework

libraries and runtime support, KDE4 Architecture

templates (supported)

Autotools

compiling and building, Autotools Plug-in for Eclipse

thread and threaded debugging

GNU debugger, Debugging Individual Threads

tools

GNU debugger, Simple GDB

Performance Counters for Linux (PCL) and perf, Perf Tool Commands

profiling

Valgrind, Valgrind Tools

Valgrind, Valgrind Tools

U

INDEX

111

updates

Perl

libraries and runtime support, Perl Updates

Python

libraries and runtime support, Python Updates

Qt

libraries and runtime support, Qt Updates

usage

GNU Compiler Collection

compiling and building, Running GCC

GNU debugger, Running GDB

fundamentals, Simple GDB

Performance Counters for Linux (PCL) and perf, Using Perf

profiling

ftrace, Using ftrace

OProfile, Using OProfile

Valgrind

profiling, Using Valgrind

V

Valgrind

profiling, Valgrind

commands, Valgrind Tools

documentation, Additional information

tools, Valgrind Tools

usage, Using Valgrind

tools

cachegrind, Valgrind Tools

callgrind, Valgrind Tools

helgrind, Valgrind Tools

massif, Valgrind Tools

memcheck, Valgrind Tools

variable tracking at assignments (VTA)

debugging, Variable Tracking at Assignments

Developer Guide

112

variations and environments

GNU debugger, Alternative User Interfaces for GDB

Version control, Collaborating

W

widget toolkit

Qt

libraries and runtime support, Qt

INDEX

113

	Table of Contents
	CHAPTER 1. COLLABORATING
	1.1. GIT
	1.1.1. Installing and Configuring Git
	Installing the git Package
	Configuring the Default Text Editor
	Setting Up User Information

	1.1.2. Creating a New Repository
	Initializing an Empty Repository
	Importing Data to a Repository

	1.1.3. Cloning an Existing Repository
	1.1.4. Adding, Renaming, and Deleting Files
	Adding Files and Directories
	Renaming Files and Directories
	Deleting Files and Directories

	1.1.5. Viewing Changes
	Viewing the Current Status
	Viewing Differences

	1.1.6. Committing Changes
	1.1.7. Sharing Changes
	Pushing Changes to a Public Repository
	Creating Patches from Individual Commits

	1.1.8. Updating a Repository
	1.1.9. Additional Resources
	Installed Documentation
	Online Documentation

	1.2. APACHE SUBVERSION (SVN)
	1.2.1. Installing and Configuring Subversion
	Installing the subversion Package
	Setting Up the Default Editor

	1.2.2. Creating a New Repository
	Initializing an Empty Repository
	Importing Data to a Repository

	1.2.3. Checking Out a Working Copy
	1.2.4. Adding, Renaming, and Deleting Files
	Adding a File or Directory
	Renaming a File or Directory
	Deleting a File or Directory

	1.2.5. Viewing Changes
	Viewing the Status
	Viewing Differences

	1.2.6. Committing Changes
	1.2.7. Updating a Working Copy
	1.2.8. Additional Resources
	Installed Documentation
	Online Documentation

	1.3. CONCURRENT VERSIONS SYSTEM (CVS)
	1.3.1. Installing and Configuring CVS
	Installing the cvs Package
	Setting Up the Default Editor

	1.3.2. Creating a New Repository
	Initializing an Empty Repository
	Importing Data to a Repository

	1.3.3. Checking Out a Working Copy
	1.3.4. Adding and Deleting Files
	Adding a File
	Deleting a File

	1.3.5. Viewing Changes
	Viewing the Status
	Viewing Differences

	1.3.6. Committing Changes
	1.3.7. Updating a Working Copy
	1.3.8. Additional Resources
	Installed Documentation

	CHAPTER 2. LIBRARIES AND RUNTIME SUPPORT
	2.1. COMPATIBILITY
	2.1.1. Static Linking

	2.2. LIBRARY AND RUNTIME DETAILS
	2.2.1. The GNU C++ Standard Library
	2.2.1.1. Additional information

	2.2.2. Boost
	2.2.2.1. Additional Information

	2.2.3. Qt
	2.2.3.1. Qt Updates
	2.2.3.2. Qt Creator
	2.2.3.3. Qt Library Documentation

	2.2.4. KDE Development Framework
	2.2.4.1. KDE4 Architecture
	2.2.4.2. kdelibs Documentation

	2.2.5. GNOME Power Manager
	2.2.5.1. GNOME Power Management Version Guide
	2.2.5.2. API Changes for glib
	2.2.5.3. API Changes for GTK+

	2.2.6. NSS Shared Databases
	2.2.6.1. Backwards Compatibility
	2.2.6.2. NSS Shared Databases Documentation

	2.2.7. Python
	2.2.7.1. Python Updates
	2.2.7.2. Python Documentation

	2.2.8. Java
	2.2.8.1. Java Documentation

	2.2.9. Ruby
	2.2.9.1. Ruby Documentation

	2.2.10. Perl
	2.2.10.1. Perl Updates
	2.2.10.2. Installation
	2.2.10.3. Perl Documentation

	CHAPTER 3. COMPILING AND BUILDING
	3.1. GNU COMPILER COLLECTION (GCC)
	3.1.1. Language Compatibility
	3.1.2. Object Compatibility and Interoperability
	3.1.3. Running GCC
	3.1.3.1. Simple C Usage
	3.1.3.2. Simple C++ Usage
	3.1.3.3. Simple Multi-File Usage
	3.1.3.4. Recommended Optimization Options
	3.1.3.5. Using Profile Feedback to Tune Optimization Heuristics
	3.1.3.6. Using 32-bit compilers on a 64-bit host

	3.1.4. GCC Documentation

	3.2. AUTOTOOLS
	3.2.1. Autotools Plug-in for Eclipse
	3.2.2. Configuration Script
	3.2.3. Autotools Documentation

	3.3. BUILD-ID UNIQUE IDENTIFICATION OF BINARIES

	CHAPTER 4. DEBUGGING
	4.1. ELF EXECUTABLE BINARIES
	4.2. INSTALLING DEBUGINFO PACKAGES
	4.2.1. Installing Debuginfo Packages for Core Files Analysis

	4.3. GDB
	4.3.1. Simple GDB
	4.3.2. Running GDB
	4.3.3. Conditional Breakpoints
	4.3.4. Forked Execution
	4.3.5. Debugging Individual Threads
	4.3.6. Alternative User Interfaces for GDB

	4.4. VARIABLE TRACKING AT ASSIGNMENTS
	4.5. PYTHON PRETTY-PRINTERS

	CHAPTER 5. PROFILING
	5.1. VALGRIND
	5.1.1. Valgrind Tools
	5.1.2. Using Valgrind
	5.1.3. Additional information

	5.2. OPROFILE
	5.2.1. Using OProfile
	5.2.2. OProfile in Red Hat Enterprise Linux 7
	5.2.2.1. New Features
	5.2.2.2. Known Problems and Limitiations

	5.2.3. OProfile Documentation

	5.3. SYSTEMTAP
	5.3.1. Additional Information

	5.4. PERFORMANCE COUNTERS FOR LINUX (PCL) TOOLS AND PERF
	5.4.1. Perf Tool Commands
	5.4.2. Using Perf

	5.5. FTRACE
	5.5.1. Using ftrace
	5.5.2. ftrace Documentation

	CHAPTER 6. DOCUMENTATION TOOLS
	6.1. DOXYGEN
	6.1.1. Doxygen Supported Output and Languages
	6.1.2. Getting Started
	6.1.3. Running Doxygen
	6.1.4. Documenting the Sources
	6.1.5. Resources

	APPENDIX A. APPENDIX
	A.1. MALLOPT
	malloc_trim
	malloc_stats
	Further Information

	APPENDIX B. REVISION HISTORY
	INDEX

