Red Hat Enterprise Linux 6
Virtualization Host Configuration and Guest Installation Guide

Installing and configuring your virtual environment

		[image:]

	

Jiri Herrmann
Red Hat Customer Content Services
jherrman@redhat.com
Yehuda Zimmerman
Red Hat Customer Content Services
yzimmerm@redhat.com
Tahlia Richardson
Red Hat Customer Content Services

Dayle Parker
Red Hat Customer Content Services

Laura Bailey
Red Hat Customer Content Services

Scott Radvan
Red Hat Customer Content Services

Legal Notice

		Copyright © 2017 Red Hat, Inc.
	

		This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported License. If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be removed.
	

		Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
	

		Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
	

		Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
	

		Java® is a registered trademark of Oracle and/or its affiliates.
	

		XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
	

		MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
	

		Node.js® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
	

		The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
	

		All other trademarks are the property of their respective owners.
	

Abstract

			This guide covers KVM packages, compatibility and restrictions. Also included are host configuration details and instructions for installing guest virtual machines of different types, PCI device configuration and SR-IOV.
		

 ⁠Chapter 1. Introduction

 ⁠1.1. What is in This Guide?

			This guide provides information on installing virtualization software and configuring guest machines on a Red Hat Enterprise Linux virtualization host.
		

			The initial chapters in this guide outline the prerequisites to enable a Red Hat Enterprise Linux host machine to deploy virtualization. System requirements, compatible hardware, support and product restrictions are covered in detail.
		

			Basic host configuration, including mandatory and optional virtualization packages, are covered in Chapter 5, Installing the Virtualization Packages.
		

			Guest virtual machine installation is covered in detail starting from Chapter 6, Guest Virtual Machine Installation Overview, with procedures for installing fully virtualized Red Hat Enterprise Linux guests and Windows paravirtualized guests using virt-manager and virsh.
		

			More detailed information on networking, PCI device configuration, SR-IOV, KVM guest timing management, and troubleshooting help for libvirt and SR-IOV is included later in the guide.
		
Note

				This book provides guidance for virtualization host configuration and guest installation. For more detailed system configuration information, refer to the Red Hat Enterprise Linux — Virtualization Administration Guide.
			

 ⁠Chapter 2. System Requirements

		This chapter lists system requirements for successfully running virtual machines, referred to as VMs on Red Hat Enterprise Linux 6. Virtualization is available for Red Hat Enterprise Linux 6 on the Intel 64 and AMD64 architecture.
	

		The KVM hypervisor is provided with Red Hat Enterprise Linux 6.
	

		For information on installing the virtualization packages, see Chapter 5, Installing the Virtualization Packages.
	

 ⁠Minimum system requirements
	
				6 GB free disk space.
			

	
				2 GB of RAM.
			

 ⁠Recommended system requirements
	
				One processor core or hyper-thread for the maximum number of virtualized CPUs in a guest virtual machine and one for the host.
			

	
				2 GB of RAM plus additional RAM for virtual machines.
			

	
				6 GB disk space for the host, plus the required disk space for each virtual machine.
			

				Most guest operating systems will require at least 6GB of disk space, but the additional storage space required for each guest depends on its image format.
			

				For guest virtual machines using raw images, the guest's total required space (total for raw format) is equal to or greater than the sum of the space required by the guest's raw image files (images), the 6GB space required by the host operating system (host), and the swap space that guest will require (swap).
			

 ⁠Equation 2.1. Calculating required space for guest virtual machines using raw images
total for raw format = images + host + swap

				For qcow images, you must also calculate the expected maximum storage requirements of the guest (total for qcow format), as qcow and qcow2 images grow as required. To allow for this expansion, first multiply the expected maximum storage requirements of the guest (expected maximum guest storage) by 1.01, and add to this the space required by the host (host), and the necessary swap space (swap).
			

 ⁠Equation 2.2. Calculating required space for guest virtual machines using qcow images
total for qcow format = (expected maximum guest storage * 1.01) + host + swap

		Guest virtual machine requirements are further outlined in the Red Hat Enterprise Linux 6 Virtualization Administration Guide in Chapter 6. Overcommitting with KVM.
	
Calculating Swap Space

			Using swap space can provide additional memory beyond the available physical memory. The swap partition is used for swapping underused memory to the hard drive to speed up memory performance. The default size of the swap partition is calculated from the physical RAM of the host.
		

		Red Hat Knowledgebase contains an article on safely and efficiently determining an appropriate size for the swap partition, available here: https://access.redhat.com/site/solutions/15244.
	

 ⁠KVM Requirements

			The KVM hypervisor requires:
		
	
				an Intel processor with the Intel VT-x and Intel 64 extensions for x86-based systems, or
			

	
				an AMD processor with the AMD-V and the AMD64 extensions.
			

		Refer to the Red Hat Enterprise Linux 6 Virtualization Administration Guide to determine if your processor has the virtualization extensions.
	

 ⁠Storage Support

			The guest virtual machine storage methods are:
		
	
				files on local storage,
			

	
				physical disk partitions,
			

	
				locally connected physical LUNs,
			

	
				LVM partitions,
			

	
				NFS shared file systems,
			

	
				iSCSI,
			

	
				GFS2 clustered file systems,
			

	
				Fibre Channel-based LUNs, and
			

	
				Fibre Channel over Ethernet (FCoE).
			

 ⁠Chapter 3. KVM Guest Virtual Machine Compatibility

		To verify whether your processor supports the virtualization extensions and for information on enabling the virtualization extensions if they are disabled, refer to the Red Hat Enterprise Linux Virtualization Administration Guide.
	

 ⁠3.1. Red Hat Enterprise Linux 6 Support Limits

			Red Hat Enterprise Linux 6 servers have certain support limits.
		

			The following URLs explain the processor and memory amount limitations for Red Hat Enterprise Linux:
		
	
					For host systems: http://www.redhat.com/resourcelibrary/articles/articles-red-hat-enterprise-linux-6-technology-capabilities-and-limits
				

	
					For hypervisors: http://www.redhat.com/resourcelibrary/articles/virtualization-limits-rhel-hypervisors Note

							Red Hat Enterprise Linux 6.5 now supports 4TiB of memory per KVM guest.
						

				

			The following URL is a complete reference showing supported operating systems and host and guest combinations:
		
	
					http://www.redhat.com/resourcelibrary/articles/enterprise-linux-virtualization-support
				

 ⁠3.2. Supported CPU Models

			Every hypervisor has its own policy for which CPU features the guest will see by default. The set of CPU features presented to the guest by QEMU/KVM depends on the CPU model chosen in the guest virtual machine configuration. qemu32 and qemu64 are basic CPU models but there are other models (with additional features) available.
		

			Red Hat Enterprise Linux 6 supports the use of the following QEMU CPU model definitions:
		
​
​
​<!-- This is only a partial file, only containing the CPU models. The XML file has more information (including supported features per model) which you can see when you open the file yourself -->
​<cpus>
​ <arch name='x86'>
​...
​
​ <!-- Intel-based QEMU generic CPU models -->
​ <model name='pentium'>
​ <model name='486'/>
​ </model>
​
​ <model name='pentium2'>
​ <model name='pentium'/>
​ </model>
​
​ <model name='pentium3'>
​ <model name='pentium2'/>
​ </model>
​
​ <model name='pentiumpro'>
​ </model>
​
​ <model name='coreduo'>
​ <model name='pentiumpro'/>
​ <vendor name='Intel'/>
​ </model>
​
​ <model name='n270'>
​ <model name='coreduo'/>
​ </model>
​
​ <model name='core2duo'>
​ <model name='n270'/>
​ </model>
​
​ <!-- Generic QEMU CPU models -->
​ <model name='qemu32'>
​ <model name='pentiumpro'/>
​ </model>
​
​ <model name='kvm32'>
​ <model name='qemu32'/>
​ </model>
​
​ <model name='cpu64-rhel5'>
​ <model name='kvm32'/>
​ </model>
​
​ <model name='cpu64-rhel6'>
​ <model name='cpu64-rhel5'/>
​ </model>
​
​ <model name='kvm64'>
​ <model name='cpu64-rhel5'/>
​ </model>
​
​ <model name='qemu64'>
​ <model name='kvm64'/>
​ </model>
​
​ <!-- Intel CPU models -->
​ <model name='Conroe'>
​ <model name='pentiumpro'/>
​ <vendor name='Intel'/>
​ </model>
​
​ <model name='Penryn'>
​ <model name='Conroe'/>
​ </model>
​
​ <model name='Nehalem'>
​ <model name='Penryn'/>
​ </model>
​
​ <model name='Westmere'>
​ <model name='Nehalem'/>
​ <feature name='aes'/>
​ </model>
​
​ <model name='SandyBridge'>
​ <model name='Westmere'/>
​ </model>
​
​ <model name='Haswell'>
​ <model name='SandyBridge'/>
​ </model>
​
​ <!-- AMD CPUs -->
​ <model name='athlon'>
​ <model name='pentiumpro'/>
​ <vendor name='AMD'/>
​ </model>
​
​ <model name='phenom'>
​ <model name='cpu64-rhel5'/>
​ <vendor name='AMD'/>
​ </model>
​
​ <model name='Opteron_G1'>
​ <model name='cpu64-rhel5'/>
​ <vendor name='AMD'/>
​ </model>
​
​ <model name='Opteron_G2'>
​ <model name='Opteron_G1'/>
​ </model>
​
​ <model name='Opteron_G3'>
​ <model name='Opteron_G2'/>
​ </model>
​
​ <model name='Opteron_G4'>
​ <model name='Opteron_G2'/>
​ </model>
​
​ <model name='Opteron_G5'>
​ <model name='Opteron_G4'/>
​ </model>
​ </arch>
​</cpus>
Note

				A full list of supported CPU models and recognized CPUID flags can also be found using the qemu-kvm -cpu ? command.
			

 ⁠Chapter 4. Virtualization Restrictions

		This chapter covers additional support and product restrictions of the virtualization packages in Red Hat Enterprise Linux 6.
	

 ⁠4.1. KVM Restrictions

			The following restrictions apply to the KVM hypervisor:
		
	Maximum vCPUs per guest
	
						The maximum amount of virtual CPUs that is supported per guest varies depending on which minor version of Red Hat Enterprise Linux 6 you are using as a host machine. The release of 6.0 introduced a maximum of 64, while 6.3 introduced a maximum of 160. Currently with the release of 6.7, a maximum of 240 virtual CPUs per guest is supported.
					

	Constant TSC bit
	
						Systems without a Constant Time Stamp Counter require additional configuration. Refer to Chapter 14, KVM Guest Timing Management for details on determining whether you have a Constant Time Stamp Counter and configuration steps for fixing any related issues.
					

	Memory overcommit
	
						KVM supports memory overcommit and can store the memory of guest virtual machines in swap. A virtual machine will run slower if it is swapped frequently. Red Hat Knowledgebase has an article on safely and efficiently determining an appropriate size for the swap partition, available here: https://access.redhat.com/site/solutions/15244. When KSM is used for memory overcommitting, make sure that the swap size follows the recommendations described in this article.
					
Important

							When device assignment is in use, all virtual machine memory must be statically pre-allocated to enable DMA with the assigned device. Memory overcommit is therefore not supported with device assignment.
						

	CPU overcommit
	
						It is not recommended to have more than 10 virtual CPUs per physical processor core. Customers are encouraged to use a capacity planning tool in order to determine the CPU overcommit ratio. Estimating an ideal ratio is difficult as it is highly dependent on each workload. For instance, a guest virtual machine may consume 100% CPU on one use case, and multiple guests may be completely idle on another.
					

						Red Hat does not support running more vCPUs to a single guest than the amount of overall physical cores that exist on the system. While Hyperthreads can be considered as cores, their performance can also vary from one scenario to the next, and they should not be expected to perform as well as regular cores.
					

						Refer to the Red Hat Enterprise Linux Virtualization Administration Guide for tips and recommendations on overcommitting CPUs.
					

	Virtualized SCSI devices
	
						SCSI emulation is not supported with KVM in Red Hat Enterprise Linux.
					

	Virtualized IDE devices
	
						KVM is limited to a maximum of four virtualized (emulated) IDE devices per guest virtual machine.
					

	PCI devices
	
						Red Hat Enterprise Linux 6 supports 32 PCI device slots per virtual machine, and 8 PCI functions per device slot. This gives a theoretical maximum of 256 PCI functions per guest when multi-function capabilities are enabled.
					

						However, this theoretical maximum is subject to the following limitations:
					
	
								Each virtual machine supports a maximum of 8 assigned device functions.
							

	
								4 PCI device slots are configured with 5 emulated devices (two devices are in slot 1) by default. However, users can explicitly remove 2 of the emulated devices that are configured by default if the guest operating system does not require them for operation (the video adapter device in slot 2; and the memory balloon driver device in the lowest available slot, usually slot 3). This gives users a supported functional maximum of 30 PCI device slots per virtual machine.
							

						The following restrictions also apply to PCI device assignment:
					
	
								PCI device assignment (attaching PCI devices to virtual machines) requires host systems to have AMD IOMMU or Intel VT-d support to enable device assignment of PCI-e devices.
							

	
								For parallel/legacy PCI, only single devices behind a PCI bridge are supported.
							

	
								Multiple PCIe endpoints connected through a non-root PCIe switch require ACS support in the PCIe bridges of the PCIe switch. To disable this restriction, edit the /etc/libvirt/qemu.conf file and insert the line:
							
​relaxed_acs_check=1

	
								Red Hat Enterprise Linux 6 has limited PCI configuration space access by guest device drivers. This limitation could cause drivers that are dependent on PCI configuration space to fail configuration.
							

	
								Red Hat Enterprise Linux 6.2 introduced interrupt remapping as a requirement for PCI device assignment. If your platform does not provide support for interrupt remapping, circumvent the KVM check for this support with the following command as the root user at the command line prompt:
							
echo 1 > /sys/module/kvm/parameters/allow_unsafe_assigned_interrupts

	Migration restrictions
	
						Device assignment refers to physical devices that have been exposed to a virtual machine, for the exclusive use of that virtual machine. Because device assignment uses hardware on the specific host where the virtual machine runs, migration and save/restore are not supported when device assignment is in use. If the guest operating system supports hot plugging, assigned devices can be removed prior to the migration or save/restore operation to enable this feature.
					

						Live migration is only possible between hosts with the same CPU type (that is, Intel to Intel or AMD to AMD only).
					

						For live migration, both hosts must have the same value set for the No eXecution (NX) bit, either on or off.
					

						For migration to work, cache=none must be specified for all block devices opened in write mode.
					
Warning

							Failing to include the cache=none option can result in disk corruption.
						

	Storage restrictions
	
						There are risks associated with giving guest virtual machines write access to entire disks or block devices (such as /dev/sdb). If a guest virtual machine has access to an entire block device, it can share any volume label or partition table with the host machine. If bugs exist in the host system's partition recognition code, this can create a security risk. Avoid this risk by configuring the host machine to ignore devices assigned to a guest virtual machine.
					
Warning

							Failing to adhere to storage restrictions can result in risks to security.
						

	SR-IOV restrictions
	
						SR-IOV is only thoroughly tested with the following devices (other SR-IOV devices may work but have not been tested at the time of release):
					
	
								Intel® 82576NS Gigabit Ethernet Controller (igb driver)
							

	
								Intel® 82576EB Gigabit Ethernet Controller (igb driver)
							

	
								Intel® 82599ES 10 Gigabit Ethernet Controller (ixgbe driver)
							

	
								Intel® 82599EB 10 Gigabit Ethernet Controller (ixgbe driver)
							

	Core dumping restrictions
	
						Core dumping uses the same infrastructure as migration and requires more device knowledge and control than device assignement can provide. Therefore, core dumping is not supported when device assignment is in use.
					

 ⁠4.2. Application Restrictions

			There are aspects of virtualization which make it unsuitable for certain types of applications.
		

			Applications with high I/O throughput requirements should use the paravirtualized drivers for fully-virtualized guests. Without the paravirtualized drivers certain applications may be unpredictable under heavy I/O loads.
		

			The following applications should be avoided due to high I/O requirements:
		
	
					kdump server
				

	
					netdump server
				

			You should carefully evaluate applications and tools that heavily utilize I/O or those that require real-time performance. Consider the paravirtualized drivers or PCI device assignment for increased I/O performance. Refer to Chapter 10, KVM Paravirtualized (virtio) Drivers for more information on the paravirtualized drivers for fully virtualized guests. Refer to Chapter 12, PCI Device Assignment for more information on PCI device assignment.
		

			Applications suffer a small performance loss from running in virtualized environments. The performance benefits of virtualization through consolidating to newer and faster hardware should be evaluated against the potential application performance issues associated with using virtualization.
		

 ⁠4.3. Other Restrictions

			For the list of all other restrictions and issues affecting virtualization read the Red Hat Enterprise Linux 6 Release Notes. The Red Hat Enterprise Linux 6 Release Notes cover the present new features, known issues and restrictions as they are updated or discovered.
		

 ⁠Chapter 5. Installing the Virtualization Packages

		Before you can use virtualization, the virtualization packages must be installed on your computer. Virtualization packages can be installed either during the host installation sequence or after host installation using Subscription Manager.
	

		The KVM hypervisor uses the default Red Hat Enterprise Linux kernel with the kvm kernel module.
	

 ⁠5.1. Configuring a Virtualization Host Installation

			This section covers installing virtualization tools and virtualization packages as part of a fresh Red Hat Enterprise Linux installation.
		
Note

				The Red Hat Enterprise Linux Installation Guide covers installing Red Hat Enterprise Linux in detail.
			

 ⁠Procedure 5.1. Installing the virtualization package group
	Launch the Red Hat Enterprise Linux 6 installation program

					Start an interactive Red Hat Enterprise Linux 6 installation from the Red Hat Enterprise Linux Installation CD-ROM, DVD or PXE.
				

	Continue installation up to package selection

					Complete the other steps up to the package selection step.
				

 ⁠[image: The Red Hat Enterprise Linux package selection screen showing options to select a different set of software from regular installation. Virtualization Host is selected in the upper menu, and Red Hat Enterprise Linux is selected from the list of additional repositories. Customize now is selected at the bottom of the window, with Back and Next buttons shown at the bottom right corner of the window.]

Figure 5.1. The Red Hat Enterprise Linux package selection screen

					Select the Virtualization Host server role to install a platform for guest virtual machines. Alternatively, ensure that the Customize Now radio button is selected before proceeding, to specify individual packages.
				

	Select the Virtualization package group

					This selects the qemu-kvm emulator, virt-manager, libvirt and virt-viewer for installation.
				

 ⁠[image: The Red Hat Enterprise Linux package selection screen with Virtualization selected in the left menu.]

Figure 5.2. The Red Hat Enterprise Linux package selection screen

Note

						If you wish to create virtual machines in a graphical user interface (virt-manager) later, you should also select the General Purpose Desktop package group.
					

	Customize the packages (if required)

					Customize the Virtualization group if you require other virtualization packages.
				

 ⁠[image: The Red Hat Enterprise Linux package selection screen with a pop-up Packages in Virtualization window showing the packages available to be installed.]

Figure 5.3. The Red Hat Enterprise Linux package selection screen

					Click on the Close button, then the Next button to continue the installation.
				

			When the installation is complete, reboot the system.
		
Important

				You require a valid virtualization entitlement to receive updates for the virtualization packages.
			

 ⁠Installing KVM Packages with Kickstart Files

				Kickstart files allow for large, automated installations without a user manually installing each individual host system. This section describes how to create and use a Kickstart file to install Red Hat Enterprise Linux with the Virtualization packages.
			

			In the %packages section of your Kickstart file, append the following package groups:
		
@virtualization
@virtualization-client
@virtualization-platform
@virtualization-tools

			For more information about Kickstart files, refer to the Red Hat Enterprise Linux Installation Guide.
		

 ⁠5.2. Installing Virtualization Packages on an Existing Red Hat Enterprise Linux System

			This section describes the steps for installing the KVM hypervisor on a working Red Hat Enterprise Linux 6 or newer system.
		

			To install the packages, your machines must be registered. To register using Red Hat Subscription Manager, run the subscription-manager register command and follow the prompts.
		

			If you do not have a valid Red Hat subscription, visit the Red Hat online store to obtain one.
		
Note

				Red Hat Network (RHN) has now been deprecated. Subscription Manager should now be used for registration tasks.
			

 ⁠Installing the Virtualization Packages with yum

				To use virtualization on Red Hat Enterprise Linux you require at least the qemu-kvm and qemu-img packages. These packages provide the user-level KVM emulator and disk image manager on the host Red Hat Enterprise Linux system.
			

			To install the qemu-kvm and qemu-img packages, run the following command:
		
yum install qemu-kvm qemu-img

			Several additional virtualization management packages are also available:
		

 ⁠Recommended virtualization packages
	python-virtinst
	
						Provides the virt-install command for creating virtual machines.
					

	libvirt
	
						The libvirt package provides the server and host side libraries for interacting with hypervisors and host systems. The libvirt package provides the libvirtd daemon that handles the library calls, manages virtual machines and controls the hypervisor.
					

	libvirt-python
	
						The libvirt-python package contains a module that permits applications written in the Python programming language to use the interface supplied by the libvirt API.
					

	virt-manager
	
						virt-manager, also known as Virtual Machine Manager, provides a graphical tool for administering virtual machines. It uses libvirt-client library as the management API.
					

	libvirt-client
	
						The libvirt-client package provides the client-side APIs and libraries for accessing libvirt servers. The libvirt-client package includes the virsh command line tool to manage and control virtual machines and hypervisors from the command line or a special virtualization shell.
					

			Install all of these recommended virtualization packages with the following command:
		
yum install virt-manager libvirt libvirt-python python-virtinst libvirt-client
Installing Virtualization Package Groups

				The virtualization packages can also be installed from package groups. The following table describes the virtualization package groups and what they provide.
			
Note

				Note that the qemu-img package is installed as a dependency of the Virtualization package group if it is not already installed on the system. It can also be installed manually with the yum install qemu-img command as described previously.
			

 ⁠Table 5.1. Virtualization package groups
	Package Group	Description	Mandatory Packages	Optional Packages
	Virtualization	Provides an environment for hosting virtual machines	qemu-kvm	qemu-guest-agent, qemu-kvm-tools
	Virtualization Client	Clients for installing and managing virtualization instances	python-virtinst, virt-manager, virt-viewer	virt-top
	Virtualization Platform	Provides an interface for accessing and controlling virtual machines and containers	libvirt, libvirt-client, virt-who, virt-what	fence-virtd-libvirt, fence-virtd-multicast, fence-virtd-serial, libvirt-cim, libvirt-java, libvirt-qmf, libvirt-snmp, perl-Sys-Virt
	Virtualization Tools	Tools for offline virtual image management	libguestfs	libguestfs-java, libguestfs-tools, virt-v2v

			To install a package group, run the yum groupinstall <groupname> command. For instance, to install the Virtualization Tools package group, run the yum groupinstall "Virtualization Tools" command.
		

 ⁠Chapter 6. Guest Virtual Machine Installation Overview

		After you have installed the virtualization packages on the host system you can create guest operating systems. This chapter describes the general processes for installing guest operating systems on virtual machines. You can create guest virtual machines using the New button in virt-manager or use the command line interface virt-install. Both methods are covered by this chapter.
	

		Detailed installation instructions are available in the following chapters for specific versions of Red Hat Enterprise Linux and Microsoft Windows.
	

 ⁠6.1. Guest Virtual Machine Prerequisites and Considerations

			Various factors should be considered before creating any guest virtual machines. Not only should the role of a virtual machine be considered before deployment, but regular ongoing monitoring and assessment based on variable factors (load, amount of clients) should be performed. Some factors include:
		
	Performance
	
						Guest virtual machines should be deployed and configured based on their intended tasks. Some guest systems (for instance, guests running a database server) may require special performance considerations. Guests may require more assigned CPUs or memory based on their role and projected system load.
					

	Input/Output requirements and types of Input/Output
	
						Some guest virtual machines may have a particularly high I/O requirement or may require further considerations or projections based on the type of I/O (for instance, typical disk block size access, or the amount of clients).
					

	Storage
	
						Some guest virtual machines may require higher priority access to storage or faster disk types, or may require exclusive access to areas of storage. The amount of storage used by guests should also be regularly monitored and taken into account when deploying and maintaining storage.
					

	Networking and network infrastructure
	
						Depending upon your environment, some guest virtual machines could require faster network links than other guests. Bandwidth or latency are often factors when deploying and maintaining guests, especially as requirements or load changes.
					

	Request requirements
	
						SCSI requests can only be issued to guest virtual machines on virtio drives if the virtio drives are backed by whole disks, and the disk device parameter is set to lun, as shown in the following example:
					
<devices>
 <emulator>/usr/libexec/qemu-kvm</emulator>
 <disk type='block' device='lun'>

 ⁠6.2. Creating Guests with virt-install

			You can use the virt-install command to create guest virtual machines from the command line. virt-install is used either interactively or as part of a script to automate the creation of virtual machines. Using virt-install with Kickstart files allows for unattended installation of virtual machines.
		

			The virt-install tool provides a number of options that can be passed on the command line. To see a complete list of options run the following command:
		
virt-install --help

			Note that you need root privileges in order for virt-install commands to complete successfully. The virt-install man page also documents each command option and important variables.
		

			qemu-img is a related command which may be used before virt-install to configure storage options.
		

			An important option is the --graphics option which allows graphical installation of a virtual machine.
		

 ⁠Example 6.1. Using virt-install to install a Red Hat Enterprise Linux 5 guest virtual machine

				This example creates a Red Hat Enterprise Linux 5 guest:
			
virt-install \
 --name=guest1-rhel5-64 \
 --file=/var/lib/libvirt/images/guest1-rhel5-64.dsk \
 --file-size=8 \
 --nonsparse --graphics spice \
 --vcpus=2 --ram=2048 \
 --location=http://example1.com/installation_tree/RHEL5.6-Server-x86_64/os \
 --network bridge=br0 \
 --os-type=linux \
 --os-variant=rhel5.4

			Ensure that you select the correct os-type for your operating system when running this command.
		

			Refer to man virt-install for more examples.
		
Note

				When installing a Windows guest with virt-install, the --os-type=windows option is recommended. This option prevents the CD-ROM from disconnecting when rebooting during the installation procedure. The --os-variant option further optimizes the configuration for a specific guest operating system.
			

 ⁠6.3. Creating Guests with virt-manager

		virt-manager, also known as Virtual Machine Manager, is a graphical tool for creating and managing guest virtual machines.
	

 ⁠Procedure 6.1. Creating a guest virtual machine with virt-manager
	Open virt-manager

				Start virt-manager. Launch the Virtual Machine Manager application from the Applications menu and System Tools submenu. Alternatively, run the virt-manager command as root.
			

	Optional: Open a remote hypervisor

				Select the hypervisor and click the Connect button to connect to the remote hypervisor.
			

	Create a new virtual machine

				The virt-manager window allows you to create a new virtual machine. Click the Create a new virtual machine button (Figure 6.1, “Virtual Machine Manager window”) to open the New VM wizard.
			

 ⁠[image: Virtual Machine Manager window]

Figure 6.1. Virtual Machine Manager window

				The New VM wizard breaks down the virtual machine creation process into five steps:
			
	
						Naming the guest virtual machine and choosing the installation type
					

	
						Locating and configuring the installation media
					

	
						Configuring memory and CPU options
					

	
						Configuring the virtual machine's storage
					

	
						Configuring networking, architecture, and other hardware settings
					

				Ensure that virt-manager can access the installation media (whether locally or over the network) before you continue.
			

	Specify name and installation type

				The guest virtual machine creation process starts with the selection of a name and installation type. Virtual machine names can have underscores (_), periods (.), and hyphens (-).
			

 ⁠[image: Name virtual machine and select installation method]

Figure 6.2. Name virtual machine and select installation method

				Type in a virtual machine name and choose an installation type:
			
	Local install media (ISO image or CDROM)
	
							This method uses a CD-ROM, DVD, or image of an installation disk (for example, .iso).
						

	Network Install (HTTP, FTP, or NFS)
	
							This method involves the use of a mirrored Red Hat Enterprise Linux or Fedora installation tree to install a guest. The installation tree must be accessible through either HTTP, FTP, or NFS.
						

	Network Boot (PXE)
	
							This method uses a Preboot eXecution Environment (PXE) server to install the guest virtual machine. Setting up a PXE server is covered in the Deployment Guide. To install using network boot, the guest must have a routable IP address or shared network device. For information on the required networking configuration for PXE installation, refer to Section 6.4, “Creating Guests with PXE”.
						

	Import existing disk image
	
							This method allows you to create a new guest virtual machine and import a disk image (containing a pre-installed, bootable operating system) to it.
						

				Click Forward to continue.
			

	Configure installation

				Next, configure the OS type and Version of the installation. Ensure that you select the appropriate OS type for your virtual machine. Depending on the method of installation, provide the install URL or existing storage path.
			

 ⁠[image: Remote installation URL]

Figure 6.3. Remote installation URL

 ⁠[image: Local ISO image installation]

Figure 6.4. Local ISO image installation

	Configure CPU and memory

				The next step involves configuring the number of CPUs and amount of memory to allocate to the virtual machine. The wizard shows the number of CPUs and amount of memory you can allocate; configure these settings and click Forward.
			

 ⁠[image: Configuring CPU and memory]

Figure 6.5. Configuring CPU and memory

	Configure storage

				Assign storage to the guest virtual machine.
			

 ⁠[image: Configuring virtual storage]

Figure 6.6. Configuring virtual storage

				If you chose to import an existing disk image during the first step, virt-manager will skip this step.
			

				Assign sufficient space for your virtual machine and any applications it requires, then click Forward to continue.
			

	Final configuration

				Verify the settings of the virtual machine and click Finish when you are satisfied; doing so will create the virtual machine with default networking settings, virtualization type, and architecture.
			

 ⁠[image: Verifying the configuration]

Figure 6.7. Verifying the configuration

				If you prefer to further configure the virtual machine's hardware first, check the Customize configuration before install box first before clicking Finish. Doing so will open another wizard that will allow you to add, remove, and configure the virtual machine's hardware settings.
			

				After configuring the virtual machine's hardware, click Apply. virt-manager will then create the virtual machine with your specified hardware settings.
			

 ⁠6.4. Creating Guests with PXE

			This section provides information on creating guests with PXE.
		
Requirements

				PXE guest installation requires a PXE server running on the same subnet as the guest virtual machines you wish to install. The method of accomplishing this depends on how the virtual machines are connected to the network. Contact Support if you require assistance setting up a PXE server.
			

 ⁠PXE Installation with virt-install

				virt-install PXE installations require both the --network=bridge:installation parameter, where installation is the name of your bridge, and the --pxe parameter.
			

			By default, if no network is found, the guest virtual machine attempts to boot from alternative bootable devices. If there is no other bootable device found, the guest pauses. You can use the qemu-kvm boot parameter reboot-timeout to allow the guest to retry booting if no bootable device is found, like so:
		
qemu-kvm -boot reboot-timeout=1000

 ⁠Example 6.2. Fully-virtualized PXE installation with virt-install
virt-install --hvm --connect qemu:///system \
--network=bridge:installation --pxe --graphics spice \
--name rhel6-machine --ram=756 --vcpus=4 \
--os-type=linux --os-variant=rhel6 \
--disk path=/var/lib/libvirt/images/rhel6-machine.img,size=10

				Note that the command above cannot be executed in a text-only environment. A fully-virtualized (--hvm) guest can only be installed in a text-only environment if the --location and --extra-args "console=console_type" are provided instead of the --graphics spice parameter.
			

 ⁠Procedure 6.2. PXE installation with virt-manager
	Select PXE

					Select PXE as the installation method and follow the rest of the steps to configure the OS type, memory, CPU and storage settings.
				

 ⁠[image: Step 1 of 5 for creating a new virtual machine with virt-manager, with Network Boot (PXE) chosen for the method of installation.]

Figure 6.8. Selecting the installation method

 ⁠[image: Step 2 of 5 for creating a new virtual machine with virt-manager, with Linux chosen as OS Type and Red Hat Enterprise Linux 6 chosen for version.]

Figure 6.9. Selecting the installation type

 ⁠[image: Step 3 of 5 for creating a new virtual machine with virt-manager showing memory and CPU settings, with 1024MB of RAM and 2 CPUs selected.]

Figure 6.10. Specifying virtualized hardware details

 ⁠[image: Step 4 of 5 for creating a new virtual machine with virt-manager, with check boxes selected next to "Enable storage for this virtual machine" and "Allocate entire disk now". 8GB is selected under the heading "Create a disk image on the computer's hard drive".]

Figure 6.11. Specifying storage details

	Start the installation

					The installation is ready to start.
				

 ⁠[image: Step 5 of 5 for creating a new virtual machine with virt-manager reads "Ready to begin installation of (guest name)" with a summary of options already chosen, and advanced options to choose from.]

Figure 6.12. Finalizing virtual machine details

			A DHCP request is sent and if a valid PXE server is found the guest virtual machine's installation processes will start.
		

 ⁠Chapter 7. Installing a Red Hat Enterprise Linux 6 Guest Virtual Machine on a Red Hat Enterprise Linux 6 Host

		This chapter covers how to install a Red Hat Enterprise Linux 6 guest virtual machine on a Red Hat Enterprise Linux 6 host.
	

		These procedures assume that the KVM hypervisor and all other required packages are installed and the host is configured for virtualization.
	
Note

			For more information on installing the virtualization packages, refer to Chapter 5, Installing the Virtualization Packages.
		

 ⁠7.1. Creating a Red Hat Enterprise Linux 6 Guest with Local Installation Media

			This procedure covers creating a Red Hat Enterprise Linux 6 guest virtual machine with a locally stored installation DVD or DVD image. DVD images are available from http://access.redhat.com for Red Hat Enterprise Linux 6.
		

 ⁠Procedure 7.1. Creating a Red Hat Enterprise Linux 6 guest virtual machine with virt-manager
	Optional: Preparation

					Prepare the storage environment for the virtual machine. For more information on preparing storage, refer to the Red Hat Enterprise Linux 6 Virtualization Administration Guide.
				
Important

						Various storage types may be used for storing guest virtual machines. However, for a virtual machine to be able to use migration features the virtual machine must be created on networked storage.
					

					Red Hat Enterprise Linux 6 requires at least 1GB of storage space. However, Red Hat recommends at least 5GB of storage space for a Red Hat Enterprise Linux 6 installation and for the procedures in this guide.
				

	Open virt-manager and start the wizard

					Open virt-manager by executing the virt-manager command as root or opening Applications → System Tools → Virtual Machine Manager.
				

 ⁠[image: The Virtual Machine Manager window]

Figure 7.1. The Virtual Machine Manager window

					Click on the Create a new virtual machine button to start the new virtualized guest wizard.
				

 ⁠[image: The Create a new virtual machine button]

Figure 7.2. The Create a new virtual machine button

					The New VM window opens.
				

	Name the virtual machine

					Virtual machine names can contain letters, numbers and the following characters: '_', '.' and '-'. Virtual machine names must be unique for migration and cannot consist only of numbers.
				

					Choose the Local install media (ISO image or CDROM) radio button.
				

 ⁠[image: The New VM window - Step 1]

Figure 7.3. The New VM window - Step 1

					Click Forward to continue.
				

	Select the installation media

					Select the appropriate radio button for your installation media.
				

 ⁠[image: Locate your install media]

Figure 7.4. Locate your install media

						
							If you wish to install from a CD-ROM or DVD, select the Use CDROM or DVD radio button, and select the appropriate disk drive from the drop-down list of drives available.
						

					 	
							If you wish to install from an ISO image, select Use ISO image, and then click the Browse... button to open the Locate media volume window.
						

							Select the installation image you wish to use, and click Choose Volume.
						

							If no images are displayed in the Locate media volume window, click on the Browse Local button to browse the host machine for the installation image or DVD drive containing the installation disk. Select the installation image or DVD drive containing the installation disk and click Open; the volume is selected for use and you are returned to the Create a new virtual machine wizard.
						
Important

								For ISO image files and guest storage images, the recommended location to use is /var/lib/libvirt/images/. Any other location may require additional configuration by SELinux. Refer to the Red Hat Enterprise Linux 6 Virtualization Administration Guide for more details on configuring SELinux.
							

				

					Select the operating system type and version which match the installation media you have selected.
				

 ⁠[image: The New VM window - Step 2]

Figure 7.5. The New VM window - Step 2

					Click Forward to continue.
				

	Set RAM and virtual CPUs

					Choose appropriate values for the virtual CPUs and RAM allocation. These values affect the host's and guest's performance. Memory and virtual CPUs can be overcommitted. For more information on overcommitting, refer to the Red Hat Enterprise Linux 6 Virtualization Administration Guide.
				

					Virtual machines require sufficient physical memory (RAM) to run efficiently and effectively. Red Hat supports a minimum of 512MB of RAM for a virtual machine. Red Hat recommends at least 1024MB of RAM for each logical core.
				

					Assign sufficient virtual CPUs for the virtual machine. If the virtual machine runs a multithreaded application, assign the number of virtual CPUs the guest virtual machine will require to run efficiently.
				

					You cannot assign more virtual CPUs than there are physical processors (or hyper-threads) available on the host system. The number of virtual CPUs available is noted in the Up to X available field.
				

 ⁠[image: The new VM window - Step 3]

Figure 7.6. The new VM window - Step 3

					Click Forward to continue.
				

	Enable and assign storage

					Enable and assign storage for the Red Hat Enterprise Linux 6 guest virtual machine. Assign at least 5GB for a desktop installation or at least 1GB for a minimal installation.
				
Note

						Live and offline migrations require virtual machines to be installed on shared network storage. For information on setting up shared storage for virtual machines, refer to the Red Hat Enterprise Linux Virtualization Administration Guide.
					

	With the default local storage

							Select the Create a disk image on the computer's hard drive radio button to create a file-based image in the default storage pool, the /var/lib/libvirt/images/ directory. Enter the size of the disk image to be created. If the Allocate entire disk now check box is selected, a disk image of the size specified will be created immediately. If not, the disk image will grow as it becomes filled.
						
Note

								Although the storage pool is a virtual container it is limited by two factors: maximum size allowed to it by qemu-kvm and the size of the disk on the host physical machine. Storage pools may not exceed the size of the disk on the host physical machine. The maximum sizes are as follows:
							
	
										virtio-blk = 2^63 bytes or 8 Exabytes(using raw files or disk)
									

	
										Ext4 = ~ 16 TB (using 4 KB block size)
									

	
										XFS = ~8 Exabytes
									

	
										qcow2 and host file systems keep their own metadata and scalability should be evaluated/tuned when trying very large image sizes. Using raw disks means fewer layers that could affect scalability or max size.
									

 ⁠[image: The New VM window - Step 4]

Figure 7.7. The New VM window - Step 4

							Click Forward to create a disk image on the local hard drive. Alternatively, select Select managed or other existing storage, then select Browse to configure managed storage.
						

	With a storage pool

							If you selected Select managed or other existing storage in the previous step to use a storage pool and clicked Browse, the Locate or create storage volume window will appear.
						

 ⁠[image: The Locate or create storage volume window]

Figure 7.8. The Locate or create storage volume window

	
									Select a storage pool from the Storage Pools list.
								

	
									Optional: Click on the New Volume button to create a new storage volume. The Add a Storage Volume screen will appear. Enter the name of the new storage volume.
								

									Choose a format option from the Format drop-down menu. Format options include raw, cow, qcow, qcow2, qed, vmdk, and vpc. Adjust other fields as desired.
								

 ⁠[image: The Add a Storage Volume window]

Figure 7.9. The Add a Storage Volume window

					Click Finish to continue.
				

	Verify and finish

					Verify there were no errors made during the wizard and everything appears as expected.
				

					Select the Customize configuration before install check box to change the guest's storage or network devices, to use the paravirtualized drivers or to add additional devices.
				

					Click on the Advanced options down arrow to inspect and modify advanced options. For a standard Red Hat Enterprise Linux 6 installation, none of these options require modification.
				

 ⁠[image: The New VM window - local storage]

Figure 7.10. The New VM window - local storage

					Click Finish to continue into the Red Hat Enterprise Linux installation sequence. For more information on installing Red Hat Enterprise Linux 6 refer to the Red Hat Enterprise Linux 6 Installation Guide.
				

			A Red Hat Enterprise Linux 6 guest virtual machine is now created from an ISO installation disc image.
		

 ⁠7.2. Creating a Red Hat Enterprise Linux 6 Guest with a Network Installation Tree

 ⁠Procedure 7.2. Creating a Red Hat Enterprise Linux 6 guest with virt-manager
	Optional: Preparation

					Prepare the storage environment for the guest virtual machine. For more information on preparing storage, refer to the Red Hat Enterprise Linux 6 Virtualization Administration Guide.
				
Important

						Various storage types may be used for storing guest virtual machines. However, for a virtual machine to be able to use migration features the virtual machine must be created on networked storage.
					

					Red Hat Enterprise Linux 6 requires at least 1GB of storage space. However, Red Hat recommends at least 5GB of storage space for a Red Hat Enterprise Linux 6 installation and for the procedures in this guide.
				

	Open virt-manager and start the wizard

					Open virt-manager by executing the virt-manager command as root or opening Applications → System Tools → Virtual Machine Manager.
				

 ⁠[image: The main virt-manager window]

Figure 7.11. The main virt-manager window

					Click on the Create a new virtual machine button to start the new virtual machine wizard.
				

 ⁠[image: The Create a new virtual machine button]

Figure 7.12. The Create a new virtual machine button

					The Create a new virtual machine window opens.
				

	Name the virtual machine

					Virtual machine names can contain letters, numbers and the following characters: '_', '.' and '-'. Virtual machine names must be unique for migration and cannot consist only of numbers.
				

					Choose the installation method from the list of radio buttons.
				

 ⁠[image: The New VM window - Step 1]

Figure 7.13. The New VM window - Step 1

					Click Forward to continue.
				

	
					Provide the installation URL, and the Kickstart URL and Kernel options if required.
				

 ⁠[image: The New VM window - Step 2]

Figure 7.14. The New VM window - Step 2

					Click Forward to continue.
				

	
					The remaining steps are the same as the ISO installation procedure. Continue from Step 5 of the ISO installation procedure.
				

 ⁠7.3. Creating a Red Hat Enterprise Linux 6 Guest with PXE

 ⁠Procedure 7.3. Creating a Red Hat Enterprise Linux 6 guest with virt-manager
	Optional: Preparation

					Prepare the storage environment for the virtual machine. For more information on preparing storage, refer to the Red Hat Enterprise Linux 6 Virtualization Administration Guide.
				
Important

						Various storage types may be used for storing guest virtual machines. However, for a virtual machine to be able to use migration features the virtual machine must be created on networked storage.
					

					Red Hat Enterprise Linux 6 requires at least 1GB of storage space. However, Red Hat recommends at least 5GB of storage space for a Red Hat Enterprise Linux 6 installation and for the procedures in this guide.
				

	Open virt-manager and start the wizard

					Open virt-manager by executing the virt-manager command as root or opening Applications → System Tools → Virtual Machine Manager.
				

 ⁠[image: The main virt-manager window]

Figure 7.15. The main virt-manager window

					Click on the Create new virtualized guest button to start the new virtualized guest wizard.
				

 ⁠[image: The create new virtualized guest button]

Figure 7.16. The create new virtualized guest button

					The New VM window opens.
				

	Name the virtual machine

					Virtual machine names can contain letters, numbers and the following characters: '_', '.' and '-'. Virtual machine names must be unique for migration and cannot consist only of numbers.
				

					Choose the installation method from the list of radio buttons.
				

 ⁠[image: The New VM window - Step 1]

Figure 7.17. The New VM window - Step 1

					Click Forward to continue.
				

	
					The remaining steps are the same as the ISO installation procedure. Continue from Step 5 of the ISO installation procedure. From this point, the only difference in this PXE procedure is on the final New VM screen, which shows the Install: PXE Install field.
				

 ⁠[image: The New VM window - Step 5 - PXE Install]

Figure 7.18. The New VM window - Step 5 - PXE Install

 ⁠Chapter 8. Virtualizing Red Hat Enterprise Linux on Other Platforms

		This chapter contains useful reference material for customers running Red Hat Enterprise Linux 6 as a virtualized operating system on other virtualization hosts.
	

 ⁠8.1. On VMware ESX

			Red Hat Enterprise Linux 6.0 and onward provide the vmw_balloon driver, a paravirtualized memory ballooning driver used when running Red Hat Enterprise Linux on VMware hosts. For further information about this driver, refer to http://kb.VMware.com/selfservice/microsites/search.do?cmd=displayKC&docType=kc&externalId=1002586.
		

			Red Hat Enterprise Linux 6.3 and onward provide the vmmouse_drv driver, a paravirtualized mouse driver used when running Red Hat Enterprise Linux on VMware hosts. For further information about this driver, refer to http://kb.VMware.com/selfservice/microsites/search.do?cmd=displayKC&docType=kc&externalId=5739104.
		

			Red Hat Enterprise Linux 6.3 and onward provide the vmware_drv driver, a paravirtualized video driver used when running Red Hat Enterprise Linux on VMware hosts. For further information about this driver, refer to http://kb.VMware.com/selfservice/microsites/search.do?cmd=displayKC&docType=kc&externalId=1033557.
		

			Red Hat Enterprise Linux 6.3 and onward provide the vmxnet3 driver, a paravirtualized network adapter used when running Red Hat Enterprise Linux on VMware hosts. For further information about this driver, refer to http://kb.VMware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1001805.
		

			Red Hat Enterprise Linux 6.4 and onward provide the vmw_pvscsi driver, a paravirtualized SCSI adapter used when running Red Hat Enterprise Linux on VMware hosts. For further information about this driver, refer to http://kb.VMware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1010398.
		

 ⁠8.2. On Hyper-V

			Red Hat Enterprise Linux 6.4 and onward include Microsoft's Linux Integration Services, a set of drivers that enable synthetic device support in supported virtualized operating systems. Further details about the drivers provided are available from http://technet.microsoft.com/en-us/library/dn531030.aspx.
		
Important

				Note that the built-in Red Hat Enterprise Linux Integration Service drivers for Hyper-V are sufficient for Red Hat Enterprise Linux guests to run using the high performance synthetic devices on Hyper-V hosts. These built-in drivers are certified by Red Hat for this use, and certified configurations can be viewed on the Red Hat Customer Portal.
			

				Therefore, it is not necessary to download and install Linux Integration Services (LIS) packages, and doing so may limit your Red Hat support, as described in the related Knowledgebase article.
			

			The following enhancements have been made to allow for easier deployment and management of Red Hat Enterprise Linux guest virtual machines:
		
	
					Upgraded VMBUS protocols - VMBUS protocols have been upgraded to Windows 8 level. As part of this work, now VMBUS interrupts can be processed on all available virtual CPUs in the guest. Furthermore, the signaling protocol between the Red Hat Enterprise Linux guest virtual machine and the Windows host physical machine has been optimized.
				

	
					Synthetic frame buffer driver - Provides enhanced graphics performance and superior resolution for Red Hat Enterprise Linux desktop users.
				

	
					Live Virtual Machine Backup support - Provisions uninterrupted backup support for live Red Hat Enterprise Linux guest virtual machines.
				

	
					Dynamic expansion of fixed size Linux VHDXs - Allows expansion of live mounted fixed size Red Hat Enterprise Linux VHDXs.
				

	
					Boot using UEFI - Allows virtual machines to boot using Unified Extensible Firmware Interface (UEFI) on a Hyper-V 2012 R2 host.
				

			For more information and features, refer to Red Hat Enterprise Linux — Virtualization Administration Guide and to the following article:" Enabling Linux Support on Windows Server 2012 R2 Hyper-V".
		

 ⁠Chapter 9. Installing a Fully-virtualized Windows Guest

		This chapter describes how to create a fully-virtualized Windows guest using the command-line (virt-install), launch the operating system's installer inside the guest, and access the installer through virt-viewer.
	

		To install a Windows operating system on the guest, use the virt-viewer tool. This tool allows you to display the graphical console of a virtual machine (using the SPICE or VNC protocol). In doing so, virt-viewer allows you to install a fully-virtualized guest's operating system with that operating system's installer .
	

		Installing a Windows operating system involves two major steps:
	
	
				Creating the guest virtual machine, using either virt-install or virt-manager.
			

	
				Installing the Windows operating system on the guest virtual machine, using virt-viewer.
			

		Refer to Chapter 6, Guest Virtual Machine Installation Overview for details about creating a guest virtual machine with virt-install or virt-manager.
	

		Note that this chapter does not describe how to install a Windows operating system on a fully-virtualized guest. Rather, it only covers how to create the guest and launch the installer within the guest. For information on how to install a Windows operating system, refer to the relevant Microsoft installation documentation.
	

 ⁠9.1. Using virt-install to Create a Guest

			The virt-install command allows you to create a fully-virtualized guest from a terminal, without the need for a GUI.
		
Important

				Before creating the guest, consider first if the guest needs to use KVM Windows paravirtualized drivers. If it does, keep in mind that you can do so during or after installing the Windows operating system on the guest. For more information about paravirtualized drivers, refer to Chapter 10, KVM Paravirtualized (virtio) Drivers.
			

				For instructions on how to install KVM paravirtualized drivers, refer to Section 10.1, “Installing the KVM Windows virtio Drivers”.
			

			It is possible to create a fully-virtualized guest with only a single command. To do so, run the following program (replace the values accordingly):
		
virt-install \
 --name=guest-name \
 --os-type=windows \
 --network network=default \
 --disk path=path-to-disk,size=disk-size \
 --cdrom=path-to-install-disk \
 --graphics spice --ram=1024

			The path-to-disk must be a device (e.g. /dev/sda3) or image file (/var/lib/libvirt/images/name.img). It must also have enough free space to support the disk-size.
		
Important

				All image files are stored in /var/lib/libvirt/images/ by default. Other directory locations for file-based images are possible, but may require SELinux configuration. If you run SELinux in enforcing mode, refer to the Red Hat Enterprise Linux 6 Virtualization Administration Guide for more information on SELinux.
			

			You can also run virt-install interactively. To do so, use the --prompt command, as in:
		
virt-install --prompt

			Once the fully-virtualized guest is created, virt-viewer will launch the guest and run the operating system's installer. Refer to the relevant Microsoft installation documentation for instructions on how to install the operating system.
		

 ⁠Chapter 10. KVM Paravirtualized (virtio) Drivers

		Paravirtualized drivers enhance the performance of guests, decreasing guest I/O latency and increasing throughput to near bare-metal levels. It is recommended to use the paravirtualized drivers for fully virtualized guests running I/O heavy tasks and applications.
	

		Virtio drivers are KVM's paravirtualized device drivers, available for Windows guest virtual machines running on KVM hosts. These drivers are included in the virtio package. The virtio package supports block (storage) devices and network interface controllers.
	

		The KVM virtio drivers are automatically loaded and installed on the following:
	
	
				Red Hat Enterprise Linux 4.8 and newer
			

	
				Red Hat Enterprise Linux 5.3 and newer
			

	
				Red Hat Enterprise Linux 6 and newer
			

	
				Red Hat Enterprise Linux 7 and newer
			

	
				Some versions of Linux based on the 2.6.27 kernel or newer kernel versions.
			

		Versions of Red Hat Enterprise Linux in the list above detect and install the drivers, additional installation steps are not required.
	

		In Red Hat Enterprise Linux 3 (3.9 and above), manual installation is required.
	
Note

			 PCI devices are limited by the virtualized system architecture. Refer to Section 4.1, “KVM Restrictions” for additional limitations when using assigned devices.
		

		Using KVM virtio drivers, the following Microsoft Windows versions are expected to run similarly to bare-metal-based systems.
	
	
				Windows Server 2003 (32-bit and 64-bit versions)
			

	
				Windows Server 2008 (32-bit and 64-bit versions)
			

	
				Windows Server 2008 R2 (64-bit only)
			

	
				Windows 7 (32-bit and 64-bit versions)
			

	
				Windows Server 2012 (64-bit only)
			

	
				Windows Server 2012 R2 (64-bit only)
			

	
				Windows 8 (32-bit and 64-bit versions)
			

	
				Windows 8.1 (32-bit and 64-bit versions)
			

 ⁠10.1. Installing the KVM Windows virtio Drivers

			This section covers the installation process for the KVM Windows virtio drivers. The KVM virtio drivers can be loaded during the Windows installation or installed after the guest is installed.
		

			You can install the virtio drivers on a guest virtual machine using one of the following methods:
		
	
					hosting the installation files on a network accessible to the virtual machine
				

	
					using a virtualized CD-ROM device of the driver installation disk .iso file
				

	
					using a USB drive, by mounting the same (provided) .ISO file that you would use for the CD-ROM
				

	
					using a virtualized floppy device to install the drivers during boot time (required and recommended only for XP/2003)
				

			This guide describes installation from the paravirtualized installer disk as a virtualized CD-ROM device.
		
	Download the drivers

					The virtio-win package contains the virtio block and network drivers for all supported Windows guest virtual machines.
				

					Download and install the virtio-win package on the host with the yum command.
				
 # yum install virtio-win

					The list of virtio-win packages that are supported on Windows operating systems, and the current certified package version, can be found at the following URL: windowsservercatalog.com.
				

					Note that the Red Hat Enterprise Virtualization Hypervisor and Red Hat Enterprise Linux are created on the same code base so the drivers for the same version (for example, Red Hat Enterprise Virtualization Hypervisor 3.3 and Red Hat Enterprise Linux 6.5) are supported for both environments.
				

					The virtio-win package installs a CD-ROM image, virtio-win.iso, in the /usr/share/virtio-win/ directory.
				

	Install the virtio drivers

					 When booting a Windows guest that uses virtio-win devices, the relevant virtio-win device drivers must already be installed on this guest. The virtio-win drivers are not provided as inbox drivers in Microsoft's Windows installation kit, so installation of a Windows guest on a virtio-win storage device (viostor/virtio-scsi) requires that you provide the appropriate driver during the installation, either directly from the virtio-win.iso or from the supplied Virtual Floppy image virtio-win<version>.vfd.
				

 ⁠10.2. Installing the Drivers on an Installed Windows Guest Virtual Machine

			This procedure covers installing the virtio drivers with a virtualized CD-ROM after Windows is installed.
		

			Follow this procedure to add a CD-ROM image with virt-manager and then install the drivers.
		

 ⁠Procedure 10.1. Installing from the driver CD-ROM image with virt-manager
	Open virt-manager and the guest virtual machine

					Open virt-manager, then open the guest virtual machine from the list by double-clicking the guest name.
				

	Open the hardware window

					Click the lightbulb icon on the toolbar at the top of the window to view virtual hardware details.
				

 ⁠[image: The Show virtual hardware details button.]

Figure 10.1. The virtual hardware details button

					Then click the Add Hardware button at the bottom of the new view that appears. This opens a wizard for adding the new device.
				

	Select the device type — for Red Hat Enterprise Linux 6 versions prior to 6.2

					Skip this step if you are using Red Hat Enterprise Linux 6.2 or later.
				

					On Red Hat Enterprise Linux 6 versions prior to version 6.2, you must select the type of device you wish to add. In this case, select Storage from the drop-down menu.
				

 ⁠[image: The Add new virtual hardware wizard window in Red Hat Enterprise Linux 6.1 with Storage selected as the hardware type.]

Figure 10.2. The Add new virtual hardware wizard in Red Hat Enterprise Linux 6.1

					Click the Finish button to proceed.
				

	Select the ISO file

					Ensure that the Select managed or other existing storage radio button is selected, and browse to the virtio driver's .iso image file. The default location for the latest version of the drivers is /usr/share/virtio-win/virtio-win.iso.
				

					Change the Device type to IDE cdrom and click the Forward button to proceed.
				

 ⁠[image: Selecting the ISO file in the Add new virtual hardware wizard window.]

Figure 10.3. The Add new virtual hardware wizard

	Finish adding virtual hardware — for Red Hat Enterprise Linux 6 versions prior to 6.2

					If you are using Red Hat Enterprise Linux 6.2 or later, skip this step.
				

					On Red Hat Enterprise Linux 6 versions prior to version 6.2, click on the Finish button to finish adding the virtual hardware and close the wizard.
				

 ⁠[image: The final screen of the Add new virtual hardware wizard in Red Hat Enterprise Linux 6.1.]

Figure 10.4. The Add new virtual hardware wizard in Red Hat Enterprise Linux 6.1

	Reboot

					Reboot or start the virtual machine to begin using the driver disc. Virtualized IDE devices require a restart to for the virtual machine to recognize the new device.
				

			Once the CD-ROM with the drivers is attached and the virtual machine has started, proceed with Procedure 10.2, “Windows installation on a Windows 7 virtual machine”.
		

 ⁠Procedure 10.2. Windows installation on a Windows 7 virtual machine

				This procedure installs the drivers on a Windows 7 virtual machine as an example. Adapt the Windows installation instructions to your guest's version of Windows.
			
	Open the Computer Management window

					On the desktop of the Windows virtual machine, click the Windows icon at the bottom corner of the screen to open the Start menu.
				

					Right-click on Computer and select Manage from the pop-up menu.
				

 ⁠[image: A menu window opens on the Computer Management window when right-clicking the My Computer icon on the desktop.]

Figure 10.5. The Computer Management window

	Open the Device Manager

					Select the Device Manager from the left-most pane. This can be found under Computer Management > System Tools.
				

 ⁠[image: Opening the Device Manager on the right hand side of the Computer Management window.]

Figure 10.6. The Computer Management window

	Start the driver update wizard
	View available system devices

							Expand System devices by clicking on the arrow to its left.
						

 ⁠[image: Detail of viewing available system devices from the Computer Management window.]

Figure 10.7. Viewing available system devices in the Computer Management window

	Locate the appropriate device

							There are up to four drivers available: the balloon driver, the serial driver, the network driver, and the block driver.
						
	
									Balloon, the balloon driver, affects the PCI standard RAM Controller in the System devices group.
								

	
									vioserial, the serial driver, affects the PCI Simple Communication Controller in the System devices group.
								

	
									NetKVM, the network driver, affects the Network adapters group. This driver is only available if a virtio NIC is configured. Configurable parameters for this driver are documented in Appendix A, NetKVM Driver Parameters.
								

	
									viostor, the block driver, affects the Disk drives group. This driver is only available if a virtio disk is configured.
								

							Right-click on the device whose driver you wish to update, and select Update Driver... from the pop-up menu.
						

							This example installs the balloon driver, so right-click on PCI standard RAM Controller.
						

 ⁠[image: Locate the appropriate device under the expanded System Devices entry in the Computer Management window.]

Figure 10.8. The Computer Management window

	Open the driver update wizard

							From the drop-down menu, select Update Driver Software... to access the driver update wizard.
						

 ⁠[image: Open the driver update wizard by right-clicking the device to be updated and selecting the first menu option, Update Driver Software, in the Computer Management window.]

Figure 10.9. Opening the driver update wizard

	Specify how to find the driver

					The first page of the driver update wizard asks how you want to search for driver software. Click on the second option, Browse my computer for driver software.
				

 ⁠[image: The driver update wizard provides two options for searching for driver software.]

Figure 10.10. The driver update wizard

	Select the driver to install
	Open a file browser

							Click on Browse...
						

 ⁠[image: The driver update wizard.]

Figure 10.11. The driver update wizard

	Browse to the location of the driver

							A separate driver is provided for each of the various combinations of operating system and architecture. The drivers are arranged hierarchically according to their driver type, the operating system, and the architecture on which they will be installed: driver_type/os/arch/. For example, the Balloon driver for a Windows 7 operating system with an x86 (32-bit) architecture, resides in the Balloon/w7/x86 directory.
						

 ⁠[image: The Browse For Folder window, which pops up after choosing "Browse" to search for driver software on your computer. Select the folder that contains drivers for your hardware from this window.]

Figure 10.12. The Browse for driver software pop-up window

							Once you have navigated to the correct location, click OK.
						

	Click Next to continue

 ⁠[image: The Update Driver Software wizard, with the specified location to search for driver software selected, with the Browse button on the right, and the Next and Cancel buttons at the bottom right of the window.]

Figure 10.13. The Update Driver Software wizard

							The following screen is displayed while the driver installs:
						

 ⁠[image: As the driver software installs, a flashing bar in the Update Driver Software wizard window shows the system is busy.]

Figure 10.14. The Update Driver Software wizard

	Close the installer

					The following screen is displayed when installation is complete:
				

 ⁠[image: After the driver software installs, the Update Driver Software wizard window read "Windows has successfully updated your driver software".]

Figure 10.15. The Update Driver Software wizard

					Click Close to close the installer.
				

	Reboot

					Reboot the virtual machine to complete the driver installation.
				

 ⁠10.3. Installing Drivers during the Windows Installation

			This procedure covers installing the virtio drivers during a Windows installation.
		

			This method allows a Windows guest virtual machine to use the virtio drivers for the default storage device.
		

 ⁠Procedure 10.3. Installing virtio drivers during the Windows installation
	Install the virtio-win package

					Use the following command to install the virtio-win package:
				
yum install virtio-win

	Create the guest virtual machine
Important

						Create the virtual machine, as normal, without starting the virtual machine. Follow one of the procedures below.
					

					Select one of the following guest-creation methods, and follow the instructions.
				
	Create the guest virtual machine with virsh

							This method attaches the virtio driver floppy disk to a Windows guest before the installation.
						

							If the virtual machine is created from an XML definition file with virsh, use the virsh define command not the virsh create command.
						
	
									Create, but do not start, the virtual machine. Refer to the Red Hat Enterprise Linux Virtualization Administration Guide for details on creating virtual machines with the virsh command.
								

	
									Add the driver disk as a virtualized floppy disk with the virsh command. This example can be copied and used if there are no other virtualized floppy devices attached to the guest virtual machine. Note that vm_name should be replaced with the name of the virtual machine.
								
virsh attach-disk vm_name /usr/share/virtio-win/virtio-win.vfd fda --type floppy

									You can now continue with Step 3.
								

	Create the guest virtual machine with virt-manager and changing the disk type
	
									At the final step of the virt-manager guest creation wizard, check the Customize configuration before install check box.
								

 ⁠[image: Step 5 of 5 of creating a new virtual machine with virt-manager, with a check box selected under Storage to customize configuration before install.]

Figure 10.16. The virt-manager guest creation wizard

									Click on the Finish button to continue.
								

	Open the Add Hardware wizard

									Click the Add Hardware button in the bottom left of the new panel.
								

	Select storage device

									Storage is the default selection in the Hardware type list.
								

 ⁠[image: The Add new virtual hardware wizard with Storage selected in the Hardware type field.]

Figure 10.17. The Add new virtual hardware wizard

									Ensure the Select managed or other existing storage radio button is selected. Click Browse....
								

 ⁠[image: The Add new virtual hardware wizard with Storage selected in the Hardware type field, and the Select managed or other existing storage radio button selected.]

Figure 10.18. Select managed or existing storage

									In the new window that opens, click Browse Local. Navigate to /usr/share/virtio-win/virtio-win.vfd, and click Select to confirm.
								

									Change Device type to Floppy disk, and click Finish to continue.
								

 ⁠[image: The Device type field, set to Floppy Disk.]

Figure 10.19. Change the Device type

	Confirm settings

									Review the device settings.
								

 ⁠[image: The virtual machine hardware information window with the target device (Floppy 1) selected.]

Figure 10.20. The virtual machine hardware information window

									You have now created a removable device accessible by your virtual machine.
								

	Change the hard disk type

									To change the hard disk type from IDE Disk to Virtio Disk, we must first remove the existing hard disk, Disk 1. Select the disk and click on the Remove button.
								

 ⁠[image: The virtual machine hardware information window with virtual disk Disk 1 selected, with the Remove button available at the bottom right corner of the window.]

Figure 10.21. The virtual machine hardware information window

									Add a new virtual storage device by clicking Add Hardware. Then, change the Device type from IDE disk to Virtio Disk. Click Finish to confirm the operation.
								

 ⁠[image: The virtual machine hardware information window with the Floppy 1 target device selected, and the Add Hardware on the left bottom corner of the window.]

Figure 10.22. The virtual machine hardware information window

	Ensure settings are correct

									Review the settings for VirtIO Disk 1.
								

 ⁠[image: The virtual machine hardware information window with the Overview option selected, showing Basic Details, Hypervisor Details, plus expandable headings Machine Setting and Security, in the right part of the window.]

Figure 10.23. The virtual machine hardware information window

									When you are satisfied with the configuration details, click the Begin Installation button.
								

									You can now continue with Step 3.
								

	Create the guest virtual machine with virt-install

							Append the following parameter exactly as listed below to add the driver disk to the installation with the virt-install command:
						
--disk path=/usr/share/virtio-win/virtio-win.vfd,device=floppy
Important

								If the device you wish to add is a disk (that is, not a floppy or a cdrom), you will also need to add the bus=virtio option to the end of the --disk parameter, like so:
							
--disk path=/usr/share/virtio-win/virtio-win.vfd,device=disk,bus=virtio

							According to the version of Windows you are installing, append one of the following options to the virt-install command:
						
--os-variant win2k3
--os-variant win7

							You can now continue with Step 3.
						

	Additional steps for driver installation

					During the installation, additional steps are required to install drivers, depending on the type of Windows guest.
				
	Windows Server 2003

							Before the installation blue screen repeatedly press F6 for third party drivers.
						

 ⁠[image: The Windows pre-installation blue screen reads Window Setup at the top in plain text, and "Press F6 if you need to install a third party SCSI or RAID driver..." at the bottom.]

Figure 10.24. The Windows Setup screen

							Press S to install additional device drivers.
						

 ⁠[image: The next Windows pre-installation blue screen reads Window Setup at the top in plain text and details the option to install an additional device. Options at the bottom of the screen include S to "Specify Additional Device", ENTER to continue, or F3 to exit.]

Figure 10.25. The Windows Setup screen

 ⁠[image: The next Windows blue screen reads Window Setup at the top in plain text and provides options to select the SCSI Adapter to be installed. Options at the bottom of the screen include ENTER to select, or F3 to exit.]

Figure 10.26. The Windows Setup screen

							Press Enter to continue the installation.
						

	Windows Server 2008

							Follow the same procedure for Windows Server 2003, but when the installer prompts you for the driver, click on Load Driver, point the installer to Drive A: and pick the driver that suits your guest operating system and architecture.
						

 ⁠10.4. Using KVM virtio Drivers for Existing Devices

			You can modify an existing hard disk device attached to the guest to use the virtio driver instead of the virtualized IDE driver. The example shown in this section edits libvirt configuration files. Note that the guest virtual machine does not need to be shut down to perform these steps, however the change will not be applied until the guest is completely shut down and rebooted.
		

 ⁠Procedure 10.4. Using KVM virtio drivers for existing devices
	
					Ensure that you have installed the appropriate driver (viostor), as described in Section 10.1, “Installing the KVM Windows virtio Drivers”, before continuing with this procedure.
				

	
					Run the virsh edit <guestname> command as root to edit the XML configuration file for your device. For example, virsh edit guest1. The configuration files are located in /etc/libvirt/qemu.
				

	
					Below is a file-based block device using the virtualized IDE driver. This is a typical entry for a virtual machine not using the virtio drivers.
				
<disk type='file' device='disk'>
 <source file='/var/lib/libvirt/images/disk1.img'/>
 <target dev='hda' bus='ide'/>
</disk>

	
					Change the entry to use the virtio device by modifying the bus= entry to virtio. Note that if the disk was previously IDE it will have a target similar to hda, hdb, or hdc and so on. When changing to bus=virtio the target needs to be changed to vda, vdb, or vdc accordingly.
				
<disk type='file' device='disk'>
 <source file='/var/lib/libvirt/images/disk1.img'/>
 <target dev='vda' bus='virtio'/>
</disk>

	
					Remove the address tag inside the disk tags. This must be done for this procedure to work. Libvirt will regenerate the address tag appropriately the next time the virtual machine is started.
				

			Alternatively, virt-manager, virsh attach-disk or virsh attach-interface can add a new device using the virtio drivers.
		

			Refer to the libvirt website for more details on using Virtio: http://www.linux-kvm.org/page/Virtio
		

 ⁠10.5. Using KVM virtio Drivers for New Devices

			This procedure covers creating new devices using the KVM virtio drivers with virt-manager.
		

			Alternatively, the virsh attach-disk or virsh attach-interface commands can be used to attach devices using the virtio drivers.
		
Important

				Ensure the drivers have been installed on the Windows guest before proceeding to install new devices. If the drivers are unavailable the device will not be recognized and will not work.
			

 ⁠Procedure 10.5. Adding a storage device using the virtio storage driver
	
					Open the guest virtual machine by double clicking on the name of the guest in virt-manager.
				

	
					Open the Show virtual hardware details tab by clicking the lightbulb button.
				

 ⁠[image: The Show virtual hardware details tab]

Figure 10.27. The Show virtual hardware details tab

	
					In the Show virtual hardware details tab, click on the Add Hardware button.
				

	Select hardware type

					Select Storage as the Hardware type.
				

 ⁠[image: The Add new virtual hardware wizard with Storage selected as the hardware type.]

Figure 10.28. The Add new virtual hardware wizard

	Select the storage device and driver

					Create a new disk image or select a storage pool volume.
				

					Set the Device type to Virtio disk to use the virtio drivers.
				

 ⁠[image: The Add new virtual hardware wizard Storage window, with "Create a disk image on the computer's hard drive" selected.]

Figure 10.29. The Add new virtual hardware wizard

					Click Finish to complete the procedure.
				

 ⁠Procedure 10.6. Adding a network device using the virtio network driver
	
					Open the guest virtual machine by double clicking on the name of the guest in virt-manager.
				

	
					Open the Show virtual hardware details tab by clicking the lightbulb button.
				

 ⁠[image: The Show virtual hardware details tab]

Figure 10.30. The Show virtual hardware details tab

	
					In the Show virtual hardware details tab, click on the Add Hardware button.
				

	Select hardware type

					Select Network as the Hardware type.
				

 ⁠[image: The Add new virtual hardware wizard with Network selected as the hardware type.]

Figure 10.31. The Add new virtual hardware wizard

	Select the network device and driver

					Set the Device model to virtio to use the virtio drivers. Choose the desired Host device.
				

 ⁠[image: The Add new virtual hardware wizard Network window, with Device model set to virtio.]

Figure 10.32. The Add new virtual hardware wizard

					Click Finish to complete the procedure.
				

			Once all new devices are added, reboot the virtual machine. Windows virtual machines may not recognize the devices until the guest is rebooted.
		

 ⁠Chapter 11. Network Configuration

		This chapter provides an introduction to the common networking configurations used by libvirt based guest virtual machines. For additional information, consult the libvirt network architecture documentation: http://libvirt.org/intro.html.
	

		Red Hat Enterprise Linux 6 supports the following networking setups for virtualization:
	
	
				virtual networks using Network Address Translation (NAT)
			

	
				directly allocated physical devices using PCI device assignment
			

	
				directly allocated virtual functions using PCIe SR-IOV
			

	
				bridged networks
			

		You must enable NAT, network bridging or directly assign a PCI device to allow external hosts access to network services on guest virtual machines.
	

 ⁠11.1. Network Address Translation (NAT) with libvirt

			One of the most common methods for sharing network connections is to use Network Address Translation (NAT) forwarding (also known as virtual networks).
		

 ⁠Host Configuration

				Every standard libvirt installation provides NAT-based connectivity to virtual machines as the default virtual network. Verify that it is available with the virsh net-list --all command.
			
virsh net-list --all
Name State Autostart

default active yes

			If it is missing, the example XML configuration file can be reloaded and activated:
		
virsh net-define /usr/share/libvirt/networks/default.xml

			The default network is defined from /usr/share/libvirt/networks/default.xml
		

			Mark the default network to automatically start:
		
virsh net-autostart default
Network default marked as autostarted

			Start the default network:
		
virsh net-start default
Network default started

			Once the libvirt default network is running, you will see an isolated bridge device. This device does not have any physical interfaces added. The new device uses NAT and IP forwarding to connect to the physical network. Do not add new interfaces.
		
brctl show
bridge name bridge id STP enabled interfaces
virbr0 8000.000000000000 yes

			libvirt adds iptables rules which allow traffic to and from guest virtual machines attached to the virbr0 device in the INPUT, FORWARD, OUTPUT and POSTROUTING chains. libvirt then attempts to enable the ip_forward parameter. Some other applications may disable ip_forward, so the best option is to add the following to /etc/sysctl.conf.
		
 net.ipv4.ip_forward = 1

 ⁠Guest Virtual Machine Configuration

				Once the host configuration is complete, a guest virtual machine can be connected to the virtual network based on its name. To connect a guest to the 'default' virtual network, the following could be used in the XML configuration file (such as /etc/libvirtd/qemu/myguest.xml) for the guest:
			
<interface type='network'>
 <source network='default'/>
</interface>
Note

				Defining a MAC address is optional. If you do not define one, a MAC address is automatically generated and used as the MAC address of the bridge device used by the network. Manually setting the MAC address may be useful to maintain consistency or easy reference throughout your environment, or to avoid the very small chance of a conflict.
			
<interface type='network'>
 <source network='default'/>
 <mac address='00:16:3e:1a:b3:4a'/>
</interface>

 ⁠11.2. Disabling vhost-net

			The vhost-net module is a kernel-level back end for virtio networking that reduces virtualization overhead by moving virtio packet processing tasks out of user space (the qemu process) and into the kernel (the vhost-net driver). vhost-net is only available for virtio network interfaces. If the vhost-net kernel module is loaded, it is enabled by default for all virtio interfaces, but can be disabled in the interface configuration in the case that a particular workload experiences a degradation in performance when vhost-net is in use.
		

			Specifically, when UDP traffic is sent from a host machine to a guest virtual machine on that host, performance degradation can occur if the guest virtual machine processes incoming data at a rate slower than the host machine sends it. In this situation, enabling vhost-net causes the UDP socket's receive buffer to overflow more quickly, which results in greater packet loss. It is therefore better to disable vhost-net in this situation to slow the traffic, and improve overall performance.
		

			To disable vhost-net, edit the <interface> sub-element in the guest virtual machine's XML configuration file and define the network as follows:
		
<interface type="network">
 ...
 <model type="virtio"/>
 <driver name="qemu"/>
 ...
</interface>

			Setting the driver name to qemu forces packet processing into qemu user space, effectively disabling vhost-net for that interface.
		

 ⁠11.3. Bridged Networking with libvirt

			Bridged networking (also known as physical device sharing) is used to dedicate a physical device to a virtual machine. Bridging is often used for more advanced setups and on servers with multiple network interfaces.
		

			To create a bridge (br0) based on the eth0 interface, execute the following command on the host:
		
virsh iface-bridge eth0 br0
Important

				NetworkManager does not support bridging. NetworkManager must be disabled to use networking with the network scripts (located in the /etc/sysconfig/network-scripts/ directory).
			
chkconfig NetworkManager off
chkconfig network on
service NetworkManager stop
service network start

				If you do not want to disable NetworkManager entirely, add "NM_CONTROLLED=no" to the ifcfg-* network script being used for the bridge.
			

 ⁠Chapter 12. PCI Device Assignment

		Red Hat Enterprise Linux 6 exposes three classes of device to its virtual machines:
	
	
				Emulated devices are purely virtual devices that mimic real hardware, allowing unmodified guest operating systems to work with them using their standard in-box drivers.
			

	
				Virtio devices are purely virtual devices designed to work optimally in a virtual machine. Virtio devices are similar to emulated devices, however, non-Linux virtual machines do not include the drivers they require by default. Virtualization management software like the Virtual Machine Manager (virt-manager) and the Red Hat Enterprise Virtualization Hypervisor install these drivers automatically for supported non-Linux guest operating systems.
			

	
				Assigned devices are physical devices that are exposed to the virtual machine. This method is also known as 'passthrough'. Device assignment allows virtual machines exclusive access to PCI devices for a range of tasks, and allows PCI devices to appear and behave as if they were physically attached to the guest operating system.
			

				Device assignment is supported on PCI Express devices, except graphics cards. Parallel PCI devices may be supported as assigned devices, but they have severe limitations due to security and system configuration conflicts.
			

		Red Hat Enterprise Linux 6 supports 32 PCI device slots per virtual machine, and 8 PCI functions per device slot. This gives a theoretical maximum of 256 configurable PCI functions per guest.
	

		However, this theoretical maximum is subject to the following limitations:
	
	
				Each virtual machine supports a maximum of 8 assigned device functions.
			

	
				4 PCI device slots are configured with 5 emulated devices (two devices are in slot 1) by default. However, users can explicitly remove 2 of the emulated devices that are configured by default if the guest operating system does not require them for operation (the video adapter device in slot 2; and the memory balloon driver device in the lowest available slot, usually slot 3). This gives users a supported functional maximum of 30 PCI device slots per virtual machine.
			

		Red Hat Enterprise Linux 6.0 and newer supports hot plugging assigned PCI devices into virtual machines. However, PCI device hot plugging operates at the slot level and therefore does not support multi-function PCI devices. Multi-function PCI devices are recommended for static device configuration only.
	
Note

			Red Hat Enterprise Linux 6.0 limited guest operating system driver access to a device's standard and extended configuration space. Limitations that were present in Red Hat Enterprise Linux 6.0 were significantly reduced in Red Hat Enterprise Linux 6.1, and enable a much larger set of PCI Express devices to be successfully assigned to KVM guests.
		

		Secure device assignment also requires interrupt remapping support. If a platform does not support interrupt remapping, device assignment will fail. To use device assignment without interrupt remapping support in a development environment, set the allow_unsafe_assigned_interrupts KVM module parameter to 1.
	

		PCI device assignment is only available on hardware platforms supporting either Intel VT-d or AMD IOMMU. These Intel VT-d or AMD IOMMU specifications must be enabled in BIOS for PCI device assignment to function.
	

 ⁠Procedure 12.1. Preparing an Intel system for PCI device assignment
	Enable the Intel VT-d specifications

				The Intel VT-d specifications provide hardware support for directly assigning a physical device to a virtual machine. These specifications are required to use PCI device assignment with Red Hat Enterprise Linux.
			

				The Intel VT-d specifications must be enabled in the BIOS. Some system manufacturers disable these specifications by default. The terms used to refer to these specifications can differ between manufacturers; consult your system manufacturer's documentation for the appropriate terms.
			

	Activate Intel VT-d in the kernel

				Activate Intel VT-d in the kernel by adding the intel_iommu=on parameter to the kernel line in the /boot/grub/grub.conf file.
			

				The example below is a modified grub.conf file with Intel VT-d activated.
			
default=0
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Red Hat Enterprise Linux Server (2.6.32-330.x86_645)
 root (hd0,0)
 kernel /vmlinuz-2.6.32-330.x86_64 ro root=/dev/VolGroup00/LogVol00 rhgb quiet intel_iommu=on
 initrd /initrd-2.6.32-330.x86_64.img

	Ready to use

				Reboot the system to enable the changes. Your system is now capable of PCI device assignment.
			

 ⁠Procedure 12.2. Preparing an AMD system for PCI device assignment
	Enable the AMD IOMMU specifications

				The AMD IOMMU specifications are required to use PCI device assignment in Red Hat Enterprise Linux. These specifications must be enabled in the BIOS. Some system manufacturers disable these specifications by default.
			

	Enable IOMMU kernel support

				Append amd_iommu=on to the kernel command line in /boot/grub/grub.conf so that AMD IOMMU specifications are enabled at boot.
			

	Ready to use

				Reboot the system to enable the changes. Your system is now capable of PCI device assignment.
			

 ⁠12.1. Assigning a PCI Device with virsh

			These steps cover assigning a PCI device to a virtual machine on a KVM hypervisor.
		

			This example uses a PCIe network controller with the PCI identifier code, pci_0000_01_00_0, and a fully virtualized guest machine named guest1-rhel6-64.
		

 ⁠Procedure 12.3. Assigning a PCI device to a guest virtual machine with virsh
	Identify the device

					First, identify the PCI device designated for device assignment to the virtual machine. Use the lspci command to list the available PCI devices. You can refine the output of lspci with grep.
				

					This example uses the Ethernet controller highlighted in the following output:
				
lspci | grep Ethernet
00:19.0 Ethernet controller: Intel Corporation 82567LM-2 Gigabit Network Connection
01:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)
01:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)

					This Ethernet controller is shown with the short identifier 00:19.0. We need to find out the full identifier used by virsh in order to assign this PCI device to a virtual machine.
				

					To do so, combine the virsh nodedev-list command with the grep command to list all devices of a particular type (pci) that are attached to the host machine. Then look at the output for the string that maps to the short identifier of the device you wish to use.
				

					This example highlights the string that maps to the Ethernet controller with the short identifier 00:19.0. Note that the : and . characters are replaced with underscores in the full identifier.
				
virsh nodedev-list --cap pci
pci_0000_00_00_0
pci_0000_00_01_0
pci_0000_00_03_0
pci_0000_00_07_0
pci_0000_00_10_0
pci_0000_00_10_1
pci_0000_00_14_0
pci_0000_00_14_1
pci_0000_00_14_2
pci_0000_00_14_3
pci_0000_00_19_0
pci_0000_00_1a_0
pci_0000_00_1a_1
pci_0000_00_1a_2
pci_0000_00_1a_7
pci_0000_00_1b_0
pci_0000_00_1c_0
pci_0000_00_1c_1
pci_0000_00_1c_4
pci_0000_00_1d_0
pci_0000_00_1d_1
pci_0000_00_1d_2
pci_0000_00_1d_7
pci_0000_00_1e_0
pci_0000_00_1f_0
pci_0000_00_1f_2
pci_0000_00_1f_3
pci_0000_01_00_0
pci_0000_01_00_1
pci_0000_02_00_0
pci_0000_02_00_1
pci_0000_06_00_0
pci_0000_07_02_0
pci_0000_07_03_0

					Record the PCI device number that maps to the device you want to use; this is required in other steps.
				

	Review device information

					Information on the domain, bus, and function are available from output of the virsh nodedev-dumpxml command:
				
virsh nodedev-dumpxml pci_0000_00_19_0
<device>
 <name>pci_0000_00_19_0</name>
 <parent>computer</parent>
 <driver>
 <name>e1000e</name>
 </driver>
 <capability type='pci'>
 <domain>0</domain>
 <bus>0</bus>
 <slot>25</slot>
 <function>0</function>
 <product id='0x1502'>82579LM Gigabit Network Connection</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 <capability type='virt_functions'>
 </capability>
 </capability>
</device>

	Determine required configuration details

					Refer to the output from the virsh nodedev-dumpxml pci_0000_00_19_0 command for the values required for the configuration file.
				

					Optionally, convert slot and function values to hexadecimal values (from decimal) to get the PCI bus addresses. Append "0x" to the beginning of the output to tell the computer that the value is a hexadecimal number.
				

					The example device has the following values: bus = 0, slot = 25 and function = 0. The decimal configuration uses those three values:
				
bus='0'
slot='25'
function='0'

					If you want to convert to hexadecimal values, you can use the printf utility to convert from decimal values, as shown in the following example:
				
$ printf %x 0
0
$ printf %x 25
19
$ printf %x 0
0

					The example device would use the following hexadecimal values in the configuration file:
				
bus='0x0'
slot='0x19'
function='0x0'

	Add configuration details

					Run virsh edit, specifying the virtual machine name, and add a device entry in the <source> section to assign the PCI device to the guest virtual machine.
				
virsh edit guest1-rhel6-64
<hostdev mode='subsystem' type='pci' managed='yes'>
 <source>
 <address domain='0x0' bus='0x0' slot='0x19' function='0x0'/>
 </source>
</hostdev>

					Alternately, run virsh attach-device, specifying the virtual machine name and the guest's XML file:
				
virsh attach-device guest1-rhel6-64 file.xml

	Allow device management

					Set an SELinux boolean to allow the management of the PCI device from the virtual machine:
				
setsebool -P virt_use_sysfs 1

	Start the virtual machine
virsh start guest1-rhel6-64

			The PCI device should now be successfully assigned to the virtual machine, and accessible to the guest operating system.
		

 ⁠12.2. Assigning a PCI Device with virt-manager

			PCI devices can be added to guest virtual machines using the graphical virt-manager tool. The following procedure adds a Gigabit Ethernet controller to a guest virtual machine.
		

 ⁠Procedure 12.4. Assigning a PCI device to a guest virtual machine using virt-manager
	Open the hardware settings

					Open the guest virtual machine and click the Add Hardware button to add a new device to the virtual machine.
				

 ⁠[image: The virtual machine hardware window with the Information button selected on the top taskbar and Overview selected on the left menu pane.]

Figure 12.1. The virtual machine hardware information window

	Select a PCI device

					Select PCI Host Device from the Hardware list on the left.
				

					Select an unused PCI device. Note that selecting PCI devices presently in use on the host causes errors. In this example, a spare 82576 network device is used. Click Finish to complete setup.
				

 ⁠[image: The Add new virtual hardware wizard with PCI Host Device selected on the left menu pane, showing a list of host devices for selection in the right menu pane.]

Figure 12.2. The Add new virtual hardware wizard

	Add the new device

					The setup is complete and the guest virtual machine now has direct access to the PCI device.
				

 ⁠[image: The virtual machine hardware window with the Information button selected on the top taskbar and Overview selected on the left menu pane, displaying the newly added PCI Device in the list of virtual machine devices in the left menu pane.]

Figure 12.3. The virtual machine hardware information window

 ⁠12.3. Assigning a PCI Device with virt-install

			To use virt-install to assign a PCI device, use the --host-device parameter.
		

 ⁠Procedure 12.5. Assigning a PCI device to a virtual machine with virt-install
	Identify the device

					Identify the PCI device designated for device assignment to the guest virtual machine.
				
lspci | grep Ethernet
00:19.0 Ethernet controller: Intel Corporation 82567LM-2 Gigabit Network Connection
01:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)
01:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)

					The virsh nodedev-list command lists all devices attached to the system, and identifies each PCI device with a string. To limit output to only PCI devices, run the following command:
				
virsh nodedev-list --cap pci
pci_0000_00_00_0
pci_0000_00_01_0
pci_0000_00_03_0
pci_0000_00_07_0
pci_0000_00_10_0
pci_0000_00_10_1
pci_0000_00_14_0
pci_0000_00_14_1
pci_0000_00_14_2
pci_0000_00_14_3
pci_0000_00_19_0
pci_0000_00_1a_0
pci_0000_00_1a_1
pci_0000_00_1a_2
pci_0000_00_1a_7
pci_0000_00_1b_0
pci_0000_00_1c_0
pci_0000_00_1c_1
pci_0000_00_1c_4
pci_0000_00_1d_0
pci_0000_00_1d_1
pci_0000_00_1d_2
pci_0000_00_1d_7
pci_0000_00_1e_0
pci_0000_00_1f_0
pci_0000_00_1f_2
pci_0000_00_1f_3
pci_0000_01_00_0
pci_0000_01_00_1
pci_0000_02_00_0
pci_0000_02_00_1
pci_0000_06_00_0
pci_0000_07_02_0
pci_0000_07_03_0

					Record the PCI device number; the number is needed in other steps.
				

					Information on the domain, bus and function are available from output of the virsh nodedev-dumpxml command:
				
virsh nodedev-dumpxml pci_0000_01_00_0
<device>
 <name>pci_0000_01_00_0</name>
 <parent>pci_0000_00_01_0</parent>
 <driver>
 <name>igb</name>
 </driver>
 <capability type='pci'>
 <domain>0</domain>
 <bus>1</bus>
 <slot>0</slot>
 <function>0</function>
 <product id='0x10c9'>82576 Gigabit Network Connection</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 <capability type='virt_functions'>
 </capability>
 </capability>
</device>

	Add the device

					Use the PCI identifier output from the virsh nodedev command as the value for the --host-device parameter.
				
virt-install \
--name=guest1-rhel6-64 \
--disk path=/var/lib/libvirt/images/guest1-rhel6-64.img,size=8 \
--nonsparse --graphics spice \
--vcpus=2 --ram=2048 \
--location=http://example1.com/installation_tree/RHEL6.1-Server-x86_64/os \
--nonetworks \
--os-type=linux \
--os-variant=rhel6 \
--host-device=pci_0000_01_00_0

	Complete the installation

					Complete the guest installation. The PCI device should be attached to the guest.
				

 ⁠12.4. Detaching an Assigned PCI Device

			When a host PCI device has been assigned to a guest machine, the host can no longer use the device. Read this section to learn how to detach the device from the guest with virsh or virt-manager so it is available for host use.
		

 ⁠Procedure 12.6. Detaching a PCI device from a guest with virsh
	Detach the device

					Use the following command to detach the PCI device from the guest by removing it in the guest's XML file:
				
virsh detach-device name_of_guest file.xml

	Re-attach the device to the host (optional)

					If the device is in managed mode, skip this step. The device will be returned to the host automatically.
				

					If the device is not using managed mode, use the following command to re-attach the PCI device to the host machine:
				
virsh nodedev-reattach device

					For example, to re-attach the pci_0000_01_00_0 device to the host:
				
virsh nodedev-reattach pci_0000_01_00_0

					The device is now available for host use.
				

 ⁠Procedure 12.7. Detaching a PCI Device from a guest with virt-manager
	Open the virtual hardware details screen

					In virt-manager, double-click on the virtual machine that contains the device. Select the Show virtual hardware details button to display a list of virtual hardware.
				

 ⁠[image: The Show virtual hardware details button.]

Figure 12.4. The virtual hardware details button

	Select and remove the device

					Select the PCI device to be detached from the list of virtual devices in the left panel.
				

 ⁠[image: The PCI device details and the Remove button.]

Figure 12.5. Selecting the PCI device to be detached

					Click the Remove button to confirm. The device is now available for host use.
				

 ⁠Chapter 13. SR-IOV

 ⁠13.1. Introduction

			Developed by the PCI-SIG (PCI Special Interest Group), the Single Root I/O Virtualization (SR-IOV) specification is a standard for a type of PCI device assignment that can share a single device to multiple virtual machines. SR-IOV improves device performance for virtual machines.
		

 ⁠[image: How SR-IOV works]

Figure 13.1. How SR-IOV works

			SR-IOV enables a Single Root Function (for example, a single Ethernet port), to appear as multiple, separate, physical devices. A physical device with SR-IOV capabilities can be configured to appear in the PCI configuration space as multiple functions. Each device has its own configuration space complete with Base Address Registers (BARs).
		

			SR-IOV uses two PCI functions:
		
	
					Physical Functions (PFs) are full PCIe devices that include the SR-IOV capabilities. Physical Functions are discovered, managed, and configured as normal PCI devices. Physical Functions configure and manage the SR-IOV functionality by assigning Virtual Functions.
				

	
					Virtual Functions (VFs) are simple PCIe functions that only process I/O. Each Virtual Function is derived from a Physical Function. The number of Virtual Functions a device may have is limited by the device hardware. A single Ethernet port, the Physical Device, may map to many Virtual Functions that can be shared to virtual machines.
				

			The hypervisor can map one or more Virtual Functions to a virtual machine. The Virtual Function's configuration space is then mapped to the configuration space presented to the guest.
		

			Each Virtual Function can only be mapped to a single guest at a time, as Virtual Functions require real hardware resources. A virtual machine can have multiple Virtual Functions. A Virtual Function appears as a network card in the same way as a normal network card would appear to an operating system.
		

			The SR-IOV drivers are implemented in the kernel. The core implementation is contained in the PCI subsystem, but there must also be driver support for both the Physical Function (PF) and Virtual Function (VF) devices. An SR-IOV capable device can allocate VFs from a PF. The VFs appear as PCI devices which are backed on the physical PCI device by resources such as queues and register sets.
		

 ⁠Advantages of SR-IOV

				SR-IOV devices can share a single physical port with multiple virtual machines.
			

			Virtual Functions have near-native performance and provide better performance than paravirtualized drivers and emulated access. Virtual Functions provide data protection between virtual machines on the same physical server as the data is managed and controlled by the hardware.
		

			These features allow for increased virtual machine density on hosts within a data center.
		

			SR-IOV is better able to utilize the bandwidth of devices with multiple guests.
		

 ⁠13.2. Using SR-IOV

			 This section covers the use of PCI passthrough to assign a Virtual Function of an SR-IOV capable multiport network card to a virtual machine as a network device.
		

			SR-IOV Virtual Functions (VFs) can be assigned to virtual machines by adding a device entry in <hostdev> with the virsh edit or virsh attach-device command. However, this can be problematic because unlike a regular network device, an SR-IOV VF network device does not have a permanent unique MAC address, and is assigned a new MAC address each time the host is rebooted. Because of this, even if the guest is assigned the same VF after a reboot, when the host is rebooted the guest determines its network adapter to have a new MAC address. As a result, the guest believes there is new hardware connected each time, and will usually require re-configuration of the guest's network settings.
		

			 libvirt-0.9.10 and later contains the <interface type='hostdev'> interface device. Using this interface device, libvirt will first perform any network-specific hardware/switch initialization indicated (such as setting the MAC address, VLAN tag, or 802.1Qbh virtualport parameters), then perform the PCI device assignment to the guest.
		

			Using the <interface type='hostdev'> interface device requires:
				
						an SR-IOV-capable network card,
					

	
						host hardware that supports either the Intel VT-d or the AMD IOMMU extensions, and
					

	
						the PCI address of the VF to be assigned.
					

		

			For a list of network interface cards (NICs) with SR-IOV support, see https://access.redhat.com/articles/1390483 .
		
Important

				 Assignment of an SR-IOV device to a virtual machine requires that the host hardware supports the Intel VT-d or the AMD IOMMU specification.
			

			To attach an SR-IOV network device on an Intel or an AMD system, follow this procedure:
		

 ⁠Procedure 13.1. Attach an SR-IOV network device on an Intel or AMD system
	Enable Intel VT-d or the AMD IOMMU specifications in the BIOS and kernel

					On an Intel system, enable Intel VT-d in the BIOS if it is not enabled already. Refer to Procedure 12.1, “Preparing an Intel system for PCI device assignment” for procedural help on enabling Intel VT-d in the BIOS and kernel.
				

					Skip this step if Intel VT-d is already enabled and working.
				

					On an AMD system, enable the AMD IOMMU specifications in the BIOS if they are not enabled already. Refer to Procedure 12.2, “Preparing an AMD system for PCI device assignment” for procedural help on enabling IOMMU in the BIOS.
				

	Verify support

					Verify if the PCI device with SR-IOV capabilities is detected. This example lists an Intel 82576 network interface card which supports SR-IOV. Use the lspci command to verify whether the device was detected.
				
lspci
03:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)
03:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)

					Note that the output has been modified to remove all other devices.
				

	Start the SR-IOV kernel modules

					If the device is supported the driver kernel module should be loaded automatically by the kernel. Optional parameters can be passed to the module using the modprobe command. The Intel 82576 network interface card uses the igb driver kernel module.
				
modprobe igb [<option>=<VAL1>,<VAL2>,]
lsmod |grep igb
igb 87592 0
dca 6708 1 igb

	Activate Virtual Functions

					The max_vfs parameter of the igb module allocates the maximum number of Virtual Functions. The max_vfs parameter causes the driver to spawn, up to the value of the parameter in, Virtual Functions. For this particular card the valid range is 0 to 7.
				

					Remove the module to change the variable.
				
modprobe -r igb

					Restart the module with the max_vfs set to 7 or any number of Virtual Functions up to the maximum supported by your device.
				
modprobe igb max_vfs=7

	Make the Virtual Functions persistent

					Add the line options igb max_vfs=7 to any file in /etc/modprobe.d to make the Virtual Functions persistent. For example:
				
echo "options igb max_vfs=7" >>/etc/modprobe.d/igb.conf

	Inspect the new Virtual Functions

					Using the lspci command, list the newly added Virtual Functions attached to the Intel 82576 network device. (Alternatively, use grep to search for Virtual Function, to search for devices that support Virtual Functions.)
				
lspci | grep 82576
0b:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)
0b:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection(rev 01)
0b:10.0 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.1 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.2 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.3 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.4 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.5 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.6 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:10.7 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:11.0 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:11.1 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:11.2 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:11.3 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:11.4 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)
0b:11.5 Ethernet controller: Intel Corporation 82576 Virtual Function (rev 01)

					The identifier for the PCI device is found with the -n parameter of the lspci command. The Physical Functions correspond to 0b:00.0 and 0b:00.1. All Virtual Functions have Virtual Function in the description.
				

	Verify devices exist with virsh

					The libvirt service must recognize the device before adding a device to a virtual machine. libvirt uses a similar notation to the lspci output. All punctuation characters, ; and ., in lspci output are changed to underscores (_).
				

					Use the virsh nodedev-list command and the grep command to filter the Intel 82576 network device from the list of available host devices. 0b is the filter for the Intel 82576 network devices in this example. This may vary for your system and may result in additional devices.
				
virsh nodedev-list | grep 0b
pci_0000_0b_00_0
pci_0000_0b_00_1
pci_0000_0b_10_0
pci_0000_0b_10_1
pci_0000_0b_10_2
pci_0000_0b_10_3
pci_0000_0b_10_4
pci_0000_0b_10_5
pci_0000_0b_10_6
pci_0000_0b_11_7
pci_0000_0b_11_1
pci_0000_0b_11_2
pci_0000_0b_11_3
pci_0000_0b_11_4
pci_0000_0b_11_5

					The serial numbers for the Virtual Functions and Physical Functions should be in the list.
				

	Get device details with virsh

					The pci_0000_0b_00_0 is one of the Physical Functions and pci_0000_0b_10_0 is the first corresponding Virtual Function for that Physical Function. Use the virsh nodedev-dumpxml command to get advanced output for both devices.
				
virsh nodedev-dumpxml pci_0000_0b_00_0
<device>
 <name>pci_0000_0b_00_0</name>
 <parent>pci_0000_00_01_0</parent>
 <driver>
 <name>igb</name>
 </driver>
 <capability type='pci'>
 <domain>0</domain>
 <bus>11</bus>
 <slot>0</slot>
 <function>0</function>
 <product id='0x10c9'>82576 Gigabit Network Connection</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 </capability>
</device>
virsh nodedev-dumpxml pci_0000_0b_10_0
<device>
 <name>pci_0000_0b_10_0</name>
 <parent>pci_0000_00_01_0</parent>
 <driver>
 <name>igbvf</name>
 </driver>
 <capability type='pci'>
 <domain>0</domain>
 <bus>11</bus>
 <slot>16</slot>
 <function>0</function>
 <product id='0x10ca'>82576 Virtual Function</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 </capability>
</device>

					This example adds the Virtual Function pci_0000_0b_10_0 to the virtual machine in Step 9. Note the bus, slot and function parameters of the Virtual Function: these are required for adding the device.
				

					Copy these parameters into a temporary XML file, such as /tmp/new-interface.xml for example.
				
​
​ <interface type='hostdev' managed='yes'>
​ <source>
​ <address type='pci' domain='0' bus='11' slot='16' function='0'/>
​ </source>
​ </interface>
Note

						If you do not specify a MAC address, one will be automatically generated. The <virtualport> element is only used when connecting to an 802.11Qbh hardware switch. The <vlan> element is new for Red Hat Enterprise Linux 6.4 and this will transparently put the guest's device on the VLAN tagged 42.
					

						When the virtual machine starts, it should see a network device of the type provided by the physical adapter, with the configured MAC address. This MAC address will remain unchanged across host and guest reboots.
					

						The following <interface> example shows the syntax for the optional <mac address>, <virtualport>, and <vlan> elements. In practice, use either the <vlan> or <virtualport> element, not both simultaneously as shown in the example:
					
​...
​ <devices>
​ ...
​ <interface type='hostdev' managed='yes'>
​ <source>
​ <address type='pci' domain='0' bus='11' slot='16' function='0'/>
​ </source>
​ <mac address='52:54:00:6d:90:02'>
​ <vlan>
​ <tag id='42'/>
​ </vlan>
​ <virtualport type='802.1Qbh'>
​ <parameters profileid='finance'/>
​ </virtualport>
​ </interface>
​ ...
​ </devices>

	Add the Virtual Function to the virtual machine

					Add the Virtual Function to the virtual machine using the following command with the temporary file created in the previous step. This attaches the new device immediately and saves it for subsequent guest restarts.
				

virsh attach-device MyGuest /tmp/new-interface.xml --config

					Using the --config option ensures the new device is available after future guest restarts.
				

			The virtual machine detects a new network interface card. This new card is the Virtual Function of the SR-IOV device.
		

 ⁠13.3. Troubleshooting SR-IOV

			This section contains solutions for problems which may affect SR-IOV.
		
	Error starting the guest
	
						When starting a configured virtual machine, an error occurs as follows:
					
virsh start test
error: Failed to start domain test
error: internal error unable to start guest: char device redirected to
/dev/pts/2
get_real_device: /sys/bus/pci/devices/0000:03:10.0/config: Permission denied
init_assigned_device: Error: Couldn't get real device (03:10.0)!
Failed to initialize assigned device host=03:10.0

						This error is often caused by a device that is already assigned to another guest or to the host itself.
					

	Error migrating, saving, or dumping the guest
	
						Attempts to migrate and dump the virtual machine cause an error similar to the following:
					
virsh dump --crash 5 /tmp/vmcore
error: Failed to core dump domain 5 to /tmp/vmcore
error: internal error unable to execute QEMU command 'migrate': An undefined
error has occurred

						Because device assignment uses hardware on the specific host where the virtual machine was started, guest migration and save are not supported when device assignment is in use. Currently, the same limitation also applies to core-dumping a guest; this may change in the future.
					

 ⁠Chapter 14. KVM Guest Timing Management

		Virtualization involves several challenges for time keeping in guest virtual machines.
			
					Interrupts cannot always be delivered simultaneously and instantaneously to all guest virtual machines. This is because interrupts in virtual machines are not true interrupts - they are injected into the guest virtual machine by the host machine.
				

	
					The host may be running another guest virtual machine, or a different process. Thereofore, the precise timing typically required by interrupts may not always be possible.
				

	

		Guest virtual machines without accurate time keeping may experience issues with network applications and processes, as session validity, migration, and other network activities rely on timestamps to remain correct.
	

		KVM avoids these issues by providing guest virtual machines with a paravirtualized clock (kvm-clock). However, it is still important to test timing before attempting activities that may be affected by time keeping inaccuracies, such as guest migration.
	
Important

			To avoid the problems described above, the Network Time Protocol (NTP) should be configured on the host and the guest virtual machines. On guests using Red Hat Enterprise Linux 6 and earlier, NTP is implemented by the ntpd service. For more information, see the Red Hat Enterprise 6 Deployment Guide.
		

 ⁠14.1. Constant Time Stamp Counter (TSC)

			Modern Intel and AMD CPUs provide a constant Time Stamp Counter (TSC). The count frequency of the constant TSC does not vary when the CPU core itself changes frequency, for example to comply with a power saving policy. A CPU with a constant TSC frequency is necessary in order to use the TSC as a clock source for KVM guests.
		

			Your CPU has a constant Time Stamp Counter if the constant_tsc flag is present. To determine if your CPU has the constant_tsc flag run the following command:
		
$ cat /proc/cpuinfo | grep constant_tsc

			If any output is given your CPU has the constant_tsc bit. If no output is given follow the instructions below.
		

 ⁠14.1.1. Configuring Hosts without a Constant Time Stamp Counter

				Systems without a constant TSC frequency cannot use the TSC as a clock source for virtual machines, and require additional configuration. Power management features interfere with accurate time keeping and must be disabled for guest virtual machines to accurately keep time with KVM.
			
Important

					These instructions are for AMD revision F CPUs only.
				

				If the CPU lacks the constant_tsc bit, disable all power management features (BZ#513138). Each system has several timers it uses to keep time. The TSC is not stable on the host, which is sometimes caused by cpufreq changes, deep C state, or migration to a host with a faster TSC. Deep C sleep states can stop the TSC. To prevent the kernel using deep C states append processor.max_cstate=1 to the kernel boot options in the grub.conf file on the host:
			
title Red Hat Enterprise Linux (2.6.32-330.x86_64)
 root (hd0,0)
	kernel /vmlinuz-2.6.32-330.x86_64 ro root=/dev/VolGroup00/LogVol00 rhgb quiet \
 processor.max_cstate=1

				Disable cpufreq (only necessary on hosts without the constant_tsc) by editing the /etc/sysconfig/cpuspeed configuration file and change the MIN_SPEED and MAX_SPEED variables to the highest frequency available. Valid limits can be found in the /sys/devices/system/cpu/cpu*/cpufreq/scaling_available_frequencies files.
			

 ⁠14.2. Required Parameters for Red Hat Enterprise Linux Guests

			For certain Red Hat Enterprise Linux guest virtual machines, additional kernel parameters are required. These parameters can be set by appending them to the end of the /kernel line in the /boot/grub/grub.conf file of the guest virtual machine.
		

			The table below lists versions of Red Hat Enterprise Linux and the parameters required on the specified systems.
		

 ⁠Table 14.1. Kernel parameter requirements
	 Red Hat Enterprise Linux version 	 Additional guest kernel parameters
	 7.0 and later on AMD64 and Intel 64 systems with kvm-clock 	 Additional parameters are not required
	 6.1 and later on AMD64 and Intel 64 systems with kvm-clock 	 Additional parameters are not required
	 6.0 on AMD64 and Intel 64 systems with kvm-clock 	 Additional parameters are not required
	 6.0 on AMD64 and Intel 64 systems without kvm-clock 	 notsc lpj=n
	 5.5 AMD64/Intel 64 with kvm-clock 	 Additional parameters are not required
	 5.5 AMD64 and Intel 64 systems without kvm-clock 	 notsc lpj=n
	 5.5 on 32-bit AMD and Intel systems with kvm-clock 	 Additional parameters are not required
	 5.5 on 32-bit AMD and Intel systems without kvm-clock 	 clocksource=acpi_pm lpj=n
	 5.4 on AMD64 and Intel 64 systems 	 notsc
	 5.4 on 32-bit AMD and Intel systems 	 clocksource=acpi_pm
	 5.3 on AMD64 and Intel 64 systems 	 notsc
	 5.3 on 32-bit AMD and Intel systems 	 clocksource=acpi_pm

Note

				The lpj parameter requires a numeric value equal to the loops per jiffy value of the specific CPU on which the guest virtual machine runs. If you do not know this value, do not set the lpj parameter.
			

Warning

				The divider kernel parameter was previously recommended for Red Hat Enterprise Linux 4 and 5 guest virtual machines that did not have high responsiveness requirements, or exist on systems with high guest density. It is no longer recommended for use with guests running Red Hat Enterprise Linux 4, or Red Hat Enterprise Linux 5 versions prior to version 5.8.
			

				divider can improve throughput on Red Hat Enterprise Linux 5 versions equal to or later than 5.8 by lowering the frequency of timer interrupts. For example, if HZ=1000, and divider is set to 10 (that is, divider=10), the number of timer interrupts per period changes from the default value (1000) to 100 (the default value, 1000, divided by the divider value, 10).
			

				BZ#698842 details a bug in the way that the divider parameter interacts with interrupt and tick recording. This bug is fixed as of Red Hat Enterprise Linux 5.8. However, the divider parameter can still cause kernel panic in guests using Red Hat Enterprise Linux 4, or Red Hat Enterprise Linux 5 versions prior to version 5.8.
			

				This parameter was not implemented in Red Hat Enterprise Linux 3, so this bug does not affect Red Hat Enterprise Linux 3 guests.
			

				Red Hat Enterprise Linux 6 does not have a fixed-frequency clock interrupt; it operates in tickless mode and uses the timer dynamically as required. The divider parameter is therefore not useful for Red Hat Enterprise Linux 6, and Red Hat Enterprise Linux 6 guests are not affected by this bug.
			

 ⁠14.3. Using the Real-Time Clock with Windows Server 2008, Windows Server 2008 R2, and Windows 7 Guests

			Windows uses both the Real-Time Clock (RTC) and the Time Stamp Counter (TSC). For Windows guest virtual machines the Real-Time Clock can be used instead of the TSC for all time sources, which resolves guest timing issues.
		

			The boot.ini file is no longer used as of Windows Server 2008 and newer. Windows Server 2008, Windows Server 2008 R2, and Windows 7 do not use the TSC as a time source if the hypervisor-present bit is set. The Red Hat Enterprise Linux 6 KVM hypervisor enables this CPUID bit by default, so it is no longer necessary to use the Boot Configuration Data Editor (bcdedit.exe) to modify the Windows boot parameters.
		

 ⁠Procedure 14.1. Using the Real-Time Clock with Windows Server 2008 R2 and Windows 7 guests
	
					Open the Windows guest virtual machine.
				

	
					Open the Accessories menu of the start menu. Right click on the Command Prompt application, select Run as Administrator.
				

	
					Confirm the security exception, if prompted.
				

	
					Set the boot manager to use the platform clock. This should instruct Windows to use the PM timer for the primary clock source. The system UUID ({default} in the example below) should be changed if the system UUID is different than the default boot device.
				
C:\Windows\system32>bcdedit /set {default} USEPLATFORMCLOCK on
The operation completed successfully

			This fix should improve time keeping for Windows Server 2008 R2 and Windows 7 guests. Windows 2008 (non-R2) does not support the USEPLATFORMCLOCK parameter, but already uses the Real-Time Clock by default.
		

 ⁠14.4. Steal Time Accounting

			Steal time is the amount of CPU time desired by a guest virtual machine that is not provided by the host. Steal time occurs when the host allocates these resources elsewhere: for example, to another guest.
		

			Steal time is reported in the CPU time fields in /proc/stat as st. It is automatically reported by utilities such as top and vmstat, and cannot be switched off.
		

			Large amounts of steal time indicate CPU contention, which can reduce guest performance. To relieve CPU contention, increase the guest's CPU priority or CPU quota, or run fewer guests on the host.
		

 ⁠Chapter 15. Network Booting with libvirt

		Guest virtual machines can be booted with PXE enabled. PXE allows guest virtual machines to boot and load their configuration off the network itself. This section demonstrates some basic configuration steps to configure PXE guests with libvirt.
	

		This section does not cover the creation of boot images or PXE servers. It is used to explain how to configure libvirt, in a private or bridged network, to boot a guest virtual machine with PXE booting enabled.
	
Warning

			These procedures are provided only as an example. Ensure that you have sufficient backups before proceeding.
		

 ⁠15.1. Preparing the Boot Server

			To perform the steps in this chapter you will need:
		
	
					A PXE Server (DHCP and TFTP) - This can be a libvirt internal server, manually-configured dhcpd and tftpd, dnsmasq, a server configured by Cobbler, or some other server.
				

	
					Boot images - for example, PXELINUX configured manually or by Cobbler.
				

 ⁠15.1.1. Setting up a PXE Boot Server on a Private libvirt Network

				This example uses the default network. Perform the following steps:
			

 ⁠Procedure 15.1. Configuring the PXE boot server
	
						Place the PXE boot images and configuration in /var/lib/tftp.
					

	
						Run the following commands:
					
virsh net-destroy default
virsh net-edit default

	
						Edit the <ip> element in the configuration file for the default network to include the appropriate address, network mask, DHCP address range, and boot file, where BOOT_FILENAME represents the file name you are using to boot the guest virtual machine.
					
<ip address='192.168.122.1' netmask='255.255.255.0'>
 <tftp root='/var/lib/tftp' />
 <dhcp>
 <range start='192.168.122.2' end='192.168.122.254' />
 <bootp file='BOOT_FILENAME' />
 </dhcp>
</ip>

	
						Boot the guest using PXE (refer to Section 15.2, “Booting a Guest Using PXE”).
					

 ⁠15.2. Booting a Guest Using PXE

			This section demonstrates how to boot a guest virtual machine with PXE.
		

 ⁠15.2.1. Using Bridged Networking

 ⁠Procedure 15.2. Booting a guest using PXE and bridged networking
	
						Ensure bridging is enabled such that the PXE boot server is available on the network.
					

	
						Boot a guest virtual machine with PXE booting enabled. You can use the virt-install command to create a new virtual machine with PXE booting enabled, as shown in the following example command:
					
virt-install --pxe --network bridge=breth0 --prompt

						Alternatively, ensure that the guest network is configured to use your bridged network, and that the XML guest configuration file has a <boot dev='network'/> element inside the <os> element, as shown in the following example:
					
<os>
 <type arch='x86_64' machine='rhel6.2.0'>hvm</type>
 <boot dev='network'/>
 <boot dev='hd'/>
</os>
<interface type='bridge'>
 <mac address='52:54:00:5a:ad:cb'/>
 <source bridge='breth0'/>
 <target dev='vnet0'/>
 <alias name='net0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>
</interface>

 ⁠15.2.2. Using a Private libvirt Network

 ⁠Procedure 15.3. Using a private libvirt network
	
						Configure PXE booting on libvirt as shown in Section 15.1.1, “Setting up a PXE Boot Server on a Private libvirt Network”.
					

	
						Boot a guest virtual machine using libvirt with PXE booting enabled. You can use the virt-install command to create/install a new virtual machine using PXE:
					
virt-install --pxe --network network=default --prompt

				Alternatively, ensure that the guest network is configured to use your bridged network, and that the XML guest configuration file has a <boot dev='network'/> element inside the <os> element, as shown in the following example:
			
<os>
 <type arch='x86_64' machine='rhel6.2.0'>hvm</type>
 <boot dev='network'/>
 <boot dev='hd'/>
</os>

				Also ensure that the guest virtual machine is connected to the private network:
			
<interface type='network'>
 <mac address='52:54:00:66:79:14'/>
 <source network='default'/>
 <target dev='vnet0'/>
 <alias name='net0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>
</interface>

 ⁠Chapter 16. Registering the Hypervisor and Virtual Machine

		Red Hat Enterprise Linux 6 and 7 require that every guest virtual machine is mapped to a specific hypervisor in order to ensure that every guest is allocated the same level of subscription service. To do this you need to install a subscription agent that automatically detects all guest Virtual Machines (VMs) on each KVM hypervisor that is installed and registered, which in turn will create a mapping file that sits on the host. This mapping file ensures that all guest VMs receive the following benefits:
	
	
				Subscriptions specific to virtual systems are readily available and can be applied to all of the associated guest VMs.
			

	
				All subscription benefits that can be inherited from the hypervisor are readily available and can be applied to all of the associated guest VMs.
			

Note

			The information provided in this chapter is specific to Red Hat Enterprise Linux subscriptions only. If you also have a Red Hat Enterprise Virtualization subscription, or a Red Hat Satellite subscription, you should also consult the virt-who information provided with those subscriptions. More information on Red Hat Subscription Management can also be found in the Red Hat Subscription Management Guide found on the customer portal.
		

 ⁠16.1. Installing virt-who on the Host Physical Machine

	Register the KVM hypervisor

					Register the KVM Hypervisor by running the subscription-manager register [options] command in a terminal as the root user on the host physical machine. More options are available using the # subscription-manager register --help menu. In cases where you are using a user name and password, use the credentials that are known to the subscription manager. If this is your very first time subscribing and you do not have a user account, contact customer support. For example to register the VM as 'admin' with 'secret' as a password, you would send the following command:
				
[root@rhel-server ~]# subscription-manager register --username=admin --password=secret --auto-attach --type=hypervisor

	Install the virt-who packages

					Install the virt-who packages, by running the following command in a terminal as root on the host physical machine:
				
[root@rhel-server ~]# yum install virt-who

	Create a virt-who configuration file

					Add a configuration file in the /etc/virt-who.d/ directory. It does not matter what the name of the file is, but you should give it a name that makes sense and the file must be located in the /etc/virt-who.d/ directory. Inside that file add the following snippet and remember to save the file before closing it.
				

[libvirt]
type=libvirt

	Start the virt-who service

					Start the virt-who service by running the following command in a terminal as root on the host physical machine:
				

[root@virt-who ~]# service virt-who start
[root@virt-who ~]# chkconfig virt-who on

	Confirm virt-who service is receiving guest information

					At this point, the virt-who service will start collecting a list of domains from the host. Check the /var/log/rhsm/rhsm.log file on the host physical machine to confirm that the file contains a list of the guest VMs. For example:
				

2015-05-28 12:33:31,424 DEBUG: Libvirt domains found: [{'guestId': '58d59128-cfbb-4f2c-93de-230307db2ce0', 'attributes': {'active': 0, 'virtWhoType': 'libvirt', 'hypervisorType': 'QEMU'}, 'state': 5}]

 ⁠Procedure 16.1. Managing the subscription on the customer portal
	Subscribing the hypervisor

					As the virtual machines will be receiving the same subscription benefits as the hypervisor, it is important that the hypervisor has a valid subscription and that the subscription is available for the VMs to use.
				
	Login to the customer portal

							Login to the Red Hat customer portal https://access.redhat.com/ and click the Subscriptions button at the top of the page.
						

	Click the Systems link

							In the Subscriber Inventory section (towards the bottom of the page), click Systems link.
						

	Select the hypervisor

							On the Systems page, there is a table of all subscribed systems. Click on the name of the hypervisor (localhost.localdomain for example). In the details page that opens, click Attach a subscription and select all the subscriptions listed. Click Attach Selected. This will attach the host's physical subscription to the hypervisor so that the guests can benefit from the subscription.
						

	Subscribing the guest virtual machines - first time use

					This step is for those who have a new subscription and have never subscribed a guest virtual machine before. If you are adding virtual machines, skip this step. To consume the subscription assigned to the hypervisor profile on the machine running the virt-who service, auto subscribe by running the following command in a terminal, on the guest virtual machine as root.
				

[root@virt-who ~]# subscription-manager attach --auto

	Subscribing additional guest virtual machines

					If you just subscribed a for the first time, skip this step. If you are adding additional virtual machines, it should be noted that running this command will not necessarily re-attach the same subscriptions to the guest virtual machine. This is because removing all subscriptions then allowing auto attach to resolve what is necessary for a given guest virtual machine may result in different subscriptions consumed than before. This may not have any effect on your system, but it is something you should be aware about. If you used a manual attachment procedure to attach the virtual machine, which is not described below, you will need to re-attach those virtual machines manually as the auto-attach will not work. Use the following command as root in a terminal to first remove the subscriptions for the old guests and then use the auto-attach to attach subscriptions to all the guests. Run these commands on the guest virtual machine.
				

[root@virt-who ~]# subscription-manager remove --all
[root@virt-who ~]# subscription-manager attach --auto

	Confirm subscriptions are attached

					Confirm that the subscription is attached to the hypervisor by running the following command as root in a terminal on the guest virtual machine:
				
[root@virt-who ~]# subscription-manager list --consumed

					Output similar to the following will be displayed. Pay attention to the Subscription Details. It should say 'Subscription is current'.
				
[root@virt-who ~]# subscription-manager list --consumed
+---+
 Consumed Subscriptions
+---+
Subscription Name:	Awesome OS with unlimited virtual guests
Provides: 		Awesome OS Server Bits
SKU: 			awesomeos-virt-unlimited
Contract: 		0
Account: 		######### Your account number #####
Serial: 		######### Your serial number ######
Pool ID: 		XYZ123 [image: 1]
Provides Management: 	No
Active: 		True
Quantity Used: 		1
Service Level:
Service Type:
Status Details:		Subscription is current [image: 2]
Subscription Type:
Starts: 		01/01/2015
Ends: 			12/31/2015
System Type: 		Virtual

	[image: 1]
	
							The ID for the subscription to attach to the system is displayed here. You will need this ID if you need to attach the subscription manually.
						

	[image: 2]
	
							 Indicates if your subscription is current. If your subscription is not current, an error message appears. One example is Guest has not been reported on any host and is using a temporary unmapped guest subscription. In this case the guest needs to be subscribed. In other cases, use the information as indicated in Section 16.5.2, “I have subscription status errors, what do I do?”.
						

	Register additional guests

					When you install new guest VMs on the hypervisor, you must register the new VM and use the subscription attached to the hypervisor, by running the following commands in a terminal as root on the guest virtual machine:
				

[root@server1 ~]# subscription-manager register
[root@server1 ~]# subscription-manager attach --auto
[root@server1 ~]# subscription-manager list --consumed

 ⁠16.2. Registering a New Guest Virtual Machine

			In cases where a new guest virtual machine is to be created on a host that is already registered and running, the virt-who service must also be running. This ensures that the virt-who service maps the guest to a hypervisor, so the system is properly registered as a virtual system. To register the virtual machine, run the following command as root in a terminal:
		

[root@virt-server ~]# subscription-manager register --username=admin --password=secret --auto-attach

 ⁠16.3. Removing a Guest Virtual Machine Entry

			If the guest virtual machine is running, unregister the system, by running the following command in a terminal window as root on the guest:
		

[root@virt-guest ~]# subscription-manager unregister

			If the system has been deleted, however, the virtual service cannot tell whether the service is deleted or paused. In that case, you must manually remove the system from the server side, using the following steps:
		
	Login to the Subscription Manager

					The Subscription Manager is located on the Red Hat Customer Portal. Login to the Customer Portal using your user name and password, by clicking the login icon at the top of the screen.
				

	Click the Subscriptions tab

					Click the Subscriptions tab.
				

	Click the Systems link

					Scroll down the page and click the Systems link.
				

	Delete the system

					To delete the system profile, locate the specified system's profile in the table, select the check box beside its name and click Delete.
				

 ⁠16.4. Installing virt-who Manually

			This section will describe how to manually attach the subscription provided by the hypervisor.
		

 ⁠Procedure 16.2. How to attach a subscription manually
	List subscription information and find the Pool ID

					First you need to list the available subscriptions which are of the virtual type. Run the following command in a terminal as root:
				

[root@server1 ~]# subscription-manager list --avail --match-installed | grep 'Virtual' -B12
Subscription Name: Red Hat Enterprise Linux ES (Basic for Virtualization)
Provides: Red Hat Beta
 Oracle Java (for RHEL Server)
 Red Hat Enterprise Linux Server
SKU: -------
Pool ID: XYZ123
Available: 40
Suggested: 1
Service Level: Basic
Service Type: L1-L3
Multi-Entitlement: No
Ends: 01/02/2017
System Type: Virtual

					Note the Pool ID displayed. Copy this ID as you will need it in the next step.
				

	Attach the subscription with the Pool ID

					Using the Pool ID you copied in the previous step run the attach command. Replace the Pool ID XYZ123 with the Pool ID you retrieved. Run the following command in a terminal as root:
				

[root@server1 ~]# subscription-manager attach --pool=XYZ123

Successfully attached a subscription for: Red Hat Enterprise Linux ES (Basic for Virtualization)

 ⁠16.5. Troubleshooting virt-who

			This section provides information on troubleshooting virt-who.
		

 ⁠16.5.1. Why is the hypervisor status red?

				Scenario: On the server side, you deploy a guest on a hypervisor that does not have a subscription. 24 hours later, the hypervisor displays its status as red. To remedy this situation you must get a subscription for that hypervisor. Or, permanently migrate the guest to a hypervisor with a subscription.
			

 ⁠16.5.2. I have subscription status errors, what do I do?

				Scenario: Any of the following error messages display:
			
	
						System not properly subscribed
					

	
						Status unknown
					

	
						Late binding of a guest to a hypervisor through virt-who (host/guest mapping)
					

				To find the reason for the error open the virt-who log file, named rhsm.log, located in the /var/log/rhsm/ directory.
			

 ⁠Appendix A. NetKVM Driver Parameters

		After the NetKVM driver is installed, you can configure it to better suit your environment. The parameters listed in this section can be configured in the Windows Device Manager (devmgmt.msc).
	
Important

			Modifying the driver's parameters causes Windows to reload that driver. This interrupts existing network activity.
		

 ⁠Procedure A.1. Configuring NetKVM Parameters
	Open Device Manager

				Click on the Start button. In the right-hand pane, right-click on Computer, and click Manage. If prompted, click Continue on the User Account Control window. This opens the Computer Management window.
			

				In the left-hand pane of the Computer Management window, click Device Manager.
			

	Locate the correct device

				In the central pane of the Computer Management window, click on the + symbol beside Network adapters.
			

				Under the list of Red Hat VirtIO Ethernet Adapter devices, double-click on NetKVM. This opens the Properties window for that device.
			

	View device parameters

				In the Properties window, click on the Advanced tab.
			

	Modify device parameters

				Click on the parameter you wish to modify to display the options for that parameter.
			

				Modify the options as appropriate, then click on OK to save your changes.
			

 ⁠A.1. Configurable Parameters for NetKVM

Logging parameters
	Logging.Enable
	
						A Boolean value that determines whether logging is enabled. The default value is 1 (enabled).
					

	Logging.Level
	
						An integer that defines the logging level. As the integer increases, so does the verbosity of the log. The default value is 0 (errors only). 1-2 adds configuration messages. 3-4 adds packet flow information. 5-6 adds interrupt and DPC level trace information.
					
Important

							High logging levels will slow down your guest virtual machine.
						

	Logging.Statistics(sec)
	
						An integer that defines whether log statistics are printed, and the time in seconds between each periodical statistics printout. The default value is 0 (no logging statistics).
					

Initial parameters
	Assign MAC
	
						A string that defines the locally-administered MAC address for the paravirtualized NIC. This is not set by default.
					

	Init.ConnectionRate(Mb)
	
						An integer that represents the connection rate in megabytes. The default value for Windows 2008 and later is 10000.
					

	Init.Do802.1PQ
	
						A Boolean value that enables Priority/VLAN tag population and removal support. The default value is 1 (enabled).
					

	Init.UseMergedBuffers
	
						A Boolean value that enables merge-able RX buffers. The default value is 1 (enabled).
					

	Init.UsePublishEvents
	
						A Boolean value that enables published event use. The default value is 1 (enabled).
					

	Init.MTUSize
	
						An integer that defines the maximum transmission unit (MTU). The default value is 1500. Any value from 500 to 65500 is acceptable.
					

	Init.IndirectTx
	
						Controls whether indirect ring descriptors are in use. The default value is Disable, which disables use of indirect ring descriptors. Other valid values are Enable, which enables indirect ring descriptor usage; and Enable*, which enables conditional use of indirect ring descriptors.
					

	Init.MaxTxBuffers
	
						An integer that represents the amount of TX ring descriptors that will be allocated. The default value is 1024. Valid values are: 16, 32, 64, 128, 256, 512, or 1024.
					

	Init.MaxRxBuffers
	
						An integer that represents the amount of RX ring descriptors that will be allocated. The default value is 256. Valid values are: 16, 32, 64, 128, 256, 512, or 1024.
					

	Offload.Tx.Checksum
	
						Specifies the TX checksum offloading mode.
					

						In Red Hat Enterprise Linux 6.4 and onward, the valid values for this parameter are All (the default), which enables IP, TCP and UDP checksum offloading for both IPv4 and IPv6; TCP/UDP(v4,v6), which enables TCP and UDP checksum offloading for both IPv4 and IPv6; TCP/UDP(v4), which enables TCP and UDP checksum offloading for IPv4 only; and TCP(v4), which enables only TCP checksum offloading for IPv4 only.
					

						In Red Hat Enterprise Linux 6.3 and earlier, the valid values for this parameter are TCP/UDP (the default value), which enables TCP and UDP checksum offload; TCP, which enables only TCP checksum offload; or Disable, which disables TX checksum offload.
					

	Offload.Tx.LSO
	
						A Boolean value that enables TX TCP Large Segment Offload (LSO). The default value is 1 (enabled).
					

	Offload.Rx.Checksum
	
						Specifies the RX checksum offloading mode.
					

						In Red Hat Enterprise Linux 6.4 and onward, the valid values for this parameter are All (the default), which enables IP, TCP and UDP checksum offloading for both IPv4 and IPv6; TCP/UDP(v4,v6), which enables TCP and UDP checksum offloading for both IPv4 and IPv6; TCP/UDP(v4), which enables TCP and UDP checksum offloading for IPv4 only; and TCP(v4), which enables only TCP checksum offloading for IPv4 only.
					

						In Red Hat Enterprise Linux 6.3 and earlier, the valid values are Disable (the default), which disables RX checksum offloading; All, which enables TCP, UDP, and IP checksum offloading; TCP/UDP, which enables TCP and UDP checksum offloading; and TCP, which enables only TCP checksum offloading.
					

Test and debug parameters
Important

					Test and debug parameters should only be used for testing or debugging; they should not be used in production.
				

	TestOnly.DelayConnect(ms)
	
						The period for which to delay connection upon startup, in milliseconds. The default value is 0.
					

	TestOnly.DPCChecking
	
						Sets the DPC checking mode. 0 (the default) disables DPC checking. 1 enables DPC checking; each hang test verifies DPC activity and acts as if the DPC was spawned. 2 clears the device interrupt status and is otherwise identical to 1.
					

	TestOnly.Scatter-Gather
	
						A Boolean value that determines whether scatter-gather functionality is enabled. The default value is 1 (enabled). Setting this value to 0 disables scatter-gather functionality and all dependent capabilities.
					

	TestOnly.InterruptRecovery
	
						A Boolean value that determines whether interrupt recovery is enabled. The default value is 1 (enabled).
					

	TestOnly.PacketFilter
	
						A Boolean value that determines whether packet filtering is enabled. The default value is 1 (enabled).
					

	TestOnly.BatchReceive
	
						A Boolean value that determines whether packets are received in batches, or singularly. The default value is 1, which enables batched packet receipt.
					

	TestOnly.Promiscuous
	
						A Boolean value that determines whether promiscuous mode is enabled. The default value is 0 (disabled).
					

	TestOnly.AnalyzeIPPackets
	
						A Boolean value that determines whether the checksum fields of outgoing IP packets are tested and verified for debugging purposes. The default value is 0 (no checking).
					

	TestOnly.RXThrottle
	
						An integer that determines the number of receive packets handled in a single DPC. The default value is 1000.
					

	TestOnly.UseSwTxChecksum
	
						A Boolean value that determines whether hardware checksumming is enabled. The default value is 0 (disabled).
					

 ⁠Appendix B. Common libvirt Errors and Troubleshooting

		This appendix documents common libvirt-related problems and errors along with instructions for dealing with them.
	

		Locate the error on the table below and follow the corresponding link under Solution for detailed troubleshooting information.
	

 ⁠Table B.1. Common libvirt errors
	Error	Description of problem	Solution
	libvirtd Failed to Start	The libvirt daemon failed to start. However, there is no information about this error in /var/log/messages.	Section B.1, “libvirtd failed to start”
	Cannot read CA certificate	This is one of several errors that occur when the URI fails to connect to the hypervisor.	Section B.2, “The URI Failed to Connect to the Hypervisor”
	Failed to connect socket ... : Permission denied	This is one of several errors that occur when the URI fails to connect to the hypervisor.	Section B.2, “The URI Failed to Connect to the Hypervisor”
	Other connectivity errors	These are other errors that occur when the URI fails to connect to the hypervisor.	Section B.2, “The URI Failed to Connect to the Hypervisor”
	Internal error guest CPU is not compatible with host CPU	The guest virtual machine cannot be started because the host and guest processors are different.	Section B.3, “The guest virtual machine cannot be started: internal error guest CPU is not compatible with host CPU”
	Failed to create domain from vm.xml error: monitor socket did not show up.: Connection refused	The guest virtual machine (or domain) starting fails and returns this error or similar.	Section B.4, “Guest starting fails with error: monitor socket did not show up”
	Internal error cannot find character device (null)	This error can occur when attempting to connect a guest's console. It reports that there is no serial console configured for the guest virtual machine.	Section B.5, “Internal error cannot find character device (null)”
	No boot device	After building a guest virtual machine from an existing disk image, the guest booting stalls. However, the guest can start successfully using the QEMU command directly.	Section B.6, “Guest virtual machine booting stalls with error: No boot device”
	The virtual network "default" has not been started	
						If the default network (or other locally-created network) is unable to start, any virtual machine configured to use that network for its connectivity will also fail to start.
					

					 	Section B.7, “Virtual network default has not been started”
	PXE boot (or DHCP) on guest failed	A guest virtual machine starts successfully, but is unable to acquire an IP address from DHCP, boot using the PXE protocol, or both. This is often a result of a long forward delay time set for the bridge, or when the iptables package and kernel do not support checksum mangling rules.	Section B.8, “PXE Boot (or DHCP) on Guest Failed”
	Guest can reach outside network, but cannot reach host when using macvtap interface	
						A guest can communicate with other guests, but cannot connect to the host machine after being configured to use a macvtap (or type='direct') network interface.
					

					
						This is actually not an error — it is the defined behavior of macvtap.
					

					 	Section B.9, “Guest Can Reach Outside Network, but Cannot Reach Host when Using macvtap Interface”
	Could not add rule to fixup DHCP response checksums on network 'default'	This warning message is almost always harmless, but is often mistakenly seen as evidence of a problem.	Section B.10, “Could not add rule to fixup DHCP response checksums on network 'default'”
	Unable to add bridge br0 port vnet0: No such device	 This error message or the similar Failed to add tap interface to bridge 'br0': No such device reveal that the bridge device specified in the guest's (or domain's) <interface> definition does not exist.	Section B.11, “Unable to add bridge br0 port vnet0: No such device”
	Warning: could not open /dev/net/tun: no virtual network emulation qemu-kvm: -netdev tap,script=/etc/my-qemu-ifup,id=hostnet0: Device 'tap' could not be initialized	 The guest virtual machine does not start after configuring a type='ethernet' (or 'generic ethernet') interface in the host system. This error or similar appears either in libvirtd.log, /var/log/libvirt/qemu/name_of_guest.log, or in both.	Section B.12, “Guest is Unable to Start with Error: warning: could not open /dev/net/tun”
	Unable to resolve address name_of_host service '49155': Name or service not known	QEMU guest migration fails and this error message appears with an unfamiliar host name.	Section B.13, “Migration Fails with Error: unable to resolve address”
	Unable to allow access for disk path /var/lib/libvirt/images/qemu.img: No such file or directory	A guest virtual machine cannot be migrated because libvirt cannot access the disk image(s).	Section B.14, “Migration Fails with Unable to allow access for disk path: No such file or directory”
	No guest virtual machines are present when libvirtd is started	The libvirt daemon is successfully started, but no guest virtual machines appear to be present when running virsh list --all.	Section B.15, “No Guest Virtual Machines are Present when libvirtd is Started”
	Unable to connect to server at 'host:16509': Connection refused ... error: failed to connect to the hypervisor	While libvirtd should listen on TCP ports for connections, the connection to the hypervisor fails.	Section B.16, “Unable to connect to server at 'host:16509': Connection refused ... error: failed to connect to the hypervisor”
	Common XML errors	libvirt uses XML documents to store structured data. Several common errors occur with XML documents when they are passed to libvirt through the API. This entry provides instructions for editing guest XML definitions, and details common errors in XML syntax and configuration.	Section B.17, “Common XML Errors”

 ⁠B.1. libvirtd failed to start

	Symptom
	
					The libvirt daemon does not start automatically. Starting the libvirt daemon manually fails as well:
				
/etc/init.d/libvirtd start
* Caching service dependencies ... [ok]
* Starting libvirtd ...
/usr/sbin/libvirtd: error: Unable to initialize network sockets. Check /var/log/messages or run without --daemon for more info.
* start-stop-daemon: failed to start `/usr/sbin/libvirtd' [!!]
* ERROR: libvirtd failed to start

					Moreover, there is not 'more info' about this error in /var/log/messages.
				

	Investigation
	
					Change libvirt's logging in /etc/libvirt/libvirtd.conf by uncommenting the line below. To uncomment the line, open the /etc/libvirt/libvirtd.conf file in a text editor, remove the hash (or #) symbol from the beginning of the following line, and save the change:
				
log_outputs="3:syslog:libvirtd"
Note

						This line is commented out by default to prevent libvirt from producing excessive log messages. After diagnosing the problem, it is recommended to comment this line again in the /etc/libvirt/libvirtd.conf file.
					

					Restart libvirt to determine if this has solved the problem.
				

					If libvirtd still does not start successfully, an error similar to the following will be shown in the /var/log/messages file:
				
​Feb 6 17:22:09 bart libvirtd: 17576: info : libvirt version: 0.9.9
​Feb 6 17:22:09 bart libvirtd: 17576: error : virNetTLSContextCheckCertFile:92: Cannot read CA certificate '/etc/pki/CA/cacert.pem': No such file or directory
​Feb 6 17:22:09 bart /etc/init.d/libvirtd[17573]: start-stop-daemon: failed to start `/usr/sbin/libvirtd'
​Feb 6 17:22:09 bart /etc/init.d/libvirtd[17565]: ERROR: libvirtd failed to start

					The libvirtd man page shows that the missing cacert.pem file is used as TLS authority when libvirt is run in Listen for TCP/IP connections mode. This means the --listen parameter is being passed.
				

	Solution
	
					Configure the libvirt daemon's settings with one of the following methods:
				
	
							Install a CA certificate.
						
Note

								For more information on CA certificates and configuring system authentication, refer to the Configuring Authentication chapter in the Red Hat Enterprise Linux 6 Deployment Guide.
							

	
							Do not use TLS; use bare TCP instead. In /etc/libvirt/libvirtd.conf set listen_tls = 0 and listen_tcp = 1. The default values are listen_tls = 1 and listen_tcp = 0.
						

	
							Do not pass the --listen parameter. In /etc/sysconfig/libvirtd.conf change the LIBVIRTD_ARGS variable.
						

 ⁠B.2. The URI Failed to Connect to the Hypervisor

		Several different errors can occur when connecting to the server (for example, when running virsh).
	

 ⁠B.2.1. Cannot read CA certificate

	Symptom
	
						When running a command, the following error (or similar) appears:
					
$ virsh -c name_of_uri list
error: Cannot read CA certificate '/etc/pki/CA/cacert.pem': No such file or directory
error: failed to connect to the hypervisor

	Investigation
	
						The error message is misleading about the actual cause. This error can be caused by a variety of factors, such as an incorrectly specified URI, or a connection that is not configured.
					

	Solution
		Incorrectly specified URI
	
									When specifying qemu://system or qemu://session as a connection URI, virsh attempts to connect to host names system or session respectively. This is because virsh recognizes the text after the second forward slash as the host.
								

									Use three forward slashes to connect to the local host. For example, specifying qemu:///system instructs virsh connect to the system instance of libvirtd on the local host.
								

									When a host name is specified, the QEMU transport defaults to TLS. This results in certificates.
								

	Connection is not configured
	
									The URI is correct (for example, qemu[+tls]://server/system) but the certificates are not set up properly on your machine. For information on configuring TLS, see Setting up libvirt for TLS available from the libvirt website.
								

 ⁠B.2.2. Failed to connect socket ... : Permission denied

	Symptom
	
						When running a virsh command, the following error (or similar) appears:
					
$ virsh -c qemu:///system list
error: Failed to connect socket to '/var/run/libvirt/libvirt-sock': Permission denied
error: failed to connect to the hypervisor

	Investigation
	
						Without any host name specified, the connection to QEMU uses UNIX sockets by default. If there is no error running this command as root, the UNIX socket options in /etc/libvirt/libvirtd.conf are likely misconfigured.
					

	Solution
	
						To connect as a non-root user using UNIX sockets, configure the following options in /etc/libvirt/libvirtd.conf:
					
​unix_sock_group = <group>
​unix_sock_ro_perms = <perms>
​unix_sock_rw_perms = <perms>
Note

							The user running virsh must be a member of the group specified in the unix_sock_group option.
						

 ⁠B.2.3. Other Connectivity Errors

	Unable to connect to server at server:port: Connection refused
	
						The daemon is not running on the server or is configured not to listen, using configuration option listen_tcp or listen_tls.
					

	End of file while reading data: nc: using stream socket: Input/output error
	
						If you specified ssh transport, the daemon is likely not running on the server. Solve this error by verifying that the daemon is running on the server.
					

 ⁠B.3. The guest virtual machine cannot be started: internal error guest CPU is not compatible with host CPU

	Symptom
	
					Running on an Intel Core i7 processor (which virt-manager refers to as Nehalem, or the older Core 2 Duo, referred to as Penryn), a KVM guest (or domain) is created using virt-manager. After installation, the guest's processor is changed to match the host's CPU. The guest is then unable to start and reports this error:
				
2012-02-06 17:49:15.985+0000: 20757: error : qemuBuildCpuArgStr:3565 : internal error guest CPU is not compatible with host CPU

					Additionally, clicking Copy host CPU configuration in virt-manager shows Pentium III instead of Nehalem or Penryn.
				

	Investigation
	
					The /usr/share/libvirt/cpu_map.xml file lists the flags that define each CPU model. The Nehalem and Penryn definitions contain this:
				
​<feature name='nx'/>

					As a result, the NX (or No eXecute) flag needs to be presented to identify the CPU as Nehalem or Penryn. However, in /proc/cpuinfo, this flag is missing.
				

	Solution
	
					Nearly all new BIOSes allow enabling or disabling of the No eXecute bit. However, if disabled, some CPUs do not report this flag and thus libvirt detects a different CPU. Enabling this functionality instructs libvirt to report the correct CPU. Refer to your hardware documentation for further instructions on this subject.
				

 ⁠B.4. Guest starting fails with error: monitor socket did not show up

	Symptom
	
					The guest virtual machine (or domain) starting fails with this error (or similar):
				
virsh -c qemu:///system create name_of_guest.xml error: Failed to create domain from name_of_guest.xml error: monitor socket did not show up.: Connection refused

	Investigation
	
					This error message shows:
				
	
							libvirt is working;
						

	
							The QEMU process failed to start up; and
						

	
							libvirt quits when trying to connect QEMU or the QEMU agent monitor socket.
						

					To understand the error details, examine the guest log:
				
cat /var/log/libvirt/qemu/name_of_guest.log
LC_ALL=C PATH=/sbin:/usr/sbin:/bin:/usr/bin QEMU_AUDIO_DRV=none /usr/bin/qemu-kvm -S -M pc -enable-kvm -m 768 -smp 1,sockets=1,cores=1,threads=1 -name name_of_guest -uuid ebfaadbe-e908-ba92-fdb8-3fa2db557a42 -nodefaults -chardev socket,id=monitor,path=/var/lib/libvirt/qemu/name_of_guest.monitor,server,nowait -mon chardev=monitor,mode=readline -no-reboot -boot c -kernel /var/lib/libvirt/boot/vmlinuz -initrd /var/lib/libvirt/boot/initrd.img -append method=http://www.example.com/pub/product/release/version/x86_64/os/ -drive file=/var/lib/libvirt/images/name_of_guest.img,if=none,id=drive-ide0-0-0,boot=on -device ide-drive,bus=ide.0,unit=0,drive=drive-ide0-0-0,id=ide0-0-0 -device virtio-net-pci,vlan=0,id=net0,mac=52:40:00:f4:f1:0a,bus=pci.0,addr=0x4 -net tap,fd=42,vlan=0,name=hostnet0 -chardev pty,id=serial0 -device isa-serial,chardev=serial0 -usb -vnc 127.0.0.1:0 -k en-gb -vga cirrus -device virtio-balloon-pci,id=balloon0,bus=pci.0,
addr=0x3
char device redirected to /dev/pts/1
qemu: could not load kernel '/var/lib/libvirt/boot/vmlinuz':
Permission denied

	Solution
	
					The guest log contains the details needed to fix the error.
				

					If a host is shut down while the guest is still running a libvirt version prior to 0.9.5, the libvirt-guest's init script attempts to perform a managed save of the guest. If the managed save was incomplete (for example, due to loss of power before the managed save image was flushed to disk), the save image is corrupted and will not be loaded by QEMU. The older version of libvirt does not recognize the corruption, making the problem perpetual. In this case, the guest log will show an attempt to use -incoming as one of its arguments, meaning that libvirt is trying to start QEMU by migrating in the saved state file.
				

					This problem can be fixed by running virsh managedsave-remove name_of_guest to remove the corrupted managed save image. Newer versions of libvirt take steps to avoid the corruption in the first place, as well as adding virsh start --force-boot name_of_guest to bypass any managed save image.
				

 ⁠B.5. Internal error cannot find character device (null)

	Symptom
	
					This error message appears when attempting to connect to a guest virtual machine's console:
				
virsh console test2 Connected to domain test2 Escape character is ^] error: internal error cannot find character device (null)

	Investigation
	
					This error message shows that there is no serial console configured for the guest virtual machine.
				

	Solution
	
					Set up a serial console in the guest's XML file.
				

 ⁠Procedure B.1. Setting up a serial console in the guest's XML
	
							Add the following XML to the guest virtual machine's XML using virsh edit:
						
​<serial type='pty'>
​ <target port='0'/>
​</serial>
​<console type='pty'>
​ <target type='serial' port='0'/>
​</console>

	
							Set up the console in the guest kernel command line.
						

							To do this, either log in to the guest virtual machine to edit the /boot/grub/grub.conf file directly, or use the virt-edit command line tool. Add the following to the guest kernel command line:
						
console=ttyS0,115200

	
							Run the followings command:
						
virsh start vm && virsh console vm

 ⁠B.6. Guest virtual machine booting stalls with error: No boot device

	Symptom
	
					After building a guest virtual machine from an existing disk image, the guest booting stalls with the error message No boot device. However, the guest virtual machine can start successfully using the QEMU command directly.
				

	Investigation
	
					The disk's bus type is not specified in the command for importing the existing disk image:
				
virt-install \
--connect qemu:///system \
--ram 2048 -n rhel_64 \
--os-type=linux --os-variant=rhel5 \
--disk path=/root/RHEL-Server-5.8-64-virtio.qcow2,device=disk,format=qcow2 \
--vcpus=2 --graphics spice --noautoconsole --import

					However, the command line used to boot up the guest virtual machine using QEMU directly shows that it uses virtio for its bus type:
				
ps -ef | grep qemu
/usr/libexec/qemu-kvm -monitor stdio -drive file=/root/RHEL-Server-5.8-32-virtio.qcow2,index=0,if=virtio,media=disk,cache=none,format=qcow2 -net nic,vlan=0,model=rtl8139,macaddr=00:30:91:aa:04:74 -net tap,vlan=0,script=/etc/qemu-ifup,downscript=no -m 2048 -smp 2,cores=1,threads=1,sockets=2 -cpu qemu64,+sse2 -soundhw ac97 -rtc-td-hack -M rhel5.6.0 -usbdevice tablet -vnc :10 -boot c -no-kvm-pit-reinjection

					Note the bus= in the guest's XML generated by libvirt for the imported guest:
				
​
​<domain type='qemu'>
​ <name>rhel_64</name>
​ <uuid>6cd34d52-59e3-5a42-29e4-1d173759f3e7</uuid>
​ <memory>2097152</memory>
​ <currentMemory>2097152</currentMemory>
​ <vcpu>2</vcpu>
​ <os>
​ <type arch='x86_64' machine='rhel5.4.0'>hvm</type>
​ <boot dev='hd'/>
​ </os>
​ <features>
​ <acpi/>
​ <apic/>
​ <pae/>
​ </features>
​ <clock offset='utc'>
​ <timer name='pit' tickpolicy='delay'/>
​ </clock>
​ <on_poweroff>destroy</on_poweroff>
​ <on_reboot>restart</on_reboot>
​ <on_crash>restart</on_crash>
​ <devices>
​ <emulator>/usr/libexec/qemu-kvm</emulator>
​ <disk type='file' device='disk'>
​ <driver name='qemu' type='qcow2' cache='none'/>
​ <source file='/root/RHEL-Server-5.8-64-virtio.qcow2'/>
​ <emphasis role="bold"><target dev='hda' bus='ide'/></emphasis>
​ <address type='drive' controller='0' bus='0' unit='0'/>
​ </disk>
​ <controller type='ide' index='0'/>
​ <interface type='bridge'>
​ <mac address='54:52:00:08:3e:8c'/>
​ <source bridge='br0'/>
​ </interface>
​ <serial type='pty'>
​ <target port='0'/>
​ </serial>
​ <console type='pty'>
​ <target port='0'/>
​ </console>
​ <input type='mouse' bus='ps2'/>
​ <graphics type='vnc' port='-1' autoport='yes' keymap='en-us'/>
​ <video>
​ <model type='cirrus' vram='9216' heads='1'/>
​ </video>
​ </devices>
​ </domain>

					The bus type for the disk is set as ide, which is the default value set by libvirt. This is the incorrect bus type, and has caused the unsuccessful boot for the imported guest.
				

	Solution
	
 ⁠Procedure B.2. Correcting the disk bus type
	
							Undefine the imported guest, then re-import it with bus=virtio and the following:
						
virsh destroy rhel_64
virsh undefine rhel_64
virt-install \
--connect qemu:///system \
--ram 1024 -n rhel_64 -r 2048 \
--os-type=linux --os-variant=rhel5 \
--disk path=/root/RHEL-Server-5.8-64-virtio.qcow2,device=disk,bus=virtio,format=qcow2 \
--vcpus=2 --graphics spice --noautoconsole --import

	
							Edit the imported guest's XML using virsh edit and correct the disk bus type.
						

 ⁠B.7. Virtual network default has not been started

	Symptom
	
					Normally, the configuration for a virtual network named default is installed as part of the libvirt package, and is configured to autostart when libvirtd is started.
				

					If the default network (or any other locally-created network) is unable to start, any virtual machine configured to use that network for its connectivity will also fail to start, resulting in this error message:
				
Virtual network default has not been started

	Investigation
	
					One of the most common reasons for a libvirt virtual network's failure to start is that the dnsmasq instance required to serve DHCP and DNS requests from clients on that network has failed to start.
				

					To determine if this is the cause, run virsh net-start default from a root shell to start the default virtual network.
				

					If this action does not successfully start the virtual network, open /var/log/libvirt/libvirtd.log to view the complete error log message.
				

					If a message similar to the following appears, the problem is likely a systemwide dnsmasq instance that is already listening on libvirt's bridge, and is preventing libvirt's own dnsmasq instance from doing so. The most important parts to note in the error message are dnsmasq and exit status 2:
				
Could not start virtual network default: internal error
Child process (/usr/sbin/dnsmasq --strict-order --bind-interfaces
--pid-file=/var/run/libvirt/network/default.pid --conf-file=
--except-interface lo --listen-address 192.168.122.1
--dhcp-range 192.168.122.2,192.168.122.254
--dhcp-leasefile=/var/lib/libvirt/dnsmasq/default.leases
--dhcp-lease-max=253 --dhcp-no-override) status unexpected: exit status 2

	Solution
	
					If the machine is not using dnsmasq to serve DHCP for the physical network, disable dnsmasq completely.
				

					If it is necessary to run dnsmasq to serve DHCP for the physical network, edit the /etc/dnsmasq.conf file. Add or uncomment the first line, as well as one of the two lines following that line. Do not add or uncomment all three lines:
				
​bind-interfaces
​interface=name_of_physical_interface
​listen-address=chosen_IP_address

					After making this change and saving the file, restart the systemwide dnsmasq service.
				

					Next, start the default network with the virsh net-start default command.
				

					Start the virtual machines.
				

 ⁠B.8. PXE Boot (or DHCP) on Guest Failed

	Symptom
	
					A guest virtual machine starts successfully, but is then either unable to acquire an IP address from DHCP or boot using the PXE protocol, or both. There are two common causes of this error: having a long forward delay time set for the bridge, and when the iptables package and kernel do not support checksum mangling rules.
				
	Long forward delay time on bridge
		Investigation
	
											This is the most common cause of this error. If the guest network interface is connecting to a bridge device that has STP (Spanning Tree Protocol) enabled, as well as a long forward delay set, the bridge will not forward network packets from the guest virtual machine onto the bridge until at least that number of forward delay seconds have elapsed since the guest connected to the bridge. This delay allows the bridge time to watch traffic from the interface and determine the MAC addresses behind it, and prevent forwarding loops in the network topology.
										

											If the forward delay is longer than the timeout of the guest's PXE or DHCP client, then the client's operation will fail, and the guest will either fail to boot (in the case of PXE) or fail to acquire an IP address (in the case of DHCP).
										

	Solution
	
											If this is the case, change the forward delay on the bridge to 0, or disable STP on the bridge.
										
Note

												This solution applies only if the bridge is not used to connect multiple networks, but just to connect multiple endpoints to a single network (the most common use case for bridges used by libvirt).
											

											If the guest has interfaces connecting to a libvirt-managed virtual network, edit the definition for the network, and restart it. For example, edit the default network with the following command:
										
virsh net-edit default

											Add the following attributes to the <bridge> element:
										
​<name_of_bridge='virbr0' delay='0' stp='on'/>
Note

												delay='0' and stp='on' are the default settings for virtual networks, so this step is only necessary if the configuration has been modified from the default.
											

											If the guest interface is connected to a host bridge that was configured outside of libvirt, change the delay setting.
										

											Add or edit the following lines in the /etc/sysconfig/network-scripts/ifcfg-name_of_bridge file to turn STP on with a 0 second delay:
										
​STP=on
​DELAY=0

											After changing the configuration file, restart the bridge device:
										
​/sbin/ifdown name_of_bridge
​/sbin/ifup name_of_bridge
Note

												If name_of_bridge is not the root bridge in the network, that bridge's delay will eventually reset to the delay time configured for the root bridge. In this case, the only solution is to disable STP completely on name_of_bridge.
											

	The iptables package and kernel do not support checksum mangling rules
		Investigation
	
											This message is only a problem if all four of the following conditions are true:
										
	
													The guest is using virtio network devices.
												

													If so, the configuration file will contain model type='virtio'
												

	
													The host has the vhost-net module loaded.
												

													This is true if ls /dev/vhost-net does not return an empty result.
												

	
													The guest is attempting to get an IP address from a DHCP server that is running directly on the host.
												

	
													The iptables version on the host is older than 1.4.10.
												

													iptables 1.4.10 was the first version to add the libxt_CHECKSUM extension. This is the case if the following message appears in the libvirtd logs:
												
warning: Could not add rule to fixup DHCP response checksums on network default
warning: May need to update iptables package and kernel to support CHECKSUM rule.
Important

														Unless all of the other three conditions in this list are also true, the above warning message can be disregarded, and is not an indicator of any other problems.
													

											When these conditions occur, UDP packets sent from the host to the guest have uncomputed checksums. This makes the host's UDP packets seem invalid to the guest's network stack.
										

	Solution
	
											To solve this problem, invalidate any of the four points above. The best solution is to update the host iptables and kernel to iptables-1.4.10 or later where possible. Otherwise, the most specific fix is to disable the vhost-net driver for this particular guest. To do this, edit the guest configuration with this command:
										
virsh edit name_of_guest

											Change or add a <driver> line to the <interface> section:
										
​<interface type='network'>
​ <model type='virtio'/>
​ <driver name='qemu'/>
​ ...
​</interface>

											Save the changes, shut down the guest, and then restart it.
										

											If this problem is still not resolved, the issue may be due to a conflict between firewalld and the default libvirt network.
										

											To fix this, stop firewalld with the service firewalld stop command, then restart libvirt with the service libvirtd restart command.
										

 ⁠B.9. Guest Can Reach Outside Network, but Cannot Reach Host when Using macvtap Interface

	Symptom
	
					A guest virtual machine can communicate with other guests, but cannot connect to the host machine after being configured to use a macvtap (also known as type='direct') network interface.
				

	Investigation
	
					Even when not connecting to a Virtual Ethernet Port Aggregator (VEPA) or VN-Link capable switch, macvtap interfaces can be useful. Setting the mode of such an interface to bridge allows the guest to be directly connected to the physical network in a very simple manner without the setup issues (or NetworkManager incompatibility) that can accompany the use of a traditional host bridge device.
				

					However, when a guest virtual machine is configured to use a type='direct' network interface such as macvtap, despite having the ability to communicate with other guests and other external hosts on the network, the guest cannot communicate with its own host.
				

					This situation is actually not an error — it is the defined behavior of macvtap. Due to the way in which the host's physical Ethernet is attached to the macvtap bridge, traffic into that bridge from the guests that is forwarded to the physical interface cannot be bounced back up to the host's IP stack. Additionally, traffic from the host's IP stack that is sent to the physical interface cannot be bounced back up to the macvtap bridge for forwarding to the guests.
				

	Solution
	
					Use libvirt to create an isolated network, and create a second interface for each guest virtual machine that is connected to this network. The host and guests can then directly communicate over this isolated network, while also maintaining compatibility with NetworkManager.
				

 ⁠Procedure B.3. Creating an isolated network with libvirt
	
							Add and save the following XML in the /tmp/isolated.xml file. If the 192.168.254.0/24 network is already in use elsewhere on your network, you can choose a different network.
						
​<network>
​ <name>isolated</name>
​ <ip address='192.168.254.1' netmask='255.255.255.0'>
​ <dhcp>
​ <range start='192.168.254.2' end='192.168.254.254' />
​ </dhcp>
​ </ip>
​</network>

	
							Create the network with this command: virsh net-define /tmp/isolated.xml
						

	
							Set the network to autostart with the virsh net-autostart isolated command.
						

	
							Start the network with the virsh net-start isolated command.
						

	
							Using virsh edit name_of_guest, edit the configuration of each guest that uses macvtap for its network connection and add a new <interface> in the <devices> section similar to the following (note the <model type='virtio'/> line is optional to include):
						
​<interface type='network'>
​ <source network='isolated'/>
​ <model type='virtio'/>
​</interface>

	
							Shut down, then restart each of these guests.
						

					The guests are now able to reach the host at the address 192.168.254.1, and the host will be able to reach the guests at the IP address they acquired from DHCP (alternatively, you can manually configure the IP addresses for the guests). Since this new network is isolated to only the host and guests, all other communication from the guests will use the macvtap interface.
				

 ⁠B.10. Could not add rule to fixup DHCP response checksums on network 'default'

	Symptom
	
					This message appears:
				
Could not add rule to fixup DHCP response checksums on network 'default'

	Investigation
	
					Although this message appears to be evidence of an error, it is almost always harmless.
				

	Solution
	
					Unless the problem you are experiencing is that the guest virtual machines are unable to acquire IP addresses through DHCP, this message can be ignored.
				

					If this is the case, refer to Section B.8, “PXE Boot (or DHCP) on Guest Failed” for further details on this situation.
				

 ⁠B.11. Unable to add bridge br0 port vnet0: No such device

	Symptom
	
					The following error message appears:
				
Unable to add bridge name_of_bridge port vnet0: No such device

					For example, if the bridge name is br0, the error message will appear as:
				
Unable to add bridge br0 port vnet0: No such device

					In libvirt versions 0.9.6 and earlier, the same error appears as:
				
Failed to add tap interface to bridge name_of_bridge: No such device

					Or for example, if the bridge is named br0:
				
Failed to add tap interface to bridge 'br0': No such device

	Investigation
	
					Both error messages reveal that the bridge device specified in the guest's (or domain's) <interface> definition does not exist.
				

					To verify the bridge device listed in the error message does not exist, use the shell command ip addr showbr0.
				

					A message similar to this confirms the host has no bridge by that name:
				
br0: error fetching interface information: Device not found

					If this is the case, continue to the solution.
				

					However, if the resulting message is similar to the following, the issue exists elsewhere:
				

 3: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN
 link/ether 1b:c4:94:cf:fd:17 brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.1/24 brd 192.168.122.255 scope global br0

	Solution
		Edit the existing bridge or create a new bridge with virsh
	
								Use virsh to either edit the settings of an existing bridge or network, or to add the bridge device to the host system configuration.
							
	Edit the existing bridge settings using virsh
	
											Use virsh edit name_of_guest to change the <interface> definition to use a bridge or network that already exists.
										

											For example, change type='bridge' to type='network', and <source bridge='br0'/> to <source network='default'/>.
										

	Create a host bridge using virsh
	
											For libvirt version 0.9.8 and later, a bridge device can be created with the virsh iface-bridge command. This will create a bridge device br0 with eth0, the physical network interface which is set as part of a bridge, attached:
										
virsh iface-bridge eth0 br0

											Optional: If desired, remove this bridge and restore the original eth0 configuration with this command:
										
virsh iface-unbridge br0

	Create a host bridge manually
	
								For older versions of libvirt, it is possible to manually create a bridge device on the host. Refer to Section 11.3, “Bridged Networking with libvirt” for instructions.
							

 ⁠B.12. Guest is Unable to Start with Error: warning: could not open /dev/net/tun

	Symptom
	
					The guest virtual machine does not start after configuring a type='ethernet' (also known as 'generic ethernet') interface in the host system. An error appears either in libvirtd.log, /var/log/libvirt/qemu/name_of_guest.log, or in both, similar to the below message:
				
warning: could not open /dev/net/tun: no virtual network emulation qemu-kvm: -netdev tap,script=/etc/my-qemu-ifup,id=hostnet0: Device 'tap' could not be initialized

	Investigation
	
					Use of the generic ethernet interface type (<interface type='ethernet'>) is discouraged, because using it requires lowering the level of host protection against potential security flaws in QEMU and its guests. However, it is sometimes necessary to use this type of interface to take advantage of some other facility that is not yet supported directly in libvirt. For example, openvswitch was not supported in libvirt until libvirt-0.9.11, so in older versions of libvirt, <interface type='ethernet'> was the only way to connect a guest to an openvswitch bridge.
				

					However, if you configure a <interface type='ethernet'> interface without making any other changes to the host system, the guest virtual machine will not start successfully.
				

					The reason for this failure is that for this type of interface, a script called by QEMU needs to manipulate the tap device. However, with type='ethernet' configured, in an attempt to lock down QEMU, libvirt and SELinux have put in place several checks to prevent this. (Normally, libvirt performs all of the tap device creation and manipulation, and passes an open file descriptor for the tap device to QEMU.)
				

	Solution
	
					Reconfigure the host system to be compatible with the generic ethernet interface.
				

 ⁠Procedure B.4. Reconfiguring the host system to use the generic ethernet interface
	
							Set SELinux to permissive by configuring SELINUX=permissive in /etc/selinux/config:
						
This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=permissive
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=targeted

	
							From a root shell, run the command setenforce permissive.
						

	
							In /etc/libvirt/qemu.conf add or edit the following lines:
						
clear_emulator_capabilities = 0
user = "root"
group = "root"
cgroup_device_acl = [
 "/dev/null", "/dev/full", "/dev/zero",
 "/dev/random", "/dev/urandom",
 "/dev/ptmx", "/dev/kvm", "/dev/kqemu",
	"/dev/rtc", "/dev/hpet", "/dev/net/tun",

	
							Restart libvirtd.
						

Important

						Since each of these steps significantly decreases the host's security protections against QEMU guest domains, this configuration should only be used if there is no alternative to using <interface type='ethernet'>.
					

Note

			For more information on SELinux, refer to the Red Hat Enterprise Linux 6 Security-Enhanced Linux User Guide.
		

 ⁠B.13. Migration Fails with Error: unable to resolve address

	Symptom
	
					QEMU guest migration fails and this error message appears:
				
virsh migrate qemu qemu+tcp://192.168.122.12/system
 error: Unable to resolve address name_of_host service '49155': Name or service not known

					For example, if the destination host name is "newyork", the error message will appear as:
				
virsh migrate qemu qemu+tcp://192.168.122.12/system
error: Unable to resolve address 'newyork' service '49155': Name or service not known

					However, this error looks strange as we did not use "newyork" host name anywhere.
				

	Investigation
	
					During migration, libvirtd running on the destination host creates a URI from an address and port where it expects to receive migration data and sends it back to libvirtd running on the source host.
				

					In this case, the destination host (192.168.122.12) has its name set to 'newyork'. For some reason, libvirtd running on that host is unable to resolve the name to an IP address that could be sent back and still be useful. For this reason, it returned the 'newyork' host name hoping the source libvirtd would be more successful with resolving the name. This can happen if DNS is not properly configured or /etc/hosts has the host name associated with local loopback address (127.0.0.1).
				

					Note that the address used for migration data cannot be automatically determined from the address used for connecting to destination libvirtd (for example, from qemu+tcp://192.168.122.12/system). This is because to communicate with the destination libvirtd, the source libvirtd may need to use network infrastructure different from that which virsh (possibly running on a separate machine) requires.
				

	Solution
	
					The best solution is to configure DNS correctly so that all hosts involved in migration are able to resolve all host names.
				

					If DNS cannot be configured to do this, a list of every host used for migration can be added manually to the /etc/hosts file on each of the hosts. However, it is difficult to keep such lists consistent in a dynamic environment.
				

					If the host names cannot be made resolvable by any means, virsh migrate supports specifying the migration host:
				
virsh migrate qemu qemu+tcp://192.168.122.12/system tcp://192.168.122.12

					Destination libvirtd will take the tcp://192.168.122.12 URI and append an automatically generated port number. If this is not desirable (because of firewall configuration, for example), the port number can be specified in this command:
				
virsh migrate qemu qemu+tcp://192.168.122.12/system tcp://192.168.122.12:12345

					Another option is to use tunnelled migration. Tunnelled migration does not create a separate connection for migration data, but instead tunnels the data through the connection used for communication with destination libvirtd (for example, qemu+tcp://192.168.122.12/system):
				
virsh migrate qemu qemu+tcp://192.168.122.12/system --p2p --tunnelled

 ⁠B.14. Migration Fails with Unable to allow access for disk path: No such file or directory

	Symptom
	
					A guest virtual machine (or domain) cannot be migrated because libvirt cannot access the disk image(s):
				
virsh migrate qemu qemu+tcp://name_of_host/system
error: Unable to allow access for disk path /var/lib/libvirt/images/qemu.img: No such file or directory

					For example, if the destination host name is "newyork", the error message will appear as:
				
virsh migrate qemu qemu+tcp://newyork/system
error: Unable to allow access for disk path /var/lib/libvirt/images/qemu.img: No such file or directory

	Investigation
	
					By default, migration only transfers the in-memory state of a running guest (such as memory or CPU state). Although disk images are not transferred during migration, they need to remain accessible at the same path by both hosts.
				

	Solution
	
					Set up and mount shared storage at the same location on both hosts. The simplest way to do this is to use NFS:
				

 ⁠Procedure B.5. Setting up shared storage
	
							Set up an NFS server on a host serving as shared storage. The NFS server can be one of the hosts involved in the migration, as long as all hosts involved are accessing the shared storage through NFS.
						
mkdir -p /exports/images
cat >>/etc/exports <<EOF
/exports/images 192.168.122.0/24(rw,no_root_squash)
EOF

	
							Mount the exported directory at a common location on all hosts running libvirt. For example, if the IP address of the NFS server is 192.168.122.1, mount the directory with the following commands:
						
cat >>/etc/fstab <<EOF
192.168.122.1:/exports/images /var/lib/libvirt/images nfs auto 0 0
EOF
mount /var/lib/libvirt/images

Note

						It is not possible to export a local directory from one host using NFS and mount it at the same path on another host — the directory used for storing disk images must be mounted from shared storage on both hosts. If this is not configured correctly, the guest virtual machine may lose access to its disk images during migration, because the source host's libvirt daemon may change the owner, permissions, and SELinux labels on the disk images after it successfully migrates the guest to its destination.
					

						If libvirt detects that the disk images are mounted from a shared storage location, it will not make these changes.
					

 ⁠B.15. No Guest Virtual Machines are Present when libvirtd is Started

	Symptom
	
					The libvirt daemon is successfully started, but no guest virtual machines appear to be present.
				
virsh list --all
 Id Name State
--
#

	Investigation
	
					There are various possible causes of this problem. Performing these tests will help to determine the cause of this situation:
				
	Verify KVM kernel modules
	
								Verify that KVM kernel modules are inserted in the kernel:
							
lsmod | grep kvm
kvm_intel 121346 0
kvm 328927 1 kvm_intel

								If you are using an AMD machine, verify the kvm_amd kernel modules are inserted in the kernel instead, using the similar command lsmod | grep kvm_amd in the root shell.
							

								If the modules are not present, insert them using the modprobe <modulename> command.
							
Note

									Although it is uncommon, KVM virtualization support may be compiled into the kernel. In this case, modules are not needed.
								

	Verify virtualization extensions
	
								Verify that virtualization extensions are supported and enabled on the host:
							
egrep "(vmx|svm)" /proc/cpuinfo
flags		: fpu vme de pse tsc ... svm ... skinit wdt npt lbrv svm_lock nrip_save
flags		: fpu vme de pse tsc ... svm ... skinit wdt npt lbrv svm_lock nrip_save

								Enable virtualization extensions in your hardware's firmware configuration within the BIOS setup. Refer to your hardware documentation for further details on this.
							

	Verify client URI configuration
	
								Verify that the URI of the client is configured as desired:
							
virsh uri
vbox:///system

								For example, this message shows the URI is connected to the VirtualBox hypervisor, not QEMU, and reveals a configuration error for a URI that is otherwise set to connect to a QEMU hypervisor. If the URI was correctly connecting to QEMU, the same message would appear instead as:
							
virsh uri
qemu:///system

								This situation occurs when there are other hypervisors present, which libvirt may speak to by default.
							

	Solution
	
					After performing these tests, use the following command to view a list of guest virtual machines:
				
virsh list --all

 ⁠B.16. Unable to connect to server at 'host:16509': Connection refused ... error: failed to connect to the hypervisor

	Symptom
	
					While libvirtd should listen on TCP ports for connections, the connections fail:
				
virsh -c qemu+tcp://host/system
error: unable to connect to server at 'host:16509': Connection refused
error: failed to connect to the hypervisor

					The libvirt daemon is not listening on TCP ports even after changing configuration in /etc/libvirt/libvirtd.conf:
				
grep listen_ /etc/libvirt/libvirtd.conf
listen_tls = 1
listen_tcp = 1
listen_addr = "0.0.0.0"

					However, the TCP ports for libvirt are still not open after changing configuration:
				
netstat -lntp | grep libvirtd
#

	Investigation
	
					The libvirt daemon was started without the --listen option. Verify this by running this command:
				
ps aux | grep libvirtd
root 27314 0.0 0.0 1000920 18304 ? Sl Feb16 1:19 libvirtd --daemon

					The output does not contain the --listen option.
				

	Solution
	
					Start the daemon with the --listen option.
				

					To do this, modify the /etc/sysconfig/libvirtd file and uncomment the following line:
				
#LIBVIRTD_ARGS="--listen"

					Then restart the libvirtd service with this command:
				
/etc/init.d/libvirtd restart

 ⁠B.17. Common XML Errors

		The libvirt tool uses XML documents to store structured data. A variety of common errors occur with XML documents when they are passed to libvirt through the API. Several common XML errors — including misformatted XML, inappropriate values, and missing elements — are detailed below.
	

 ⁠B.17.1. Editing Domain Definition

			Although it is not recommended, it is sometimes necessary to edit a guest virtual machine's (or a domain's) XML file manually. To access the guest's XML for editing, use the following command:
		
virsh edit name_of_guest.xml

			This command opens the file in a text editor with the current definition of the guest virtual machine. After finishing the edits and saving the changes, the XML is reloaded and parsed by libvirt. If the XML is correct, the following message is displayed:
		
virsh edit name_of_guest.xml

Domain name_of_guest.xml XML configuration edited.
Important

				When using the edit command in virsh to edit an XML document, save all changes before exiting the editor.
			

			After saving the XML file, use the xmllint command to validate that the XML is well-formed, or the virt-xml-validate command to check for usage problems:
		
xmllint --noout config.xml
virt-xml-validate config.xml

			If no errors are returned, the XML description is well-formed and matches the libvirt schema. While the schema does not catch all constraints, fixing any reported errors will further troubleshooting.
		
	XML documents stored by libvirt
	
						These documents contain definitions of states and configurations for the guests. These documents are automatically generated and should not be edited manually. Errors in these documents contain the file name of the broken document. The file name is valid only on the host machine defined by the URI, which may refer to the machine the command was run on.
					

						Errors in files created by libvirt are rare. However, one possible source of these errors is a downgrade of libvirt — while newer versions of libvirt can always read XML generated by older versions, older versions of libvirt may be confused by XML elements added in a newer version.
					

 ⁠B.17.2. XML Syntax Errors

			Syntax errors are caught by the XML parser. The error message contains information for identifying the problem.
		

			This example error message from the XML parser consists of three lines — the first line denotes the error message, and the two following lines contain the context and location of the XML code containing the error. The third line contains an indicator showing approximately where the error lies on the line above it:
		
error: (name_of_guest.xml):6: StartTag: invalid element name
<vcpu>2</vcpu><
-----------------^
	Information contained in this message:
		(name_of_guest.xml)
	
									This is the file name of the document that contains the error. File names in parentheses are symbolic names to describe XML documents parsed from memory, and do not directly correspond to files on disk. File names that are not contained in parentheses are local files that reside on the target of the connection.
								

	6
	
									This is the line number in the XML file that contains the error.
								

	StartTag: invalid element name
	
									This is the error message from the libxml2 parser, which describes the specific XML error.
								

 ⁠B.17.2.1. Stray < in the document

	Symptom
	
							The following error occurs:
						
error: (name_of_guest.xml):6: StartTag: invalid element name
<vcpu>2</vcpu><
-----------------^

	Investigation
	
							This error message shows that the parser expects a new element name after the < symbol on line 6 of a guest's XML file.
						

							Ensure line number display is enabled in your text editor. Open the XML file, and locate the text on line 6:
						
<domain type='kvm'>
 <name>name_of_guest</name>
<memory>524288</memory>
<vcpu>2</vcpu><

							This snippet of a guest's XML file contains an extra < in the document:
						

	Solution
	
							Remove the extra < or finish the new element.
						

 ⁠B.17.2.2. Unterminated attribute

	Symptom
	
							The following error occurs:
						
error: (name_of_guest.xml):2: Unescaped '<' not allowed in attributes values
<name>name_of_guest</name>
--^

	Investigation
	
							This snippet of a guest's XML file contains an unterminated element attribute value:
						
<domain type='kvm>
<name>name_of_guest</name>

							In this case, 'kvm' is missing a second quotation mark. Strings of attribute values, such as quotation marks and apostrophes, must be opened and closed, similar to XML start and end tags.
						

	Solution
	
							Correctly open and close all attribute value strings.
						

 ⁠B.17.2.3. Opening and ending tag mismatch

	Symptom
	
							The following error occurs:
						
error: (name_of_guest.xml):61: Opening and ending tag mismatch: clock line 16 and domain
</domain>
---------^

	Investigation
	
							The error message above contains three clues to identify the offending tag:
						

							The message following the last colon, clock line 16 and domain, reveals that <clock> contains a mismatched tag on line 16 of the document. The last hint is the pointer in the context part of the message, which identifies the second offending tag.
						

							Unpaired tags must be closed with />. The following snippet does not follow this rule and has produced the error message shown above:
						
<domain type='kvm'>
 ...
 <clock offset='utc'>

							This error is caused by mismatched XML tags in the file. Every XML tag must have a matching start and end tag.
						
	Other examples of mismatched XML tags
	
										The following examples produce similar error messages and show variations of mismatched XML tags.
									

										This snippet contains an unended pair tag for <features>:
									
<domain type='kvm'>
 ...
 <features>
 <acpi/>
 <pae/>
 ...
 </domain>

										This snippet contains an end tag (</name>) without a corresponding start tag:
									
<domain type='kvm'>
 </name>
 ...
</domain>

	Solution
	
							Ensure all XML tags start and end correctly.
						

 ⁠B.17.2.4. Typographical errors in tags

	Symptom
	
							The following error message appears:
						
error: (name_of_guest.xml):1: Specification mandate value for attribute ty
<domain ty pe='kvm'>
-----------^

	Investigation
	
							XML errors are easily caused by a simple typographical error. This error message highlights the XML error — in this case, an extra white space within the word type — with a pointer.
						
<domain ty pe='kvm'>

							These XML examples will not parse correctly because of typographical errors such as a missing special character, or an additional character:
						
<domain type 'kvm'>
<dom#ain type='kvm'>

	Solution
	
							To identify the problematic tag, read the error message for the context of the file, and locate the error with the pointer. Correct the XML and save the changes.
						

 ⁠B.17.3. Logic and Configuration Errors

			A well-formatted XML document can contain errors that are correct in syntax but libvirt cannot parse. Many of these errors exist, with two of the most common cases outlined below.
		

 ⁠B.17.3.1. Vanishing parts

	Symptom
	
							Parts of the change you have made do not show up and have no effect after editing or defining the domain. The define or edit command works, but when dumping the XML once again, the change disappears.
						

	Investigation
	
							This error likely results from a broken construct or syntax that libvirt does not parse. The libvirt tool will generally only look for constructs it knows but ignore everything else, resulting in some of the XML changes vanishing after libvirt parses the input.
						

	Solution
	
							Validate the XML input before passing it to the edit or define commands. The libvirt developers maintain a set of XML schemas bundled with libvirt which define the majority of the constructs allowed in XML documents used by libvirt.
						

							Validate libvirt XML files using the following command:
						
virt-xml-validate libvirt.xml

							If this command passes, libvirt will likely understand all constructs from your XML, except if the schemas cannot detect options which are valid only for a given hypervisor. For example, any XML generated by libvirt as a result of a virsh dump command should validate without error.
						

 ⁠B.17.3.2. Incorrect drive device type

	Symptom
	
							The definition of the source image for the CD-ROM virtual drive is not present, despite being added:
						
virsh dumpxml domain
<domain type='kvm'>
 ...
 <disk type='block' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <target dev='hdc' bus='ide'/>
 <readonly/>
 </disk>
 ...
</domain>

	Solution
	
							Correct the XML by adding the missing <source> parameter as follows:
						
<disk type='block' device='cdrom'>
 <driver name='qemu' type='raw'/>
 <source file='/path/to/image.iso'/>
 <target dev='hdc' bus='ide'/>
 <readonly/>
</disk>

							A type='block' disk device expects that the source is a physical device. To use the disk with an image file, use type='file' instead.
						

 ⁠Appendix C. Revision History

			Revision History
	Revision 0.5-45	Fri Mar 10 2017	Jiri Herrmann
	
						Updates for the 6.9 GA release

				
	Revision 0.5-43	Mon Jan 02 2017	Jiri Herrmann
	
						Updates for the 6.9 Beta release

				
	Revision 0.5-42	Mon May 02 2016	Jiri Herrmann
	
						Multiple updates for the 6.8 GA release

				
	Revision 0.5-41	Tue Mar 01 2016	Jiri Herrmann
	
						Multiple updates for the 6.8 beta release

				
	Revision 0.5-40	Thu Oct 08 2015	Jiri Herrmann
	
						Cleaned up the Revision History

				
	Revision 0.5-39	Wed Apr 29 2015	Dayle Parker
	
						Republishing for 6.7 Beta.

				

	

OEBPS/images/10-7RHEL_local_install.png
New VM

|: Create a new virtual machine

Ready to begin installation of guest2-rhel6-64.
0S: Red Hat Enterprise Linux 6
Install: Local CDROM/ISO
Memory: 1024 MB
CPUs: 1
Storage: 7.8 GB fvar/li/lbvirt/boot/guest2-rhel6-64.img

[Customize configuration before install

' Advanced options
Virtual network 'default’: NAT v

Set a fixed MAC address
Virt Type:

Architecture

OEBPS/images/4-Iso_balloon_files.png
()= [l » Computer » CD Drive (D) virtio-win-120 » Balloon » 263 » amdsd -

Organize + Share with v

o e

X Favorites
M Desktop
1 Downloads
i Recent Places

Librares
Documents

& Music

(5 Pictures
H videos

8 Computer
& Local Disk (C:)
& CD Drive (D) virtio-win-120.
o System Reserved (E)
&8 system (\bob.eng abthv.redhat.|

G2 devel (filethvrechat.com) Z)

Name

& baloon.cat
&) balloonint

[balloonpds
baloonsys

binsrcce

[binsvrpd
WeCalnstaller01009.d1

Date modified

26/04/2011 21:39
26/04/2011 21:39
26/04/2011 21:39
26/04/2011 21:39
26/04/2011 21:39
26/04/2011 21:39
26/04/2011 21:39

Type
Security Catelog
Setup Information
PDB File

Systemile
Application

PDB File
Application extens...

sia

OEBPS/images/3_PCI_Device.png
— storage
& Network
() Input

B Graphics

Eif sound

4| serial

~4 Parallel

~4 channel

3% USB Host Device
B video
[Watchdog

& Smartcard

PCI Device

Please indicate what physical device
to connect to the virtual machine.

Host Device:

00:1D:2 828011 (ICH10 Family) USB UHCI Controller #3 |
00:1D:7 828011 (ICH10 Family) USB2 EHCI Controller #1
00:1E:0 82801 PCI Bridge

00:1F:0 82801JIR (ICH10R) LPC Interface Controller

00:1F:2 828011 (ICH10 Family) SATA AHCI Controller

00:1F:3 828011 (ICH10 Family) SMBus Controller

01:00:0 82576 Gigabit Network Connection

01:00:1 Interface eth3 (82576 Gigabit Network Connection)
02:00:0 R580 [Radeon X1900 XT] (Primary)

02:00:1 R580 [Radeon X1900 XT] (Secondary)

06:00:0 88SE6121 SATA Il Controller (o]

@ | D

cancel | [Finish |

OEBPS/images/3-7RHEL_local_install.png
New VM

|: Create a new virtual machine

Locate your install media

O Use CDROM or DVD

® Use ISO image:

\] [orowse.

Choose an operating system type and version

05 type: | Generic <

Version: | Generic <

OEBPS/images/11-7RHEL_local_install.png
New VM

™ Create a new virtual machine

Ready to begin installation of guest2-rhel6-64.
0S: Red Hat Enterprise Linux 6
Install: Local CDROM/ISO
Memory: 1024 MB
CPUs: 1
Storage: 7.8 GB fvar/li/lbvirt/boot/guest2-rhel6-64.img

[Customize configuration before install

'~ Advanced options

Specify shared device name =

Set a fixed MAC address

52:54:00:c6:95:ac

Virt Type:

Architecture

OEBPS/images/4-7RHEL_local_install.png
New VM

|: Create a new virtual machine

Locate your install media

O Use CDROM or DVD

® Use ISO image:

‘/hume/usemame/\mageisHEL'S4'Servz ~ |[Browse...

Choose an operating system type and version

05 type: ‘ Linux ‘C ‘

Version ‘ Red Hat Enterprise Linux 6 i ‘

OEBPS/images/1-files_PV-win.png
Organize > g nstall ~ - [e

o Neme Date modified
B Desktop. 8 RHEV-Block 111820091250 3u7K8
1 Downloads 8 RHEV-Blocksd 11820091250 3s9k8
%] Recent Places 5 RHENetwor 11192091250 .. Windows nstller 35658

1B RHEV-Networksd 1820091250, Windows Installr... 4002KB
Libraries
Documents
& Music
(5 Pictures
B videos
8 Computer
& Local Disk (C:)
& CD Drive (D:) virtio-y
G Network
RHEV-Network Date modified: 11/18/20091250 AM Date created: 11/18/2009 1250 AM

Windows Installer Package Size: 355 MB.

OEBPS/images/1-7RHEL_local_install.png
Virtual Machine Manager g

File Edit View Help

Name v | CPU usage

OEBPS/images/10-w7x86driverstart_win7.png
Browse for driver software on your computer

Search for driver software i this location:

" oy

+ Let me pick from a list of device drivers on my computer
This st il how installe driver software compatible with the device, and sl drver
softwsre in the same category a2 the device.

OEBPS/images/1-Iso_general.png
BO(& s omuers oncOpimonizs < [4|[sm. 5]

Name Date modified Type

3 Balloon BOUNUNID Fiefolder
0 Netcvm BOUNUND Fiefolder

B vioserial BOUNUND Fiefolder

B vostor BOUNUND Fiefolder

2 vito-win_license.ot BOUNUNH TetDocument
1) virto-win-120x4d BN VEDFie

& Music
& Pictures
B Videos

8 Computer
& Local Disk (C:)
& CD Drive (D) virtio-win-120.
o System Reserved (E)
&8 system (\bob.eng abthv.redhat.|
S8 devel (Wfilethv.redhat.com) (Z)

OEBPS/images/2-7RHEL_local_install.png
New VM

|: Create a new virtual machine

Enter your virtual machine details

Name: |guest2-rhel6-

Connection: localhost (REMU/KVM)

Choose how you would like to install the operating system
® Local install media (ISO image or CDROM)
O Network Install (HTTP, FTP, or NFS)
O Network Boot (PXE)

O Import existing disk image

OEBPS/content.opf
 6_idm139847906702784 Virtualization Host Configuration and Guest Installation Guide This guide covers KVM packages, compatibility and restrictions. Also included are host configuration details and instructions for installing guest virtual machines of different types, PCI device configuration and SR-IOV. Jiri Herrmann Yehuda Zimmerman Tahlia Richardson Dayle Parker Laura Bailey Scott Radvan en

OEBPS/images/3-Iso_Balloon_Os_arch.png
Documents

& Music

(5 Pictures
H videos

8 Computer
& Local Disk (C:)
& CD Drive (D) virtio-win-120.
o System Reserved (E)
&8 system (\bob.eng abthv.redhat.|

G2 devel (filethvrechat.com) Z)

Date modified

26/04/2011 21:39
26/04/2011 21:39
26/04/2011 21:39
26/04/2011 21:39

Type
File folder
File folder
File folder
File folder

OEBPS/images/10-w7x86driverstart.png
Browse for driver software on your computer

‘Search for driver software in this location:

[

@ include subfolders

9 Let me pick from a list of device drivers on my computer
This list will show installed driver software compatible with the device, and all driver
software in the same category s the device.

OEBPS/images/4_finish.png

OEBPS/images/2-Iso_Balloon_Os.png
Documents

& Music

(5 Pictures
H videos

8 Computer
& Local Disk (C:)
& CD Drive (D) virtio-win-120.
o System Reserved (E)
&8 system (\bob.eng abthv.redhat.|

G2 devel (filethvrechat.com) Z)

Date modified

26/04/2011 21:39
26/04/2011 21:39
26/04/2011 21:39
26/04/2011 21:39

Type
File folder
File folder
File folder
File folder

OEBPS/images/10-w7x86driverchosen_win7.png
Browse for driver software on your computer

Search for driver software i this location:

+ Let me pick from a list of device drivers on my computer
This s il how installe driver software compatible with the device, and sl drver
Software i the ssme category 3 the device.

[ty

OEBPS/images/12-DriverInstalled.png
Windows has successfully updated your driver software

Windows has finished installing the driver software for this device:

q VirtlO Balloon Driver

OEBPS/images/10-w7x86driverchosen.png
Browse for driver software on your computer

Search for drver softuware in this location:
| T

@ include subfolders

9 Let me pick from a list of device drivers on my computer
This list will show installed driver software compatible with the device, and all driver
software in the same category s the device.

OEBPS/images/14-StartInstallSerial.png
G B

& Computer Management (Local| 2= Keyboards
4§} System Tools I} Mice and other pointing devices
» @ Tosk Scheduler 1 Monitors
b @ Event Viewer b8 Network adapters
b [Shared Folders 17 Ports (COM &LPT)
» & Local Users and Groups|| 38 Processors
o ® Performance 5 Storage controllers
& Device Manager 4488 System devices
4 88 storage 88 ACPI Fred Feature Button
57 Disk Management 8 Composite Bus Enumerator
b B Services and Applications 188 High precision event timer
188 Intel 8237156 PClto 154 bridge:
80 Intel 8241FX Pentium(R) Pro Processor to PClbridge.
8 Microsoft ACPL-Compliant System
8 Microsoft System Management BIOS Driver
8 Microsoft Virtual Drive Enumerator Driver
188 PClbus
% PCl Simple Communications Controlfer |
88 Plug and Play Software Device Enumd Update Diver Softuare.. N
8 Remote Desktop Device Redirector B Disable
88 System CMOS/real time clock Uninstall
8 UMBus Enumerator
8 UMBus Root Bus Enumerator Scan for hardware changes
88 Virto Balloon Driver
g i MUl 8 it SeintRue comtlers fropertes)

Launches the Update Driver Software Wizard for the selected device.

