Red Hat Enterprise Linux 6
Virtualization Administration Guide

Managing your virtual environment

		[image:]

	

Jiri Herrmann
Red Hat Customer Content Services
jherrman@redhat.com
Yehuda Zimmerman
Red Hat Customer Content Services

Laura Novich
Red Hat Customer Content Services

Scott Radvan
Red Hat Customer Content Services

Dayle Parker
Red Hat Customer Content Services

Legal Notice

		Copyright © 2017 Red Hat, Inc.
	

		This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported License. If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be removed.
	

		Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
	

		Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
	

		Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
	

		Java® is a registered trademark of Oracle and/or its affiliates.
	

		XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
	

		MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
	

		Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
	

		The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
	

		All other trademarks are the property of their respective owners.
	

Abstract

			The Virtualization Administration Guide covers administration of host physical machines, networking, storage, device and guest virtual machine management, and troubleshooting.
		

			Note

					To expand your expertise, you might also be interested in the Red Hat Virtualization (RH318) training course.
				

		

 ⁠Chapter 1. Server Best Practices

		The following tasks and tips can assist you with increasing the performance of your Red Hat Enterprise Linux host. Additional tips can be found in the Red Hat Enterprise Linux Virtualization Tuning and Optimization Guide
	
	
				Run SELinux in enforcing mode. Set SELinux to run in enforcing mode with the setenforce command.
			
setenforce 1

	
				Remove or disable any unnecessary services such as AutoFS, NFS, FTP, HTTP, NIS, telnetd, sendmail and so on.
			

	
				Only add the minimum number of user accounts needed for platform management on the server and remove unnecessary user accounts.
			

	
				Avoid running any unessential applications on your host. Running applications on the host may impact virtual machine performance and can affect server stability. Any application which may crash the server will also cause all virtual machines on the server to go down.
			

	
				Use a central location for virtual machine installations and images. Virtual machine images should be stored under /var/lib/libvirt/images/. If you are using a different directory for your virtual machine images make sure you add the directory to your SELinux policy and relabel it before starting the installation. Use of shareable, network storage in a central location is highly recommended.
			

 ⁠Chapter 2. sVirt

		 sVirt is a technology included in Red Hat Enterprise Linux 6 that integrates SELinux and virtualization. sVirt applies Mandatory Access Control (MAC) to improve security when using guest virtual machines. This integrated technology improves security and hardens the system against bugs in the hypervisor. It is particularly helpful in preventing attacks on the host physical machine or on another guest virtual machine.
	

		This chapter describes how sVirt integrates with virtualization technologies in Red Hat Enterprise Linux 6.
	
Non-virtualized Environments

			In a non-virtualized environment, host physical machines are separated from each other physically and each host physical machine has a self-contained environment, consisting of services such as a web server, or a DNS server. These services communicate directly to their own user space, host physical machine's kernel and physical hardware, offering their services directly to the network. The following image represents a non-virtualized environment:
		
[image: Non-virtualized Environments]
	[image: 1][image: 4]
	
				User Space - memory area where all user mode applications and some drivers execute.
			

	[image: 2]
	
				Web App (web application server) - delivers web content that can be accessed through the a browser.
			

	[image: 3][image: 6]
	
				Host Kernel - is strictly reserved for running the host physical machine's privileged kernel, kernel extensions, and most device drivers.
			

	[image: 5]
	
				DNS Server - stores DNS records allowing users to access web pages using logical names instead of IP addresses.
			

Virtualized Environments

			In a virtualized environment, several virtual operating systems can run on a single kernel residing on a host physical machine. The following image represents a virtualized environment:
		
[image: Virtualized Environments]

 ⁠2.1. Security and Virtualization

			When services are not virtualized, machines are physically separated. Any exploit is usually contained to the affected machine, with the obvious exception of network attacks. When services are grouped together in a virtualized environment, extra vulnerabilities emerge in the system. If there is a security flaw in the hypervisor that can be exploited by a guest virtual machine, this guest virtual machine may be able to not only attack the host physical machine, but also other guest virtual machines running on that host physical machine. These attacks can extend beyond the guest virtual machine and could expose other guest virtual machines to an attack as well.
		

			sVirt is an effort to isolate guest virtual machines and limit their ability to launch further attacks if exploited. This is demonstrated in the following image, where an attack cannot break out of the guest virtual machine and invade other guest virtual machines:
		
[image: Security and Virtualization]

			SELinux introduces a pluggable security framework for virtualized instances in its implementation of Mandatory Access Control (MAC). The sVirt framework allows guest virtual machines and their resources to be uniquely labeled. Once labeled, rules can be applied which can reject access between different guest virtual machines.
		

 ⁠2.2. sVirt Labeling

			Like other services under the protection of SELinux, sVirt uses process-based mechanisms and restrictions to provide an extra layer of security over guest virtual machines. Under typical use, you should not even notice that sVirt is working in the background. This section describes the labeling features of sVirt.
		

			As shown in the following output, when using sVirt, each virtualized guest virtual machine process is labeled and runs with a dynamically generated level. Each process is isolated from other VMs with different levels:
		

ps -eZ | grep qemu

system_u:system_r:svirt_t:s0:c87,c520 27950 ? 00:00:17 qemu-kvm

			The actual disk images are automatically labeled to match the processes, as shown in the following output:
		

ls -lZ /var/lib/libvirt/images/*

 system_u:object_r:svirt_image_t:s0:c87,c520 image1

			The following table outlines the different context labels that can be assigned when using sVirt:
		

 ⁠Table 2.1. sVirt context labels
	SELinux Context	Type / Description
	system_u:system_r:svirt_t:MCS1	Guest virtual machine processes. MCS1 is a random MCS field. Approximately 500,000 labels are supported.
	system_u:object_r:svirt_image_t:MCS1	Guest virtual machine images. Only svirt_t processes with the same MCS fields can read/write these images.
	system_u:object_r:svirt_image_t:s0	Guest virtual machine shared read/write content. All svirt_t processes can write to the svirt_image_t:s0 files.

			It is also possible to perform static labeling when using sVirt. Static labels allow the administrator to select a specific label, including the MCS/MLS field, for a guest virtual machine. Administrators who run statically-labeled virtualized guest virtual machines are responsible for setting the correct label on the image files. The guest virtual machine will always be started with that label, and the sVirt system will never modify the label of a statically-labeled virtual machine's content. This allows the sVirt component to run in an MLS environment. You can also run multiple guest virtual machines with different sensitivity levels on a system, depending on your requirements.
		

 ⁠Chapter 3. Cloning Virtual Machines

		There are two types of guest virtual machine instances used in creating guest copies:
	
	
				Clones are instances of a single virtual machine. Clones can be used to set up a network of identical virtual machines, and they can also be distributed to other destinations.
			

	
				Templates are instances of a virtual machine that are designed to be used as a source for cloning. You can create multiple clones from a template and make minor modifications to each clone. This is useful in seeing the effects of these changes on the system.
			

		Both clones and templates are virtual machine instances. The difference between them is in how they are used.
	

		For the created clone to work properly, information and configurations unique to the virtual machine that is being cloned usually has to be removed before cloning. The information that needs to be removed differs, based on how the clones will be used.
	

		The information and configurations to be removed may be on any of the following levels:
	
	
				Platform level information and configurations include anything assigned to the virtual machine by the virtualization solution. Examples include the number of Network Interface Cards (NICs) and their MAC addresses.
			

	
				Guest operating system level information and configurations include anything configured within the virtual machine. Examples include SSH keys.
			

	
				Application level information and configurations include anything configured by an application installed on the virtual machine. Examples include activation codes and registration information.
			
Note

					This chapter does not include information about removing the application level, because the information and approach is specific to each application.
				

		As a result, some of the information and configurations must be removed from within the virtual machine, while other information and configurations must be removed from the virtual machine using the virtualization environment (for example, Virtual Machine Manager or VMware).
	

 ⁠3.1. Preparing Virtual Machines for Cloning

			Before cloning a virtual machine, it must be prepared by running the virt-sysprep utility on its disk image, or by using the following steps:
		

 ⁠Procedure 3.1. Preparing a virtual machine for cloning
	Setup the virtual machine
	
							Build the virtual machine that is to be used for the clone or template.
						
	
									Install any software needed on the clone.
								

	
									Configure any non-unique settings for the operating system.
								

	
									Configure any non-unique application settings.
								

	Remove the network configuration
	
							Remove any persistent udev rules using the following command:
						

							
rm -f /etc/udev/rules.d/70-persistent-net.rules

						
Note

								If udev rules are not removed, the name of the first NIC may be eth1 instead of eth0.
							

	
							Remove unique network details from ifcfg scripts by making the following edits to /etc/sysconfig/network-scripts/ifcfg-eth[x]:
						
	
									Remove the HWADDR and Static lines
								
Note

										If the HWADDR does not match the new guest's MAC address, the ifcfg will be ignored. Therefore, it is important to remove the HWADDR from the file.
									

									

DEVICE=eth[x]
BOOTPROTO=none
ONBOOT=yes
#NETWORK=10.0.1.0 <- REMOVE
#NETMASK=255.255.255.0 <- REMOVE
#IPADDR=10.0.1.20 <- REMOVE
#HWADDR=xx:xx:xx:xx:xx <- REMOVE
#USERCTL=no <- REMOVE
Remove any other *unique* or non-desired settings, such as UUID.

								

	
									Ensure that a DHCP configuration remains that does not include a HWADDR or any unique information.
								

									

DEVICE=eth[x]
BOOTPROTO=dhcp
ONBOOT=yes

								

	
									Ensure that the file includes the following lines:
								

									

DEVICE=eth[x]
ONBOOT=yes

								

	
							If the following files exist, ensure that they contain the same content:
						
	
									/etc/sysconfig/networking/devices/ifcfg-eth[x]
								

	
									/etc/sysconfig/networking/profiles/default/ifcfg-eth[x]
								

Note

								If NetworkManager or any special settings were used with the virtual machine, ensure that any additional unique information is removed from the ifcfg scripts.
							

	Remove registration details
	
							Remove registration details using one of the following:
						
	
									For Red Hat Network (RHN) registered guest virtual machines, run the following command:
								

									
rm /etc/sysconfig/rhn/systemid

								

	
									For Red Hat Subscription Manager (RHSM) registered guest virtual machines:
								
	
											If the original virtual machine will not be used, run the following commands:
										

											

subscription-manager unsubscribe --all
subscription-manager unregister
subscription-manager clean

										

	
											If the original virtual machine will be used, run only the following command:
										

											
subscription-manager clean

										
Note

												The original RHSM profile remains in the portal.
											

	Removing other unique details
	
							Remove any sshd public/private key pairs using the following command:
						

							
rm -rf /etc/ssh/ssh_host_*

						
Note

								Removing ssh keys prevents problems with ssh clients not trusting these hosts.
							

	
							Remove any other application-specific identifiers or configurations that may cause conflicts if running on multiple machines.
						

	 Configure the virtual machine to run configuration wizards on the next boot
	
							Configure the virtual machine to run the relevant configuration wizards the next time it is booted by doing one of the following:
						
	
									For Red Hat Enterprise Linux 6 and below, create an empty file on the root file system called .unconfigured using the following command:
								

									
touch /.unconfigured

								

	
									For Red Hat Enterprise Linux 7, enable the first boot and initial-setup wizards by running the following commands:
								

									

sed -ie 's/RUN_FIRSTBOOT=NO/RUN_FIRSTBOOT=YES/' /etc/sysconfig/firstboot
systemctl enable firstboot-graphical
systemctl enable initial-setup-graphical

								

Note

								The wizards that run on the next boot depend on the configurations that have been removed from the virtual machine. In addition, on the first boot of the clone, it is recommended that you change the host name.
							

 ⁠3.2. Cloning a Virtual Machine

			Before proceeding with cloning, shut down the virtual machine. You can clone the virtual machine using virt-clone or virt-manager.
		

 ⁠3.2.1. Cloning Guests with virt-clone

				You can use virt-clone to clone virtual machines from the command line.
			

				Note that you need root privileges for virt-clone to complete successfully.
			

				The virt-clone command provides a number of options that can be passed on the command line. These include general options, storage configuration options, networking configuration options, and miscellaneous options. Only the --original is required. To see a complete list of options, enter the following command:
			
virt-clone --help

				The virt-clone man page also documents each command option, important variables, and examples.
			

				The following example shows how to clone a guest virtual machine called "demo" on the default connection, automatically generating a new name and disk clone path.
			

 ⁠Example 3.1. Using virt-clone to clone a guest
virt-clone --original demo --auto-clone

				The following example shows how to clone a QEMU guest virtual machine called "demo" with multiple disks.
			

 ⁠Example 3.2. Using virt-clone to clone a guest
virt-clone --connect qemu:///system --original demo --name newdemo --file /var/lib/xen/images/newdemo.img --file /var/lib/xen/images/newdata.img

 ⁠3.2.2. Cloning Guests with virt-manager

				This procedure describes cloning a guest virtual machine using the virt-manager utility.
			

 ⁠Procedure 3.2. Cloning a Virtual Machine with virt-manager
	Open virt-manager

						Start virt-manager. Launch the Virtual Machine Manager application from the Applications menu and System Tools submenu. Alternatively, run the virt-manager command as root.
					

						Select the guest virtual machine you want to clone from the list of guest virtual machines in Virtual Machine Manager.
					

						Right-click the guest virtual machine you want to clone and select Clone. The Clone Virtual Machine window opens.
					

 ⁠[image: Clone Virtual Machine window]

Figure 3.1. Clone Virtual Machine window

	Configure the clone
	
								To change the name of the clone, enter a new name for the clone.
							

	
								To change the networking configuration, click Details.
							

								Enter a new MAC address for the clone.
							

								Click OK.
							

 ⁠[image: Change MAC Address window]

Figure 3.2. Change MAC Address window

	
								For each disk in the cloned guest virtual machine, select one of the following options:
							
	
										Clone this disk - The disk will be cloned for the cloned guest virtual machine
									

	
										Share disk with guest virtual machine name - The disk will be shared by the guest virtual machine that will be cloned and its clone
									

	
										Details - Opens the Change storage path window, which enables selecting a new path for the disk
									

 ⁠[image: Change storage path window]

Figure 3.3. Change storage path window

	Clone the guest virtual machine

						Click Clone.
					

 ⁠Chapter 4. KVM Live Migration

		This chapter covers migrating guest virtual machines running on one host physical machine to another. In both instances, the host physical machines are running the KVM hypervisor.
	

		Migration describes the process of moving a guest virtual machine from one host physical machine to another. This is possible because guest virtual machines are running in a virtualized environment instead of directly on the hardware. Migration is useful for:
	
	
				Load balancing - guest virtual machines can be moved to host physical machines with lower usage when their host physical machine becomes overloaded, or another host physical machine is under-utilized.
			

	
				Hardware independence - when we need to upgrade, add, or remove hardware devices on the host physical machine, we can safely relocate guest virtual machines to other host physical machines. This means that guest virtual machines do not experience any downtime for hardware improvements.
			

	
				Energy saving - guest virtual machines can be redistributed to other host physical machines and can thus be powered off to save energy and cut costs in low usage periods.
			

	
				Geographic migration - guest virtual machines can be moved to another location for lower latency or in serious circumstances.
			

		Migration works by sending the state of the guest virtual machine's memory and any virtualized devices to a destination host physical machine. It is recommended to use shared, networked storage to store the guest virtual machine's images to be migrated. It is also recommended to use libvirt-managed storage pools for shared storage when migrating virtual machines.
	

		Migrations can be performed live or not.
	

		In a live migration, the guest virtual machine continues to run on the source host physical machine while its memory pages are transferred, in order, to the destination host physical machine. During migration, KVM monitors the source for any changes in pages it has already transferred, and begins to transfer these changes when all of the initial pages have been transferred. KVM also estimates transfer speed during migration, so when the remaining amount of data to transfer will take a certain configurable period of time (10 milliseconds by default), KVM suspends the original guest virtual machine, transfers the remaining data, and resumes the same guest virtual machine on the destination host physical machine.
	

		A migration that is not performed live, suspends the guest virtual machine, then moves an image of the guest virtual machine's memory to the destination host physical machine. The guest virtual machine is then resumed on the destination host physical machine and the memory the guest virtual machine used on the source host physical machine is freed. The time it takes to complete such a migration depends on network bandwidth and latency. If the network is experiencing heavy use or low bandwidth, the migration will take much longer.
	

		If the original guest virtual machine modifies pages faster than KVM can transfer them to the destination host physical machine, offline migration must be used, as live migration would never complete.
	

 ⁠4.1. Live Migration Requirements

			Migrating guest virtual machines requires the following:
		

 ⁠Migration requirements
	
					A guest virtual machine installed on shared storage using one of the following protocols:
				
	
							Fibre Channel-based LUNs
						

	
							iSCSI
						

	
							FCoE
						

	
							NFS
						

	
							GFS2
						

	
							SCSI RDMA protocols (SCSI RCP): the block export protocol used in Infiniband and 10GbE iWARP adapters
						

	
					The migration platforms and versions should be checked against table Table 4.1, “Live Migration Compatibility”. It should also be noted that Red Hat Enterprise Linux 6 supports live migration of guest virtual machines using raw and qcow2 images on shared storage.
				

	
					Both systems must have the appropriate TCP/IP ports open. In cases where a firewall is used, refer to the Red Hat Enterprise Linux Virtualization Security Guide which can be found at https://access.redhat.com/site/documentation/ for detailed port information.
				

	
					A separate system exporting the shared storage medium. Storage should not reside on either of the two host physical machines being used for migration.
				

	
					Shared storage must mount at the same location on source and destination systems. The mounted directory names must be identical. Although it is possible to keep the images using different paths, it is not recommended. Note that, if you are intending to use virt-manager to perform the migration, the path names must be identical. If however you intend to use virsh to perform the migration, different network configurations and mount directories can be used with the help of --xml option or pre-hooks when doing migrations. Even without shared storage, migration can still succeed with the option --copy-storage-all (deprecated). For more information on prehooks, refer to libvirt.org, and for more information on the XML option, refer to Chapter 20, Manipulating the Domain XML.
				

	
					When migration is attempted on an existing guest virtual machine in a public bridge+tap network, the source and destination host physical machines must be located in the same network. Otherwise, the guest virtual machine network will not operate after migration.
				

	
					 In Red Hat Enterprise Linux 5 and 6, the default cache mode of KVM guest virtual machines is set to none, which prevents inconsistent disk states. Setting the cache option to none (using virsh attach-disk cache none, for example), causes all of the guest virtual machine's files to be opened using the O_DIRECT flag (when calling the open syscall), thus bypassing the host physical machine's cache, and only providing caching on the guest virtual machine. Setting the cache mode to none prevents any potential inconsistency problems, and when used makes it possible to live-migrate virtual machines. For information on setting cache to none, refer to Section 13.3, “Adding Storage Devices to Guests”.
				

			Make sure that the libvirtd service is enabled (# chkconfig libvirtd on) and running (# service libvirtd start). It is also important to note that the ability to migrate effectively is dependent on the parameter settings in the /etc/libvirt/libvirtd.conf configuration file.
		

 ⁠Procedure 4.1. Configuring libvirtd.conf
	
					Opening the libvirtd.conf requires running the command as root:
				
vim /etc/libvirt/libvirtd.conf

	
					Change the parameters as needed and save the file.
				

	
					Restart the libvirtd service:
				
service libvirtd restart

 ⁠4.2. Live Migration and Red Hat Enterprise Linux Version Compatibility

			Live Migration is supported as shown in table Table 4.1, “Live Migration Compatibility”:
		

 ⁠Table 4.1. Live Migration Compatibility
	Migration Method	Release Type	Example	Live Migration Support	Notes
	Forward	Major release	5.x → 6.y	Not supported	
	Forward	Minor release	5.x → 5.y (y>x, x>=4)	Fully supported	Any issues should be reported
	Forward	Minor release	6.x → 6.y (y>x, x>=0)	Fully supported	Any issues should be reported
	Backward	Major release	6.x → 5.y	Not supported	
	Backward	Minor release	5.x → 5.y (x>y,y>=4)	Supported	Refer to Troubleshooting problems with migration for known issues
	Backward	Minor release	6.x → 6.y (x>y, y>=0)	Supported	Refer to Troubleshooting problems with migration for known issues

 ⁠Troubleshooting problems with migration
	
					Issues with SPICE — It has been found that SPICE has an incompatible change when migrating from Red Hat Enterprise Linux 6.0 → 6.1. In such cases, the client may disconnect and then reconnect, causing a temporary loss of audio and video. This is only temporary and all services will resume.
				

	
					Issues with USB — Red Hat Enterprise Linux 6.2 added USB functionality which included migration support, but not without certain caveats which reset USB devices and caused any application running over the device to abort. This problem was fixed in Red Hat Enterprise Linux 6.4, and should not occur in future versions. To prevent this from happening in a version prior to 6.4, abstain from migrating while USB devices are in use.
				

	
					Issues with the migration protocol — If backward migration ends with "unknown section error", repeating the migration process can repair the issue as it may be a transient error. If not, please report the problem.
				

 ⁠Configuring Network Storage

				Configure shared storage and install a guest virtual machine on the shared storage.
			

			Alternatively, use the NFS example in Section 4.3, “Shared Storage Example: NFS for a Simple Migration”
		

 ⁠4.3. Shared Storage Example: NFS for a Simple Migration

Important

				This example uses NFS to share guest virtual machine images with other KVM host physical machines. Although not practical for large installations, it is presented to demonstrate migration techniques only. Do not use this example for migrating or running more than a few guest virtual machines. In addition, it is required that the sync parameter is enabled. This is required for proper export of the NFS storage. In addition, it is strongly recommended that the NFS is mounted on source host physical machine, and the guest virtual machine's image needs to be created on the NFS mounted directory located on source host physical machine. It should also be noted that NFS file locking must not be used as it is not supported in KVM.
			

				iSCSI storage is a better choice for large deployments. Refer to Section 12.5, “iSCSI-based Storage Pools” for configuration details.
			

			Also note, that the instructions provided in this section are not meant to replace the detailed instructions found in Red Hat Linux Storage Administration Guide. Refer to this guide for information on configuring NFS, opening IP tables, and configuring the firewall.
		
	Create a directory for the disk images

					This shared directory will contain the disk images for the guest virtual machines. To do this create a directory in a location different from /var/lib/libvirt/images. For example:
				
mkdir /var/lib/libvirt-img/images

	Add the new directory path to the NFS configuration file

					The NFS configuration file is a text file located in /etc/exports. Open the file and edit it adding the path to the new file you created in step 1.
				
echo "/var/lib/libvirt-img/images" >> /etc/exports/[NFS-Config-FILENAME.txt]

	Start NFS
	
							Make sure that the ports for NFS in iptables (2049, for example) are opened and add NFS to the /etc/hosts.allow file.
						

	
							Start the NFS service:
						
service nfs start

	Mount the shared storage on both the source and the destination

					Mount the /var/lib/libvirt/images directory on both the source and destination system, running the following command twice. Once on the source system and again on the destination system.
				
mount source_host:/var/lib/libvirt-img/images /var/lib/libvirt/images
Warning

						Make sure that the directories you create in this procedure is compliant with the requirements as outlined in Section 4.1, “Live Migration Requirements”. In addition, the directory may need to be labeled with the correct SELinux label. For more information consult the NFS chapter in the Red Hat Enterprise Linux Storage Administration Guide.
					

 ⁠4.4. Live KVM Migration with virsh

			A guest virtual machine can be migrated to another host physical machine with the virsh command. The migrate command accepts parameters in the following format:
		
virsh migrate --live GuestName DestinationURL

			Note that the --live option may be eliminated when live migration is not desired. Additional options are listed in Section 4.4.2, “Additional Options for the virsh migrate Command”.
		

			The GuestName parameter represents the name of the guest virtual machine which you want to migrate.
		

			The DestinationURL parameter is the connection URL of the destination host physical machine. The destination system must run the same version of Red Hat Enterprise Linux, be using the same hypervisor and have libvirt running.
		
Note

				The DestinationURL parameter for normal migration and peer-to-peer migration has different semantics:
			
	
						normal migration: the DestinationURL is the URL of the target host physical machine as seen from the source guest virtual machine.
					

	
						peer-to-peer migration: DestinationURL is the URL of the target host physical machine as seen from the source host physical machine.
					

			Once the command is entered, you will be prompted for the root password of the destination system.
		
Important

				An entry for the destination host physical machine, in the /etc/hosts file on the source server is required for migration to succeed. Enter the IP address and host name for the destination host physical machine in this file as shown in the following example, substituting your destination host physical machine's IP address and host name:

10.0.0.20	host2.example.com

			

 ⁠Example: Live Migration with virsh

				This example migrates from host1.example.com to host2.example.com. Change the host physical machine names for your environment. This example migrates a virtual machine named guest1-rhel6-64.
			

			This example assumes you have fully configured shared storage and meet all the prerequisites (listed here: Migration requirements).
		
	
 ⁠Verify the guest virtual machine is running

					From the source system, host1.example.com, verify guest1-rhel6-64 is running:
				
[root@host1 ~]# virsh list
Id Name State

 10 guest1-rhel6-64 running

	
 ⁠Migrate the guest virtual machine

					Execute the following command to live migrate the guest virtual machine to the destination, host2.example.com. Append /system to the end of the destination URL to tell libvirt that you need full access.
				
virsh migrate --live guest1-rhel6-64 qemu+ssh://host2.example.com/system

					Once the command is entered you will be prompted for the root password of the destination system.
				

	
 ⁠Wait

					The migration may take some time depending on load and the size of the guest virtual machine. virsh only reports errors. The guest virtual machine continues to run on the source host physical machine until fully migrated.
				
Note

						During the migration, the completion percentage indicator number is likely to decrease multiple times before the process finishes. This is caused by a recalculation of the overall progress, as source memory pages that are changed after the migration starts need to be be copied again. Therefore, this behavior is expected and does not indicate any problems with the migration.
					

	
 ⁠Verify the guest virtual machine has arrived at the destination host

					From the destination system, host2.example.com, verify guest1-rhel6-64 is running:
				
[root@host2 ~]# virsh list
Id Name State

 10 guest1-rhel6-64 running

			The live migration is now complete.
		
Note

				libvirt supports a variety of networking methods including TLS/SSL, UNIX sockets, SSH, and unencrypted TCP. Refer to Chapter 5, Remote Management of Guests for more information on using other methods.
			

Note

				Non-running guest virtual machines cannot be migrated with the virsh migrate command. To migrate a non-running guest virtual machine, the following script should be used:

virsh dumpxml Guest1 > Guest1.xml
virsh -c qemu+ssh://<target-system-FQDN> define Guest1.xml
virsh undefine Guest1

			

 ⁠4.4.1. Additional Tips for Migration with virsh

				It is possible to perform multiple, concurrent live migrations where each migration runs in a separate command shell. However, this should be done with caution and should involve careful calculations as each migration instance uses one MAX_CLIENT from each side (source and target). As the default setting is 20, there is enough to run 10 instances without changing the settings. Should you need to change the settings, refer to the procedure Procedure 4.1, “Configuring libvirtd.conf”.
			
	
						Open the libvirtd.conf file as described in Procedure 4.1, “Configuring libvirtd.conf”.
					

	
						Look for the Processing controls section.
					

###
#
Processing controls
#

The maximum number of concurrent client connections to allow
over all sockets combined.
#max_clients = 20

The minimum limit sets the number of workers to start up
initially. If the number of active clients exceeds this,
then more threads are spawned, upto max_workers limit.
Typically you'd want max_workers to equal maximum number
of clients allowed
#min_workers = 5
#max_workers = 20

The number of priority workers. If all workers from above
pool will stuck, some calls marked as high priority
(notably domainDestroy) can be executed in this pool.
#prio_workers = 5

Total global limit on concurrent RPC calls. Should be
at least as large as max_workers. Beyond this, RPC requests
will be read into memory and queued. This directly impact
memory usage, currently each request requires 256 KB of
memory. So by default upto 5 MB of memory is used
#
XXX this isn't actually enforced yet, only the per-client
limit is used so far
#max_requests = 20

Limit on concurrent requests from a single client
connection. To avoid one client monopolizing the server
this should be a small fraction of the global max_requests
and max_workers parameter
#max_client_requests = 5

###

	
						Change the max_clients and max_workers parameters settings. It is recommended that the number be the same in both parameters. The max_clients will use 2 clients per migration (one per side) and max_workers will use 1 worker on the source and 0 workers on the destination during the perform phase and 1 worker on the destination during the finish phase.
					
Important

							The max_clients and max_workers parameters settings are effected by all guest virtual machine connections to the libvirtd service. This means that any user that is using the same guest virtual machine and is performing a migration at the same time will also beholden to the limits set in the max_clients and max_workers parameters settings. This is why the maximum value needs to be considered carefully before performing a concurrent live migration.
						

	
						Save the file and restart the service.
					
Note

							There may be cases where a migration connection drops because there are too many ssh sessions that have been started, but not yet authenticated. By default, sshd allows only 10 sessions to be in a "pre-authenticated state" at any time. This setting is controlled by the MaxStartups parameter in the sshd configuration file (located here: /etc/ssh/sshd_config), which may require some adjustment. Adjusting this parameter should be done with caution as the limitation is put in place to prevent DoS attacks (and over-use of resources in general). Setting this value too high will negate its purpose. To change this parameter, edit the file /etc/ssh/sshd_config, remove the # from the beginning of the MaxStartups line, and change the 10 (default value) to a higher number. Remember to save the file and restart the sshd service. For more information, refer to the sshd_config man page.
						

 ⁠4.4.2. Additional Options for the virsh migrate Command

				In addition to --live, virsh migrate accepts the following options:
			
	
						--direct - used for direct migration
					

	
						--p2p - used for peer-to-peer migration
					

	
						--tunnelled - used for tunneled migration
					

	
						--persistent - leaves the domain in a persistent state on the destination host physical machine
					

	
						--undefinesource - removes the guest virtual machine on the source host physical machine
					

	
						--suspend - leaves the domain in a paused state on the destination host physical machine
					

	
						--change-protection - enforces that no incompatible configuration changes will be made to the domain while the migration is underway; this option is implicitly enabled when supported by the hypervisor, but can be explicitly used to reject the migration if the hypervisor lacks change protection support.
					

	
						--unsafe - forces the migration to occur, ignoring all safety procedures.
					

	
						--verbose - displays the progress of migration as it is occurring
					

	
						--abort-on-error - cancels the migration if a soft error (such as an I/O error) happens during the migration process.
					

	
						--migrateuri - the migration URI which is usually omitted.
					

	
						--domain [string]- domain name, id or uuid
					

	
						--desturi [string]- connection URI of the destination host physical machine as seen from the client(normal migration) or source(p2p migration)
					

	
						--migrateuri - migration URI, usually can be omitted
					

	
						--timeout [seconds]- forces a guest virtual machine to suspend when the live migration counter exceeds N seconds. It can only be used with a live migration. Once the timeout is initiated, the migration continues on the suspended guest virtual machine.
					

	
						--dname [string] - changes the name of the guest virtual machine to a new name during migration (if supported)
					

	
						--xml - the filename indicated can be used to supply an alternative XML file for use on the destination to supply a larger set of changes to any host-specific portions of the domain XML, such as accounting for naming differences between source and destination in accessing underlying storage. This option is usually omitted.
					

				Refer to the virsh man page for more information.
			

 ⁠4.5. Migrating with virt-manager

			This section covers migrating a KVM guest virtual machine with virt-manager from one host physical machine to another.
		
	Open virt-manager

					Open virt-manager. Choose Applications → System Tools → Virtual Machine Manager from the main menu bar to launch virt-manager.
				

 ⁠[image: Virt-Manager main menu]

Figure 4.1. Virt-Manager main menu

	Connect to the target host physical machine

					Connect to the target host physical machine by clicking on the File menu, then click Add Connection.
					
 ⁠[image: Open Add Connection window]

Figure 4.2. Open Add Connection window

				

	Add connection

					The Add Connection window appears.
				

 ⁠[image: Adding a connection to the target host physical machine]

Figure 4.3. Adding a connection to the target host physical machine

					Enter the following details:
				
	
							Hypervisor: Select QEMU/KVM.
						

	
							Method: Select the connection method.
						

	
							Username: Enter the user name for the remote host physical machine.
						

	
							Hostname: Enter the host name for the remote host physical machine.
						

					Click the Connect button. An SSH connection is used in this example, so the specified user's password must be entered in the next step.
				

 ⁠[image: Enter password]

Figure 4.4. Enter password

	Migrate guest virtual machines

					Open the list of guests inside the source host physical machine (click the small triangle on the left of the host name) and right click on the guest that is to be migrated (guest1-rhel6-64 in this example) and click Migrate.
				

 ⁠[image: Choosing the guest to be migrated]

Figure 4.5. Choosing the guest to be migrated

					In the New Host field, use the drop-down list to select the host physical machine you wish to migrate the guest virtual machine to and click Migrate.
				

 ⁠[image: Choosing the destination host physical machine and starting the migration process]

Figure 4.6. Choosing the destination host physical machine and starting the migration process

					A progress window will appear.
				

 ⁠[image: Progress window]

Figure 4.7. Progress window

					virt-manager now displays the newly migrated guest virtual machine running in the destination host. The guest virtual machine that was running in the source host physical machine is now listed inthe Shutoff state.
				

 ⁠[image: Migrated guest virtual machine running in the destination host physical machine]

Figure 4.8. Migrated guest virtual machine running in the destination host physical machine

	Optional - View the storage details for the host physical machine

					In the Edit menu, click Connection Details, the Connection Details window appears.
				

					Click the Storage tab. The iSCSI target details for the destination host physical machine is shown. Note that the migrated guest virtual machine is listed as using the storage
				

 ⁠[image: Storage details]

Figure 4.9. Storage details

					This host was defined by the following XML configuration:
				

 ⁠​
​
​<pool type='iscsi'>
​ <name>iscsirhel6guest</name>
​ <source>
​ <host name='virtlab22.example.com.'/>
​ <device path='iqn.2001-05.com.iscsivendor:0-8a0906-fbab74a06-a700000017a4cc89-rhevh'/>
​ </source>
​ <target>
​ <path>/dev/disk/by-path</path>
​ </target>
​</pool>
​ ...

Figure 4.10. XML configuration for the destination host physical machine

 ⁠Chapter 5. Remote Management of Guests

		This section explains how to remotely manage your guests using ssh or TLS and SSL. More information on SSH can be found in the Red Hat Enterprise Linux Deployment Guide.
	

 ⁠5.1. Remote Management with SSH

			The ssh package provides an encrypted network protocol which can securely send management functions to remote virtualization servers. The method described uses the libvirt management connection securely tunneled over an SSH connection to manage the remote machines. All the authentication is done using SSH public key cryptography and passwords or passphrases gathered by your local SSH agent. In addition the VNC console for each guest is tunneled over SSH.
		

			Be aware of the issues with using SSH for remotely managing your virtual machines, including:
		
	
					you require root log in access to the remote machine for managing virtual machines,
				

	
					the initial connection setup process may be slow,
				

	
					there is no standard or trivial way to revoke a user's key on all hosts or guests, and
				

	
					ssh does not scale well with larger numbers of remote machines.
				

Note

				Red Hat Virtualization enables remote management of large numbers of virtual machines. Refer to the Red Hat Virtualization documentation for further details.
			

			The following packages are required for ssh access:
		
	
					openssh
				

	
					openssh-askpass
				

	
					openssh-clients
				

	
					openssh-server
				

 ⁠Configuring Password-less or Password-managed SSH Access for virt-manager

				The following instructions assume you are starting from scratch and do not already have SSH keys set up. If you have SSH keys set up and copied to the other systems you can skip this procedure.
			
Important

				SSH keys are user dependent and may only be used by their owners. A key's owner is the one who generated it. Keys may not be shared.
			

				virt-manager must be run by the user who owns the keys to connect to the remote host. That means, if the remote systems are managed by a non-root user virt-manager must be run in unprivileged mode. If the remote systems are managed by the local root user then the SSH keys must be owned and created by root.
			

				You cannot manage the local host as an unprivileged user with virt-manager.
			

	Optional: Changing user

					Change user, if required. This example uses the local root user for remotely managing the other hosts and the local host.
				
$ su -

	Generating the SSH key pair

					Generate a public key pair on the machine virt-manager is used. This example uses the default key location, in the ~/.ssh/ directory.
				
ssh-keygen -t rsa

	Copying the keys to the remote hosts

					Remote login without a password, or with a passphrase, requires an SSH key to be distributed to the systems being managed. Use the ssh-copy-id command to copy the key to root user at the system address provided (in the example, root@host2.example.com).
				
ssh-copy-id -i ~/.ssh/id_rsa.pub root@host2.example.com
root@host2.example.com's password:

					Now try logging into the machine, with the ssh root@host2.example.com command and check in the .ssh/authorized_keys file to make sure unexpected keys have not been added.
				

					Repeat for other systems, as required.
				

	Optional: Add the passphrase to the ssh-agent

					The instructions below describe how to add a passphrase to an existing ssh-agent. It will fail to run if the ssh-agent is not running. To avoid errors or conflicts make sure that your SSH parameters are set correctly. Refer to the Red Hat Enterprise Linux Deployment Guide for more information.
				

					Add the passphrase for the SSH key to the ssh-agent, if required. On the local host, use the following command to add the passphrase (if there was one) to enable password-less login.
				
ssh-add ~/.ssh/id_rsa

					The SSH key is added to the remote system.
				

 ⁠The libvirt Daemon (libvirtd)

				The libvirt daemon provides an interface for managing virtual machines. You must have the libvirtd daemon installed and running on every remote host that needs managing.
			
$ ssh root@somehost
chkconfig libvirtd on
service libvirtd start

			After libvirtd and SSH are configured you should be able to remotely access and manage your virtual machines. You should also be able to access your guests with VNC at this point.
		

 ⁠Accessing Remote Hosts with virt-manager

				Remote hosts can be managed with the virt-manager GUI tool. SSH keys must belong to the user executing virt-manager for password-less login to work.
			
	
					Start virt-manager.
				

	
					Open the File->Add Connection menu.
				

 ⁠[image: Add connection menu]

Figure 5.1. Add connection menu

	
					Use the drop down menu to select hypervisor type, and click the Connect to remote host check box to open the Connection Method (in this case Remote tunnel over SSH), and enter the desired User name and Hostname, then click Connect.
				

 ⁠5.2. Remote Management Over TLS and SSL

			You can manage virtual machines using TLS and SSL. TLS and SSL provides greater scalability but is more complicated than ssh (refer to Section 5.1, “Remote Management with SSH”). TLS and SSL is the same technology used by web browsers for secure connections. The libvirt management connection opens a TCP port for incoming connections, which is securely encrypted and authenticated based on x509 certificates. The procedures that follow provide instructions on creating and deploying authentication certificates for TLS and SSL management.
		

 ⁠Procedure 5.1. Creating a certificate authority (CA) key for TLS management
	
					Before you begin, confirm that the certtool utility is installed. If not:
				
yum install gnutls-utils

	
					Generate a private key, using the following command:
				
certtool --generate-privkey > cakey.pem

	
					Once the key generates, the next step is to create a signature file so the key can be self-signed. To do this, create a file with signature details and name it ca.info. This file should contain the following:
				
vim ca.info

cn = Name of your organization
ca
cert_signing_key

	
					Generate the self-signed key with the following command:
				
certtool --generate-self-signed --load-privkey cakey.pem --template ca.info --outfile cacert.pem

					Once the file generates, the ca.info file may be deleted using the rm command. The file that results from the generation process is named cacert.pem. This file is the public key (certificate). The loaded file cakey.pem is the private key. This file should not be kept in a shared space. Keep this key private.
				

	
					Install the cacert.pem Certificate Authority Certificate file on all clients and servers in the /etc/pki/CA/cacert.pem directory to let them know that the certificate issued by your CA can be trusted. To view the contents of this file, run:
certtool -i --infile cacert.pem

				

					This is all that is required to set up your CA. Keep the CA's private key safe as you will need it in order to issue certificates for your clients and servers.
				

 ⁠Procedure 5.2. Issuing a server certificate

				This procedure demonstrates how to issue a certificate with the X.509 CommonName (CN)field set to the host name of the server. The CN must match the host name which clients will be using to connect to the server. In this example, clients will be connecting to the server using the URI: qemu://mycommonname/system, so the CN field should be identical, ie mycommoname.
			
	
					Create a private key for the server.
				
certtool --generate-privkey > serverkey.pem

	
					Generate a signature for the CA's private key by first creating a template file called server.info . Make sure that the CN is set to be the same as the server's host name:
				

organization = Name of your organization
cn = mycommonname
tls_www_server
encryption_key
signing_key

	
					Create the certificate with the following command:
				

certtool --generate-certificate --load-privkey serverkey.pem --load-ca-certificate cacert.pem --load-ca-privkey cakey.pem \ --template server.info --outfile servercert.pem

	
					This results in two files being generated:
				
	
							serverkey.pem - The server's private key
						

	
							servercert.pem - The server's public key
						

					Make sure to keep the location of the private key secret. To view the contents of the file, perform the following command:
				

certtool -i --inifile servercert.pem

					When opening this file the CN= parameter should be the same as the CN that you set earlier. For example, mycommonname.
				

	
					Install the two files in the following locations:
				
	
							serverkey.pem - the server's private key. Place this file in the following location: /etc/pki/libvirt/private/serverkey.pem
						

	
							servercert.pem - the server's certificate. Install it in the following location on the server: /etc/pki/libvirt/servercert.pem
						

 ⁠Procedure 5.3. Issuing a client certificate
	
					For every client (ie. any program linked with libvirt, such as virt-manager), you need to issue a certificate with the X.509 Distinguished Name (DN) set to a suitable name. This needs to be decided on a corporate level.
				

					For example purposes the following information will be used:
				
C=USA,ST=North Carolina,L=Raleigh,O=Red Hat,CN=name_of_client

					This process is quite similar to Procedure 5.2, “Issuing a server certificate”, with the following exceptions noted.
				

	
					Make a private key with the following command:
				
certtool --generate-privkey > clientkey.pem

	
					Generate a signature for the CA's private key by first creating a template file called client.info . The file should contain the following (fields should be customized to reflect your region/location):
				

country = USA
state = North Carolina
locality = Raleigh
organization = Red Hat
cn = client1
tls_www_client
encryption_key
signing_key

	
					Sign the certificate with the following command:
				

certtool --generate-certificate --load-privkey clientkey.pem --load-ca-certificate cacert.pem \ --load-ca-privkey cakey.pem --template client.info --outfile clientcert.pem

	
					Install the certificates on the client machine:
				

cp clientkey.pem /etc/pki/libvirt/private/clientkey.pem
cp clientcert.pem /etc/pki/libvirt/clientcert.pem

 ⁠5.3. Transport Modes

			For remote management, libvirt supports the following transport modes:
		

 ⁠Transport Layer Security (TLS)

				Transport Layer Security TLS 1.0 (SSL 3.1) authenticated and encrypted TCP/IP socket, usually listening on a public port number. To use this you will need to generate client and server certificates. The standard port is 16514.
			

 ⁠UNIX Sockets

				UNIX domain sockets are only accessible on the local machine. Sockets are not encrypted, and use UNIX permissions or SELinux for authentication. The standard socket names are /var/run/libvirt/libvirt-sock and /var/run/libvirt/libvirt-sock-ro (for read-only connections).
			

 ⁠SSH

				Transported over a Secure Shell protocol (SSH) connection. Requires Netcat (the nc package) installed. The libvirt daemon (libvirtd) must be running on the remote machine. Port 22 must be open for SSH access. You should use some sort of SSH key management (for example, the ssh-agent utility) or you will be prompted for a password.
			

 ⁠ext

				The ext parameter is used for any external program which can make a connection to the remote machine by means outside the scope of libvirt. This parameter is unsupported.
			

 ⁠TCP

				Unencrypted TCP/IP socket. Not recommended for production use, this is normally disabled, but an administrator can enable it for testing or use over a trusted network. The default port is 16509.
			

			The default transport, if no other is specified, is TLS.
		

 ⁠Remote URIs

				A Uniform Resource Identifier (URI) is used by virsh and libvirt to connect to a remote host. URIs can also be used with the --connect parameter for the virsh command to execute single commands or migrations on remote hosts. Remote URIs are formed by taking ordinary local URIs and adding a host name or transport name. As a special case, using a URI scheme of 'remote', will tell the remote libvirtd server to probe for the optimal hypervisor driver. This is equivalent to passing a NULL URI for a local connection
			

			libvirt URIs take the general form (content in square brackets, "[]", represents optional functions):
		
driver[+transport]://[username@][hostname][:port]/path[?extraparameters]

			Note that if the hypervisor(driver) is QEMU, the path is mandatory. If it is XEN, it is optional.
		

			The following are examples of valid remote URIs:
		
	
					qemu://hostname/
				

	
					xen://hostname/
				

	
					xen+ssh://hostname/
				

			The transport method or the host name must be provided to target an external location. For more information refer to http://libvirt.org/guide/html/Application_Development_Guide-Architecture-Remote_URIs.html.
		

 ⁠Examples of remote management parameters
	
					Connect to a remote KVM host named host2, using SSH transport and the SSH user name virtuser.The connect command for each is connect [<name>] [--readonly], where <name> is a valid URI as explained here. For more information about the virsh connect command refer to Section 14.1.5, “connect”
				
qemu+ssh://virtuser@hot2/

	
					Connect to a remote KVM hypervisor on the host named host2 using TLS.
				
qemu://host2/

 ⁠Testing examples
	
					Connect to the local KVM hypervisor with a non-standard UNIX socket. The full path to the UNIX socket is supplied explicitly in this case.
				
qemu+unix:///system?socket=/opt/libvirt/run/libvirt/libvirt-sock

	
					Connect to the libvirt daemon with an unencrypted TCP/IP connection to the server with the IP address 10.1.1.10 on port 5000. This uses the test driver with default settings.
				
test+tcp://10.1.1.10:5000/default

 ⁠Extra URI Parameters

				Extra parameters can be appended to remote URIs. The table below Table 5.1, “Extra URI parameters” covers the recognized parameters. All other parameters are ignored. Note that parameter values must be URI-escaped (that is, a question mark (?) is appended before the parameter and special characters are converted into the URI format).
			

 ⁠Table 5.1. Extra URI parameters
	 Name 	 Transport mode 	 Description 	 Example usage
	 name 	 all modes 	 The name passed to the remote virConnectOpen function. The name is normally formed by removing transport, host name, port number, user name and extra parameters from the remote URI, but in certain very complex cases it may be better to supply the name explicitly. 	 name=qemu:///system
	 command 	 ssh and ext 	 The external command. For ext transport this is required. For ssh the default is ssh. The PATH is searched for the command. 	 command=/opt/openssh/bin/ssh
	 socket 	 unix and ssh 	 The path to the UNIX domain socket, which overrides the default. For ssh transport, this is passed to the remote netcat command (see netcat). 	 socket=/opt/libvirt/run/libvirt/libvirt-sock
	 netcat 	 ssh 	
							The netcat command can be used to connect to remote systems. The default netcat parameter uses the nc command. For SSH transport, libvirt constructs an SSH command using the form below:
						

						
							command -p port [-l username] hostname
						

						
							netcat -U socket
						

						
							The port, username and hostname parameters can be specified as part of the remote URI. The command, netcat and socket come from other extra parameters.
						

						 	 netcat=/opt/netcat/bin/nc
	 no_verify 	 tls 	 If set to a non-zero value, this disables client checks of the server's certificate. Note that to disable server checks of the client's certificate or IP address you must change the libvirtd configuration. 	 no_verify=1
	 no_tty 	 ssh 	 If set to a non-zero value, this stops ssh from asking for a password if it cannot log in to the remote machine automatically . Use this when you do not have access to a terminal . 	 no_tty=1

 ⁠Chapter 6. Overcommitting with KVM

		The KVM hypervisor automatically overcommits CPUs and memory. This means that more virtualized CPUs and memory can be allocated to virtual machines than there are physical resources on the system. This is possible because most processes do not access 100% of their allocated resources all the time.
	

		As a result, under-utilized virtualized servers or desktops can run on fewer hosts, which saves a number of system resources, with the net effect of less power, cooling, and investment in server hardware.
	

 ⁠6.1. Overcommitting Memory

			Guest virtual machines running on a KVM hypervisor do not have dedicated blocks of physical RAM assigned to them. Instead, each guest virtual machine functions as a Linux process where the host physical machine's Linux kernel allocates memory only when requested. In addition the host's memory manager can move the guest virtual machine's memory between its own physical memory and swap space.
		

			Overcommitting requires allotting sufficient swap space on the host physical machine to accommodate all guest virtual machines as well as enough memory for the host physical machine's processes. As a basic rule, the host physical machine's operating system requires a maximum of 4GB of memory along with a minimum of 4GB of swap space. For advanced instructions on determining an appropriate size for the swap partition, see the Red Hat KnowledgeBase.
		
Important

				Overcommitting is not an ideal solution for general memory issues. The recommended methods to deal with memory shortage are to allocate less memory per guest, add more physical memory to the host, or utilize swap space.
			

				A virtual machine will run slower if it is swapped frequently. In addition, overcommitting can cause the system to run out of memory (OOM), which may lead to the Linux kernel shutting down important system processes. If you decide to overcommit memory, ensure sufficient testing is performed. Contact Red Hat support for assistance with overcommitting.
			

			Overcommitting does not work with all guest virtual machines, but has been found to work in a desktop virtualization setup with minimal intensive usage or running several identical guest virtual machines with kernel same-page merging (KSM).
		

			For more information on KSM and overcommitting, refer to Chapter 7, KSM.
		
Important

				When device assignment is in use, all virtual machine memory must be statically pre-allocated to enable direct memory access (DMA) with the assigned device. Memory overcommit is therefore not supported with device assignment.
			

 ⁠6.2. Overcommitting Virtualized CPUs

			The KVM hypervisor supports overcommitting virtualized CPUs. Virtualized CPUs can be overcommitted as far as load limits of guest virtual machines allow. Use caution when overcommitting VCPUs as loads near 100% may cause dropped requests or unusable response times.
		

			Virtualized CPUs (vCPUs) are overcommitted best when a single host physical machine has multiple guest virtual machines that do not share the same vCPU. KVM should safely support guest virtual machines with loads under 100% at a ratio of five VCPUs (on 5 virtual machines) to one physical CPU on one single host physical machine. KVM will switch between all of the machines, making sure that the load is balanced.
		

			Do not overcommit guest virtual machines on more than the physical number of processing cores. For example a guest virtual machine with four vCPUs should not be run on a host physical machine with a dual core processor, but on a quad core host. In addition, it is not recommended to have more than 10 total allocated vCPUs per physical processor core.
		
Important

				Do not overcommit CPUs in a production environment without extensive testing. Applications which use 100% of processing resources may become unstable in overcommitted environments. Test before deploying.
			

			For more information on how to get the best performance out of your virtual machine, refer to the Red Hat Enterprise Linux 6 Virtualization Tuning and Optimization Guide.
		

 ⁠Chapter 7. KSM

		The concept of shared memory is common in modern operating systems. For example, when a program is first started it shares all of its memory with the parent program. When either the child or parent program tries to modify this memory, the kernel allocates a new memory region, copies the original contents and allows the program to modify this new region. This is known as copy on write.
	

		KSM is a new Linux feature which uses this concept in reverse. KSM enables the kernel to examine two or more already running programs and compare their memory. If any memory regions or pages are identical, KSM reduces multiple identical memory pages to a single page. This page is then marked copy on write. If the contents of the page is modified by a guest virtual machine, a new page is created for that guest virtual machine.
	

		This is useful for virtualization with KVM. When a guest virtual machine is started, it inherits only the memory from the parent qemu-kvm process. Once the guest virtual machine is running, the contents of the guest virtual machine operating system image can be shared when guests are running the same operating system or applications.
	
Note

			The page deduplication technology (used also by the KSM implementation) may introduce side channels that could potentially be used to leak information across multiple guests. In case this is a concern, KSM can be disabled on a per-guest basis.
		

		KSM provides enhanced memory speed and utilization. With KSM, common process data is stored in cache or in main memory. This reduces cache misses for the KVM guests which can improve performance for some applications and operating systems. Secondly, sharing memory reduces the overall memory usage of guests which allows for higher densities and greater utilization of resources.
	
Note

			Starting in Red Hat Enterprise Linux 6.5, KSM is NUMA aware. This allows it to take NUMA locality into account while coalescing pages, thus preventing performance drops related to pages being moved to a remote node. Red Hat recommends avoiding cross-node memory merging when KSM is in use. If KSM is in use, change the /sys/kernel/mm/ksm/merge_across_nodes tunable to 0 to avoid merging pages across NUMA nodes. Kernel memory accounting statistics can eventually contradict each other after large amounts of cross-node merging. As such, numad can become confused after the KSM daemon merges large amounts of memory. If your system has a large amount of free memory, you may achieve higher performance by turning off and disabling the KSM daemon. Refer to the Red Hat Enterprise Linux Performance Tuning Guide for more information on NUMA.
		

		Red Hat Enterprise Linux uses two separate methods for controlling KSM:
	
	
				The ksm service starts and stops the KSM kernel thread.
			

	
				The ksmtuned service controls and tunes the ksm, dynamically managing same-page merging. The ksmtuned service starts ksm and stops the ksm service if memory sharing is not necessary. The ksmtuned service must be told with the retune parameter to run when new guests are created or destroyed.
			

		Both of these services are controlled with the standard service management tools.
	
The KSM Service

			The ksm service is included in the qemu-kvm package. KSM is off by default on Red Hat Enterprise Linux 6. When using Red Hat Enterprise Linux 6 as a KVM host physical machine, however, it is likely turned on by the ksm/ksmtuned services.
		

		When the ksm service is not started, KSM shares only 2000 pages. This default is low and provides limited memory saving benefits.
	

		When the ksm service is started, KSM will share up to half of the host physical machine system's main memory. Start the ksm service to enable KSM to share more memory.
	
service ksm start
Starting ksm: [OK]

		The ksm service can be added to the default startup sequence. Make the ksm service persistent with the chkconfig command.
	
chkconfig ksm on
The KSM Tuning Service

			The ksmtuned service does not have any options. The ksmtuned service loops and adjusts ksm. The ksmtuned service is notified by libvirt when a guest virtual machine is created or destroyed.
		
service ksmtuned start
Starting ksmtuned: [OK]

		The ksmtuned service can be tuned with the retune parameter. The retune parameter instructs ksmtuned to run tuning functions manually.
	

		Before changing the parameters in the file, there are a few terms that need to be clarified:
	
	
				thres - Activation threshold, in kbytes. A KSM cycle is triggered when the thres value added to the sum of all qemu-kvm processes RSZ exceeds total system memory. This parameter is the equivalent in kbytes of the percentage defined in KSM_THRES_COEF.
			

		The /etc/ksmtuned.conf file is the configuration file for the ksmtuned service. The file output below is the default ksmtuned.conf file.
	
Configuration file for ksmtuned.

How long ksmtuned should sleep between tuning adjustments
KSM_MONITOR_INTERVAL=60

Millisecond sleep between ksm scans for 16Gb server.
Smaller servers sleep more, bigger sleep less.
KSM_SLEEP_MSEC=10

KSM_NPAGES_BOOST is added to the npages value, when free memory is less than thres.
KSM_NPAGES_BOOST=300

KSM_NPAGES_DECAY Value given is subtracted to the npages value, when free memory is greater than thres.
KSM_NPAGES_DECAY=-50

KSM_NPAGES_MIN is the lower limit for the npages value.
KSM_NPAGES_MIN=64

KSM_NAGES_MAX is the upper limit for the npages value.
KSM_NPAGES_MAX=1250

KSM_TRES_COEF - is the RAM percentage to be calculated in parameter thres.
KSM_THRES_COEF=20

KSM_THRES_CONST - If this is a low memory system, and the thres value is less than KSM_THRES_CONST, then reset thres value to KSM_THRES_CONST value.
KSM_THRES_CONST=2048

uncomment the following to enable ksmtuned debug information
LOGFILE=/var/log/ksmtuned
DEBUG=1

KSM Variables and Monitoring

			KSM stores monitoring data in the /sys/kernel/mm/ksm/ directory. Files in this directory are updated by the kernel and are an accurate record of KSM usage and statistics.
		

		The variables in the list below are also configurable variables in the /etc/ksmtuned.conf file as noted below.
	
The /sys/kernel/mm/ksm/ files
	full_scans
	
					Full scans run.
				

	pages_shared
	
					Total pages shared.
				

	pages_sharing
	
					Pages presently shared.
				

	pages_to_scan
	
					Pages not scanned.
				

	pages_unshared
	
					Pages no longer shared.
				

	pages_volatile
	
					Number of volatile pages.
				

	run
	
					Whether the KSM process is running.
				

	sleep_millisecs
	
					Sleep milliseconds.
				

		KSM tuning activity is stored in the /var/log/ksmtuned log file if the DEBUG=1 line is added to the /etc/ksmtuned.conf file. The log file location can be changed with the LOGFILE parameter. Changing the log file location is not advised and may require special configuration of SELinux settings.
	
Deactivating KSM

			KSM has a performance overhead which may be too large for certain environments or host physical machine systems.
		

		KSM can be deactivated by stopping the ksmtuned and the ksm service. Stopping the services deactivates KSM but does not persist after restarting.
	

service ksmtuned stop
Stopping ksmtuned: [OK]
service ksm stop
Stopping ksm: [OK]

		Persistently deactivate KSM with the chkconfig command. To turn off the services, run the following commands:
	
chkconfig ksm off
chkconfig ksmtuned off
Important

			Ensure the swap size is sufficient for the committed RAM even with KSM. KSM reduces the RAM usage of identical or similar guests. Overcommitting guests with KSM without sufficient swap space may be possible but is not recommended because guest virtual machine memory use can result in pages becoming unshared.
		

 ⁠Chapter 8. Advanced Guest Virtual Machine Administration

		This chapter covers advanced administration tools for fine tuning and controlling system resources as they are made available to guest virtual machines.
	

 ⁠8.1. Control Groups (cgroups)

			Red Hat Enterprise Linux 6 provides a new kernel feature: control groups, which are often referred to as cgroups. Cgroups allow you to allocate resources such as CPU time, system memory, network bandwidth, or a combination of these resources among user-defined groups of tasks (processes) running on a system. You can monitor the cgroups you configure, deny cgroups access to certain resources, and even reconfigure your cgroups dynamically on a running system.
		

			The cgroup functionality is fully supported by libvirt. By default, libvirt puts each guest into a separate control group for various controllers (such as memory, cpu, blkio, device).
		

			When a guest is started, it is already in a cgroup. The only configuration that may be required is the setting of policies on the cgroups. Refer to the Red Hat Enterprise Linux Resource Management Guide for more information on cgroups.
		

 ⁠8.2. Huge Page Support

			This section provides information about huge page support.
		
Introduction

				x86 CPUs usually address memory in 4kB pages, but they are capable of using larger pages known as huge pages. KVM guests can be deployed with huge page memory support in order to improve performance by increasing CPU cache hits against the Transaction Lookaside Buffer (TLB). Huge pages can significantly increase performance, particularly for large memory and memory-intensive workloads. Red Hat Enterprise Linux 6 is able to more effectively manage large amounts of memory by increasing the page size through the use of huge pages.
			

			By using huge pages for a KVM guest, less memory is used for page tables and TLB misses are reduced, thereby significantly increasing performance, especially for memory-intensive situations.
		
Transparent Huge Pages

				Transparent huge pages (THP) is a kernel feature that reduces TLB entries needed for an application. By also allowing all free memory to be used as cache, performance is increased.
			

			To use transparent huge pages, no special configuration in the qemu.conf file is required. Huge pages are used by default if /sys/kernel/mm/redhat_transparent_hugepage/enabled is set to always.
		

			Transparent huge pages do not prevent the use of the hugetlbfs feature. However, when hugetlbfs is not used, KVM will use transparent huge pages instead of the regular 4kB page size.
		
Note

				See the Red Hat Enterprise Linux 7 Virtualization Tuning and Optimization Guide for instructions on tuning memory performance with huge pages.
			

 ⁠8.3. Running Red Hat Enterprise Linux as a Guest Virtual Machine on a Hyper-V Hypervisor

			It is possible to run a Red Hat Enterprise Linux guest virtual machine on a Microsoft Windows host physical machine running the Microsoft Windows Hyper-V hypervisor. In particular, the following enhancements have been made to allow for easier deployment and management of Red Hat Enterprise Linux guest virtual machines:
		
	
					Upgraded VMBUS protocols - VMBUS protocols have been upgraded to Windows 8 level. As part of this work, now VMBUS interrupts can be processed on all available virtual CPUs in the guest. Furthermore, the signaling protocol between the Red Hat Enterprise Linux guest virtual machine and the Windows host physical machine has been optimized.
				

	
					Synthetic frame buffer driver - Provides enhanced graphics performance and superior resolution for Red Hat Enterprise Linux desktop users.
				

	
					Live Virtual Machine Backup support - Provisions uninterrupted backup support for live Red Hat Enterprise Linux guest virtual machines.
				

	
					Dynamic expansion of fixed size Linux VHDs - Allows expansion of live mounted fixed size Red Hat Enterprise Linux VHDs.
				

			For more information, refer to the following article: Enabling Linux Support on Windows Server 2012 R2 Hyper-V.
		
Note

				The Hyper-V hypervisor supports shrinking a GPT-partitioned disk on a Red Hat Enterprise Linux guest if there is free space after the last partition, by allowing the user to drop the unused last part of the disk. However, this operation will silently delete the secondary GPT header on the disk, which may produce error messages when the guest examines the partition table (for example, when printing the partition table with parted). This is a known limit of Hyper-V. As a workaround, it is possible to manually restore the secondary GPT header after shrinking the GPT disk by using the expert menu in gdisk and the e command. Furthermore, using the "expand" option in the Hyper-V manager also places the GPT secondary header in a location other than at the end of disk, but this can be moved with parted. See the gdisk and parted man pages for more information on these commands.
			

 ⁠8.4. Guest Virtual Machine Memory Allocation

			The following procedure shows how to allocate memory for a guest virtual machine. This allocation and assignment works only at boot time and any changes to any of the memory values will not take effect until the next reboot. The maximum memory that can be allocated per guest is 4 TiB, providing that this memory allocation is not more than what the host physical machine resources can provide.
		

			Valid memory units include:
		
	
					b or bytes for bytes
				

	
					KB for kilobytes (103 or blocks of 1,000 bytes)
				

	
					k or KiB for kibibytes (210 or blocks of 1024 bytes)
				

	
					MB for megabytes (106 or blocks of 1,000,000 bytes)
				

	
					M or MiB for mebibytes (220 or blocks of 1,048,576 bytes)
				

	
					GB for gigabytes (109 or blocks of 1,000,000,000 bytes)
				

	
					G or GiB for gibibytes (230 or blocks of 1,073,741,824 bytes)
				

	
					TB for terabytes (1012 or blocks of 1,000,000,000,000 bytes)
				

	
					T or TiB for tebibytes (240 or blocks of 1,099,511,627,776 bytes)
				

			Note that all values will be rounded up to the nearest kibibyte by libvirt, and may be further rounded to the granularity supported by the hypervisor. Some hypervisors also enforce a minimum, such as 4000KiB (or 4000 x 210 or 4,096,000 bytes). The units for this value are determined by the optional attribute memory unit, which defaults to the kibibytes (KiB) as a unit of measure where the value given is multiplied by 210 or blocks of 1024 bytes.
		

			In the cases where the guest virtual machine crashes the optional attribute dumpCore can be used to control whether the guest virtual machine's memory should be included in the generated coredump (dumpCore='on') or not included (dumpCore='off'). Note that the default setting is on so if the parameter is not set to off, the guest virtual machine memory will be included in the coredump file.
		

			The currentMemory attribute determines the actual memory allocation for a guest virtual machine. This value can be less than the maximum allocation, to allow for ballooning up the guest virtual machines memory on the fly. If this is omitted, it defaults to the same value as the memory element. The unit attribute behaves the same as for memory.
		

			In all cases for this section, the domain XML needs to be altered as follows:
		

<domain>

 <memory unit='KiB' dumpCore='off'>524288</memory>
 <!-- changes the memory unit to KiB and does not allow the guest virtual machine's memory to be included in the generated coredump file -->
 <currentMemory unit='KiB'>524288</currentMemory>
 <!-- makes the current memory unit 524288 KiB -->
 ...
</domain>

 ⁠8.5. Automatically Starting Guest Virtual Machines

			This section covers how to make guest virtual machines start automatically during the host physical machine system's boot phase.
		

			This example uses virsh to set a guest virtual machine, TestServer, to automatically start when the host physical machine boots.
		
virsh autostart TestServer
Domain TestServer marked as autostarted

			The guest virtual machine now automatically starts with the host physical machine.
		

			To stop a guest virtual machine automatically booting use the --disable parameter
		
virsh autostart --disable TestServer
Domain TestServer unmarked as autostarted

			The guest virtual machine no longer automatically starts with the host physical machine.
		

 ⁠8.6. Disable SMART Disk Monitoring for Guest Virtual Machines

			SMART disk monitoring can be safely disabled as virtual disks and the physical storage devices are managed by the host physical machine.
		
service smartd stop
chkconfig --del smartd

 ⁠8.7. Configuring a VNC Server

			To configure a VNC server, use the Remote Desktop application in System > Preferences. Alternatively, you can run the vino-preferences command.
		

			Use the following step set up a dedicated VNC server session:
		

			If needed, Create and then Edit the ~/.vnc/xstartup file to start a GNOME session whenever vncserver is started. The first time you run the vncserver script it will ask you for a password you want to use for your VNC session. For more information on vnc server files refer to the Red Hat Enterprise Linux Installation Guide.
		

 ⁠8.8. Generating a New Unique MAC Address

			In some cases you will need to generate a new and unique MAC address for a guest virtual machine. There is no command line tool available to generate a new MAC address at the time of writing. The script provided below can generate a new MAC address for your guest virtual machines. Save the script on your guest virtual machine as macgen.py. Now from that directory you can run the script using ./macgen.py and it will generate a new MAC address. A sample output would look like the following:
		
$./macgen.py
00:16:3e:20:b0:11
#!/usr/bin/python
macgen.py script to generate a MAC address for guest virtual machines
#
import random
#
def randomMAC():
	mac = [0x00, 0x16, 0x3e,
		random.randint(0x00, 0x7f),
		random.randint(0x00, 0xff),
		random.randint(0x00, 0xff)]
	return ':'.join(map(lambda x: "%02x" % x, mac))
#
print randomMAC()

 ⁠8.8.1. Another Method to Generate a New MAC for Your Guest Virtual Machine

				You can also use the built-in modules of python-virtinst to generate a new MAC address and UUID for use in a guest virtual machine configuration file:
			
echo 'import virtinst.util ; print\
 virtinst.util.uuidToString(virtinst.util.randomUUID())' | python
echo 'import virtinst.util ; print virtinst.util.randomMAC()' | python

				The script above can also be implemented as a script file as seen below.
			
#!/usr/bin/env python
-*- mode: python; -*-
print ""
print "New UUID:"
import virtinst.util ; print virtinst.util.uuidToString(virtinst.util.randomUUID())
print "New MAC:"
import virtinst.util ; print virtinst.util.randomMAC()
print ""

 ⁠8.9. Improving Guest Virtual Machine Response Time

			Guest virtual machines can sometimes be slow to respond with certain workloads and usage patterns. Examples of situations which may cause slow or unresponsive guest virtual machines:
		
	
					Severely overcommitted memory.
				

	
					Overcommitted memory with high processor usage
				

	
					Other (not qemu-kvm processes) busy or stalled processes on the host physical machine.
				

			KVM guest virtual machines function as Linux processes. Linux processes are not permanently kept in main memory (physical RAM) and will be placed into swap space (virtual memory) especially if they are not being used. If a guest virtual machine is inactive for long periods of time, the host physical machine kernel may move the guest virtual machine into swap. As swap is slower than physical memory it may appear that the guest is not responding. This changes once the guest is loaded into the main memory. Note that the process of loading a guest virtual machine from swap to main memory may take several seconds per gigabyte of RAM assigned to the guest virtual machine, depending on the type of storage used for swap and the performance of the components.
		

			KVM guest virtual machines processes may be moved to swap regardless of whether memory is overcommitted or overall memory usage.
		

			Using unsafe overcommit levels or overcommitting with swap turned off guest virtual machine processes or other critical processes is not recommended. Always ensure the host physical machine has sufficient swap space when overcommitting memory.
		

			For more information on overcommitting with KVM, refer to Chapter 6, Overcommitting with KVM.
		
Warning

				Virtual memory allows a Linux system to use more memory than there is physical RAM on the system. Underused processes are swapped out which allows active processes to use memory, improving memory utilization. Disabling swap reduces memory utilization as all processes are stored in physical RAM.
			

				If swap is turned off, do not overcommit guest virtual machines. Overcommitting guest virtual machines without any swap can cause guest virtual machines or the host physical machine system to crash.
			

 ⁠8.10. Virtual Machine Timer Management with libvirt

			Accurate time keeping on guest virtual machines is a key challenge for virtualization platforms. Different hypervisors attempt to handle the problem of time keeping in a variety of ways. libvirt provides hypervisor independent configuration settings for time management, using the <clock> and <timer> elements in the domain XML. The domain XML can be edited using the virsh edit command. See Section 14.6, “Editing a Guest Virtual Machine's configuration file” for details.
		

			The <clock> element is used to determine how the guest virtual machine clock is synchronized with the host physical machine clock. The clock element has the following attributes:
		
	
					offset determines how the guest virtual machine clock is offset from the host physical machine clock. The offset attribute has the following possible values:
				

 ⁠Table 8.1. Offset attribute values
	Value	Description
	utc	The guest virtual machine clock will be synchronized to UTC when booted.
	localtime	The guest virtual machine clock will be synchronized to the host physical machine's configured timezone when booted, if any.
	timezone	The guest virtual machine clock will be synchronized to a given timezone, specified by the timezone attribute.
	variable	The guest virtual machine clock will be synchronized to an arbitrary offset from UTC. The delta relative to UTC is specified in seconds, using the adjustment attribute. The guest virtual machine is free to adjust the Real Time Clock (RTC) over time and expect that it will be honored following the next reboot. This is in contrast to utc mode, where any RTC adjustments are lost at each reboot.

Note

						The value utc is set as the clock offset in a virtual machine by default. However, if the guest virtual machine clock is run with the localtime value, the clock offset needs to be changed to a different value in order to have the guest virtual machine clock synchronized with the host physical machine clock.
					

	
					The timezone attribute determines which timezone is used for the guest virtual machine clock.
				

	
					The adjustment attribute provides the delta for guest virtual machine clock synchronization. In seconds, relative to UTC.
				

 ⁠Example 8.1. Always synchronize to UTC
<clock offset="utc" />

 ⁠Example 8.2. Always synchronize to the host physical machine timezone
<clock offset="localtime" />

 ⁠Example 8.3. Synchronize to an arbitrary timezone
<clock offset="timezone" timezone="Europe/Paris" />

 ⁠Example 8.4. Synchronize to UTC + arbitrary offset
<clock offset="variable" adjustment="123456" />

 ⁠8.10.1. timer Child Element for clock

				A clock element can have zero or more timer elements as children. The timer element specifies a time source used for guest virtual machine clock synchronization. The timer element has the following attributes. Only the name is required, all other attributes are optional.
			

				The name attribute dictates the type of the time source to use, and can be one of the following:
			

 ⁠Table 8.2. name attribute values
	Value	Description
	pit	Programmable Interval Timer - a timer with periodic interrupts.
	rtc	Real Time Clock - a continuously running timer with periodic interrupts.
	tsc	Time Stamp Counter - counts the number of ticks since reset, no interrupts.
	kvmclock	KVM clock - recommended clock source for KVM guest virtual machines. KVM pvclock, or kvm-clock lets guest virtual machines read the host physical machine’s wall clock time.

 ⁠8.10.2. track

				The track attribute specifies what is tracked by the timer. Only valid for a name value of rtc.
			

 ⁠Table 8.3. track attribute values
	Value	Description
	boot	Corresponds to old host physical machine option, this is an unsupported tracking option.
	guest	RTC always tracks guest virtual machine time.
	wall	RTC always tracks host time.

 ⁠8.10.3. tickpolicy

				The tickpolicy attribute assigns the policy used to pass ticks on to the guest virtual machine. The following values are accepted:
			

 ⁠Table 8.4. tickpolicy attribute values
	Value	Description
	delay	Continue to deliver at normal rate (so ticks are delayed).
	catchup	Deliver at a higher rate to catch up.
	merge	Ticks merged into one single tick.
	discard	All missed ticks are discarded.

 ⁠8.10.4. frequency, mode, and present

				The frequency attribute is used to set a fixed frequency, and is measured in Hz. This attribute is only relevant when the name element has a value of tsc. All other timers operate at a fixed frequency (pit, rtc).
			

				mode determines how the time source is exposed to the guest virtual machine. This attribute is only relevant for a name value of tsc. All other timers are always emulated. Command is as follows: <timer name='tsc' frequency='NNN' mode='auto|native|emulate|smpsafe'/>. Mode definitions are given in the table.
			

 ⁠Table 8.5. mode attribute values
	Value	Description
	auto	Native if TSC is unstable, otherwise allow native TSC access.
	native	Always allow native TSC access.
	emulate	Always emulate TSC.
	smpsafe	Always emulate TSC and interlock SMP

				present is used to override the default set of timers visible to the guest virtual machine..
			

 ⁠Table 8.6. present attribute values
	Value	Description
	yes	Force this timer to the visible to the guest virtual machine.
	no	Force this timer to not be visible to the guest virtual machine.

 ⁠8.10.5. Examples Using Clock Synchronization

 ⁠Example 8.5. Clock synchronizing to local time with RTC and PIT timers

					In this example. the clock is synchronized to local time with RTC and PIT timers
				
<clock offset="localtime">
	<timer name="rtc" tickpolicy="catchup" track="guest virtual machine" />
	<timer name="pit" tickpolicy="delay" />
	
</clock>

Note

					The PIT clocksource can be used with a 32-bit guest running under a 64-bit host (which cannot use PIT), with the following conditions:
				
	
							Guest virtual machine may have only one CPU
						

	
							APIC timer must be disabled (use the "noapictimer" command line option)
						

	
							NoHZ mode must be disabled in the guest (use the "nohz=off" command line option)
						

	
							High resolution timer mode must be disabled in the guest (use the "highres=off" command line option)
						

	
							The PIT clocksource is not compatible with either high resolution timer mode, or NoHz mode.
						

 ⁠8.11. Using PMU to Monitor Guest Virtual Machine Performance

			In Red Hat Enterprise Linux 6.4, vPMU (virtual PMU) was introduced as a Technology Preview. vPMU is based on Intel's PMU (Performance Monitoring Units) and may only be used on Intel machines. PMU allows the tracking of statistics which indicate how a guest virtual machine is functioning.
		

			Using performance monitoring, allows developers to use the CPU's PMU counter while using the performance tool for profiling. The virtual performance monitoring unit feature allows virtual machine users to identify sources of possible performance problems in their guest virtual machines, thereby improving the ability to profile a KVM guest virtual machine.
		

			To enable the feature, the -cpu host flag must be set.
		

			This feature is only supported with guest virtual machines running Red Hat Enterprise Linux 6 and is disabled by default. This feature only works using the Linux perf tool. Make sure the perf package is installed using the command:
		
yum install perf.

			See the man page on perf for more information on the perf commands.
		

 ⁠8.12. Guest Virtual Machine Power Management

			It is possible to forcibly enable or disable BIOS advertisements to the guest virtual machine's operating system by changing the following parameters in the Domain XML for Libvirt:
		

...
 <pm>
 <suspend-to-disk enabled='no'/>
 <suspend-to-mem enabled='yes'/>
 </pm>
 ...

			The element pm enables ('yes') or disables ('no') BIOS support for S3 (suspend-to-disk) and S4 (suspend-to-mem) ACPI sleep states. If nothing is specified, then the hypervisor will be left with its default value.
		

 ⁠Chapter 9. Guest virtual machine device configuration

		Red Hat Enterprise Linux 6 supports three classes of devices for guest virtual machines:
	
	
				Emulated devices are purely virtual devices that mimic real hardware, allowing unmodified guest operating systems to work with them using their standard in-box drivers. Red Hat Enterprise Linux 6 supports up to 216 virtio devices.
			

	
				Virtio devices are purely virtual devices designed to work optimally in a virtual machine. Virtio devices are similar to emulated devices, however, non-Linux virtual machines do not include the drivers they require by default. Virtualization management software like the Virtual Machine Manager (virt-manager) and the Red Hat Virtualization Hypervisor (RHV-H) install these drivers automatically for supported non-Linux guest operating systems. Red Hat Enterprise Linux 6 supports up to 700 scsi disks.
			

	
				Assigned devices are physical devices that are exposed to the virtual machine. This method is also known as 'passthrough'. Device assignment allows virtual machines exclusive access to PCI devices for a range of tasks, and allows PCI devices to appear and behave as if they were physically attached to the guest operating system. Red Hat Enterprise Linux 6 supports up to 32 assigned devices per virtual machine.
			

		Device assignment is supported on PCIe devices, including select graphics devices. Nvidia K-series Quadro, GRID, and Tesla graphics card GPU functions are now supported with device assignment in Red Hat Enterprise Linux 6. Parallel PCI devices may be supported as assigned devices, but they have severe limitations due to security and system configuration conflicts.
	
Note

			The number of devices that can be attached to a virtual machine depends on several factors. One factor is the number of files open by the QEMU process (configured in /etc/security/limits.conf, which can be overridden by /etc/libvirt/qemu.conf). Other limitation factors include the number of slots available on the virtual bus, as well as the system-wide limit on open files set by sysctl.
		

		For more information on specific devices and for limitations refer to Section 20.16, “Devices”.
	

		Red Hat Enterprise Linux 6 supports PCI hot plug of devices exposed as single function slots to the virtual machine. Single function host devices and individual functions of multi-function host devices may be configured to enable this. Configurations exposing devices as multi-function PCI slots to the virtual machine are recommended only for non-hotplug applications.
	
Note

			Platform support for interrupt remapping is required to fully isolate a guest with assigned devices from the host. Without such support, the host may be vulnerable to interrupt injection attacks from a malicious guest. In an environment where guests are trusted, the admin may opt-in to still allow PCI device assignment using the allow_unsafe_interrupts option to the vfio_iommu_type1 module. This may either be done persistently by adding a .conf file (for example local.conf) to /etc/modprobe.d containing the following:
options vfio_iommu_type1 allow_unsafe_interrupts=1

			 or dynamically using the sysfs entry to do the same:
echo 1 > /sys/module/vfio_iommu_type1/parameters/allow_unsafe_interrupts

		

 ⁠9.1. PCI Devices

			PCI device assignment is only available on hardware platforms supporting either Intel VT-d or AMD IOMMU. These Intel VT-d or AMD IOMMU specifications must be enabled in BIOS for PCI device assignment to function.
		

 ⁠Procedure 9.1. Preparing an Intel system for PCI device assignment
	Enable the Intel VT-d specifications

					The Intel VT-d specifications provide hardware support for directly assigning a physical device to a virtual machine. These specifications are required to use PCI device assignment with Red Hat Enterprise Linux.
				

					The Intel VT-d specifications must be enabled in the BIOS. Some system manufacturers disable these specifications by default. The terms used to refer to these specifications can differ between manufacturers; consult your system manufacturer's documentation for the appropriate terms.
				

	Activate Intel VT-d in the kernel

					Activate Intel VT-d in the kernel by adding the intel_iommu=on parameter to the end of the GRUB_CMDLINX_LINUX line, within the quotes, in the /etc/sysconfig/grub file.
				

					The example below is a modified grub file with Intel VT-d activated.
				
GRUB_CMDLINE_LINUX="rd.lvm.lv=vg_VolGroup00/LogVol01
vconsole.font=latarcyrheb-sun16 rd.lvm.lv=vg_VolGroup_1/root
vconsole.keymap=us $([-x /usr/sbin/rhcrashkernel-param] && /usr/sbin/
rhcrashkernel-param || :) rhgb quiet intel_iommu=on"

	Regenerate config file

					Regenerate /etc/grub2.cfg by running:
				
grub2-mkconfig -o /etc/grub2.cfg

					Note that if you are using a UEFI-based host, the target file should be /etc/grub2-efi.cfg.
				

	Ready to use

					Reboot the system to enable the changes. Your system is now capable of PCI device assignment.
				

 ⁠Procedure 9.2. Preparing an AMD system for PCI device assignment
	Enable the AMD IOMMU specifications

					The AMD IOMMU specifications are required to use PCI device assignment in Red Hat Enterprise Linux. These specifications must be enabled in the BIOS. Some system manufacturers disable these specifications by default.
				

	Enable IOMMU kernel support

					Append amd_iommu=on to the end of the GRUB_CMDLINX_LINUX line, within the quotes, in /etc/sysconfig/grub so that AMD IOMMU specifications are enabled at boot.
				

	Regenerate config file

					Regenerate /etc/grub2.cfg by running:
				
grub2-mkconfig -o /etc/grub2.cfg

					Note that if you are using a UEFI-based host, the target file should be /etc/grub2-efi.cfg.
				

	Ready to use

					Reboot the system to enable the changes. Your system is now capable of PCI device assignment.
				

 ⁠9.1.1. Assigning a PCI Device with virsh

				These steps cover assigning a PCI device to a virtual machine on a KVM hypervisor.
			

				This example uses a PCIe network controller with the PCI identifier code, pci_0000_01_00_0, and a fully virtualized guest machine named guest1-rhel6-64.
			

 ⁠Procedure 9.3. Assigning a PCI device to a guest virtual machine with virsh
	Identify the device

						First, identify the PCI device designated for device assignment to the virtual machine. Use the lspci command to list the available PCI devices. You can refine the output of lspci with grep.
					

						This example uses the Ethernet controller highlighted in the following output:
					
lspci | grep Ethernet
00:19.0 Ethernet controller: Intel Corporation 82567LM-2 Gigabit Network Connection
01:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)
01:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)

						This Ethernet controller is shown with the short identifier 00:19.0. We need to find out the full identifier used by virsh in order to assign this PCI device to a virtual machine.
					

						To do so, use the virsh nodedev-list command to list all devices of a particular type (pci) that are attached to the host machine. Then look at the output for the string that maps to the short identifier of the device you wish to use.
					

						This example highlights the string that maps to the Ethernet controller with the short identifier 00:19.0. In this example, the : and . characters are replaced with underscores in the full identifier.
					
virsh nodedev-list --cap pci
pci_0000_00_00_0
pci_0000_00_01_0
pci_0000_00_03_0
pci_0000_00_07_0
pci_0000_00_10_0
pci_0000_00_10_1
pci_0000_00_14_0
pci_0000_00_14_1
pci_0000_00_14_2
pci_0000_00_14_3
pci_0000_00_19_0
pci_0000_00_1a_0
pci_0000_00_1a_1
pci_0000_00_1a_2
pci_0000_00_1a_7
pci_0000_00_1b_0
pci_0000_00_1c_0
pci_0000_00_1c_1
pci_0000_00_1c_4
pci_0000_00_1d_0
pci_0000_00_1d_1
pci_0000_00_1d_2
pci_0000_00_1d_7
pci_0000_00_1e_0
pci_0000_00_1f_0
pci_0000_00_1f_2
pci_0000_00_1f_3
pci_0000_01_00_0
pci_0000_01_00_1
pci_0000_02_00_0
pci_0000_02_00_1
pci_0000_06_00_0
pci_0000_07_02_0
pci_0000_07_03_0

						Record the PCI device number that maps to the device you want to use; this is required in other steps.
					

	Review device information

						Information on the domain, bus, and function are available from output of the virsh nodedev-dumpxml command:
					
virsh nodedev-dumpxml pci_0000_00_19_0
<device>
 <name>pci_0000_00_19_0</name>
 <parent>computer</parent>
 <driver>
 <name>e1000e</name>
 </driver>
 <capability type='pci'>
 <domain>0</domain>
 <bus>0</bus>
 <slot>25</slot>
 <function>0</function>
 <product id='0x1502'>82579LM Gigabit Network Connection</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 <iommuGroup number='7'>
 <address domain='0x0000' bus='0x00' slot='0x19' function='0x0'/>
 </iommuGroup>
 </capability>
</device>
Note

							An IOMMU group is determined based on the visibility and isolation of devices from the perspective of the IOMMU. Each IOMMU group may contain one or more devices. When multiple devices are present, all endpoints within the IOMMU group must be claimed for any device within the group to be assigned to a guest. This can be accomplished either by also assigning the extra endpoints to the guest or by detaching them from the host driver using virsh nodedev-detach. Devices contained within a single group may not be split between multiple guests or split between host and guest. Non-endpoint devices such as PCIe root ports, switch ports, and bridges should not be detached from the host drivers and will not interfere with assignment of endpoints.
						

							Devices within an IOMMU group can be determined using the iommuGroup section of the virsh nodedev-dumpxml output. Each member of the group is provided via a separate "address" field. This information may also be found in sysfs using the following:
$ ls /sys/bus/pci/devices/0000:01:00.0/iommu_group/devices/

							 An example of the output from this would be:
0000:01:00.0 0000:01:00.1

							 To assign only 0000.01.00.0 to the guest, the unused endpoint should be detached from the host before starting the guest:
$ virsh nodedev-detach pci_0000_01_00_1

						

	Determine required configuration details

						Refer to the output from the virsh nodedev-dumpxml pci_0000_00_19_0 command for the values required for the configuration file.
					

						The example device has the following values: bus = 0, slot = 25 and function = 0. The decimal configuration uses those three values:
					
bus='0'
slot='25'
function='0'

	Add configuration details

						Run virsh edit, specifying the virtual machine name, and add a device entry in the <source> section to assign the PCI device to the guest virtual machine.
					
virsh edit guest1-rhel6-64
<hostdev mode='subsystem' type='pci' managed='yes'>
 <source>
 <address domain='0' bus='0' slot='25' function='0'/>
 </source>
</hostdev>

						Alternately, run virsh attach-device, specifying the virtual machine name and the guest's XML file:
					
virsh attach-device guest1-rhel6-64 file.xml

	Start the virtual machine
virsh start guest1-rhel6-64

				The PCI device should now be successfully assigned to the virtual machine, and accessible to the guest operating system.
			

 ⁠9.1.2. Assigning a PCI Device with virt-manager

				PCI devices can be added to guest virtual machines using the graphical virt-manager tool. The following procedure adds a Gigabit Ethernet controller to a guest virtual machine.
			

 ⁠Procedure 9.4. Assigning a PCI device to a guest virtual machine using virt-manager
	Open the hardware settings

						Open the guest virtual machine and click the Add Hardware button to add a new device to the virtual machine.
					

 ⁠[image: The virtual machine hardware window with the Information button selected on the top taskbar and Overview selected on the left menu pane.]

Figure 9.1. The virtual machine hardware information window

	Select a PCI device

						Select PCI Host Device from the Hardware list on the left.
					

						Select an unused PCI device. If you select a PCI device that is in use by another guest an error may result. In this example, a spare 82576 network device is used. Click Finish to complete setup.
					

 ⁠[image: The Add new virtual hardware wizard with PCI Host Device selected on the left menu pane, showing a list of host devices for selection in the right menu pane.]

Figure 9.2. The Add new virtual hardware wizard

	Add the new device

						The setup is complete and the guest virtual machine now has direct access to the PCI device.
					

 ⁠[image: The virtual machine hardware window with the Information button selected on the top taskbar and Overview selected on the left menu pane, displaying the newly added PCI Device in the list of virtual machine devices in the left menu pane.]

Figure 9.3. The virtual machine hardware information window

Note

					If device assignment fails, there may be other endpoints in the same IOMMU group that are still attached to the host. There is no way to retrieve group information using virt-manager, but virsh commands can be used to analyze the bounds of the IOMMU group and if necessary sequester devices.
				

					Refer to the Note in Section 9.1.1, “Assigning a PCI Device with virsh” for more information on IOMMU groups and how to detach endpoint devices using virsh.
				

 ⁠9.1.3. PCI Device Assignment with virt-install

				To use virt-install to assign a PCI device, use the --host-device parameter.
			

 ⁠Procedure 9.5. Assigning a PCI device to a virtual machine with virt-install
	Identify the device

						Identify the PCI device designated for device assignment to the guest virtual machine.
					
lspci | grep Ethernet
00:19.0 Ethernet controller: Intel Corporation 82567LM-2 Gigabit Network Connection
01:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)
01:00.1 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)

						The virsh nodedev-list command lists all devices attached to the system, and identifies each PCI device with a string. To limit output to only PCI devices, run the following command:
					
virsh nodedev-list --cap pci
pci_0000_00_00_0
pci_0000_00_01_0
pci_0000_00_03_0
pci_0000_00_07_0
pci_0000_00_10_0
pci_0000_00_10_1
pci_0000_00_14_0
pci_0000_00_14_1
pci_0000_00_14_2
pci_0000_00_14_3
pci_0000_00_19_0
pci_0000_00_1a_0
pci_0000_00_1a_1
pci_0000_00_1a_2
pci_0000_00_1a_7
pci_0000_00_1b_0
pci_0000_00_1c_0
pci_0000_00_1c_1
pci_0000_00_1c_4
pci_0000_00_1d_0
pci_0000_00_1d_1
pci_0000_00_1d_2
pci_0000_00_1d_7
pci_0000_00_1e_0
pci_0000_00_1f_0
pci_0000_00_1f_2
pci_0000_00_1f_3
pci_0000_01_00_0
pci_0000_01_00_1
pci_0000_02_00_0
pci_0000_02_00_1
pci_0000_06_00_0
pci_0000_07_02_0
pci_0000_07_03_0

						Record the PCI device number; the number is needed in other steps.
					

						Information on the domain, bus and function are available from output of the virsh nodedev-dumpxml command:
					
virsh nodedev-dumpxml pci_0000_01_00_0
<device>
 <name>pci_0000_01_00_0</name>
 <parent>pci_0000_00_01_0</parent>
 <driver>
 <name>igb</name>
 </driver>
 <capability type='pci'>
 <domain>0</domain>
 <bus>1</bus>
 <slot>0</slot>
 <function>0</function>
 <product id='0x10c9'>82576 Gigabit Network Connection</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 <iommuGroup number='7'>
 <address domain='0x0000' bus='0x00' slot='0x19' function='0x0'/>
 </iommuGroup>
 </capability>
</device>
Note

							If there are multiple endpoints in the IOMMU group and not all of them are assigned to the guest, you will need to manually detach the other endpoint(s) from the host by running the following command before you start the guest:
$ virsh nodedev-detach pci_0000_00_19_1

						

							Refer to the Note in Section 9.1.1, “Assigning a PCI Device with virsh” for more information on IOMMU groups.
						

	Add the device

						Use the PCI identifier output from the virsh nodedev command as the value for the --host-device parameter.
					
virt-install \
--name=guest1-rhel6-64 \
--disk path=/var/lib/libvirt/images/guest1-rhel6-64.img,size=8 \
--nonsparse --graphics spice \
--vcpus=2 --ram=2048 \
--location=http://example1.com/installation_tree/RHEL6.0-Server-x86_64/os \
--nonetworks \
--os-type=linux \
--os-variant=rhel6
--host-device=pci_0000_01_00_0

	Complete the installation

						Complete the guest installation. The PCI device should be attached to the guest.
					

 ⁠9.1.4. Detaching an Assigned PCI Device

				When a host PCI device has been assigned to a guest machine, the host can no longer use the device. Read this section to learn how to detach the device from the guest with virsh or virt-manager so it is available for host use.
			

 ⁠Procedure 9.6. Detaching a PCI device from a guest with virsh
	Detach the device

						Use the following command to detach the PCI device from the guest by removing it in the guest's XML file:
					
virsh detach-device name_of_guest file.xml

	Re-attach the device to the host (optional)

						If the device is in managed mode, skip this step. The device will be returned to the host automatically.
					

						If the device is not using managed mode, use the following command to re-attach the PCI device to the host machine:
					
virsh nodedev-reattach device

						For example, to re-attach the pci_0000_01_00_0 device to the host:
					
virsh nodedev-reattach pci_0000_01_00_0

						The device is now available for host use.
					

 ⁠Procedure 9.7. Detaching a PCI Device from a guest with virt-manager
	Open the virtual hardware details screen

						In virt-manager, double-click on the virtual machine that contains the device. Select the Show virtual hardware details button to display a list of virtual hardware.
					

 ⁠[image: The Show virtual hardware details button.]

Figure 9.4. The virtual hardware details button

	Select and remove the device

						Select the PCI device to be detached from the list of virtual devices in the left panel.
					

 ⁠[image: The PCI device details and the Remove button.]

Figure 9.5. Selecting the PCI device to be detached

						Click the Remove button to confirm. The device is now available for host use.
					

 ⁠9.1.5. Creating PCI Bridges

				Peripheral Component Interconnects (PCI) bridges are used to attach to devices such as network cards, modems and sound cards. Just like their physical counterparts, virtual devices can also be attached to a PCI Bridge. In the past, only 31 PCI devices could be added to any guest virtual machine. Now, when a 31st PCI device is added, a PCI bridge is automatically placed in the 31st slot moving the additional PCI device to the PCI bridge. Each PCI bridge has 31 slots for 31 additional devices, all of which can be bridges. In this manner, over 900 devices can be available for guest virtual machines.
			
Note

					This action cannot be performed when the guest virtual machine is running. You must add the PCI device on a guest virtual machine that is shutdown.
				

 ⁠9.1.6. PCI Passthrough

				A PCI network device (specified by the <source> element) is directly assigned to the guest using generic device passthrough, after first optionally setting the device's MAC address to the configured value, and associating the device with an 802.1Qbh capable switch using an optionally specified <virtualport> element (see the examples of virtualport given above for type='direct' network devices). Due to limitations in standard single-port PCI ethernet card driver design - only SR-IOV (Single Root I/O Virtualization) virtual function (VF) devices can be assigned in this manner; to assign a standard single-port PCI or PCIe Ethernet card to a guest, use the traditional <hostdev> device definition.
			

				To use VFIO device assignment rather than traditional/legacy KVM device assignment (VFIO is a new method of device assignment that is compatible with UEFI Secure Boot), a <type='hostdev'> interface can have an optional driver sub-element with a name attribute set to "vfio". To use legacy KVM device assignment you can set name to "kvm" (or simply omit the <driver> element, since <driver='kvm'> is currently the default).
			
Note

					Intelligent passthrough of network devices is very similar to the functionality of a standard <hostdev> device, the difference being that this method allows specifying a MAC address and <virtualport> for the passed-through device. If these capabilities are not required, if you have a standard single-port PCI, PCIe, or USB network card that does not support SR-IOV (and hence would anyway lose the configured MAC address during reset after being assigned to the guest domain), or if you are using a version of libvirt older than 0.9.11, you should use standard <hostdev> to assign the device to the guest instead of <interface type='hostdev'/>.
				

 ⁠​
​
​ <devices>
​ <interface type='hostdev'>
​ <driver name='vfio'/>
​ <source>
​ <address type='pci' domain='0x0000' bus='0x00' slot='0x07' function='0x0'/>
​ </source>
​ <mac address='52:54:00:6d:90:02'>
​ <virtualport type='802.1Qbh'>
​ <parameters profileid='finance'/>
​ </virtualport>
​ </interface>
​ </devices>

Figure 9.6. XML example for PCI device assignment

 ⁠9.1.7. Configuring PCI Assignment (Passthrough) with SR-IOV Devices

				This section is for SR-IOV devices only. SR-IOV network cards provide multiple Virtual Functions (VFs) that can each be individually assigned to a guest virtual machines using PCI device assignment. Once assigned, each will behave as a full physical network device. This permits many guest virtual machines to gain the performance advantage of direct PCI device assignment, while only using a single slot on the host physical machine.
			

				These VFs can be assigned to guest virtual machines in the traditional manner using the element <hostdev>, but as SR-IOV VF network devices do not have permanent unique MAC addresses, it causes issues where the guest virtual machine's network settings would have to be re-configured each time the host physical machine is rebooted. To remedy this, you would need to set the MAC address prior to assigning the VF to the host physical machine and you would need to set this each and every time the guest virtual machine boots. In order to assign this MAC address as well as other options, refer to the procedure described in Procedure 9.8, “Configuring MAC addresses, vLAN, and virtual ports for assigning PCI devices on SR-IOV”.
			

 ⁠Procedure 9.8. Configuring MAC addresses, vLAN, and virtual ports for assigning PCI devices on SR-IOV

					It is important to note that the <hostdev> element cannot be used for function-specific items like MAC address assignment, vLAN tag ID assignment, or virtual port assignment because the <mac>, <vlan>, and <virtualport> elements are not valid children for <hostdev>. As they are valid for <interface>, support for a new interface type was added (<interface type='hostdev'>). This new interface device type behaves as a hybrid of an <interface> and <hostdev>. Thus, before assigning the PCI device to the guest virtual machine, libvirt initializes the network-specific hardware/switch that is indicated (such as setting the MAC address, setting a vLAN tag, or associating with an 802.1Qbh switch) in the guest virtual machine's XML configuration file. For information on setting the vLAN tag, refer to Section 18.14, “Setting vLAN Tags”.
				
	Shutdown the guest virtual machine

						Using virsh shutdown command (refer to Section 14.9.1, “Shutting Down a Guest Virtual Machine”), shutdown the guest virtual machine named guestVM.
					
virsh shutdown guestVM

	Gather information

						In order to use <interface type='hostdev'>, you must have an SR-IOV-capable network card, host physical machine hardware that supports either the Intel VT-d or AMD IOMMU extensions, and you must know the PCI address of the VF that you wish to assign.
					

	Open the XML file for editing

						Run the # virsh save-image-edit command to open the XML file for editing (refer to Section 14.8.10, “Edit Domain XML Configuration Files” for more information). As you would want to restore the guest virtual machine to its former running state, the --running would be used in this case. The name of the configuration file in this example is guestVM.xml, as the name of the guest virtual machine is guestVM.
					
 # virsh save-image-edit guestVM.xml --running

						The guestVM.xml opens in your default editor.
					

	Edit the XML file

						Update the configuration file (guestVM.xml) to have a <devices> entry similar to the following:
					

 ⁠​
​
​ <devices>
​ ...
​ <interface type='hostdev' managed='yes'>
​ <source>
​ <address type='pci' domain='0x0' bus='0x00' slot='0x07' function='0x0'/> <!--these values can be decimal as well-->
​ </source>
​ <mac address='52:54:00:6d:90:02'/> <!--sets the mac address-->
​ <virtualport type='802.1Qbh'> <!--sets the virtual port for the 802.1Qbh switch-->
​ <parameters profileid='finance'/>
​ </virtualport>
​ <vlan> <!--sets the vlan tag-->
​ <tag id='42'/>
​ </vlan>
​ </interface>
​ ...
​ </devices>
​

Figure 9.7. Sample domain XML for hostdev interface type

						Note that if you do not provide a MAC address, one will be automatically generated, just as with any other type of interface device. Also, the <virtualport> element is only used if you are connecting to an 802.11Qgh hardware switch (802.11Qbg (a.k.a. "VEPA") switches are currently not supported.
					

	Re-start the guest virtual machine

						Run the virsh start command to restart the guest virtual machine you shutdown in the first step (example uses guestVM as the guest virtual machine's domain name). Refer to Section 14.8.1, “Starting a Defined Domain” for more information.
					
 # virsh start guestVM

						When the guest virtual machine starts, it sees the network device provided to it by the physical host machine's adapter, with the configured MAC address. This MAC address will remain unchanged across guest virtual machine and host physical machine reboots.
					

 ⁠9.1.8. Setting PCI Device Assignment from a Pool of SR-IOV Virtual Functions

				Hard coding the PCI addresses of a particular Virtual Functions (VFs) into a guest's configuration has two serious limitations:
			
	
						The specified VF must be available any time the guest virtual machine is started, implying that the administrator must permanently assign each VF to a single guest virtual machine (or modify the configuration file for every guest virtual machine to specify a currently unused VF's PCI address each time every guest virtual machine is started).
					

	
						If the guest virtual machine is moved to another host physical machine, that host physical machine must have exactly the same hardware in the same location on the PCI bus (or, again, the guest virtual machine configuration must be modified prior to start).
					

				It is possible to avoid both of these problems by creating a libvirt network with a device pool containing all the VFs of an SR-IOV device. Once that is done you would configure the guest virtual machine to reference this network. Each time the guest is started, a single VF will be allocated from the pool and assigned to the guest virtual machine. When the guest virtual machine is stopped, the VF will be returned to the pool for use by another guest virtual machine.
			

 ⁠Procedure 9.9. Creating a device pool
	Shutdown the guest virtual machine

						Using virsh shutdown command (refer to Section 14.9, “Shutting Down, Rebooting, and Forcing Shutdown of a Guest Virtual Machine”), shutdown the guest virtual machine named guestVM.
					
virsh shutdown guestVM

	Create a configuration file

						Using your editor of choice create an XML file (named passthrough.xml, for example) in the /tmp directory. Make sure to replace pf dev='eth3' with the netdev name of your own SR-IOV device's PF
					

						The following is an example network definition that will make available a pool of all VFs for the SR-IOV adapter with its physical function (PF) at "eth3' on the host physical machine:
					

 ⁠​
​
​<network>
​ <name>passthrough</name> <!--This is the name of the file you created-->
​ <forward mode='hostdev' managed='yes'>
​ <pf dev='myNetDevName'/> <!--Use the netdev name of your SR-IOV devices PF here-->
​ </forward>
​</network>
​
​

Figure 9.8. Sample network definition domain XML

	Load the new XML file

						Run the following command, replacing /tmp/passthrough.xml, with the name and location of your XML file you created in the previous step:
					
virsh net-define /tmp/passthrough.xml

	Restarting the guest

						Run the following replacing passthrough.xml, with the name of your XML file you created in the previous step:
					
 # virsh net-autostart passthrough # virsh net-start passthrough

	Re-start the guest virtual machine

						Run the virsh start command to restart the guest virtual machine you shutdown in the first step (example uses guestVM as the guest virtual machine's domain name). Refer to Section 14.8.1, “Starting a Defined Domain” for more information.
					
 # virsh start guestVM

	Initiating passthrough for devices

						Although only a single device is shown, libvirt will automatically derive the list of all VFs associated with that PF the first time a guest virtual machine is started with an interface definition in its domain XML like the following:
					

 ⁠​
​
​<interface type='network'>
​ <source network='passthrough'>
​</interface>
​
​

Figure 9.9. Sample domain XML for interface network definition

	Verification

						You can verify this by running virsh net-dumpxml passthrough command after starting the first guest that uses the network; you will get output similar to the following:
					

 ⁠​
​
​<network connections='1'>
​ <name>passthrough</name>
​ <uuid>a6b49429-d353-d7ad-3185-4451cc786437</uuid>
​ <forward mode='hostdev' managed='yes'>
​ <pf dev='eth3'/>
​ <address type='pci' domain='0x0000' bus='0x02' slot='0x10' function='0x1'/>
​ <address type='pci' domain='0x0000' bus='0x02' slot='0x10' function='0x3'/>
​ <address type='pci' domain='0x0000' bus='0x02' slot='0x10' function='0x5'/>
​ <address type='pci' domain='0x0000' bus='0x02' slot='0x10' function='0x7'/>
​ <address type='pci' domain='0x0000' bus='0x02' slot='0x11' function='0x1'/>
​ <address type='pci' domain='0x0000' bus='0x02' slot='0x11' function='0x3'/>
​ <address type='pci' domain='0x0000' bus='0x02' slot='0x11' function='0x5'/>
​ </forward>
​</network>
​
​

Figure 9.10. XML dump file passthrough contents

 ⁠9.2. USB Devices

			This section gives the commands required for handling USB devices.
		

 ⁠9.2.1. Assigning USB Devices to Guest Virtual Machines

				 Most devices such as web cameras, card readers, keyboards, or mice are connected to a computer using a USB port and cable. There are two ways to pass such devices to a guest virtual machine:
			
	
						Using USB passthrough - this requires the device to be physically connected to the host physical machine that is hosting the guest virtual machine. SPICE is not needed in this case. USB devices on the host can be passed to the guest using the command line or virt-manager. Refer to Section 15.3.1, “Attaching USB Devices to a Guest Virtual Machine” for virt manager directions.
					
Note

							virt-manager should not be used for hot plugging or hot unplugging devices. If you want to hot plug/or hot unplug a USB device, refer to Procedure 14.1, “Hot plugging USB devices for use by the guest virtual machine”.
						

	
						Using USB re-direction - USB re-direction is best used in cases where there is a host physical machine that is running in a data center. The user connects to his/her guest virtual machine from a local machine or thin client. On this local machine there is a SPICE client. The user can attach any USB device to the thin client and the SPICE client will redirect the device to the host physical machine on the data center so it can be used by the guest virtual machine that is running on the thin client. For instructions on USB re-direction using the virt-manager, refer to Section 15.3.1, “Attaching USB Devices to a Guest Virtual Machine” It should be noted that USB redirection is not possible using the TCP protocol (Refer to BZ#1085318).
					

 ⁠9.2.2. Setting a Limit on USB Device Redirection

				To filter out certain devices from redirection, pass the filter property to -device usb-redir. The filter property takes a string consisting of filter rules, the format for a rule is:
			
<class>:<vendor>:<product>:<version>:<allow>

				Use the value -1 to designate it to accept any value for a particular field. You may use multiple rules on the same command line using | as a separator.
			
Important

					If a device matches none of the rule filters, redirecting it will not be allowed!
				

 ⁠Example 9.1. An example of limiting redirection with a windows guest virtual machine
	
							Prepare a Windows 7 guest virtual machine.
						

	
							Add the following code excerpt to the guest virtual machine's' domain xml file:
						

 <redirdev bus='usb' type='spicevmc'>
 <alias name='redir0'/>
 <address type='usb' bus='0' port='3'/>
 </redirdev>
 <redirfilter>
 <usbdev class='0x08' vendor='0x1234' product='0xBEEF' version='2.0' allow='yes'/>
 <usbdev class='-1' vendor='-1' product='-1' version='-1' allow='no'/>
 </redirfilter>

	
							Start the guest virtual machine and confirm the setting changes by running the following:
						
#ps -ef | grep $guest_name
-device usb-redir,chardev=charredir0,id=redir0,/
filter=0x08:0x1234:0xBEEF:0x0200:1|-1:-1:-1:-1:0,bus=usb.0,port=3

	
							Plug a USB device into a host physical machine, and use virt-manager to connect to the guest virtual machine.
						

	
							Click Redirect USB Service in the menu, which will produce the following message: "Some USB devices are blocked by host policy". Click OK to confirm and continue.
						

							The filter takes effect.
						

	
							To make sure that the filter captures properly check the USB device vendor and product, then make the following changes in the guest virtual machine's domain XML to allow for USB redirection.
						

 <redirfilter>
 <usbdev class='0x08' vendor='0x0951' product='0x1625' version='2.0' allow='yes'/>
 <usbdev allow='no'/>
 </redirfilter>

	
							Restart the guest virtual machine, then use virt-viewer to connect to the guest virtual machine. The USB device will now redirect traffic to the guest virtual machine.
						

 ⁠9.3. Configuring Device Controllers

			Depending on the guest virtual machine architecture, some device buses can appear more than once, with a group of virtual devices tied to a virtual controller. Normally, libvirt can automatically infer such controllers without requiring explicit XML markup, but in some cases it is better to explicitly set a virtual controller element.
		

 ⁠​
​
​ ...
​ <devices>
​ <controller type='ide' index='0'/>
​ <controller type='virtio-serial' index='0' ports='16' vectors='4'/>
​ <controller type='virtio-serial' index='1'>
​ <address type='pci' domain='0x0000' bus='0x00' slot='0x0a' function='0x0'/>
​ </controller>
​ ...
​ </devices>
​ ...

Figure 9.11. Domain XML example for virtual controllers

			Each controller has a mandatory attribute <controller type>, which must be one of:
		
	
					ide
				

	
					fdc
				

	
					scsi
				

	
					sata
				

	
					usb
				

	
					ccid
				

	
					virtio-serial
				

	
					pci
				

			The <controller> element has a mandatory attribute <controller index> which is the decimal integer describing in which order the bus controller is encountered (for use in controller attributes of <address> elements). When <controller type ='virtio-serial'> there are two additional optional attributes (named ports and vectors), which control how many devices can be connected through the controller. Note that Red Hat Enterprise Linux 6 does not support the use of more than 32 vectors per device. Using more vectors will cause failures in migrating the guest virtual machine.
		

			When <controller type ='scsi'>, there is an optional attribute model model, which can have the following values:
		
	
					auto
				

	
					buslogic
				

	
					ibmvscsi
				

	
					lsilogic
				

	
					lsisas1068
				

	
					lsisas1078
				

	
					virtio-scsi
				

	
					vmpvscsi
				

			When <controller type ='usb'>, there is an optional attribute model model, which can have the following values:
		
	
					piix3-uhci
				

	
					piix4-uhci
				

	
					ehci
				

	
					ich9-ehci1
				

	
					ich9-uhci1
				

	
					ich9-uhci2
				

	
					ich9-uhci3
				

	
					vt82c686b-uhci
				

	
					pci-ohci
				

	
					nec-xhci
				

Note

				If the USB bus needs to be explicitly disabled for the guest virtual machine, <model='none'> may be used. .
			

			For controllers that are themselves devices on a PCI or USB bus, an optional sub-element <address> can specify the exact relationship of the controller to its master bus, with semantics as shown in Section 9.4, “Setting Addresses for Devices”.
		

			An optional sub-element <driver> can specify the driver specific options. Currently it only supports attribute queues, which specifies the number of queues for the controller. For best performance, it is recommended to specify a value matching the number of vCPUs.
		

			USB companion controllers have an optional sub-element <master> to specify the exact relationship of the companion to its master controller. A companion controller is on the same bus as its master, so the companion index value should be equal.
		

			An example XML which can be used is as follows:
		

 ⁠​
​
​ ...
​ <devices>
​ <controller type='usb' index='0' model='ich9-ehci1'>
​ <address type='pci' domain='0' bus='0' slot='4' function='7'/>
​ </controller>
​ <controller type='usb' index='0' model='ich9-uhci1'>
​ <master startport='0'/>
​ <address type='pci' domain='0' bus='0' slot='4' function='0' multifunction='on'/>
​ </controller>
​ ...
​ </devices>
​ ...
​
​

Figure 9.12. Domain XML example for USB controllers

			PCI controllers have an optional model attribute with the following possible values:
		
	
					pci-root
				

	
					pcie-root
				

	
					pci-bridge
				

	
					dmi-to-pci-bridge
				

			The root controllers (pci-root and pcie-root) have an optional pcihole64 element specifying how big (in kilobytes, or in the unit specified by pcihole64's unit attribute) the 64-bit PCI hole should be. Some guest virtual machines (such as Windows Server 2003) may cause a crash, unless unit is disabled (set to 0 unit='0').
		

			For machine types which provide an implicit PCI bus, the pci-root controller with index='0' is auto-added and required to use PCI devices. pci-root has no address. PCI bridges are auto-added if there are too many devices to fit on the one bus provided by model='pci-root', or a PCI bus number greater than zero was specified. PCI bridges can also be specified manually, but their addresses should only refer to PCI buses provided by already specified PCI controllers. Leaving gaps in the PCI controller indexes might lead to an invalid configuration. The following XML example can be added to the <devices> section:
		

 ⁠​
​
​ ...
​ <devices>
​ <controller type='pci' index='0' model='pci-root'/>
​ <controller type='pci' index='1' model='pci-bridge'>
​ <address type='pci' domain='0' bus='0' slot='5' function='0' multifunction='off'/>
​ </controller>
​ </devices>
​ ...

Figure 9.13. Domain XML example for PCI bridge

			For machine types which provide an implicit PCI Express (PCIe) bus (for example, the machine types based on the Q35 chipset), the pcie-root controller with index='0' is auto-added to the domain's configuration. pcie-root has also no address, but provides 31 slots (numbered 1-31) and can only be used to attach PCIe devices. In order to connect standard PCI devices on a system which has a pcie-root controller, a pci controller with model='dmi-to-pci-bridge' is automatically added. A dmi-to-pci-bridge controller plugs into a PCIe slot (as provided by pcie-root), and itself provides 31 standard PCI slots (which are not hot-pluggable). In order to have hot-pluggable PCI slots in the guest system, a pci-bridge controller will also be automatically created and connected to one of the slots of the auto-created dmi-to-pci-bridge controller; all guest devices with PCI addresses that are auto-determined by libvirt will be placed on this pci-bridge device.
		

 ⁠​
​
​ ...
​ <devices>
​ <controller type='pci' index='0' model='pcie-root'/>
​ <controller type='pci' index='1' model='dmi-to-pci-bridge'>
​ <address type='pci' domain='0' bus='0' slot='0xe' function='0'/>
​ </controller>
​ <controller type='pci' index='2' model='pci-bridge'>
​ <address type='pci' domain='0' bus='1' slot='1' function='0'/>
​ </controller>
​ </devices>
​ ...
​
​

Figure 9.14. Domain XML example for PCIe (PCI express)

 ⁠9.4. Setting Addresses for Devices

			Many devices have an optional <address> sub-element which is used to describe where the device is placed on the virtual bus presented to the guest virtual machine. If an address (or any optional attribute within an address) is omitted on input, libvirt will generate an appropriate address; but an explicit address is required if more control over layout is required. See Figure 9.6, “XML example for PCI device assignment” for domain XML device examples including an <address> element.
		

			Every address has a mandatory attribute type that describes which bus the device is on. The choice of which address to use for a given device is constrained in part by the device and the architecture of the guest virtual machine. For example, a <disk> device uses type='drive', while a <console> device would use type='pci' on i686 or x86_64 guest virtual machine architectures. Each address type has further optional attributes that control where on the bus the device will be placed as described in the table:
		

 ⁠Table 9.1. Supported device address types
	 Address type 	 Description
	 type='pci' 	 PCI addresses have the following additional attributes:
							
									domain (a 2-byte hex integer, not currently used by qemu)
								

	
									bus (a hex value between 0 and 0xff, inclusive)
								

	
									slot (a hex value between 0x0 and 0x1f, inclusive)
								

	
									function (a value between 0 and 7, inclusive)
								

	
									multifunction controls turning on the multifunction bit for a particular slot/function in the PCI control register By default it is set to 'off', but should be set to 'on' for function 0 of a slot that will have multiple functions used.
								

						
	 type='drive' 	 Drive addresses have the following additional attributes:
							
									controller (a 2-digit controller number)
								

	
									bus (a 2-digit bus number
								

	
									target (a 2-digit bus number)
								

	
									unit (a 2-digit unit number on the bus)
								

						
	 type='virtio-serial' 	 Each virtio-serial address has the following additional attributes:
							
									controller (a 2-digit controller number)
								

	
									bus (a 2-digit bus number)
								

	
									slot (a 2-digit slot within the bus)
								

						
	 type='ccid' 	 A CCID address, for smart-cards, has the following additional attributes:
							
									bus (a 2-digit bus number)
								

	
									slot attribute (a 2-digit slot within the bus)
								

						
	 type='usb' 	 USB addresses have the following additional attributes:
							
									bus (a hex value between 0 and 0xfff, inclusive)
								

	
									port (a dotted notation of up to four octets, such as 1.2 or 2.1.3.1)
								

						
	 type='isa' 	 ISA addresses have the following additional attributes:
							
									iobase
								

	
									irq
								

						

 ⁠9.5. Managing Storage Controllers in a Guest Virtual Machine

			Starting from Red Hat Enterprise Linux 6.4, it is supported to add SCSI and virtio-SCSI devices to guest virtual machines that are running Red Hat Enterprise Linux 6.4 or later. Unlike virtio disks, SCSI devices require the presence of a controller in the guest virtual machine. Virtio-SCSI provides the ability to connect directly to SCSI LUNs and significantly improves scalability compared to virtio-blk. The advantage of virtio-SCSI is that it is capable of handling hundreds of devices compared to virtio-blk which can only handle 28 devices and exhausts PCI slots. Virtio-SCSI is now capable of inheriting the feature set of the target device with the ability to:
		
	
					attach a virtual hard drive or CD through the virtio-scsi controller,
				

	
					pass-through a physical SCSI device from the host to the guest via the QEMU scsi-block device,
				

	
					and allow the usage of hundreds of devices per guest; an improvement from the 28-device limit of virtio-blk.
				

			This section details the necessary steps to create a virtual SCSI controller (also known as "Host Bus Adapter", or HBA) and to add SCSI storage to the guest virtual machine.
		

 ⁠Procedure 9.10. Creating a virtual SCSI controller
	
					Display the configuration of the guest virtual machine (Guest1) and look for a pre-existing SCSI controller:
				

virsh dumpxml Guest1 | grep controller.*scsi

					If a device controller is present, the command will output one or more lines similar to the following:
				

<controller type='scsi' model='virtio-scsi' index='0'/>

	
					If the previous step did not show a device controller, create the description for one in a new file and add it to the virtual machine, using the following steps:
				
	
							Create the device controller by writing a <controller> element in a new file and save this file with an XML extension. virtio-scsi-controller.xml, for example.
						

<controller type='scsi' model='virtio-scsi'/>

	
							Associate the device controller you just created in virtio-scsi-controller.xml with your guest virtual machine (Guest1, for example):
						

virsh attach-device --config Guest1 ~/virtio-scsi-controller.xml

							In this example the --config option behaves the same as it does for disks. Refer to Procedure 13.2, “Adding physical block devices to guests” for more information.
						

	
					Add a new SCSI disk or CD-ROM. The new disk can be added using the methods in sections Section 13.3.1, “Adding File-based Storage to a Guest” and Section 13.3.2, “Adding Hard Drives and Other Block Devices to a Guest”. In order to create a SCSI disk, specify a target device name that starts with sd.
				

virsh attach-disk Guest1 /var/lib/libvirt/images/FileName.img sdb --cache none

					Depending on the version of the driver in the guest virtual machine, the new disk may not be detected immediately by a running guest virtual machine. Follow the steps in the Red Hat Enterprise Linux Storage Administration Guide.
				

 ⁠9.6. Random Number Generator (RNG) Device

			virtio-rng is a virtual RNG (random number generator) device that feeds RNG data to the guest virtual machine's operating system, thereby providing fresh entropy for guest virtual machines on request.
		

			Using an RNG is particularly useful when a device such as a keyboard, mouse and other inputs are not enough to generate sufficient entropy on the guest virtual machine. The virtio-rng device is available for both Red Hat Enterprise Linux and Windows guest virtual machines. Refer to the Note for instructions on installing the Windows requirements. Unless noted, the following descriptions are for both Red Hat Enterprise Linux and Windows guest virtual machines.
		

			When virtio-rng is enabled on a Linux guest virtual machine, a chardev is created in the guest virtual machine at the location /dev/hwrng/. This chardev can then be opened and read to fetch entropy from the host physical machine. In order for guest virtual machines' applications to benefit from using randomness from the virtio-rng device transparently, the input from /dev/hwrng/ must be relayed to the kernel entropy pool in the guest virtual machine. This can be accomplished if the information in this location is coupled with the rgnd daemon (contained within the rng-tools).
		

			This coupling results in the entropy to be routed to the guest virtual machine's /dev/random file. The process is done manually in Red Hat Enterprise Linux 6 guest virtual machines.
		

			Red Hat Enterprise Linux 6 guest virtual machines are coupled by running the following command:
		
rngd -b -r /dev/hwrng/ -o /dev/random/

			For more assistance, run the man rngd command for an explanation of the command options shown here. For further examples, refer to Procedure 9.11, “Implementing virtio-rng with the command line tools” for configuring the virtio-rng device.
		
Note

				Windows guest virtual machines require the driver viorng to be installed. Once installed, the virtual RNG device will work using the CNG (crypto next generation) API provided by Microsoft. Once the driver is installed, the virtrng device appears in the list of RNG providers.
			

 ⁠Procedure 9.11. Implementing virtio-rng with the command line tools
	
					Shut down the guest virtual machine.
				

	
					In a terminal window, using the virsh edit domain-name command, open the XML file for the desired guest virtual machine.
				

	
					Edit the <devices> element to include the following:
				
​
​
​ ...
​ <devices>
​ <rng model='virtio'>
​ <rate period="2000" bytes="1234"/>
​ <backend model='random'>/dev/random</backend>
​ <source mode='bind' service='1234'>
​ <source mode='connect' host='192.0.2.1' service='1234'>
​ </backend>
​ </rng>
​ </devices>
​ ...

 ⁠Chapter 10. QEMU-img and QEMU Guest Agent

		This chapter contain useful hints and tips for using the qemu-img package with guest virtual machines. If you are looking for information on QEMU trace events and arguments, refer to the README file located here: /usr/share/doc/qemu-*/README.systemtap.
	

 ⁠10.1. Using qemu-img

			The qemu-img command line tool is used for formatting, modifying and verifying various file systems used by KVM. qemu-img options and usages are listed below.
		
Check

				Perform a consistency check on the disk image filename.
			

qemu-img check -f qcow2 --output=qcow2 -r all filename-img.qcow2
Note

				Only the qcow2 and vdi formats support consistency checks.
			

			Using the -r tries to repair any inconsistencies that are found during the check, but when used with -r leaks cluster leaks are repaired and when used with -r all all kinds of errors are fixed. Note that this has a risk of choosing the wrong fix or hiding corruption issues that may have already occurred.
		
Commit

				Commits any changes recorded in the specified file (filename) to the file's base image with the qemu-img commit command. Optionally, specify the file's format type (format).
			
 # qemu-img commit [-f format] [-t cache] filename

 ⁠Convert

				The convert option is used to convert one recognized image format to another image format.
			

			Command format:
		
qemu-img convert [-c] [-p] [-f format] [-t cache] [-O output_format] [-o options] [-S sparse_size] filename output_filename

			 The -p parameter shows the progress of the command (optional and not for every command) and -S option allows for the creation of a sparse file, which is included within the disk image. Sparse files in all purposes function like a standard file, except that the physical blocks that only contain zeros (nothing). When the Operating System sees this file, it treats it as it exists and takes up actual disk space, even though in reality it does not take any. This is particularly helpful when creating a disk for a guest virtual machine as this gives the appearance that the disk has taken much more disk space than it has. For example, if you set -S to 50Gb on a disk image that is 10Gb, then your 10Gb of disk space will appear to be 60Gb in size even though only 10Gb is actually being used.
		

			Convert the disk image filename to disk image output_filename using format output_format. The disk image can be optionally compressed with the -c option, or encrypted with the -o option by setting -o encryption. Note that the options available with the -o parameter differ with the selected format.
		

			Only the qcow2 format supports encryption or compression. qcow2 encryption uses the AES format with secure 128-bit keys. qcow2 compression is read-only, so if a compressed sector is converted from qcow2 format, it is written to the new format as uncompressed data.
		

			Image conversion is also useful to get a smaller image when using a format which can grow, such as qcow or cow. The empty sectors are detected and suppressed from the destination image.
		

 ⁠Create

				Create the new disk image filename of size size and format format.
			
qemu-img create [-f format] [-o options] filename [size][preallocation]

			If a base image is specified with -o backing_file=filename, the image will only record differences between itself and the base image. The backing file will not be modified unless you use the commit command. No size needs to be specified in this case.
		

			Preallocation is an option that may only be used with creating qcow2 images. Accepted values include -o preallocation=off|meta|full|falloc. Images with preallocated metadata are larger than images without. However in cases where the image size increases, performance will improve as the image grows.
		

			It should be noted that using full allocation can take a long time with large images. In cases where you want full allocation and time is of the essence, using falloc will save you time.
		

 ⁠Info

				The info parameter displays information about a disk image filename. The format for the info option is as follows:
			
qemu-img info [-f format] filename

			This command is often used to discover the size reserved on disk which can be different from the displayed size. If snapshots are stored in the disk image, they are displayed also. This command will show for example, how much space is being taken by a qcow2 image on a block device. This is done by running the qemu-img. You can check that the image in use is the one that matches the output of the qemu-img info command with the qemu-img check command. Refer to Section 10.1, “Using qemu-img”.
		

qemu-img info /dev/vg-90.100-sluo/lv-90-100-sluo
image: /dev/vg-90.100-sluo/lv-90-100-sluo
file format: qcow2
virtual size: 20G (21474836480 bytes)
disk size: 0
cluster_size: 65536

 ⁠Map

				The # qemu-img map [-f format] [--output=output_format] filename command dumps the metadata of the image filename and its backing file chain. Specifically, this command dumps the allocation state of every sector of a specified file, together with the topmost file that allocates it in the backing file chain. For example, if you have a chain such as c.qcow2 → b.qcow2 → a.qcow2, a.qcow is the original file, b.qcow2 is the changes made to a.qcow2 and c.qcow2 is the delta file from b.qcow2. When this chain is created the image files stores the normal image data, plus information about what is in which file and where it is located within the file. This information is referred to as the image's metadata. The -f format option is the format of the specified image file. Formats such as raw, qcow2, vhdx and vmdk may be used. There are two output options possible: human and json.
			
	
					human is the default setting. It is designed to be more readable to the human eye, and as such, this format should not be parsed. For clarity and simplicity, the default human format only dumps known-nonzero areas of the file. Known-zero parts of the file are omitted altogether, and likewise for parts that are not allocated throughout the chain. When the command is executed, qemu-img output will identify a file from where the data can be read, and the offset in the file. The output is displayed as a table with four columns; the first three of which are hexadecimal numbers.
				

qemu-img map -f qcow2 --output=human /tmp/test.qcow2
Offset Length Mapped to File
0 0x20000 0x50000 /tmp/test.qcow2
0x100000 0x80000 0x70000 /tmp/test.qcow2
0x200000 0x1f0000 0xf0000 /tmp/test.qcow2
0x3c00000 0x20000 0x2e0000 /tmp/test.qcow2
0x3fd0000 0x10000 0x300000 /tmp/test.qcow2

	
					json, or JSON (JavaScript Object Notation), is readable by humans, but as it is a programming language, it is also designed to be parsed. For example, if you want to parse the output of "qemu-img map" in a parser then you should use the option --output=json.
				

qemu-img map -f qcow2 --output=json /tmp/test.qcow2
[{ "start": 0, "length": 131072, "depth": 0, "zero": false, "data": true, "offset": 327680},
{ "start": 131072, "length": 917504, "depth": 0, "zero": true, "data": false},

					For more information on the JSON format, refer to the qemu-img(1) man page.
				

Rebase

				Changes the backing file of an image.
			

qemu-img rebase [-f format] [-t cache] [-p] [-u] -b backing_file [-F backing_format] filename

			The backing file is changed to backing_file and (if the format of filename supports the feature), the backing file format is changed to backing_format.
		
Note

				Only the qcow2 format supports changing the backing file (rebase).
			

			There are two different modes in which rebase can operate: Safe and Unsafe.
		

			Safe mode is used by default and performs a real rebase operation. The new backing file may differ from the old one and the qemu-img rebase command will take care of keeping the guest virtual machine-visible content of filename unchanged. In order to achieve this, any clusters that differ between backing_file and old backing file of filename are merged into filename before making any changes to the backing file.
		

			Note that safe mode is an expensive operation, comparable to converting an image. The old backing file is required for it to complete successfully.
		

			Unsafe mode is used if the -u option is passed to qemu-img rebase. In this mode, only the backing file name and format of filename is changed, without any checks taking place on the file contents. Make sure the new backing file is specified correctly or the guest-visible content of the image will be corrupted.
		

			This mode is useful for renaming or moving the backing file. It can be used without an accessible old backing file. For instance, it can be used to fix an image whose backing file has already been moved or renamed.
		
Resize

				Change the disk image filename as if it had been created with size size. Only images in raw format can be resized regardless of version. Red Hat Enterprise Linux 6.1 and later adds the ability to grow (but not shrink) images in qcow2 format.
			

			Use the following to set the size of the disk image filename to size bytes:
		
qemu-img resize filename size

			You can also resize relative to the current size of the disk image. To give a size relative to the current size, prefix the number of bytes with + to grow, or - to reduce the size of the disk image by that number of bytes. Adding a unit suffix allows you to set the image size in kilobytes (K), megabytes (M), gigabytes (G) or terabytes (T).
		
qemu-img resize filename [+|-]size[K|M|G|T]
Warning

				Before using this command to shrink a disk image, you must use file system and partitioning tools inside the VM itself to reduce allocated file systems and partition sizes accordingly. Failure to do so will result in data loss.
			

				After using this command to grow a disk image, you must use file system and partitioning tools inside the VM to actually begin using the new space on the device.
			

Snapshot

				List, apply, create, or delete an existing snapshot (snapshot) of an image (filename).
			
qemu-img snapshot [-l | -a snapshot | -c snapshot | -d snapshot] filename

			-l lists all snapshots associated with the specified disk image. The apply option, -a, reverts the disk image (filename) to the state of a previously saved snapshot. -c creates a snapshot (snapshot) of an image (filename). -d deletes the specified snapshot.
		

 ⁠Supported Formats

				qemu-img is designed to convert files to one of the following formats:
			
	 raw
	
						Raw disk image format (default). This can be the fastest file-based format. If your file system supports holes (for example in ext2 or ext3 on Linux or NTFS on Windows), then only the written sectors will reserve space. Use qemu-img info to obtain the real size used by the image or ls -ls on Unix/Linux. Although Raw images give optimal performance, only very basic features are available with a Raw image (for example, no snapshots are available).
					

	 qcow2
	
						QEMU image format, the most versatile format with the best feature set. Use it to have optional AES encryption, zlib-based compression, support of multiple VM snapshots, and smaller images, which are useful on file systems that do not support holes (non-NTFS file systems on Windows). Note that this expansive feature set comes at the cost of performance.
					

			Although only the formats above can be used to run on a guest virtual machine or host physical machine machine, qemu-img also recognizes and supports the following formats in order to convert from them into either raw or qcow2 format. The format of an image is usually detected automatically. In addition to converting these formats into raw or qcow2 , they can be converted back from raw or qcow2 to the original format.
		
	bochs
	
						Bochs disk image format.
					

	cloop
	
						Linux Compressed Loop image, useful only to reuse directly compressed CD-ROM images present for example in the Knoppix CD-ROMs.
					

	cow
	
						User Mode Linux Copy On Write image format. The cow format is included only for compatibility with previous versions. It does not work with Windows.
					

	dmg
	
						Mac disk image format.
					

	nbd
	
						Network block device.
					

	parallels
	
						Parallels virtualization disk image format.
					

	qcow
	
						Old QEMU image format. Only included for compatibility with older versions.
					

	vdi
	
						Oracle VM VirtualBox hard disk image format.
					

	vmdk
	
						VMware compatible image format (read-write support for versions 1 and 2, and read-only support for version 3).
					

	vpc
	
						Windows Virtual PC disk image format. Also referred to as vhd, or Microsoft virtual hard disk image format.
					

	vvfat
	
						Virtual VFAT disk image format.
					

 ⁠10.2. QEMU Guest Agent

			The QEMU guest agent runs inside the guest and allows the host machine to issue commands to the guest operating system using libvirt. The guest operating system then responds to those commands asynchronously. This chapter covers the libvirt commands and options available to the guest agent.
		
Important

				Note that it is only safe to rely on the guest agent when run by trusted guests. An untrusted guest may maliciously ignore or abuse the guest agent protocol, and although built-in safeguards exist to prevent a denial of service attack on the host, the host requires guest co-operation for operations to run as expected.
			

			Note that QEMU guest agent can be used to enable and disable virtual CPUs (vCPUs) while the guest is running, thus adjusting the number of vCPUs without using the hot plug and hot unplug features. Refer to Section 14.13.6, “Configuring Virtual CPU Count” for more information.
		

 ⁠10.2.1. Install and Enable the Guest Agent

				Install qemu-guest-agent on the guest virtual machine with the yum install qemu-guest-agent command and make it run automatically at every boot as a service (qemu-guest-agent.service).
			

 ⁠10.2.2. Setting up Communication between Guest Agent and Host

				The host machine communicates with the guest agent through a VirtIO serial connection between the host and guest machines. A VirtIO serial channel is connected to the host via a character device driver (typically a Unix socket), and the guest listens on this serial channel. The following procedure shows how to set up the host and guest machines for guest agent use.
			
Note

					For instructions on how to set up the QEMU guest agent on Windows guests, refer to the instructions found here.
				

 ⁠Procedure 10.1. Setting up communication between guest agent and host
	Open the guest XML

						Open the guest XML with the QEMU guest agent configuration. You will need the guest name to open the file. Use the command # virsh list on the host machine to list the guests that it can recognize. In this example, the guest's name is rhel6:
					
virsh edit rhel6

	Edit the guest XML file

						Add the following elements to the XML file and save the changes.
					

 ⁠​
​<channel type='unix'>
​ <source mode='bind' path='/var/lib/libvirt/qemu/rhel6.agent'/>
​ <target type='virtio' name='org.qemu.guest_agent.0'/>
​</channel>
​

Figure 10.1. Editing the guest XML to configure the QEMU guest agent

	Start the QEMU guest agent in the guest

						Download and install the guest agent in the guest virtual machine using yum install qemu-guest-agent if you have not done so already. Once installed, start the service as follows:
					
service start qemu-guest-agent

				You can now communicate with the guest by sending valid libvirt commands over the established character device driver.
			

 ⁠10.2.3. Using the QEMU Guest Agent

				The QEMU guest agent protocol (QEMU GA) package, qemu-guest-agent, is fully supported in Red Hat Enterprise Linux 6.5 and newer. However, there are the following limitations with regards to isa-serial/virtio-serial transport:
			
	
						The qemu-guest-agent cannot detect whether or not a client has connected to the channel.
					

	
						There is no way for a client to detect whether or not qemu-guest-agent has disconnected or reconnected to the back-end.
					

	
						If the virtio-serial device resets and qemu-guest-agent has not connected to the channel (generally caused by a reboot or hot plug), data from the client will be dropped.
					

	
						If qemu-guest-agent has connected to the channel following a virtio-serial device reset, data from the client will be queued (and eventually throttled if available buffers are exhausted), regardless of whether or not qemu-guest-agent is still running or connected.
					

 ⁠10.2.4. Using the QEMU Guest Agent with libvirt

				Installing the QEMU guest agent allows various other libvirt commands to become more powerful. The guest agent enhances the following virsh commands:
			
	
						virsh shutdown --mode=agent - This shutdown method is more reliable than virsh shutdown --mode=acpi, as virsh shutdown used with the QEMU guest agent is guaranteed to shut down a cooperative guest in a clean state. If the agent is not present, libvirt has to instead rely on injecting an ACPI shutdown event, but some guests ignore that event and thus will not shut down.
					

						Can be used with the same syntax for virsh reboot.
					

	
						virsh snapshot-create --quiesce - Allows the guest to flush its I/O into a stable state before the snapshot is created, which allows use of the snapshot without having to perform a fsck or losing partial database transactions. The guest agent allows a high level of disk contents stability by providing guest co-operation.
					

	
						virsh setvcpus --guest - Instructs the guest to take CPUs offline.
					

	
						virsh dompmsuspend - Suspends a running guest gracefully using the guest operating system's power management functions.
					

 ⁠10.2.5. Creating a Guest Virtual Machine Disk Backup

				libvirt can communicate with qemu-ga to assure that snapshots of guest virtual machine file systems are consistent internally and ready for use on an as needed basis. Improvements in Red Hat Enterprise Linux 6 have been made to make sure that both file and application level synchronization (flushing) is done. Guest system administrators can write and install application-specific freeze/thaw hook scripts. Before freezing the filesystems, the qemu-ga invokes the main hook script (included in the qemu-ga package). The freezing process temporarily deactivates all guest virtual machine applications.
			

				Just before filesystems are frozen, the following actions occur:
			
	
						File system applications / databases flush working buffers to the virtual disk and stop accepting client connections
					

	
						Applications bring their data files into a consistent state
					

	
						Main hook script returns
					

	
						qemu-ga freezes the filesystems and management stack takes a snapshot
					

	
						Snapshot is confirmed
					

	
						Filesystem function resumes
					

				Thawing happens in reverse order.
			

				Use the snapshot-create-as command to create a snapshot of the guest disk. See Section 14.15.2.2, “Creating a snapshot for the current domain” for more details on this command.
			
Note

					An application-specific hook script might need various SELinux permissions in order to run correctly, as is done when the script needs to connect to a socket in order to talk to a database. In general, local SELinux policies should be developed and installed for such purposes. Accessing file system nodes should work out of the box, after issuing the restorecon -FvvR command listed in Table 10.1, “QEMU guest agent package contents” in the table row labeled /etc/qemu-ga/fsfreeze-hook.d/.
				

				The qemu-guest-agent binary RPM includes the following files:
			

 ⁠Table 10.1. QEMU guest agent package contents
	File name	Description
	/etc/rc.d/init.d/qemu-ga	Service control script (start/stop) for the QEMU guest agent.
	/etc/sysconfig/qemu-ga	Configuration file for the QEMU guest agent, as it is read by the /etc/rc.d/init.d/qemu-ga control script. The settings are documented in the file with shell script comments.
	/usr/bin/qemu-ga	QEMU guest agent binary file.
	/usr/libexec/qemu-ga/	Root directory for hook scripts.
	/usr/libexec/qemu-ga/fsfreeze-hook	Main hook script. No modifications are needed here.
	/usr/libexec/qemu-ga/fsfreeze-hook.d/	Directory for individual, application-specific hook scripts. The guest system administrator should copy hook scripts manually into this directory, ensure proper file mode bits for them, and then run restorecon -FvvR on this directory.
	/usr/share/qemu-kvm/qemu-ga/	Directory with sample scripts (for example purposes only). The scripts contained here are not executed.

				The main hook script, /usr/libexec/qemu-ga/fsfreeze-hook logs its own messages, as well as the application-specific script's standard output and error messages, in the following log file: /var/log/qemu-ga/fsfreeze-hook.log. For more information, refer to the qemu-guest-agent wiki page at wiki.qemu.org or libvirt.org.
			

 ⁠10.3. Running the QEMU Guest Agent on a Windows Guest

			A Red Hat Enterprise Linux host machine can issue commands to Windows guests by running the QEMU guest agent in the guest. This is supported in hosts running Red Hat Enterprise Linux 6.5 and newer, and in the following Windows guest operating systems:
		
	
					Windows XP Service Pack 3 (VSS is not supported)
				

	
					Windows Server 2003 R2 - x86 and AMD64 (VSS is not supported)
				

	
					Windows Server 2008
				

	
					Windows Server 2008 R2
				

	
					Windows 7 - x86 and AMD64
				

	
					Windows Server 2012
				

	
					Windows Server 2012 R2
				

	
					Windows 8 - x86 and AMD64
				

	
					Windows 8.1 - x86 and AMD64
				

Note

				Windows guest virtual machines require the QEMU guest agent package for Windows, qemu-guest-agent-win. This agent is required for VSS (Volume Shadow Copy Service) support for Windows guest virtual machines running on Red Hat Enterprise Linux. More information can be found here.
			

 ⁠Procedure 10.2. Configuring the QEMU guest agent on a Windows guest

				Follow these steps for Windows guests running on a Red Hat Enterprise Linux host machine.
			
	Prepare the Red Hat Enterprise Linux host machine

					Make sure the following package is installed on the Red Hat Enterprise Linux host physical machine:
				
	
							virtio-win, located in /usr/share/virtio-win/
						

					To copy the drivers in the Windows guest, make an *.iso file for the qxl driver using the following command:
				
mkisofs -o /var/lib/libvirt/images/virtiowin.iso /usr/share/virtio-win/drivers

	Prepare the Windows guest

					Install the virtio-serial driver in guest by mounting the *.iso to the Windows guest in order to update the driver. Start the guest, then attach the driver .iso file to the guest as shown (using a disk named hdb):
				
virsh attach-disk guest /var/lib/libvirt/images/virtiowin.iso hdb

					To install the drivers using the Windows Control Panel, navigate to the following menus:
				
	
							To install the virtio-win driver - Select Hardware and Sound > Device manager > virtio-serial driver.
						

	Update the Windows guest XML configuration file

					The guest XML file for the Windows guest is located on the Red Hat Enterprise Linux host machine. To gain access to this file, you need the Windows guest name. Use the # virsh list command on the host machine to list the guests that it can recognize. In this example, the guest's name is win7x86.
				

					Add the following elements to the XML file using the # virsh edit win7x86 command and save the changes. Note that the source socket name must be unique in the host, named win7x86.agent in this example:
				

 ⁠​ ...
​ <channel type='unix'>
​ <source mode='bind' path='/var/lib/libvirt/qemu/win7x86.agent'/>
​ <target type='virtio' name='org.qemu.guest_agent.0'/>
​ <address type='virtio-serial' controller='0' bus='0' port='1'/>
​ </channel>
​ <channel type='spicevmc'>
​ <target type='virtio' name='com.redhat.spice.0'/>
​ <address type='virtio-serial' controller='0' bus='0' port='2'/>
​ </channel>
​ ...
​
​

Figure 10.2. Editing the Windows guest XML to configure the QEMU guest agent

	Reboot the Windows guest

					Reboot the Windows guest to apply the changes:
				
virsh reboot win7x86

	Prepare the QEMU guest agent in the Windows guest

					To prepare the guest agent in a Windows guest:
				
	Install the latest virtio-win package

							Run the following command on the Red Hat Enterprise Linux host physical machine terminal window to locate the file to install. Note that the file shown below may not be exactly the same as the one your system finds, but it should be latest official version.
						

rpm -qa|grep virtio-win
virtio-win-1.6.8-5.el6.noarch

rpm -iv virtio-win-1.6.8-5.el6.noarch

	Confirm the installation completed

							After the virtio-win package finishes installing, check the /usr/share/virtio-win/guest-agent/ folder and you will find an file named qemu-ga-x64.msi or the qemu-ga-x86.msi as shown:
						

ls -l /usr/share/virtio-win/guest-agent/

total 1544

-rw-r--r--. 1 root root 856064 Oct 23 04:58 qemu-ga-x64.msi

-rw-r--r--. 1 root root 724992 Oct 23 04:58 qemu-ga-x86.msi

	Install the .msi file

							From the Windows guest (win7x86, for example) install the qemu-ga-x64.msi or the qemu-ga-x86.msi by double clicking on the file. Once installed, it will be shown as a qemu-ga service in the Windows guest within the System Manager. This same manager can be used to monitor the status of the service.
						

 ⁠10.3.1. Using libvirt Commands with the QEMU Guest Agent on Windows Guests

				 The QEMU guest agent can use the following virsh commands with Windows guests:
			
	
						virsh shutdown --mode=agent - This shutdown method is more reliable than virsh shutdown --mode=acpi, as virsh shutdown used with the QEMU guest agent is guaranteed to shut down a cooperative guest in a clean state. If the agent is not present, libvirt has to instead rely on injecting an ACPI shutdown event, but some guests ignore that event and thus will not shut down.
					

						Can be used with the same syntax for virsh reboot.
					

	
						virsh snapshot-create --quiesce - Allows the guest to flush its I/O into a stable state before the snapshot is created, which allows use of the snapshot without having to perform a fsck or losing partial database transactions. The guest agent allows a high level of disk contents stability by providing guest co-operation.
					

	
						virsh dompmsuspend - Suspends a running guest gracefully using the guest operating system's power management functions.
					

 ⁠10.4. Setting a Limit on Device Redirection

			To filter out certain devices from redirection, pass the filter property to -device usb-redir. The filter property takes a string consisting of filter rules. The format for a rule is:
		
<class>:<vendor>:<product>:<version>:<allow>

			Use the value -1 to designate it to accept any value for a particular field. You may use multiple rules on the same command line using | as a separator. Note that if a device matches none of the filter rules, the redirection will not be allowed.
		

 ⁠Example 10.1. Limiting redirection with a Windows guest virtual machine
	
						Prepare a Windows 7 guest virtual machine.
					

	
						Add the following code excerpt to the guest virtual machine's XML file:
					

 <redirdev bus='usb' type='spicevmc'>
 <alias name='redir0'/>
 <address type='usb' bus='0' port='3'/>
 </redirdev>
 <redirfilter>
 <usbdev class='0x08' vendor='0x1234' product='0xBEEF' version='2.0' allow='yes'/>
 <usbdev class='-1' vendor='-1' product='-1' version='-1' allow='no'/>
 </redirfilter>

	
						Start the guest virtual machine and confirm the setting changes by running the following:
					
ps -ef | grep $guest_name
-device usb-redir,chardev=charredir0,id=redir0,/
filter=0x08:0x1234:0xBEEF:0x0200:1|-1:-1:-1:-1:0,bus=usb.0,port=3

	
						Plug a USB device into a host physical machine, and use virt-viewer to connect to the guest virtual machine.
					

	
						Click USB device selection in the menu, which will produce the following message: "Some USB devices are blocked by host policy". Click OK to confirm and continue.
					

						The filter takes effect.
					

	
						To make sure that the filter captures properly check the USB device vendor and product, then make the following changes in the host physical machine's domain XML to allow for USB redirection.
					

 <redirfilter>
 <usbdev class='0x08' vendor='0x0951' product='0x1625' version='2.0' allow='yes'/>
 <usbdev allow='no'/>
 </redirfilter>

	
						Restart the guest virtual machine, then use virt-viewer to connect to the guest virtual machine. The USB device will now redirect traffic to the guest virtual machine.
					

 ⁠10.5. Dynamically Changing a Host Physical Machine or a Network Bridge that is Attached to a Virtual NIC

			This section demonstrates how to move the vNIC of a guest virtual machine from one bridge to another while the guest virtual machine is running without compromising the guest virtual machine
		
	
					Prepare guest virtual machine with a configuration similar to the following:
				

<interface type='bridge'>
 <mac address='52:54:00:4a:c9:5e'/>
 <source bridge='virbr0'/>
 <model type='virtio'/>
</interface>

	
					Prepare an XML file for interface update:
				
cat br1.xml

<interface type='bridge'>
 <mac address='52:54:00:4a:c9:5e'/>
 <source bridge='virbr1'/>
 <model type='virtio'/>
</interface>

	
					Start the guest virtual machine, confirm the guest virtual machine's network functionality, and check that the guest virtual machine's vnetX is connected to the bridge you indicated.
				

brctl show
bridge name bridge id STP enabled interfaces
virbr0 8000.5254007da9f2 yes virbr0-nic

vnet0
virbr1 8000.525400682996 yes virbr1-nic

	
					Update the guest virtual machine's network with the new interface parameters with the following command:
				

virsh update-device test1 br1.xml

Device updated successfully

	
					On the guest virtual machine, run service network restart. The guest virtual machine gets a new IP address for virbr1. Check the guest virtual machine's vnet0 is connected to the new bridge(virbr1)
				

brctl show
bridge name bridge id STP enabled interfaces
virbr0 8000.5254007da9f2 yes virbr0-nic
virbr1 8000.525400682996 yes virbr1-nic vnet0

 ⁠Chapter 11. Storage Concepts

		This chapter introduces the concepts used for describing and managing storage devices. Terms such as Storage pools and Volumes are explained in the sections that follow.
	

 ⁠11.1. Storage Pools

			A storage pool is a file, directory, or storage device managed by libvirt for the purpose of providing storage to guest virtual machines. The storage pool can be local or it can be shared over a network. A storage pool is a quantity of storage set aside by an administrator, often a dedicated storage administrator, for use by guest virtual machines. Storage pools are divided into storage volumes either by the storage administrator or the system administrator, and the volumes are assigned to guest virtual machines as block devices. In short storage volumes are to partitions what storage pools are to disks. Although the storage pool is a virtual container it is limited by two factors: maximum size allowed to it by qemu-kvm and the size of the disk on the host physical machine. Storage pools may not exceed the size of the disk on the host physical machine. The maximum sizes are as follows:
		
	
					virtio-blk = 2^63 bytes or 8 Exabytes(using raw files or disk)
				

	
					Ext4 = ~ 16 TB (using 4 KB block size)
				

	
					XFS = ~8 Exabytes
				

	
					qcow2 and host file systems keep their own metadata and scalability should be evaluated/tuned when trying very large image sizes. Using raw disks means fewer layers that could affect scalability or max size.
				

			libvirt uses a directory-based storage pool, the /var/lib/libvirt/images/ directory, as the default storage pool. The default storage pool can be changed to another storage pool.
		
	
					Local storage pools - Local storage pools are directly attached to the host physical machine server. Local storage pools include: local directories, directly attached disks, physical partitions, and LVM volume groups. These storage volumes store guest virtual machine images or are attached to guest virtual machines as additional storage. As local storage pools are directly attached to the host physical machine server, they are useful for development, testing and small deployments that do not require migration or large numbers of guest virtual machines. Local storage pools are not suitable for many production environments as local storage pools do not support live migration.
				

	
					Networked (shared) storage pools - Networked storage pools include storage devices shared over a network using standard protocols. Networked storage is required when migrating virtual machines between host physical machines with virt-manager, but is optional when migrating with virsh. Networked storage pools are managed by libvirt. Supported protocols for networked storage pools include:
				
	
							Fibre Channel-based LUNs
						

	
							iSCSI
						

	
							NFS
						

	
							GFS2
						

	
							SCSI RDMA protocols (SCSI RCP), the block export protocol used in InfiniBand and 10GbE iWARP adapters.
						

Note

				Multi-path storage pools should not be created or used as they are not fully supported.
			

 ⁠11.2. Volumes

			Storage pools are divided into storage volumes. Storage volumes are an abstraction of physical partitions, LVM logical volumes, file-based disk images and other storage types handled by libvirt. Storage volumes are presented to guest virtual machines as local storage devices regardless of the underlying hardware.
		
 Referencing Volumes

				To reference a specific volume, three approaches are possible:
			
	The name of the volume and the storage pool
	
						A volume may be referred to by name, along with an identifier for the storage pool it belongs in. On the virsh command line, this takes the form --pool storage_pool volume_name.
					

						For example, a volume named firstimage in the guest_images pool.
					
virsh vol-info --pool guest_images firstimage
Name: firstimage
Type: block
Capacity: 20.00 GB
Allocation: 20.00 GB

virsh #

	The full path to the storage on the host physical machine system
	
						A volume may also be referred to by its full path on the file system. When using this approach, a pool identifier does not need to be included.
					

						For example, a volume named secondimage.img, visible to the host physical machine system as /images/secondimage.img. The image can be referred to as /images/secondimage.img.
					
virsh vol-info /images/secondimage.img
Name: secondimage.img
Type: file
Capacity: 20.00 GB
Allocation: 136.00 kB

	The unique volume key
	
						When a volume is first created in the virtualization system, a unique identifier is generated and assigned to it. The unique identifier is termed the volume key. The format of this volume key varies upon the storage used.
					

						When used with block based storage such as LVM, the volume key may follow this format:
					
c3pKz4-qPVc-Xf7M-7WNM-WJc8-qSiz-mtvpGn

						When used with file based storage, the volume key may instead be a copy of the full path to the volume storage.
					
/images/secondimage.img

						For example, a volume with the volume key of Wlvnf7-a4a3-Tlje-lJDa-9eak-PZBv-LoZuUr:
					
virsh vol-info Wlvnf7-a4a3-Tlje-lJDa-9eak-PZBv-LoZuUr
Name: firstimage
Type: block
Capacity: 20.00 GB
Allocation: 20.00 GB

			virsh provides commands for converting between a volume name, volume path, or volume key:
		
	 vol-name
	
						Returns the volume name when provided with a volume path or volume key.
					
virsh vol-name /dev/guest_images/firstimage
firstimage
virsh vol-name Wlvnf7-a4a3-Tlje-lJDa-9eak-PZBv-LoZuUr

	vol-path
	
						Returns the volume path when provided with a volume key, or a storage pool identifier and volume name.
					
virsh vol-path Wlvnf7-a4a3-Tlje-lJDa-9eak-PZBv-LoZuUr
/dev/guest_images/firstimage
virsh vol-path --pool guest_images firstimage
/dev/guest_images/firstimage

	The vol-key command
	
						Returns the volume key when provided with a volume path, or a storage pool identifier and volume name.
					
virsh vol-key /dev/guest_images/firstimage
Wlvnf7-a4a3-Tlje-lJDa-9eak-PZBv-LoZuUr
virsh vol-key --pool guest_images firstimage
Wlvnf7-a4a3-Tlje-lJDa-9eak-PZBv-LoZuUr

 ⁠Chapter 12. Storage Pools

		This chapter includes instructions on creating storage pools of assorted types. A storage pool is a quantity of storage set aside by an administrator, often a dedicated storage administrator, for use by virtual machines. Storage pools are often divided into storage volumes either by the storage administrator or the system administrator, and the volumes are assigned to guest virtual machines as block devices.
	

 ⁠Example 12.1. NFS storage pool

			Suppose a storage administrator responsible for an NFS server creates a share to store guest virtual machines' data. The system administrator defines a pool on the host physical machine with the details of the share (nfs.example.com:/path/to/share should be mounted on /vm_data). When the pool is started, libvirt mounts the share on the specified directory, just as if the system administrator logged in and executed mount nfs.example.com:/path/to/share /vmdata. If the pool is configured to autostart, libvirt ensures that the NFS share is mounted on the directory specified when libvirt is started.
		

			Once the pool starts, the files that the NFS share, are reported as volumes, and the storage volumes' paths are then queried using the libvirt APIs. The volumes' paths can then be copied into the section of a guest virtual machine's XML definition file describing the source storage for the guest virtual machine's block devices. With NFS, applications using the libvirt APIs can create and delete volumes in the pool (files within the NFS share) up to the limit of the size of the pool (the maximum storage capacity of the share). Not all pool types support creating and deleting volumes. Stopping the pool negates the start operation, in this case, unmounts the NFS share. The data on the share is not modified by the destroy operation, despite the name. See man virsh for more details.
		

Note

			Storage pools and volumes are not required for the proper operation of guest virtual machines. Pools and volumes provide a way for libvirt to ensure that a particular piece of storage will be available for a guest virtual machine, but some administrators will prefer to manage their own storage and guest virtual machines will operate properly without any pools or volumes defined. On systems that do not use pools, system administrators must ensure the availability of the guest virtual machines' storage using whatever tools they prefer, for example, adding the NFS share to the host physical machine's fstab so that the share is mounted at boot time.
		

Warning

			When creating storage pools on a guest, make sure to follow security considerations. This information is discussed in more detail in the Red Hat Enterprise Linux Virtualization Security Guide which can be found at https://access.redhat.com/site/documentation/.
		

 ⁠12.1. Disk-based Storage Pools

		This section covers creating disk based storage devices for guest virtual machines.
	
Warning

			Guests should not be given write access to whole disks or block devices (for example, /dev/sdb). Use partitions (for example, /dev/sdb1) or LVM volumes.
		

			If you pass an entire block device to the guest, the guest will likely partition it or create its own LVM groups on it. This can cause the host physical machine to detect these partitions or LVM groups and cause errors.
		

 ⁠12.1.1. Creating a Disk-based Storage Pool Using virsh

			This procedure creates a new storage pool using a disk device with the virsh command.
		
Warning

				Dedicating a disk to a storage pool will reformat and erase all data presently stored on the disk device. It is strongly recommended to back up the storage device before commencing with the following procedure.
			

	 Create a GPT disk label on the disk

					The disk must be relabeled with a GUID Partition Table (GPT) disk label. GPT disk labels allow for creating a large numbers of partitions, up to 128 partitions, on each device. GPT partition tables can store partition data for far more partitions than the MS-DOS partition table.
				
parted /dev/sdb
GNU Parted 2.1
Using /dev/sdb
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) mklabel
New disk label type? gpt
(parted) quit
Information: You may need to update /etc/fstab.
#

	Create the storage pool configuration file

					Create a temporary XML text file containing the storage pool information required for the new device.
				

					The file must be in the format shown below, and contain the following fields:
				
	<name>guest_images_disk</name>
	
								The name parameter determines the name of the storage pool. This example uses the name guest_images_disk in the example below.
							

	 <device path='/dev/sdb'/>
	
								The device parameter with the path attribute specifies the device path of the storage device. This example uses the device /dev/sdb.
							

	<target> <path>/dev</path></target>
	
								The file system target parameter with the path sub-parameter determines the location on the host physical machine file system to attach volumes created with this storage pool.
							

								For example, sdb1, sdb2, sdb3. Using /dev/, as in the example below, means volumes created from this storage pool can be accessed as /dev/sdb1, /dev/sdb2, /dev/sdb3.
							

	<format type='gpt'/>
	
								The format parameter specifies the partition table type. This example uses the gpt in the example below, to match the GPT disk label type created in the previous step.
							

					Create the XML file for the storage pool device with a text editor.
				

 ⁠Example 12.2. Disk based storage device storage pool

<pool type='disk'>
 <name>guest_images_disk</name>
 <source>
 <device path='/dev/sdb'/>
 <format type='gpt'/>
 </source>
 <target>
 <path>/dev</path>
 </target>
</pool>

	Attach the device

					Add the storage pool definition using the virsh pool-define command with the XML configuration file created in the previous step.
				
virsh pool-define ~/guest_images_disk.xml
Pool guest_images_disk defined from /root/guest_images_disk.xml
virsh pool-list --all
Name State Autostart

default active yes
guest_images_disk inactive no

	Start the storage pool

					Start the storage pool with the virsh pool-start command. Verify the pool is started with the virsh pool-list --all command.
				
virsh pool-start guest_images_disk
Pool guest_images_disk started
virsh pool-list --all
Name State Autostart

default active yes
guest_images_disk active no

	Turn on autostart

					Turn on autostart for the storage pool. Autostart configures the libvirtd service to start the storage pool when the service starts.
				
virsh pool-autostart guest_images_disk
Pool guest_images_disk marked as autostarted
virsh pool-list --all
Name State Autostart

default active yes
guest_images_disk active yes

	Verify the storage pool configuration

					Verify the storage pool was created correctly, the sizes reported correctly, and the state reports as running.
				
virsh pool-info guest_images_disk
Name: guest_images_disk
UUID: 551a67c8-5f2a-012c-3844-df29b167431c
State: running
Capacity: 465.76 GB
Allocation: 0.00
Available: 465.76 GB
ls -la /dev/sdb
brw-rw----. 1 root disk 8, 16 May 30 14:08 /dev/sdb
virsh vol-list guest_images_disk
Name Path

	Optional: Remove the temporary configuration file

					Remove the temporary storage pool XML configuration file if it is not needed.
				
rm ~/guest_images_disk.xml

			A disk based storage pool is now available.
		

 ⁠12.1.2. Deleting a Storage Pool Using virsh

			The following demonstrates how to delete a storage pool using virsh:
		
	
					To avoid any issues with other guest virtual machines using the same pool, it is best to stop the storage pool and release any resources in use by it.
				
virsh pool-destroy guest_images_disk

	
					Remove the storage pool's definition
				
virsh pool-undefine guest_images_disk

 ⁠12.2. Partition-based Storage Pools

		This section covers using a pre-formatted block device, a partition, as a storage pool.
	

		For the following examples, a host physical machine has a 500GB hard drive (/dev/sdc) partitioned into one 500GB, ext4 formatted partition (/dev/sdc1). We set up a storage pool for it using the procedure below.
	

 ⁠12.2.1. Creating a Partition-based Storage Pool Using virt-manager

			This procedure creates a new storage pool using a partition of a storage device.
		

 ⁠Procedure 12.1. Creating a partition-based storage pool with virt-manager
	Open the storage pool settings
	
							In the virt-manager graphical interface, select the host physical machine from the main window.
						

							Open the Edit menu and select Connection Details
						

 ⁠[image: Connection Details]

Figure 12.1. Connection Details

	
							Click on the Storage tab of the Connection Details window.
						

 ⁠[image: Storage tab]

Figure 12.2. Storage tab

	Create the new storage pool
	Add a new pool (part 1)

							Press the + button (the add pool button). The Add a New Storage Pool wizard appears.
						

							Choose a Name for the storage pool. This example uses the name guest_images_fs. Change the Type to fs: Pre-Formatted Block Device.
						

 ⁠[image: Storage pool name and type]

Figure 12.3. Storage pool name and type

							Press the Forward button to continue.
						

	Add a new pool (part 2)

							Change the Target Path, Format, and Source Path fields.
						

 ⁠[image: Storage pool path and format]

Figure 12.4. Storage pool path and format

	Target Path
	
										Enter the location to mount the source device for the storage pool in the Target Path field. If the location does not already exist, virt-manager will create the directory.
									

	Format
	
										Select a format from the Format list. The device is formatted with the selected format.
									

										This example uses the ext4 file system, the default Red Hat Enterprise Linux file system.
									

	Source Path
	
										Enter the device in the Source Path field.
									

										This example uses the /dev/sdc1 device.
									

							Verify the details and press the Finish button to create the storage pool.
						

	Verify the new storage pool

					The new storage pool appears in the storage list on the left after a few seconds. Verify the size is reported as expected, 458.20 GB Free in this example. Verify the State field reports the new storage pool as Active.
				

					Select the storage pool. In the Autostart field, click the On Boot check box. This will make sure the storage device starts whenever the libvirtd service starts.
				

 ⁠[image: Storage list confirmation]

Figure 12.5. Storage list confirmation

					The storage pool is now created, close the Connection Details window.
				

 ⁠12.2.2. Deleting a Storage Pool Using virt-manager

			This procedure demonstrates how to delete a storage pool.
		
	
					To avoid any issues with other guest virtual machines using the same pool, it is best to stop the storage pool and release any resources in use by it. To do this, select the storage pool you want to stop and click the red X icon at the bottom of the Storage window.
				

 ⁠[image: Stop Icon]

Figure 12.6. Stop Icon

	
					Delete the storage pool by clicking the Trash can icon. This icon is only enabled if you stop the storage pool first.
				

 ⁠12.2.3. Creating a Partition-based Storage Pool Using virsh

			This section covers creating a partition-based storage pool with the virsh command.
		
Warning

				Do not use this procedure to assign an entire disk as a storage pool (for example, /dev/sdb). Guests should not be given write access to whole disks or block devices. Only use this method to assign partitions (for example, /dev/sdb1) to storage pools.
			

 ⁠Procedure 12.2. Creating pre-formatted block device storage pools using virsh
	 Create the storage pool definition

					Use the virsh pool-define-as command to create a new storage pool definition. There are three options that must be provided to define a pre-formatted disk as a storage pool:
				
	Partition name
	
								The name parameter determines the name of the storage pool. This example uses the name guest_images_fs in the example below.
							

	device
	
								The device parameter with the path attribute specifies the device path of the storage device. This example uses the partition /dev/sdc1.
							

	mountpoint
	
								The mountpoint on the local file system where the formatted device will be mounted. If the mount point directory does not exist, the virsh command can create the directory.
							

								The directory /guest_images is used in this example.
							

virsh pool-define-as guest_images_fs fs - - /dev/sdc1 - "/guest_images"
Pool guest_images_fs defined

					The new pool and mount points are now created.
				

	Verify the new pool

					List the present storage pools.
				

virsh pool-list --all
Name State Autostart

default active yes
guest_images_fs inactive no

	 Create the mount point

					Use the virsh pool-build command to create a mount point for a pre-formatted file system storage pool.
				

virsh pool-build guest_images_fs
Pool guest_images_fs built
ls -la /guest_images
total 8
drwx------. 2 root root 4096 May 31 19:38 .
dr-xr-xr-x. 25 root root 4096 May 31 19:38 ..
virsh pool-list --all
Name State Autostart

default active yes
guest_images_fs inactive no

	 Start the storage pool

					Use the virsh pool-start command to mount the file system onto the mount point and make the pool available for use.
				

virsh pool-start guest_images_fs
Pool guest_images_fs started
virsh pool-list --all
Name State Autostart

default active yes
guest_images_fs active no

	 Turn on autostart

					By default, a storage pool defined with virsh, is not set to automatically start each time libvirtd starts. To remedy this, enable the automatic start with the virsh pool-autostart command. The storage pool is now automatically started each time libvirtd starts.
				

virsh pool-autostart guest_images_fs
Pool guest_images_fs marked as autostarted

virsh pool-list --all
Name State Autostart

default active yes
guest_images_fs active yes

	 Verify the storage pool

					Verify the storage pool was created correctly, the sizes reported are as expected, and the state is reported as running. Verify there is a "lost+found" directory in the mount point on the file system, indicating the device is mounted.
				

virsh pool-info guest_images_fs
Name: guest_images_fs
UUID: c7466869-e82a-a66c-2187-dc9d6f0877d0
State: running
Persistent: yes
Autostart: yes
Capacity: 458.39 GB
Allocation: 197.91 MB
Available: 458.20 GB
mount | grep /guest_images
/dev/sdc1 on /guest_images type ext4 (rw)
ls -la /guest_images
total 24
drwxr-xr-x. 3 root root 4096 May 31 19:47 .
dr-xr-xr-x. 25 root root 4096 May 31 19:38 ..
drwx------. 2 root root 16384 May 31 14:18 lost+found

 ⁠12.2.4. Deleting a Storage Pool Using virsh

	
					To avoid any issues with other guest virtual machines using the same pool, it is best to stop the storage pool and release any resources in use by it.
				
virsh pool-destroy guest_images_disk

	
					Optionally, if you want to remove the directory where the storage pool resides use the following command:
				
virsh pool-delete guest_images_disk

	
					Remove the storage pool's definition
				
virsh pool-undefine guest_images_disk

 ⁠12.3. Directory-based Storage Pools

		This section covers storing guest virtual machines in a directory on the host physical machine.
	

		Directory-based storage pools can be created with virt-manager or the virsh command line tools.
	

 ⁠12.3.1. Creating a Directory-based Storage Pool with virt-manager

	Create the local directory
	Optional: Create a new directory for the storage pool

							Create the directory on the host physical machine for the storage pool. This example uses a directory named /guest virtual machine_images.
						
mkdir /guest_images

	Set directory ownership

							Change the user and group ownership of the directory. The directory must be owned by the root user.
						
chown root:root /guest_images

	Set directory permissions

							Change the file permissions of the directory.
						
chmod 700 /guest_images

	Verify the changes

							Verify the permissions were modified. The output shows a correctly configured empty directory.
						
ls -la /guest_images
total 8
drwx------. 2 root root 4096 May 28 13:57 .
dr-xr-xr-x. 26 root root 4096 May 28 13:57 ..

	Configure SELinux file contexts

					Configure the correct SELinux context for the new directory. Note that the name of the pool and the directory do not have to match. However, when you shutdown the guest virtual machine, libvirt has to set the context back to a default value. The context of the directory determines what this default value is. It is worth explicitly labeling the directory virt_image_t, so that when the guest virtual machine is shutdown, the images get labeled 'virt_image_t' and are thus isolated from other processes running on the host physical machine.
				

semanage fcontext -a -t virt_image_t '/guest_images(/.*)?'
restorecon -R /guest_images

	Open the storage pool settings
	
							In the virt-manager graphical interface, select the host physical machine from the main window.
						

							Open the Edit menu and select Connection Details
						

 ⁠[image: Connection details window]

Figure 12.7. Connection details window

	
							Click on the Storage tab of the Connection Details window.
						

 ⁠[image: Storage tab]

Figure 12.8. Storage tab

	Create the new storage pool
	Add a new pool (part 1)

							Press the + button (the add pool button). The Add a New Storage Pool wizard appears.
						

							Choose a Name for the storage pool. This example uses the name guest_images. Change the Type to dir: Filesystem Directory.
						

 ⁠[image: Name the storage pool]

Figure 12.9. Name the storage pool

							Press the Forward button to continue.
						

	Add a new pool (part 2)

							Change the Target Path field. For example, /guest_images.
						

							Verify the details and press the Finish button to create the storage pool.
						

	Verify the new storage pool

					The new storage pool appears in the storage list on the left after a few seconds. Verify the size is reported as expected, 36.41 GB Free in this example. Verify the State field reports the new storage pool as Active.
				

					Select the storage pool. In the Autostart field, confirm that the On Boot check box is checked. This will make sure the storage pool starts whenever the libvirtd service starts.
				

 ⁠[image: Verify the storage pool information]

Figure 12.10. Verify the storage pool information

					The storage pool is now created, close the Connection Details window.
				

 ⁠12.3.2. Deleting a Storage Pool Using virt-manager

			This procedure demonstrates how to delete a storage pool.
		
	
					To avoid any issues with other guest virtual machines using the same pool, it is best to stop the storage pool and release any resources in use by it. To do this, select the storage pool you want to stop and click the red X icon at the bottom of the Storage window.
				

 ⁠[image: Stop Icon]

Figure 12.11. Stop Icon

	
					Delete the storage pool by clicking the Trash can icon. This icon is only enabled if you stop the storage pool first.
				

 ⁠12.3.3. Creating a Directory-based Storage Pool with virsh

	 Create the storage pool definition

					Use the virsh pool-define-as command to define a new storage pool. There are two options required for creating directory-based storage pools:
				
	
							The name of the storage pool.
						

							This example uses the name guest_images. All further virsh commands used in this example use this name.
						

	
							The path to a file system directory for storing guest image files. If this directory does not exist, virsh will create it.
						

							This example uses the /guest_images directory.
						

 # virsh pool-define-as guest_images dir - - - - "/guest_images"
Pool guest_images defined

	Verify the storage pool is listed

					Verify the storage pool object is created correctly and the state reports it as inactive.
				
virsh pool-list --all
Name State Autostart

default active yes
guest_images inactive no

	 Create the local directory

					Use the virsh pool-build command to build the directory-based storage pool for the directory guest_images (for example), as shown:
				
virsh pool-build guest_images
Pool guest_images built
ls -la /guest_images
total 8
drwx------. 2 root root 4096 May 30 02:44 .
dr-xr-xr-x. 26 root root 4096 May 30 02:44 ..
virsh pool-list --all
Name State Autostart

default active yes
guest_images inactive no

	Start the storage pool

					Use the virsh command pool-start to enable a directory storage pool, thereby allowing allowing volumes of the pool to be used as guest disk images.
				
virsh pool-start guest_images
Pool guest_images started
virsh pool-list --all
Name State Autostart

default active yes
guest_images active no

	Turn on autostart

					Turn on autostart for the storage pool. Autostart configures the libvirtd service to start the storage pool when the service starts.
				
virsh pool-autostart guest_images
Pool guest_images marked as autostarted
virsh pool-list --all
Name State Autostart

default active yes
guest_images active yes

	Verify the storage pool configuration

					Verify the storage pool was created correctly, the size is reported correctly, and the state is reported as running. If you want the pool to be accessible even if the guest virtual machine is not running, make sure that Persistent is reported as yes. If you want the pool to start automatically when the service starts, make sure that Autostart is reported as yes.
				
virsh pool-info guest_images
Name: guest_images
UUID: 779081bf-7a82-107b-2874-a19a9c51d24c
State: running
Persistent: yes
Autostart: yes
Capacity: 49.22 GB
Allocation: 12.80 GB
Available: 36.41 GB

ls -la /guest_images
total 8
drwx------. 2 root root 4096 May 30 02:44 .
dr-xr-xr-x. 26 root root 4096 May 30 02:44 ..
#

			A directory-based storage pool is now available.
		

 ⁠12.3.4. Deleting a Storage Pool Using virsh

			The following demonstrates how to delete a storage pool using virsh:
		
	
					To avoid any issues with other guest virtual machines using the same pool, it is best to stop the storage pool and release any resources in use by it.
				
virsh pool-destroy guest_images_disk

	
					Optionally, if you want to remove the directory where the storage pool resides use the following command:
				
virsh pool-delete guest_images_disk

	
					Remove the storage pool's definition
				
virsh pool-undefine guest_images_disk

 ⁠12.4. LVM-based Storage Pools

		This chapter covers using LVM volume groups as storage pools.
	

		LVM-based storage groups provide the full flexibility of LVM.
	
Note

			Thin provisioning is currently not possible with LVM based storage pools.
		

Note

			Refer to the Red Hat Enterprise Linux Storage Administration Guide for more details on LVM.
		

Warning

			LVM-based storage pools require a full disk partition. If activating a new partition/device with these procedures, the partition will be formatted and all data will be erased. If using the host's existing Volume Group (VG) nothing will be erased. It is recommended to back up the storage device before commencing the following procedure.
		

 ⁠12.4.1. Creating an LVM-based Storage Pool with virt-manager

			LVM-based storage pools can use existing LVM volume groups or create new LVM volume groups on a blank partition.
		
	Optional: Create new partition for LVM volumes

					These steps describe how to create a new partition and LVM volume group on a new hard disk drive.
				
Warning

						This procedure will remove all data from the selected storage device.
					

	Create a new partition

							Use the fdisk command to create a new disk partition from the command line. The following example creates a new partition that uses the entire disk on the storage device /dev/sdb.
						
fdisk /dev/sdb
Command (m for help):

							Press n for a new partition.
						

	
							Press p for a primary partition.
						
Command action
 e extended
 p primary partition (1-4)

	
							Choose an available partition number. In this example the first partition is chosen by entering 1.
						
Partition number (1-4): 1

	
							Enter the default first cylinder by pressing Enter.
						
First cylinder (1-400, default 1):

	
							Select the size of the partition. In this example the entire disk is allocated by pressing Enter.
						
Last cylinder or +size or +sizeM or +sizeK (2-400, default 400):

	
							Set the type of partition by pressing t.
						
Command (m for help): t

	
							Choose the partition you created in the previous steps. In this example, the partition number is 1.
						
Partition number (1-4): 1

	
							Enter 8e for a Linux LVM partition.
						
Hex code (type L to list codes): 8e

	
							write changes to disk and quit.
						
Command (m for help): w
Command (m for help): q

	Create a new LVM volume group

							Create a new LVM volume group with the vgcreate command. This example creates a volume group named guest_images_lvm.
						
vgcreate guest_images_lvm /dev/sdb1
 Physical volume "/dev/vdb1" successfully created
 Volume group "guest_images_lvm" successfully created

					The new LVM volume group, guest_images_lvm, can now be used for an LVM-based storage pool.
				

	Open the storage pool settings
	
							In the virt-manager graphical interface, select the host from the main window.
						

							Open the Edit menu and select Connection Details
						

 ⁠[image: Connection details]

Figure 12.12. Connection details

	
							Click on the Storage tab.
						

 ⁠[image: Storage tab]

Figure 12.13. Storage tab

	Create the new storage pool
	Start the Wizard

							Press the + button (the add pool button). The Add a New Storage Pool wizard appears.
						

							Choose a Name for the storage pool. We use guest_images_lvm for this example. Then change the Type to logical: LVM Volume Group, and
						

 ⁠[image: Add LVM storage pool]

Figure 12.14. Add LVM storage pool

							Press the Forward button to continue.
						

	Add a new pool (part 2)

							Change the Target Path field. This example uses /guest_images.
						

							Now fill in the Target Path and Source Path fields, then tick the Build Pool check box.
						
	
									Use the Target Path field to either select an existing LVM volume group or as the name for a new volume group. The default format is /dev/storage_pool_name.
								

									This example uses a new volume group named /dev/guest_images_lvm.
								

	
									The Source Path field is optional if an existing LVM volume group is used in the Target Path.
								

									For new LVM volume groups, input the location of a storage device in the Source Path field. This example uses a blank partition /dev/sdc.
								

	
									The Build Pool check box instructs virt-manager to create a new LVM volume group. If you are using an existing volume group you should not select the Build Pool check box.
								

									This example is using a blank partition to create a new volume group so the Build Pool check box must be selected.
								

 ⁠[image: Add target and source]

Figure 12.15. Add target and source

							Verify the details and press the Finish button format the LVM volume group and create the storage pool.
						

	Confirm the device to be formatted

							A warning message appears.
						

 ⁠[image: Warning message]

Figure 12.16. Warning message

							Press the Yes button to proceed to erase all data on the storage device and create the storage pool.
						

	Verify the new storage pool

					The new storage pool will appear in the list on the left after a few seconds. Verify the details are what you expect, 465.76 GB Free in our example. Also verify the State field reports the new storage pool as Active.
				

					It is generally a good idea to have the Autostart check box enabled, to ensure the storage pool starts automatically with libvirtd.
				

 ⁠[image: Confirm LVM storage pool details]

Figure 12.17. Confirm LVM storage pool details

					Close the Host Details dialog, as the task is now complete.
				

 ⁠12.4.2. Deleting a Storage Pool Using virt-manager

			This procedure demonstrates how to delete a storage pool.
		
	
					To avoid any issues with other guest virtual machines using the same pool, it is best to stop the storage pool and release any resources in use by it. To do this, select the storage pool you want to stop and click the red X icon at the bottom of the Storage window.
				

 ⁠[image: Stop Icon]

Figure 12.18. Stop Icon

	
					Delete the storage pool by clicking the Trash can icon. This icon is only enabled if you stop the storage pool first.
				

 ⁠12.4.3. Creating an LVM-based Storage Pool with virsh

			This section outlines the steps required to create an LVM-based storage pool with the virsh command. It uses the example of a pool named guest_images_lvm from a single drive (/dev/sdc). This is only an example and your settings should be substituted as appropriate.
		

 ⁠Procedure 12.3. Creating an LVM-based storage pool with virsh
	
					Define the pool name guest_images_lvm.
				
virsh pool-define-as guest_images_lvm logical - - /dev/sdc libvirt_lvm \ /dev/libvirt_lvm
Pool guest_images_lvm defined

	
					Build the pool according to the specified name. If you are using an already existing volume group, skip this step.
				

virsh pool-build guest_images_lvm

Pool guest_images_lvm built

	
					Initialize the new pool.
				

virsh pool-start guest_images_lvm

Pool guest_images_lvm started

	
					Show the volume group information with the vgs command.
				

vgs
VG #PV #LV #SN Attr VSize VFree
libvirt_lvm 1 0 0 wz--n- 465.76g 465.76g

	
					Set the pool to start automatically.
				

virsh pool-autostart guest_images_lvm
Pool guest_images_lvm marked as autostarted

	
					List the available pools with the virsh command.
				

virsh pool-list --all
Name State Autostart

default active yes
guest_images_lvm active yes

	
					The following commands demonstrate the creation of three volumes (volume1, volume2 and volume3) within this pool.
				

virsh vol-create-as guest_images_lvm volume1 8G
Vol volume1 created

virsh vol-create-as guest_images_lvm volume2 8G
Vol volume2 created

virsh vol-create-as guest_images_lvm volume3 8G
Vol volume3 created

	
					List the available volumes in this pool with the virsh command.
				

virsh vol-list guest_images_lvm
Name Path

volume1 /dev/libvirt_lvm/volume1
volume2 /dev/libvirt_lvm/volume2
volume3 /dev/libvirt_lvm/volume3

	
					The following two commands (lvscan and lvs) display further information about the newly created volumes.
				

lvscan
ACTIVE '/dev/libvirt_lvm/volume1' [8.00 GiB] inherit
ACTIVE '/dev/libvirt_lvm/volume2' [8.00 GiB] inherit
ACTIVE '/dev/libvirt_lvm/volume3' [8.00 GiB] inherit

lvs
LV VG Attr LSize Pool Origin Data% Move Log Copy% Convert
volume1 libvirt_lvm -wi-a- 8.00g
volume2 libvirt_lvm -wi-a- 8.00g
volume3 libvirt_lvm -wi-a- 8.00g

 ⁠12.4.4. Deleting a Storage Pool Using virsh

			The following demonstrates how to delete a storage pool using virsh:
		
	
					To avoid any issues with other guests using the same pool, it is best to stop the storage pool and release any resources in use by it.
				
virsh pool-destroy guest_images_disk

	
					Optionally, if you want to remove the directory where the storage pool resides use the following command:
				
virsh pool-delete guest_images_disk

	
					Remove the storage pool's definition
				
virsh pool-undefine guest_images_disk

 ⁠12.5. iSCSI-based Storage Pools

		This section covers using iSCSI-based devices to store guest virtual machines.
	

		iSCSI (Internet Small Computer System Interface) is a network protocol for sharing storage devices. iSCSI connects initiators (storage clients) to targets (storage servers) using SCSI instructions over the IP layer.
	

 ⁠12.5.1. Configuring a Software iSCSI Target

			The scsi-target-utils package provides a tool for creating software-backed iSCSI targets.
		

 ⁠Procedure 12.4. Creating an iSCSI target
	Install the required packages

					Install the scsi-target-utils package and all dependencies
				
yum install scsi-target-utils

	Start the tgtd service

					The tgtd service host physical machines SCSI targets and uses the iSCSI protocol to host physical machine targets. Start the tgtd service and make the service persistent after restarting with the chkconfig command.
				
service tgtd start
chkconfig tgtd on

	Optional: Create LVM volumes

					LVM volumes are useful for iSCSI backing images. LVM snapshots and resizing can be beneficial for guest virtual machines. This example creates an LVM image named virtimage1 on a new volume group named virtstore on a RAID5 array for hosting guest virtual machines with iSCSI.
				
	Create the RAID array

							Creating software RAID5 arrays is covered by the Red Hat Enterprise Linux Deployment Guide.
						

	Create the LVM volume group

							Create a volume group named virtstore with the vgcreate command.
						
vgcreate virtstore /dev/md1

	Create a LVM logical volume

							Create a logical volume group named virtimage1 on the virtstore volume group with a size of 20GB using the lvcreate command.
						
lvcreate --size 20G -n virtimage1 virtstore

							The new logical volume, virtimage1, is ready to use for iSCSI.
						

	Optional: Create file-based images

					File-based storage is sufficient for testing but is not recommended for production environments or any significant I/O activity. This optional procedure creates a file based imaged named virtimage2.img for an iSCSI target.
				
	Create a new directory for the image

							Create a new directory to store the image. The directory must have the correct SELinux contexts.
						
mkdir -p /var/lib/tgtd/virtualization

	Create the image file

							Create an image named virtimage2.img with a size of 10GB.
						
dd if=/dev/zero of=/var/lib/tgtd/virtualization/virtimage2.img bs=1M seek=10000 count=0

	Configure SELinux file contexts

							Configure the correct SELinux context for the new image and directory.
						
restorecon -R /var/lib/tgtd

							The new file-based image, virtimage2.img, is ready to use for iSCSI.
						

	Create targets

					Targets can be created by adding a XML entry to the /etc/tgt/targets.conf file. The target attribute requires an iSCSI Qualified Name (IQN). The IQN is in the format:
				
iqn.yyyy-mm.reversed domain name:optional identifier text

					Where:
				
	
							yyyy-mm represents the year and month the device was started (for example: 2010-05);
						

	
							reversed domain name is the host physical machines domain name in reverse (for example server1.example.com in an IQN would be com.example.server1); and
						

	
							optional identifier text is any text string, without spaces, that assists the administrator in identifying devices or hardware.
						

					This example creates iSCSI targets for the two types of images created in the optional steps on server1.example.com with an optional identifier trial. Add the following to the /etc/tgt/targets.conf file.
				

<target iqn.2010-05.com.example.server1:iscsirhel6guest>
 backing-store /dev/virtstore/virtimage1 #LUN 1
 backing-store /var/lib/tgtd/virtualization/virtimage2.img #LUN 2
 write-cache off
</target>

					Ensure that the /etc/tgt/targets.conf file contains the default-driver iscsi line to set the driver type as iSCSI. The driver uses iSCSI by default.
				
Important

						This example creates a globally accessible target without access control. Refer to the scsi-target-utils for information on implementing secure access.
					

	Restart the tgtd service

					Restart the tgtd service to reload the configuration changes.
				
service tgtd restart

	iptables configuration

					Open port 3260 for iSCSI access with iptables.
				
iptables -I INPUT -p tcp -m tcp --dport 3260 -j ACCEPT
service iptables save
service iptables restart

	Verify the new targets

					View the new targets to ensure the setup was successful with the tgt-admin --show command.
				

tgt-admin --show
Target 1: iqn.2010-05.com.example.server1:iscsirhel6guest
System information:
Driver: iscsi
State: ready
I_T nexus information:
LUN information:
LUN: 0
 Type: controller
 SCSI ID: IET 00010000
 SCSI SN: beaf10
 Size: 0 MB
 Online: Yes
 Removable media: No
 Backing store type: rdwr
 Backing store path: None
LUN: 1
 Type: disk
 SCSI ID: IET 00010001
 SCSI SN: beaf11
 Size: 20000 MB
 Online: Yes
 Removable media: No
 Backing store type: rdwr
 Backing store path: /dev/virtstore/virtimage1
LUN: 2
 Type: disk
 SCSI ID: IET 00010002
 SCSI SN: beaf12
 Size: 10000 MB
 Online: Yes
 Removable media: No
 Backing store type: rdwr
 Backing store path: /var/lib/tgtd/virtualization/virtimage2.img
Account information:
ACL information:
ALL

Warning

						The ACL list is set to all. This allows all systems on the local network to access this device. It is recommended to set host physical machine access ACLs for production environments.
					

	Optional: Test discovery

					Test whether the new iSCSI device is discoverable.
				
iscsiadm --mode discovery --type sendtargets --portal server1.example.com
127.0.0.1:3260,1 iqn.2010-05.com.example.server1:iscsirhel6guest

	Optional: Test attaching the device

					Attach the new device (iqn.2010-05.com.example.server1:iscsirhel6guest) to determine whether the device can be attached.
				
iscsiadm -d2 -m node --login
scsiadm: Max file limits 1024 1024

Logging in to [iface: default, target: iqn.2010-05.com.example.server1:iscsirhel6guest, portal: 10.0.0.1,3260]
Login to [iface: default, target: iqn.2010-05.com.example.server1:iscsirhel6guest, portal: 10.0.0.1,3260] successful.

					Detach the device.
				
iscsiadm -d2 -m node --logout
scsiadm: Max file limits 1024 1024

Logging out of session [sid: 2, target: iqn.2010-05.com.example.server1:iscsirhel6guest, portal: 10.0.0.1,3260
Logout of [sid: 2, target: iqn.2010-05.com.example.server1:iscsirhel6guest, portal: 10.0.0.1,3260] successful.

			An iSCSI device is now ready to use for virtualization.
		

 ⁠12.5.2. Adding an iSCSI Target to virt-manager

			This procedure covers creating a storage pool with an iSCSI target in virt-manager.
		

 ⁠Procedure 12.5. Adding an iSCSI device to virt-manager
	Open the host physical machine's storage tab

					Open the Storage tab in the Connection Details window.
				
	
							Open virt-manager.
						

	
							Select a host physical machine from the main virt-manager window. Click Edit menu and select Connection Details.
						

 ⁠[image: Connection details]

Figure 12.19. Connection details

	
							Click on the Storage tab.
						

 ⁠[image: Storage menu]

Figure 12.20. Storage menu

	Add a new pool (part 1)

					Press the + button (the add pool button). The Add a New Storage Pool wizard appears.
				

 ⁠[image: Add an iscsi storage pool name and type]

Figure 12.21. Add an iscsi storage pool name and type

					Choose a name for the storage pool, change the Type to iscsi, and press Forward to continue.
				

	Add a new pool (part 2)

					You will need the information you used in Section 12.5, “iSCSI-based Storage Pools” and Procedure 12.4, “Creating an iSCSI target” to complete the fields in this menu.
				
	
							Enter the iSCSI source and target. The Format option is not available as formatting is handled by the guest virtual machines. It is not advised to edit the Target Path. The default target path value, /dev/disk/by-path/, adds the drive path to that directory. The target path should be the same on all host physical machines for migration.
						

	
							Enter the host name or IP address of the iSCSI target. This example uses host1.example.com.
						

	
							In the Source Pathfield, enter the iSCSI target IQN. If you look at Procedure 12.4, “Creating an iSCSI target” in Section 12.5, “iSCSI-based Storage Pools”, this is the information you added in the /etc/tgt/targets.conf file. This example uses iqn.2010-05.com.example.server1:iscsirhel6guest.
						

	
							Check the IQN check box to enter the IQN for the initiator. This example uses iqn.2010-05.com.example.host1:iscsirhel6.
						

	
							Click Finish to create the new storage pool.
						

 ⁠[image: Create an iscsi storage pool]

Figure 12.22. Create an iscsi storage pool

 ⁠12.5.3. Deleting a Storage Pool Using virt-manager

			This procedure demonstrates how to delete a storage pool.
		
	
					To avoid any issues with other guest virtual machines using the same pool, it is best to stop the storage pool and release any resources in use by it. To do this, select the storage pool you want to stop and click the red X icon at the bottom of the Storage window.
				

 ⁠[image: Stop Icon]

Figure 12.23. Stop Icon

	
					Delete the storage pool by clicking the Trash can icon. This icon is only enabled if you stop the storage pool first.
				

 ⁠12.5.4. Creating an iSCSI-based Storage Pool with virsh

	Use pool-define-as to define the pool from the command line

					Storage pool definitions can be created with the virsh command line tool. Creating storage pools with virsh is useful for systems administrators using scripts to create multiple storage pools.
				

					The virsh pool-define-as command has several parameters which are accepted in the following format:
				
virsh pool-define-as name type source-host source-path source-dev source-name target

					The parameters are explained as follows:
				
	type
	
								defines this pool as a particular type, iscsi for example
							

	name
	
								must be unique and sets the name for the storage pool
							

	source-host and source-path
	
								the host name and iSCSI IQN respectively
							

	source-dev and source-name
	
								these parameters are not required for iSCSI-based pools, use a - character to leave the field blank.
							

	target
	
								defines the location for mounting the iSCSI device on the host physical machine
							

					The example below creates the same iSCSI-based storage pool as the previous step.
				
virsh pool-define-as --name scsirhel6guest --type iscsi \
 --source-host server1.example.com \
 --source-dev iqn.2010-05.com.example.server1:iscsirhel6guest
 --target /dev/disk/by-path
Pool iscsirhel6guest defined

	Verify the storage pool is listed

					Verify the storage pool object is created correctly and the state reports as inactive.
				
virsh pool-list --all
Name State Autostart

default active yes
iscsirhel6guest inactive no

	Start the storage pool

					Use the virsh command pool-start for this. pool-start enables a directory storage pool, allowing it to be used for volumes and guest virtual machines.
				
virsh pool-start guest_images_disk
Pool guest_images_disk started
virsh pool-list --all
Name State Autostart

default active yes
iscsirhel6guest active no

	Turn on autostart

					Turn on autostart for the storage pool. Autostart configures the libvirtd service to start the storage pool when the service starts.
				
virsh pool-autostart iscsirhel6guest
Pool iscsirhel6guest marked as autostarted

					Verify that the iscsirhel6guest pool has autostart set:
				
virsh pool-list --all
Name State Autostart

default active yes
iscsirhel6guest active yes

	Verify the storage pool configuration

					Verify the storage pool was created correctly, the sizes reported correctly, and the state reports as running.
				
virsh pool-info iscsirhel6guest
Name: iscsirhel6guest
UUID: afcc5367-6770-e151-bcb3-847bc36c5e28
State: running
Persistent: unknown
Autostart: yes
Capacity: 100.31 GB
Allocation: 0.00
Available: 100.31 GB

			An iSCSI-based storage pool is now available.
		

 ⁠12.5.5. Deleting a Storage Pool Using virsh

			The following demonstrates how to delete a storage pool using virsh:
		
	
					To avoid any issues with other guest virtual machines using the same pool, it is best to stop the storage pool and release any resources in use by it.
				
virsh pool-destroy guest_images_disk

	
					Remove the storage pool's definition
				
virsh pool-undefine guest_images_disk

 ⁠12.6. NFS-based Storage Pools

		This procedure covers creating a storage pool with a NFS mount point in virt-manager.
	

 ⁠12.6.1. Creating an NFS-based Storage Pool with virt-manager

	Open the host physical machine's storage tab

					Open the Storage tab in the Host Details window.
				
	
							Open virt-manager.
						

	
							Select a host physical machine from the main virt-manager window. Click Edit menu and select Connection Details.
						

 ⁠[image: Connection details]

Figure 12.24. Connection details

	
							Click on the Storage tab.
						

 ⁠[image: Storage tab]

Figure 12.25. Storage tab

	Create a new pool (part 1)

					Press the + button (the add pool button). The Add a New Storage Pool wizard appears.
				

 ⁠[image: Add an NFS name and type]

Figure 12.26. Add an NFS name and type

					Choose a name for the storage pool and press Forward to continue.
				

	Create a new pool (part 2)

					Enter the target path for the device, the host name and the NFS share path. Set the Format option to NFS or auto (to detect the type). The target path must be identical on all host physical machines for migration.
				

					Enter the host name or IP address of the NFS server. This example uses server1.example.com.
				

					Enter the NFS path. This example uses /nfstrial.
				

 ⁠[image: Create an NFS storage pool]

Figure 12.27. Create an NFS storage pool

					Press Finish to create the new storage pool.
				

 ⁠12.6.2. Deleting a Storage Pool Using virt-manager

			This procedure demonstrates how to delete a storage pool.
		
	
					To avoid any issues with other guests using the same pool, it is best to stop the storage pool and release any resources in use by it. To do this, select the storage pool you want to stop and click the red X icon at the bottom of the Storage window.
				

 ⁠[image: Stop Icon]

Figure 12.28. Stop Icon

	
					Delete the storage pool by clicking the Trash can icon. This icon is only enabled if you stop the storage pool first.
				

 ⁠12.7. GlusterFS Storage Pools

		GlusterFS is a userspace file system that uses FUSE. When enabled in a guest virtual machine it enables a KVM host physical machine to boot guest virtual machine images from one or more GlusterFS storage volumes, and to use images from a GlusterFS storage volume as data disks for guest virtual machines.
	
Important

			Red Hat Red Hat Enterprise Linux 6 does not support the use of GlusterFS with storage pools. However, Red Hat Enterprise Linux 6.5 and later includes native support for creating virtual machines with GlusterFS using the libgfapi library.
		

 ⁠12.8. Using an NPIV Virtual Adapter (vHBA) with SCSI Devices

		 NPIV (N_Port ID Virtualization) is a software technology that allows sharing of a single physical Fibre Channel host bus adapter (HBA).
	

		This allows multiple guests to see the same storage from multiple physical hosts, and thus allows for easier migration paths for the storage. As a result, there is no need for the migration to create or copy storage, as long as the correct storage path is specified.
	

		In virtualization, the virtual host bus adapter, or vHBA, controls the LUNs for virtual machines. Each vHBA is identified by its own WWNN (World Wide Node Name) and WWPN (World Wide Port Name). The path to the storage is determined by the WWNN and WWPN values.
	

		This section provides instructions for configuring a vHBA on a virtual machine. Note that Red Hat Enterprise Linux 6 does not support persistent vHBA configuration across host reboots; verify any vHBA-related settings following a host reboot.
	

 ⁠12.8.1. Creating a vHBA

 ⁠Procedure 12.6. Creating a vHBA
	Locate HBAs on the host system

					To locate the HBAs on your host system, examine the SCSI devices on the host system to locate a scsi_host with vport capability.
				

					Run the following command to retrieve a scsi_host list:
				
virsh nodedev-list --cap scsi_host
scsi_host0
scsi_host1
scsi_host2
scsi_host3
scsi_host4

					For each scsi_host, run the following command to examine the device XML for the line <capability type='vport_ops'>, which indicates a scsi_host with vport capability.
virsh nodedev-dumpxml scsi_hostN

				

	Check the HBA's details

					Use the virsh nodedev-dumpxml HBA_device command to see the HBA's details.
				

					The XML output from the virsh nodedev-dumpxml command will list the fields <name>, <wwnn>, and <wwpn>, which are used to create a vHBA. The <max_vports> value shows the maximum number of supported vHBAs.
				
​
​ # virsh nodedev-dumpxml scsi_host3
​<device>
​ <name>scsi_host3</name>
​ <path>/sys/devices/pci0000:00/0000:00:04.0/0000:10:00.0/host3</path>
​ <parent>pci_0000_10_00_0</parent>
​ <capability type='scsi_host'>
​ <host>3</host>
​ <capability type='fc_host'>
​ <wwnn>20000000c9848140</wwnn>
​ <wwpn>10000000c9848140</wwpn>
​ <fabric_wwn>2002000573de9a81</fabric_wwn>
​ </capability>
​ <capability type='vport_ops'>
​ <max_vports>127</max_vports>
​ <vports>0</vports>
​ </capability>
​ </capability>
​</device>

					In this example, the <max_vports> value shows there are a total 127 virtual ports available for use in the HBA configuration. The <vports> value shows the number of virtual ports currently being used. These values update after creating a vHBA.
				

	Create a vHBA host device

					 Create an XML file similar to the following (in this example, named vhba_host3.xml) for the vHBA host.
				
​# cat vhba_host3.xml
​ <device>
​ <parent>scsi_host3</parent>
​ <capability type='scsi_host'>
​ <capability type='fc_host'>
​ </capability>
​ </capability>
​ </device>

					The <parent> field specifies the HBA device to associate with this vHBA device. The details in the <device> tag are used in the next step to create a new vHBA device for the host. See http://libvirt.org/formatnode.html for more information on the nodedev XML format.
				

	Create a new vHBA on the vHBA host device

					To create a vHBA on vhba_host3, use the virsh nodedev-create command:
				
virsh nodedev-create vhba_host3.xml
Node device scsi_host5 created from vhba_host3.xml

	Verify the vHBA

					Verify the new vHBA's details (scsi_host5) with the virsh nodedev-dumpxml command:
				
​# virsh nodedev-dumpxml scsi_host5
​<device>
​ <name>scsi_host5</name>
​ <path>/sys/devices/pci0000:00/0000:00:04.0/0000:10:00.0/host3/vport-3:0-0/host5</path>
​ <parent>scsi_host3</parent>
​ <capability type='scsi_host'>
​ <host>5</host>
​ <capability type='fc_host'>
​ <wwnn>5001a4a93526d0a1</wwnn>
​ <wwpn>5001a4ace3ee047d</wwpn>
​ <fabric_wwn>2002000573de9a81</fabric_wwn>
​ </capability>
​ </capability>
​</device>

 ⁠12.8.2. Creating a Storage Pool Using the vHBA

			 It is recommended to define a libvirt storage pool based on the vHBA in order to preserve the vHBA configuration.
		

			Using a storage pool has two primary advantages:
		
	
					the libvirt code can easily find the LUN's path using the virsh command output, and
				

	
					virtual machine migration requires only defining and starting a storage pool with the same vHBA name on the target machine. To do this, the vHBA LUN, libvirt storage pool and volume name must be specified in the virtual machine's XML configuration. Refer to Section 12.8.3, “Configuring the Virtual Machine to Use a vHBA LUN” for an example.
				

	Create a SCSI storage pool

					To create a vHBA configuration, first create a libvirt 'scsi' storage pool XML file based on the vHBA using the format below.
				
Note

						Ensure you use the vHBA created in Procedure 12.6, “Creating a vHBA” as the host name, modifying the vHBA name scsi_hostN to hostN for the storage pool configuration. In this example, the vHBA is named scsi_host5, which is specified as <adapter name='host5'/> in a Red Hat Enterprise Linux 6 libvirt storage pool.
					

					It is recommended to use a stable location for the <path> value, such as one of the /dev/disk/by-{path|id|uuid|label} locations on your system. More information on <path> and the elements within <target> can be found at http://libvirt.org/formatstorage.html.
				

					In this example, the 'scsi' storage pool is named vhbapool_host3.xml:
				
​ <pool type='scsi'>
​ <name>vhbapool_host3</name>
​ <uuid>e9392370-2917-565e-692b-d057f46512d6</uuid>
​ <capacity unit='bytes'>0</capacity>
​ <allocation unit='bytes'>0</allocation>
​ <available unit='bytes'>0</available>
​ <source>
​ <adapter name='host5'/>
​ </source>
​ <target>
​ <path>/dev/disk/by-path</path>
​ <permissions>
​ <mode>0700</mode>
​ <owner>0</owner>
​ <group>0</group>
​ </permissions>
​ </target>
​ </pool>

	Define the pool

					To define the storage pool (named vhbapool_host3 in this example), use the virsh pool-define command:
				

 # virsh pool-define vhbapool_host3.xml
 Pool vhbapool_host3 defined from vhbapool_host3.xml

	Start the pool

					Start the storage pool with the following command:
				

virsh pool-start vhbapool_host3
Pool vhbapool_host3 started

	Enable autostart

					Finally, to ensure that subsequent host reboots will automatically define vHBAs for use in virtual machines, set the storage pool autostart feature (in this example, for a pool named vhbapool_host3):
				

virsh pool-autostart vhbapool_host3

 ⁠12.8.3. Configuring the Virtual Machine to Use a vHBA LUN

			After a storage pool is created for a vHBA, add the vHBA LUN to the virtual machine configuration.
		
	Find available LUNs

					First, use the virsh vol-list command in order to generate a list of available LUNs on the vHBA. For example:
				

virsh vol-list vhbapool_host3
 Name Path
--
 unit:0:4:0 /dev/disk/by-path/pci-0000:10:00.0-fc-0x5006016844602198-lun-0
 unit:0:5:0 /dev/disk/by-path/pci-0000:10:00.0-fc-0x5006016044602198-lun-0

					The list of LUN names displayed will be available for use as disk volumes in virtual machine configurations.
				

	Add the vHBA LUN to the virtual machine

					Add the vHBA LUN to the virtual machine by specifying in the virtual machine's XML:
				
	
							the device type as lun or disk in the <disk> parameter, and
						

	
							the source device in the <source> parameter. Note this can be entered as /dev/sdaN, or as a symbolic link generated by udev in /dev/disk/by-path|by-id|by-uuid|by-label, which can be found by running the virsh vol-list pool command.
						

					For example:
				
​
​ <disk type='block' device='lun'>
​ <driver name='qemu' type='raw'/>
​ <source dev='/dev/disk/by-path/pci-0000\:04\:00.1-fc-0x203400a0b85ad1d7-lun-0'/>
​ <target dev='sda' bus='scsi'/>
​ </disk>
​

 ⁠12.8.4. Destroying the vHBA Storage Pool

			A vHBA storage pool can be destroyed by the virsh pool-destroy command:

virsh pool-destroy vhbapool_host3

		

			Delete the vHBA with the following command

virsh nodedev-destroy scsi_host5

		

			To verify the pool and vHBA have been destroyed, run:

virsh nodedev-list --cap scsi_host

			 scsi_host5 will no longer appear in the list of results.
		

 ⁠Chapter 13. Volumes

 ⁠13.1. Creating Volumes

			This section shows how to create disk volumes inside a block based storage pool. In the example below, the virsh vol-create-as command will create a storage volume with a specific size in GB within the guest_images_disk storage pool. As this command is repeated per volume needed, three volumes are created as shown in the example.
		
virsh vol-create-as guest_images_disk volume1 8G
Vol volume1 created

virsh vol-create-as guest_images_disk volume2 8G
Vol volume2 created

virsh vol-create-as guest_images_disk volume3 8G
Vol volume3 created

virsh vol-list guest_images_disk
Name Path

volume1 /dev/sdb1
volume2 /dev/sdb2
volume3 /dev/sdb3

parted -s /dev/sdb print
Model: ATA ST3500418AS (scsi)
Disk /dev/sdb: 500GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt

Number Start End Size File system Name Flags
2 17.4kB 8590MB 8590MB primary
3 8590MB 17.2GB 8590MB primary
1 21.5GB 30.1GB 8590MB primary

 ⁠13.2. Cloning Volumes

			The new volume will be allocated from storage in the same storage pool as the volume being cloned. The virsh vol-clone must have the --pool argument which dictates the name of the storage pool that contains the volume to be cloned. The rest of the command names the volume to be cloned (volume3) and the name of the new volume that was cloned (clone1). The virsh vol-list command lists the volumes that are present in the storage pool (guest_images_disk).
		
virsh vol-clone --pool guest_images_disk volume3 clone1
Vol clone1 cloned from volume3

virsh vol-list guest_images_disk
Name Path

volume1 /dev/sdb1
volume2 /dev/sdb2
volume3 /dev/sdb3
clone1 /dev/sdb4

parted -s /dev/sdb print
Model: ATA ST3500418AS (scsi)
Disk /dev/sdb: 500GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos

Number Start End Size File system Name Flags
1 4211MB 12.8GB 8595MB primary
2 12.8GB 21.4GB 8595MB primary
3 21.4GB 30.0GB 8595MB primary
4 30.0GB 38.6GB 8595MB primary

 ⁠13.3. Adding Storage Devices to Guests

			This section covers adding storage devices to a guest. Additional storage can only be added as needed.
		

 ⁠13.3.1. Adding File-based Storage to a Guest

				File-based storage is a collection of files that are stored on the host physical machines file system that act as virtualized hard drives for guests. To add file-based storage, perform the following steps:
			

 ⁠Procedure 13.1. Adding file-based storage
	
						Create a storage file or use an existing file (such as an IMG file). Note that both of the following commands create a 4GB file which can be used as additional storage for a guest:
					
	
								Pre-allocated files are recommended for file-based storage images. Create a pre-allocated file using the following dd command as shown:
							
dd if=/dev/zero of=/var/lib/libvirt/images/FileName.img bs=1M count=4096

	
								Alternatively, create a sparse file instead of a pre-allocated file. Sparse files are created much faster and can be used for testing, but are not recommended for production environments due to data integrity and performance issues.
							
dd if=/dev/zero of=/var/lib/libvirt/images/FileName.img bs=1M seek=4096 count=0

	
						Create the additional storage by writing a <disk> element in a new file. In this example, this file will be known as NewStorage.xml.
					

						A <disk> element describes the source of the disk, and a device name for the virtual block device. The device name should be unique across all devices in the guest, and identifies the bus on which the guest will find the virtual block device. The following example defines a virtio block device whose source is a file-based storage container named FileName.img:
					

<disk type='file' device='disk'>
 <driver name='qemu' type='raw' cache='none'/>
 <source file='/var/lib/libvirt/images/FileName.img'/>
 <target dev='vdb'/>
</disk>

						Device names can also start with "hd" or "sd", identifying respectively an IDE and a SCSI disk. The configuration file can also contain an <address> sub-element that specifies the position on the bus for the new device. In the case of virtio block devices, this should be a PCI address. Omitting the <address> sub-element lets libvirt locate and assign the next available PCI slot.
					

	
						Attach the CD-ROM as follows:
					

<disk type='file' device='cdrom'>
 <driver name='qemu' type='raw' cache='none'/>
 <source file='/var/lib/libvirt/images/FileName.img'/>
 <readonly/>
 <target dev='hdc'/>
</disk >

	
						Add the device defined in NewStorage.xml with your guest (Guest1):
					
virsh attach-device --config Guest1 ~/NewStorage.xml
Note

							This change will only apply after the guest has been destroyed and restarted. In addition, persistent devices can only be added to a persistent domain, that is a domain whose configuration has been saved with virsh define command.
						

						If the guest is running, and you want the new device to be added temporarily until the guest is destroyed, omit the --config option:
					
virsh attach-device Guest1 ~/NewStorage.xml
Note

							The virsh command allows for an attach-disk command that can set a limited number of parameters with a simpler syntax and without the need to create an XML file. The attach-disk command is used in a similar manner to the attach-device command mentioned previously, as shown:
						

virsh attach-disk Guest1 /var/lib/libvirt/images/FileName.img vdb --cache none --driver qemu --subdriver raw

							Note that the virsh attach-disk command also accepts the --config option.
						

	
						Start the guest machine (if it is currently not running):
					
virsh start Guest1
Note

							The following steps are Linux guest specific. Other operating systems handle new storage devices in different ways. For other systems, refer to that operating system's documentation.
						

	Partitioning the disk drive

						The guest now has a hard disk device called /dev/vdb. If required, partition this disk drive and format the partitions. If you do not see the device that you added, then it indicates that there is an issue with the disk hotplug in your guest's operating system.
					
	
								Start fdisk for the new device:
							

fdisk /dev/vdb
Command (m for help):

	
								Type n for a new partition.
							

	
								The following appears:
							

Command action
e extended
p primary partition (1-4)

								Type p for a primary partition.
							

	
								Choose an available partition number. In this example, the first partition is chosen by entering 1.
							
Partition number (1-4): 1

	
								Enter the default first cylinder by pressing Enter.
							
First cylinder (1-400, default 1):

	
								Select the size of the partition. In this example the entire disk is allocated by pressing Enter.
							
Last cylinder or +size or +sizeM or +sizeK (2-400, default 400):

	
								Enter t to configure the partition type.
							
Command (m for help): t

	
								Select the partition you created in the previous steps. In this example, the partition number is 1 as there was only one partition created and fdisk automatically selected partition 1.
							
Partition number (1-4): 1

	
								Enter 83 for a Linux partition.
							
Hex code (type L to list codes): 83

	
								Enter w to write changes and quit.
							

Command (m for help): w

	
								Format the new partition with the ext3 file system.
							
mke2fs -j /dev/vdb1

	
						Create a mount directory, and mount the disk on the guest. In this example, the directory is located in myfiles.
					

mkdir /myfiles
mount /dev/vdb1 /myfiles

						The guest now has an additional virtualized file-based storage device. Note however, that this storage will not mount persistently across reboot unless defined in the guest's /etc/fstab file:
					
/dev/vdb1 /myfiles ext3 defaults 0 0

 ⁠13.3.2. Adding Hard Drives and Other Block Devices to a Guest

				System administrators have the option to use additional hard drives to provide increased storage space for a guest, or to separate system data from user data.
			

 ⁠Procedure 13.2. Adding physical block devices to guests
	
						This procedure describes how to add a hard drive on the host physical machine to a guest. It applies to all physical block devices, including CD-ROM, DVD and floppy devices.
					

						Physically attach the hard disk device to the host physical machine. Configure the host physical machine if the drive is not accessible by default.
					

	
						Do one of the following:
					
	
								Create the additional storage by writing a disk element in a new file. In this example, this file will be known as NewStorage.xml. The following example is a configuration file section which contains an additional device-based storage container for the host physical machine partition /dev/sr0:
							

<disk type='block' device='disk'>
 <driver name='qemu' type='raw' cache='none'/>
 <source dev='/dev/sr0'/>
 <target dev='vdc' bus='virtio'/>
</disk>

	
								Follow the instruction in the previous section to attach the device to the guest virtual machine. Alternatively, you can use the virsh attach-disk command, as shown:
							

virsh attach-disk Guest1 /dev/sr0 vdc

								Note that the following options are available:
							
	
										The virsh attach-disk command also accepts the --config, --type, and --mode options, as shown:
									

virsh attach-disk Guest1 /dev/sr0 vdc --config --type cdrom --mode readonly

	
										Additionally, --type also accepts --type disk in cases where the device is a hard drive.
									

	
						The guest virtual machine now has a new hard disk device called /dev/vdc on Linux (or something similar, depending on what the guest virtual machine OS chooses) or D: drive (for example) on Windows. You can now initialize the disk from the guest virtual machine, following the standard procedures for the guest virtual machine's operating system. Refer to Procedure 13.1, “Adding file-based storage” for an example.
					
Warning

							When adding block devices to a guest, make sure to follow security considerations. This information is discussed in more detail in the Red Hat Enterprise Linux Virtualization Security Guide which can be found at https://access.redhat.com/site/documentation/.
						

Important

							Guest virtual machines should not be given write access to whole disks or block devices (for example, /dev/sdb). Guest virtual machines with access to whole block devices may be able to modify volume labels, which can be used to compromise the host physical machine system. Use partitions (for example, /dev/sdb1) or LVM volumes to prevent this issue.
						

 ⁠13.4. Deleting and Removing Volumes

			This section shows how to delete a disk volume from a block based storage pool using the virsh vol-delete command. In this example, the volume is volume 1 and the storage pool is guest_images.
		

virsh vol-delete --pool guest_images volume1
Vol volume1 deleted

 ⁠Chapter 14. Managing guest virtual machines with virsh

		virsh is a command line interface tool for managing guest virtual machines and the hypervisor. The virsh command-line tool is built on the libvirt management API and operates as an alternative to the qemu-kvm command and the graphical virt-manager application. The virsh command can be used in read-only mode by unprivileged users or, with root access, full administration functionality. The virsh command is ideal for scripting virtualization administration.
	

 ⁠14.1. Generic Commands

			The commands in this section are generic because they are not specific to any domain.
		

 ⁠14.1.1. help

				$ virsh help [command|group] The help command can be used with or without options. When used without options, all commands are listed, one per line. When used with an option, it is grouped into categories, displaying the keyword for each group.
			

				To display the commands that are only for a specific option, you need to give the keyword for that group as an option. For example:
			
$ virsh help pool
 Storage Pool (help keyword 'pool'):
 find-storage-pool-sources-as find potential storage pool sources
 find-storage-pool-sources discover potential storage pool sources
 pool-autostart autostart a pool
 pool-build build a pool
 pool-create-as create a pool from a set of args
 pool-create create a pool from an XML file
 pool-define-as define a pool from a set of args
 pool-define define (but don't start) a pool from an XML file
 pool-delete delete a pool
 pool-destroy destroy (stop) a pool
 pool-dumpxml pool information in XML
 pool-edit edit XML configuration for a storage pool
 pool-info storage pool information
 pool-list list pools
 pool-name convert a pool UUID to pool name
 pool-refresh refresh a pool
 pool-start start a (previously defined) inactive pool
 pool-undefine undefine an inactive pool
 pool-uuid convert a pool name to pool UUID

				Using the same command with a command option, gives the help information on that one specific command. For example:
			
$ virsh help vol-path
 NAME
 vol-path - returns the volume path for a given volume name or key

 SYNOPSIS
 vol-path <vol> [--pool <string>]

 OPTIONS
 [--vol] <string> volume name or key
 --pool <string> pool name or uuid

 ⁠14.1.2. quit and exit

				The quit command and the exit command will close the terminal. For example:
			
$ virsh exit
$ virsh quit

 ⁠14.1.3. version

				The version command displays the current libvirt version and displays information about where the build is from. For example:
			
$ virsh version
Compiled against library: libvirt 1.1.1
Using library: libvirt 1.1.1
Using API: QEMU 1.1.1
Running hypervisor: QEMU 1.5.3

 ⁠14.1.4. Argument Display

				The virsh echo [--shell][--xml][arg] command echos or displays the specified argument. Each argument echoed will be separated by a space. by using the --shell option, the output will be single quoted where needed so that it is suitable for reusing in a shell command. If the --xml option is used the output will be made suitable for use in an XML file. For example, the command virsh echo --shell "hello world" will send the output 'hello world'.
			

 ⁠14.1.5. connect

				Connects to a hypervisor session. When the shell is first started this command runs automatically when the URI parameter is requested by the -c command. The URI specifies how to connect to the hypervisor. The most commonly used URIs are:
			
	
						xen:/// - connects to the local Xen hypervisor.
					

	
						qemu:///system - connects locally as root to the daemon supervising QEMU and KVM domains.
					

	
						xen:///session - connects locally as a user to the user's set of QEMU and KVM domains.
					

	
						lxc:/// - connects to a local Linux container.
					

				Additional values are available on libvirt's website http://libvirt.org/uri.html.
			

				The command can be run as follows:
			
$ virsh connect {name|URI}

				Where {name} is the machine name (host name) or URL (the output of the virsh uri command) of the hypervisor. To initiate a read-only connection, append the above command with --readonly. For more information on URIs refer to Remote URIs. If you are unsure of the URI, the virsh uri command will display it:
			
$ virsh uri
qemu:///session

 ⁠14.1.6. Displaying Basic Information

				The following commands may be used to display basic information:
			
	
						$ hostname - displays the hypervisor's host name
					

	
						$ sysinfo - displays the XML representation of the hypervisor's system information, if available
					

 ⁠14.1.7. Injecting NMI

				The $ virsh inject-nmi [domain] injects NMI (non-maskable interrupt) message to the guest virtual machine. This is used when response time is critical, such as non-recoverable hardware errors. To run this command:
			
$ virsh inject-nmi guest-1

 ⁠14.2. Attaching and Updating a Device with virsh

			For information on attaching storage devices refer to Section 13.3.1, “Adding File-based Storage to a Guest”
		

 ⁠Procedure 14.1. Hot plugging USB devices for use by the guest virtual machine

				The following procedure demonstrates how to attach USB devices to the guest virtual machine. This can be done while the guest virtual machine is running as a hotplug procedure or it can be done while the guest is shutoff. The device you want to emulate needs to be attached to the host physical machine.
			
	
					Locate the USB device you want to attach with the following command:
				

lsusb -v

idVendor 0x17ef Lenovo
idProduct 0x480f Integrated Webcam [R5U877]

	
					Create an XML file and give it a logical name (usb_device.xml, for example). Make sure you copy the vendor and product IDs exactly as was displayed in your search.
				

 ⁠​
​
​ <hostdev mode='subsystem' type='usb' managed='yes'>
​ <source>
​ <vendor id='0x17ef'/>
​ <product id='0x480f'/>
​ </source>
​ </hostdev>
​ ...
​

Figure 14.1. USB Devices XML Snippet

	
					Attach the device with the following command:
				
virsh attach-device rhel6 --file usb_device.xml --config

					In this example [rhel6] is the name of your guest virtual machine and [usb_device.xml] is the file you created in the previous step. If you want to have the change take effect in the next reboot, use the --config option. If you want this change to be persistent, use the --persistent option. If you want the change to take effect on the current domain, use the --current option. See the Virsh man page for additional information.
				

	
					If you want to detach the device (hot unplug), perform the following command:
				

virsh detach-device rhel6 --file usb_device.xml

					In this example [rhel6] is the name of your guest virtual machine and [usb_device.xml] is the file you attached in the previous step
				

 ⁠14.3. Attaching Interface Devices

			The virsh attach-interfacedomain type source command can take the following options:
		
	
					--live - get value from running domain
				

	
					--config - get value to be used on next boot
				

	
					--current - get value according to current domain state
				

	
					--persistent - behaves like --config for an offline domain, and like --live for a running domain.
				

	
					--target - indicates the target device in the guest virtual machine.
				

	
					--mac - use this to specify the MAC address of the network interface
				

	
					--script - use this to specify a path to a script file handling a bridge instead of the default one.
				

	
					--model - use this to specify the model type.
				

	
					--inbound - controls the inbound bandwidth of the interface. Acceptable values are average, peak, and burst.
				

	
					--outbound - controls the outbound bandwidth of the interface. Acceptable values are average, peak, and burst.
				

			The type can be either network to indicate a physical network device, or bridge to indicate a bridge to a device. source is the source of the device. To remove the attached device, use the virsh detach-device.
		

 ⁠14.4. Changing the Media of a CDROM

			Changing the media of a CDROM to another source or format
		
change-media domain path source --eject --insert --update --current --live --config --force
	
					--path - A string containing a fully-qualified path or target of disk device
				

	
					--source - A string containing the source of the media
				

	
					--eject - Eject the media
				

	
					--insert - Insert the media
				

	
					--update - Update the media
				

	
					--current - can be either or both of --live and --config, depends on implementation of hypervisor driver
				

	
					--live - alter live configuration of running domain
				

	
					--config - alter persistent configuration, effect observed on next boot
				

	
					--force - force media changing
				

 ⁠14.5. Domain Commands

			A domain name is required for most of these commands as they manipulate the specified domain directly. The domain may be given as a short integer (0,1,2...), a name, or a full UUID.
		

 ⁠14.5.1. Configuring a Domain to be Started Automatically at Boot

				$ virsh autostart [--disable] domain will automatically start the specified domain at boot. Using the --disable option disables autostart.
			
virsh autostart rhel6

				In the example above, the rhel6 guest virtual machine will automatically start when the host physical machine boots
			
virsh autostart rhel6 --disable

				In the example above, the autostart function is disabled and the guest virtual machine will no longer start automatically when the host physical machine boots.
			

 ⁠14.5.2. Connecting the Serial Console for the Guest Virtual Machine

				The $ virsh console <domain> [--devname <string>] [--force] [--safe] command connects the virtual serial console for the guest virtual machine. The optional --devname <string> parameter refers to the device alias of an alternate console, serial, or parallel device configured for the guest virtual machine. If this parameter is omitted, the primary console will be opened. The --force option will force the console connection or when used with disconnect, will disconnect connections. Using the --safe option will only allow the guest to connect if safe console handling is supported.
			
$ virsh console virtual_machine --safe

 ⁠14.5.3. Defining a Domain with an XML File

				The define <FILE> command defines a domain from an XML file. The domain definition in this case is registered but not started. If the domain is already running, the changes will take effect on the next boot.
			

 ⁠14.5.4. Editing and Displaying a Description and Title of a Domain

				The following command is used to show or modify the description and title of a domain, but does not configure it:
			
virsh desc [domain-name] [[--live] [--config] | [--current]] [--title] [--edit] [--new-desc New description or title message]

				These values are user fields that allow storage of arbitrary textual data to allow easy identification of domains. Ideally, the title should be short, although this is not enforced by libvirt.
			

				The options --live or --config select whether this command works on live or persistent definitions of the domain. If both --live and --config are specified, the --config option will be implemented first, where the description entered in the command becomes the new configuration setting which is applied to both the live configuration and persistent configuration setting. The --current option will modify or get the current state configuration and will not be persistent. The --current option will be used if neither --live nor --config, nor --current are specified. The --edit option specifies that an editor with the contents of current description or title should be opened and the contents saved back afterwards. Using the --title option will show or modify the domain's title field only and not include its description. In addition, if neither --edit nor --new-desc are used in the command, then only the description is displayed and cannot be modified.
			

				For example, the following command changes the guest virtual machine's title from testvm to TestVM-4F and will change the description to Guest VM on fourth floor:
			
$ virsh desc testvm --current --title TestVM-4F --new-desc Guest VM on fourth floor

 ⁠14.5.5. Displaying Device Block Statistics

				This command will display the block statistics for a running domain. You need to have both the domain name and the device name (use the virsh domblklist to list the devices.)In this case a block device is the unique target name (<target dev='name'/>) or a source file (< source file ='name'/>). Note that not every hypervisor can display every field. To make sure that the output is presented in its most legible form use the --human option, as shown:
			

virsh domblklist rhel6
Target Source
--
vda /VirtualMachines/rhel6.img
hdc -

virsh domblkstat --human rhel6 vda
Device: vda
 number of read operations: 174670
 number of bytes read: 3219440128
 number of write operations: 23897
 number of bytes written: 164849664
 number of flush operations: 11577
 total duration of reads (ns): 1005410244506
 total duration of writes (ns): 1085306686457
 total duration of flushes (ns): 340645193294

 ⁠14.5.6. Retrieving Network Statistics

				The domnetstat [domain][interface-device] command displays the network interface statistics for the specified device running on a given domain.
			
domifstat rhel6 eth0

 ⁠14.5.7. Modifying the Link State of a Domain's Virtual Interface

				The following command can either configure a specified interface as up or down:
			
domif-setlink [domain][interface-device][state]{--config}

				Using this modifies the status of the specified interface for the specified domain. Note that if you only want the persistent configuration of the domain to be modified, you need to use the --configoption. It should also be noted that for compatibility reasons, --persistent is an alias of --config. The "interface device" can be the interface's target name or the MAC address.
			
domif-setlink rhel6 eth0 up

 ⁠14.5.8. Listing the Link State of a Domain's Virtual Interface

				This command can be used to query the state of a specified interface on a given domain. Note that if you only want the persistent configuration of the domain to be modified, you need to use the --configoption. It should also be noted that for compatibility reasons, --persistent is an alias of --config. The "interface device" can be the interface's target name or the MAC address.
			
domif-getlink rhel6 eth0 up

 ⁠14.5.9. Setting Network Interface Bandwidth Parameters

				domiftune sets the guest virtual machine's network interface bandwidth parameters. The following format should be used:
			
#virsh domiftune domain interface-device [[--config] [--live] | [--current]] [--inbound average,peak,burst] [--outbound average,peak,burst]

				The only required parameter is the domain name and interface device of the guest virtual machine, the --config, --live, and --current functions the same as in Section 14.19, “Setting Schedule Parameters”. If no limit is specified, it will query current network interface setting. Otherwise, alter the limits with the following options:
			
	
						<interface-device> This is mandatory and it will set or query the domain’s network interface’s bandwidth parameters. interface-device can be the interface’s target name (<target dev=’name’/>), or the MAC address.
					

	
						If no --inbound or --outbound is specified, this command will query and show the bandwidth settings. Otherwise, it will set the inbound or outbound bandwidth. average,peak,burst is the same as in attach-interface command. Refer to Section 14.3, “Attaching Interface Devices”
					

 ⁠14.5.10. Retrieving Memory Statistics for a Running Domain

				This command may return varied results depending on the hypervisor you are using.
			

				The dommemstat [domain] [--period (sec)][[--config][--live]|[--current]] displays the memory statistics for a running domain. Using the --period option requires a time period in seconds. Setting this option to a value larger than 0 will allow the balloon driver to return additional statistics which will be displayed by subsequent domemstat commands. Setting the --period option to 0, will stop the balloon driver collection but does not clear the statistics in the balloon driver. You cannot use the --live, --config, or --current options without also setting the --period option in order to also set the collection period for the balloon driver. If the --live option is specified, only the running guest's collection period is affected. If the --config option is used, it will affect the next boot of a persistent guest. If --current option is used, it will affect the current guest state
			

				Both the --live and --config options may be used but --current is exclusive. If no option is specified, the behavior will be different depending on the guest's state.
			
#virsh domemstat rhel6 --current

 ⁠14.5.11. Displaying Errors on Block Devices

				This command is best used following a domstate that reports that a domain is paused due to an I/O error. The domblkerror domain command shows all block devices that are in error state on a given domain and it displays the error message that the device is reporting.
			
virsh domblkerror rhel6

 ⁠14.5.12. Displaying the Block Device Size

				In this case a block device is the unique target name (<target dev='name'/>) or a source file (< source file ='name'/>). To retrieve a list you can run domblklist. This domblkinfo requires a domain name.
			
virsh domblkinfo rhel6

 ⁠14.5.13. Displaying the Block Devices Associated with a Domain

				The domblklist domain --inactive --details displays a table of all block devices that are associated with the specified domain.
			

				If --inactive is specified, the result will show the devices that are to be used at the next boot and will not show those that are currently running in use by the running domain. If --details is specified, the disk type and device value will be included in the table. The information displayed in this table can be used with the domblkinfo and snapshot-create.
			
#domblklist rhel6 --details

 ⁠14.5.14. Displaying Virtual Interfaces Associated with a Domain

				Running the domiflist command results in a table that displays information of all the virtual interfaces that are associated with a specified domain. The domiflist requires a domain name and optionally can take the --inactive option.
			

				If --inactive is specified, the result will show the devices that are to be used at the next boot and will not show those that are currently running in use by the running domain.
			

				Commands that require a MAC address of a virtual interface (such as detach-interface or domif-setlink) will accept the output displayed by this command.
			

 ⁠14.5.15. Using blockcommit to Shorten a Backing Chain

				This section demonstrates how to use virsh blockcommit to shorten a backing chain. For more background on backing chains, see Section 14.5.18, “Disk Image Management with Live Block Copy”.
			

				blockcommit copies data from one part of the chain down into a backing file, allowing you to pivot the rest of the chain in order to bypass the committed portions. For example, suppose this is the current state:
			

 base ← snap1 ← snap2 ← active.

				Using blockcommit moves the contents of snap2 into snap1, allowing you to delete snap2 from the chain, making backups much quicker.
			

 ⁠Procedure 14.2. virsh blockcommit
	
						Run the following command:
					
virsh blockcommit $dom $disk -base snap1 -top snap2 -wait -verbose

						The contents of snap2 are moved into snap1, resulting in:
					

						base ← snap1 ← active. Snap2 is no longer valid and can be deleted
					
Warning

							blockcommit will corrupt any file that depends on the -base option (other than files that depend on the -top option, as those files now point to the base). To prevent this, do not commit changes into files shared by more than one guest. The -verbose option allows the progress to be printed on the screen.
						

 ⁠14.5.16. Using blockpull to Shorten a Backing Chain

				blockpull can be used in in the following applications:
			
	
						Flattens an image by populating it with data from its backing image chain. This makes the image file self-contained so that it no longer depends on backing images and looks like this:
					
	
								Before: base.img ← Active
							

	
								After: base.img is no longer used by the guest and Active contains all of the data.
							

	
						Flattens part of the backing image chain. This can be used to flatten snapshots into the top-level image and looks like this:
					
	
								Before: base ← sn1 ←sn2 ← active
							

	
								After: base.img ← active. Note that active now contains all data from sn1 and sn2 and neither sn1 nor sn2 are used by the guest.
							

	
						Moves the disk image to a new file system on the host. This is allows image files to be moved while the guest is running and looks like this:
					
	
								Before (The original image file): /fs1/base.vm.img
							

	
								After: /fs2/active.vm.qcow2 is now the new file system and /fs1/base.vm.img is no longer used.
							

	
						Useful in live migration with post-copy storage migration. The disk image is copied from the source host to the destination host after live migration completes.
					

						In short this is what happens: Before:/source-host/base.vm.img After:/destination-host/active.vm.qcow2./source-host/base.vm.img is no longer used.
					

 ⁠Procedure 14.3. Using blockpull to Shorten a Backing Chain
	
						It may be helpful to run this command prior to running blockpull:
					
virsh snapshot-create-as $dom $name - disk-only

	
						If the chain looks like this: base ← snap1 ← snap2 ← active run the following:
					
virsh blockpull $dom $disk snap1

						This command makes 'snap1' the backing file of active, by pulling data from snap2 into active resulting in: base ← snap1 ← active.
					

	
						Once the blockpull is complete, the libvirt tracking of the snapshot that created the extra image in the chain is no longer useful. Delete the tracking on the outdated snapshot with this command:
					
virsh snapshot-delete $dom $name - metadata

				Additional applications of blockpull can be done as follows:
			
	
						To flatten a single image and populate it with data from its backing image chain:# virsh blockpull example-domain vda - wait
					

	
						To flatten part of the backing image chain:# virsh blockpull example-domain vda - base /path/to/base.img - wait
					

	
						To move the disk image to a new file system on the host:# virsh snapshot-create example-domaine - xmlfile /path/to/new.xml - disk-only followed by # virsh blockpull example-domain vda - wait
					

	
						To use live migration with post-copy storage migration:
					
	
								On the destination run:
							
 # qemu-img create -f qcow2 -o backing_file=/source-host/vm.img /destination-host/vm.qcow2

	
								On the source run:
							
virsh migrate example-domain

	
								On the destination run:
							
virsh blockpull example-domain vda - wait

 ⁠14.5.17. Using blockresize to Change the Size of a Domain Path

				blockresize can be used to re-size a block device of a domain while the domain is running, using the absolute path of the block device which also corresponds to a unique target name (<target dev="name"/>) or source file (<source file="name"/>). This can be applied to one of the disk devices attached to domain (you can use the command domblklist to print a table showing the brief information of all block devices associated with a given domain).
			
Note

					Live image re-sizing will always re-size the image, but may not immediately be picked up by guests. With recent guest kernels, the size of virtio-blk devices is automatically updated (older kernels require a guest reboot). With SCSI devices, it is required to manually trigger a re-scan in the guest with the command, echo > /sys/class/scsi_device/0:0:0:0/device/rescan. In addition, with IDE it is required to reboot the guest before it picks up the new size.
				

	
						Run the following command: blockresize [domain] [path size] where:
					
	
								Domain is the unique target name or source file of the domain whose size you want to change
							

	
								Path size is a scaled integer which defaults to KiB (blocks of 1024 bytes) if there is no suffix. You must use a suffix of "B" to for bytes.
							

 ⁠14.5.18. Disk Image Management with Live Block Copy

Note

					Live block copy is a feature that is not supported with the version of KVM that is supplied with Red Hat Enterprise Linux. Live block copy is available with the version of KVM that is supplied with Red Hat Virtualization. This version of KVM must be running on your physical host machine in order for the feature to be supported. Contact your representative at Red Hat for more details.
				

				Live block copy allows you to copy an in use guest disk image to a destination image and switches the guest disk image to the destination guest image while the guest is running. Whilst live migration moves the memory and registry state of the host, the guest is kept in shared storage. Live block copy allows you to move the entire guest contents to another host on the fly while the guest is running. Live block copy may also be used for live migration without requiring permanent share storage. In this method the disk image is copied to the destination host after migration, but while the guest is running.
			

				Live block copy is especially useful for the following applications:
			
	
						moving the guest image from local storage to a central location
					

	
						when maintenance is required, guests can be transferred to another location, with no loss of performance
					

	
						allows for management of guest images for speed and efficiency
					

	
						image format conversions can be done without having to shut down the guest
					

 ⁠Example 14.1. Example using live block copy

					This example shows what happens when live block copy is performed. The example has a backing file (base) that is shared between a source and destination. It also has two overlays (sn1 and sn2) that are only present on the source and must be copied.
				
	
							The backing file chain at the beginning looks like this:
						

							 base ← sn1 ← sn2
						

							The components are as follows:
						
	
									base - the original disk image
								

	
									sn1 - the first snapshot that was taken of the base disk image
								

	
									sn2 - the most current snapshot
								

	
									active - the copy of the disk
								

	
							When a copy of the image is created as a new image on top of sn2 the result is this:
						

							base ← sn1 ← sn2 ← active
						

	
							At this point the read permissions are all in the correct order and are set automatically. To make sure write permissions are set properly, a mirror mechanism redirects all writes to both sn2 and active, so that sn2 and active read the same at any time (and this mirror mechanism is the essential difference between live block copy and image streaming).
						

	
							A background task that loops over all disk clusters is executed. For each cluster, there are the following possible cases and actions:
						
	
									The cluster is already allocated in active and there is nothing to do.
								

	
									Use bdrv_is_allocated() to follow the backing file chain. If the cluster is read from base (which is shared) there is nothing to do.
								

	
									If bdrv_is_allocated() variant is not feasible, rebase the image and compare the read data with write data in base in order to decide if a copy is needed.
								

	
									In all other cases, copy the cluster into active
								

	
							When the copy has completed, the backing file of active is switched to base (similar to rebase)
						

				To reduce the length of a backing chain after a series of snapshots, the following commands are helpful: blockcommit and blockpull. See Section 14.5.15, “Using blockcommit to Shorten a Backing Chain” for more information.
			

 ⁠14.5.19. Displaying a URI for Connection to a Graphical Display

				Running the virsh domdisplay command will output a URI which can then be used to connect to the graphical display of the domain via VNC, SPICE, or RDP. If the --include-password option is used, the SPICE channel password will be included in the URI.
			

 ⁠14.5.20. Domain Retrieval Commands

				The following commands will display different information about a given domain
			
	
						virsh domhostname domain displays the host name of the specified domain provided the hypervisor can publish it.
					

	
						virsh dominfo domain displays basic information about a specified domain.
					

	
						virsh domuid domain|ID converts a given domain name or ID into a UUID.
					

	
						virsh domid domain|ID converts a given domain name or UUID into an ID.
					

	
						virsh domjobabort domain aborts the currently running job on the specified domain.
					

	
						virsh domjobinfo domain displays information about jobs running on the specified domain, including migration statistics
					

	
						virsh domname domain ID|UUID converts a given domain ID or UUID into a domain name.
					

	
						virsh domstate domain displays the state of the given domain. Using the --reason option will also display the reason for the displayed state.
					

	
						virsh domcontrol domain displays the state of an interface to VMM that were used to control a domain. For states that are not OK or Error, it will also print the number of seconds that have elapsed since the control interface entered the displayed state.
					

 ⁠Example 14.2. Example of statistical feedback

					In order to get information about the domain, run the following command:
				

virsh domjobinfo rhel6
Job type: Unbounded
Time elapsed: 1603 ms
Data processed: 47.004 MiB
Data remaining: 658.633 MiB
Data total: 1.125 GiB
Memory processed: 47.004 MiB
Memory remaining: 658.633 MiB
Memory total: 1.125 GiB
Constant pages: 114382
Normal pages: 12005
Normal data: 46.895 MiB
Expected downtime: 0 ms
Compression cache: 64.000 MiB
Compressed data: 0.000 B
Compressed pages: 0
Compression cache misses: 12005
Compression overflows: 0

 ⁠14.5.21. Converting QEMU Arguments to Domain XML

				The virsh domxml-from-native provides a way to convert an existing set of QEMU arguments into a guest description using libvirt Domain XML that can then be used by libvirt. Note that this command is intended to be used only to convert existing qemu guests previously started from the command line in order to allow them to be managed through libvirt. The method described here should not be used to create new guests from scratch. New guests should be created using either virsh or virt-manager. Additional information can be found here.
			

				Suppose you have a QEMU guest with the following args file:
			

 $ cat demo.args
LC_ALL=C
PATH=/bin
HOME=/home/test
USER=test
LOGNAME=test /usr/bin/qemu -S -M pc -m 214 -smp 1 -nographic -monitor pty -no-acpi -boot c -hda /dev/HostVG/QEMUGuest1 -net none -serial none -parallel none -usb

				To convert this to a domain XML file so that the guest can be managed by libvirt, run:
			
$ virsh domxml-from-native qemu-argv demo.args

				This command turns the args file above, into this domain XML file:
			

<domain type='qemu'>
 <uuid>00000000-0000-0000-0000-000000000000</uuid>
 <memory>219136</memory>
 <currentMemory>219136</currentMemory>
 <vcpu>1</vcpu>
 <os>
 <type arch='i686' machine='pc'>hvm</type>
 <boot dev='hd'/>
 </os>
 <clock offset='utc'/>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>destroy</on_crash>
 <devices>
 <emulator>/usr/bin/qemu</emulator>
 <disk type='block' device='disk'>
 <source dev='/dev/HostVG/QEMUGuest1'/>
 <target dev='hda' bus='ide'/>
 </disk>
 </devices>
</domain>

 ⁠14.5.22. Creating a Dump File of a Domain's Core

				Sometimes it is necessary (especially in the cases of troubleshooting), to create a dump file containing the core of the domain so that it can be analyzed. In this case, running virsh dump domain corefilepath --bypass-cache --live |--crash |--reset --verbose --memory-only dumps the domain core to a file specified by the corefilepath Note that some hypervisors may gave restrictions on this action and may require the user to manually ensure proper permissions on the file and path specified in the corefilepath parameter. This command is supported with SR-IOV devices as well as other passthrough devices. The following options are supported and have the following effect:
			
	
						--bypass-cache the file saved will not contain the file system cache. Note that selecting this option may slow down dump operation.
					

	
						--live will save the file as the domain continues to run and will not pause or stop the domain.
					

	
						--crash puts the domain in a crashed status rather than leaving it in a paused state while the dump file is saved.
					

	
						--reset once the dump file is successfully saved, the domain will reset.
					

	
						--verbose displays the progress of the dump process
					

	
						--memory-only the only information that will be saved in the dump file will be the domain's memory and CPU common register file.
					

				Note that the entire process can be monitored using the domjobinfo command and can be canceled using the domjobabort command.
			

 ⁠14.5.23. Creating a Virtual Machine XML Dump (Configuration File)

				Output a guest virtual machine's XML configuration file with virsh:
			
virsh dumpxml {guest-id, guestname or uuid}

				This command outputs the guest virtual machine's XML configuration file to standard out (stdout). You can save the data by piping the output to a file. An example of piping the output to a file called guest.xml:
			
virsh dumpxml GuestID > guest.xml

				This file guest.xml can recreate the guest virtual machine (refer to Section 14.6, “Editing a Guest Virtual Machine's configuration file”. You can edit this XML configuration file to configure additional devices or to deploy additional guest virtual machines.
			

				An example of virsh dumpxml output:
			
virsh dumpxml guest1-rhel6-64
<domain type='kvm'>
 <name>guest1-rhel6-64</name>
 <uuid>b8d7388a-bbf2-db3a-e962-b97ca6e514bd</uuid>
 <memory>2097152</memory>
 <currentMemory>2097152</currentMemory>
 <vcpu>2</vcpu>
 <os>
 <type arch='x86_64' machine='rhel6.2.0'>hvm</type>
 <boot dev='hd'/>
 </os>
 <features>
 <acpi/>
 <apic/>
 <pae/>
 </features>
 <clock offset='utc'/>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>restart</on_crash>
 <devices>
 <emulator>/usr/libexec/qemu-kvm</emulator>
 <disk type='file' device='disk'>
 <driver name='qemu' type='raw' cache='none' io='threads'/>
 <source file='/home/guest-images/guest1-rhel6-64.img'/>
 <target dev='vda' bus='virtio'/>
 <shareable/<
 <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>
 </disk>
 <interface type='bridge'>
 <mac address='52:54:00:b9:35:a9'/>
 <source bridge='br0'/>
 <model type='virtio'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>
 </interface>
 <serial type='pty'>
 <target port='0'/>
 </serial>
 <console type='pty'>
 <target type='serial' port='0'/>
 </console>
 <input type='tablet' bus='usb'/>
 <input type='mouse' bus='ps2'/>
 <graphics type='vnc' port='-1' autoport='yes'/>
 <sound model='ich6'>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/>
 </sound>
 <video>
 <model type='cirrus' vram='9216' heads='1'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>
 </video>
 <memballoon model='virtio'>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>
 </memballoon>
 </devices>
</domain>

				Note that the <shareable/> flag is set. This indicates the device is expected to be shared between domains (assuming the hypervisor and OS support this), which means that caching should be deactivated for that device.
			

 ⁠14.5.24. Creating a Guest Virtual Machine from a Configuration File

				Guest virtual machines can be created from XML configuration files. You can copy existing XML from previously created guest virtual machines or use the dumpxml option (refer to Section 14.5.23, “Creating a Virtual Machine XML Dump (Configuration File)”). To create a guest virtual machine with virsh from an XML file:
			
virsh create configuration_file.xml

 ⁠14.6. Editing a Guest Virtual Machine's configuration file

			Instead of using the dumpxml option (refer to Section 14.5.23, “Creating a Virtual Machine XML Dump (Configuration File)”), guest virtual machines can be edited either while they are running or while they are offline. The virsh edit command provides this functionality. For example, to edit the guest virtual machine named rhel6:
		
virsh edit rhel6

			This opens a text editor. The default text editor is the $EDITOR shell parameter (set to vi by default).
		

 ⁠14.6.1. Adding Multifunction PCI Devices to KVM Guest Virtual Machines

				This section will demonstrate how to add multi-function PCI devices to KVM guest virtual machines.
			
	
						Run the virsh edit [guestname] command to edit the XML configuration file for the guest virtual machine.
					

	
						In the address type tag, add a multifunction='on' entry for function='0x0'.
					

						This enables the guest virtual machine to use the multifunction PCI devices.
					

<disk type='file' device='disk'>
<driver name='qemu' type='raw' cache='none'/>
<source file='/var/lib/libvirt/images/rhel62-1.img'/>
<target dev='vda' bus='virtio'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0' multifunction='on'/
</disk>

						For a PCI device with two functions, amend the XML configuration file to include a second device with the same slot number as the first device and a different function number, such as function='0x1'.
					

						For Example:
					

<disk type='file' device='disk'>
<driver name='qemu' type='raw' cache='none'/>
<source file='/var/lib/libvirt/images/rhel62-1.img'/>
<target dev='vda' bus='virtio'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0' multifunction='on'/>
</disk>
<disk type='file' device='disk'>
<driver name='qemu' type='raw' cache='none'/>
<source file='/var/lib/libvirt/images/rhel62-2.img'/>
<target dev='vdb' bus='virtio'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x1'/>
</disk>

	
						lspci output from the KVM guest virtual machine shows:
					

$ lspci

00:05.0 SCSI storage controller: Red Hat, Inc Virtio block device
00:05.1 SCSI storage controller: Red Hat, Inc Virtio block device

 ⁠14.6.2. Stopping a Running Domain to Restart It Later

				virsh managedsave domain --bypass-cache --running | --paused | --verbose saves and destroys (stops) a running domain so that it can be restarted from the same state at a later time. When used with a virsh start command it is automatically started from this save point. If it is used with the --bypass-cache option the save will avoid the filesystem cache. Note that this option may slow down the save process speed.
			

				--verbose displays the progress of the dump process
			

				Under normal conditions, the managed save will decide between using the running or paused state as determined by the state the domain is in when the save is done. However, this can be overridden by using the --running option to indicate that it must be left in a running state or by using --paused option which indicates it is to be left in a paused state.
			

				To remove the managed save state, use the virsh managedsave-remove command which will force the domain to do a full boot the next time it is started.
			

				Note that the entire managed save process can be monitored using the domjobinfo command and can also be canceled using the domjobabort command.
			

 ⁠14.6.3. Displaying CPU Statistics for a Specified Domain

				The virsh cpu-stats domain --total start count command provides the CPU statistical information on the specified domain. By default it shows the statistics for all CPUs, as well as a total. The --total option will only display the total statistics.
			

 ⁠14.6.4. Saving a Screenshot

				The virsh screenshot command takes a screenshot of a current domain console and stores it into a file. If however the hypervisor supports more displays for a domain, using the --screen and giving a screen ID will specify which screen to capture. In the case where there are multiple graphics cards, where the heads are numerated before their devices, screen ID 5 addresses the second head on the second card.
			

 ⁠14.6.5. Sending a Keystroke Combination to a Specified Domain

				Using the virsh send-key domain --codeset --holdtime keycode command you can send a sequence as a keycode to a specific domain.
			

				Each keycode can either be a numeric value or a symbolic name from the corresponding codeset. If multiple keycodes are specified, thay are all sent simultaneously to the guest virtual machine and as such may be received in random order. If you need distinct keycodes, you must send the send-key command multiple times.
			
virsh send-key rhel6 --holdtime 1000 0xf

				If a --holdtime is given, each keystroke will be held for the specified amount in milliseconds. The --codeset allows you to specify a code set, the default being Linux, but the following options are permitted:
			
	
						linux - choosing this option causes the symbolic names to match the corresponding Linux key constant macro names and the numeric values are those offered by the Linux generic input event subsystems.
					

	
						xt- this will send a value that is defined by the XT keyboard controller. No symbolic names are provided.
					

	
						atset1 - the numeric values are those that are defined by the AT keyboard controller, set1 (XT compatible set). Extended keycodes from the atset1 may differ from extended keycodes in the XT codeset. No symbolic names are provided.
					

	
						atset2 - The numeric values are those defined by the AT keyboard controller, set 2. No symbolic names are provided.
					

	
						atset3 - The numeric values are those defined by the AT keyboard controller, set 3 (PS/2 compatible). No symbolic names are provided.
					

	
						os_x - The numeric values are those defined by the OS-X keyboard input subsystem. The symbolic names match the corresponding OS-X key constant macro names.
					

	
						xt_kbd - The numeric values are those defined by the Linux KBD device. These are a variant on the original XT codeset, but often with different encoding for extended keycodes. No symbolic names are provided.
					

	
						win32 - The numeric values are those defined by the Win32 keyboard input subsystem. The symbolic names match the corresponding Win32 key constant macro names.
					

	
						usb - The numeric values are those defined by the USB HID specification for keyboard input. No symbolic names are provided.
					

	
						rfb - The numeric values are those defined by the RFB extension for sending raw keycodes. These are a variant on the XT codeset, but extended keycodes have the low bit of the second bite set, instead of the high bit of the first byte. No symbolic names are provided.
					

 ⁠14.6.6. Sending Process Signal Names to Virtual Processes

				Using the virsh send-process-signal domain-ID PID signame command sends the specified signal (identified by its signame) to a process running in a virtual domain (specified by the domain ID) and identified by its process ID (PID).
			

				Either an integer signal constant number or a symbolic signal name can be sent this way. Thus, for example, both of the following commands send the kill signal to process ID 187 on the rhel6 domain:
			
virsh send-process-signal rhel6 187 kill
virsh send-process-signal rhel6 187 9

				For the full list of available signals and their uses, see the virsh(1) and signal(7) manual pages.
			

 ⁠14.6.7. Displaying the IP Address and Port Number for the VNC Display

				The virsh vncdisplay will print the IP address and port number of the VNC display for the specified domain. If the information is unavailable the exit code 1 will be displayed.
			
virsh vncdisplay rhel6
127.0.0.1:0

 ⁠14.7. NUMA Node Management

			This section contains the commands needed for NUMA node management.
		

 ⁠14.7.1. Displaying Node Information

				The nodeinfo command displays basic information about the node, including the model number, number of CPUs, type of CPU, and size of the physical memory. The output corresponds to virNodeInfo structure. Specifically, the "CPU socket(s)" field indicates the number of CPU sockets per NUMA cell.
			

$ virsh nodeinfo
CPU model: x86_64
CPU(s): 4
CPU frequency: 1199 MHz
CPU socket(s): 1
Core(s) per socket: 2
Thread(s) per core: 2
NUMA cell(s): 1
Memory size: 3715908 KiB

 ⁠14.7.2. Setting NUMA Parameters

				The virsh numatune can either set or retrieve the NUMA parameters for a specified domain. Within the Domain XML file these parameters are nested within the <numatune> element. Without using options, only the current settings are displayed. The numatune domain command requires a specified domain and can take the following options:
			
	
						--mode - The mode can be set to either strict, interleave, or preferred. Running domains cannot have their mode changed while live unless the domain was started within strict mode.
					

	
						--nodeset contains a list of NUMA nodes that are used by the host physical machine for running the domain. The list contains nodes, each separated by a comma, with a dash - used for node ranges and a caret ^ used for excluding a node.
					

	
						Only one of the following three options can be used per instance:
					
	
								--config will take effect on the next boot of a persistent guest virtual machine.
							

	
								--live will set the scheduler information of a running guest virtual machine.
							

	
								--current will affect the current state of the guest virtual machine.
							

 ⁠14.7.3. Displaying the Amount of Free Memory in a NUMA Cell

				The virsh freecell displays the available amount of memory on the machine within a specified NUMA cell. This command can provide one of three different displays of available memory on the machine depending on the options specified. If no options are used, the total free memory on the machine is displayed. Using the --all option, it displays the free memory in each cell and the total free memory on the machine. By using a numeric argument or with --cellno option along with a cell number it will display the free memory for the specified cell.
			

 ⁠14.7.4. Displaying a CPU List

				The nodecpumap command displays the number of CPUs that are available to the node, whether they are online or not and it also lists the number that are currently online.
			
$ virsh nodecpumap
 CPUs present: 4
 CPUs online: 1
 CPU map: y

 ⁠14.7.5. Displaying CPU Statistics

				The nodecpustats command displays statistical information about the specified CPU, if the CPU is given. If not, it will display the CPU status of the node. If a percent is specified, it will display the percentage of each type of CPU statistics that were recorded over an one (1) second interval.
			

				This example shows no CPU specified:
			
$ virsh nodecpustats
user: 1056442260000000
system: 401675280000000
idle: 7549613380000000
iowait: 94593570000000

				This example shows the statistical percentages for CPU number 2:
			
$ virsh nodecpustats 2 --percent
usage: 2.0%
user: 1.0%
system: 1.0%
idle: 98.0%
iowait: 0.0%

				You can control the behavior of the rebooting guest virtual machine by modifying the on_reboot element in the guest virtual machine's configuration file.
			

 ⁠14.7.6. Suspending the Host Physical Machine

				The nodesuspend command puts the host physical machine into a system-wide sleep state similar to that of Suspend-to-RAM (s3), Suspend-to-Disk (s4), or Hybrid-Suspend and sets up a Real-Time-Clock to wake up the node after the duration that is set has past. The --target option can be set to either mem,disk, or hybrid. These options indicate to set the memory, disk, or combination of the two to suspend. Setting the --duration instructs the host physical machine to wake up after the set duration time has run out. It is set in seconds. It is recommended that the duration time be longer than 60 seconds.
			
$ virsh nodesuspend disk 60

 ⁠14.7.7. Setting and Displaying the Node Memory Parameters

				The node-memory-tune [shm-pages-to-scan] [shm-sleep-milisecs] [shm-merge-across-nodes] command displays and allows you to set the node memory parameters. There are three parameters that may be set with this command:
			
	
						shm-pages-to-scan - sets the number of pages to scan before the shared memory service goes to sleep.
					

	
						shm-sleep-milisecs - sets the number of milliseconds that the shared memory service will sleep before the next scan
					

	
						shm-merge-across-nodes - specifies if pages from different NUMA nodes can be merged. Values allowed are 0 and 1. When set to 0, the only pages that can be merged are those that are physically residing in the memory area of the same NUMA node. When set to 1, pages from all of the NUMA nodes can be merged. The default setting is 1.
					

 ⁠14.7.8. Creating Devices on Host Nodes

				The virsh nodedev-create file command allows you to create a device on a host node and then assign it to a guest virtual machine. libvirt normally detects which host nodes are available for use automatically, but this command allows for the registration of host hardware that libvirt did not detect. The file should contain the XML for the top level <device> description of the node device.
			

				To stop this device, use the nodedev-destroy device command.
			

 ⁠14.7.9. Detaching a Node Device

				The virsh nodedev-detach detaches the nodedev from the host so it can be safely used by guests via <hostdev> passthrough. This action can be reversed with the nodedev-reattach command but it is done automatically for managed services. This command also accepts nodedev-dettach.
			

				Note that different drivers expect the device to be bound to different dummy devices. Using the --driver option allows you to specify the desired back-end driver.
			

 ⁠14.7.10. Retrieving a Device's Configuration Settings

				The virsh nodedev-dumpxml [device] command dumps the XML configuration file for the given node <device>. The XML configuration includes information such as: the device name, which bus owns for example the device, the vendor, and product ID. The argument device can either be a device name or a WWN pair in WWNN | WWPN format (HBA only).
			

 ⁠14.7.11. Listing Devices on a Node

				The virsh nodedev-list cap --tree command lists all the devices available on the node that are known by libvirt. cap is used to filter the list by capability types, each separated by a comma and cannot be used with --tree. Using the --tree option, puts the output into a tree structure as shown:
			

 # virsh nodedev-list --tree
 computer
 |
 +- net_lo_00_00_00_00_00_00
 +- net_macvtap0_52_54_00_12_fe_50
 +- net_tun0
 +- net_virbr0_nic_52_54_00_03_7d_cb
 +- pci_0000_00_00_0
 +- pci_0000_00_02_0
 +- pci_0000_00_16_0
 +- pci_0000_00_19_0
 | |
 | +- net_eth0_f0_de_f1_3a_35_4f

(this is a partial screen)

 ⁠14.7.12. Triggering a Reset for a Node

				The nodedev-reset nodedev command triggers a device reset for the specified nodedev. Running this command is useful prior to transferring a node device between guest virtual machine passthrough and the host physical machine. libvirt will do this action implicitly when required, but this command allows an explicit reset when needed.
			

 ⁠14.8. Starting, Suspending, Resuming, Saving, and Restoring a Guest Virtual Machine

			This section provides information on starting, suspending, resuming, saving, and restoring guest virtual machines.
		

 ⁠14.8.1. Starting a Defined Domain

				The virsh start domain --console --paused --autodestroy --bypass-cache --force-boot --pass-fds command starts a inactive domain that was already defined but whose state is inactive since its last managed save state or a fresh boot. The command can take the following options:
			
	
						--console - will boot the domain attaching to the console
					

	
						--paused - If this is supported by the driver it will boot the domain and then put it into a paused state
					

	
						--autodestroy - the guest virtual machine is automatically destroyed when the virsh session closes or the connection to libvirt closes, or it otherwise exits
					

	
						--bypass-cache - used if the domain is in the managedsave state. If this is used, it will restore the guest virtual machine, avoiding the system cache. Note this will slow down the restore process.
					

	
						--force-boot - discards any managedsave options and causes a fresh boot to occur
					

	
						--pass-fds - is a list of additional options separated by commas, which are passed onto the guest virtual machine.
					

 ⁠14.8.2. Suspending a Guest Virtual Machine

				Suspend a guest virtual machine with virsh:
			
virsh suspend {domain-id, domain-name or domain-uuid}

				When a guest virtual machine is in a suspended state, it consumes system RAM but not processor resources. Disk and network I/O does not occur while the guest virtual machine is suspended. This operation is immediate and the guest virtual machine can be restarted with the resume (Section 14.8.6, “Resuming a Guest Virtual Machine”) option.
			

 ⁠14.8.3. Suspending a Running Domain

				The virsh dompmsuspend domain --duration --target command will take a running domain and suspended it so it can be placed into one of three possible states (S3, S4, or a hybrid of the two).
			
virsh dompmsuspend rhel6 --duration 100 --target mem

				This command can take the following options:
			
	
						--duration - sets the duration for the state change in seconds
					

	
						--target - can be either mem (suspend to RAM (S3))disk (suspend to disk (S4)), or hybrid (hybrid suspend)
					

 ⁠14.8.4. Waking Up a Domain from a pmsuspend State

				This command will inject a wake-up alert to a guest that is in a pmsuspend state, rather than waiting for the duration time set to expire. This operation will not fail if the domain is running.
			
dompmwakeup rhel6

				This command requires the name of the domain, rhel6 for example as shown.
			

 ⁠14.8.5. Undefining a Domain

virsh undefine domain --managed-save --snapshots-metadata --storage --remove-all-storage --wipe-storage

				This command will undefine a domain. Although it can work on a running domain, it will convert the running domain into a transient domain without stopping it. If the domain is inactive, the domain configuration is removed.
			

				The command can take the following options:
			
	
						--managed-save - this option guarantees that any managed save image is also cleaned up. Without using this option, attempts to undefine a domain with a managed save image will fail.
					

	
						--snapshots-metadata - this option guarantees that any snapshots (as shown with snapshot-list) are also cleaned up when undefining an inactive domain. Note that any attempts to undefine an inactive domain whose configuration file contains snapshot metadata will fail. If this option is used and the domain is active, it is ignored.
					

	
						--storage - using this option requires a comma separated list of volume target names or source paths of storage volumes to be removed along with the undefined domain. This action will undefine the storage volume before it is removed. Note that this can only be done with inactive domains. Note too that this will only work with storage volumes that are managed by libvirt.
					

	
						--remove-all-storage - in addition to undefining the domain, all associated storage volumes are deleted.
					

	
						--wipe-storage - in addition to deleting the storage volume, the contents are wiped.
					

 ⁠14.8.6. Resuming a Guest Virtual Machine

				Restore a suspended guest virtual machine with virsh using the resume option:
			
virsh resume {domain-id, domain-name or domain-uuid}

				This operation is immediate and the guest virtual machine parameters are preserved for suspend and resume operations.
			

 ⁠14.8.7. Save a Guest Virtual Machine

				Save the current state of a guest virtual machine to a file using the virsh command:
			
virsh save {domain-name|domain-id|domain-uuid} state-file --bypass-cache --xml --running --paused --verbose

				This stops the guest virtual machine you specify and saves the data to a file, which may take some time given the amount of memory in use by your guest virtual machine. You can restore the state of the guest virtual machine with the restore (Section 14.8.11, “Restore a Guest Virtual Machine”) option. Save is similar to pause, instead of just pausing a guest virtual machine the present state of the guest virtual machine is saved.
			

				The virsh save command can take the following options:
			
	
						--bypass-cache - causes the restore to avoid the file system cache but note that using this option may slow down the restore operation.
					

	
						--xml - this option must be used with an XML file name. Although this option is usually omitted, it can be used to supply an alternative XML file for use on a restored guest virtual machine with changes only in the host-specific portions of the domain XML. For example, it can be used to account for the file naming differences in underlying storage due to disk snapshots taken after the guest was saved.
					

	
						--running - overrides the state recorded in the save image to start the domain as running.
					

	
						--paused- overrides the state recorded in the save image to start the domain as paused.
					

	
						--verbose - displays the progress of the save.
					

				If you want to restore the guest virtual machine directly from the XML file, the virsh restore command will do just that. You can monitor the process with the domjobinfo and cancel it with the domjobabort.
			

 ⁠14.8.8. Updating the Domain XML File that will be Used for Restoring the Guest

				The virsh save-image-define file xml --running|--paused command will update the domain XML file that will be used when the specified file is later used during the virsh restore command. The xml argument must be an XML file name containing the alternative XML with changes only in the host physical machine specific portions of the domain XML. For example, it can be used to account for the file naming differences resulting from creating disk snapshots of underlying storage after the guest was saved. The save image records if the domain should be restored to a running or paused state. Using the options --running or --paused dictates the state that is to be used.
			

 ⁠14.8.9. Extracting the Domain XML File

				save-image-dumpxml file --security-info command will extract the domain XML file that was in effect at the time the saved state file (used in the virsh save command) was referenced. Using the --security-info option includes security sensitive information in the file.
			

 ⁠14.8.10. Edit Domain XML Configuration Files

				save-image-edit file --running --paused command edits the XML configuration file that is associated with a saved file that was created by the virsh save command.
			

				Note that the save image records whether the domain should be restored to a --running or --paused state. Without using these options the state is determined by the file itself. By selecting --running or --paused you can overwrite the state that virsh restore should use.
			

 ⁠14.8.11. Restore a Guest Virtual Machine

				Restore a guest virtual machine previously saved with the virsh save command (Section 14.8.7, “Save a Guest Virtual Machine”) using virsh:
			
virsh restore state-file

				This restarts the saved guest virtual machine, which may take some time. The guest virtual machine's name and UUID are preserved but are allocated for a new id.
			

				The virsh restore state-file command can take the following options:
			
	
						--bypass-cache - causes the restore to avoid the file system cache but note that using this option may slow down the restore operation.
					

	
						--xml - this option must be used with an XML file name. Although this option is usually omitted, it can be used to supply an alternative XML file for use on a restored guest virtual machine with changes only in the host-specific portions of the domain XML. For example, it can be used to account for the file naming differences in underlying storage due to disk snapshots taken after the guest was saved.
					

	
						--running - overrides the state recorded in the save image to start the domain as running.
					

	
						--paused- overrides the state recorded in the save image to start the domain as paused.
					

 ⁠14.9. Shutting Down, Rebooting, and Forcing Shutdown of a Guest Virtual Machine

			This section provides information about shutting down, rebooting, and forcing shutdown of a guest virtual machine.
		

 ⁠14.9.1. Shutting Down a Guest Virtual Machine

				Shut down a guest virtual machine using the virsh shutdown command:
			
virsh shutdown {domain-id, domain-name or domain-uuid} [--mode method]

				You can control the behavior of the rebooting guest virtual machine by modifying the on_shutdown parameter in the guest virtual machine's configuration file.
			

 ⁠14.9.2. Shutting Down Red Hat Enterprise Linux 6 Guests on a Red Hat Enterprise Linux 7 Host

				Installing Red Hat Enterprise Linux 6 guest virtual machines with the Minimal installation option does not install the acpid package. Red Hat Enterprise Linux 7 no longer requires this package, as it has been taken over by systemd. However, Red Hat Enterprise Linux 6 guest virtual machines running on a Red Hat Enterprise Linux 7 host still require it.
			

				Without the acpid package, the Red Hat Enterprise Linux 6 guest virtual machine does not shut down when the virsh shutdown command is executed. The virsh shutdown command is designed to gracefully shut down guest virtual machines.
			

				Using virsh shutdown is easier and safer for system administration. Without graceful shut down with the virsh shutdown command a system administrator must log into a guest virtual machine manually or send the Ctrl-Alt-Del key combination to each guest virtual machine.
			
Note

					Other virtualized operating systems may be affected by this issue. The virsh shutdown command requires that the guest virtual machine operating system is configured to handle ACPI shut down requests. Many operating systems require additional configuration on the guest virtual machine operating system to accept ACPI shut down requests.
				

 ⁠Procedure 14.4. Workaround for Red Hat Enterprise Linux 6 guests
	Install the acpid package

						The acpid service listen and processes ACPI requests.
					

						Log into the guest virtual machine and install the acpid package on the guest virtual machine:
					
yum install acpid

	Enable the acpid service

						Set the acpid service to start during the guest virtual machine boot sequence and start the service:
					
chkconfig acpid on
service acpid start

	Prepare guest domain xml

						Edit the domain XML file to include the following element. Replace the virtio serial port with org.qemu.guest_agent.0 and use your guest's name instead of $guestname
					

 ⁠​
​
​<channel type='unix'>
​ <source mode='bind' path='/var/lib/libvirt/qemu/{$guestname}.agent'/>
​ <target type='virtio' name='org.qemu.guest_agent.0'/>
​</channel>
​
​

Figure 14.2. Guest XML replacement

	Install the QEMU guest agent

						Install the QEMU guest agent (QEMU-GA) and start the service as directed in Chapter 10, QEMU-img and QEMU Guest Agent. If you are running a Windows guest there are instructions in this chapter for that as well.
					

	Shutdown the guest
	
								Run the following commands
							

virsh list --all - this command lists all of the known domains
 Id Name State

 rhel6 running

	
								Shut down the guest virtual machine
							

virsh shutdown rhel6

Domain rhel6 is being shutdown

	
								Wait a few seconds for the guest virtual machine to shut down.
							

virsh list --all
 Id Name State

 . rhel6 shut off

	
								Start the domain named rhel6, with the XML file you edited.
							
virsh start rhel6

	
								Shut down the acpi in the rhel6 guest virtual machine.
							
virsh shutdown --mode acpi rhel6

	
								List all the domains again, rhel6 should still be on the list, and it should indicate it is shut off.
							
virsh list --all
 Id Name State

 rhel6 shut off

	
								Start the domain named rhel6, with the XML file you edited.
							
virsh start rhel6

	
								Shut down the rhel6 guest virtual machine guest agent.
							
virsh shutdown --mode agent rhel6

	
								List the domains. rhel6 should still be on the list, and it should indicate it is shut off
							
virsh list --all
 Id Name State

 rhel6 shut off

				The guest virtual machine will shut down using the virsh shutdown command for the consecutive shutdowns, without using the workaround described above.
			

				In addition to the method described above, a guest can be automatically shutdown, by stopping the libvirt-guest service. Refer to Section 14.9.3, “Manipulating the libvirt-guests Configuration Settings” for more information on this method.
			

 ⁠14.9.3. Manipulating the libvirt-guests Configuration Settings

				The libvirt-guests service has parameter settings that can be configured to assure that the guest is shutdown properly. It is a package that is a part of the libvirt installation and is installed by default. This service automatically saves guests to the disk when the host shuts down, and restores them to their pre-shutdown state when the host reboots. By default, this setting is set to suspend the guest. If you want the guest to be shutoff, you will need to change one of the parameters of the libvirt-guests configuration file.
			

 ⁠Procedure 14.5. Changing the libvirt-guests service parameters to allow for the graceful shutdown of guests

					The procedure described here allows for the graceful shutdown of guest virtual machines when the host physical machine is stuck, powered off, or needs to be restarted.
				
	Open the configuration file

						The configuration file is located in /etc/sysconfig/libvirt-guests. Edit the file, remove the comment mark (#) and change the ON_SHUTDOWN=suspend to ON_SHUTDOWN=shutdown. Remember to save the change.
					

$ vi /etc/sysconfig/libvirt-guests

URIs to check for running guests
example: URIS='default xen:/// vbox+tcp://host/system lxc:///'
#URIS=default

action taken on host boot
- start all guests which were running on shutdown are started on boot
regardless on their autostart settings [image: 1]
- ignore libvirt-guests init script won't start any guest on boot, however, [image: 2]
guests marked as autostart will still be automatically started by [image: 3]
libvirtd [image: 4]
#ON_BOOT=start [image: 5]
[image: 6]
Number of seconds to wait between each guest start. Set to 0 to allow [image: 7]
parallel startup.
#START_DELAY=0

action taken on host shutdown
- suspend all running guests are suspended using virsh managedsave
- shutdown all running guests are asked to shutdown. Please be careful with
this settings since there is no way to distinguish between a
guest which is stuck or ignores shutdown requests and a guest
which just needs a long time to shutdown. When setting
ON_SHUTDOWN=shutdown, you must also set SHUTDOWN_TIMEOUT to a
value suitable for your guests.
ON_SHUTDOWN=shutdown

If set to non-zero, shutdown will suspend guests concurrently. Number of
guests on shutdown at any time will not exceed number set in this variable.
#PARALLEL_SHUTDOWN=0

Number of seconds we're willing to wait for a guest to shut down. If parallel
shutdown is enabled, this timeout applies as a timeout for shutting down all
guests on a single URI defined in the variable URIS. If this is 0, then there
is no time out (use with caution, as guests might not respond to a shutdown
request). The default value is 300 seconds (5 minutes).
#SHUTDOWN_TIMEOUT=300

If non-zero, try to bypass the file system cache when saving and
restoring guests, even though this may give slower operation for
some file systems.
#BYPASS_CACHE=0

	[image: 1]
	
								URIS - checks the specified connections for a running guest. The Default setting functions in the same manner as virsh does when no explicit URI is set In addition, one can explicitly set the URI from /etc/libvirt/libvirt.conf. It should be noted that when using the libvirt configuration file default setting, no probing will be used.
							

	[image: 2]
	
								ON_BOOT - specifies the action to be done to / on the guests when the host boots. The start option starts all guests that were running prior to shutdown regardless on their autostart settings. The ignore option will not start the formally running guest on boot, however, any guest marked as autostart will still be automatically started by libvirtd.
							

	[image: 3]
	
								The START_DELAY - sets a delay interval in between starting up the guests. This time period is set in seconds. Use the 0 time setting to make sure there is no delay and that all guests are started simultaneously.
							

	[image: 4]
	
								ON_SHUTDOWN - specifies the action taken when a host shuts down. Options that can be set include: suspend which suspends all running guests using virsh managedsave and shutdown which shuts down all running guests. It is best to be careful with using the shutdown option as there is no way to distinguish between a guest which is stuck or ignores shutdown requests and a guest that just needs a longer time to shutdown. When setting the ON_SHUTDOWN=shutdown, you must also set SHUTDOWN_TIMEOUT to a value suitable for the guests.
							

	[image: 5]
	
								PARALLEL_SHUTDOWN Dictates that the number of guests on shutdown at any time will not exceed number set in this variable and the guests will be suspended concurrently. If set to 0, then guests are not shutdown concurrently.
							

	[image: 6]
	
								Number of seconds to wait for a guest to shut down. If SHUTDOWN_TIMEOUT is enabled, this timeout applies as a timeout for shutting down all guests on a single URI defined in the variable URIS. If SHUTDOWN_TIMEOUT is set to 0, then there is no time out (use with caution, as guests might not respond to a shutdown request). The default value is 300 seconds (5 minutes).
							

	[image: 7]
	
								BYPASS_CACHE can have 2 values, 0 to disable and 1 to enable. If enabled it will by-pass the file system cache when guests are restored. Note that setting this may effect performance and may cause slower operation for some file systems.
							

	Start libvirt-guests service

						If you have not started the service, start the libvirt-guests service. Do not restart the service as this will cause all running domains to shutdown.
					

 ⁠14.9.4. Rebooting a Guest Virtual Machine

				Use the virsh reboot command to reboot a guest virtual machine. The prompt will return once the reboot has executed. Note that there may be a time lapse until the guest virtual machine returns.
			
#virsh reboot {domain-id, domain-name or domain-uuid} [--mode method]

				You can control the behavior of the rebooting guest virtual machine by modifying the <on_reboot> element in the guest virtual machine's configuration file. Refer to Section 20.12, “Events Configuration” for more information.
			

				By default, the hypervisor will try to pick a suitable shutdown method. To specify an alternative method, the --mode option can specify a comma separated list which includes initctl, acpi, agent, and signal. The order in which drivers will try each mode is not related to the order specified in the command. For strict control over ordering, use a single mode at a time and repeat the command.
			

 ⁠14.9.5. Forcing a Guest Virtual Machine to Stop

				Force a guest virtual machine to stop with the virsh destroy command:
			
virsh destroy {domain-id, domain-name or domain-uuid} [--graceful]

				This command does an immediate ungraceful shutdown and stops the specified guest virtual machine. Using virsh destroy can corrupt guest virtual machine file systems. Use the destroy option only when the guest virtual machine is unresponsive. If you want to initiate a graceful shutdown, use the virsh destroy --graceful command.
			

 ⁠14.9.6. Resetting a Virtual Machine

				virsh reset domain resets the domain immediately without any guest shutdown. A reset emulates the power reset button on a machine, where all guest hardware sees the RST line and re-initializes the internal state. Note that without any guest virtual machine OS shutdown, there are risks for data loss.
			

 ⁠14.10. Retrieving Guest Virtual Machine Information

			This section provides information on retrieving guest virtual machine information.
		

 ⁠14.10.1. Getting the Domain ID of a Guest Virtual Machine

				To get the domain ID of a guest virtual machine:
			
virsh domid {domain-name or domain-uuid}

 ⁠14.10.2. Getting the Domain Name of a Guest Virtual Machine

				To get the domain name of a guest virtual machine:
			
virsh domname {domain-id or domain-uuid}

 ⁠14.10.3. Getting the UUID of a Guest Virtual Machine

				To get the Universally Unique Identifier (UUID) for a guest virtual machine:
			
virsh domuuid {domain-id or domain-name}

				An example of virsh domuuid output:
			

virsh domuuid r5b2-mySQL01
4a4c59a7-ee3f-c781-96e4-288f2862f011

 ⁠14.10.4. Displaying Guest Virtual Machine Information

				Using virsh with the guest virtual machine's domain ID, domain name or UUID you can display information on the specified guest virtual machine:
			
virsh dominfo {domain-id, domain-name or domain-uuid}

				This is an example of virsh dominfo output:
			

virsh dominfo vr-rhel6u1-x86_64-kvm
Id: 9
Name: vr-rhel6u1-x86_64-kvm
UUID: a03093a1-5da6-a2a2-3baf-a845db2f10b9
OS Type: hvm
State: running
CPU(s): 1
CPU time: 21.6s
Max memory: 2097152 kB
Used memory: 1025000 kB
Persistent: yes
Autostart: disable
Security model: selinux
Security DOI: 0
Security label: system_u:system_r:svirt_t:s0:c612,c921 (permissive)

 ⁠14.11. Storage Pool Commands

			The following commands manipulate storage pools. Using libvirt you can manage various storage solutions, including files, raw partitions, and domain-specific formats, used to provide the storage volumes visible as devices within virtual machines. For more detailed information about this feature, see more information at libvirt.org. Many of the commands for storage pools are similar to the ones used for domains.
		

 ⁠14.11.1. Searching for a Storage Pool XML

				The find-storage-pool-sources type srcSpec command displays the XML describing all storage pools of a given type that could be found. If srcSpec is provided, it is a file that contains XML to further restrict the query for pools.
			

				The find-storage-pool-sources-as type host port initiator displays the XML describing all storage pools of a given type that could be found. If host, port, or initiator are provided, they control where the query is performed.
			

				The pool-info pool-or-uuid command will list the basic information about the specified storage pool object. This command requires the name or UUID of the storage pool. To retrieve this information, use the following coomand:
			
pool-list [--inactive] [--all] [--persistent] [--transient] [--autostart] [--no-autostart] [--details] type

				This lists all storage pool objects known to libvirt. By default, only active pools are listed; but using the --inactive option lists just the inactive pools, and using the --all option lists all of the storage pools.
			

				In addition to those options there are several sets of filtering options that can be used to filter the content of the list. --persistent restricts the list to persistent pools, --transient restricts the list to transient pools, --autostart restricts the list to autostarting pools and finally --no-autostart restricts the list to the storage pools that have autostarting disabled.
			

				For all storage pool commands which require a type, the pool types must be separated by comma. The valid pool types include: dir, fs, netfs, logical, disk, iscsi, scsi, mpath, rbd, and sheepdog.
			

				The --details option instructs virsh to additionally display pool persistence and capacity related information where available.
			
Note

					When this command is used with older servers, it is forced to use a series of API calls with an inherent race, where a pool might not be listed or might appear more than once if it changed its state between calls while the list was being collected. Newer servers however, do not have this problem.
				

				The pool-refresh pool-or-uuid refreshes the list of volumes contained in pool.
			

 ⁠14.11.2. Creating, Defining, and Starting Storage Pools

				This section provides information about creating, defining, and starting storage pools.
			

 ⁠14.11.2.1. Building a storage pool

					The pool-build pool-or-uuid --overwrite --no-overwrite command builds a pool with a specified pool name or UUID. The options --overwrite and --no-overwrite can only be used for a pool whose type is file system. If neither option is specified, and the pool is a file system type pool, then the resulting build will only make the directory.
				

					If --no-overwrite is specified, it probes to determine if a file system already exists on the target device, returning an error if it exists, or using mkfs to format the target device if it does not. If --overwrite is specified, then the mkfs command is executed and any existing data on the target device is overwritten.
				

 ⁠14.11.2.2. Creating and defining a storage pool from an XML file

					The pool-create file creates and starts a storage pool from its associated XML file.
				

					The pool-define file creates, but does not start, a storage pool object from the XML file.
				

 ⁠14.11.2.3. Creating and starting a storage pool from raw parameters

pool-create-as name --print-xml type source-host source-path source-dev source-name <target> --source-format format

					This command creates and starts a pool object name from the raw parameters given.
				

					If --print-xml is specified, then it prints the XML of the storage pool object without creating the pool. Otherwise, the pool requires a type in order to be built. For all storage pool commands which require a type, the pool types must be separated by comma. The valid pool types include: dir, fs, netfs, logical, disk, iscsi, scsi, mpath, rbd, and sheepdog.
				

					In contrast, the following command creates, but does not start, a pool object name from the raw parameters given:
				
pool-define-as name --print-xml type source-host source-path source-dev source-name <target> --source-format format

					If --print-xml is specified, then it prints the XML of the pool object without defining the pool. Otherwise, the pool has to have a specified type. For all storage pool commands which require a type, the pool types must be separated by comma. The valid pool types include: dir, fs, netfs, logical, disk, iscsi, scsi, mpath, rbd, and sheepdog.
				

					The pool-start pool-or-uuid starts the specified storage pool, which was previously defined but inactive.
				

 ⁠14.11.2.4. Auto-starting a storage pool

					The pool-autostart pool-or-uuid --disable command enables or disables a storage pool to automatically start at boot. This command requires the pool name or UUID. To disable the pool-autostart command use the --disable option.
				

 ⁠14.11.3. Stopping and Deleting Storage Pools

				The pool-destroy pool-or-uuid stops a storage pool. Once stopped, libvirt will no longer manage the pool but the raw data contained in the pool is not changed, and can be later recovered with the pool-create command.
			

				The pool-delete pool-or-uuid destroys the resources used by the specified storage pool. It is important to note that this operation is non-recoverable and non-reversible. However, the pool structure will still exist after this command, ready to accept the creation of new storage volumes.
			

				The pool-undefine pool-or-uuid command undefines the configuration for an inactive pool.
			

 ⁠14.11.4. Creating an XML Dump File for a Storage Pool

				The pool-dumpxml --inactive pool-or-uuid command returns the XML information about the specified storage pool object. Using --inactive dumps the configuration that will be used on next start of the pool as opposed to the current pool configuration.
			

 ⁠14.11.5. Editing the Storage Pool's Configuration File

				The pool-edit pool-or-uuid opens the specified storage pool's XML configuration file for editing.
			

				This method is the only method that should be used to edit an XML configuration file as it does error checking before applying.
			

 ⁠14.11.6. Converting Storage Pools

				The pool-name uuid command converts the specified UUID to a pool name.
			

				The pool-uuid pool command returns the UUID of the specified pool.
			

 ⁠14.12. Storage Volume Commands

			This section covers all commands for creating, deleting, and managing storage volumes. It is best to do this once you have created a storage pool as the storage pool name or UUID will be required. For information on storage pools refer to Chapter 12, Storage Pools. For information on storage volumes refer to, Chapter 13, Volumes .
		

 ⁠14.12.1. Creating Storage Volumes

				The vol-create-from pool-or-uuid file --inputpool pool-or-uuid vol-name-or-key-or-path command creates a storage volume, using another storage volume as a template for its contents. This command requires a pool-or-uuid which is the name or UUID of the storage pool to create the volume in.
			

				The file argument specifies the XML file and path containing the volume definition. The --inputpool pool-or-uuid option specifies the name or uuid of the storage pool the source volume is in. The vol-name-or-key-or-path argument specifies the name or key or path of the source volume. For some examples, refer to Section 13.1, “Creating Volumes”.
			

				The vol-create-as command creates a volume from a set of arguments. The pool-or-uuid argument contains the name or UUID of the storage pool to create the volume in.

vol-create-as pool-or-uuid name capacity --allocation <size> --format <string> --backing-vol <vol-name-or-key-or-path> --backing-vol-format <string>

			

				name is the name of the new volume. capacity is the size of the volume to be created, as a scaled integer, defaulting to bytes if there is no suffix. --allocation <size> is the initial size to be allocated in the volume, also as a scaled integer defaulting to bytes. --format <string> is used in file based storage pools to specify the volume file format which is a string of acceptable formats separated by a comma. Acceptable formats include raw, bochs, qcow, qcow2, vmdk, --backing-vol vol-name-or-key-or-path is the source backing volume to be used if taking a snapshot of an existing volume. --backing-vol-format string is the format of the snapshot backing volume which is a string of formats separated by a comma. Accepted values include: raw, bochs, qcow, qcow2, , vmdk, and host_device. These are, however, only meant for file based storage pools.
			

 ⁠14.12.1.1. Creating a storage volume from an XML file

					The vol-create pool-or-uuid file creates a storage volume from a saved XML file. This command also requires the pool-or-uuid, which is the name or UUID of the storage pool in which the volume will be created. The file argument contains the path with the volume definition's XML file. An easy way to create the XML file is to use the vol-dumpxml command to obtain the definition of a pre-existing volume, modify it and then save it and then run the vol-create.
				

virsh vol-dumpxml --pool storagepool1 appvolume1 > newvolume.xml
virsh edit newvolume.xml
virsh vol-create differentstoragepool newvolume.xml

					Other options available include:
				
	
							The --inactive option lists the inactive guest virtual machines (that is, guest virtual machines that have been defined but are not currently active).
						

	
							The --all option lists all guest virtual machines.
						

 ⁠14.12.1.2. Cloning a storage volume

					The vol-clone --pool pool-or-uuid vol-name-or-key-or-path name command clones an existing storage volume. Although the vol-create-from may also be used, it is not the recommended way to clone a storage volume. The --pool pool-or-uuid option is the name or UUID of the storage pool to create the volume in. The vol-name-or-key-or-path argument is the name or key or path of the source volume. Using a name argument refers to the name of the new volume.
				

 ⁠14.12.2. Deleting Storage Volumes

				The vol-delete --pool pool-or-uuid vol-name-or-key-or-path command deletes a given volume. The command requires a specific --pool pool-or-uuid which is the name or UUID of the storage pool the volume is in. The vol-name-or-key-or-path option specifies the name or key or path of the volume to delete.
			

				The vol-wipe --pool pool-or-uuid --algorithm algorithm vol-name-or-key-or-path command wipes a volume, to ensure data previously on the volume is not accessible to future reads. The command requires a --pool pool-or-uuid, which is the name or UUID of the storage pool the volume is in. The vol-name-or-key-or-path contains the name or key or path of the volume to wipe. Note it is possible to choose different wiping algorithms instead of the default (where every sector of the storage volume is written with value "0"). To specify a wiping algorithm, use the --algorithm option with one of the following supported algorithm types:
			
	
						zero - 1-pass all zeroes
					

	
						nnsa - 4-pass NNSA Policy Letter NAP-14.1-C (XVI-8) for sanitizing removable and non-removable hard disks: random x2, 0x00, verify.
					

	
						dod - 4-pass DoD 5220.22-M section 8-306 procedure for sanitizing removable and non-removable rigid disks: random, 0x00, 0xff, verify.
					

	
						bsi - 9-pass method recommended by the German Center of Security in Information Technologies (http://www.bsi.bund.de): 0xff, 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f.
					

	
						gutmann - The canonical 35-pass sequence described in Gutmann’s paper.
					

	
						schneier - 7-pass method described by Bruce Schneier in "Applied Cryptography" (1996): 0x00, 0xff, random x5.
					

	
						pfitzner7 - Roy Pfitzner’s 7-random-pass method: random x7
					

	
						pfitzner33 - Roy Pfitzner’s 33-random-pass method: random x33.
					

	
						random - 1-pass pattern: random.
					

Note

					The version of the scrub binary installed on the host will limit the algorithms that are available.
				

 ⁠14.12.3. Dumping Storage Volume Information to an XML File

				vol-dumpxml --pool pool-or-uuid vol-name-or-key-or-path command takes the volume information as an XML dump to a specified file.
			

				This command requires a --pool pool-or-uuid, which is the name or UUID of the storage pool the volume is in. vol-name-or-key-or-path is the name or key or path of the volume to place the resulting XML file.
			

 ⁠14.12.4. Listing Volume Information

				The vol-info --pool pool-or-uuid vol-name-or-key-or-path command lists basic information about the given storage volume --pool, where pool-or-uuid is the name or UUID of the storage pool the volume is in. vol-name-or-key-or-path is the name or key or path of the volume to return information for.
			

				The vol-list --pool pool-or-uuid --details lists all of volumes in the specified storage pool. This command requires --pool pool-or-uuid which is the name or UUID of the storage pool. The --details option instructs virsh to additionally display volume type and capacity related information where available.
			

 ⁠14.12.5. Retrieving Storage Volume Information

				The vol-pool --uuid vol-key-or-path command returns the pool name or UUID for a given volume. By default, the pool name is returned. If the --uuid option is given, the pool UUID is returned instead. The command requires the vol-key-or-path which is the key or path of the volume for which to return the requested information.
			

				The vol-path --pool pool-or-uuid vol-name-or-key command returns the path for a given volume. The command requires --pool pool-or-uuid, which is the name or UUID of the storage pool the volume is in. It also requires vol-name-or-key which is the name or key of the volume for which the path has been requested.
			

				The vol-name vol-key-or-path command returns the name for a given volume, where vol-key-or-path is the key or path of the volume to return the name for.
			

				The vol-key --pool pool-or-uuid vol-name-or-path command returns the volume key for a given volume where --pool pool-or-uuid is the name or UUID of the storage pool the volume is in and vol-name-or-path is the name or path of the volume to return the volume key for.
			

 ⁠14.12.6. Uploading and Downloading Storage Volumes

				This section will instruct how to upload and download information to and from storage volumes.
			

 ⁠14.12.6.1. Uploading contents to a storage volume

					The vol-upload --pool pool-or-uuid --offset bytes --length bytes vol-name-or-key-or-path local-file command uploads the contents of specified local-file to a storage volume. The command requires --pool pool-or-uuid which is the name or UUID of the storage pool the volume is in. It also requires vol-name-or-key-or-path which is the name or key or path of the volume to wipe. The --offset option is the position in the storage volume at which to start writing the data. --length length dictates an upper limit for the amount of data to be uploaded. An error will occur if the local-file is greater than the specified --length.
				

 ⁠14.12.6.2. Downloading the contents from a storage volume

vol-download --pool pool-or-uuid --offset bytes --length bytes vol-name-or-key-or-path local-file

					This command command downloads the contents of local-file from a storage volume. It requires a --pool pool-or-uuid which is the name or UUID of the storage pool that the volume is in. It also requires vol-name-or-key-or-path which is the name or key or path of the volume to wipe. Using the option --offset dictates the position in the storage volume at which to start reading the data. --length length dictates an upper limit for the amount of data to be downloaded.
				

 ⁠14.12.7. Re-sizing Storage Volumes

vol-resize --pool pool-or-uuid vol-name-or-path pool-or-uuid capacity --allocate --delta --shrink

				This command command re-sizes the capacity of the given volume, in bytes. The command requires --pool pool-or-uuid which is the name or UUID of the storage pool the volume is in. This command also requires vol-name-or-key-or-path is the name or key or path of the volume to re-size.
			

				The new capacity may create a sparse file unless the --allocate option is specified. Normally, capacity is the new size, but if --delta is present, then it is added to the existing size. Attempts to shrink the volume will fail unless the --shrink option is present.
			

				Note that capacity cannot be negative unless the --shrink option is provided and a negative sign is not necessary. capacity is a scaled integer which defaults to bytes if there is no suffix. Note too that this command is only safe for storage volumes not in use by an active guest. Refer to Section 14.5.17, “Using blockresize to Change the Size of a Domain Path” for live re-sizing.
			

 ⁠14.13. Displaying Per-guest Virtual Machine Information

			This section provides information about displaying virtual machine information for each guest.
		

 ⁠14.13.1. Displaying the Guest Virtual Machines

				To display the guest virtual machine list and their current states with virsh:
			
virsh list

				Other options available include:
			
	
						--inactive option lists the inactive guest virtual machines (that is, guest virtual machines that have been defined but are not currently active)
					

	
						--all option lists all guest virtual machines. For example:
					
virsh list --all
 Id Name State

 0 Domain-0 running
 1 Domain202 paused
 2 Domain010 inactive
 3 Domain9600 crashed

						There are seven states that can be visible using this command:
					
	
								Running - The running state refers to guest virtual machines which are currently active on a CPU.
							

	
								Idle - The idle state indicates that the domain is idle, and may not be running or able to run. This can be caused because the domain is waiting on IO (a traditional wait state) or has gone to sleep because there was nothing else for it to do.
							

	
								Paused - The paused state lists domains that are paused. This occurs if an administrator uses the paused button in virt-manager or virsh suspend. When a guest virtual machine is paused it consumes memory and other resources but it is ineligible for scheduling and CPU resources from the hypervisor.
							

	
								Shutdown - The shutdown state is for guest virtual machines in the process of shutting down. The guest virtual machine is sent a shutdown signal and should be in the process of stopping its operations gracefully. This may not work with all guest virtual machine operating systems; some operating systems do not respond to these signals.
							

	
								Shut off - The shut off state indicates that the domain is not running. This can be caused when a domain completely shuts down or has not been started.
							

	
								Crashed - The crashed state indicates that the domain has crashed and can only occur if the guest virtual machine has been configured not to restart on crash.
							

	
								Dying - Domains in the dying state are in is in process of dying, which is a state where the domain has not completely shut-down or crashed.
							

	
						--managed-save Although this option alone does not filter the domains, it will list the domains that have managed save state enabled. In order to actually list the domains separately you will need to use the --inactive option as well.
					

	
						--name is specified domain names are printed in a list. If --uuid is specified the domain's UUID is printed instead. Using the option --table specifies that a table style output should be used. All three commands are mutually exclusive
					

	
						--title This command must be used with --table output. --titlewill cause an extra column to be created in the table with the short domain description (title).
					

	
						--persistentincludes persistent domains in a list. Use the --transient option.
					

	
						--with-managed-save lists the domains that have been configured with managed save. To list the commands without it, use the command --without-managed-save
					

	
						--state-running filters out for the domains that are running, --state-paused for paused domains, --state-shutoff for domains that are turned off, and --state-other lists all states as a fallback.
					

	
						--autostart this option will cause the auto-starting domains to be listed. To list domains with this feature disabled, use the option --no-autostart.
					

	
						--with-snapshot will list the domains whose snapshot images can be listed. To filter for the domains without a snapshot, use the option --without-snapshot
					

$ virsh list --title --name

 Id Name State Title
 0 Domain-0 running Mailserver1
 2 rhelvm paused

				For an example of virsh vcpuinfo output, refer to Section 14.13.2, “Displaying Virtual CPU Information”
			

 ⁠14.13.2. Displaying Virtual CPU Information

				To display virtual CPU information from a guest virtual machine with virsh:
			
virsh vcpuinfo {domain-id, domain-name or domain-uuid}

				An example of virsh vcpuinfo output:
			
virsh vcpuinfo rhel6
VCPU: 0
CPU: 2
State: running
CPU time: 7152.4s
CPU Affinity: yyyy

VCPU: 1
CPU: 2
State: running
CPU time: 10889.1s
CPU Affinity: yyyy

 ⁠14.13.3. Configuring Virtual CPU Affinity

				To configure the affinity of virtual CPUs with physical CPUs, refer to Example 14.3, “Pinning vCPU to a host physical machine's CPU”.
			

 ⁠Example 14.3. Pinning vCPU to a host physical machine's CPU

					The virsh vcpupin assigns a virtual CPU to a physical one.
				

virsh vcpupin rhel6
VCPU: CPU Affinity

 0: 0-3
 1: 0-3

					The vcpupin can take the following options:
				
	
							--vcpu requires the vcpu number
						

	
							[--cpulist] >string< lists the host physical machine's CPU number(s) to set, or omit an optional query
						

	
							--config affects next boot
						

	
							--live affects the running domain
						

	
							--current affects the current domain
						

 ⁠14.13.4. Displaying Information about the Virtual CPU Counts of a Domain

				virsh vcpucount requires a domain name or a domain ID. For example:
			

virsh vcpucount rhel6
maximum config 2
maximum live 2
current config 2
current live 2

				The vcpucount can take the following options:
			
	
						--maximum displays the maximum number of vCPUs available
					

	
						--active displays the number of currently active vCPUs
					

	
						--live displays the value from the running domain
					

	
						--config displays the value to be configured on guest virtual machine's next boot
					

	
						--current displays the value according to current domain state
					

	
						--guest displays the count that is returned is from the perspective of the guest
					

 ⁠14.13.5. Configuring Virtual CPU Affinity

				To configure the affinity of virtual CPUs with physical CPUs:
			
virsh vcpupin domain-id vcpu cpulist

				The domain-id parameter is the guest virtual machine's ID number or name.
			

				The vcpu parameter denotes the number of virtualized CPUs allocated to the guest virtual machine.The vcpu parameter must be provided.
			

				The cpulist parameter is a list of physical CPU identifier numbers separated by commas. The cpulist parameter determines which physical CPUs the VCPUs can run on.
			

				Additional parameters such as --config affect the next boot, whereas --live affects the running domain, and --current affects the current domain.
			

 ⁠14.13.6. Configuring Virtual CPU Count

				To modify the number of CPUs assigned to a guest virtual machine, use the virsh setvcpus command:
			
virsh setvcpus {domain-name, domain-id or domain-uuid} count [[--config] [--live] | [--current] [--guest]

				The following parameters may be set for the virsh setvcpus command:
			
	
						{domain-name, domain-id or domain-uuid} - Specifies the virtual machine.
					

	
						count - Specifies the number of virtual CPUs to set.
					
Note

							The count value cannot exceed the number of CPUs that were assigned to the guest virtual machine when it was created. It may also be limited by the host or the hypervisor. For Xen, you can only adjust the virtual CPUs of a running domain if the domain is paravirtualized.
						

	
						--live - The default option, used if none are specified. The configuration change takes effect on the running guest virtual machine. This is referred to as a hot plug if the number of vCPUs is increased, and hot unplug if it is reduced.
					
Important

							The vCPU hot unplug feature is a Technology Preview. Therefore, it is not supported and not recommended for use in high-value deployments.
						

	
						--config - The configuration change takes effect on the next reboot of the guest. Both the --config and --live options may be specified together if supported by the hypervisor.
					

	
						--current - Configuration change takes effect on the current state of the guest virtual machine. If used on a running guest, it acts as --live, if used on a shut-down guest, it acts as --config.
					

	
						--maximum - Sets a maximum vCPU limit that can be hot-plugged on the next reboot of the guest. As such, it must only be used with the --config option, and not with the --live option.
					

	
						--guest - Instead of a hot plug or a hot unplug, the QEMU guest agent modifies the vCPU count directly in the running guest by enabling or disabling vCPUs. This option cannot be used with count value higher than the current number of vCPUs in the gueet, and configurations set with --guest are reset when a guest is rebooted.
					

 ⁠Example 14.4. vCPU hot plug and hot unplug

					To hot-plug a vCPU, run the following command on a guest with a single vCPU:
				
virsh setvcpus guestVM1 2 --live

					This increases the number of vCPUs for guestVM1 to two. The change is performed while guestVM1 is running, as indicated by the --live option.
				

					To hot-unplug one vCPU from the same running guest, run the following:
				
virsh setvcpus guestVM1 1 --live

					Be aware, however, that currently, using vCPU hot unplug can lead to problems with further modifications of the vCPU count.
				

 ⁠14.13.7. Configuring Memory Allocation

				To modify a guest virtual machine's memory allocation with virsh:
			
virsh setmem {domain-id or domain-name} count
virsh setmem vr-rhel6u1-x86_64-kvm --kilobytes 1025000

				You must specify the count in kilobytes. The new count value cannot exceed the amount you specified when you created the guest virtual machine. Values lower than 64 MB are unlikely to work with most guest virtual machine operating systems. A higher maximum memory value does not affect active guest virtual machines. If the new value is lower than the available memory, it will shrink possibly causing the guest virtual machine to crash.
			

				This command has the following options:
			
	
						[--domain] <string> domain name, id or uuid
					

	
						[--size] <number> new memory size, as scaled integer (default KiB)
					

						Valid memory units include:
					
	
								b or bytes for bytes
							

	
								KB for kilobytes (103 or blocks of 1,000 bytes)
							

	
								k or KiB for kibibytes (210 or blocks of 1024 bytes)
							

	
								MB for megabytes (106 or blocks of 1,000,000 bytes)
							

	
								M or MiB for mebibytes (220 or blocks of 1,048,576 bytes)
							

	
								GB for gigabytes (109 or blocks of 1,000,000,000 bytes)
							

	
								G or GiB for gibibytes (230 or blocks of 1,073,741,824 bytes)
							

	
								TB for terabytes (1012 or blocks of 1,000,000,000,000 bytes)
							

	
								T or TiB for tebibytes (240 or blocks of 1,099,511,627,776 bytes)
							

						Note that all values will be rounded up to the nearest kibibyte by libvirt, and may be further rounded to the granularity supported by the hypervisor. Some hypervisors also enforce a minimum, such as 4000KiB (or 4000 x 210 or 4,096,000 bytes). The units for this value are determined by the optional attribute memory unit, which defaults to the kibibytes (KiB) as a unit of measure where the value given is multiplied by 210 or blocks of 1024 bytes.
					

	
						--config takes affect next boot
					

	
						--live controls the memory of the running domain
					

	
						--current controls the memory on the current domain
					

 ⁠14.13.8. Changing the Memory Allocation for the Domain

				The virsh setmaxmem domain size --config --live --current allows the setting of the maximum memory allocation for a guest virtual machine as shown:
			
virsh setmaxmem rhel6 1024 --current

				The size that can be given for the maximum memory is a scaled integer that by default is expressed in kibibytes, unless a supported suffix is provided. The following options can be used with this command:
			
	
						--config - takes affect next boot
					

	
						--live - controls the memory of the running domain, providing the hypervisor supports this action as not all hypervisors allow live changes of the maximum memory limit.
					

	
						--current - controls the memory on the current domain
					

 ⁠14.13.9. Displaying Guest Virtual Machine Block Device Information

				Use virsh domblkstat to display block device statistics for a running guest virtual machine.
			
virsh domblkstat GuestName block-device

 ⁠14.13.10. Displaying Guest Virtual Machine Network Device Information

				Use virsh domifstat to display network interface statistics for a running guest virtual machine.
			
virsh domifstat GuestName interface-device

 ⁠14.14. Managing Virtual Networks

			This section covers managing virtual networks with the virsh command. To list virtual networks:
		
virsh net-list

			This command generates output similar to:
		
virsh net-list
Name State Autostart

default active yes
vnet1	 active yes
vnet2	 active yes

			To view network information for a specific virtual network:
		
virsh net-dumpxml NetworkName

			This displays information about a specified virtual network in XML format:
		
virsh net-dumpxml vnet1
<network>
 <name>vnet1</name>
 <uuid>98361b46-1581-acb7-1643-85a412626e70</uuid>
 <forward dev='eth0'/>
 <bridge name='vnet0' stp='on' forwardDelay='0' />
 <ip address='192.168.100.1' netmask='255.255.255.0'>
 <dhcp>
 <range start='192.168.100.128' end='192.168.100.254' />
 </dhcp>
 </ip>
</network>

			Other virsh commands used in managing virtual networks are:
		
	
					virsh net-autostart network-name — Autostart a network specified as network-name.
				

	
					virsh net-create XMLfile — generates and starts a new network using an existing XML file.
				

	
					virsh net-define XMLfile — generates a new network device from an existing XML file without starting it.
				

	
					virsh net-destroy network-name — destroy a network specified as network-name.
				

	
					virsh net-name networkUUID — convert a specified networkUUID to a network name.
				

	
					virsh net-uuid network-name — convert a specified network-name to a network UUID.
				

	
					virsh net-start nameOfInactiveNetwork — starts an inactive network.
				

	
					virsh net-undefine nameOfInactiveNetwork — removes the definition of an inactive network.
				

 ⁠14.15. Migrating Guest Virtual Machines with virsh

			Information on migration using virsh is located in the section entitled Live KVM Migration with virsh Refer to Section 4.4, “Live KVM Migration with virsh”
		

 ⁠14.15.1. Interface Commands

				The following commands manipulate host interfaces and as such should not be run from the guest virtual machine. These commands should be run from a terminal on the host physical machine.
			
Warning

					The commands in this section are only supported if the machine has the NetworkManager service disabled, and is using the network service instead.
				

				Often, these host interfaces can then be used by name within domain <interface> elements (such as a system-created bridge interface), but there is no requirement that host interfaces be tied to any particular guest configuration XML at all. Many of the commands for host interfaces are similar to the ones used for domains, and the way to name an interface is either by its name or its MAC address. However, using a MAC address for an iface option only works when that address is unique (if an interface and a bridge share the same MAC address, which is often the case, then using that MAC address results in an error due to ambiguity, and you must resort to a name instead).
			

 ⁠14.15.1.1. Defining and starting a host physical machine interface via an XML file

					The virsh iface-define file command define a host interface from an XML file. This command will only define the interface and will not start it.
				
virsh iface-define iface.xml

					To start an interface which has already been defined, run iface-start interface, where interface is the interface name.
				

 ⁠14.15.1.2. Editing the XML configuration file for the host interface

					The command iface-edit interface edits the XML configuration file for a host interface. This is the only recommended way to edit the XML configuration file. (Refer to Chapter 20, Manipulating the Domain XML for more information about these files.)
				

 ⁠14.15.1.3. Listing active host interfaces

					The iface-list --inactive --all displays a list of active host interfaces. If --all is specified, this list will also include interfaces that are defined but are inactive. If --inactive is specified only the inactive interfaces will be listed.
				

 ⁠14.15.1.4. Converting a MAC address into an interface name

					The iface-name interface command converts a host interface MAC to an interface name, provided the MAC address is unique among the host’s interfaces. This command requires interface which is the interface's MAC address.
				

					The iface-mac interface command will convert a host's interface name to MAC address where in this case interface, is the interface name.
				

 ⁠14.15.1.5. Stopping a specific host physical machine interface

					The virsh iface-destroy interface command destroys (stops) a given host interface, which is the same as running if-down on the host. This command will disable that interface from active use and takes effect immediately.
				

					To undefine the interface, use the iface-undefine interface command along with the interface name.
				

 ⁠14.15.1.6. Displaying the host configuration file

					virsh iface-dumpxml interface --inactive displays the host interface information as an XML dump to stdout. If the --inactive option is specified, then the output reflects the persistent state of the interface that will be used the next time it is started.
				

 ⁠14.15.1.7. Creating bridge devices

					The iface-bridge creates a bridge device named bridge, and attaches the existing network device interface to the new bridge, which starts working immediately, with STP enabled and a delay of 0.
				

virsh iface-bridge interface bridge --no-stp delay --no-start

					Note that these settings can be altered with --no-stp, --no-start, and an integer number of seconds for delay. All IP address configuration of interface will be moved to the new bridge device. Refer to Section 14.15.1.8, “Tearing down a bridge device” for information on tearing down the bridge.
				

 ⁠14.15.1.8. Tearing down a bridge device

					The iface-unbridge bridge --no-start command tears down a specified bridge device named bridge, releases its underlying interface back to normal usage, and moves all IP address configuration from the bridge device to the underlying device. The underlying interface is restarted unless --no-start option is used, but keep in mind not restarting is generally not recommended. Refer to Section 14.15.1.7, “Creating bridge devices” for the command to use to create a bridge.
				

 ⁠14.15.1.9. Manipulating interface snapshots

					The iface-begin command creates a snapshot of current host interface settings, which can later be committed (with iface-commit) or restored (iface-rollback). If a snapshot already exists, then this command will fail until the previous snapshot has been committed or restored. Undefined behavior will result if any external changes are made to host interfaces outside of the libvirt API between the time of the creation of a snapshot and its eventual commit or rollback.
				

					Use the iface-commit command to declare all changes made since the last iface-begin as working, and then delete the rollback point. If no interface snapshot has already been started via iface-begin, then this command will fail.
				

					Use the iface-rollback to revert all host interface settings back to the state that recorded the last time the iface-begin command was executed. If iface-begin command had not been previously executed, then iface-rollback will fail. Note that rebooting the host physical machine also serves as an implicit rollback point.
				

 ⁠14.15.2. Managing Snapshots

				The sections that follow describe actions that can be done in order to manipulate domain snapshots. Snapshots take the disk, memory, and device state of a domain at a specified point-in-time, and save it for future use. Snapshots have many uses, from saving a "clean" copy of an OS image to saving a domain’s state before what may be a potentially destructive operation. Snapshots are identified with a unique name. See the libvirt website for documentation of the XML format used to represent properties of snapshots.
			

 ⁠14.15.2.1. Creating Snapshots

					The virsh snapshot-create command creates a snapshot for domain with the properties specified in the domain XML file (such as <name> and <description> elements, as well as <disks>).
				

					To create a snapshot, run:
				

snapshot-create <domain> <xmlfile> [--redefine] [--current] [--no-metadata] [--reuse-external]

					The domain name, ID, or UID may be used as the domain requirement. The XML requirement is a string must contain the <name>, <description> and <disks> elements.
				
Note

						Live snapshots are not supported in Red Hat Enterprise Linux. There are additional options available with the virsh snapshot-create command for use with live snapshots which are visible in libvirt, but not supported in Red Hat Enterprise Linux 6.
					

					The options available in Red Hat Enterprise Linux include:
				
	
							--redefine specifies that if all XML elements produced by snapshot-dumpxml are valid; it can be used to migrate snapshot hierarchy from one machine to another, to recreate hierarchy for the case of a transient domain that goes away and is later recreated with the same name and UUID, or to make slight alterations in the snapshot metadata (such as host-specific aspects of the domain XML embedded in the snapshot). When this option is supplied, the xmlfile argument is mandatory, and the domain’s current snapshot will not be altered unless the --current option is also given.
						

	
							--no-metadata creates the snapshot, but any metadata is immediately discarded (that is, libvirt does not treat the snapshot as current, and cannot revert to the snapshot unless --redefine is later used to teach libvirt about the metadata again).
						

	
							--reuse-external, if used, this option specifies the location of an existing external XML snapshot to use. If an existing external snapshot does not already exist, the command will fail to take a snapshot to avoid losing contents of the existing files.
						

 ⁠14.15.2.2. Creating a snapshot for the current domain

					The virsh snapshot-create-as domain command creates a snapshot for the domain with the properties specified in the domain XML file (such as <name> and <description> elements). If these values are not included in the XML string, libvirt will choose a value. To create a snapshot run:
				
virsh snapshot-create-as domain {[--print-xml] | [--no-metadata] [--reuse-external]} [name] [description] [--diskspec] diskspec]

					The remaining options are as follows:
				
	
							--print-xml creates appropriate XML for snapshot-create as output, rather than actually creating a snapshot.
						

	
							--diskspec option can be used to control how --disk-only and external checkpoints create external files. This option can occur multiple times, according to the number of <disk> elements in the domain XML. Each <diskspec> is in the form disk[,snapshot=type][,driver=type][,file=name]. To include a literal comma in disk or in file=name, escape it with a second comma. A literal --diskspec must precede each diskspec unless all three of <domain>, <name>, and <description> are also present. For example, a diskspec of vda,snapshot=external,file=/path/to,,new results in the following XML:
						

<disk name=’vda’ snapshot=’external’>
 <source file=’/path/to,new’/>
</disk>

	
							--reuse-external creates an external snapshot reusing an existing file as the destination (meaning this file is overwritten). If this destination does not exist, the snapshot request will be refused to avoid losing contents of the existing files.
						

	
							--no-metadata creates snapshot data but any metadata is immediately discarded (that is, libvirt does not treat the snapshot as current, and cannot revert to the snapshot unless snapshot-create is later used to teach libvirt about the metadata again). This option is incompatible with --print-xml.
						

 ⁠14.15.2.3. Taking a snapshot of the current domain

					This command is used to query which snapshot is currently in use. To use, run:
				
virsh snapshot-current domain {[--name] | [--security-info] | [snapshotname]}

					If snapshotname is not used, snapshot XML for the domain’s current snapshot (if there is one) will be displayed as output. If --name is specified, just the current snapshot name instead of the full XML will be sent as output. If --security-info is supplied, security sensitive information will be included in the XML. Using snapshotname, libvirt generates a request to make the existing named snapshot become the current snapshot, without reverting it to the domain.
				

 ⁠14.15.2.4. snapshot-edit-domain

					This command is used to edit the snapshot that is currently in use. To use, run:
				
#virsh snapshot-edit domain [snapshotname] [--current] {[--rename] [--clone]}

					If both snapshotname and --current are specified, it forces the edited snapshot to become the current snapshot. If snapshotname is omitted, then --current must be supplied, in order to edit the current snapshot.
				

					This is equivalent to the following command sequence below, but it also includes some error checking:
				

virsh snapshot-dumpxml dom name > snapshot.xml
vi snapshot.xml [note - this can be any editor]
virsh snapshot-create dom snapshot.xml --redefine [--current]

					If --rename is specified, then the resulting edited file gets saved in a different file name. If --clone is specified, then changing the snapshot name will create a clone of the snapshot metadata. If neither is specified, then the edits will not change the snapshot name. Note that changing a snapshot name must be done with care, since the contents of some snapshots, such as internal snapshots within a single qcow2 file, are accessible only from the original snapshot filename.
				

 ⁠14.15.2.5. snapshot-info-domain

					snapshot-info-domain displays information about the snapshots. To use, run:
				
snapshot-info domain {snapshot | --current}

					Outputs basic information about a specified snapshot , or the current snapshot with --current.
				

 ⁠14.15.2.6. snapshot-list-domain

					List all of the available snapshots for the given domain, defaulting to show columns for the snapshot name, creation time, and domain state. To use, run:
				
#virsh snapshot-list domain [{--parent | --roots | --tree}] [{[--from] snapshot | --current} [--descendants]] [--metadata] [--no-metadata] [--leaves] [--no-leaves] [--inactive] [--active] [--internal] [--external]

					The remaining optional options are as follows:
				
	
							--parent adds a column to the output table giving the name of the parent of each snapshot. This option may not be used with --roots or --tree.
						

	
							--roots filters the list to show only the snapshots that have no parents. This option may not be used with --parent or --tree.
						

	
							--tree displays output in a tree format, listing just snapshot names. These three options are mutually exclusive. This option may not be used with --roots or --parent.
						

	
							--from filters the list to snapshots which are children of the given snapshot; or if --current is provided, will cause the list to start at the current snapshot. When used in isolation or with --parent, the list is limited to direct children unless --descendants is also present. When used with --tree, the use of --descendants is implied. This option is not compatible with --roots. Note that the starting point of --from or --current is not included in the list unless the --tree option is also present.
						

	
							--leaves is specified, the list will be filtered to just snapshots that have no children. Likewise, if --no-leaves is specified, the list will be filtered to just snapshots with children. (Note that omitting both options does no filtering, while providing both options will either produce the same list or error out depending on whether the server recognizes the options) Filtering options are not compatible with --tree..
						

	
							--metadata is specified, the list will be filtered to just snapshots that involve libvirt metadata, and thus would prevent the undefining of a persistent domain, or be lost on destroy of a transient domain. Likewise, if --no-metadata is specified, the list will be filtered to just snapshots that exist without the need for libvirt metadata.
						

	
							--inactive is specified, the list will be filtered to snapshots that were taken when the domain was shut off. If --active is specified, the list will be filtered to snapshots that were taken when the domain was running, and where the snapshot includes the memory state to revert to that running state. If --disk-only is specified, the list will be filtered to snapshots that were taken when the domain was running, but where the snapshot includes only disk state.
						

	
							--internal is specified, the list will be filtered to snapshots that use internal storage of existing disk images. If --external is specified, the list will be filtered to snapshots that use external files for disk images or memory state.
						

 ⁠14.15.2.7. snapshot-dumpxml domain snapshot

					virsh snapshot-dumpxml domain snapshot outputs the snapshot XML for the domain’s snapshot named snapshot. To use, run:
				
virsh snapshot-dumpxml domain snapshot [--security-info]

					The --security-info option will also include security sensitive information. Use snapshot-current to easily access the XML of the current snapshot.
				

 ⁠14.15.2.8. snapshot-parent domain

					Outputs the name of the parent snapshot, if any, for the given snapshot, or for the current snapshot with --current. To use, run:
				
#virsh snapshot-parent domain {snapshot | --current}

 ⁠14.15.2.9. snapshot-revert domain

					Reverts the given domain to the snapshot specified by snapshot, or to the current snapshot with --current.
				
Warning

						Be aware that this is a destructive action; any changes in the domain since the last snapshot was taken will be lost. Also note that the state of the domain after snapshot-revert is complete will be the state of the domain at the time the original snapshot was taken.
					

					To revert the snapshot, run
				
snapshot-revert domain {snapshot | --current} [{--running | --paused}] [--force]

					Normally, reverting to a snapshot leaves the domain in the state it was at the time the snapshot was created, except that a disk snapshot with no guest virtual machine state leaves the domain in an inactive state. Passing either the --running or --paused option will perform additional state changes (such as booting an inactive domain, or pausing a running domain). Since transient domains cannot be inactive, it is required to use one of these options when reverting to a disk snapshot of a transient domain.
				

					There are two cases where a snapshot revert involves extra risk, which requires the use of --force to proceed. One is the case of a snapshot that lacks full domain information for reverting configuration; since libvirt cannot prove that the current configuration matches what was in use at the time of the snapshot, supplying --force assures libvirt that the snapshot is compatible with the current configuration (and if it is not, the domain will likely fail to run). The other is the case of reverting from a running domain to an active state where a new hypervisor has to be created rather than reusing the existing hypervisor, because it implies drawbacks such as breaking any existing VNC or Spice connections; this condition happens with an active snapshot that uses a provably incompatible configuration, as well as with an inactive snapshot that is combined with the --start or --pause option.
				

 ⁠14.15.2.10. snapshot-delete domain

					snapshot-delete domain deletes the snapshot for the specified domain. To do this, run:
				
virsh snapshot-delete domain {snapshot | --current} [--metadata] [{--children | --children-only}]

					This command Deletes the snapshot for the domain named snapshot, or the current snapshot with --current. If this snapshot has child snapshots, changes from this snapshot will be merged into the children. If the option --children is used, then it will delete this snapshot and any children of this snapshot. If --children-only is used, then it will delete any children of this snapshot, but leave this snapshot intact. These two options are mutually exclusive.
				

					The --metadata is used it will delete the snapshot's metadata maintained by libvirt, while leaving the snapshot contents intact for access by external tools; otherwise deleting a snapshot also removes its data contents from that point in time.
				

 ⁠14.16. Guest Virtual Machine CPU Model Configuration

			This section provides information about guest virtual machine CPU model configuration.
		

 ⁠14.16.1. Introduction

				Every hypervisor has its own policy for what a guest virtual machine will see for its CPUs by default. Whereas some hypervisors decide which CPU host physical machine features will be available for the guest virtual machine, QEMU/KVM presents the guest virtual machine with a generic model named qemu32 or qemu64. These hypervisors perform more advanced filtering, classifying all physical CPUs into a handful of groups and have one baseline CPU model for each group that is presented to the guest virtual machine. Such behavior enables the safe migration of guest virtual machines between host physical machines, provided they all have physical CPUs that classify into the same group. libvirt does not typically enforce policy itself, rather it provides the mechanism on which the higher layers define their own desired policy. Understanding how to obtain CPU model information and define a suitable guest virtual machine CPU model is critical to ensure guest virtual machine migration is successful between host physical machines. Note that a hypervisor can only emulate features that it is aware of and features that were created after the hypervisor was released may not be emulated.
			

 ⁠14.16.2. Learning about the Host Physical Machine CPU Model

				The virsh capabilities command displays an XML document describing the capabilities of the hypervisor connection and host physical machine. The XML schema displayed has been extended to provide information about the host physical machine CPU model. One of the big challenges in describing a CPU model is that every architecture has a different approach to exposing their capabilities. On x86, the capabilities of a modern CPU are exposed via the CPUID instruction. Essentially this comes down to a set of 32-bit integers with each bit given a specific meaning. Fortunately AMD and Intel agree on common semantics for these bits. Other hypervisors expose the notion of CPUID masks directly in their guest virtual machine configuration format. However, QEMU/KVM supports far more than just the x86 architecture, so CPUID is clearly not suitable as the canonical configuration format. QEMU ended up using a scheme which combines a CPU model name string, with a set of named options. On x86, the CPU model maps to a baseline CPUID mask, and the options can be used to then toggle bits in the mask on or off. libvirt decided to follow this lead and uses a combination of a model name and options.
			

				It is not practical to have a database listing all known CPU models, so libvirt has a small list of baseline CPU model names. It chooses the one that shares the greatest number of CPUID bits with the actual host physical machine CPU and then lists the remaining bits as named features. Notice that libvirt does not display which features the baseline CPU contains. This might seem like a flaw at first, but as will be explained in this section, it is not actually necessary to know this information.
			

 ⁠14.16.3. Determining a Compatible CPU Model to Suit a Pool of Host Physical Machines

				Now that it is possible to find out what CPU capabilities a single host physical machine has, the next step is to determine what CPU capabilities are best to expose to the guest virtual machine. If it is known that the guest virtual machine will never need to be migrated to another host physical machine, the host physical machine CPU model can be passed straight through unmodified. A virtualized data center may have a set of configurations that can guarantee all servers will have 100% identical CPUs. Again the host physical machine CPU model can be passed straight through unmodified. The more common case, though, is where there is variation in CPUs between host physical machines. In this mixed CPU environment, the lowest common denominator CPU must be determined. This is not entirely straightforward, so libvirt provides an API for exactly this task. If libvirt is provided a list of XML documents, each describing a CPU model for a host physical machine, libvirt will internally convert these to CPUID masks, calculate their intersection, and convert the CPUID mask result back into an XML CPU description.
			

				Here is an example of what libvirt reports as the capabilities on a basic workstation, when the virsh capabilitiesis executed:
			

 ⁠​
​
​<capabilities>
​ <host>
​ <cpu>
​ <arch>i686</arch>
​ <model>pentium3</model>
​ <topology sockets='1' cores='2' threads='1'/>
​ <feature name='lahf_lm'/>
​ <feature name='lm'/>
​ <feature name='xtpr'/>
​ <feature name='cx16'/>
​ <feature name='ssse3'/>
​ <feature name='tm2'/>
​ <feature name='est'/>
​ <feature name='vmx'/>
​ <feature name='ds_cpl'/>
​ <feature name='monitor'/>
​ <feature name='pni'/>
​ <feature name='pbe'/>
​ <feature name='tm'/>
​ <feature name='ht'/>
​ <feature name='ss'/>
​ <feature name='sse2'/>
​ <feature name='acpi'/>
​ <feature name='ds'/>
​ <feature name='clflush'/>
​ <feature name='apic'/>
​ </cpu>
​ </host>
​</capabilities>

Figure 14.3. Pulling host physical machine's CPU model information

				Now compare that to any random server, with the same virsh capabilities command:
			

 ⁠​
​
​<capabilities>
​ <host>
​ <cpu>
​ <arch>x86_64</arch>
​ <model>phenom</model>
​ <topology sockets='2' cores='4' threads='1'/>
​ <feature name='osvw'/>
​ <feature name='3dnowprefetch'/>
​ <feature name='misalignsse'/>
​ <feature name='sse4a'/>
​ <feature name='abm'/>
​ <feature name='cr8legacy'/>
​ <feature name='extapic'/>
​ <feature name='cmp_legacy'/>
​ <feature name='lahf_lm'/>
​ <feature name='rdtscp'/>
​ <feature name='pdpe1gb'/>
​ <feature name='popcnt'/>
​ <feature name='cx16'/>
​ <feature name='ht'/>
​ <feature name='vme'/>
​ </cpu>
​ ...snip...

Figure 14.4. Generate CPU description from a random server

				To see if this CPU description is compatible with the previous workstation CPU description, use the virsh cpu-compare command.
			

				The reduced content was stored in a file named virsh-caps-workstation-cpu-only.xml and the virsh cpu-compare command can be executed on this file:
			

virsh cpu-compare virsh-caps-workstation-cpu-only.xml
Host physical machine CPU is a superset of CPU described in virsh-caps-workstation-cpu-only.xml

				As seen in this output, libvirt is correctly reporting that the CPUs are not strictly compatible. This is because there are several features in the server CPU that are missing in the client CPU. To be able to migrate between the client and the server, it will be necessary to open the XML file and comment out some features. To determine which features need to be removed, run the virsh cpu-baseline command, on the both-cpus.xml which contains the CPU information for both machines. Running # virsh cpu-baseline both-cpus.xml, results in:
			

 ⁠​
​
​<cpu match='exact'>
​ <model>pentium3</model>
​ <feature policy='require' name='lahf_lm'/>
​ <feature policy='require' name='lm'/>
​ <feature policy='require' name='cx16'/>
​ <feature policy='require' name='monitor'/>
​ <feature policy='require' name='pni'/>
​ <feature policy='require' name='ht'/>
​ <feature policy='require' name='sse2'/>
​ <feature policy='require' name='clflush'/>
​ <feature policy='require' name='apic'/>
​</cpu>

Figure 14.5. Composite CPU baseline

				This composite file shows which elements are in common. Everything that is not in common should be commented out.
			

 ⁠14.17. Configuring the Guest Virtual Machine CPU Model

			For simple defaults, the guest virtual machine CPU configuration accepts the same basic XML representation as the host physical machine capabilities XML exposes. In other words, the XML from the cpu-baseline virsh command can now be copied directly into the guest virtual machine XML at the top level under the <domain> element. In the previous XML snippet, there are a few extra attributes available when describing a CPU in the guest virtual machine XML. These can mostly be ignored, but for the curious here is a quick description of what they do. The top level <cpu> element has an attribute called match with possible values of:
		
	
					match='minimum' - the host physical machine CPU must have at least the CPU features described in the guest virtual machine XML. If the host physical machine has additional features beyond the guest virtual machine configuration, these will also be exposed to the guest virtual machine.
				

	
					match='exact' - the host physical machine CPU must have at least the CPU features described in the guest virtual machine XML. If the host physical machine has additional features beyond the guest virtual machine configuration, these will be masked out from the guest virtual machine.
				

	
					match='strict' - the host physical machine CPU must have exactly the same CPU features described in the guest virtual machine XML.
				

			The next enhancement is that the <feature> elements can each have an extra 'policy' attribute with possible values of:
		
	
					policy='force' - expose the feature to the guest virtual machine even if the host physical machine does not have it. This is usually only useful in the case of software emulation.
				

	
					policy='require' - expose the feature to the guest virtual machine and fail if the host physical machine does not have it. This is the sensible default.
				

	
					policy='optional' - expose the feature to the guest virtual machine if it happens to support it.
				

	
					policy='disable' - if the host physical machine has this feature, then hide it from the guest virtual machine.
				

	
					policy='forbid' - if the host physical machine has this feature, then fail and refuse to start the guest virtual machine.
				

			The 'forbid' policy is for a niche scenario where an incorrectly functioning application will try to use a feature even if it is not in the CPUID mask, and you wish to prevent accidentally running the guest virtual machine on a host physical machine with that feature. The 'optional' policy has special behavior with respect to migration. When the guest virtual machine is initially started the parameter is optional, but when the guest virtual machine is live migrated, this policy turns into 'require', since you cannot have features disappearing across migration.
		

 ⁠14.18. Managing Resources for Guest Virtual Machines

			virsh allows the grouping and allocation of resources on a per guest virtual machine basis. This is managed by the libvirt daemon, which creates cgroups and manages them on behalf of the guest virtual machine. The only thing that is left for the system administrator to do is to either query or set tunables against specified guest virtual machines. The following tunables may used:
		
	
					memory - The memory controller allows for setting limits on RAM and swap usage and querying cumulative usage of all processes in the group
				

	
					cpuset - The CPU set controller binds processes within a group to a set of CPUs and controls migration between CPUs.
				

	
					cpuacct - The CPU accounting controller provides information about CPU usage for a group of processes.
				

	
					cpu -The CPU scheduler controller controls the prioritization of processes in the group. This is similar to granting nice level privileges.
				

	
					devices - The devices controller grants access control lists on character and block devices.
				

	
					freezer - The freezer controller pauses and resumes execution of processes in the group. This is similar to SIGSTOP for the whole group.
				

	
					net_cls - The network class controller manages network utilization by associating processes with a tc network class.
				

			In creating a group hierarchy cgroup will leave mount point and directory setup entirely to the administrators’ discretion and is more complex than just adding some mount points to /etc/fstab. It is necessary to setup the directory hierarchy and decide how processes get placed within it. This can be done with the following virsh commands:
		
	
					schedinfo - described in Section 14.19, “Setting Schedule Parameters”
				

	
					blkiotune- described in Section 14.20, “Display or Set Block I/O Parameters”
				

	
					domiftune- described in Section 14.5.9, “Setting Network Interface Bandwidth Parameters”
				

	
					memtune - described in Section 14.21, “Configuring Memory Tuning”
				

 ⁠14.19. Setting Schedule Parameters

			schedinfo allows scheduler parameters to be passed to guest virtual machines. The following command format should be used:
		
#virsh schedinfo domain --set --weight --cap --current --config --live

			Each parameter is explained below:
		
	
					domain - this is the guest virtual machine domain
				

	
					--set - the string placed here is the controller or action that is to be called. Additional parameters or values if required should be added as well.
				

	
					--current - when used with --set, will use the specified set string as the current scheduler information. When used without will display the current scheduler information.
				

	
					--config - - when used with --set, will use the specified set string on the next reboot. When used without will display the scheduler information that is saved in the configuration file.
				

	
					--live - when used with --set, will use the specified set string on a guest virtual machine that is currently running. When used without will display the configuration setting currently used by the running virtual machine
				

			The scheduler can be set with any of the following parameters: cpu_shares, vcpu_period and vcpu_quota.
		

 ⁠Example 14.5. schedinfo show

				This example shows the shell guest virtual machine's schedule information
			

virsh schedinfo shell
Scheduler : posix
cpu_shares : 1024
vcpu_period : 100000
vcpu_quota : -1

 ⁠Example 14.6. schedinfo set

				In this example, the cpu_shares is changed to 2046. This effects the current state and not the configuration file.
			
virsh schedinfo --set cpu_shares=2046 shell
Scheduler : posix
cpu_shares : 2046
vcpu_period : 100000
vcpu_quota : -1

 ⁠14.20. Display or Set Block I/O Parameters

			blkiotune sets and or displays the I/O parameters for a specified guest virtual machine. The following format should be used:
		
virsh blkiotune domain [--weight weight] [--device-weights device-weights] [[--config] [--live] | [--current]]

			More information on this command can be found in the Virtualization Tuning and Optimization Guide
		

 ⁠14.21. Configuring Memory Tuning

			The virsh memtune virtual_machine --parameter size is covered in the Virtualization Tuning and Optimization Guide.
		

 ⁠14.22. Virtual Networking Commands

			The following commands manipulate virtual networks. libvirt has the capability to define virtual networks which can then be used by domains and linked to actual network devices. For more detailed information about this feature see the documentation at libvirt's website . Many of the commands for virtual networks are similar to the ones used for domains, but the way to name a virtual network is either by its name or UUID.
		

 ⁠14.22.1. Autostarting a Virtual Network

				This command will configure a virtual network to be started automatically when the guest virtual machine boots. To run this command:
			
virsh net-autostart network [--disable]

				This command accepts the --disable option which disables the autostart command.
			

 ⁠14.22.2. Creating a Virtual Network from an XML File

				This command creates a virtual network from an XML file. Refer to libvirt's website to get a description of the XML network format used by libvirt. In this command file is the path to the XML file. To create the virtual network from an XML file, run:
			
virsh net-create file

 ⁠14.22.3. Defining a Virtual Network from an XML File

				This command defines a virtual network from an XML file, the network is just defined but not instantiated. To define the virtual network, run:
			
net-define file

 ⁠14.22.4. Stopping a Virtual Network

				This command destroys (stops) a given virtual network specified by its name or UUID. This takes effect immediately. To stop the specified network network is required.
			
net-destroy network

 ⁠14.22.5. Creating a Dump File

				This command outputs the virtual network information as an XML dump to stdout for the specified virtual network. If --inactive is specified, then physical functions are not expanded into their associated virtual functions. To create the dump file, run:
			
virsh net-dumpxml network [--inactive]

 ⁠14.22.6. Editing a Virtual Network's XML Configuration File

				The following command edits the XML configuration file for a network:
			
virsh net-edit network

				The editor used for editing the XML file can be supplied by the $VISUAL or $EDITOR environment variables, and defaults to vi.
			

 ⁠14.22.7. Getting Information about a Virtual Network

				This command returns basic information about the network object. To get the network information, run:
			
virsh net-info network

 ⁠14.22.8. Listing Information about a Virtual Network

				Returns the list of active networks, if --all is specified this will also include defined but inactive networks, if --inactive is specified only the inactive ones will be listed. You may also want to filter the returned networks by --persistent to list the persitent ones, --transient to list the transient ones, --autostart to list the ones with autostart enabled, and --no-autostart to list the ones with autostart disabled.
			

				Note: When talking to older servers, this command is forced to use a series of API calls with an inherent race, where a pool might not be listed or might appear more than once if it changed state between calls while the list was being collected. Newer servers do not have this problem.
			

				To list the virtual networks, run:
			
net-list [--inactive | --all] [--persistent] [<--transient>] [--autostart] [<--no-autostart>]

 ⁠14.22.9. Converting a Network UUID to Network Name

				This command converts a network UUID to network name. To do this run:
			
virsh net-name network-UUID

 ⁠14.22.10. Starting a (Previously Defined) Inactive Network

				This command starts a (previously defined) inactive network. To do this, run:
			
virsh net-start network

 ⁠14.22.11. Undefining the Configuration for an Inactive Network

				This command undefines the configuration for an inactive network. To do this, run:
			
net-undefine network

 ⁠14.22.12. Converting a Network Name to Network UUID

				This command converts a network name to network UUID. To do this, run:
			
virsh net-uuid network-name

 ⁠14.22.13. Updating an Existing Network Definition File

				This command updates the given section of an existing network definition, taking effect immediately, without needing to destroy and re-start the network. This command is one of "add-first", "add-last", "add" (a synonym for add-last), "delete", or "modify". section is one of ""bridge", "domain", "ip", "ip-dhcp-host", "ip-dhcp-range", "forward", "forward-interface", "forward-pf", "portgroup", "dns-host", "dns-txt", or "dns-srv", each section being named by a concatenation of the xml element hierarchy leading to the element being changed. For example, "ip-dhcp-host" will change a <host> element that is contained inside a <dhcp> element inside an <ip> element of the network. xml is either the text of a complete xml element of the type being changed (for e "<host mac="00:11:22:33:44:55’ ip=’192.0.2.1’/>", or the name of a file that contains a complete xml element. Disambiguation is done by looking at the first character of the provided text - if the first character is "<", it is xml text, if the first character is not ">", it is the name of a file that contains the xml text to be used. The --parent-index option is used to specify which of several parent elements the requested element is in (0-based). For example, a dhcp <host> element could be in any one of multiple <ip> elements in the network; if a parent-index isn’t provided, the "most appropriate" <ip> element will be selected (usually the only one that already has a <dhcp> element), but if --parent-index is given, that particular instance of <ip> will get the modification. If --live is specified, affect a running network. If --config is specified, affect the next startup of a persistent network. If -- current is specified, affect the current network state. Both --live and --config options may be given, but --current is exclusive. Not specifying any option is the same as specifying --current.
			

				To update the configuration file, run:
			
virsh net-update network command section xml [--parent-index index] [[--live] [--config] | [--current]]

 ⁠Chapter 15. Managing Guests with the Virtual Machine Manager (virt-manager)

		This section describes the Virtual Machine Manager (virt-manager) windows, dialog boxes, and various GUI controls.
	

		virt-manager provides a graphical view of hypervisors and guests on your host system and on remote host systems. virt-manager can perform virtualization management tasks, including:
	
	
				defining and creating guests,
			

	
				assigning memory,
			

	
				assigning virtual CPUs,
			

	
				monitoring operational performance,
			

	
				saving and restoring, pausing and resuming, and shutting down and starting guests,
			

	
				links to the textual and graphical consoles, and
			

	
				live and offline migrations.
			

 ⁠15.1. Starting virt-manager

			To start virt-manager session open the Applications menu, then the System Tools menu and select Virtual Machine Manager (virt-manager).
		

			The virt-manager main window appears.
		

 ⁠[image: Starting virt-manager]

Figure 15.1. Starting virt-manager

			Alternatively, virt-manager can be started remotely using ssh as demonstrated in the following command:
		
ssh -X host's address
[remotehost]# virt-manager

			Using ssh to manage virtual machines and hosts is discussed further in Section 5.1, “Remote Management with SSH”.
		

 ⁠15.2. The Virtual Machine Manager Main Window

			This main window displays all the running guests and resources used by guests. Select a guest by double clicking the guest's name.
		

 ⁠[image: Virtual Machine Manager main window]

Figure 15.2. Virtual Machine Manager main window

 ⁠15.3. The Virtual Hardware Details Window

			The virtual hardware details window displays information about the virtual hardware configured for the guest. Virtual hardware resources can be added, removed and modified in this window. To access the virtual hardware details window, click on the icon in the toolbar.
		

 ⁠[image: The virtual hardware details icon]

Figure 15.3. The virtual hardware details icon

			Clicking the icon displays the virtual hardware details window.
		

 ⁠[image: The virtual hardware details window]

Figure 15.4. The virtual hardware details window

 ⁠15.3.1. Attaching USB Devices to a Guest Virtual Machine

Note

					In order to attach the USB device to the guest virtual machine, you first must attach it to the host physical machine and confirm that the device is working. If the guest is running, you need to shut it down before proceeding.
				

 ⁠Procedure 15.1. Attaching USB Devices using Virt-Manager
	
						Open the guest virtual machine's Virtual Machine Details screen.
					

	
						Click Add Hardware
					

 ⁠[image: Add Hardware Button]

Figure 15.5. Add Hardware Button

	
						In the Add New Virtual Hardware popup, select USB Host Device, select the device you want to attach from the list and Click Finish.
					

 ⁠[image: Add USB Device]

Figure 15.6. Add USB Device

	
						To use the USB device in the guest virtual machine, start the guest virtual machine.
					

 ⁠15.4. Virtual Machine Graphical Console

			This window displays a guest's graphical console. Guests can use several different protocols to export their graphical framebuffers: virt-manager supports VNC and SPICE. If your virtual machine is set to require authentication, the Virtual Machine graphical console prompts you for a password before the display appears.
		

 ⁠[image: Graphical console window]

Figure 15.7. Graphical console window

Note

				VNC is considered insecure by many security experts, however, several changes have been made to enable the secure usage of VNC for virtualization on Red Hat enterprise Linux. The guest machines only listen to the local host's loopback address (127.0.0.1). This ensures only those with shell privileges on the host can access virt-manager and the virtual machine through VNC. Although virt-manager is configured to listen to other public network interfaces and alternative methods can be configured, it is not recommended.
			

				Remote administration can be performed by tunneling over SSH which encrypts the traffic. Although VNC can be configured to access remotely without tunneling over SSH, for security reasons, it is not recommended. To remotely administer the guest follow the instructions in: Chapter 5, Remote Management of Guests. TLS can provide enterprise level security for managing guest and host systems.
			

			Your local desktop can intercept key combinations (for example, Ctrl+Alt+F1) to prevent them from being sent to the guest machine. You can use the Send key menu option to send these sequences. From the guest machine window, click the Send key menu and select the key sequence to send. In addition, from this menu you can also capture the screen output.
		

			SPICE is an alternative to VNC available for Red Hat Enterprise Linux.
		

 ⁠15.5. Adding a Remote Connection

			This procedure covers how to set up a connection to a remote system using virt-manager.
		
	
					To create a new connection open the File menu and select the Add Connection... menu item.
				

	
					The Add Connection wizard appears. Select the hypervisor. For Red Hat Enterprise Linux 6 systems select QEMU/KVM. Select Local for the local system or one of the remote connection options and click Connect. This example uses Remote tunnel over SSH which works on default installations. For more information on configuring remote connections refer to Chapter 5, Remote Management of Guests
				

 ⁠[image: Add Connection]

Figure 15.8. Add Connection

	
					Enter the root password for the selected host when prompted.
				

			A remote host is now connected and appears in the main virt-manager window.
		

 ⁠[image: Remote host in the main virt-manager window]

Figure 15.9. Remote host in the main virt-manager window

 ⁠15.6. Displaying Guest Details

			You can use the Virtual Machine Monitor to view activity information for any virtual machines on your system.
		

			To view a virtual system's details:
		
	
					In the Virtual Machine Manager main window, highlight the virtual machine that you want to view.
				

 ⁠[image: Selecting a virtual machine to display]

Figure 15.10. Selecting a virtual machine to display

	
					From the Virtual Machine Manager Edit menu, select Virtual Machine Details.
				

 ⁠[image: Displaying the virtual machine details]

Figure 15.11. Displaying the virtual machine details

					When the Virtual Machine details window opens, there may be a console displayed. Should this happen, click View and then select Details. The Overview window opens first by default. To go back to this window, select Overview from the navigation pane on the left hand side.
				

					The Overview view shows a summary of configuration details for the guest.
				

 ⁠[image: Displaying guest details overview]

Figure 15.12. Displaying guest details overview

	
					Select Performance from the navigation pane on the left hand side.
				

					The Performance view shows a summary of guest performance, including CPU and Memory usage.
				

 ⁠[image: Displaying guest performance details]

Figure 15.13. Displaying guest performance details

	
					Select Processor from the navigation pane on the left hand side. The Processor view allows you to view the current processor allocation, as well as to change it.
				

					It is also possible to change the number of virtual CPUs (vCPUs) while the virtual machine is running, which is referred to as hot plugging and hot unplugging.
					Important

							The hot unplugging feature is only available as a Technology Preview. Therefore, it is not supported and not recommended for use in high-value deployments.
						

				

 ⁠[image: Processor allocation panel]

Figure 15.14. Processor allocation panel

	
					Select Memory from the navigation pane on the left hand side. The Memory view allows you to view or change the current memory allocation.
				

 ⁠[image: Displaying memory allocation]

Figure 15.15. Displaying memory allocation

	
					Each virtual disk attached to the virtual machine is displayed in the navigation pane. Click on a virtual disk to modify or remove it.
				

 ⁠[image: Displaying disk configuration]

Figure 15.16. Displaying disk configuration

	
					Each virtual network interface attached to the virtual machine is displayed in the navigation pane. Click on a virtual network interface to modify or remove it.
				

 ⁠[image: Displaying network configuration]

Figure 15.17. Displaying network configuration

 ⁠15.7. Performance Monitoring

			Performance monitoring preferences can be modified with virt-manager's preferences window.
		

			To configure performance monitoring:
		
	
					From the Edit menu, select Preferences.
				

 ⁠[image: Modifying guest preferences]

Figure 15.18. Modifying guest preferences

					The Preferences window appears.
				

	
					From the Stats tab specify the time in seconds or stats polling options.
				

 ⁠[image: Configuring performance monitoring]

Figure 15.19. Configuring performance monitoring

 ⁠15.8. Displaying CPU Usage for Guests

			To view the CPU usage for all guests on your system:
		
	
					From the View menu, select Graph, then the Guest CPU Usage check box.
				

 ⁠[image: Enabling guest CPU usage statistics graphing]

Figure 15.20. Enabling guest CPU usage statistics graphing

	
					The Virtual Machine Manager shows a graph of CPU usage for all virtual machines on your system.
				

 ⁠[image: Guest CPU usage graph]

Figure 15.21. Guest CPU usage graph

 ⁠15.9. Displaying CPU Usage for Hosts

			To view the CPU usage for all hosts on your system:
		
	
					From the View menu, select Graph, then the Host CPU Usage check box.
				

 ⁠[image: Enabling host CPU usage statistics graphing]

Figure 15.22. Enabling host CPU usage statistics graphing

	
					The Virtual Machine Manager shows a graph of host CPU usage on your system.
				

 ⁠[image: Host CPU usage graph]

Figure 15.23. Host CPU usage graph

 ⁠15.10. Displaying Disk I/O

			To view the disk I/O for all virtual machines on your system:
		
	
					Make sure that the Disk I/O statistics collection is enabled. To do this, from the Edit menu, select Preferences and click the Statstab.
				

	
					Select the Disk I/O check box.
				

 ⁠[image: Enabling Disk I/O]

Figure 15.24. Enabling Disk I/O

	
					To enable the Disk I.O display, from the View menu, select Graph, then the Disk I/O check box.
				

 ⁠[image: Selecting Disk I/O]

Figure 15.25. Selecting Disk I/O

	
					The Virtual Machine Manager shows a graph of Disk I/O for all virtual machines on your system.
				

 ⁠[image: Displaying Disk I/O]

Figure 15.26. Displaying Disk I/O

 ⁠15.11. Displaying Network I/O

			To view the network I/O for all virtual machines on your system:
		
	
					Make sure that the Network I/O statistics collection is enabled. To do this, from the Edit menu, select Preferences and click the Statstab.
				

	
					Select the Network I/O check box.
				

 ⁠[image: Enabling Network I/O]

Figure 15.27. Enabling Network I/O

	
					To display the Network I/O statistics, from the View menu, select Graph, then the Network I/O check box.
				

 ⁠[image: Selecting Network I/O]

Figure 15.28. Selecting Network I/O

	
					The Virtual Machine Manager shows a graph of Network I/O for all virtual machines on your system.
				

 ⁠[image: Displaying Network I/O]

Figure 15.29. Displaying Network I/O

 ⁠Chapter 16. Guest Virtual Machine Disk Access with Offline Tools

 ⁠16.1. Introduction

			Red Hat Enterprise Linux 6 comes with tools to access, edit and create host physical machine disks or other disk images. There are several uses for these tools, including:
		
	
					Viewing or downloading files located on a host physical machine disk.
				

	
					Editing or uploading files onto a host physical machine disk.
				

	
					Reading or writing host physical machine configuration.
				

	
					Reading or writing the Windows Registry in Windows host physical machines.
				

	
					Preparing new disk images containing files, directories, file systems, partitions, logical volumes and other options.
				

	
					Rescuing and repairing host physical machines that fail to boot or those that need boot configuration changes.
				

	
					Monitoring disk usage of host physical machines.
				

	
					Auditing compliance of host physical machines, for example to organizational security standards.
				

	
					Deploying host physical machines by cloning and modifying templates.
				

	
					Reading CD and DVD ISO and floppy disk images.
				

Warning

				You must never use these tools to write to a host physical machine or disk image which is attached to a running virtual machine, not even to open such a disk image in write mode. Doing so will result in disk corruption of the guest virtual machine. The tools try to prevent you from doing this, however do not catch all cases. If there is any suspicion that a guest virtual machine might be running, it is strongly recommended that the tools not be used, or at least always use the tools in read-only mode.
			

Note

				Some virtualization commands in Red Hat Enterprise Linux 6 allow you to specify a remote libvirt connection. For example:
			
virt-df -c qemu://remote/system -d Guest

				However, libguestfs in Red Hat Enterprise Linux 6 cannot access remote guests, and commands using remote URLs like this do not work as expected. This affects the following Red Hat Enterprise Linux 6 commands:
			
	
						guestfish
					

	
						guestmount
					

	
						virt-alignment-scan
					

	
						virt-cat
					

	
						virt-copy-in
					

	
						virt-copy-out
					

	
						virt-df
					

	
						virt-edit
					

	
						virt-filesystems
					

	
						virt-inspector
					

	
						virt-inspector2
					

	
						virt-list-filesystems
					

	
						virt-list-partitions
					

	
						virt-ls
					

	
						virt-rescue
					

	
						virt-sysprep
					

	
						virt-tar
					

	
						virt-tar-in
					

	
						virt-tar-out
					

	
						virt-win-reg
					

 ⁠16.2. Terminology

			This section explains the terms used throughout this chapter.
		
	
					libguestfs (Guest file system library) - the underlying C library that provides the basic functionality for opening disk images, reading and writing files and so on. You can write C programs directly to this API, but it is quite low level.
				

	
					guestfish (Guest file system interactive shell) is an interactive shell that you can use from the command line or from shell scripts. It exposes all of the functionality of the libguestfs API.
				

	
					Various virt tools are built on top of libguestfs, and these provide a way to perform specific single tasks from the command line. Tools include virt-df, virt-rescue, virt-resize and virt-edit.
				

	
					hivex and Augeas are libraries for editing the Windows Registry and Linux configuration files respectively. Although these are separate from libguestfs, much of the value of libguestfs comes from the combination of these tools.
				

	
					guestmount is an interface between libguestfs and FUSE. It is primarily used to mount file systems from disk images on your host physical machine. This functionality is not necessary, but can be useful.
				

 ⁠16.3. Installation

			To install libguestfs, guestfish, the libguestfs tools, guestmount and support for Windows guest virtual machines, subscribe to the Red Hat Enterprise Linux V2WIN channel, go to the Red Hat Website and run the following command:
		

yum install libguestfs guestfish libguestfs-tools libguestfs-winsupport

			To install every libguestfs-related package including the language bindings, run the following command:
		

yum install '*guestf*'

 ⁠16.4. The guestfish Shell

			guestfish is an interactive shell that you can use from the command line or from shell scripts to access guest virtual machine file systems. All of the functionality of the libguestfs API is available from the shell.
		

			To begin viewing or editing a virtual machine disk image, run the following command, substituting the path to your desired disk image:
		

guestfish --ro -a /path/to/disk/image

			--ro means that the disk image is opened read-only. This mode is always safe but does not allow write access. Only omit this option when you are certain that the guest virtual machine is not running, or the disk image is not attached to a live guest virtual machine. It is not possible to use libguestfs to edit a live guest virtual machine, and attempting to will result in irreversible disk corruption.
		

			/path/to/disk/image is the path to the disk. This can be a file, a host physical machine logical volume (such as /dev/VG/LV), a host physical machine device (/dev/cdrom) or a SAN LUN (/dev/sdf3).
		
Note

				libguestfs and guestfish do not require root privileges. You only need to run them as root if the disk image being accessed needs root to read or write or both.
			

			When you start guestfish interactively, it will display this prompt:
		

 guestfish --ro -a /path/to/disk/image

Welcome to guestfish, the libguestfs filesystem interactive shell for editing virtual machine filesystems.

 Type: 'help' for help on commands
 'man' to read the manual
 'quit' to quit the shell

><fs>

			At the prompt, type run to initiate the library and attach the disk image. This can take up to 30 seconds the first time it is done. Subsequent starts will complete much faster.
		
Note

				libguestfs will use hardware virtualization acceleration such as KVM (if available) to speed up this process.
			

			Once the run command has been entered, other commands can be used, as the following section demonstrates.
		

 ⁠16.4.1. Viewing File Systems with guestfish

				This section provides information about viewing files with guestfish.
			

 ⁠16.4.1.1. Manual Listing and Viewing

					The list-filesystems command will list file systems found by libguestfs. This output shows a Red Hat Enterprise Linux 4 disk image:
				

><fs> run
><fs> list-filesystems
/dev/vda1: ext3
/dev/VolGroup00/LogVol00: ext3
/dev/VolGroup00/LogVol01: swap

					This output shows a Windows disk image:
				

><fs> run
><fs> list-filesystems
/dev/vda1: ntfs
/dev/vda2: ntfs

					Other useful commands are list-devices, list-partitions, lvs, pvs, vfs-type and file. You can get more information and help on any command by typing help command, as shown in the following output:
				

><fs> help vfs-type
 NAME
 vfs-type - get the Linux VFS type corresponding to a mounted device

 SYNOPSIS
 vfs-type device

 DESCRIPTION
 This command gets the file system type corresponding to the file system on
 "device".

 For most file systems, the result is the name of the Linux VFS module
 which would be used to mount this file system if you mounted it without
 specifying the file system type. For example a string such as "ext3" or
 "ntfs".

					To view the actual contents of a file system, it must first be mounted. This example uses one of the Windows partitions shown in the previous output (/dev/vda2), which in this case is known to correspond to the C:\ drive:
				

><fs> mount-ro /dev/vda2 /
><fs> ll /
total 1834753
 drwxrwxrwx 1 root root 4096 Nov 1 11:40 .
 drwxr-xr-x 21 root root 4096 Nov 16 21:45 ..
 lrwxrwxrwx 2 root root 60 Jul 14 2009 Documents and Settings
 drwxrwxrwx 1 root root 4096 Nov 15 18:00 Program Files
 drwxrwxrwx 1 root root 4096 Sep 19 10:34 Users
 drwxrwxrwx 1 root root 16384 Sep 19 10:34 Windows

					You can use guestfish commands such as ls, ll, cat, more, download and tar-out to view and download files and directories.
				
Note

						There is no concept of a current working directory in this shell. Unlike ordinary shells, you cannot for example use the cd command to change directories. All paths must be fully qualified starting at the top with a forward slash (/) character. Use the Tab key to complete paths.
					

					To exit from the guestfish shell, type exit or enter Ctrl+d.
				

 ⁠16.4.1.2. Using guestfish inspection

					Instead of listing and mounting file systems by hand, it is possible to let guestfish itself inspect the image and mount the file systems as they would be in the guest virtual machine. To do this, add the -i option on the command line:
				

guestfish --ro -a /path/to/disk/image -i

Welcome to guestfish, the libguestfs filesystem interactive shell for
 editing virtual machine filesystems.

 Type: 'help' for help on commands
 'man' to read the manual
 'quit' to quit the shell

 Operating system: Red Hat Enterprise Linux AS release 4 (Nahant Update 8)
 /dev/VolGroup00/LogVol00 mounted on /
 /dev/vda1 mounted on /boot

 ><fs> ll /
 total 210
 drwxr-xr-x. 24 root root 4096 Oct 28 09:09 .
 drwxr-xr-x 21 root root 4096 Nov 17 15:10 ..
 drwxr-xr-x. 2 root root 4096 Oct 27 22:37 bin
 drwxr-xr-x. 4 root root 1024 Oct 27 21:52 boot
 drwxr-xr-x. 4 root root 4096 Oct 27 21:21 dev
 drwxr-xr-x. 86 root root 12288 Oct 28 09:09 etc
 [etc]

					Because guestfish needs to start up the libguestfs back end in order to perform the inspection and mounting, the run command is not necessary when using the -i option. The -i option works for many common Linux and Windows guest virtual machines.
				

 ⁠16.4.1.3. Accessing a guest virtual machine by name

					A guest virtual machine can be accessed from the command line when you specify its name as known to libvirt (in other words, as it appears in virsh list --all). Use the -d option to access a guest virtual machine by its name, with or without the -i option:
				

guestfish --ro -d GuestName -i

 ⁠16.4.2. Modifying Files with guestfish

				To modify files, create directories or make other changes to a guest virtual machine, first heed the warning at the beginning of this section: your guest virtual machine must be shut down. Editing or changing a running disk with guestfish will result in disk corruption. This section gives an example of editing the /boot/grub/grub.conf file. When you are sure the guest virtual machine is shut down you can omit the --ro option in order to get write access via a command such as:
			

guestfish -d RHEL3 -i

Welcome to guestfish, the libguestfs filesystem interactive shell for
 editing virtual machine filesystems.

 Type: 'help' for help on commands
 'man' to read the manual
 'quit' to quit the shell

 Operating system: Red Hat Enterprise Linux AS release 3 (Taroon Update 9)
 /dev/vda2 mounted on /
 /dev/vda1 mounted on /boot

><fs> edit /boot/grub/grub.conf

				Commands to edit files include edit, vi and emacs. Many commands also exist for creating files and directories, such as write, mkdir, upload and tar-in.
			

 ⁠16.4.3. Other Actions with guestfish

				You can also format file systems, create partitions, create and resize LVM logical volumes and much more, with commands such as mkfs, part-add, lvresize, lvcreate, vgcreate and pvcreate.
			

 ⁠16.4.4. Shell Scripting with guestfish

				Once you are familiar with using guestfish interactively, according to your needs, writing shell scripts with it may be useful. The following is a simple shell script to add a new MOTD (message of the day) to a guest:
			

#!/bin/bash -
 set -e
 guestname="$1"

 guestfish -d "$guestname" -i <<'EOF'
 write /etc/motd "Welcome to Acme Incorporated."
 chmod 0644 /etc/motd
 EOF

 ⁠16.4.5. Augeas and libguestfs Scripting

				Combining libguestfs with Augeas can help when writing scripts to manipulate Linux guest virtual machine configuration. For example, the following script uses Augeas to parse the keyboard configuration of a guest virtual machine, and to print out the layout. Note that this example only works with guest virtual machines running Red Hat Enterprise Linux:
			

#!/bin/bash -
 set -e
 guestname="$1"

 guestfish -d "$1" -i --ro <<'EOF'
 aug-init / 0
 aug-get /files/etc/sysconfig/keyboard/LAYOUT
 EOF

				Augeas can also be used to modify configuration files. You can modify the above script to change the keyboard layout:
			

#!/bin/bash -
 set -e
 guestname="$1"

 guestfish -d "$1" -i <<'EOF'
 aug-init / 0
 aug-set /files/etc/sysconfig/keyboard/LAYOUT '"gb"'
 aug-save
 EOF

				Note the three changes between the two scripts:
			
	
						The --ro option has been removed in the second example, giving the ability to write to the guest virtual machine.
					

	
						The aug-get command has been changed to aug-set to modify the value instead of fetching it. The new value will be "gb" (including the quotes).
					

	
						The aug-save command is used here so Augeas will write the changes out to disk.
					

Note

					More information about Augeas can be found on the website http://augeas.net.
				

				guestfish can do much more than we can cover in this introductory document. For example, creating disk images from scratch:
			

guestfish -N fs

				Or copying out whole directories from a disk image:
			

><fs> copy-out /home /tmp/home

				For more information see the man page guestfish(1).
			

 ⁠16.5. Other Commands

			This section describes tools that are simpler equivalents to using guestfish to view and edit guest virtual machine disk images.
		
	
					virt-cat is similar to the guestfish download command. It downloads and displays a single file to the guest virtual machine. For example:
				

virt-cat RHEL3 /etc/ntp.conf | grep ^server
 server	 127.127.1.0	 # local clock

	
					virt-edit is similar to the guestfish edit command. It can be used to interactively edit a single file within a guest virtual machine. For example, you may need to edit the grub.conf file in a Linux-based guest virtual machine that will not boot:
				

virt-edit LinuxGuest /boot/grub/grub.conf

					virt-edit has another mode where it can be used to make simple non-interactive changes to a single file. For this, the -e option is used. This command, for example, changes the root password in a Linux guest virtual machine to having no password:
				

virt-edit LinuxGuest /etc/passwd -e 's/^root:.*?:/root::/'

	
					virt-ls is similar to the guestfish ls, ll and find commands. It is used to list a directory or directories (recursively). For example, the following command would recursively list files and directories under /home in a Linux guest virtual machine:
				

virt-ls -R LinuxGuest /home/ | less

 ⁠16.6. virt-rescue: The Rescue Shell

			This section provides information about using the rescue shell.
		

 ⁠16.6.1. Introduction

				This section describes virt-rescue, which can be considered analogous to a rescue CD for virtual machines. It boots a guest virtual machine into a rescue shell so that maintenance can be performed to correct errors and the guest virtual machine can be repaired.
			

				There is some overlap between virt-rescue and guestfish. It is important to distinguish their differing uses. virt-rescue is for making interactive, ad-hoc changes using ordinary Linux file system tools. It is particularly suited to rescuing a guest virtual machine that has failed . virt-rescue cannot be scripted.
			

				In contrast, guestfish is particularly useful for making scripted, structured changes through a formal set of commands (the libguestfs API), although it can also be used interactively.
			

 ⁠16.6.2. Running virt-rescue

				Before you use virt-rescue on a guest virtual machine, make sure the guest virtual machine is not running, otherwise disk corruption will occur. When you are sure the guest virtual machine is not live, enter:
			

virt-rescue GuestName

				(where GuestName is the guest name as known to libvirt), or:
			

virt-rescue /path/to/disk/image

				(where the path can be any file, any logical volume, LUN, or so on) containing a guest virtual machine disk.
			

				You will first see output scroll past, as virt-rescue boots the rescue VM. In the end you will see:
			

Welcome to virt-rescue, the libguestfs rescue shell.

 Note: The contents of / are the rescue appliance.
 You have to mount the guest virtual machine's partitions under /sysroot
 before you can examine them.

 bash: cannot set terminal process group (-1): Inappropriate ioctl for device
 bash: no job control in this shell
 ><rescue>

				The shell prompt here is an ordinary bash shell, and a reduced set of ordinary Red Hat Enterprise Linux commands is available. For example, you can enter:
			

><rescue> fdisk -l /dev/vda

				The previous command will list disk partitions. To mount a file system, it is suggested that you mount it under /sysroot, which is an empty directory in the rescue machine for the user to mount anything you like. Note that the files under / are files from the rescue VM itself:
			

><rescue> mount /dev/vda1 /sysroot/
EXT4-fs (vda1): mounted filesystem with ordered data mode. Opts: (null)
><rescue> ls -l /sysroot/grub/
 total 324
 -rw-r--r--. 1 root root 63 Sep 16 18:14 device.map
 -rw-r--r--. 1 root root 13200 Sep 16 18:14 e2fs_stage1_5
 -rw-r--r--. 1 root root 12512 Sep 16 18:14 fat_stage1_5
 -rw-r--r--. 1 root root 11744 Sep 16 18:14 ffs_stage1_5
 -rw-------. 1 root root 1503 Oct 15 11:19 grub.conf
 [...]

				When you are finished rescuing the guest virtual machine, exit the shell by entering exit or Ctrl+d.
			

				virt-rescue has many command line options. The options most often used are:
			
	
						--ro: Operate in read-only mode on the guest virtual machine. No changes will be saved. You can use this to experiment with the guest virtual machine. As soon as you exit from the shell, all of your changes are discarded.
					

	
						--network: Enable network access from the rescue shell. Use this if you need to, for example, download RPM or other files into the guest virtual machine.
					

 ⁠16.7. virt-df: Monitoring Disk Usage

			This section provides information about monitoring disk usage using virt-df.
		

 ⁠16.7.1. Introduction

				This section describes virt-df, which displays file system usage from a disk image or a guest virtual machine. It is similar to the Linux df command, but for virtual machines.
			

 ⁠16.7.2. Running virt-df

				To display file system usage for all file systems found in a disk image, enter the following:
			

virt-df /dev/vg_guests/RHEL6
 Filesystem 1K-blocks Used Available Use%
 RHEL6:/dev/sda1 101086 10233 85634 11%
 RHEL6:/dev/VolGroup00/LogVol00 7127864 2272744 4493036 32%

				(Where /dev/vg_guests/RHEL6 is a Red Hat Enterprise Linux 6 guest virtual machine disk image. The path in this case is the host physical machine logical volume where this disk image is located.)
			

				You can also use virt-df on its own to list information about all of your guest virtual machines (ie. those known to libvirt). The virt-df command recognizes some of the same options as the standard df such as -h (human-readable) and -i (show inodes instead of blocks).
			

				virt-df also works on Windows guest virtual machines:
			

virt-df -h
 Filesystem Size Used Available Use%
 F14x64:/dev/sda1 484.2M 66.3M 392.9M 14%
 F14x64:/dev/vg_f14x64/lv_root 7.4G 3.0G 4.4G 41%
 RHEL6brewx64:/dev/sda1 484.2M 52.6M 406.6M 11%
 RHEL6brewx64:/dev/vg_rhel6brewx64/lv_root
 13.3G 3.4G 9.2G 26%
 Win7x32:/dev/sda1 100.0M 24.1M 75.9M 25%
 Win7x32:/dev/sda2 		 19.9G	 7.4G 12.5G 38%

Note

					You can use virt-df safely on live guest virtual machines, since it only needs read-only access. However, you should not expect the numbers to be precisely the same as those from a df command running inside the guest virtual machine. This is because what is on disk will be slightly out of synch with the state of the live guest virtual machine. Nevertheless it should be a good enough approximation for analysis and monitoring purposes.
				

				virt-df is designed to allow you to integrate the statistics into monitoring tools, databases and so on. This allows system administrators to generate reports on trends in disk usage, and alerts if a guest virtual machine is about to run out of disk space. To do this you should use the --csv option to generate machine-readable Comma-Separated-Values (CSV) output. CSV output is readable by most databases, spreadsheet software and a variety of other tools and programming languages. The raw CSV looks like the following:
			

virt-df --csv WindowsGuest
 Virtual Machine,Filesystem,1K-blocks,Used,Available,Use%
 Win7x32,/dev/sda1,102396,24712,77684,24.1%
 Win7x32,/dev/sda2,20866940,7786652,13080288,37.3%

				For resources and ideas on how to process this output to produce trends and alerts, refer to the following URL: http://libguestfs.org/virt-df.1.html.
			

 ⁠16.8. virt-resize: Resizing Guest Virtual Machines Offline

			This section provides information about resizing offline guest virtual machines.
		

 ⁠16.8.1. Introduction

				This section describes virt-resize, a tool for expanding or shrinking guest virtual machines. It only works for guest virtual machines which are offline (shut down). It works by copying the guest virtual machine image and leaving the original disk image untouched. This is ideal because you can use the original image as a backup, however there is a trade-off as you need twice the amount of disk space.
			

 ⁠16.8.2. Expanding a Disk Image

				This section demonstrates a simple case of expanding a disk image:
			
	
						Locate the disk image to be resized. You can use the command virsh dumpxml GuestName for a libvirt guest virtual machine.
					

	
						Decide on how you wish to expand the guest virtual machine. Run virt-df -h and virt-list-partitions -lh on the guest virtual machine disk, as shown in the following output:
					

virt-df -h /dev/vg_guests/RHEL6
Filesystem Size Used Available Use%
RHEL6:/dev/sda1 98.7M 10.0M 83.6M 11%
RHEL6:/dev/VolGroup00/LogVol00 6.8G 2.2G 4.3G 32%

virt-list-partitions -lh /dev/vg_guests/RHEL6
/dev/sda1 ext3 101.9M
/dev/sda2 pv 7.9G

				This example will demonstrate how to:
			
	
						Increase the size of the first (boot) partition, from approximately 100MB to 500MB.
					

	
						Increase the total disk size from 8GB to 16GB.
					

	
						Expand the second partition to fill the remaining space.
					

	
						Expand /dev/VolGroup00/LogVol00 to fill the new space in the second partition.
					

	
						Make sure the guest virtual machine is shut down.
					

	
						Rename the original disk as the backup. How you do this depends on the host physical machine storage environment for the original disk. If it is stored as a file, use the mv command. For logical volumes (as demonstrated in this example), use lvrename:
					

lvrename /dev/vg_guests/RHEL6 /dev/vg_guests/RHEL6.backup

	
						Create the new disk. The requirements in this example are to expand the total disk size up to 16GB. Since logical volumes are used here, the following command is used:
					

lvcreate -L 16G -n RHEL6 /dev/vg_guests
Logical volume "RHEL6" created

	
						The requirements from step 2 are expressed by this command:
					

virt-resize \
 /dev/vg_guests/RHEL6.backup /dev/vg_guests/RHEL6 \
 --resize /dev/sda1=500M \
 --expand /dev/sda2 \
 --LV-expand /dev/VolGroup00/LogVol00

						The first two arguments are the input disk and output disk. --resize /dev/sda1=500M resizes the first partition up to 500MB. --expand /dev/sda2 expands the second partition to fill all remaining space. --LV-expand /dev/VolGroup00/LogVol00 expands the guest virtual machine logical volume to fill the extra space in the second partition.
					

						virt-resize describes what it is doing in the output:
					

Summary of changes:
 /dev/sda1: partition will be resized from 101.9M to 500.0M
 /dev/sda1: content will be expanded using the 'resize2fs' method
 /dev/sda2: partition will be resized from 7.9G to 15.5G
 /dev/sda2: content will be expanded using the 'pvresize' method
 /dev/VolGroup00/LogVol00: LV will be expanded to maximum size
 /dev/VolGroup00/LogVol00: content will be expanded using the 'resize2fs' method
 Copying /dev/sda1 ...
 [###]
 Copying /dev/sda2 ...
 [###]
 Expanding /dev/sda1 using the 'resize2fs' method
 Expanding /dev/sda2 using the 'pvresize' method
 Expanding /dev/VolGroup00/LogVol00 using the 'resize2fs' method

	
						Try to boot the virtual machine. If it works (and after testing it thoroughly) you can delete the backup disk. If it fails, shut down the virtual machine, delete the new disk, and rename the backup disk back to its original name.
					

	
						Use virt-df or virt-list-partitions to show the new size:
					

virt-df -h /dev/vg_pin/RHEL6
 Filesystem Size Used Available Use%
 RHEL6:/dev/sda1 484.4M 10.8M 448.6M 3%
 RHEL6:/dev/VolGroup00/LogVol00 14.3G 2.2G 11.4G 16%

				Resizing guest virtual machines is not an exact science. If virt-resize fails, there are a number of tips that you can review and attempt in the virt-resize(1) man page. For some older Red Hat Enterprise Linux guest virtual machines, you may need to pay particular attention to the tip regarding GRUB.
			

 ⁠16.9. virt-inspector: Inspecting Guest Virtual Machines

			This section provides information about inspecting guest virtual machines using virt-inspector.
		

 ⁠16.9.1. Introduction

				virt-inspector is a tool for inspecting a disk image to find out what operating system it contains.
			
Note

					Red Hat Enterprise Linux 6.2 provides two variations of this program: virt-inspector is the original program as found in Red Hat Enterprise Linux 6.0 and is now deprecated upstream. virt-inspector2 is the same as the new upstream virt-inspector program.
				

 ⁠16.9.2. Installation

				To install virt-inspector and the documentation, enter the following command:
			

yum install libguestfs-tools libguestfs-devel

				To process Windows guest virtual machines you must also install libguestfs-winsupport. Refer to Section 16.10.2, “Installation” for details. The documentation, including example XML output and a Relax-NG schema for the output, will be installed in /usr/share/doc/libguestfs-devel-*/ where "*" is replaced by the version number of libguestfs.
			

 ⁠16.9.3. Running virt-inspector

				You can run virt-inspector against any disk image or libvirt guest virtual machine as shown in the following example:
			

virt-inspector --xml disk.img > report.xml

				Or as shown here:
			

virt-inspector --xml GuestName > report.xml

				The result will be an XML report (report.xml). The main components of the XML file are a top-level <operatingsystems> element containing usually a single <operatingsystem> element, similar to the following:
			

 <operatingsystems>
 <operatingsystem>

 <!-- the type of operating system and Linux distribution -->
 <name>linux</name>
 <distro>rhel</distro>
 <!-- the name, version and architecture -->
 <product_name>Red Hat Enterprise Linux Server release 6.4 </product_name>
 <major_version>6</major_version>
 <minor_version>4</minor_version>
 <package_format>rpm</package_format>
 <package_management>yum</package_management>
 <root>/dev/VolGroup/lv_root</root>
 <!-- how the filesystems would be mounted when live -->
 <mountpoints>
 <mountpoint dev="/dev/VolGroup/lv_root">/</mountpoint>
 <mountpoint dev="/dev/sda1">/boot</mountpoint>
 <mountpoint dev="/dev/VolGroup/lv_swap">swap</mountpoint>
 </mountpoints>

 < !-- filesystems-->
 <filesystem dev="/dev/VolGroup/lv_root">
 <label></label>
 <uuid>b24d9161-5613-4ab8-8649-f27a8a8068d3</uuid>
 <type>ext4</type>
 <content>linux-root</content>
 <spec>/dev/mapper/VolGroup-lv_root</spec>
 </filesystem>
 <filesystem dev="/dev/VolGroup/lv_swap">
 <type>swap</type>
 <spec>/dev/mapper/VolGroup-lv_swap</spec>
 </filesystem>
 <!-- packages installed -->
 <applications>
 <application>
 <name>firefox</name>
 <version>3.5.5</version>
 <release>1.fc12</release>
 </application>
 </applications>

 </operatingsystem>
 </operatingsystems>

				Processing these reports is best done using W3C standard XPath queries. Red Hat Enterprise Linux 6 comes with a command line program (xpath) which can be used for simple instances; however, for long-term and advanced usage, you should consider using an XPath library along with your favorite programming language.
			

				As an example, you can list out all file system devices using the following XPath query:
			

virt-inspector --xml GuestName | xpath //filesystem/@dev
 Found 3 nodes:
 -- NODE --
 dev="/dev/sda1"
 -- NODE --
 dev="/dev/vg_f12x64/lv_root"
 -- NODE --
 dev="/dev/vg_f12x64/lv_swap"

				Or list the names of all applications installed by entering:
			

 virt-inspector --xml GuestName | xpath //application/name
 [...long list...]

 ⁠16.10. virt-win-reg: Reading and Editing the Windows Registry

 ⁠16.10.1. Introduction

				virt-win-reg is a tool that manipulates the Registry in Windows guest virtual machines. It can be used to read out registry keys. You can also use it to make changes to the Registry, but you must never try to do this for live/running guest virtual machines, as it will result in disk corruption.
			

 ⁠16.10.2. Installation

				To use virt-win-reg you must run the following:
			

yum install /usr/bin/virt-win-reg

 ⁠16.10.3. Using virt-win-reg

				To read out Registry keys, specify the name of the guest virtual machine (or its disk image) and the name of the Registry key. You must use single quotes to surround the name of the desired key:
			

virt-win-reg WindowsGuest \
 'HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Uninstall' \
 | less

				The output is in the standard text-based format used by .REG files on Windows.
			
Note

					Hex-quoting is used for strings because the format does not properly define a portable encoding method for strings. This is the only way to ensure fidelity when transporting .REG files from one machine to another.
				

					You can make hex-quoted strings printable by piping the output of virt-win-reg through this simple Perl script:
				
perl -MEncode -pe's?hex\((\d+)\):(\S+)?$t=$1;$_=$2;s,\,,,g;"str($t):\"".decode(utf16le=>pack("H*",$_))."\""?eg'

				To merge changes into the Windows Registry of an offline guest virtual machine, you must first prepare a .REG file. There is a great deal of documentation about doing this available here. When you have prepared a .REG file, enter the following:
			

virt-win-reg --merge WindowsGuest input.reg

				This will update the registry in the guest virtual machine.
			

 ⁠16.11. Using the API from Programming Languages

			The libguestfs API can be used directly from the following languages in Red Hat Enterprise Linux 6.2: C, C++, Perl, Python, Java, Ruby and OCaml.
		
	
					To install C and C++ bindings, enter the following command:
				

yum install libguestfs-devel

	
					To install Perl bindings:
				

yum install 'perl(Sys::Guestfs)'

	
					To install Python bindings:
				

yum install python-libguestfs

	
					To install Java bindings:
				

yum install libguestfs-java libguestfs-java-devel libguestfs-javadoc

	
					To install Ruby bindings:
				

yum install ruby-libguestfs

	
					To install OCaml bindings:
				

yum install ocaml-libguestfs ocaml-libguestfs-devel

			The binding for each language is essentially the same, but with minor syntactic changes. A C statement:
		

guestfs_launch (g);

			Would appear like the following in Perl:
		

$g->launch ()

			Or like the following in OCaml:
		

g#launch ()

			Only the API from C is detailed in this section.
		

			In the C and C++ bindings, you must manually check for errors. In the other bindings, errors are converted into exceptions; the additional error checks shown in the examples below are not necessary for other languages, but conversely you may wish to add code to catch exceptions. Refer to the following list for some points of interest regarding the architecture of the libguestfs API:
		
	
					The libguestfs API is synchronous. Each call blocks until it has completed. If you want to make calls asynchronously, you have to create a thread.
				

	
					The libguestfs API is not thread safe: each handle should be used only from a single thread, or if you want to share a handle between threads you should implement your own mutex to ensure that two threads cannot execute commands on one handle at the same time.
				

	
					You should not open multiple handles on the same disk image. It is permissible if all the handles are read-only, but still not recommended.
				

	
					You should not add a disk image for writing if anything else could be using that disk image (eg. a live VM). Doing this will cause disk corruption.
				

	
					Opening a read-only handle on a disk image which is currently in use (eg. by a live VM) is possible; however, the results may be unpredictable or inconsistent particularly if the disk image is being heavily written to at the time you are reading it.
				

 ⁠16.11.1. Interaction with the API through a C Program

				Your C program should start by including the <guestfs.h> header file, and creating a handle:
			

#include <stdio.h>
#include <stdlib.h>
#include <guestfs.h>

int
main (int argc, char *argv[])
{
 guestfs_h *g;

 g = guestfs_create ();
 if (g == NULL) {
 perror ("failed to create libguestfs handle");
 exit (EXIT_FAILURE);
 }

 /* ... */

 guestfs_close (g);

 exit (EXIT_SUCCESS);
 }

				Save this program to a file (test.c). Compile this program and run it with the following two commands:
			

gcc -Wall test.c -o test -lguestfs
./test

				At this stage it should print no output. The rest of this section demonstrates an example showing how to extend this program to create a new disk image, partition it, format it with an ext4 file system, and create some files in the file system. The disk image will be called disk.img and be created in the current directory.
			

				The outline of the program is:
			
	
						Create the handle.
					

	
						Add disk(s) to the handle.
					

	
						Launch the libguestfs back end.
					

	
						Create the partition, file system and files.
					

	
						Close the handle and exit.
					

				Here is the modified program:
			

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <guestfs.h>

 int
 main (int argc, char *argv[])
 {
 guestfs_h *g;
 size_t i;

 g = guestfs_create ();
 if (g == NULL) {
 perror ("failed to create libguestfs handle");
 exit (EXIT_FAILURE);
 }

 /* Create a raw-format sparse disk image, 512 MB in size. */
 int fd = open ("disk.img", O_CREAT|O_WRONLY|O_TRUNC|O_NOCTTY, 0666);
 if (fd == -1) {
 perror ("disk.img");
 exit (EXIT_FAILURE);
 }
 if (ftruncate (fd, 512 * 1024 * 1024) == -1) {
 perror ("disk.img: truncate");
 exit (EXIT_FAILURE);
 }
 if (close (fd) == -1) {
 perror ("disk.img: close");
 exit (EXIT_FAILURE);
 }

 /* Set the trace flag so that we can see each libguestfs call. */
 guestfs_set_trace (g, 1);

 /* Set the autosync flag so that the disk will be synchronized
 * automatically when the libguestfs handle is closed.
 */
 guestfs_set_autosync (g, 1);

 /* Add the disk image to libguestfs. */
 if (guestfs_add_drive_opts (g, "disk.img",
 GUESTFS_ADD_DRIVE_OPTS_FORMAT, "raw", /* raw format */
 GUESTFS_ADD_DRIVE_OPTS_READONLY, 0, /* for write */
 -1 /* this marks end of optional arguments */)
 == -1)
 exit (EXIT_FAILURE);

 /* Run the libguestfs back-end. */
 if (guestfs_launch (g) == -1)
 exit (EXIT_FAILURE);

 /* Get the list of devices. Because we only added one drive
 * above, we expect that this list should contain a single
 * element.
 */
 char **devices = guestfs_list_devices (g);
 if (devices == NULL)
 exit (EXIT_FAILURE);
 if (devices[0] == NULL || devices[1] != NULL) {
 fprintf (stderr,
 "error: expected a single device from list-devices\n");
 exit (EXIT_FAILURE);
 }

 /* Partition the disk as one single MBR partition. */
 if (guestfs_part_disk (g, devices[0], "mbr") == -1)
 exit (EXIT_FAILURE);

 /* Get the list of partitions. We expect a single element, which
 * is the partition we have just created.
 */
 char **partitions = guestfs_list_partitions (g);
 if (partitions == NULL)
 exit (EXIT_FAILURE);
 if (partitions[0] == NULL || partitions[1] != NULL) {
 fprintf (stderr,
 "error: expected a single partition from list-partitions\n");
 exit (EXIT_FAILURE);
 }

 /* Create an ext4 filesystem on the partition. */
 if (guestfs_mkfs (g, "ext4", partitions[0]) == -1)
 exit (EXIT_FAILURE);

 /* Now mount the filesystem so that we can add files. */
 if (guestfs_mount_options (g, "", partitions[0], "/") == -1)
 exit (EXIT_FAILURE);

 /* Create some files and directories. */
 if (guestfs_touch (g, "/empty") == -1)
 exit (EXIT_FAILURE);

 const char *message = "Hello, world\n";
 if (guestfs_write (g, "/hello", message, strlen (message)) == -1)
 exit (EXIT_FAILURE);

 if (guestfs_mkdir (g, "/foo") == -1)
 exit (EXIT_FAILURE);

 /* This uploads the local file /etc/resolv.conf into the disk image. */
 if (guestfs_upload (g, "/etc/resolv.conf", "/foo/resolv.conf") == -1)
 exit (EXIT_FAILURE);

 /* Because 'autosync' was set (above) we can just close the handle
 * and the disk contents will be synchronized. You can also do
 * this manually by calling guestfs_umount_all and guestfs_sync.
 */
 guestfs_close (g);

 /* Free up the lists. */
 for (i = 0; devices[i] != NULL; ++i)
 free (devices[i]);
 free (devices);
 for (i = 0; partitions[i] != NULL; ++i)
 free (partitions[i]);
 free (partitions);

 exit (EXIT_SUCCESS);
 }

				Compile and run this program with the following two commands:
			

gcc -Wall test.c -o test -lguestfs
./test

				If the program runs to completion successfully then you should be left with a disk image called disk.img, which you can examine with guestfish:
			

guestfish --ro -a disk.img -m /dev/sda1
><fs> ll /
><fs> cat /foo/resolv.conf

				By default (for C and C++ bindings only), libguestfs prints errors to stderr. You can change this behavior by setting an error handler. The guestfs(3) man page discusses this in detail.
			

 ⁠16.12. virt-sysprep: Resetting Virtual Machine Settings

			The virt-sysprep command line tool can be used to reset or unconfigure a guest virtual machine so that clones can be made from it. This process involves removing SSH host keys, persistent network MAC configuration, and user accounts. virt-sysprep can also customize a virtual machine, for instance by adding SSH keys, users or logos. Each step can be enabled or disabled as required.
		

			The term "sysprep" is derived from the System Preparation tool (sysprep.exe) which is used with the Microsoft Windows systems. Despite this, the tool does not currently work on Windows guests.
		
Note

				libguestfs and guestfish do not require root privileges. You only need to run them as root if the disk image being accessed needs root access to read or write or both.
			

			The virt-sysprep tool is part of the libguestfs-tools-c package, which is installed with the following command:
		
$ yum install libguestfs-tools-c

			Alternatively, just the virt-sysprep tool can be installed with the following command:
		
$ yum install /usr/bin/virt-sysprep
Important

				virt-sysprep modifies the guest or disk image in place. To use virt-sysprep, the guest virtual machine must be offline, so you must shut it down before running the commands. To preserve the existing contents of the guest virtual machine, you must snapshot, copy or clone the disk first. Refer to libguestfs.org for more information on copying and cloning disks.
			

			The following commands are available to use with virt-sysprep:
		

 ⁠Table 16.1. virt-sysprep commands
	 Command 	 Description 	 Example
	 --help 	 Displays a brief help entry about a particular command or about the whole package. For additional help, see the virt-sysprep man page. 	 $ virt-sysprep --help
	 -a [file] or --add [file] 	 Adds the specified file, which should be a disk image from a guest virtual machine. The format of the disk image is auto-detected. To override this and force a particular format, use the --format option. 	 $ virt-sysprep --add /dev/vms/disk.img
	 -c [URI] or --connect [URI] 	 Connects to the given URI, if using libvirt. If omitted, it will connect via the KVM hypervisor. If you specify guest block devices directly (virt-sysprep -a), then libvirt is not used at all. 	 $ virt-sysprep -c qemu:///system
	 -d [guest] or --domain [guest] 	 Adds all the disks from the specified guest virtual machine. Domain UUIDs can be used instead of domain names. 	 $ virt-sysprep --domain 90df2f3f-8857-5ba9-2714-7d95907b1c9e
	 -n or --dry-run or --dryrun 	 Performs a read-only "dry run" sysprep operation on the guest virtual machine. This runs the sysprep operation, but throws away any changes to the disk at the end. 	 $ virt-sysprep -n
	 --enable [operations] 	 Enables the specified operations. To list the possible operations, use the --list command. 	 $ virt-sysprep --enable ssh-hotkeys,udev-persistent-net
	 --format [raw|qcow2|auto] 	 The default for the -a option is to auto-detect the format of the disk image. Using this forces the disk format for -a options which follow on the command line. Using --format auto switches back to auto-detection for subsequent -a options (see the -a command above). 	 $ virt-sysprep --format raw -a disk.img forces raw format (no auto-detection) for disk.img, but virt-sysprep --format raw -a disk.img --format auto -a another.img forces raw format (no auto-detection) for disk.img and reverts to auto-detection for another.img. If you have untrusted raw-format guest disk images, you should use this option to specify the disk format. This avoids a possible security problem with malicious guests.
	 --list-operations 	 Lists the operations supported by the virt-sysprep program. These are listed one per line, with one or more single-space-separated fields. The first field in the output is the operation name, which can be supplied to the --enable flag. The second field is a * character if the operation is enabled by default, or is blank if not. Additional fields on the same line include a description of the operation. 	 $ virt-sysprep --list-operations
	 --mount-options 	 Sets the mount options for each mount point in the guest virtual machine. Use a semicolon-separated list of mountpoint:options pairs. You may need to place quotes around this list to protect it from the shell. 	 $ virt-sysprep --mount-options "/:notime" will mount the root directory with the notime operation.
	 --selinux-relabel and --no-selinux-relabel 	 virt-sysprep does not always schedule a SELinux relabelling at the first boot of the guest. In some cases, a relabel is performed (for example, when virt-sysprep has modified files). However, when all operations only remove files (for example, when using --enable delete --delete /some/file) no relabelling is scheduled. Using the --selinux-relabel option always forces SELinux relabelling, while with --no-selinux-relabel set, relabelling is never scheduled. It is recommended to use --selinux-relabel to ensure that files have the correct SELinux labels. 	 $ virt-sysprep --selinux-relabel
	 -q or --quiet 	 Prevents the printing of log messages. 	 $ virt-sysprep -q
	 -v or --verbose 	 Enables verbose messages for debugging purposes. 	 $ virt-sysprep -v
	 -V or --version 	 Displays the virt-sysprep version number and exits. 	 $ virt-sysprep -V
	 --root-password 	 Sets the root password. Can either be used to specify the new password explicitly, or to use the string from the first line of a selected file, which is more secure. 	
							$ virt-sysprep --root-password password:123456 -a guest.img
						

						
							or
						

						
							$ virt-sysprep --root-password file:SOURCE_FILE_PATH -a guest.img
						

						

			For more information, refer to the libguestfs documentation.
		

 ⁠16.13. Troubleshooting

			A test tool is available to check that libguestfs is working. Run the following command after installing libguestfs (root access not required) to test for normal operation:
		

$ libguestfs-test-tool

			This tool prints a large amount of text to test the operation of libguestfs. If the test is successful, the following text will appear near the end of the output:
		
===== TEST FINISHED OK =====

 ⁠16.14. Where to Find Further Documentation

			The primary source for documentation for libguestfs and the tools are the Unix man pages. The API is documented in guestfs(3). guestfish is documented in guestfish(1). The virt tools are documented in their own man pages (eg. virt-df(1)).
		

 ⁠Chapter 17. Graphical User Interface Tools for Guest Virtual Machine Management

		In addition to virt-manager, Red Hat Enterprise Linux 6 provides the following tools that enable you to access your guest virtual machine's console.
	

 ⁠17.1. virt-viewer

			virt-viewer is a minimalistic command-line utility for displaying the graphical console of a guest virtual machine. The console is accessed using the VNC or SPICE protocol. The guest can be referred to by its name, ID, or UUID. If the guest is not already running, the viewer can be set to wait until is starts before attempting to connect to the console. The viewer can connect to remote hosts to get the console information and then also connect to the remote console using the same network transport.
		

			In comparison with virt-manager, virt-viewer offers a smaller set of features, but is less resource-demanding. In addition, unlike virt-manager, virt-viewer in most cases does not require read-write permissions to libvirt. Therefore, it can be used by non-privileged users who should be able to connect to and display guests, but not to configure them.
		

			To install the virt-viewer utility, run:
		
sudo yum install virt-viewer

 ⁠Syntax

			The basic virt-viewer command-line syntax is as follows:
		
virt-viewer [OPTIONS] {guest-name|id|uuid}

			The basic virt-viewer command-line syntax is as follows:
		

 ⁠Connecting to a guest virtual machine

			If used without any options, virt-viewer lists guests that it can connect to on the default hypervisor of the local system.
		

			To connect to a guest virtual machine that uses the default hypervisor:
virt-viewer guest-name-or-UUID

		

			To connect to a guest virtual machine that uses the KVM-QEMU hypervisor:
virt-viewer --connect qemu:///system guest-name-or-UUID

		

			To connect to a remote console using TLS:
virt-viewer --connect xen://example.org/ guest-name-or-UUID

		

			To connect to a console on a remote host by using SSH, look up the guest configuration and then make a direct non-tunneled connection to the console:
virt-viewer --direct --connect xen+ssh://root@example.org/ guest-name-or-UUID

		

 ⁠Interface

			By default, the virt-viewer interface provides only the basic tools for interacting with the guest:
		

 ⁠[image: Sample virt-viewer interface]

Figure 17.1. Sample virt-viewer interface

 ⁠Setting hotkeys

			To create a customized keyboard shortcut (also referred to as a hotkey) for the virt-viewer session, use the --hotkeys option:
		
virt-viewer --hotkeys=action1=key-combination1[,action2=key-combination2] guest-name-or-UUID

			The following actions can be assigned to a hotkey:
		
	
					toggle-fullscreen
				

	
					release-cursor
				

	
					smartcard-insert
				

	
					smartcard-remove
				

			Key-name combination hotkeys are not case-sensitive. Note that the hotkey setting does not carry over to future virt-viewer sessions.
		

 ⁠Example 17.1. Setting a virt-viewer hotkey

				To add a hotkey to change to full screen mode when connecting to a KVM-QEMU guest called testguest:
			
virt-viewer --hotkeys=toggle-fullscreen=shift+f11 qemu:///system testguest

 ⁠Kiosk mode

			In kiosk mode, virt-viewer only allows the user to interact with the connected desktop, and does not provide any options to interact with the guest settings or the host system unless the guest is shut down. This can be useful for example when an administrator wants to restrict a user's range of actions to a specified guest.
		

			To use kiosk mode, connect to a guest with the -k or --kiosk option.
		

 ⁠Example 17.2. Using virt-viewer in kiosk mode

				To connect to a KVM-QEMU virtual machine in kiosk mode that terminates after the machine is shut down, use the following command:
			
virt-viewer --connect qemu:///system guest-name-or-UUID --kiosk --kiosk-quit on-disconnect

			Note, however, that kiosk mode alone cannot ensure that the user does not interact with the host system or the guest settings after the guest is shut down. This would require further security measures, such as disabling the window manager on the host.

		

 ⁠17.2. remote-viewer

			The remote-viewer is a simple remote desktop display client that supports SPICE and VNC. It shares most of the features and limitations with virt-viewer.
		

			However, unlike virt-viewer, remote-viewer does not require libvirt to connect to the remote guest display. As such, remote-viewer can be used for example to connect to a virtual machine on a remote host that does not provide permissions to interact with libvirt or to use SSH connections.
		

			To install the remote-viewer utility, run:
		
sudo yum install virt-viewer

 ⁠Syntax

			The basic remote-viewer command-line syntax is as follows:
		
remote-viewer [OPTIONS] {guest-name|id|uuid}

			To see the full list of options available for use with remote-viewer, use man remote-viewer.
		

 ⁠Connecting to a guest virtual machine

			If used without any options, remote-viewer lists guests that it can connect to on the default URI of the local system.
		

			To connect to a specific guest using remote-viewer, use the VNC/SPICE URI. For information about obtaining the URI, see Section 14.5.19, “Displaying a URI for Connection to a Graphical Display”.
		

 ⁠Example 17.3. Connecting to a guest display using SPICE

				Use the following to connect to a SPICE server on a machine called "testguest" that uses port 5900 for SPICE communication:
			
remote-viewer spice://testguest:5900

 ⁠Example 17.4. Connecting to a guest display using VNC

				Use the following to connect to a VNC server on a machine called testguest2 that uses port 5900 for VNC communication:
			
remote-viewer vnc://testguest2:5900

 ⁠Interface

			By default, the remote-viewer interface provides only the basic tools for interacting with the guest:
		

 ⁠[image: Sample remote-viewer interface]

Figure 17.2. Sample remote-viewer interface

 ⁠Chapter 18. Virtual Networking

		This chapter introduces the concepts needed to create, start, stop, remove, and modify virtual networks with libvirt.
	

		Additional information can be found in the libvirt reference chapter
	

 ⁠18.1. Virtual Network Switches

			Libvirt virtual networking uses the concept of a virtual network switch. A virtual network switch is a software construct that operates on a host physical machine server, to which virtual machines (guests) connect. The network traffic for a guest is directed through this switch:
		

 ⁠[image: Virtual network switch with two guests]

Figure 18.1. Virtual network switch with two guests

			Linux host physical machine servers represent a virtual network switch as a network interface. When the libvirtd daemon (libvirtd) is first installed and started, the default network interface representing the virtual network switch is virbr0.
		

			This virbr0 interface can be viewed with the ip command like any other interface:
		

 $ ip addr show virbr0
 3: virbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN
 link/ether 1b:c4:94:cf:fd:17 brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.1/24 brd 192.168.122.255 scope global virbr0

 ⁠18.2. Bridged Mode

			When using Bridged mode, all of the guest virtual machines appear within the same subnet as the host physical machine. All other physical machines on the same physical network are aware of the virtual machines, and can access the virtual machines. Bridging operates on Layer 2 of the OSI networking model.
		

			It is possible to use multiple physical interfaces on the hypervisor by joining them together with a bond. The bond is then added to a bridge and then guest virtual machines are added onto the bridge as well. However, the bonding driver has several modes of operation, and only a few of these modes work with a bridge where virtual guest machines are in use.
		

 ⁠[image: Virtual network switch in bridged mode]

Figure 18.2. Virtual network switch in bridged mode

Warning

				The only bonding modes that should be used with a guest virtual machine are Mode 1, Mode 2, and Mode 4. Under no circumstances should Modes 0, 3, 5, or 6 be used. It should also be noted that mii-monitoring should be used to monitor bonding modes as arp-monitoring does not work.
			

			For more information on bonding modes, refer to the knowledgebase article on bonding modes, or The Red Hat Enterprise Linux 6 Deployment Guide.
		

			For a detailed explanation of bridge_opts parameters, see the Red Hat Virtualization Administration Guide.
		

 ⁠18.3. Network Address Translation Mode

			By default, virtual network switches operate in NAT mode. They use IP masquerading rather than SNAT (Source-NAT) or DNAT (Destination-NAT). IP masquerading enables connected guests to use the host physical machine IP address for communication to any external network. By default, computers that are placed externally to the host physical machine cannot communicate to the guests inside when the virtual network switch is operating in NAT mode, as shown in the following diagram:
		

 ⁠[image: Virtual network switch using NAT with two guests]

Figure 18.3. Virtual network switch using NAT with two guests

Warning

				Virtual network switches use NAT configured by iptables rules. Editing these rules while the switch is running is not recommended, as incorrect rules may result in the switch being unable to communicate.
			

			If the switch is not running, you can set th public IP range for forward mode NAT in order to create a port masquerading range by running:
		
iptables -j SNAT --to-source [start]-[end]

 ⁠18.3.1. DNS and DHCP

				IP information can be assigned to guests via DHCP. A pool of addresses can be assigned to a virtual network switch for this purpose. Libvirt uses the dnsmasq program for this. An instance of dnsmasq is automatically configured and started by libvirt for each virtual network switch that needs it.
			

 ⁠[image: Virtual network switch running dnsmasq]

Figure 18.4. Virtual network switch running dnsmasq

 ⁠18.4. Routed Mode

			When using Routed mode, the virtual switch connects to the physical LAN connected to the host physical machine, passing traffic back and forth without the use of NAT. The virtual switch can examine all traffic and use the information contained within the network packets to make routing decisions. When using this mode, all of the virtual machines are in their own subnet, routed through a virtual switch. This situation is not always ideal as no other host physical machines on the physical network are aware of the virtual machines without manual physical router configuration, and cannot access the virtual machines. Routed mode operates at Layer 3 of the OSI networking model.
		

 ⁠[image: Virtual network switch in routed mode]

Figure 18.5. Virtual network switch in routed mode

 ⁠18.5. Isolated Mode

			When using Isolated mode, guests connected to the virtual switch can communicate with each other, and with the host physical machine, but their traffic will not pass outside of the host physical machine, nor can they receive traffic from outside the host physical machine. Using dnsmasq in this mode is required for basic functionality such as DHCP. However, even if this network is isolated from any physical network, DNS names are still resolved. Therefore a situation can arise when DNS names resolve but ICMP echo request (ping) commands fail.
		

 ⁠[image: Virtual network switch in isolated mode]

Figure 18.6. Virtual network switch in isolated mode

 ⁠18.6. The Default Configuration

			When the libvirtd daemon (libvirtd) is first installed, it contains an initial virtual network switch configuration in NAT mode. This configuration is used so that installed guests can communicate to the external network, through the host physical machine. The following image demonstrates this default configuration for libvirtd:
		

 ⁠[image: Default libvirt network configuration]

Figure 18.7. Default libvirt network configuration

Note

				A virtual network can be restricted to a specific physical interface. This may be useful on a physical system that has several interfaces (for example, eth0, eth1 and eth2). This is only useful in routed and NAT modes, and can be defined in the dev=<interface> option, or in virt-manager when creating a new virtual network.
			

 ⁠18.7. Examples of Common Scenarios

			This section demonstrates different virtual networking modes and provides some example scenarios.
		

 ⁠18.7.1. Bridged Mode

				Bridged mode operates on Layer 2 of the OSI model. When used, all of the guest virtual machines will appear on the same subnet as the host physical machine. The most common use cases for bridged mode include:
			
	
						Deploying guest virtual machines in an existing network alongside host physical machines making the difference between virtual and physical machines transparent to the end user.
					

	
						Deploying guest virtual machines without making any changes to existing physical network configuration settings.
					

	
						Deploying guest virtual machines which must be easily accessible to an existing physical network. Placing guest virtual machines on a physical network where they must access services within an existing broadcast domain, such as DHCP.
					

	
						Connecting guest virtual machines to an existing network where VLANs are used.
					

 ⁠18.7.2. Routed Mode

				This section provides information about routed mode.
			
DMZ

					Consider a network where one or more nodes are placed in a controlled subnetwork for security reasons. The deployment of a special subnetwork such as this is a common practice, and the subnetwork is known as a DMZ. Refer to the following diagram for more details on this layout:
				

 ⁠[image: Sample DMZ configuration]

Figure 18.8. Sample DMZ configuration

				Host physical machines in a DMZ typically provide services to WAN (external) host physical machines as well as LAN (internal) host physical machines. As this requires them to be accessible from multiple locations, and considering that these locations are controlled and operated in different ways based on their security and trust level, routed mode is the best configuration for this environment.
			
Virtual Server Hosting

					Consider a virtual server hosting company that has several host physical machines, each with two physical network connections. One interface is used for management and accounting, the other is for the virtual machines to connect through. Each guest has its own public IP address, but the host physical machines use private IP address as management of the guests can only be performed by internal administrators. Refer to the following diagram to understand this scenario:
				

 ⁠[image: Virtual server hosting sample configuration]

Figure 18.9. Virtual server hosting sample configuration

 ⁠18.7.3. NAT Mode

				NAT (Network Address Translation) mode is the default mode. It can be used for testing when there is no need for direct network visibility.
			

 ⁠18.7.4. Isolated Mode

				Isolated mode allows virtual machines to communicate with each other only. They are unable to interact with the physical network.
			

 ⁠18.8. Managing a Virtual Network

			To configure a virtual network on your system:
		
	
					From the Edit menu, select Connection Details.
				

 ⁠[image: Selecting a host physical machine's details]

Figure 18.10. Selecting a host physical machine's details

	
					This will open the Connection Details menu. Click the Virtual Networks tab.
				

 ⁠[image: Virtual network configuration]

Figure 18.11. Virtual network configuration

	
					All available virtual networks are listed on the left-hand box of the menu. You can edit the configuration of a virtual network by selecting it from this box and editing as you see fit.
				

 ⁠18.9. Creating a Virtual Network

			To create a virtual network on your system:
		
	
					Open the Virtual Networks tab from within the Connection Details menu. Click the Add Network button, identified by a plus sign (+) icon. For more information, refer to Section 18.8, “Managing a Virtual Network”.
				

 ⁠[image: Virtual network configuration]

Figure 18.12. Virtual network configuration

					This will open the Create a new virtual network window. Click Forward to continue.
				

 ⁠[image: Creating a new virtual network]

Figure 18.13. Creating a new virtual network

	
					Enter an appropriate name for your virtual network and click Forward.
				

 ⁠[image: Naming your virtual network]

Figure 18.14. Naming your virtual network

	
					Enter an IPv4 address space for your virtual network and click Forward.
				

 ⁠[image: Choosing an IPv4 address space]

Figure 18.15. Choosing an IPv4 address space

	
					Define the DHCP range for your virtual network by specifying a Start and End range of IP addresses. Click Forward to continue.
				

 ⁠[image: Selecting the DHCP range]

Figure 18.16. Selecting the DHCP range

	
					Select how the virtual network should connect to the physical network.
				

 ⁠[image: Connecting to physical network]

Figure 18.17. Connecting to physical network

					If you select Forwarding to physical network, choose whether the Destination should be Any physical device or a specific physical device. Also select whether the Mode should be NAT or Routed.
				

					Click Forward to continue.
				

	
					You are now ready to create the network. Check the configuration of your network and click Finish.
				

 ⁠[image: Ready to create network]

Figure 18.18. Ready to create network

	
					The new virtual network is now available in the Virtual Networks tab of the Connection Details window.
				

 ⁠18.10. Attaching a Virtual Network to a Guest

			To attach a virtual network to a guest:
		
	
					In the Virtual Machine Manager window, highlight the guest that will have the network assigned.
				

 ⁠[image: Selecting a virtual machine to display]

Figure 18.19. Selecting a virtual machine to display

	
					From the Virtual Machine Manager Edit menu, select Virtual Machine Details.
				

 ⁠[image: Displaying the virtual machine details]

Figure 18.20. Displaying the virtual machine details

	
					Click the Add Hardware button on the Virtual Machine Details window.
				

 ⁠[image: The Virtual Machine Details window]

Figure 18.21. The Virtual Machine Details window

	
					In the Add new virtual hardware window, select Network from the left pane, and select your network name (network1 in this example) from the Host device menu and click Finish.
				

 ⁠[image: Select your network from the Add new virtual hardware window]

Figure 18.22. Select your network from the Add new virtual hardware window

	
					The new network is now displayed as a virtual network interface that will be presented to the guest upon launch.
				

 ⁠[image: New network shown in guest hardware list]

Figure 18.23. New network shown in guest hardware list

 ⁠18.11. Attaching a Virtual NIC Directly to a Physical Interface

			As an alternative to the default NAT connection, you can use the macvtap driver to attach the guest's NIC directly to a specified physical interface of the host machine. This is not to be confused with device assignment (also known as passthrough). Macvtap connection has the following modes, each with different benefits and usecases:
		

 ⁠Physical interface delivery modes
	
 ⁠VEPA
	
						In virtual ethernet port aggregator (VEPA) mode, all packets from the guests are sent to the external switch. This enables the user to force guest traffic through the switch. For VEPA mode to work correctly, the external switch must also support hairpin mode, which ensures that packets whose destination is a guest on the same host machine as their source guest are sent back to the host by the external switch.
					

 ⁠[image: VEPA mode]

Figure 18.24. VEPA mode

	
 ⁠bridge
	
						Packets whose destination is on the same host machine as their source guest are directly delivered to the target macvtap device. Both the source device and the destination device need to be in bridge mode for direct delivery to succeed. If either one of the devices is in VEPA mode, a hairpin-capable external switch is required.
					

 ⁠[image: Bridge mode]

Figure 18.25. Bridge mode

	
 ⁠private
	
						All packets are sent to the external switch and will only be delivered to a target guest on the same host machine if they are sent through an external router or gateway and these send them back to the host. Private mode can be used to prevent the individual guests on the single host from communicating with each other. This procedure is followed if either the source or destination device is in private mode.
					

 ⁠[image: Private mode]

Figure 18.26. Private mode

	
 ⁠passthrough
	
						This feature attaches a physical interface device or a SR-IOV Virtual Function (VF) directly to a guest without losing the migration capability. All packets are sent directly to the designated network device. Note that a single network device can only be passed through to a single guest, as a network device cannot be shared between guests in passthrough mode.
					

 ⁠[image: Passthrough mode]

Figure 18.27. Passthrough mode

			Each of the four modes is configured by changing the domain xml file. Once this file is opened, change the mode setting as shown:
		

 <devices>
 ...
 <interface type='direct'>
 <source dev='eth0' mode='vepa'/>
 </interface>
 </devices>

			The network access of direct attached guest virtual machines can be managed by the hardware switch to which the physical interface of the host physical machine is connected to.
		

			The interface can have additional parameters as shown below, if the switch is conforming to the IEEE 802.1Qbg standard. The parameters of the virtualport element are documented in more detail in the IEEE 802.1Qbg standard. The values are network specific and should be provided by the network administrator. In 802.1Qbg terms, the Virtual Station Interface (VSI) represents the virtual interface of a virtual machine.
		

			Note that IEEE 802.1Qbg requires a non-zero value for the VLAN ID. Also if the switch is conforming to the IEEE 802.1Qbh standard, the values are network specific and should be provided by the network administrator.
		
Virtual Station Interface types
	managerid
	
						The VSI Manager ID identifies the database containing the VSI type and instance definitions. This is an integer value and the value 0 is reserved.
					

	typeid
	
						The VSI Type ID identifies a VSI type characterizing the network access. VSI types are typically managed by network administrator. This is an integer value.
					

	typeidversion
	
						The VSI Type Version allows multiple versions of a VSI Type. This is an integer value.
					

	instanceid
	
						The VSI Instance ID Identifier is generated when a VSI instance (that is a virtual interface of a virtual machine) is created. This is a globally unique identifier.
					

	profileid
	
						The profile ID contains the name of the port profile that is to be applied onto this interface. This name is resolved by the port profile database into the network parameters from the port profile, and those network parameters will be applied to this interface.
					

			Each of the four types is configured by changing the domain xml file. Once this file is opened, change the mode setting as shown:
		

 <devices>
 ...
 <interface type='direct'>
 <source dev='eth0.2' mode='vepa'/>
 <virtualport type="802.1Qbg">
 <parameters managerid="11" typeid="1193047" typeidversion="2" instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"/>
 </virtualport>
 </interface>
 </devices>

			The profile ID is shown here:
		

 <devices>
 ...
 <interface type='direct'>
 <source dev='eth0' mode='private'/>
 <virtualport type='802.1Qbh'>
 <parameters profileid='finance'/>
 </virtualport>
 </interface>
 </devices>
 ...

 ⁠18.12. Applying Network Filtering

			This section provides an introduction to libvirt's network filters, their goals, concepts and XML format.
		

 ⁠18.12.1. Introduction

				The goal of the network filtering, is to enable administrators of a virtualized system to configure and enforce network traffic filtering rules on virtual machines and manage the parameters of network traffic that virtual machines are allowed to send or receive. The network traffic filtering rules are applied on the host physical machine when a virtual machine is started. Since the filtering rules cannot be circumvented from within the virtual machine, it makes them mandatory from the point of view of a virtual machine user.
			

				From the point of view of the guest virtual machine, the network filtering system allows each virtual machine's network traffic filtering rules to be configured individually on a per interface basis. These rules are applied on the host physical machine when the virtual machine is started and can be modified while the virtual machine is running. The latter can be achieved by modifying the XML description of a network filter.
			

				Multiple virtual machines can make use of the same generic network filter. When such a filter is modified, the network traffic filtering rules of all running virtual machines that reference this filter are updated. The machines that are not running will update on start.
			

				As previously mentioned, applying network traffic filtering rules can be done on individual network interfaces that are configured for certain types of network configurations. Supported network types include:
			
	
						network
					

	
						ethernet -- must be used in bridging mode
					

	
						bridge
					

 ⁠Example 18.1. An example of network filtering

					The interface XML is used to reference a top-level filter. In the following example, the interface description references the filter clean-traffic.
				

 <devices>
 <interface type='bridge'>
 <mac address='00:16:3e:5d:c7:9e'/>
 <filterref filter='clean-traffic'/>
 </interface>
 </devices>

					Network filters are written in XML and may either contain: references to other filters, rules for traffic filtering, or hold a combination of both. The above referenced filter clean-traffic is a filter that only contains references to other filters and no actual filtering rules. Since references to other filters can be used, a tree of filters can be built. The clean-traffic filter can be viewed using the command: # virsh nwfilter-dumpxml clean-traffic.
				

					As previously mentioned, a single network filter can be referenced by multiple virtual machines. Since interfaces will typically have individual parameters associated with their respective traffic filtering rules, the rules described in a filter's XML can be generalized using variables. In this case, the variable name is used in the filter XML and the name and value are provided at the place where the filter is referenced.
				

 ⁠Example 18.2. Description extended

					In the following example, the interface description has been extended with the parameter IP and a dotted IP address as a value.
				

 <devices>
 <interface type='bridge'>
 <mac address='00:16:3e:5d:c7:9e'/>
 <filterref filter='clean-traffic'>
 <parameter name='IP' value='10.0.0.1'/>
 </filterref>
 </interface>
 </devices>

					In this particular example, the clean-traffic network traffic filter will be represented with the IP address parameter 10.0.0.1 and as per the rule dictates that all traffic from this interface will always be using 10.0.0.1 as the source IP address, which is one of the purpose of this particular filter.
				

 ⁠18.12.2. Filtering Chains

				Filtering rules are organized in filter chains. These chains can be thought of as having a tree structure with packet filtering rules as entries in individual chains (branches).
			

				Packets start their filter evaluation in the root chain and can then continue their evaluation in other chains, return from those chains back into the root chain or be dropped or accepted by a filtering rule in one of the traversed chains.
			

				Libvirt's network filtering system automatically creates individual root chains for every virtual machine's network interface on which the user chooses to activate traffic filtering. The user may write filtering rules that are either directly instantiated in the root chain or may create protocol-specific filtering chains for efficient evaluation of protocol-specific rules.
			

				The following chains exist:
			
	
						root
					

	
						mac
					

	
						stp (spanning tree protocol)
					

	
						vlan
					

	
						arp and rarp
					

	
						ipv4
					

	
						ipv6
					

				Multiple chains evaluating the mac, stp, vlan, arp, rarp, ipv4, or ipv6 protocol can be created using the protocol name only as a prefix in the chain's name.
			

 ⁠Example 18.3. ARP traffic filtering

					This example allows chains with names arp-xyz or arp-test to be specified and have their ARP protocol packets evaluated in those chains.
				

					The following filter XML shows an example of filtering ARP traffic in the arp chain.
				

<filter name='no-arp-spoofing' chain='arp' priority='-500'>
 <uuid>f88f1932-debf-4aa1-9fbe-f10d3aa4bc95</uuid>
 <rule action='drop' direction='out' priority='300'>
 <mac match='no' srcmacaddr='$MAC'/>
 </rule>
 <rule action='drop' direction='out' priority='350'>
 <arp match='no' arpsrcmacaddr='$MAC'/>
 </rule>
 <rule action='drop' direction='out' priority='400'>
 <arp match='no' arpsrcipaddr='$IP'/>
 </rule>
 <rule action='drop' direction='in' priority='450'>
 <arp opcode='Reply'/>
 <arp match='no' arpdstmacaddr='$MAC'/>
 </rule>
 <rule action='drop' direction='in' priority='500'>
 <arp match='no' arpdstipaddr='$IP'/>
 </rule>
 <rule action='accept' direction='inout' priority='600'>
 <arp opcode='Request'/>
 </rule>
 <rule action='accept' direction='inout' priority='650'>
 <arp opcode='Reply'/>
 </rule>
 <rule action='drop' direction='inout' priority='1000'/>
</filter>

					The consequence of putting ARP-specific rules in the arp chain, rather than for example in the root chain, is that packets protocols other than ARP do not need to be evaluated by ARP protocol-specific rules. This improves the efficiency of the traffic filtering. However, one must then pay attention to only putting filtering rules for the given protocol into the chain since other rules will not be evaluated. For example, an IPv4 rule will not be evaluated in the ARP chain since IPv4 protocol packets will not traverse the ARP chain.
				

 ⁠18.12.3. Filtering Chain Priorities

				As previously mentioned, when creating a filtering rule, all chains are connected to the root chain. The order in which those chains are accessed is influenced by the priority of the chain. The following table shows the chains that can be assigned a priority and their default priorities.
			

 ⁠Table 18.1. Filtering chain default priorities values
	Chain (prefix)	Default priority
	stp	-810
	mac	-800
	vlan	-750
	ipv4	-700
	ipv6	-600
	arp	-500
	rarp	-400

Note

					A chain with a lower priority value is accessed before one with a higher value.
				

					The chains listed in Table 18.1, “Filtering chain default priorities values” can be also be assigned custom priorities by writing a value in the range [-1000 to 1000] into the priority (XML) attribute in the filter node. Section 18.12.2, “Filtering Chains”filter shows the default priority of -500 for arp chains, for example.
				

 ⁠18.12.4. Usage of Variables in Filters

				There are two variables that have been reserved for usage by the network traffic filtering subsystem: MAC and IP.
			

				MAC is designated for the MAC address of the network interface. A filtering rule that references this variable will automatically be replaced with the MAC address of the interface. This works without the user having to explicitly provide the MAC parameter. Even though it is possible to specify the MAC parameter similar to the IP parameter above, it is discouraged since libvirt knows what MAC address an interface will be using.
			

				The parameter IP represents the IP address that the operating system inside the virtual machine is expected to use on the given interface. The IP parameter is special in so far as the libvirt daemon will try to determine the IP address (and thus the IP parameter's value) that is being used on an interface if the parameter is not explicitly provided but referenced. For current limitations on IP address detection, consult the section on limitations Section 18.12.12, “Limitations” on how to use this feature and what to expect when using it. The XML file shown in Section 18.12.2, “Filtering Chains” contains the filter no-arp-spoofing, which is an example of using a network filter XML to reference the MAC and IP variables.
			

				Note that referenced variables are always prefixed with the character $. The format of the value of a variable must be of the type expected by the filter attribute identified in the XML. In the above example, the IP parameter must hold a legal IP address in standard format. Failure to provide the correct structure will result in the filter variable not being replaced with a value and will prevent a virtual machine from starting or will prevent an interface from attaching when hot plugging is being used. Some of the types that are expected for each XML attribute are shown in the example Example 18.4, “Sample variable types”.
			

 ⁠Example 18.4. Sample variable types

					As variables can contain lists of elements, (the variable IP can contain multiple IP addresses that are valid on a particular interface, for example), the notation for providing multiple elements for the IP variable is:
				

 <devices>
 <interface type='bridge'>
 <mac address='00:16:3e:5d:c7:9e'/>
 <filterref filter='clean-traffic'>
 <parameter name='IP' value='10.0.0.1'/>
 <parameter name='IP' value='10.0.0.2'/>
 <parameter name='IP' value='10.0.0.3'/>
 </filterref>
 </interface>
 </devices>

					This XML file creates filters to enable multiple IP addresses per interface. Each of the IP addresses will result in a separate filtering rule. Therefore using the XML above and the following rule, three individual filtering rules (one for each IP address) will be created:
				

 <rule action='accept' direction='in' priority='500'>
 <tcp srpipaddr='$IP'/>
 </rule>

					As it is possible to access individual elements of a variable holding a list of elements, a filtering rule like the following accesses the 2nd element of the variable DSTPORTS.
				

 <rule action='accept' direction='in' priority='500'>
 <udp dstportstart='$DSTPORTS[1]'/>
 </rule>

 ⁠Example 18.5. Using a variety of variables

					As it is possible to create filtering rules that represent all possible combinations of rules from different lists using the notation $VARIABLE[@<iterator id="x">]. The following rule allows a virtual machine to receive traffic on a set of ports, which are specified in DSTPORTS, from the set of source IP address specified in SRCIPADDRESSES. The rule generates all combinations of elements of the variable DSTPORTS with those of SRCIPADDRESSES by using two independent iterators to access their elements.
				

 <rule action='accept' direction='in' priority='500'>
 <ip srcipaddr='$SRCIPADDRESSES[@1]' dstportstart='$DSTPORTS[@2]'/>
 </rule>

					Assign concrete values to SRCIPADDRESSES and DSTPORTS as shown:
				

 SRCIPADDRESSES = [10.0.0.1, 11.1.2.3]
 DSTPORTS = [80, 8080]

					Assigning values to the variables using $SRCIPADDRESSES[@1] and $DSTPORTS[@2] would then result in all combinations of addresses and ports being created as shown:
				
	
							10.0.0.1, 80
						

	
							10.0.0.1, 8080
						

	
							11.1.2.3, 80
						

	
							11.1.2.3, 8080
						

					Accessing the same variables using a single iterator, for example by using the notation $SRCIPADDRESSES[@1] and $DSTPORTS[@1], would result in parallel access to both lists and result in the following combination:
				
	
							10.0.0.1, 80
						

	
							11.1.2.3, 8080
						

Note

					$VARIABLE is short-hand for $VARIABLE[@0]. The former notation always assumes the role of iterator with iterator id="0" added as shown in the opening paragraph at the top of this section.
				

 ⁠18.12.5. Automatic IP Address Detection and DHCP Snooping

				This section provides information about automatic IP address detection and DHCP snooping.
			

 ⁠18.12.5.1. Introduction

					The detection of IP addresses used on a virtual machine's interface is automatically activated if the variable IP is referenced but no value has been assigned to it. The variable CTRL_IP_LEARNING can be used to specify the IP address learning method to use. Valid values include: any, dhcp, or none.
				

					The value any instructs libvirt to use any packet to determine the address in use by a virtual machine, which is the default setting if the variable TRL_IP_LEARNING is not set. This method will only detect a single IP address per interface. Once a guest virtual machine's IP address has been detected, its IP network traffic will be locked to that address, if for example, IP address spoofing is prevented by one of its filters. In that case, the user of the VM will not be able to change the IP address on the interface inside the guest virtual machine, which would be considered IP address spoofing. When a guest virtual machine is migrated to another host physical machine or resumed after a suspend operation, the first packet sent by the guest virtual machine will again determine the IP address that the guest virtual machine can use on a particular interface.
				

					The value of dhcp instructs libvirt to only honor DHCP server-assigned addresses with valid leases. This method supports the detection and usage of multiple IP address per interface. When a guest virtual machine resumes after a suspend operation, any valid IP address leases are applied to its filters. Otherwise the guest virtual machine is expected to use DHCP to obtain a new IP addresses. When a guest virtual machine migrates to another physical host physical machine, the guest virtual machine is required to re-run the DHCP protocol.
				

					If CTRL_IP_LEARNING is set to none, libvirt does not do IP address learning and referencing IP without assigning it an explicit value is an error.
				

 ⁠18.12.5.2. DHCP Snooping

					CTRL_IP_LEARNING=dhcp (DHCP snooping) provides additional anti-spoofing security, especially when combined with a filter allowing only trusted DHCP servers to assign IP addresses. To enable this, set the variable DHCPSERVER to the IP address of a valid DHCP server and provide filters that use this variable to filter incoming DHCP responses.
				

					When DHCP snooping is enabled and the DHCP lease expires, the guest virtual machine will no longer be able to use the IP address until it acquires a new, valid lease from a DHCP server. If the guest virtual machine is migrated, it must get a new valid DHCP lease to use an IP address (for example, by bringing the VM interface down and up again).
				
Note

						Automatic DHCP detection listens to the DHCP traffic the guest virtual machine exchanges with the DHCP server of the infrastructure. To avoid denial-of-service attacks on libvirt, the evaluation of those packets is rate-limited, meaning that a guest virtual machine sending an excessive number of DHCP packets per second on an interface will not have all of those packets evaluated and thus filters may not get adapted. Normal DHCP client behavior is assumed to send a low number of DHCP packets per second. Further, it is important to setup appropriate filters on all guest virtual machines in the infrastructure to avoid them being able to send DHCP packets. Therefore guest virtual machines must either be prevented from sending UDP and TCP traffic from port 67 to port 68 or the DHCPSERVER variable should be used on all guest virtual machines to restrict DHCP server messages to only be allowed to originate from trusted DHCP servers. At the same time anti-spoofing prevention must be enabled on all guest virtual machines in the subnet.
					

 ⁠Example 18.6. Activating IPs for DHCP snooping

						The following XML provides an example for the activation of IP address learning using the DHCP snooping method:
					

 <interface type='bridge'>
 <source bridge='virbr0'/>
 <filterref filter='clean-traffic'>
 <parameter name='CTRL_IP_LEARNING' value='dhcp'/>
 </filterref>
 </interface>

 ⁠18.12.6. Reserved Variables

				Table 18.2, “Reserved variables” shows the variables that are considered reserved and are used by libvirt:
			

 ⁠Table 18.2. Reserved variables
	Variable Name	Definition
	MAC	The MAC address of the interface
	IP	The list of IP addresses in use by an interface
	IPV6	Not currently implemented: the list of IPV6 addresses in use by an interface
	DHCPSERVER	The list of IP addresses of trusted DHCP servers
	DHCPSERVERV6	Not currently implemented: The list of IPv6 addresses of trusted DHCP servers
	CTRL_IP_LEARNING	The choice of the IP address detection mode

 ⁠18.12.7. Element and Attribute Overview

				The root element required for all network filters is named <filter> with two possible attributes. The name attribute provides a unique name of the given filter. The chain attribute is optional but allows certain filters to be better organized for more efficient processing by the firewall subsystem of the underlying host physical machine. Currently the system only supports the following chains: root, ipv4, ipv6, arp and rarp.
			

 ⁠18.12.8. References to Other Filters

				Any filter may hold references to other filters. Individual filters may be referenced multiple times in a filter tree but references between filters must not introduce loops.
			

 ⁠Example 18.7. An Example of a clean traffic filter

					The following shows the XML of the clean-traffic network filter referencing several other filters.
				

<filter name='clean-traffic'>
 <uuid>6ef53069-ba34-94a0-d33d-17751b9b8cb1</uuid>
 <filterref filter='no-mac-spoofing'/>
 <filterref filter='no-ip-spoofing'/>
 <filterref filter='allow-incoming-ipv4'/>
 <filterref filter='no-arp-spoofing'/>
 <filterref filter='no-other-l2-traffic'/>
 <filterref filter='qemu-announce-self'/>
</filter>

					To reference another filter, the XML node filterref needs to be provided inside a filter node. This node must have the attribute filter whose value contains the name of the filter to be referenced.
				

				New network filters can be defined at any time and may contain references to network filters that are not known to libvirt, yet. However, once a virtual machine is started or a network interface referencing a filter is to be hotplugged, all network filters in the filter tree must be available. Otherwise the virtual machine will not start or the network interface cannot be attached.
			

 ⁠18.12.9. Filter Rules

				The following XML shows a simple example of a network traffic filter implementing a rule to drop traffic if the IP address (provided through the value of the variable IP) in an outgoing IP packet is not the expected one, thus preventing IP address spoofing by the VM.
			

 ⁠Example 18.8. Example of network traffic filtering

<filter name='no-ip-spoofing' chain='ipv4'>
 <uuid>fce8ae33-e69e-83bf-262e-30786c1f8072</uuid>
 <rule action='drop' direction='out' priority='500'>
 <ip match='no' srcipaddr='$IP'/>
 </rule>
</filter>

				The traffic filtering rule starts with the rule node. This node may contain up to three of the following attributes:
			
	
						action is mandatory can have the following values:
					
	
								drop (matching the rule silently discards the packet with no further analysis)
							

	
								reject (matching the rule generates an ICMP reject message with no further analysis)
							

	
								accept (matching the rule accepts the packet with no further analysis)
							

	
								return (matching the rule passes this filter, but returns control to the calling filter for further analysis)
							

	
								continue (matching the rule goes on to the next rule for further analysis)
							

	
						direction is mandatory can have the following values:
					
	
								in for incoming traffic
							

	
								out for outgoing traffic
							

	
								inout for incoming and outgoing traffic
							

	
						priority is optional. The priority of the rule controls the order in which the rule will be instantiated relative to other rules. Rules with lower values will be instantiated before rules with higher values. Valid values are in the range of -1000 to 1000. If this attribute is not provided, priority 500 will be assigned by default. Note that filtering rules in the root chain are sorted with filters connected to the root chain following their priorities. This allows to interleave filtering rules with access to filter chains. Refer to Section 18.12.3, “Filtering Chain Priorities” for more information.
					

	
						statematch is optional. Possible values are '0' or 'false' to turn the underlying connection state matching off. The default setting is 'true' or 1
					

				For more information see Section 18.12.11, “Advanced Filter Configuration Topics”.
			

				The above example Example 18.7, “An Example of a clean traffic filter” indicates that the traffic of type ip will be associated with the chain ipv4 and the rule will have priority=500. If for example another filter is referenced whose traffic of type ip is also associated with the chain ipv4 then that filter's rules will be ordered relative to the priority=500 of the shown rule.
			

				A rule may contain a single rule for filtering of traffic. The above example shows that traffic of type ip is to be filtered.
			

 ⁠18.12.10. Supported Protocols

				The following sections list and give some details about the protocols that are supported by the network filtering subsystem. This type of traffic rule is provided in the rule node as a nested node. Depending on the traffic type a rule is filtering, the attributes are different. The above example showed the single attribute srcipaddr that is valid inside the ip traffic filtering node. The following sections show what attributes are valid and what type of data they are expecting. The following datatypes are available:
			
	
						UINT8 : 8 bit integer; range 0-255
					

	
						UINT16: 16 bit integer; range 0-65535
					

	
						MAC_ADDR: MAC address in dotted decimal format, such as 00:11:22:33:44:55
					

	
						MAC_MASK: MAC address mask in MAC address format, such as FF:FF:FF:FC:00:00
					

	
						IP_ADDR: IP address in dotted decimal format, such as 10.1.2.3
					

	
						IP_MASK: IP address mask in either dotted decimal format (255.255.248.0) or CIDR mask (0-32)
					

	
						IPV6_ADDR: IPv6 address in numbers format, such as FFFF::1
					

	
						IPV6_MASK: IPv6 mask in numbers format (FFFF:FFFF:FC00::) or CIDR mask (0-128)
					

	
						STRING: A string
					

	
						BOOLEAN: 'true', 'yes', '1' or 'false', 'no', '0'
					

	
						IPSETFLAGS: The source and destination flags of the ipset described by up to 6 'src' or 'dst' elements selecting features from either the source or destination part of the packet header; example: src,src,dst. The number of 'selectors' to provide here depends on the type of ipset that is referenced
					

				Every attribute except for those of type IP_MASK or IPV6_MASK can be negated using the match attribute with value no. Multiple negated attributes may be grouped together. The following XML fragment shows such an example using abstract attributes.
			

[...]
 <rule action='drop' direction='in'>
 <protocol match='no' attribute1='value1' attribute2='value2'/>
 <protocol attribute3='value3'/>
 </rule>
[...]

				Rules behave evaluate the rule as well as look at it logically within the boundaries of the given protocol attributes. Thus, if a single attribute's value does not match the one given in the rule, the whole rule will be skipped during the evaluation process. Therefore, in the above example incoming traffic will only be dropped if: the protocol property attribute1 does not match both value1 and the protocol property attribute2 does not match value2 and the protocol property attribute3 matches value3.
			

 ⁠18.12.10.1. MAC (Ethernet)

					Protocol ID: mac
				

					Rules of this type should go into the root chain.
				

 ⁠Table 18.3. MAC protocol types
	Attribute Name	Datatype	Definition
	srcmacaddr	MAC_ADDR	MAC address of sender
	srcmacmask	MAC_MASK	Mask applied to MAC address of sender
	dstmacaddr	MAC_ADDR	MAC address of destination
	dstmacmask	MAC_MASK	Mask applied to MAC address of destination
	protocolid	UINT16 (0x600-0xffff), STRING	Layer 3 protocol ID. Valid strings include [arp, rarp, ipv4, ipv6]
	comment	STRING 	text string up to 256 characters

					The filter can be written as such:
				

[...]
<mac match='no' srcmacaddr='$MAC'/>
[...]

 ⁠18.12.10.2. VLAN (802.1Q)

					Protocol ID: vlan
				

					Rules of this type should go either into the root or vlan chain.
				

 ⁠Table 18.4. VLAN protocol types
	Attribute Name	Datatype	Definition
	srcmacaddr	MAC_ADDR	MAC address of sender
	srcmacmask	MAC_MASK	Mask applied to MAC address of sender
	dstmacaddr	MAC_ADDR	MAC address of destination
	dstmacmask	MAC_MASK	Mask applied to MAC address of destination
	vlan-id	UINT16 (0x0-0xfff, 0 - 4095) 	VLAN ID
	encap-protocol	UINT16 (0x03c-0xfff), String 	Encapsulated layer 3 protocol ID, valid strings are arp, ipv4, ipv6
	comment	STRING 	text string up to 256 characters

 ⁠18.12.10.3. STP (Spanning Tree Protocol)

					Protocol ID: stp
				

					Rules of this type should go either into the root or stp chain.
				

 ⁠Table 18.5. STP protocol types
	Attribute Name	Datatype	Definition
	srcmacaddr	MAC_ADDR	MAC address of sender
	srcmacmask	MAC_MASK	Mask applied to MAC address of sender
	type	UINT8	Bridge Protocol Data Unit (BPDU) type
	flags	UINT8	BPDU flagdstmacmask
	root-priority	UINT16	Root priority range start
	root-priority-hi	UINT16 (0x0-0xfff, 0 - 4095) 	Root priority range end
	root-address	MAC _ADDRESS	root MAC Address
	root-address-mask	MAC _MASK	root MAC Address mask
	roor-cost	UINT32	Root path cost (range start)
	root-cost-hi	UINT32	Root path cost range end
	sender-priority-hi	UINT16	Sender priority range end
	sender-address	MAC_ADDRESS	BPDU sender MAC address
	sender-address-mask	MAC_MASK	BPDU sender MAC address mask
	port	UINT16	Port identifier (range start)
	port_hi	UINT16	Port identifier range end
	msg-age	UINT16	Message age timer (range start)
	msg-age-hi	UINT16	Message age timer range end
	max-age-hi	UINT16	Maximum age time range end
	hello-time	UINT16	Hello time timer (range start)
	hello-time-hi	UINT16	Hello time timer range end
	forward-delay	UINT16	Forward delay (range start)
	forward-delay-hi	UINT16	Forward delay range end
	comment	STRING 	text string up to 256 characters

 ⁠18.12.10.4. ARP/RARP

					Protocol ID: arp or rarp
				

					Rules of this type should either go into the root or arp/rarp chain.
				

 ⁠Table 18.6. ARP and RARP protocol types
	Attribute Name	Datatype	Definition
	srcmacaddr	MAC_ADDR	MAC address of sender
	srcmacmask	MAC_MASK	Mask applied to MAC address of sender
	dstmacaddr	MAC_ADDR	MAC address of destination
	dstmacmask	MAC_MASK	Mask applied to MAC address of destination
	hwtype	UINT16	Hardware type
	protocoltype	UINT16	Protocol type
	opcode	UINT16, STRING	Opcode valid strings are: Request, Reply, Request_Reverse, Reply_Reverse, DRARP_Request, DRARP_Reply, DRARP_Error, InARP_Request, ARP_NAK
	arpsrcmacaddr	MAC_ADDR	Source MAC address in ARP/RARP packet
	arpdstmacaddr	MAC _ADDR	Destination MAC address in ARP/RARP packet
	arpsrcipaddr	IP_ADDR	Source IP address in ARP/RARP packet
	arpdstipaddr	IP_ADDR	Destination IP address in ARP/RARP packet
	gratuitous	BOOLEAN	Boolean indiating whether to check for a gratuitous ARP packet
	comment	STRING 	text string up to 256 characters

 ⁠18.12.10.5. IPv4

					Protocol ID: ip
				

					Rules of this type should either go into the root or ipv4 chain.
				

 ⁠Table 18.7. IPv4 protocol types
	Attribute Name	Datatype	Definition
	srcmacaddr	MAC_ADDR	MAC address of sender
	srcmacmask	MAC_MASK	Mask applied to MAC address of sender
	dstmacaddr	MAC_ADDR	MAC address of destination
	dstmacmask	MAC_MASK	Mask applied to MAC address of destination
	srcipaddr	IP_ADDR	Source IP address
	srcipmask	IP_MASK	Mask applied to source IP address
	dstipaddr	IP_ADDR	Destination IP address
	dstipmask	IP_MASK	Mask applied to destination IP address
	protocol	UINT8, STRING	Layer 4 protocol identifier. Valid strings for protocol are: tcp, udp, udplite, esp, ah, icmp, igmp, sctp
	srcportstart	UINT16	Start of range of valid source ports; requires protocol
	srcportend	UINT16	End of range of valid source ports; requires protocol
	dstportstart	UNIT16	Start of range of valid destination ports; requires protocol
	dstportend	UNIT16	End of range of valid destination ports; requires protocol
	comment	STRING 	text string up to 256 characters

 ⁠18.12.10.6. IPv6

					Protocol ID: ipv6
				

					Rules of this type should either go into the root or ipv6 chain.
				

 ⁠Table 18.8. IPv6 protocol types
	Attribute Name	Datatype	Definition
	srcmacaddr	MAC_ADDR	MAC address of sender
	srcmacmask	MAC_MASK	Mask applied to MAC address of sender
	dstmacaddr	MAC_ADDR	MAC address of destination
	dstmacmask	MAC_MASK	Mask applied to MAC address of destination
	srcipaddr	IP_ADDR	Source IP address
	srcipmask	IP_MASK	Mask applied to source IP address
	dstipaddr	IP_ADDR	Destination IP address
	dstipmask	IP_MASK	Mask applied to destination IP address
	protocol	UINT8, STRING	Layer 4 protocol identifier. Valid strings for protocol are: tcp, udp, udplite, esp, ah, icmpv6, sctp
	scrportstart	UNIT16	Start of range of valid source ports; requires protocol
	srcportend	UINT16	End of range of valid source ports; requires protocol
	dstportstart	UNIT16	Start of range of valid destination ports; requires protocol
	dstportend	UNIT16	End of range of valid destination ports; requires protocol
	comment	STRING 	text string up to 256 characters

 ⁠18.12.10.7. TCP/UDP/SCTP

					Protocol ID: tcp, udp, sctp
				

					The chain parameter is ignored for this type of traffic and should either be omitted or set to root. .
				

 ⁠Table 18.9. TCP/UDP/SCTP protocol types
	Attribute Name	Datatype	Definition
	srcmacaddr	MAC_ADDR	MAC address of sender
	srcipaddr	IP_ADDR	Source IP address
	srcipmask	IP_MASK	Mask applied to source IP address
	dstipaddr	IP_ADDR	Destination IP address
	dstipmask	IP_MASK	Mask applied to destination IP address
	scripto	IP_ADDR	Start of range of source IP address
	srcipfrom	IP_ADDR	End of range of source IP address
	dstipfrom	IP_ADDR	Start of range of destination IP address
	dstipto	IP_ADDR	End of range of destination IP address
	scrportstart	UNIT16	Start of range of valid source ports; requires protocol
	srcportend	UINT16	End of range of valid source ports; requires protocol
	dstportstart	UNIT16	Start of range of valid destination ports; requires protocol
	dstportend	UNIT16	End of range of valid destination ports; requires protocol
	comment	STRING 	text string up to 256 characters
	state	STRING	comma separated list of NEW,ESTABLISHED,RELATED,INVALID or NONE
	flags	STRING	TCP-only: format of mask/flags with mask and flags each being a comma separated list of SYN,ACK,URG,PSH,FIN,RST or NONE or ALL
	ipset	STRING	The name of an IPSet managed outside of libvirt
	ipsetflags	IPSETFLAGS	flags for the IPSet; requires ipset attribute

 ⁠18.12.10.8. ICMP

					Protocol ID: icmp
				

					Note: The chain parameter is ignored for this type of traffic and should either be omitted or set to root.
				

 ⁠Table 18.10. ICMP protocol types
	Attribute Name	Datatype	Definition
	srcmacaddr	MAC_ADDR	MAC address of sender
	srcmacmask	MAC_MASK	Mask applied to the MAC address of the sender
	dstmacaddr	MAD_ADDR	MAC address of the destination
	dstmacmask	MAC_MASK	Mask applied to the MAC address of the destination
	srcipaddr	IP_ADDR	Source IP address
	srcipmask	IP_MASK	Mask applied to source IP address
	dstipaddr	IP_ADDR	Destination IP address
	dstipmask	IP_MASK	Mask applied to destination IP address
	srcipfrom	IP_ADDR	start of range of source IP address
	scripto	IP_ADDR	end of range of source IP address
	dstipfrom	IP_ADDR	Start of range of destination IP address
	dstipto	IP_ADDR	End of range of destination IP address
	type	UNIT16	ICMP type
	code	UNIT16	ICMP code
	comment	STRING 	text string up to 256 characters
	state	STRING	comma separated list of NEW,ESTABLISHED,RELATED,INVALID or NONE
	ipset	STRING	The name of an IPSet managed outside of libvirt
	ipsetflags	IPSETFLAGS	flags for the IPSet; requires ipset attribute

 ⁠18.12.10.9. IGMP, ESP, AH, UDPLITE, 'ALL'

					Protocol ID: igmp, esp, ah, udplite, all
				

					The chain parameter is ignored for this type of traffic and should either be omitted or set to root.
				

 ⁠Table 18.11. IGMP, ESP, AH, UDPLITE, 'ALL'
	Attribute Name	Datatype	Definition
	srcmacaddr	MAC_ADDR	MAC address of sender
	srcmacmask	MAC_MASK	Mask applied to the MAC address of the sender
	dstmacaddr	MAD_ADDR	MAC address of the destination
	dstmacmask	MAC_MASK	Mask applied to the MAC address of the destination
	srcipaddr	IP_ADDR	Source IP address
	srcipmask	IP_MASK	Mask applied to source IP address
	dstipaddr	IP_ADDR	Destination IP address
	dstipmask	IP_MASK	Mask applied to destination IP address
	srcipfrom	IP_ADDR	start of range of source IP address
	scripto	IP_ADDR	end of range of source IP address
	dstipfrom	IP_ADDR	Start of range of destination IP address
	dstipto	IP_ADDR	End of range of destination IP address
	comment	STRING 	text string up to 256 characters
	state	STRING	comma separated list of NEW,ESTABLISHED,RELATED,INVALID or NONE
	ipset	STRING	The name of an IPSet managed outside of libvirt
	ipsetflags	IPSETFLAGS	flags for the IPSet; requires ipset attribute

 ⁠18.12.10.10. TCP/UDP/SCTP over IPV6

					Protocol ID: tcp-ipv6, udp-ipv6, sctp-ipv6
				

					The chain parameter is ignored for this type of traffic and should either be omitted or set to root.
				

 ⁠Table 18.12. TCP, UDP, SCTP over IPv6 protocol types
	Attribute Name	Datatype	Definition
	srcmacaddr	MAC_ADDR	MAC address of sender
	srcipaddr	IP_ADDR	Source IP address
	srcipmask	IP_MASK	Mask applied to source IP address
	dstipaddr	IP_ADDR	Destination IP address
	dstipmask	IP_MASK	Mask applied to destination IP address
	srcipfrom	IP_ADDR	start of range of source IP address
	scripto	IP_ADDR	end of range of source IP address
	dstipfrom	IP_ADDR	Start of range of destination IP address
	dstipto	IP_ADDR	End of range of destination IP address
	srcportstart	UINT16	Start of range of valid source ports
	srcportend	UINT16	End of range of valid source ports
	dstportstart	UINT16	Start of range of valid destination ports
	dstportend	UINT16	End of range of valid destination ports
	comment	STRING 	text string up to 256 characters
	state	STRING	comma separated list of NEW,ESTABLISHED,RELATED,INVALID or NONE
	ipset	STRING	The name of an IPSet managed outside of libvirt
	ipsetflags	IPSETFLAGS	flags for the IPSet; requires ipset attribute

 ⁠18.12.10.11. ICMPv6

					Protocol ID: icmpv6
				

					The chain parameter is ignored for this type of traffic and should either be omitted or set to root.
				

 ⁠Table 18.13. ICMPv6 protocol types
	Attribute Name	Datatype	Definition
	srcmacaddr	MAC_ADDR	MAC address of sender
	srcipaddr	IP_ADDR	Source IP address
	srcipmask	IP_MASK	Mask applied to source IP address
	dstipaddr	IP_ADDR	Destination IP address
	dstipmask	IP_MASK	Mask applied to destination IP address
	srcipfrom	IP_ADDR	start of range of source IP address
	scripto	IP_ADDR	end of range of source IP address
	dstipfrom	IP_ADDR	Start of range of destination IP address
	dstipto	IP_ADDR	End of range of destination IP address
	type	UINT16	ICMPv6 type
	code	UINT16	ICMPv6 code
	comment	STRING 	text string up to 256 characters
	state	STRING	comma separated list of NEW,ESTABLISHED,RELATED,INVALID or NONE
	ipset	STRING	The name of an IPSet managed outside of libvirt
	ipsetflags	IPSETFLAGS	flags for the IPSet; requires ipset attribute

 ⁠18.12.10.12. IGMP, ESP, AH, UDPLITE, 'ALL' over IPv6

					Protocol ID: igmp-ipv6, esp-ipv6, ah-ipv6, udplite-ipv6, all-ipv6
				

					The chain parameter is ignored for this type of traffic and should either be omitted or set to root.
				

 ⁠Table 18.14. IGMP, ESP, AH, UDPLITE, 'ALL' over IPv protocol types
	Attribute Name	Datatype	Definition
	srcmacaddr	MAC_ADDR	MAC address of sender
	srcipaddr	IP_ADDR	Source IP address
	srcipmask	IP_MASK	Mask applied to source IP address
	dstipaddr	IP_ADDR	Destination IP address
	dstipmask	IP_MASK	Mask applied to destination IP address
	srcipfrom	IP_ADDR	start of range of source IP address
	scripto	IP_ADDR	end of range of source IP address
	dstipfrom	IP_ADDR	Start of range of destination IP address
	dstipto	IP_ADDR	End of range of destination IP address
	comment	STRING 	text string up to 256 characters
	state	STRING	comma separated list of NEW,ESTABLISHED,RELATED,INVALID or NONE
	ipset	STRING	The name of an IPSet managed outside of libvirt
	ipsetflags	IPSETFLAGS	flags for the IPSet; requires ipset attribute

 ⁠18.12.11. Advanced Filter Configuration Topics

				The following sections discuss advanced filter configuration topics.
			

 ⁠18.12.11.1. Connection tracking

					The network filtering subsystem (on Linux) makes use of the connection tracking support of IP tables. This helps in enforcing the directionality of network traffic (state match) as well as counting and limiting the number of simultaneous connections towards a guest virtual machine. As an example, if a guest virtual machine has TCP port 8080 open as a server, clients may connect to the guest virtual machine on port 8080. Connection tracking and enforcement of directionality then prevents the guest virtual machine from initiating a connection from (TCP client) port 8080 to the host physical machine back to a remote host physical machine. More importantly, tracking helps to prevent remote attackers from establishing a connection back to a guest virtual machine. For example, if the user inside the guest virtual machine established a connection to port 80 on an attacker site, then the attacker will not be able to initiate a connection from TCP port 80 back towards the guest virtual machine. By default the connection state match that enables connection tracking and then enforcement of directionality of traffic is turned on.
				

 ⁠Example 18.9. XML example for turning off connections to the TCP port

						The following shows an example XML fragment where this feature has been turned off for incoming connections to TCP port 12345.
					

 [...]
 <rule direction='in' action='accept' statematch='false'>
 <cp dstportstart='12345'/>
 </rule>
 [...]

						This now allows incoming traffic to TCP port 12345, but would also enable the initiation from (client) TCP port 12345 within the VM, which may or may not be desirable.
					

 ⁠18.12.11.2. Limiting Number of Connections

					To limit the number of connections a guest virtual machine may establish, a rule must be provided that sets a limit of connections for a given type of traffic. If for example a VM is supposed to be allowed to only ping one other IP address at a time and is supposed to have only one active incoming ssh connection at a time.
				

 ⁠Example 18.10. XML sample file that sets limits to connections

						The following XML fragment can be used to limit connections
					

 [...]
 <rule action='drop' direction='in' priority='400'>
 <tcp connlimit-above='1'/>
 </rule>
 <rule action='accept' direction='in' priority='500'>
 <tcp dstportstart='22'/>
 </rule>
 <rule action='drop' direction='out' priority='400'>
 <icmp connlimit-above='1'/>
 </rule>
 <rule action='accept' direction='out' priority='500'>
 <icmp/>
 </rule>
 <rule action='accept' direction='out' priority='500'>
 <udp dstportstart='53'/>
 </rule>
 <rule action='drop' direction='inout' priority='1000'>
 <all/>
 </rule>
 [...]

Note

						Limitation rules must be listed in the XML prior to the rules for accepting traffic. According to the XML file in Example 18.10, “XML sample file that sets limits to connections”, an additional rule for allowing DNS traffic sent to port 22 go out the guest virtual machine, has been added to avoid ssh sessions not getting established for reasons related to DNS lookup failures by the ssh daemon. Leaving this rule out may result in the ssh client hanging unexpectedly as it tries to connect. Additional caution should be used in regards to handling timeouts related to tracking of traffic. An ICMP ping that the user may have terminated inside the guest virtual machine may have a long timeout in the host physical machine's connection tracking system and will therefore not allow another ICMP ping to go through.
					

						The best solution is to tune the timeout in the host physical machine's sysfs with the following command:# echo 3 > /proc/sys/net/netfilter/nf_conntrack_icmp_timeout. This command sets the ICMP connection tracking timeout to 3 seconds. The effect of this is that once one ping is terminated, another one can start after 3 seconds.
					

						If for any reason the guest virtual machine has not properly closed its TCP connection, the connection to be held open for a longer period of time, especially if the TCP timeout value was set for a large amount of time on the host physical machine. In addition, any idle connection may result in a time out in the connection tracking system which can be re-activated once packets are exchanged.
					

						However, if the limit is set too low, newly initiated connections may force an idle connection into TCP backoff. Therefore, the limit of connections should be set rather high so that fluctuations in new TCP connections do not cause odd traffic behavior in relation to idle connections.
					

 ⁠18.12.11.3. Command line tools

					virsh has been extended with life-cycle support for network filters. All commands related to the network filtering subsystem start with the prefix nwfilter. The following commands are available:
				
	
							nwfilter-list : lists UUIDs and names of all network filters
						

	
							nwfilter-define : defines a new network filter or updates an existing one (must supply a name)
						

	
							nwfilter-undefine : deletes a specified network filter (must supply a name). Do not delete a network filter currently in use.
						

	
							nwfilter-dumpxml : displays a specified network filter (must supply a name)
						

	
							nwfilter-edit : edits a specified network filter (must supply a name)
						

 ⁠18.12.11.4. Pre-existing network filters

					The following is a list of example network filters that are automatically installed with libvirt:
				

 ⁠Table 18.15. ICMPv6 protocol types
	Command Name	Description
	no-arp-spoofing	Prevents a guest virtual machine from spoofing ARP traffic; this filter only allows ARP request and reply messages and enforces that those packets contain the MAC and IP addresses of the guest virtual machine.
	allow-dhcp	Allows a guest virtual machine to request an IP address via DHCP (from any DHCP server)
	allow-dhcp-server	Allows a guest virtual machine to request an IP address from a specified DHCP server. The dotted decimal IP address of the DHCP server must be provided in a reference to this filter. The name of the variable must be DHCPSERVER.
	no-ip-spoofing	Prevents a guest virtual machine from sending IP packets with a source IP address different from the one inside the packet.
	no-ip-multicast	Prevents a guest virtual machine from sending IP multicast packets.
	clean-traffic	Prevents MAC, IP and ARP spoofing. This filter references several other filters as building blocks.

					These filters are only building blocks and require a combination with other filters to provide useful network traffic filtering. The most used one in the above list is the clean-traffic filter. This filter itself can for example be combined with the no-ip-multicast filter to prevent virtual machines from sending IP multicast traffic on top of the prevention of packet spoofing.
				

 ⁠18.12.11.5. Writing your own filters

					Since libvirt only provides a couple of example networking filters, you may consider writing your own. When planning on doing so there are a couple of things you may need to know regarding the network filtering subsystem and how it works internally. Certainly you also have to know and understand the protocols very well that you want to be filtering on so that no further traffic than what you want can pass and that in fact the traffic you want to allow does pass.
				

					The network filtering subsystem is currently only available on Linux host physical machines and only works for Qemu and KVM type of virtual machines. On Linux, it builds upon the support for ebtables, iptables and ip6tables and makes use of their features. Considering the list found in Section 18.12.10, “Supported Protocols” the following protocols can be implemented using ebtables:
				
	
							mac
						

	
							stp (spanning tree protocol)
						

	
							vlan (802.1Q)
						

	
							arp, rarp
						

	
							ipv4
						

	
							ipv6
						

					Any protocol that runs over IPv4 is supported using iptables, those over IPv6 are implemented using ip6tables.
				

					Using a Linux host physical machine, all traffic filtering rules created by libvirt's network filtering subsystem first passes through the filtering support implemented by ebtables and only afterwards through iptables or ip6tables filters. If a filter tree has rules with the protocols including: mac, stp, vlan arp, rarp, ipv4, or ipv6; the ebtable rules and values listed will automatically be used first.
				

					Multiple chains for the same protocol can be created. The name of the chain must have a prefix of one of the previously enumerated protocols. To create an additional chain for handling of ARP traffic, a chain with name arp-test, can for example be specified.
				

					As an example, it is possible to filter on UDP traffic by source and destination ports using the IP protocol filter and specifying attributes for the protocol, source and destination IP addresses and ports of UDP packets that are to be accepted. This allows early filtering of UDP traffic with ebtables. However, once an IP or IPv6 packet, such as a UDP packet, has passed the ebtables layer and there is at least one rule in a filter tree that instantiates iptables or ip6tables rules, a rule to let the UDP packet pass will also be necessary to be provided for those filtering layers. This can be achieved with a rule containing an appropriate udp or udp-ipv6 traffic filtering node.
				

 ⁠Example 18.11. Creating a custom filter

						Suppose a filter is needed to fulfill the following list of requirements:
					
	
								prevents a VM's interface from MAC, IP and ARP spoofing
							

	
								opens only TCP ports 22 and 80 of a VM's interface
							

	
								allows the VM to send ping traffic from an interface but not let the VM be pinged on the interface
							

	
								allows the VM to do DNS lookups (UDP towards port 53)
							

						The requirement to prevent spoofing is fulfilled by the existing clean-traffic network filter, thus the way to do this is to reference it from a custom filter.
					

						To enable traffic for TCP ports 22 and 80, two rules are added to enable this type of traffic. To allow the guest virtual machine to send ping traffic a rule is added for ICMP traffic. For simplicity reasons, general ICMP traffic will be allowed to be initiated from the guest virtual machine, and will not be specified to ICMP echo request and response messages. All other traffic will be prevented to reach or be initiated by the guest virtual machine. To do this a rule will be added that drops all other traffic. Assuming the guest virtual machine is called test and the interface to associate our filter with is called eth0, a filter is created named test-eth0.
					

						The result of these considerations is the following network filter XML:
					

<filter name='test-eth0'>
 <!- - This rule references the clean traffic filter to prevent MAC, IP and ARP spoofing. By not providing an IP address parameter, libvirt will detect the IP address the guest virtual machine is using. - ->
 <filterref filter='clean-traffic'/>

 <!- - This rule enables TCP ports 22 (ssh) and 80 (http) to be reachable - ->
 <rule action='accept' direction='in'>
 <tcp dstportstart='22'/>
 </rule>

 <rule action='accept' direction='in'>
 <tcp dstportstart='80'/>
 </rule>

 <!- - This rule enables general ICMP traffic to be initiated by the guest virtual machine including ping traffic - ->
 <rule action='accept' direction='out'>
 <icmp/>
 </rule>>

 <!- - This rule enables outgoing DNS lookups using UDP - ->
 <rule action='accept' direction='out'>
 <udp dstportstart='53'/>
 </rule>

 <!- - This rule drops all other traffic - ->
 <rule action='drop' direction='inout'>
 <all/>
 </rule>

</filter>

 ⁠18.12.11.6. Sample custom filter

					Although one of the rules in the above XML contains the IP address of the guest virtual machine as either a source or a destination address, the filtering of the traffic works correctly. The reason is that whereas the rule's evaluation occurs internally on a per-interface basis, the rules are additionally evaluated based on which (tap) interface has sent or will receive the packet, rather than what their source or destination IP address may be.
				

 ⁠Example 18.12. Sample XML for network interface descriptions

						An XML fragment for a possible network interface description inside the domain XML of the test guest virtual machine could then look like this:
					

 [...]
 <interface type='bridge'>
 <source bridge='mybridge'/>
 <filterref filter='test-eth0'/>
 </interface>
 [...]

						To more strictly control the ICMP traffic and enforce that only ICMP echo requests can be sent from the guest virtual machine and only ICMP echo responses be received by the guest virtual machine, the above ICMP rule can be replaced with the following two rules:
					

 <!- - enable outgoing ICMP echo requests- ->
 <rule action='accept' direction='out'>
 <icmp type='8'/>
 </rule>

 <!- - enable incoming ICMP echo replies- ->
 <rule action='accept' direction='in'>
 <icmp type='0'/>
 </rule>

 ⁠Example 18.13. Second example custom filter

						This example demonstrates how to build a similar filter as in the example above, but extends the list of requirements with an ftp server located inside the guest virtual machine. The requirements for this filter are:
					
	
								prevents a guest virtual machine's interface from MAC, IP, and ARP spoofing
							

	
								opens only TCP ports 22 and 80 in a guest virtual machine's interface
							

	
								allows the guest virtual machine to send ping traffic from an interface but does not allow the guest virtual machine to be pinged on the interface
							

	
								allows the guest virtual machine to do DNS lookups (UDP towards port 53)
							

	
								enables the ftp server (in active mode) so it can run inside the guest virtual machine
							

						The additional requirement of allowing an FTP server to be run inside the guest virtual machine maps into the requirement of allowing port 21 to be reachable for FTP control traffic as well as enabling the guest virtual machine to establish an outgoing TCP connection originating from the guest virtual machine's TCP port 20 back to the FTP client (FTP active mode). There are several ways of how this filter can be written and two possible solutions are included in this example.
					

						The first solution makes use of the state attribute of the TCP protocol that provides a hook into the connection tracking framework of the Linux host physical machine. For the guest virtual machine-initiated FTP data connection (FTP active mode) the RELATED state is used to enable detection that the guest virtual machine-initiated FTP data connection is a consequence of (or 'has a relationship with') an existing FTP control connection, thereby allowing it to pass packets through the firewall. The RELATED state, however, is only valid for the very first packet of the outgoing TCP connection for the FTP data path. Afterwards, the state is ESTABLISHED, which then applies equally to the incoming and outgoing direction. All this is related to the FTP data traffic originating from TCP port 20 of the guest virtual machine. This then leads to the following solution:
					

<filter name='test-eth0'>
 <!- - This filter (eth0) references the clean traffic filter to prevent MAC, IP, and ARP spoofing. By not providing an IP address parameter, libvirt will detect the IP address the guest virtual machine is using. - ->
 <filterref filter='clean-traffic'/>

 <!- - This rule enables TCP port 21 (FTP-control) to be reachable - ->
 <rule action='accept' direction='in'>
 <tcp dstportstart='21'/>
 </rule>

 <!- - This rule enables TCP port 20 for guest virtual machine-initiated FTP data connection related to an existing FTP control connection - ->
 <rule action='accept' direction='out'>
 <tcp srcportstart='20' state='RELATED,ESTABLISHED'/>
 </rule>

 <!- - This rule accepts all packets from a client on the FTP data connection - ->
 <rule action='accept' direction='in'>
 <tcp dstportstart='20' state='ESTABLISHED'/>
 </rule>

 <!- - This rule enables TCP port 22 (SSH) to be reachable - ->
 <rule action='accept' direction='in'>
 <tcp dstportstart='22'/>
 </rule>

 <!- -This rule enables TCP port 80 (HTTP) to be reachable - ->
 <rule action='accept' direction='in'>
 <tcp dstportstart='80'/>
 </rule>

 <!- - This rule enables general ICMP traffic to be initiated by the guest virtual machine, including ping traffic - ->
 <rule action='accept' direction='out'>
 <icmp/>
 </rule>

 <!- - This rule enables outgoing DNS lookups using UDP - ->
 <rule action='accept' direction='out'>
 <udp dstportstart='53'/>
 </rule>

 <!- - This rule drops all other traffic - ->
 <rule action='drop' direction='inout'>
 <all/>
 </rule>

</filter>

						Before trying out a filter using the RELATED state, you have to make sure that the appropriate connection tracking module has been loaded into the host physical machine's kernel. Depending on the version of the kernel, you must run either one of the following two commands before the FTP connection with the guest virtual machine is established:
					
	
								#modprobe nf_conntrack_ftp - where available OR
							

	
								#modprobe ip_conntrack_ftp if above is not available
							

						If protocols other than FTP are used in conjunction with the RELATED state, their corresponding module must be loaded. Modules are available for the protocols: ftp, tftp, irc, sip, sctp, and amanda.
					

						The second solution makes use of the state flags of connections more than the previous solution did. This solution takes advantage of the fact that the NEW state of a connection is valid when the very first packet of a traffic flow is detected. Subsequently, if the very first packet of a flow is accepted, the flow becomes a connection and thus enters into the ESTABLISHED state. Therefore a general rule can be written for allowing packets of ESTABLISHED connections to reach the guest virtual machine or be sent by the guest virtual machine. This is done writing specific rules for the very first packets identified by the NEW state and dictates the ports that the data is acceptable. All packets meant for ports that are not explicitly accepted are dropped, thus not reaching an ESTABLISHED state. Any subsequent packets sent from that port are dropped as well.
					

<filter name='test-eth0'>
 <!- - This filter references the clean traffic filter to prevent MAC, IP and ARP spoofing. By not providing and IP address parameter, libvirt will detect the IP address the VM is using. - ->
 <filterref filter='clean-traffic'/>

 <!- - This rule allows the packets of all previously accepted connections to reach the guest virtual machine - ->
 <rule action='accept' direction='in'>
 <all state='ESTABLISHED'/>
 </rule>

 <!- - This rule allows the packets of all previously accepted and related connections be sent from the guest virtual machine - ->
 <rule action='accept' direction='out'>
 <all state='ESTABLISHED,RELATED'/>
 </rule>

 <!- - This rule enables traffic towards port 21 (FTP) and port 22 (SSH)- ->
 <rule action='accept' direction='in'>
 <tcp dstportstart='21' dstportend='22' state='NEW'/>
 </rule>

 <!- - This rule enables traffic towards port 80 (HTTP) - ->
 <rule action='accept' direction='in'>
 <tcp dstportstart='80' state='NEW'/>
 </rule>

 <!- - This rule enables general ICMP traffic to be initiated by the guest virtual machine, including ping traffic - ->
 <rule action='accept' direction='out'>
 <icmp state='NEW'/>
 </rule>

 <!- - This rule enables outgoing DNS lookups using UDP - ->
 <rule action='accept' direction='out'>
 <udp dstportstart='53' state='NEW'/>
 </rule>

 <!- - This rule drops all other traffic - ->
 <rule action='drop' direction='inout'>
 <all/>
 </rule>

</filter>

 ⁠18.12.12. Limitations

				The following is a list of the currently known limitations of the network filtering subsystem.
			
	
						VM migration is only supported if the whole filter tree that is referenced by a guest virtual machine's top level filter is also available on the target host physical machine. The network filter clean-traffic for example should be available on all libvirt installations and thus enable migration of guest virtual machines that reference this filter. To assure version compatibility is not a problem make sure you are using the most current version of libvirt by updating the package regularly.
					

	
						Migration must occur between libvirt installations of version 0.8.1 or later in order not to lose the network traffic filters associated with an interface.
					

	
						VLAN (802.1Q) packets, if sent by a guest virtual machine, cannot be filtered with rules for protocol IDs arp, rarp, ipv4 and ipv6. They can only be filtered with protocol IDs, MAC and VLAN. Therefore, the example filter clean-traffic Example 18.1, “An example of network filtering” will not work as expected.
					

 ⁠18.13. Creating Tunnels

			This section will demonstrate how to implement different tunneling scenarios.
		

 ⁠18.13.1. Creating Multicast Tunnels

				A multicast group is set up to represent a virtual network. Any guest virtual machines whose network devices are in the same multicast group can talk to each other even across host physical machines. This mode is also available to unprivileged users. There is no default DNS or DHCP support and no outgoing network access. To provide outgoing network access, one of the guest virtual machines should have a second NIC which is connected to one of the first four network types, thus providing appropriate routing. The multicast protocol is compatible with the guest virtual machine user mode. Note that the source address that you provide must be from the address used for the multicast address block.
			

				To create a multicast tunnel, specify the following XML details into the <devices> element:
			

 ⁠​
​
​ ...
​ <devices>
​ <interface type='mcast'>
​ <mac address='52:54:00:6d:90:01'>
​ <source address='230.0.0.1' port='5558'/>
​ </interface>
​ </devices>
​ ...
​
​

Figure 18.28. Multicast tunnel XML example

 ⁠18.13.2. Creating TCP Tunnels

				A TCP client/server architecture provides a virtual network. In this configuration, one guest virtual machine provides the server end of the network while all other guest virtual machines are configured as clients. All network traffic is routed between the guest virtual machine clients via the guest virtual machine server. This mode is also available for unprivileged users. Note that this mode does not provide default DNS or DHCP support nor does it provide outgoing network access. To provide outgoing network access, one of the guest virtual machines should have a second NIC which is connected to one of the first four network types thus providing appropriate routing.
			

				To create a TCP tunnel place the following XML details into the <devices> element:
			

 ⁠​
​
​ ...
​ <devices>
​ <interface type='server'>
​ <mac address='52:54:00:22:c9:42'>
​ <source address='192.168.0.1' port='5558'/>
​ </interface>
​ ...
​ <interface type='client'>
​ <mac address='52:54:00:8b:c9:51'>
​ <source address='192.168.0.1' port='5558'/>
​ </interface>
​ </devices>
​ ...
​
​

Figure 18.29. TCP tunnel domain XMl example

 ⁠18.14. Setting vLAN Tags

			virtual local area network (vLAN) tags are added using the virsh net-edit command. This tag can also be used with PCI device assignment with SR-IOV devices. For more information, refer to Section 9.1.7, “Configuring PCI Assignment (Passthrough) with SR-IOV Devices”.
		

 ⁠​
​
​<network>
​ <name>ovs-net</name>
​ <forward mode='bridge'/>
​ <bridge name='ovsbr0'/>
​ <virtualport type='openvswitch'>
​ <parameters interfaceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'/>
​ </virtualport>
​ <vlan trunk='yes'>
​ <tag id='42' nativeMode='untagged'/>
​ <tag id='47'/>
​ </vlan>
​ <portgroup name='dontpanic'>
​ <vlan>
​ <tag id='42'/>
​ </vlan>
​ </portgroup>
​</network>

Figure 18.30. vSetting VLAN tag (on supported network types only)

			If (and only if) the network type supports vlan tagging transparent to the guest, an optional <vlan> element can specify one or more vlan tags to apply to the traffic of all guests using this network. (openvswitch and type='hostdev' SR-IOV networks do support transparent VLAN tagging of guest traffic; everything else, including standard linux bridges and libvirt's own virtual networks, do not support it. 802.1Qbh (vn-link) and 802.1Qbg (VEPA) switches provide their own way (outside of libvirt) to tag guest traffic onto specific vlans.) As expected, the tag attribute specifies which vlan tag to use. If a network has more than one <vlan> element defined, it is assumed that the user wants to do VLAN trunking using all the specified tags. In the case that VLAN trunking with a single tag is desired, the optional attribute trunk='yes' can be added to the VLAN element.
		

			For network connections using openvswitch it is possible to configure the 'native-tagged' and 'native-untagged' VLAN modes. This uses the optional nativeMode attribute on the <tag> element: nativeMode may be set to 'tagged' or 'untagged'. The id attribute of the element sets the native vlan.
		

			<vlan> elements can also be specified in a <portgroup> element, as well as directly in a domain's <interface> element. In the case that a vlan tag is specified in multiple locations, the setting in <interface> takes precedence, followed by the setting in the <portgroup> selected by the interface config. The <vlan> in <network> will be selected only if none is given in <portgroup> or <interface>.
		

 ⁠18.15. Applying QoS to Your Virtual Network

			Quality of Service (QoS) refers to the resource control systems that guarantees an optimal experience for all users on a network, making sure that there is no delay, jitter, or packet loss. QoS can be application specific or user / group specific. Refer to Section 20.16.9.14, “Quality of service” for more information.
		

 ⁠Chapter 19. qemu-kvm Commands, Flags, and Arguments

 ⁠19.1. Introduction

Note

				The primary objective of this chapter is to provide a list of the qemu-kvm utility commands, flags, and arguments that are used as an emulator and a hypervisor in Red Hat Enterprise Linux 6. This is a comprehensive summary of the options that are known to work but are to be used at your own risk. Red Hat Enterprise Linux 6 uses KVM as an underlying virtualization technology. The machine emulator and hypervisor used is a modified version of QEMU called qemu-kvm. This version does not support all configuration options of the original QEMU and it also adds some additional options.
			

				Options not listed here should not be performed.
			

 ⁠Whitelist Format
	
					<name> - When used in a syntax description, this string should be replaced by user-defined value.
				

	
					[a|b|c] - When used in a syntax description, only one of the strings separated by | is used.
				

	
					When no comment is present, an option is supported with all possible values.
				

 ⁠19.2. Basic Options

			This section provides information about the basic options.
		

 ⁠Emulated Machine

			-M <machine-type>
		

			-machine <machine-type>[,<property>[=<value>][,..]]
		

 ⁠Processor Type

			-cpu <model>[,<FEATURE>][...]
		

			Additional models are visible by running -cpu ? command.
		
	
					Opteron_G5 - AMD Opteron 63xx class CPU
				

	
					Opteron_G4 - AMD Opteron 62xx class CPU
				

	
					Opteron_G3 - AMD Opteron 23xx (AMD Opteron Gen 3)
				

	
					Opteron_G2 - AMD Opteron 22xx (AMD Opteron Gen 2)
				

	
					Opteron_G1 - AMD Opteron 240 (AMD Opteron Gen 1)
				

	
					Westmere - Westmere E56xx/L56xx/X56xx (Nehalem-C)
				

	
					Haswell - Intel Core Processor (Haswell)
				

	
					SandyBridge - Intel Xeon E312xx (Sandy Bridge)
				

	
					Nehalem - Intel Core i7 9xx (Nehalem Class Core i7)
				

	
					Penryn - Intel Core 2 Duo P9xxx (Penryn Class Core 2)
				

	
					Conroe - Intel Celeron_4x0 (Conroe/Merom Class Core 2)
				

	
					cpu64-rhel5 - Red Hat Enterprise Linux 5 supported QEMU Virtual CPU version
				

	
					cpu64-rhel6 - Red Hat Enterprise Linux 6 supported QEMU Virtual CPU version
				

	
					default - special option use default option from above.
				

 ⁠Processor Topology

			-smp <n>[,cores=<ncores>][,threads=<nthreads>][,sockets=<nsocks>][,maxcpus=<maxcpus>]
		

			Hypervisor and guest operating system limits on processor topology apply.
		

 ⁠NUMA System

			-numa <nodes>[,mem=<size>][,cpus=<cpu[-cpu>]][,nodeid=<node>]
		

			Hypervisor and guest operating system limits on processor topology apply.
		

 ⁠Memory Size

			-m <megs>
		

			Supported values are limited by guest minimal and maximal values and hypervisor limits.
		

 ⁠Keyboard Layout

			-k <language>
		

 ⁠Guest Name

			-name <name>
		

 ⁠Guest UUID

			-uuid <uuid>
		

 ⁠19.3. Disk Options

			This section provides information about disk options.
		

 ⁠Generic Drive

			-drive <option>[,<option>[,<option>[,...]]]
		

			Supported with the following options:
		
	
					readonly[on|off]
				

	
					werror[enospc|report|stop|ignore]
				

	
					rerror[report|stop|ignore]
				

	
					id=<id>
				

					Id of the drive has the following limitation for if=none:
				
	
							IDE disk has to have <id> in following format: drive-ide0-<BUS>-<UNIT>
						

							Example of correct format:
						

							-drive if=none,id=drive-ide0-<BUS>-<UNIT>,... -device ide-drive,drive=drive-ide0-<BUS>-<UNIT>,bus=ide.<BUS>,unit=<UNIT>
						

	
					file=<file>
				

					Value of <file> is parsed with the following rules:
				
	
							Passing floppy device as <file> is not supported.
						

	
							Passing cd-rom device as <file> is supported only with cdrom media type (media=cdrom) and only as IDE drive (either if=ide or if=none + -device ide-drive).
						

	
							If <file> is neither block nor character device, it must not contain ':'.
						

	
					if=<interface>
				

					The following interfaces are supported: none, ide, virtio, floppy.
				

	
					index=<index>
				

	
					media=<media>
				

	
					cache=<cache>
				

					Supported values: none, writeback or writethrough.
				

	
					copy-on-read=[on|off]
				

	
					snapshot=[yes|no]
				

	
					serial=<serial>
				

	
					aio=<aio>
				

	
					format=<format>
				

					This option is not required and can be omitted. However, this is not recommended for raw images because it represents security risk. Supported formats are:
				
	
							qcow2
						

	
							raw
						

 ⁠Boot Option

			-boot [order=<drives>][,menu=[on|off]]
		

 ⁠Snapshot Mode

			-snapshot
		

 ⁠19.4. Display Options

			This section provides information about display options.
		

 ⁠Disable Graphics

			-nographic
		

 ⁠VGA Card Emulation

			-vga <type>
		

			Supported types:
		
	
					cirrus - Cirrus Logic GD5446 Video card.
				

	
					std - Standard VGA card with Bochs VBE extensions.
				

	
					qxl - Spice paravirtual card.
				

	
					none - Disable VGA card.
				

 ⁠VNC Display

			-vnc <display>[,<option>[,<option>[,...]]]
		

			Supported display value:
		
	
					[<host>]:<port>
				

	
					unix:<path>
				

	
					share[allow-exclusive|force-shared|ignore]
				

	
					none - Supported with no other options specified.
				

			Supported options are:
		
	
					to=<port>
				

	
					reverse
				

	
					password
				

	
					tls
				

	
					x509=</path/to/certificate/dir> - Supported when tls specified.
				

	
					x509verify=</path/to/certificate/dir> - Supported when tls specified.
				

	
					sasl
				

	
					acl
				

 ⁠Spice Desktop

			-spice option[,option[,...]]
		

			Supported options are:
		
	
					port=<number>
				

	
					addr=<addr>
				

	
					ipv4
				

					ipv6
				

	
					password=<secret>
				

	
					disable-ticketing
				

	
					disable-copy-paste
				

	
					tls-port=<number>
				

	
					x509-dir=</path/to/certificate/dir>
				

	
					x509-key-file=<file>
				

					x509-key-password=<file>
				

					x509-cert-file=<file>
				

					x509-cacert-file=<file>
				

					x509-dh-key-file=<file>
				

	
					tls-cipher=<list>
				

	
					tls-channel[main|display|cursor|inputs|record|playback]
				

					plaintext-channel[main|display|cursor|inputs|record|playback]
				

	
					image-compression=<compress>
				

	
					jpeg-wan-compression=<value>
				

					zlib-glz-wan-compression=<value>
				

	
					streaming-video=[off|all|filter]
				

	
					agent-mouse=[on|off]
				

	
					playback-compression=[on|off]
				

	
					seamless-migratio=[on|off]
				

 ⁠19.5. Network Options

			This section provides information about network options.
		

 ⁠TAP network

			-netdev tap,id=<id>][,<options>...]
		

			The following options are supported (all use name=value format):
		
	
					ifname
				

	
					fd
				

	
					script
				

	
					downscript
				

	
					sndbuf
				

	
					vnet_hdr
				

	
					vhost
				

	
					vhostfd
				

	
					vhostforce
				

 ⁠19.6. Device Options

			This section provides information about device options.
		

 ⁠General Device

			-device <driver>[,<prop>[=<value>][,...]]
		

			All drivers support following properties
		
	
					id
				

	
					bus
				

			Following drivers are supported (with available properties):
		
	
					pci-assign
				
	
							host
						

	
							bootindex
						

	
							configfd
						

	
							addr
						

	
							rombar
						

	
							romfile
						

	
							multifunction
						

					If the device has multiple functions, all of them need to be assigned to the same guest.
				

	
					rtl8139
				
	
							mac
						

	
							netdev
						

	
							bootindex
						

	
							addr
						

	
					e1000
				
	
							mac
						

	
							netdev
						

	
							bootindex
						

	
							addr
						

	
					virtio-net-pci
				
	
							ioeventfd
						

	
							vectors
						

	
							indirect
						

	
							event_idx
						

	
							csum
						

	
							guest_csum
						

	
							gso
						

	
							guest_tso4
						

	
							guest_tso6
						

	
							guest_ecn
						

	
							guest_ufo
						

	
							host_tso4
						

	
							host_tso6
						

	
							host_ecn
						

	
							host_ufo
						

	
							mrg_rxbuf
						

	
							status
						

	
							ctrl_vq
						

	
							ctrl_rx
						

	
							ctrl_vlan
						

	
							ctrl_rx_extra
						

	
							mac
						

	
							netdev
						

	
							bootindex
						

	
							x-txtimer
						

	
							x-txburst
						

	
							tx
						

	
							addr
						

	
					qxl
				
	
							ram_size
						

	
							vram_size
						

	
							revision
						

	
							cmdlog
						

	
							addr
						

	
					ide-drive
				
	
							unit
						

	
							drive
						

	
							physical_block_size
						

	
							bootindex
						

	
							ver
						

	
							wwn
						

	
					virtio-blk-pci
				
	
							class
						

	
							drive
						

	
							logical_block_size
						

	
							physical_block_size
						

	
							min_io_size
						

	
							opt_io_size
						

	
							bootindex
						

	
							ioeventfd
						

	
							vectors
						

	
							indirect_desc
						

	
							event_idx
						

	
							scsi
						

	
							addr
						

	
					virtio-scsi-pci - Technology Preview in 6.3, supported since 6.4.
				

					For Windows guests, Windows Server 2003, which was Technology Preview, is no longer supported since 6.5. However, Windows Server 2008 and 2012, and Windows desktop 7 and 8 are fully supported since 6.5.
				
	
							vectors
						

	
							indirect_desc
						

	
							event_idx
						

	
							num_queues
						

	
							addr
						

	
					isa-debugcon
				

	
					isa-serial
				
	
							index
						

	
							iobase
						

	
							irq
						

	
							chardev
						

	
					virtserialport
				
	
							nr
						

	
							chardev
						

	
							name
						

	
					virtconsole
				
	
							nr
						

	
							chardev
						

	
							name
						

	
					virtio-serial-pci
				
	
							vectors
						

	
							class
						

	
							indirect_desc
						

	
							event_idx
						

	
							max_ports
						

	
							flow_control
						

	
							addr
						

	
					ES1370
				
	
							addr
						

	
					AC97
				
	
							addr
						

	
					intel-hda
				
	
							addr
						

	
					hda-duplex
				
	
							cad
						

	
					hda-micro
				
	
							cad
						

	
					hda-output
				
	
							cad
						

	
					i6300esb
				
	
							addr
						

	
					ib700 - no properties
				

	
					sga - no properties
				

	
					virtio-balloon-pci
				
	
							indirect_desc
						

	
							event_idx
						

	
							addr
						

	
					usb-tablet
				
	
							migrate
						

	
							port
						

	
					usb-kbd
				
	
							migrate
						

	
							port
						

	
					usb-mouse
				
	
							migrate
						

	
							port
						

	
					usb-ccid - supported since 6.2
				
	
							port
						

	
							slot
						

	
					usb-host - Technology Preview since 6.2
				
	
							hostbus
						

	
							hostaddr
						

	
							hostport
						

	
							vendorid
						

	
							productid
						

	
							isobufs
						

	
							port
						

	
					usb-hub - supported since 6.2
				
	
							port
						

	
					usb-ehci - Technology Preview since 6.2
				
	
							freq
						

	
							maxframes
						

	
							port
						

	
					usb-storage - Technology Preview since 6.2
				
	
							drive
						

	
							bootindex
						

	
							serial
						

	
							removable
						

	
							port
						

	
					usb-redir - Technology Preview for 6.3, supported since 6.4
				
	
							chardev
						

	
							filter
						

	
					scsi-cd - Technology Preview for 6.3, supported since 6.4
				
	
							drive
						

	
							logical_block_size
						

	
							physical_block_size
						

	
							min_io_size
						

	
							opt_io_size
						

	
							bootindex
						

	
							ver
						

	
							serial
						

	
							scsi-id
						

	
							lun
						

	
							channel-scsi
						

	
							wwn
						

	
					scsi-hd -Technology Preview for 6.3, supported since 6.4
				
	
							drive
						

	
							logical_block_size
						

	
							physical_block_size
						

	
							min_io_size
						

	
							opt_io_size
						

	
							bootindex
						

	
							ver
						

	
							serial
						

	
							scsi-id
						

	
							lun
						

	
							channel-scsi
						

	
							wwn
						

	
					scsi-block -Technology Preview for 6.3, supported since 6.4
				
	
							drive
						

	
							bootindex
						

	
					scsi-disk -Technology Preview for 6.3
				
	
							drive=drive
						

	
							logical_block_size
						

	
							physical_block_size
						

	
							min_io_size
						

	
							opt_io_size
						

	
							bootindex
						

	
							ver
						

	
							serial
						

	
							scsi-id
						

	
							lun
						

	
							channel-scsi
						

	
							wwn
						

	
					piix3-usb-uhci
				

	
					piix4-usb-uhci
				

	
					ccid-card-passthru
				

 ⁠Global Device Setting

			-global <device>.<property>=<value>
		

			Supported devices and properties as in "General device" section with these additional devices:
		
	
					isa-fdc
				
	
							driveA
						

	
							driveB
						

	
							bootindexA
						

	
							bootindexB
						

	
					qxl-vga
				
	
							ram_size
						

	
							vram_size
						

	
							revision
						

	
							cmdlog
						

	
							addr
						

 ⁠Character Device

			-chardev back end,id=<id>[,<options>]
		

			Supported back ends are:
		
	
					null,id=<id> - null device
				

	
					socket,id=<id>,port=<port>[,host=<host>][,to=<to>][,ipv4][,ipv6][,nodelay][,server][,nowait][,telnet] - tcp socket
				

	
					socket,id=<id>,path=<path>[,server][,nowait][,telnet] - unix socket
				

	
					file,id=<id>,path=<path> - trafit to file.
				

	
					stdio,id=<id> - standard i/o
				

	
					spicevmc,id=<id>,name=<name> - spice channel
				

 ⁠Enable USB

			-usb
		

 ⁠19.7. Linux/Multiboot Boot

			This section provides information about Linux and multiboot booting.
		

 ⁠Kernel File

			-kernel <bzImage>
		

			Note: multiboot images are not supported
		

 ⁠Ram Disk

			-initrd <file>
		

 ⁠Command Line Parameter

			-append <cmdline>
		

 ⁠19.8. Expert Options

			This section provides information about expert options.
		

 ⁠KVM Virtualization

			-enable-kvm
		

			QEMU-KVM supports only KVM virtualization and it is used by default if available. If -enable-kvm is used and KVM is not available, qemu-kvm fails. However, if -enable-kvm is not used and KVM is not available, qemu-kvm runs in TCG mode, which is not supported.
		

 ⁠Disable Kernel Mode PIT Reinjection

			-no-kvm-pit-reinjection
		

 ⁠No Shutdown

			-no-shutdown
		

 ⁠No Reboot

			-no-reboot
		

 ⁠Serial Port, Monitor, QMP

			-serial <dev>
		

			-monitor <dev>
		

			-qmp <dev>
		

			Supported devices are:
		
	
					stdio - standard input/output
				

	
					null - null device
				

	
					file:<filename> - output to file.
				

	
					tcp:[<host>]:<port>[,server][,nowait][,nodelay] - TCP Net console.
				

	
					unix:<path>[,server][,nowait] - Unix domain socket.
				

	
					mon:<dev_string> - Any device above, used to multiplex monitor too.
				

	
					none - disable, valid only for -serial.
				

	
					chardev:<id> - character device created with -chardev.
				

 ⁠Monitor Redirect

			-mon <chardev_id>[,mode=[readline|control]][,default=[on|off]]
		

 ⁠Manual CPU Start

			-S
		

 ⁠RTC

			-rtc [base=utc|localtime|date][,clock=host|vm][,driftfix=none|slew]
		

 ⁠Watchdog

			-watchdog model
		

 ⁠Watchdog Reaction

			-watchdog-action <action>
		

 ⁠Guest Memory Backing

			-mem-prealloc -mem-path /dev/hugepages
		

 ⁠SMBIOS Entry

			-smbios type=0[,vendor=<str>][,<version=str>][,date=<str>][,release=%d.%d]
		

			-smbios type=1[,manufacturer=<str>][,product=<str>][,version=<str>][,serial=<str>][,uuid=<uuid>][,sku=<str>][,family=<str>]
		

 ⁠19.9. Help and Information Options

			This section provides information about help and information options.
		

 ⁠Help

			-h
		

			-help
		

 ⁠Version

			-version
		

 ⁠Audio Help

			-audio-help
		

 ⁠19.10. Miscellaneous Options

			This section provides information about miscellaneous options.
		

 ⁠Migration

			-incoming
		

 ⁠No Default Configuration

			-nodefconfig
		

			-nodefaults
		

			Running without -nodefaults is not supported
		

 ⁠Device Configuration File

			-readconfig <file>
		

			-writeconfig <file>
		

 ⁠Loaded Saved State

			-loadvm <file>
		

 ⁠Chapter 20. Manipulating the Domain XML

		This section describes the XML format used to represent domains. Here the term domain refers to the root <domain> element required for all guest virtual machine. The domain XML has two attributes: type specifies the hypervisor used for running the domain. The allowed values are driver specific, but include KVM and others. id is a unique integer identifier for the running guest virtual machine. Inactive machines have no id value. The sections in this chapter will address the components of the domain XML. Additional chapters in this manual may refer to this chapter when manipulation of the domain XML is required.
	
Note

			This chapter is based on the libvirt upstream documentation.
		

 ⁠20.1. General Information and Metadata

			This information is in this part of the domain XML:
		

 ⁠​
​
​<domain type='xen' id='3'>
​ <name>fv0</name>
​ <uuid>4dea22b31d52d8f32516782e98ab3fa0</uuid>
​ <title>A short description - title - of the domain</title>
​ <description>Some human readable description</description>
​ <metadata>
​ <app1:foo xmlns:app1="http://app1.org/app1/">..</app1:foo>
​ <app2:bar xmlns:app2="http://app1.org/app2/">..</app2:bar>
​ </metadata>
​ ...
​</domain>

Figure 20.1. Domain XML metadata

			The components of this section of the domain XML are as follows:
		

 ⁠Table 20.1. General metadata elements
	Element	Description
	<name>	Assigns a name for the virtual machine. This name should consist only of alpha-numeric characters and is required to be unique within the scope of a single host physical machine. It is often used to form the filename for storing the persistent configuration files.
	<uuid>	 assigns a globally unique identifier for the virtual machine. The format must be RFC 4122-compliant, eg 3e3fce45-4f53-4fa7-bb32-11f34168b82b. If omitted when defining/creating a new machine, a random UUID is generated. It is also possible to provide the UUID with a sysinfo specification.
	<title>	title Creates space for a short description of the domain. The title should not contain any newlines.
	<description>	Different from the title, This data is not used by libvirt in any way, it can contain any information the user wants to display.
	<metadata>	Can be used by applications to store custom metadata in the form of XML nodes/trees. Applications must use custom namespaces on their XML nodes/trees, with only one top-level element per namespace (if the application needs structure, they should have sub-elements to their namespace element)

 ⁠20.2. Operating System Booting

			There are a number of different ways to boot virtual machines each with their own pros and cons. Each one is described in the sub-sections that follow and include: BIOS boot loader, host physical machine boot loader, and direct kernel boot.
		

 ⁠20.2.1. BIOS Boot loader

				Booting through the BIOS is available for hypervisors supporting full virtualization. In this case the BIOS has a boot order priority (floppy, harddisk, cdrom, network) determining where to obtain/find the boot image. The OS section of the domain XML contains the information as follows:
			

 ⁠​
​
​ ...
​ <os>
​ <type>hvm</type>
​ <loader>/usr/lib/xen/boot/hvmloader</loader>
​ <boot dev='hd'/>
​ <boot dev='cdrom'/>
​ <bootmenu enable='yes'/>
​ <smbios mode='sysinfo'/>
​ <bios useserial='yes' rebootTimeout='0'/>
​ </os>
​ ...

Figure 20.2. BIOS boot loader domain XML

				The components of this section of the domain XML are as follows:
			

 ⁠Table 20.2. BIOS boot loader elements
	Element	Description
	<type>	Specifies the type of operating system to be booted on the guest virtual machine. hvm indicates that the OS is one designed to run on bare metal, so requires full virtualization. linux refers to an OS that supports the Xen 3 hypervisor guest ABI. There are also two optional attributes, arch specifying the CPU architecture to virtualization, and machine referring to the machine type. Refer to Driver Capabilities for more information.
	<loader>	refers to a piece of firmware that is used to assist the domain creation process. It is only needed for using Xen fully virtualized domains.
	<boot>	takes one of the values:fd, hd, cdrom or network and is used to specify the next boot device to consider. The boot element can be repeated multiple times to setup a priority list of boot devices to try in turn. Multiple devices of the same type are sorted according to their targets while preserving the order of buses. After defining the domain, its XML configuration returned by libvirt (through virDomainGetXMLDesc) lists devices in the sorted order. Once sorted, the first device is marked as bootable. For more information see BIOS bootloader.
	<bootmenu>	determines whether or not to enable an interactive boot menu prompt on guest virtual machine startup. The enable attribute can be either yes or no. If not specified, the hypervisor default is used
	<smbios>	determines how SMBIOS information is made visible in the guest virtual machine. The mode attribute must be specified, as either emulate (lets the hypervisor generate all values), host(copies all of Block 0 and Block 1, except for the UUID, from the host physical machine's SMBIOS values; the virConnectGetSysinfo call can be used to see what values are copied), or sysinfo (uses the values in the sysinfo element). If not specified, the hypervisor default setting is used.
	<bios>	This element has attribute useserial with possible values yes or no. The attribute enables or disables Serial Graphics Adapter which allows users to see BIOS messages on a serial port. Therefore, one needs to have serial port defined. Note there is another attribute, rebootTimeout that controls whether and after how long the guest virtual machine should start booting again in case the boot fails (according to BIOS). The value is in milliseconds with maximum of 65535 and special value -1 disables the reboot.

 ⁠20.2.2. Host Physical Machine Boot Loader

				Hypervisors employing paravirtualization do not usually emulate a BIOS, but instead the host physical machine is responsible for the operating system boot. This may use a pseudo-bootloader in the host physical machine to provide an interface to choose a kernel for the guest virtual machine. An example is pygrub with Xen.
			

 ⁠​
​ ...
​ <bootloader>/usr/bin/pygrub</bootloader>
​ <bootloader_args>--append single</bootloader_args>
​ ...

Figure 20.3. Host physical machine boot loader domain XML

				The components of this section of the domain XML are as follows:
			

 ⁠Table 20.3. BIOS boot loader elements
	Element	Description
	<bootloader>	provides a fully qualified path to the boot loader executable in the host physical machine OS. This boot loader will choose which kernel to boot. The required output of the boot loader is dependent on the hypervisor in use.
	<bootloader_args>	allows command line arguments to be passed to the boot loader (optional command)

 ⁠20.2.3. Direct kernel boot

				When installing a new guest virtual machine OS, it is often useful to boot directly from a kernel and initrd stored in the host physical machine OS, allowing command line arguments to be passed directly to the installer. This capability is usually available for both para and full virtualized guest virtual machines.
			

 ⁠​
​
​ ...
​ <os>
​ <type>hvm</type>
​ <loader>/usr/lib/xen/boot/hvmloader</loader>
​ <kernel>/root/f8-i386-vmlinuz</kernel>
​ <initrd>/root/f8-i386-initrd</initrd>
​ <cmdline>console=ttyS0 ks=http://example.com/f8-i386/os/</cmdline>
​ <dtb>/root/ppc.dtb</dtb>
​ </os>
​ ...
​

Figure 20.4. Direct Kernel Boot

				The components of this section of the domain XML are as follows:
			

 ⁠Table 20.4. Direct kernel boot elements
	Element	Description
	<type>	same as described in the BIOS boot section
	<loader>	same as described in the BIOS boot section
	<kernel>	specifies the fully-qualified path to the kernel image in the host physical machine OS
	<initrd>	specifies the fully-qualified path to the (optional) ramdisk image in the host physical machine OS.
	<cmdline>	specifies arguments to be passed to the kernel (or installer) at boot time. This is often used to specify an alternate primary console (eg serial port), or the installation media source / kickstart file

 ⁠20.3. SMBIOS System Information

			Some hypervisors allow control over what system information is presented to the guest virtual machine (for example, SMBIOS fields can be populated by a hypervisor and inspected using the midecode command in the guest virtual machine). The optional sysinfo element covers all such categories of information.
		

 ⁠​
​
​ ...
​ <os>
​ <smbios mode='sysinfo'/>
​ ...
​ </os>
​ <sysinfo type='smbios'>
​ <bios>
​ <entry name='vendor'>LENOVO</entry>
​ </bios>
​ <system>
​ <entry name='manufacturer'>Fedora</entry>
​ <entry name='vendor'>Virt-Manager</entry>
​ </system>
​ </sysinfo>
​ ...

Figure 20.5. SMBIOS system information

			The <sysinfo> element has a mandatory attribute type that determines the layout of sub-elements, and may be defined as follows:
		
	
					smbios - Sub-elements call out specific SMBIOS values, which will affect the guest virtual machine if used in conjunction with the smbios sub-element of the <os> element. Each sub-element of sysinfo names a SMBIOS block, and within those elements can be a list of entry elements that describe a field within the block. The following blocks and entries are recognized:
				
	
							bios - This is block 0 of SMBIOS, with entry names drawn from vendor, version, date, and release.
						

	
							<system> - This is block 1 of SMBIOS, with entry names drawn from manufacturer, product, version, serial, uuid, sku, and family. If a uuid entry is provided alongside a top-level uuid element, the two values must match.
						

 ⁠20.4. CPU Allocation

 ⁠​
​
​<domain>
​ ...
​ <vcpu placement='static' cpuset="1-4,^3,6" current="1">2</vcpu>
​ ...
​</domain>

Figure 20.6. CPU allocation

			The <cpu> element defines the maximum number of virtual CPUs (vCPUs) allocated for the guest virtual machine operating system, which must be between 1 and the maximum supported by the hypervisor. This element can contain an optional cpuset attribute, which is a comma-separated list of physical CPU numbers that domain processes and virtual CPUs can be pinned to by default.
		

			Note that the pinning policy of domain processes and virtual CPUs can be specified separately by using the cputune attribute. If the emulatorpin attribute is specified in <cputune>, the cpuset value specified by <vcpu> will be ignored.
		

			Similarly, virtual CPUs that have set a value for vcpupin cause cpuset settings to be ignored. Virtual CPUs where vcpupin is not specified will be pinned to the physical CPUs specified by cpuset. Each element in the cpuset list is either a single CPU number, a range of CPU numbers, or a caret (^) followed by a CPU number to be excluded from a previous range. The attribute current can be used to specify whether fewer than the maximum number of virtual CPUs should be enabled.
		

			The optional attribute placement can be used to specify the CPU placement mode for the domain process. placement can be set as either static or auto. If you set <vcpu placement='auto'>, the system will query numad and use the settings specified in the <numatune> tag, and ignore any other settings in <vcpu> . If you set <vcpu placement='static'>, the system will use the settings specified in the <vcpu placement> tag instead of the settings in <numatune>.
		

 ⁠20.5. CPU Tuning

 ⁠​
​
​<domain>
​ ...
​ <cputune>
​ <vcpupin vcpu="0" cpuset="1-4,^2"/>
​ <vcpupin vcpu="1" cpuset="0,1"/>
​ <vcpupin vcpu="2" cpuset="2,3"/>
​ <vcpupin vcpu="3" cpuset="0,4"/>
​ <emulatorpin cpuset="1-3"/>
​ <shares>2048</shares>
​ <period>1000000</period>
​ <quota>-1</quota>
​ <emulator_period>1000000</emulator_period>
​ <emulator_quota>-1</emulator_quota>
​ </cputune>
​ ...
​</domain>

Figure 20.7. CPU tuning

			Although all are optional, the components of this section of the domain XML are as follows:
		

 ⁠Table 20.5. CPU tuning elements
	Element	Description
	<cputune>	Provides details regarding the CPU tunable parameters for the domain. This is optional.
	<vcpupin>	Specifies which of host physical machine's physical CPUs the domain VCPU will be pinned to. If this is omitted, and attribute cpuset of element <vcpu> is not specified, the vCPU is pinned to all the physical CPUs by default. It contains two required attributes, the attribute vcpu specifies id, and the attribute cpuset is same as attribute cpuset of element <vcpu>.
	<emulatorpin>	Specifies which of the host physical machine CPUs, the "emulator", a subset of a domains not including vcpu, will be pinned to. If this is omitted, and attribute cpuset of element <vcpu> is not specified, the "emulator" is pinned to all the physical CPUs by default. It contains one required attribute cpuset specifying which physical CPUs to pin to. emulatorpin is not allowed if attribute placement of element <vcpu> is auto.
	<shares>	Specifies the proportional weighted share for the domain. If this is omitted, it defaults to the default value inherent in the operating system. If there is no unit for the value, it is calculated relative to the setting of other guest virtual machines. For example, if a guest virtual machine is configured with value of 2048, it will get twice as much processing time as a guest virtual machine configured with value of 1024.
	<period>	Specifies the enforcement interval in microseconds. By using period, each of the domain's vcpu will not be allowed to consume more than its allotted quota worth of run time. This value should be within the following range: 1000-1000000. A period> with a value of 0 means no value.
	<quota>	Specifies the maximum allowed bandwidth in microseconds. A domain with quota as any negative value indicates that the domain has infinite bandwidth, which means that it is not bandwidth controlled. The value should be within the following range:1000 - 18446744073709551 or less than 0. A quota with value of 0 means no value. You can use this feature to ensure that all vcpus run at the same speed.
	<emulator_period>	Specifies the enforcement interval in microseconds. Within an <emulator_period>, emulator threads (those excluding vcpus) of the domain will not be allowed to consume more than the <emulator_quota> worth of run time. The <emulator_period> value should be in the following range: 1000 - 1000000. An <emulator_period> with value of 0, means no value.
	<emulator_quota>	Specifies the maximum allowed bandwidth in microseconds for the domain's emulator threads (those excluding vcpus). A domain with an <emulator_quota> as a negative value indicates that the domain has infinite bandwidth for emulator threads (those excluding vcpus), which means that it is not bandwidth controlled. The value should be in the following range: 1000 - 18446744073709551, or less than 0. An <emulator_quota> with value 0 means no value.

 ⁠20.6. Memory Backing

			Memory backing allows the hypervisor to properly manage large pages within the guest virtual machine.
		

			The optional <memoryBacking> element may have an <hugepages> element set within it. This tells the hypervisor that the guest virtual machine should have its memory allocated using hugepages instead of the normal native page size.
		

 ⁠​
​
​<domain>
​ ...
​ <memoryBacking>
​ <hugepages/>
​ </memoryBacking>
​ ...
​</domain>

Figure 20.8. Memory backing

 ⁠20.7. Memory tuning

 ⁠​
​
​<domain>
​ ...
​ <memtune>
​ <hard_limit unit='G'>1</hard_limit>
​ <soft_limit unit='M'>128</soft_limit>
​ <swap_hard_limit unit='G'>2</swap_hard_limit>
​ <min_guarantee unit='bytes'>67108864</min_guarantee>
​ </memtune>
​ ...
​</domain>

Figure 20.9. Memory Tuning

			Although all are optional, the components of this section of the domain XML are as follows:
		

 ⁠Table 20.6. Memory tuning elements
	Element	Description
	<memtune>	Provides details regarding the memory tunable parameters for the domain. If this is omitted, it defaults to the OS provided defaults. The parameters are applied to the process as a whole therefore when setting limits, one needs to add up guest virtual machine RAM, guest virtual machine video RAM, and allow for some memory overhead. The last piece is hard to determine so one use trial and error. For each tunable, it is possible to designate which unit the number is in on input, using the same values as for <memory>. For backwards compatibility, output is always in KiB.
	<hard_limit>	This is the maximum memory the guest virtual machine can use. The unit for this value is expressed in kibibytes (blocks of 1024 bytes)
	<soft_limit>	This is the memory limit to enforce during memory contention. The unit for this value is expressed in kibibytes (blocks of 1024 bytes)
	<swap_hard_limit>	This is the maximum memory plus swap the guest virtual machine can use. The unit for this value is expressed in kibibytes (blocks of 1024 bytes). This has to be more than <hard_limit> value provided
	<min_guarantee>	This is the guaranteed minimum memory allocation for the guest virtual machine. The units for this value is expressed in kibibytes (blocks of 1024 bytes)

 ⁠20.8. NUMA Node Tuning

			Once NUMA node tuning is done using conventional management tools the following domain XML parameters are effected:
		

 ⁠​
​>
​<domain>
​ ...
​ <numatune>
​ <memory mode="strict" nodeset="1-4,^3"/>
​ </numatune>
​ ...
​</domain>

Figure 20.10. NUMA node tuning

			Although all are optional, the components of this section of the domain XML are as follows:
		

 ⁠Table 20.7. NUMA node tuning elements
	Element	Description
	<numatune>	Provides details of how to tune the performance of a NUMA host physical machine through controlling NUMA policy for domain process.
	<memory>	Specifies how to allocate memory for the domain process on a NUMA host physical machine. It contains several optional attributes. Attribute mode is either interleave, strict, or preferred. If no value is given it defaults to strict. Attribute nodeset specifies the NUMA nodes, using the same syntax as attribute cpuset of element <vcpu>. Attribute placement can be used to indicate the memory placement mode for the domain process. Its value can be either static or auto. If attribute <nodeset> is specified it defaults to the <placement> of <vcpu>, or static. auto indicates the domain process will only allocate memory from the advisory nodeset returned from querying numad and the value of attribute nodeset will be ignored if it is specified. If attribute placement of vcpu is auto, and attribute <numatune> is not specified, a default numatune with <placement> auto and mode strict will be added implicitly.

 ⁠20.9. Block I/O tuning

 ⁠​
​
​<domain>
​ ...
​ <blkiotune>
​ <weight>800</weight>
​ <device>
​ <path>/dev/sda</path>
​ <weight>1000</weight>
​ </device>
​ <device>
​ <path>/dev/sdb</path>
​ <weight>500</weight>
​ </device>
​ </blkiotune>
​ ...
​</domain>

Figure 20.11. Block I/O Tuning

			Although all are optional, the components of this section of the domain XML are as follows:
		

 ⁠Table 20.8. Block I/O tuning elements
	Element	Description
	<blkiotune>	This optional element provides the ability to tune Blkio cgroup tunable parameters for the domain. If this is omitted, it defaults to the OS provided defaults.
	<weight>	This optional weight element is the overall I/O weight of the guest virtual machine. The value should be within the range 100 - 1000.
	<device>	The domain may have multiple <device> elements that further tune the weights for each host physical machine block device in use by the domain. Note that multiple guest virtual machine disks can share a single host physical machine block device. In addition, as they are backed by files within the same host physical machine file system, this tuning parameter is at the global domain level, rather than being associated with each guest virtual machine disk device (contrast this to the <iotune> element which can be applied to a single <disk>). Each device element has two mandatory sub-elements, <path> describing the absolute path of the device, and <weight> giving the relative weight of that device, which has an acceptable range of 100 - 1000.

 ⁠20.10. Resource Partitioning

			Hypervisors may allow for virtual machines to be placed into resource partitions, potentially with nesting of said partitions. The <resource> element groups together configuration related to resource partitioning. It currently supports a child element partition whose content defines the path of the resource partition in which to place the domain. If no partition is listed, then the domain will be placed in a default partition. It is the responsibility of the app/admin to ensure that the partition exists prior to starting the guest virtual machine. Only the (hypervisor specific) default partition can be assumed to exist by default.
		

 ⁠​
​<resource>
​ <partition>/virtualmachines/production</partition>
​ </resource>

Figure 20.12. Resource partitioning

			Resource partitions are currently supported by the QEMU and LXC drivers, which map partition paths to cgroups directories in all mounted controllers.
		

 ⁠20.11. CPU Model and Topology

			This section covers the requirements for CPU model. Note that every hypervisor has its own policy for which CPU features guest will see by default. The set of CPU features presented to the guest by QEMU/KVM depends on the CPU model chosen in the guest virtual machine configuration. qemu32 and qemu64 are basic CPU models but there are other models (with additional features) available. Each model and its topology is specified using the following elements from the domain XML:
		

 ⁠​
​<cpu match='exact'>
​ <model fallback='allow'>core2duo</model>
​ <vendor>Intel</vendor>
​ <topology sockets='1' cores='2' threads='1'/>
​ <feature policy='disable' name='lahf_lm'/>
​ </cpu>

Figure 20.13. CPU model and topology example 1

 ⁠​
​<cpu mode='host-model'>
​ <model fallback='forbid'/>
​ <topology sockets='1' cores='2' threads='1'/>
​</cpu>

Figure 20.14. CPU model and topology example 2

 ⁠​
​<cpu mode='host-passthrough'/>

Figure 20.15. CPU model and topology example 3

			In cases where no restrictions are to be put on either the CPU model nor its features, a simpler cpu element such as the following may be used.
		

 ⁠​
​<cpu>
​ <topology sockets='1' cores='2' threads='1'/>
​</cpu>

Figure 20.16. CPU model and topology example 4

			The components of this section of the domain XML are as follows:
		

 ⁠Table 20.9. CPU model and topology elements
	Element	Description
	<cpu>	This element contains all parameters for the vCPU feature set.
	<match>	Specifies how closely the features indicated in the <cpu> element must match the vCPUs that are available. The match attribute can be omitted if <topology> is the only element nested in the <cpu> element. Possible values for the match attribute are:
							
									minimum - The features listed are the minimum requirement. There may be more features available in the vCPU then are indicated, but this is the minimum that will be accepted. This value will fail if the minimum requirements are not met.
								

	
									exact - the virtual CPU provided to the guest virtual machine must exactly match the features specified. If no match is found, an error will result.
								

	
									strict - the guest virtual machine will not be created unless the host physical machine CPU exactly matches the specification.
								

						 If the match attribute is omitted from the <cpu> element, the default setting match='exact' is used.
	<mode>	This optional attribute may be used to make it easier to configure a guest virtual machine CPU to be as close to the host physical machine CPU as possible. Possible values for the mode attribute are:
							
									custom - describes how the CPU is presented to the guest virtual machine. This is the default setting when the mode attribute is not specified. This mode makes it so that a persistent guest virtual machine will see the same hardware no matter what host physical machine the guest virtual machine is booted on.
								

	
									host-model - this is essentially a shortcut to copying host physical machine CPU definition from the capabilities XML into the domain XML. As the CPU definition is copied just before starting a domain, the same XML can be used on different host physical machines while still providing the best guest virtual machine CPU each host physical machine supports. Neither the match attribute nor any feature elements can be used in this mode. For more information see libvirt domain XML CPU models
								

	
									host-passthrough With this mode, the CPU visible to the guest virtual machine is exactly the same as the host physical machine CPU including elements that cause errors within libvirt. The obvious the downside of this mode is that the guest virtual machine environment cannot be reproduced on different hardware and therefore this mode is recommended with great caution. Neither model nor feature elements are allowed in this mode.
								

	
									Note that in both host-model and host-passthrough mode, the real (approximate in host-passthrough mode) CPU definition which would be used on current host physical machine can be determined by specifying VIR_DOMAIN_XML_UPDATE_CPU flag when calling virDomainGetXMLDesc API. When running a guest virtual machine that might be prone to operating system reactivation when presented with different hardware, and which will be migrated between host physical machines with different capabilities, you can use this output to rewrite XML to the custom mode for more robust migration.
								

						
	<model>	Specifies CPU model requested by the guest virtual machine. The list of available CPU models and their definition can be found in cpu_map.xml file installed in libvirt's data directory. If a hypervisor is not able to use the exact CPU model, libvirt automatically falls back to a closest model supported by the hypervisor while maintaining the list of CPU features. An optional fallback attribute can be used to forbid this behavior, in which case an attempt to start a domain requesting an unsupported CPU model will fail. Supported values for fallback attribute are: allow (this is the default), and forbid. The optional vendor_id attribute can be used to set the vendor id seen by the guest virtual machine. It must be exactly 12 characters long. If not set, the vendor id of the host physical machine is used. Typical possible values are AuthenticAMD and GenuineIntel.
	<vendor>	Specifies CPU vendor requested by the guest virtual machine. If this element is missing, the guest virtual machine runs on a CPU matching given features regardless of its vendor. The list of supported vendors can be found in cpu_map.xml.
	<topology>	Specifies requested topology of virtual CPU provided to the guest virtual machine. Three non-zero values have to be given for sockets, cores, and threads: total number of CPU sockets, number of cores per socket, and number of threads per core, respectively.
	<feature>	Can contain zero or more elements used to fine-tune features provided by the selected CPU model. The list of known feature names can be found in the same file as CPU models. The meaning of each feature element depends on its policy attribute, which has to be set to one of the following values:
							
									force - forces the virtual to be supported regardless of whether it is actually supported by host physical machine CPU.
								

	
									require - dictates that guest virtual machine creation will fail unless the feature is supported by host physical machine CPU. This is the default setting
								

	
									optional - this feature is supported by virtual CPU but and only if it is supported by host physical machine CPU.
								

	
									disable - this is not supported by virtual CPU.
								

	
									forbid - guest virtual machine creation will fail if the feature is supported by host physical machine CPU.
								

						

 ⁠20.11.1. Guest virtual machine NUMA topology

				Guest virtual machine NUMA topology can be specified using the <numa> element and the following from the domain XML:
			

 ⁠​
​
​ <cpu>
​ <numa>
​ <cell cpus='0-3' memory='512000'/>
​ <cell cpus='4-7' memory='512000'/>
​ </numa>
​ </cpu>
​ ...

Figure 20.17. Guest Virtual Machine NUMA Topology

				Each cell element specifies a NUMA cell or a NUMA node. cpus specifies the CPU or range of CPUs that are part of the node. memory specifies the node memory in kibibytes (blocks of 1024 bytes). Each cell or node is assigned cellid or nodeid in increasing order starting from 0.
			

 ⁠20.12. Events Configuration

			Using the following sections of domain XML it is possible to override the default actions taken on various events.
		

 ⁠​
​
​ <on_poweroff>destroy</on_poweroff>
​ <on_reboot>restart</on_reboot>
​ <on_crash>restart</on_crash>
​ <on_lockfailure>poweroff</on_lockfailure>

Figure 20.18. Events configuration

			The following collections of elements allow the actions to be specified when a guest virtual machine OS triggers a life cycle operation. A common use case is to force a reboot to be treated as a poweroff when doing the initial OS installation. This allows the VM to be re-configured for the first post-install bootup.
		

			The components of this section of the domain XML are as follows:
		

 ⁠Table 20.10. Event configuration elements
	State	Description
	<on_poweroff>	Specifies the action that is to be executed when the guest virtual machine requests a poweroff. Four possible arguments are possible:
							
									destroy - this action terminates the domain completely and releases all resources
								

	
									restart - this action terminates the domain completely and restarts it with the same configuration
								

	
									preserve - this action terminates the domain completely but and its resources are preserved to allow for future analysis.
								

	
									rename-restart - this action terminates the domain completely and then restarts it with a new name
								

						
	<on_reboot>	Specifies the action that is to be executed when the guest virtual machine requests a reboot. Four possible arguments are possible:
							
									destroy - this action terminates the domain completely and releases all resources
								

	
									restart - this action terminates the domain completely and restarts it with the same configuration
								

	
									preserve - this action terminates the domain completely but and its resources are preserved to allow for future analysis.
								

	
									rename-restart - this action terminates the domain completely and then restarts it with a new name
								

						
	<on_crash>	Specifies the action that is to be executed when the guest virtual machine crashes. In addition, it supports these additional actions:
							
									coredump-destroy - the crashed domain's core is dumped, domain is terminated completely, and all resources are released.
								

	
									coredump-restart - the crashed domain's core is dumped, and the domain is restarted with the same configuration settings
								

						 Four possible arguments are possible:
							
									destroy - this action terminates the domain completely and releases all resources
								

	
									restart - this action terminates the domain completely and restarts it with the same configuration
								

	
									preserve - this action terminates the domain completely but and its resources are preserved to allow for future analysis.
								

	
									rename-restart - this action terminates the domain completely and then restarts it with a new name
								

						
	<on_lockfailure>	Specifies what action should be taken when a lock manager loses resource locks. The following actions are recognized by libvirt, although not all of them need to be supported by individual lock managers. When no action is specified, each lock manager will take its default action. The following arguments are possible:
							
									poweroff - forcefully powers off the domain
								

	
									restart - restarts the domain to reacquire its locks.
								

	
									pause - pauses the domain so that it can be manually resumed when lock issues are solved.
								

	
									ignore - keeps the domain running as if nothing happened.
								

						

 ⁠20.13. Power Management

			It is possible to forcibly enable or disable BIOS advertisements to the guest virtual machine OS using conventional management tools which effects the following section of the domain XML:
		

 ⁠​
​
​ ...
​ <pm>
​ <suspend-to-disk enabled='no'/>
​ <suspend-to-mem enabled='yes'/>
​ </pm>
​ ...

Figure 20.19. Power management

			The <pm> element can be enabled using the arguement yes or disabled using the argument no. BIOS support can be implemented for S3 using the argument suspend-to-disk and S4 using the argument suspend-to-mem ACPI sleep states. If nothing is specified, the hypervisor will be left with its default value.
		

 ⁠20.14. Hypervisor Features

			Hypervisors may allow certain CPU / machine features to be enabled (state='on') or disabled (state='off').
		

 ⁠​
​
​ ...
​ <features>
​ <pae/>
​ <acpi/>
​ <apic/>
​ <hap/>
​ <privnet/>
​ <hyperv>
​ <relaxed state='on'/>
​ </hyperv>
​ </features>
​ ...
​

Figure 20.20. Hypervisor features

			All features are listed within the <features> element, if a <state> is not specified it is disabled. The available features can be found by calling the capabilities XML, but a common set for fully virtualized domains are:
		

 ⁠Table 20.11. Hypervisor features elements
	State	Description
	<pae>	Physical address extension mode allows 32-bit guest virtual machines to address more than 4 GB of memory.
	<acpi>	Useful for power management, for example, with KVM guest virtual machines it is required for graceful shutdown to work.
	<apic>	Allows the use of programmable IRQ management. For this element, there is an optional attribute eoi with values on and off which sets the availability of EOI (End of Interrupt) for the guest virtual machine.
	<hap>	Enables the use of Hardware Assisted Paging if it is available in the hardware.
	hyperv	Enables various features to improve the behavior of guest virtual machines running Microsoft Windows. Using the optional attribute relaxed with values on or off enables or disables the relax constraints on timers

 ⁠20.15. Timekeeping

			The guest virtual machine clock is typically initialized from the host physical machine clock. Most operating systems expect the hardware clock to be kept in UTC, which is the default setting. Note that for Windows guest virtual machines the guest virtual machine must be set in localtime.
		

 ⁠​
​
​ ...
​ <clock offset='localtime'>
​ <timer name='rtc' tickpolicy='catchup' track='guest'>
​ <catchup threshold='123' slew='120' limit='10000'/>
​ </timer>
​ <timer name='pit' tickpolicy='delay'/>
​ </clock>
​ ...

Figure 20.21. Timekeeping

			The components of this section of the domain XML are as follows:
		

 ⁠Table 20.12. Time keeping elements
	State	Description
	<clock>	The offset attribute takes four possible values, allowing for fine grained control over how the guest virtual machine clock is synchronized to the host physical machine. Note that hypervisors are not required to support all policies across all time sources 	
									utc - Synchronizes the clock to UTC when booted. utc mode can be converted to variable mode, which can be controlled by using the adjustment attribute. If the value is reset, the conversion is not done. A numeric value forces the conversion to variable mode using the value as the initial adjustment. The default adjustment is hypervisor specific.
								

	
									localtime - Synchronizes the guest virtual machine clock with the host physical machine's configured timezone when booted. The adjustment attribute behaves the same as in 'utc' mode.
								

	
									timezone - Synchronizes the guest virtual machine clock to the requested timezone using the timezone attribute.
								

	
									variable - Gives the guest virtual machine clock an arbitrary offset applied relative to UTC or localtime, depending on the basis attribute. The delta relative to UTC (or localtime) is specified in seconds, using the adjustment attribute. The guest virtual machine is free to adjust the RTC over time and expect that it will be honored at next reboot. This is in contrast to utc and localtime mode (with the optional attribute adjustment='reset'), where the RTC adjustments are lost at each reboot. In addition the basis attribute can be either utc (default) or localtime. The clock element may have zero or more <timer> elements.
								

						
	<timer>	See Note
	<frequency> 	This is an unsigned integer specifying the frequency at which name="tsc" runs.
	<mode>	The mode attribute controls how the name="tsc" <timer> is managed, and can be set to: auto, native, emulate, paravirt, or smpsafe. Other timers are always emulated.
	<present>	Specifies whether a particular timer is available to the guest virtual machine. Can be set to yes or no

Note

				Each <timer> element must contain a name attribute, and may have the following attributes depending on the name specified.
			
	
						<name> - selects which timer is being modified. The following values are acceptable:kvmclock (QEMU-KVM), pit(QEMU-KVM), or rtc(QEMU-KVM), or tsc(libxl only). Note that platform is currently unsupported.
					

	
						track - specifies the timer track. The following values are acceptable: boot, guest, or wall. track is only valid for name="rtc".
					

	
						tickpolicy - determines what happens whens the deadline for injecting a tick to the guest virtual machine is missed. The following values can be assigned:
					
	
								delay -will continue to deliver ticks at the normal rate. The guest virtual machine time will be delayed due to the late tick
							

	
								catchup - delivers ticks at a higher rate in order to catch up with the missed tick. The guest virtual machine time is not displayed once catchup is complete. In addition, there can be three optional attributes, each a positive integer, as follows: threshold, slew, and limit.
							

	
								merge - merges the missed tick(s) into one tick and injects them. The guest virtual machine time may be delayed, depending on how the merge is done.
							

	
								discard - throws away the missed tick(s) and continues with future injection at its default interval setting. The guest virtual machine time may be delayed, unless there is an explicit statement for handling lost ticks
							

 ⁠20.16. Devices

			This set of XML elements are all used to describe devices provided to the guest virtual machine domain. All of the devices below are indicated as children of the main devices element.
		

			The following virtual devices are supported:
		
	
					virtio-scsi-pci - PCI bus storage device
				

	
					virtio-9p-pci - PCI bus storage device
				

	
					virtio-blk-pci - PCI bus storage device
				

	
					virtio-net-pci - PCI bus network device also known as virtio-net
				

	
					virtio-serial-pci - PCI bus input device
				

	
					virtio-balloon-pci - PCI bus memory balloon device
				

	
					virtio-rng-pci - PCI bus virtual random number generator device
				

Important

				If a virtio device is created where the number of vectors is set to a value higher than 32, the device behaves as if it was set to a zero value on Red Hat Enterprise Linux 6, but not on Enterprise Linux 7. The resulting vector setting mismatch causes a migration error if the number of vectors on any virtio device on either platform is set to 33 or higher. It is therefore not reccomended to set the vector value to be greater than 32. All virtio devices with the exception of virtio-balloon-pci and virtio-rng-pci will accept a vector argument.
			

 ⁠​
​
​ ...
​ <devices>
​ <emulator>/usr/lib/xen/bin/qemu-dm</emulator>
​ </devices>
​ ...

Figure 20.22. Devices - child elements

			The contents of the <emulator> element specify the fully qualified path to the device model emulator binary. The capabilities XML specifies the recommended default emulator to use for each particular domain type or architecture combination.
		

 ⁠20.16.1. Hard Drives, Floppy Disks, CDROMs

				This section of the domain XML specifies any device that looks like a disk, be it a floppy, harddisk, cdrom, or paravirtualized driver is specified via the disk element.
			

 ⁠​
​
​ ...
​ <devices>
​ <disk type='file' snapshot='external'>
​ <driver name="tap" type="aio" cache="default"/>
​ <source file='/var/lib/xen/images/fv0' startupPolicy='optional'>
​ <seclabel relabel='no'/>
​ </source>
​ <target dev='hda' bus='ide'/>
​ <iotune>
​ <total_bytes_sec>10000000</total_bytes_sec>
​ <read_iops_sec>400000</read_iops_sec>
​ <write_iops_sec>100000</write_iops_sec>
​ </iotune>
​ <boot order='2'/>
​ <encryption type='...'>
​ ...
​ </encryption>
​ <shareable/>
​ <serial>
​ ...
​ </serial>
​ </disk>
​ ...
​ <disk type='network'>
​ <driver name="qemu" type="raw" io="threads" ioeventfd="on" event_idx="off"/>
​ <source protocol="sheepdog" name="image_name">
​ <host name="hostname" port="7000"/>
​ </source>
​ <target dev="hdb" bus="ide"/>
​ <boot order='1'/>
​ <transient/>
​ <address type='drive' controller='0' bus='1' unit='0'/>
​ </disk>
​ <disk type='network'>
​ <driver name="qemu" type="raw"/>
​ <source protocol="rbd" name="image_name2">
​ <host name="hostname" port="7000"/>
​ </source>
​ <target dev="hdd" bus="ide"/>
​ <auth username='myuser'>
​ <secret type='ceph' usage='mypassid'/>
​ </auth>
​ </disk>
​ <disk type='block' device='cdrom'>
​ <driver name='qemu' type='raw'/>
​ <target dev='hdc' bus='ide' tray='open'/>
​ <readonly/>
​ </disk>
​ <disk type='block' device='lun'>
​ <driver name='qemu' type='raw'/>
​ <source dev='/dev/sda'/>
​ <target dev='sda' bus='scsi'/>
​ <address type='drive' controller='0' bus='0' target='3' unit='0'/>
​ </disk>
​ <disk type='block' device='disk'>
​ <driver name='qemu' type='raw'/>
​ <source dev='/dev/sda'/>
​ <geometry cyls='16383' heads='16' secs='63' trans='lba'/>
​ <blockio logical_block_size='512' physical_block_size='4096'/>
​ <target dev='hda' bus='ide'/>
​ </disk>
​ <disk type='volume' device='disk'>
​ <driver name='qemu' type='raw'/>
​ <source pool='blk-pool0' volume='blk-pool0-vol0'/>
​ <target dev='hda' bus='ide'/>
​ </disk>
​ </devices>
​ ...

Figure 20.23. Devices - Hard drives, floppy disks, CDROMs

 ⁠20.16.1.1. Disk element

					The <disk> element is the main container for describing disks. The attribute type can be used with the <disk> element. The following types are allowed:
				
	
							file
						

	
							block
						

	
							dir
						

	
							network
						

					For more information, see Disk Elements
				

 ⁠20.16.1.2. Source element

					If the <disk type='file''>, then the file attribute specifies the fully-qualified path to the file holding the disk. If the <disk type='block'>, then the dev attribute specifies the path to the host physical machine device to serve as the disk. With both file and block, one or more optional sub-elements seclabel, described below, can be used to override the domain security labeling policy for just that source file. If the disk type is dir, then the dir attribute specifies the fully-qualified path to the directory to use as the disk. If the disk type is network, then the protocol attribute specifies the protocol to access to the requested image; possible values are nbd, rbd, sheepdog or gluster.
				

					If the protocol attribute is rbd, sheepdog or gluster, an additional attribute name is mandatory to specify which volume and or image will be used. When the disk type is network, the source may have zero or more host sub-elements used to specify the host physical machines to connect, including: type='dir' and type='network'. For a file disk type which represents a cdrom or floppy (the device attribute), it is possible to define policy what to do with the disk if the source file is not accessible. This is done by manipulating the startupPolicy attribute, with the following values:
				
	
							mandatory causes a failure if missing for any reason. This is the default setting.
						

	
							requisite causes a failure if missing on boot up, drops if missing on migrate/restore/revert
						

	
							optional drops if missing at any start attempt
						

 ⁠20.16.1.3. Mirror element

					This element is present if the hypervisor has started a BlockCopy operation, where the <mirror> location in the attribute file will eventually have the same contents as the source, and with the file format in attribute format (which might differ from the format of the source). If an attribute ready is present, then it is known the disk is ready to pivot; otherwise, the disk is probably still copying. For now, this element only valid in output; it is ignored on input.
				

 ⁠20.16.1.4. Target element

					The <target> element controls the bus / device under which the disk is exposed to the guest virtual machine OS. The dev attribute indicates the logical device name. The actual device name specified is not guaranteed to map to the device name in the guest virtual machine OS. The optional bus attribute specifies the type of disk device to emulate; possible values are driver specific, with typical values being ide, scsi, virtio, xen, usb or sata. If omitted, the bus type is inferred from the style of the device name. eg, a device named 'sda' will typically be exported using a SCSI bus. The optional attribute tray indicates the tray status of the removable disks (such as CD-ROM or Floppy disk), the value can be either open or closed. The default setting is closed. For more information, see target Elements
				

 ⁠20.16.1.5. iotune

					The optional <iotune> element provides the ability to provide additional per-device I/O tuning, with values that can vary for each device (contrast this to the blkiotune element, which applies globally to the domain). This element has the following optional sub-elements. Note that any sub-element not specified or at all or specified with a value of 0 implies no limit.
				
	
							<total_bytes_sec> - the total throughput limit in bytes per second. This element cannot be used with <read_bytes_sec> or <write_bytes_sec>.
						

	
							<read_bytes_sec> - the read throughput limit in bytes per second.
						

	
							<write_bytes_sec> - the write throughput limit in bytes per second.
						

	
							<total_iops_sec> - the total I/O operations per second. This element cannot be used with <read_iops_sec> or <write_iops_sec>.
						

	
							<read_iops_sec> - the read I/O operations per second.
						

	
							<write_iops_sec> - the write I/O operations per second.
						

 ⁠20.16.1.6. driver

					The optional <driver> element allows specifying further details related to the hypervisor driver that is used to provide the disk. The following options may be used:
				
	
							If the hypervisor supports multiple back-end drivers, then the name attribute selects the primary back-end driver name, while the optional type attribute provides the sub-type. For a list of possible types refer to Driver Elements
						

	
							The optional cache attribute controls the cache mechanism, possible values are: default, none, writethrough, writeback, directsync (similar to writethrough, but it bypasses the host physical machine page cache) and unsafe (host physical machine may cache all disk io, and sync requests from guest virtual machine virtual machines are ignored).
						

	
							The optional error_policy attribute controls how the hypervisor behaves on a disk read or write error, possible values are stop, report, ignore, and enospace. The default setting of error_policy is report. There is also an optional rerror_policy that controls behavior for read errors only. If no rerror_policy is given, error_policy is used for both read and write errors. If rerror_policy is given, it overrides the error_policy for read errors. Also note that enospace is not a valid policy for read errors, so if error_policy is set to enospace and no rerror_policy is given, the read error the default setting, report will be used.
						

	
							The optional io attribute controls specific policies on I/O; qemu guest virtual machine virtual machines support threads and native. The optional ioeventfd attribute allows users to set domain I/O asynchronous handling for disk device. The default is left to the discretion of the hypervisor. Accepted values are on and off. Enabling this allows the guest virtual machine virtual machine to be executed while a separate thread handles I/O. Typically guest virtual machine virtual machines experiencing high system CPU utilization during I/O will benefit from this. On the other hand, an overloaded host physical machine can increase guest virtual machine virtual machine I/O latency. Unless you are absolutely certian that the io needs to be manipulated, it is highly recommended that you not change the default setting and allow the hypervisor to dictate the setting.
						

	
							The optional event_idx attribute controls some aspects of device event processing and can be set to either on or off - if it is on, it will reduce the number of interrupts and exits for the guest virtual machine virtual machine. The default is determined by the hypervisor and the default setting is on. In cases that there is a situation where this behavior is suboptimal, this attribute provides a way to force the feature off. Unless you are absolutely certian that the event_idx needs to be manipulated, it is highly recommended that you not change the default setting and allow the hypervisor to dictate the setting.
						

	
							The optional copy_on_read attribute controls whether to copy the read backing file into the image file. The accepted values can be either on or <off>. copy-on-read avoids accessing the same backing file sectors repeatedly and is useful when the backing file is over a slow network. By default copy-on-read is off.
						

 ⁠20.16.1.7. Additional device elements

					The following attributes may be used within the device element:
				
	
							<boot> - Specifies that the disk is bootable.
						
Additional boot values
	
									<order> - Determines the order in which devices will be tried during boot sequence.
								

	
									<per-device> boot elements cannot be used together with general boot elements in BIOS boot loader section
								

	
							<encryption> - Specifies how the volume is encrypted. See the Storage Encryption page for more information.
						

	
							<readonly> - Indicates the device cannot be modified by the guest virtual machine virtual machine. This setting is the default for disks with attribute device='cdrom'.
						

	
							shareable Indicates the device is expected to be shared between domains (as long as hypervisor and OS support this). If shareable is used, cache='no' should be used for that device.
						

	
							<transient>- Indicates that changes to the device contents should be reverted automatically when the guest virtual machine virtual machine exits. With some hypervisors, marking a disk transient prevents the domain from participating in migration or snapshots.
						

	
							<serial>- Specifies the serial number of guest virtual machine virtual machine virtual machine's hard drive. For example, <serial>WD-WMAP9A966149</serial>.
						

	
							<wwn> - Specifies the WWN (World Wide Name) of a virtual hard disk or CD-ROM drive. It must be composed of 16 hexadecimal digits.
						

	
							<vendor> - Specifies the vendor of a virtual hard disk or CD-ROM device. It must not be longer than 8 printable characters.
						

	
							<product> - Specifies the product of a virtual hard disk or CD-ROM device. It must not be longer than 16 printable characters
						

	
							<host> - Supports 4 attributes: viz, name, port, transport and socket, which specify the host name, the port number, transport type and path to socket, respectively. The meaning of this element and the number of the elements depend on the protocol attribute as shown here:
						
Additional host attributes
	
									nbd - Specifies a server running nbd-server and may only be used for only one host physical machine
								

	
									rbd - Monitors servers of RBD type and may be used for one or more host physical machines
								

	
									sheepdog - Specifies one of the sheepdog servers (default is localhost:7000) and can be used one or none of the host physical machines
								

	
									gluster - Specifies a server running a glusterd daemon and may be used for only only one host physical machine. The valid values for transport attribute are tcp, rdma or unix. If nothing is specified, tcp is assumed. If transport is unix, the socket attribute specifies path to unix socket.
								

	
							<address> - Ties the disk to a given slot of a controller. The actual <controller> device can often be inferred by but it can also be explicitly specified. The type attribute is mandatory, and is typically pci or drive. For a pci controller, additional attributes for bus, slot, and function must be present, as well as optional domain and multifunction. multifun ction defaults to off. For a drive controller, additional attributes controller, bus, target, and unit are available, each with a default setting of 0.
						

	
							auth - Provides the authentication credentials needed to access the source. It includes a mandatory attribute username, which identifies the user name to use during authentication, as well as a sub-element secret with mandatory attribute type. More information can be found here at Device Elements
						

	
							geometry - Provides the ability to override geometry settings. This mostly useful for S390 DASD-disks or older DOS-disks.
						

	
							cyls - Specifies the number of cylinders.
						

	
							heads - Specifies the number of heads.
						

	
							secs - Specifies the number of sectors per track.
						

	
							trans - Specifies the BIOS-Translation-Modus and can have the following values:none, lba or auto
						

	
							blockio - Allows the block device to be overridden with any of the block device properties listed below:
						
blockio options
	
									logical_block_size- reports to the guest virtual machine virtual machine OS and describes the smallest units for disk I/O.
								

	
									physical_block_size - reports to the guest virtual machine virtual machine OS and describes the disk's hardware sector size which can be relevant for the alignment of disk data.
								

 ⁠20.16.2. Filesystems

				A filesystems directory on the host physical machine that can be accessed directly from the guest virtual machine virtual machine
			

 ⁠​
​
​ ...
​ <devices>
​ <filesystem type='template'>
​ <source name='my-vm-template'/>
​ <target dir='/'/>
​ </filesystem>
​ <filesystem type='mount' accessmode='passthrough'>
​ <driver type='path' wrpolicy='immediate'/>
​ <source dir='/export/to/guest'/>
​ <target dir='/import/from/host'/>
​ <readonly/>
​ </filesystem>
​ ...
​ </devices>
​ ...
​

Figure 20.24. Devices - filesystems

				The filesystem attribute has the following possible values:
			
	
						type='mount' - Specifies the host physical machine directory to mount in the guest virtual machine. This is the default type if one is not specified. This mode also has an optional sub-element driver, with an attribute type='path' or type='handle'. The driver block has an optional attribute wrpolicy that further controls interaction with the host physical machine page cache; omitting the attribute reverts to the default setting, while specifying a value immediate means that a host physical machine writeback is immediately triggered for all pages touched during a guest virtual machine file write operation
					

	
						type='template' - Specifies the OpenVZ filesystem template and is only used by OpenVZ driver.
					

	
						type='file' - Specifies that a host physical machine file will be treated as an image and mounted in the guest virtual machine. This filesystem format will be autodetected and is only used by LXC driver.
					

	
						type='block' - Specifies the host physical machine block device to mount in the guest virtual machine. The filesystem format will be autodetected and is only used by LXC driver.
					

	
						type='ram' - Specifies that an in-memory filesystem, using memory from the host physical machine OS will be used. The source element has a single attribute usage which gives the memory usage limit in kibibytes and is only used by LXC driver.
					

	
						type='bind' - Specifies a directory inside the guest virtual machine which will be bound to another directory inside the guest virtual machine. This element is only used by LXC driver.
					

	
						accessmode which specifies the security mode for accessing the source. Currently this only works with type='mount' for the QEMU/KVM driver. The possible values are:
					
	
								passthrough - Specifies that the source is accessed with the User's permission settings that are set from inside the guest virtual machine. This is the default access mode if one is not specified.
							

	
								mapped - Specifies that the source is accessed with the permission settings of the hypervisor.
							

	
								squash - Similar to 'passthrough', the exception is that failure of privileged operations like chown are ignored. This makes a passthrough-like mode usable for people who run the hypervisor as non-root.
							

	
						<source> - Specifies that the resource on the host physical machine that is being accessed in the guest virtual machine. The name attribute must be used with <type='template'>, and the dir attribute must be used with <type='mount'>. The usage attribute is used with <type='ram'> to set the memory limit in KB.
					

	
						target - Dictates where the source drivers can be accessed in the guest virtual machine. For most drivers this is an automatic mount point, but for QEMU-KVM this is merely an arbitrary string tag that is exported to the guest virtual machine as a hint for where to mount.
					

	
						readonly - Enables exporting the file sydtem as a readonly mount for guest virtual machine, by default read-write access is given.
					

	
						space_hard_limit - Specifies the maximum space available to this guest virtual machine's filesystem
					

	
						space_soft_limit - Specifies the maximum space available to this guest virtual machine's filesystem. The container is permitted to exceed its soft limits for a grace period of time. Afterwards the hard limit is enforced.
					

 ⁠20.16.3. Device Addresses

				Many devices have an optional <address> sub-element to describe where the device placed on the virtual bus is presented to the guest virtual machine. If an address (or any optional attribute within an address) is omitted on input, libvirt will generate an appropriate address; but an explicit address is required if more control over layout is required. See below for device examples including an address element.
			

				Every address has a mandatory attribute type that describes which bus the device is on. The choice of which address to use for a given device is constrained in part by the device and the architecture of the guest virtual machine. For example, a disk device uses type='disk', while a console device would use type='pci' on the 32-bit AMD and Intel architecture or AMD64 and Intel 64 guest virtual machines, or type='spapr-vio' on PowerPC64 pseries guest virtual machines. Each address <type> has additional optional attributes that control where on the bus the device will be placed. The additional attributes are as follows:
			
	
						type='pci' - PCI addresses have the following additional attributes:
					
	
								domain (a 2-byte hex integer, not currently used by qemu)
							

	
								bus (a hex value between 0 and 0xff, inclusive)
							

	
								slot (a hex value between 0x0 and 0x1f, inclusive)
							

	
								function (a value between 0 and 7, inclusive)
							

	
								Also available is the multifunction attribute, which controls turning on the multifunction bit for a particular slot/function in the PCI control register. This multifunction attribute defaults to 'off', but should be set to 'on' for function 0 of a slot that will have multiple functions used.
							

	
						type='drive - drive addresses have the following additional attributes:
					
	
								controller- (a 2-digit controller number)
							

	
								bus - (a 2-digit bus number)
							

	
								target - (a 2-digit bus number)
							

	
								unit - (a 2-digit unit number on the bus)
							

	
						type='virtio-serial' - Each virtio-serial address has the following additional attributes:
					
	
								controller - (a 2-digit controller number)
							

	
								bus - (a 2-digit bus number)
							

	
								slot - (a 2-digit slot within the bus)
							

	
						type='ccid' - A CCID address, used for smart-cards, has the following additional attributes:
					
	
								bus - (a 2-digit bus number)
							

	
								slot attribute - (a 2-digit slot within the bus)
							

	
						type='usb' - USB addresses have the following additional attributes:
					
	
								bus - (a hex value between 0 and 0xfff, inclusive)
							

	
								port - (a dotted notation of up to four octets, such as 1.2 or 2.1.3.1)
							

	
						type='spapr-vio - On PowerPC pseries guest virtual machines, devices can be assigned to the SPAPR-VIO bus. It has a flat 64-bit address space; by convention, devices are generally assigned at a non-zero multiple of 0x1000, but other addresses are valid and permitted by libvirt. The additional attribute: reg (the hex value address of the starting register) can be assigned to this attribute.
					

 ⁠20.16.4. Controllers

				Depending on the guest virtual machine architecture, it is possible to assign many virtual devices to a single bus. Under normal circumstances libvirt can automatically infer which controller to use for the bus. However, it may be necessary to provide an explicit <controller> element in the guest virtual machine XML:
			

 ⁠​
​
​ ...
​ <devices>
​ <controller type='ide' index='0'/>
​ <controller type='virtio-serial' index='0' ports='16' vectors='4'/>
​ <controller type='virtio-serial' index='1'>
​ <address type='pci' domain='0x0000' bus='0x00' slot='0x0a' function='0x0'/>
​ <controller type='scsi' index='0' model='virtio-scsi' num_queues='8'/>
​ </controller>
​ ...
​ </devices>
​ ...
​

Figure 20.25. Controller Elements

				Each controller has a mandatory attribute type, which must be one of "ide", "fdc", "scsi", "sata", "usb", "ccid", or "virtio-serial", and a mandatory attribute index which is the decimal integer describing in which order the bus controller is encountered (for use in controller attributes of address elements). The "virtio-serial" controller has two additional optional attributes, ports and vectors, which control how many devices can be connected through the controller.
			

				A <controller type='scsi'> has an optional attribute model, which is one of "auto", "buslogic", "ibmvscsi", "lsilogic", "lsias1068", "virtio-scsi or "vmpvscsi". It should be noted that virtio-scsi controllers and drivers will work on both KVM and Windows guest virtual machines. The <controller type='scsi'> also has an attribute num_queues which enables multi-queue support for the number of queues specified.
			

				A "usb" controller has an optional attribute model, which is one of "piix3-uhci", "piix4-uhci", "ehci", "ich9-ehci1", "ich9-uhci1", "ich9-uhci2", "ich9-uhci3", "vt82c686b-uhci", "pci-ohci" or "nec-xhci". Additionally, if the USB bus needs to be explicitly disabled for the guest virtual machine, model='none' may be used. The PowerPC64 "spapr-vio" addresses do not have an associated controller.
			

				For controllers that are themselves devices on a PCI or USB bus, an optional sub-element address can specify the exact relationship of the controller to its master bus, with semantics given above.
			

				USB companion controllers have an optional sub-element master to specify the exact relationship of the companion to its master controller. A companion controller is on the same bus as its master, so the companion index value should be equal.
			

 ⁠​
​
​ ...
​ <devices>
​ <controller type='usb' index='0' model='ich9-ehci1'>
​ <address type='pci' domain='0' bus='0' slot='4' function='7'/>
​ </controller>
​ <controller type='usb' index='0' model='ich9-uhci1'>
​ <master startport='0'/>
​ <address type='pci' domain='0' bus='0' slot='4' function='0' multifunction='on'/>
​ </controller>
​ ...
​ </devices>
​ ...
​

Figure 20.26. Devices - controllers - USB

 ⁠20.16.5. Device Leases

				When using a lock manager, you have the option to record device leases against a guest virtual machine. The lock manager will ensure that the guest virtual machine does not start unless the leases can be acquired. When configured using conventional management tools, the following section of the domain xml is effected:
			

 ⁠​
​
​ ...
​ <devices>
​ ...
​ <lease>
​ <lockspace>somearea</lockspace>
​ <key>somekey</key>
​ <target path='/some/lease/path' offset='1024'/>
​ </lease>
​ ...
​ </devices>
​ ...

Figure 20.27. Devices - device leases

				The lease section can have the following arguments:
			
	
						lockspace - an arbitrary string that identifies lockspace within which the key is held. Lock managers may impose extra restrictions on the format, or length of the lockspace name.
					

	
						key - an arbitrary string, that uniquely identies the lease to be acquired. Lock managers may impose extra restrictions on the format, or length of the key.
					

	
						target - the fully qualified path of the file associated with the lockspace. The offset specifies where the lease is stored within the file. If the lock manager does not require a offset, set this value to 0.
					

 ⁠20.16.6. Host Physical Machine Device Assignment

				This section provides information about host physical machine device assignment.
			

 ⁠20.16.6.1. USB / PCI Devices

					The host physical machine's USB and PCI devices can be passed through to the guest virtual machine using the hostdev element, by modifying the host physical machine using a management tool the following section of the domain xml file is configured:
				

 ⁠​
​
​ ...
​ <devices>
​ <hostdev mode='subsystem' type='usb'>
​ <source startupPolicy='optional'>
​ <vendor id='0x1234'/>
​ <product id='0xbeef'/>
​ </source>
​ <boot order='2'/>
​ </hostdev>
​ </devices>
​ ...

Figure 20.28. Devices - host physical machine device assignment

					Alternatively the following can also be done:
				

 ⁠​
​
​ ...
​ <devices>
​ <hostdev mode='subsystem' type='pci' managed='yes'>
​ <source>
​ <address bus='0x06' slot='0x02' function='0x0'/>
​ </source>
​ <boot order='1'/>
​ <rom bar='on' file='/etc/fake/boot.bin'/>
​ </hostdev>
​ </devices>
​ ...

Figure 20.29. Devices - host physical machine device assignment alternative

					The components of this section of the domain XML are as follows:
				

 ⁠Table 20.13. Host physical machine device assignment elements
	Parameter	Description
	hostdev	This is the main container for describing host physical machine devices. For USB device passthrough mode is always subsystem and type is usb for a USB device and pci for a PCI device. When managed is yes for a PCI device, it is detached from the host physical machine before being passed on to the guest virtual machine, and reattached to the host physical machine after the guest virtual machine exits. If managed is omitted or no for PCI and for USB devices, the user is responsible to use the argument virNodeDeviceDettach (or virsh nodedev-dettach) before starting the guest virtual machine or hot-plugging the device, and virNodeDeviceReAttach (or virsh nodedev-reattach) after hot-unplug or stopping the guest virtual machine.
	source	Describes the device as seen from the host physical machine. The USB device can either be addressed by vendor / product id using the vendor and product elements or by the device's address on the host physical machines using the address element. PCI devices on the other hand can only be described by their address. Note that the source element of USB devices may contain a startupPolicy attribute which can be used to define a rule for what to do if the specified host physical machine USB device is not found. The attribute accepts the following values:
									
											mandatory - fails if missing for any reason (the default)
										

	
											requisite - fails if missing on boot up, drops if missing on migrate/restore/revert
										

	
											optional - drops if missing at any start attempt
										

								
	vendor, product	These elements each have an id attribute that specifies the USB vendor and product id. The IDs can be given in decimal, hexadecimal (starting with 0x) or octal (starting with 0) form.
	boot	Specifies that the device is bootable. The attribute's order determines the order in which devices will be tried during boot sequence. The per-device boot elements cannot be used together with general boot elements in BIOS boot loader section.
	rom	Used to change how a PCI device's ROM is presented to the guest virtual machine. The optional bar attribute can be set to on or off, and determines whether or not the device's ROM will be visible in the guest virtual machine's memory map. (In PCI documentation, the rombar setting controls the presence of the Base Address Register for the ROM). If no rom bar is specified, the default setting will be used. The optional file attribute is used to point to a binary file to be presented to the guest virtual machine as the device's ROM BIOS. This can be useful, for example, to provide a PXE boot ROM for a virtual function of an sr-iov capable ethernet device (which has no boot ROMs for the VFs).
	address	Also has a bus and device attribute to specify the USB bus and device number the device appears at on the host physical machine. The values of these attributes can be given in decimal, hexadecimal (starting with 0x) or octal (starting with 0) form. For PCI devices the element carries 3 attributes allowing to designate the device as can be found with lspci or with virsh nodedev-list

 ⁠20.16.6.2. Block / character devices

					The host physical machine's block / character devices can be passed through to the guest virtual machine by using management tools to modify the domain xml hostdev element. Note that this is only possible with container based virtualization.
				

 ⁠​
​
​...
​<hostdev mode='capabilities' type='storage'>
​ <source>
​ <block>/dev/sdf1</block>
​ </source>
​</hostdev>
​...
​

Figure 20.30. Devices - host physical machine device assignment block character devices

					An alternative approach is this:
				

 ⁠​
​
​...
​<hostdev mode='capabilities' type='misc'>
​ <source>
​ <char>/dev/input/event3</char>
​ </source>
​</hostdev>
​...
​

Figure 20.31. Devices - host physical machine device assignment block character devices alternative 1

					Another alternative approach is this:
				

 ⁠​
​
​...
​<hostdev mode='capabilities' type='net'>
​ <source>
​ <interface>eth0</interface>
​ </source>
​</hostdev>
​...
​

Figure 20.32. Devices - host physical machine device assignment block character devices alternative 2

					The components of this section of the domain XML are as follows:
				

 ⁠Table 20.14. Block / character device elements
	Parameter	Description
	hostdev	This is the main container for describing host physical machine devices. For block/character devices passthrough mode is always capabilities and type is block for a block device and char for a character device.
	source	This describes the device as seen from the host physical machine. For block devices, the path to the block device in the host physical machine OS is provided in the nested block element, while for character devices the char element is used

 ⁠20.16.7. Redirected Devices

				USB device redirection through a character device is supported by configuring it with management tools that modify the following section of the domain xml:
			

 ⁠​
​
​ ...
​ <devices>
​ <redirdev bus='usb' type='tcp'>
​ <source mode='connect' host='localhost' service='4000'/>
​ <boot order='1'/>
​ </redirdev>
​ <redirfilter>
​ <usbdev class='0x08' vendor='0x1234' product='0xbeef' version='2.00' allow='yes'/>
​ <usbdev allow='no'/>
​ </redirfilter>
​ </devices>
​ ...

Figure 20.33. Devices - redirected devices

				The components of this section of the domain XML are as follows:
			

 ⁠Table 20.15. Redirected device elements
	Parameter	Description
	redirdev	This is the main container for describing redirected devices. bus must be usb for a USB device. An additional attribute type is required, matching one of the supported serial device types, to describe the host physical machine side of the tunnel; type='tcp' or type='spicevmc' (which uses the usbredir channel of a SPICE graphics device) are typical. The redirdev element has an optional sub-element address which can tie the device to a particular controller. Further sub-elements, such as source, may be required according to the given type, although atarget sub-element is not required (since the consumer of the character device is the hypervisor itself, rather than a device visible in the guest virtual machine).
	boot	Specifies that the device is bootable. The order attribute determines the order in which devices will be tried during boot sequence. The per-device boot elements cannot be used together with general boot elements in BIOS boot loader section.
	redirfilter	This is used for creating the filter rule to filter out certain devices from redirection. It uses sub-element usbdev to define each filter rule. The class attribute is the USB Class code.

 ⁠20.16.8. Smartcard Devices

				A virtual smartcard device can be supplied to the guest virtual machine via the smartcard element. A USB smartcard reader device on the host machine cannot be used on a guest with simple device passthrough, as it cannot be made available to both the host and guest, and can lock the host computer when it is removed from the guest. Therefore, some hypervisors provide a specialized virtual device that can present a smartcard interface to the guest virtual machine, with several modes for describing how the credentials are obtained from the host machine, or from a channel created by a third-party smartcard provider. To set parameters for USB device redirection through a character device, edit the following section of the domain XML:
			

 ⁠​
​
​ ...
​ <devices>
​ <smartcard mode='host'/>
​ <smartcard mode='host-certificates'>
​ <certificate>cert1</certificate>
​ <certificate>cert2</certificate>
​ <certificate>cert3</certificate>
​ <database>/etc/pki/nssdb/</database>
​ </smartcard>
​ <smartcard mode='passthrough' type='tcp'>
​ <source mode='bind' host='127.0.0.1' service='2001'/>
​ <protocol type='raw'/>
​ <address type='ccid' controller='0' slot='0'/>
​ </smartcard>
​ <smartcard mode='passthrough' type='spicevmc'/>
​ </devices>
​ ...

Figure 20.34. Devices - smartcard devices

				The smartcard element has a mandatory attribute mode. The following modes are supported; in each mode, the guest virtual machine sees a device on its USB bus that behaves like a physical USB CCID (Chip/Smart Card Interface Device) card.
			

				The mode attributes are as follows:
			

 ⁠Table 20.16. Smartcard mode elements
	Parameter	Description
	mode='host'	In this mode, the hypervisor relays all direct access requests from the guest virtual machine to the host physical machine's smartcard via NSS. No other attributes or sub-elements are required. See below about the use of an optional address sub-element.
	mode='host-certificates'	This mode allows you to provide three NSS certificate names residing in a database on the host physical machine, rather than requiring a smartcard to be plugged into the host physical machine. These certificates can be generated using the command certutil -d /etc/pki/nssdb -x -t CT,CT,CT -S -s CN=cert1 -n cert1, and the resulting three certificate names must be supplied as the content of each of three certificate sub-elements. An additional sub-element database can specify the absolute path to an alternate directory (matching the -d option of the certutil command when creating the certificates); if not present, it defaults to /etc/pki/nssdb.
	mode='passthrough'	This mode allows you to tunnel all requests through a secondary character device to a third-party provider (which may in turn be talking to a smartcard or using three certificate files), rather than having the hypervisor directly communicate with the host physical machine. In this mode, an additional attribute type is required, matching one of the supported serial device types, to describe the host physical machine side of the tunnel; type='tcp' or type='spicevmc' (which uses the smartcard channel of a SPICE graphics device) are typical. Further sub-elements, such as source, may be required according to the given type, although a target sub-element is not required (since the consumer of the character device is the hypervisor itself, rather than a device visible in the guest virtual machine).

				Each mode supports an optional sub-element address, which fine-tunes the correlation between the smartcard and a ccid bus controller (Refer to Section 20.16.3, “Device Addresses”).
			

 ⁠20.16.9. Network Interfaces

				The network interface devices are modified using management tools that will configure the following part of the Domain XML:
			

 ⁠​
​
​ ...
​ <devices>
​ <interface type='bridge'>
​ <source bridge='xenbr0'/>
​ <mac address='00:16:3e:5d:c7:9e'/>
​ <script path='vif-bridge'/>
​ <boot order='1'/>
​ <rom bar='off'/>
​ </interface>
​ </devices>
​ ...

Figure 20.35. Devices - network interfaces

				There are several possibilities for specifying a network interface visible to the guest virtual machine. Each subsection below provides more details about common setup options. Additionally, each <interface> element has an optional <address> sub-element that can tie the interface to a particular pci slot, with attribute type='pci' (Refer to Section 20.16.3, “Device Addresses”).
			

 ⁠20.16.9.1. Virtual networks

					This is the recommended configuration for general guest virtual machine connectivity on host physical machines with dynamic / wireless networking configurations (or multi-host physical machine environments where the host physical machine hardware details are described separately in a <network> definition). In addition, it provides a connection whose details are described by the named network definition. Depending on the virtual network's forward mode configuration, the network may be totally isolated (no <forward> element given), NAT'ing to an explicit network device or to the default route (forward mode='nat'), routed with no NAT (forward mode='route'/), or connected directly to one of the host physical machine's network interfaces (using macvtap) or bridge devices (forward mode=' bridge|private|vepa|passthrough'/)
				

					For networks with a forward mode of bridge, private, vepa, and passthrough, it is assumed that the host physical machine has any necessary DNS and DHCP services already setup outside the scope of libvirt. In the case of isolated, nat, and routed networks, DHCP and DNS are provided on the virtual network by libvirt, and the IP range can be determined by examining the virtual network config with virsh net-dumpxml [networkname]. There is one virtual network called 'default' setup out of the box which does NAT'ing to the default route and has an IP range of 192.168.122.0/255.255.255.0. Each guest virtual machine will have an associated tun device created with a name of vnetN, which can also be overridden with the <target> element (refer to Section 20.16.9.11, “Overriding the target element”).
				

					When the source of an interface is a network, a portgroup can be specified along with the name of the network; one network may have multiple portgroups defined, with each portgroup containing slightly different configuration information for different classes of network connections. Also, similar to <direct> network connections (described below), a connection of type network may specify a <virtualport> element, with configuration data to be forwarded to a vepa (802.1Qbg) or 802.1Qbh-compliant switch, or to an Open vSwitch virtual switch.
				

					Since the actual type of switch may vary depending on the configuration in the <network> on the host physical machine, it is acceptable to omit the virtualport type attribute, and specify attributes from multiple different virtualport types (and also to leave out certain attributes); at domain startup time, a complete <virtualport> element will be constructed by merging together the type and attributes defined in the network and the portgroup referenced by the interface. The newly-constructed virtualport is a combination of both. The attributes from lower virtualport cannot make changes on the ones defined in higher virtualport. Interfaces take the highest priority, portgroup is lowest priority.
				

					For example, to create a properly working network with both an 802.1Qbh switch and an Open vSwitch switch, you may choose to specify no type, but both profileid and an interfaceid must be supplied. The other attributes to be filled in from the virtual port, such as such as managerid, typeid, or profileid, are optional.
				

					If you want to limit a guest virtual machine to connecting only to certain types of switches, you can specify the virtualport type, and only switches with the specified port type will connect. You can also further limit switch connectivity by specifying additional parameters. As a result, if the port was specified and the host physical machine's network has a different type of virtualport, the connection of the interface will fail. The virtual network parameters are defined using management tools that modify the following part of the domain XML:
				

 ⁠​
​
​ ...
​ <devices>
​ <interface type='network'>
​ <source network='default'/>
​ </interface>
​ ...
​ <interface type='network'>
​ <source network='default' portgroup='engineering'/>
​ <target dev='vnet7'/>
​ <mac address="00:11:22:33:44:55"/>
​ <virtualport>
​ <parameters instanceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'/>
​ </virtualport>
​
​ </interface>
​ </devices>
​ ...

Figure 20.36. Devices - network interfaces- virtual networks

 ⁠20.16.9.2. Bridge to LAN

					Note that this is the recommended configuration setting for general guest virtual machine connectivity on host physical machines with static wired networking configurations.
				

					Bridge to LAN provides a bridge from the guest virtual machine directly onto the LAN. This assumes there is a bridge device on the host physical machine which has one or more of the host physical machines physical NICs enslaved. The guest virtual machine will have an associated tun device created with a name of <vnetN>, which can also be overridden with the <target> element (refer to Section 20.16.9.11, “Overriding the target element”). The <tun> device will be enslaved to the bridge. The IP range / network configuration is whatever is used on the LAN. This provides the guest virtual machine full incoming and outgoing net access just like a physical machine.
				

					On Linux systems, the bridge device is normally a standard Linux host physical machine bridge. On host physical machines that support Open vSwitch, it is also possible to connect to an open vSwitch bridge device by adding a virtualport type='openvswitch'/ to the interface definition. The Open vSwitch type virtualport accepts two parameters in its parameters element - an interfaceid which is a standard uuid used to uniquely identify this particular interface to Open vSwitch (if you do no specify one, a random interfaceid will be generated for you when you first define the interface), and an optional profileid which is sent to Open vSwitch as the interfaces <port-profile>. To set the bridge to LAN settings, use a management tool that will configure the following part of the domain XML:
				

 ⁠​
​
​ ...
​ <devices>
​ ...
​ <interface type='bridge'>
​ <source bridge='br0'/>
​ </interface>
​ <interface type='bridge'>
​ <source bridge='br1'/>
​ <target dev='vnet7'/>
​ <mac address="00:11:22:33:44:55"/>
​ </interface>
​ <interface type='bridge'>
​ <source bridge='ovsbr'/>
​ <virtualport type='openvswitch'>
​ <parameters profileid='menial' interfaceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'/>
​ </virtualport>
​ </interface>
​ ...
​ </devices>

Figure 20.37. Devices - network interfaces- bridge to LAN

 ⁠20.16.9.3. Setting a port masquerading range

					In cases where you want to set the port masquerading range, the port can be set as follows:
				

 ⁠​
​
​<forward mode='nat'>
​ <address start='192.0.2.1' end='192.0.2.10'/>
​</forward> ...

Figure 20.38. Port Masquerading Range

					These values should be set using the iptables commands as shown in Section 18.3, “Network Address Translation Mode”
				

 ⁠20.16.9.4. User-space SLIRP stack

					Setting the user-space SLIRP stack parameters provides a virtual LAN with NAT to the outside world. The virtual network has DHCP and DNS services and will give the guest virtual machine an IP addresses starting from 10.0.2.15. The default router will be 10.0.2.2 and the DNS server will be 10.0.2.3. This networking is the only option for unprivileged users who need their guest virtual machines to have outgoing access.
				

					The user-space SLIP stack parameters are defined in the following part of the domain XML::
				

 ⁠​
​
​ ...
​ <devices>
​ <interface type='user'/>
​ ...
​ <interface type='user'>
​ <mac address="00:11:22:33:44:55"/>
​ </interface>
​ </devices>
​ ...

Figure 20.39. Devices - network interfaces- User-space SLIRP stack

 ⁠20.16.9.5. Generic Ethernet connection

					Provides a means for the administrator to execute an arbitrary script to connect the guest virtual machine's network to the LAN. The guest virtual machine will have a tun device created with a name of vnetN, which can also be overridden with the target element. After creating the tun device a shell script will be run which is expected to do whatever host physical machine network integration is required. By default this script is called /etc/qemu-ifup but can be overridden (refer to Section 20.16.9.11, “Overriding the target element”).
				

					The generic Ethernet connection parameters are defined in the following part of the domain XML:
				

 ⁠​
​
​ ...
​ <devices>
​ <interface type='ethernet'/>
​ ...
​ <interface type='ethernet'>
​ <target dev='vnet7'/>
​ <script path='/etc/qemu-ifup-mynet'/>
​ </interface>
​ </devices>
​ ...

Figure 20.40. Devices - network interfaces- generic Ethernet connection

 ⁠20.16.9.6. Direct attachment to physical interfaces

					Using <interface type='direct'> attaches a virtual machine's NIC to a specified physical interface on the host.
				

					This set up requires the Linux macvtap driver to be available. One of the following modes can be chosen for the operation mode of the macvtap device: vepa ('Virtual Ethernet Port Aggregator'), which is the default mode, bridge or private.
				

					To set up direct attachment to physical interface, use the following parameters in the domain XML:
				

 ⁠​
​
​ ...
​ <devices>
​ ...
​ <interface type='direct'>
​ <source dev='eth0' mode='vepa'/>
​ </interface>
​ </devices>
​ ...

Figure 20.41. Devices - network interfaces- direct attachment to physical interfaces

					The individual modes cause the delivery of packets to behave as shown in Table 20.17, “Direct attachment to physical interface elements”:
				

 ⁠Table 20.17. Direct attachment to physical interface elements
	Element	Description
	vepa	All of the guest virtual machines' packets are sent to the external bridge. Packets whose destination is a guest virtual machine on the same host physical machine as where the packet originates from are sent back to the host physical machine by the VEPA capable bridge (today's bridges are typically not VEPA capable).
	bridge	Packets whose destination is on the same host physical machine as where they originate from are directly delivered to the target macvtap device. Both origin and destination devices need to be in bridge mode for direct delivery. If either one of them is in vepa mode, a VEPA capable bridge is required.
	private	All packets are sent to the external bridge and will only be delivered to a target VM on the same host physical machine if they are sent through an external router or gateway and that device sends them back to the host physical machine. This procedure is followed if either the source or destination device is in private mode.
	passthrough	This feature attaches a virtual function of a SRIOV capable NIC directly to a guest virtual machine without losing the migration capability. All packets are sent to the VF/IF of the configured network device. Depending on the capabilities of the device additional prerequisites or limitations may apply; for example, this requires kernel 2.6.38 or newer.

					The network access of direct attached virtual machines can be managed by the hardware switch to which the physical interface of the host physical machine machine is connected to.
				

					The interface can have additional parameters as shown below, if the switch is conforming to the IEEE 802.1Qbg standard. The parameters of the virtualport element are documented in more detail in the IEEE 802.1Qbg standard. The values are network specific and should be provided by the network administrator. In 802.1Qbg terms, the Virtual Station Interface (VSI) represents the virtual interface of a virtual machine.
				

					Note that IEEE 802.1Qbg requires a non-zero value for the VLAN ID.
				

					Additional elements that can be manipulated are described in Table 20.18, “Direct attachment to physical interface additional elements”:
				

 ⁠Table 20.18. Direct attachment to physical interface additional elements
	Element	Description
	managerid	The VSI Manager ID identifies the database containing the VSI type and instance definitions. This is an integer value and the value 0 is reserved.
	typeid	The VSI Type ID identifies a VSI type characterizing the network access. VSI types are typically managed by network administrator. This is an integer value.
	typeidversion	The VSI Type Version allows multiple versions of a VSI Type. This is an integer value.
	instanceid	The VSI Instance ID Identifier is generated when a VSI instance (that is a virtual interface of a virtual machine) is created. This is a globally unique identifier.
	profileid	The profile ID contains the name of the port profile that is to be applied onto this interface. This name is resolved by the port profile database into the network parameters from the port profile, and those network parameters will be applied to this interface.

					Additional parameters in the domain XML include:
				

 ⁠​
​
​ ...
​ <devices>
​ ...
​ <interface type='direct'>
​ <source dev='eth0.2' mode='vepa'/>
​ <virtualport type="802.1Qbg">
​ <parameters managerid="11" typeid="1193047" typeidversion="2" instanceid="09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f"/>
​ </virtualport>
​ </interface>
​ </devices>
​ ...

Figure 20.42. Devices - network interfaces- direct attachment to physical interfaces additional parameters

					The interface can have additional parameters as shown below if the switch is conforming to the IEEE 802.1Qbh standard. The values are network specific and should be provided by the network administrator.
				

					Additional parameters in the domain XML include:
				

 ⁠​
​
​ ...
​ <devices>
​ ...
​ <interface type='direct'>
​ <source dev='eth0' mode='private'/>
​ <virtualport type='802.1Qbh'>
​ <parameters profileid='finance'/>
​ </virtualport>
​ </interface>
​ </devices>
​ ...

Figure 20.43. Devices - network interfaces- direct attachment to physical interfaces more additional parameters

					The profileid attribute, contains the name of the port profile that is to be applied to this interface. This name is resolved by the port profile database into the network parameters from the port profile, and those network parameters will be applied to this interface.
				

 ⁠20.16.9.7. PCI passthrough

					A PCI network device (specified by the source element) is directly assigned to the guest virtual machine using generic device passthrough, after first optionally setting the device's MAC address to the configured value, and associating the device with an 802.1Qbh capable switch using an optionally specified virtualport element (see the examples of virtualport given above for type='direct' network devices). Note that - due to limitations in standard single-port PCI ethernet card driver design - only SR-IOV (Single Root I/O Virtualization) virtual function (VF) devices can be assigned in this manner; to assign a standard single-port PCI or PCIe ethernet card to a guest virtual machine, use the traditional hostdev device definition
				

					Note that this "intelligent passthrough" of network devices is very similar to the functionality of a standard hostdev device, the difference being that this method allows specifying a MAC address and virtualport for the passed-through device. If these capabilities are not required, if you have a standard single-port PCI, PCIe, or USB network card that does not support SR-IOV (and hence would anyway lose the configured MAC address during reset after being assigned to the guest virtual machine domain), or if you are using a version of libvirt older than 0.9.11, you should use standard hostdev to assign the device to the guest virtual machine instead of interface type='hostdev'/.
				

 ⁠​
​
​ ...
​ <devices>
​ <interface type='hostdev'>
​ <driver name='vfio'/>
​ <source>
​ <address type='pci' domain='0x0000' bus='0x00' slot='0x07' function='0x0'/>
​ </source>
​ <mac address='52:54:00:6d:90:02'>
​ <virtualport type='802.1Qbh'>
​ <parameters profileid='finance'/>
​ </virtualport>
​ </interface>
​ </devices>
​ ...

Figure 20.44. Devices - network interfaces- PCI passthrough

 ⁠20.16.9.8. Multicast tunnel

					A multicast group may be used to represent a virtual network. Any guest virtual machine whose network devices are within the same multicast group will talk to each other, even if they reside across multiple physical host physical machines. This mode may be used as an unprivileged user. There is no default DNS or DHCP support and no outgoing network access. To provide outgoing network access, one of the guest virtual machines should have a second NIC which is connected to one of the first 4 network types in order to provide appropriate routing. The multicast protocol is compatible with protocols used by user mode linux guest virtual machines as well. Note that the source address used must be from the multicast address block. A multicast tunnel is created by manipulating the interface type using a management tool and setting/changing it to mcast, and providing a mac and source address. The result is shown in changes made to the domain XML:
				

 ⁠​
​
​ ...
​ <devices>
​ <interface type='mcast'>
​ <mac address='52:54:00:6d:90:01'>
​ <source address='230.0.0.1' port='5558'/>
​ </interface>
​ </devices>
​ ...

Figure 20.45. Devices - network interfaces- multicast tunnel

 ⁠20.16.9.9. TCP tunnel

					Creating a TCP client/server architecture is another way to provide a virtual network where one guest virtual machine provides the server end of the network and all other guest virtual machines are configured as clients. All network traffic between the guest virtual machines is routed via the guest virtual machine that is configured as the server. This model is also available for use to unprivileged users. There is no default DNS or DHCP support and no outgoing network access. To provide outgoing network access, one of the guest virtual machines should have a second NIC which is connected to one of the first 4 network types thereby providing the appropriate routing. A TCP tunnel is created by manipulating the interface type using a management tool and setting/changing it to server or client, and providing a mac and source address. The result is shown in changes made to the domain XML:
				

 ⁠​
​
​ ...
​ <devices>
​ <interface type='server'>
​ <mac address='52:54:00:22:c9:42'>
​ <source address='192.168.0.1' port='5558'/>
​ </interface>
​ ...
​ <interface type='client'>
​ <mac address='52:54:00:8b:c9:51'>
​ <source address='192.168.0.1' port='5558'/>
​ </interface>
​ </devices>
​ ...

Figure 20.46. Devices - network interfaces- TCP tunnel

 ⁠20.16.9.10. Setting NIC driver-specific options

					Some NICs may have tunable driver-specific options. These options are set as attributes of the driver sub-element of the interface definition. These options are set by using management tools to configuring the following sections of the domain XML:
				

 ⁠​
​
​ <devices>
​ <interface type='network'>
​ <source network='default'/>
​ <target dev='vnet1'/>
​ <model type='virtio'/>
​ <driver name='vhost' txmode='iothread' ioeventfd='on' event_idx='off'/>
​ </interface>
​ </devices>
​ ...

Figure 20.47. Devices - network interfaces- setting NIC driver-specific options

					Currently the following attributes are available for the "virtio" NIC driver:
				

 ⁠Table 20.19. virtio NIC driver elements
	Parameter	Description
	name	The optional name attribute forces which type of back-end driver to use. The value can be either qemu (a user-space back end) or vhost (a kernel back end, which requires the vhost module to be provided by the kernel); an attempt to require the vhost driver without kernel support will be rejected. The default setting is vhost if the vhost driver present, but will silently fall back to qemu if not.
	txmode	Specifies how to handle transmission of packets when the transmit buffer is full. The value can be either iothread or timer. If set to iothread, packet tx is all done in an iothread in the bottom half of the driver (this option translates into adding "tx=bh" to the qemu commandline -device virtio-net-pci option). If set to timer, tx work is done in qemu, and if there is more tx data than can be sent at the present time, a timer is set before qemu moves on to do other things; when the timer fires, another attempt is made to send more data. In general you should leave this option alone, unless you are very certain you that changing it is an absolute necessity.
	ioeventfd	Allows users to set domain I/O asynchronous handling for interface device. The default is left to the discretion of the hypervisor. Accepted values are on and off . Enabling this option allows qemu to execute a guest virtual machine while a separate thread handles I/O. Typically guest virtual machines experiencing high system CPU utilization during I/O will benefit from this. On the other hand, overloading the physical host physical machine may also increase guest virtual machine I/O latency. Therefore, you should leave this option alone, unless you are very certain you that changing it is an absolute necessity.
	event_idx	The event_idx attribute controls some aspects of device event processing. The value can be either on or off. Choosing on, reduces the number of interrupts and exits for the guest virtual machine. The default is on. In case there is a situation where this behavior is suboptimal, this attribute provides a way to force the feature off. You should leave this option alone, unless you are very certain you that changing it is an absolute necessity.

 ⁠20.16.9.11. Overriding the target element

					To override the target element, use a management tool to make the following changes to the domain XML:
				

 ⁠​
​
​ ...
​ <devices>
​ <interface type='network'>
​ <source network='default'/>
​ <target dev='vnet1'/>
​ </interface>
​ </devices>
​ ...

Figure 20.48. Devices - network interfaces- overriding the target element

					If no target is specified, certain hypervisors will automatically generate a name for the created tun device. This name can be manually specified, however the name must not start with either 'vnet' or 'vif', which are prefixes reserved by libvirt and certain hypervisors. Manually specified targets using these prefixes will be ignored.
				

 ⁠20.16.9.12. Specifying boot order

					To specify the boot order, use a management tool to make the following changes to the domain XML:
				

 ⁠​
​
​ ...
​ <devices>
​ <interface type='network'>
​ <source network='default'/>
​ <target dev='vnet1'/>
​ <boot order='1'/>
​ </interface>
​ </devices>
​ ...

Figure 20.49. Specifying boot order

					For hypervisors which support it, you can set a specific NIC to be used for the network boot. The order of attributes determine the order in which devices will be tried during boot sequence. Note that the per-device boot elements cannot be used together with general boot elements in BIOS boot loader section.
				

 ⁠20.16.9.13. Interface ROM BIOS configuration

					To specify the ROM BIOS configuration settings, use a management tool to make the following changes to the domain XML:
				

 ⁠​
​
​ ...
​ <devices>
​ <interface type='network'>
​ <source network='default'/>
​ <target dev='vnet1'/>
​ <rom bar='on' file='/etc/fake/boot.bin'/>
​ </interface>
​ </devices>
​ ...

Figure 20.50. Interface ROM BIOS configuration

					For hypervisors which support it, you can change how a PCI Network device's ROM is presented to the guest virtual machine. The bar attribute can be set to on or off, and determines whether or not the device's ROM will be visible in the guest virtual machine's memory map. (In PCI documentation, the "rombar" setting controls the presence of the Base Address Register for the ROM). If no rom bar is specified, the qemu default will be used (older versions of qemu used a default of off, while newer qemus have a default of on). The optional file attribute is used to point to a binary file to be presented to the guest virtual machine as the device's ROM BIOS. This can be useful to provide an alternative boot ROM for a network device.
				

 ⁠20.16.9.14. Quality of service

					This section of the domain XML provides setting quality of service. Incoming and outgoing traffic can be shaped independently. The bandwidth element can have at most one inbound and at most one outbound child elements. Leaving any of these children element out results in no QoS being applied on that traffic direction. Therefore, when you want to shape only domain's incoming traffic, use inbound only, and vice versa.
				

					Each of these elements has one mandatory attribute average (or floor as described below). average specifies average bit rate on the interface being shaped. Then there are two optional attributes: peak, which specifies maximum rate at which interface can send data, and burst, which specifies the amount of bytes that can be burst at peak speed. Accepted values for attributes are integer numbers.
				

					The units for average and peak attributes are kilobytes per second, whereas burst is only set in kilobytes. In addition, inbound traffic can optionally have a floor attribute. This guarantees minimal throughput for shaped interfaces. Using the floor requires that all traffic goes through one point where QoS decisions can take place. As such it may only be used in cases where the interface type='network'/ with a forward type of route, nat, or no forward at all). It should be noted that within a virtual network, all connected interfaces are required to have at least the inbound QoS set (average at least) but the floor attribute does not require specifying average. However, peak and burst attributes still require average. At the present time, ingress qdiscs may not have any classes, and therefore floor may only be applied only on inbound and not outbound traffic.
				

					To specify the QoS configuration settings, use a management tool to make the following changes to the domain XML:
				

 ⁠​
​
​ ...
​ <devices>
​ <interface type='network'>
​ <source network='default'/>
​ <target dev='vnet0'/>
​ <bandwidth>
​ <inbound average='1000' peak='5000' floor='200' burst='1024'/>
​ <outbound average='128' peak='256' burst='256'/>
​ </bandwidth>
​ </interface>
​ <devices>
​ ...

Figure 20.51. Quality of service

 ⁠20.16.9.15. Setting VLAN tag (on supported network types only)

					To specify the VLAN tag configuration settings, use a management tool to make the following changes to the domain XML:
				

 ⁠​
​
​ ...
​ <devices>
​ <interface type='bridge'>
​ <vlan>
​ <tag id='42'/>
​ </vlan>
​ <source bridge='ovsbr0'/>
​ <virtualport type='openvswitch'>
​ <parameters interfaceid='09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f'/>
​ </virtualport>
​ </interface>
​ <devices>
​ ...

Figure 20.52. Setting VLAN tag (on supported network types only)

					If (and only if) the network connection used by the guest virtual machine supports vlan tagging transparent to the guest virtual machine, an optional vlan element can specify one or more vlan tags to apply to the guest virtual machine's network traffic (openvswitch and type='hostdev' SR-IOV interfaces do support transparent vlan tagging of guest virtual machine traffic; everything else, including standard Linux bridges and libvirt's own virtual networks, do not support it. 802.1Qbh (vn-link) and 802.1Qbg (VEPA) switches provide their own way (outside of libvirt) to tag guest virtual machine traffic onto specific vlans.) To allow for specification of multiple tags (in the case of vlan trunking), a subelement, tag, specifies which vlan tag to use (for example: tag id='42'/. If an interface has more than one vlan element defined, it is assumed that the user wants to do VLAN trunking using all the specified tags. In the case that vlan trunking with a single tag is desired, the optional attribute trunk='yes' can be added to the toplevel vlan element.
				

 ⁠20.16.9.16. Modifying virtual link state

					This element provides means of setting state of the virtual network link. Possible values for attribute state are up and down. If down is specified as the value, the interface behaves as if it had the network cable disconnected. Default behavior if this element is unspecified is to have the link state up.
				

					To specify the virtual link state configuration settings, use a management tool to make the following changes to the domain XML:
				

 ⁠​
​
​ ...
​ <devices>
​ <interface type='network'>
​ <source network='default'/>
​ <target dev='vnet0'/>
​ <link state='down'/>
​ </interface>
​ <devices>
​ ...

Figure 20.53. Modifying virtual link state

 ⁠20.16.10. Input Devices

				Input devices allow interaction with the graphical framebuffer in the guest virtual machine virtual machine. When enabling the framebuffer, an input device is automatically provided. It may be possible to add additional devices explicitly, for example, to provide a graphics tablet for absolute cursor movement.
			

				To specify the input devices configuration settings, use a management tool to make the following changes to the domain XML:
			

 ⁠​
​
​ ...
​ <devices>
​ <input type='mouse' bus='usb'/>
​ </devices>
​ ...

Figure 20.54. Input devices

				The <input> element has one mandatory attribute: type which can be set to: mouse or tablet. The latter provides absolute cursor movement, while the former uses relative movement. The optional bus attribute can be used to refine the exact device type and can be set to: xen (paravirtualized), ps2, and usb.
			

				The input element has an optional sub-element <address>, which can tie the device to a particular PCI slot, as documented above.
			

 ⁠20.16.11. Hub Devices

				A hub is a device that expands a single port into several so that there are more ports available to connect devices to a host physical machine system.
			

				To specify the hub devices configuration settings, use a management tool to make the following changes to the domain XML:
			

 ⁠​
​
​ ...
​ <devices>
​ <hub type='usb'/>
​ </devices>
​ ...

Figure 20.55. Hub devices

				The hub element has one mandatory attribute, the type whose value can only be usb. The hub element has an optional sub-element address with type='usb'which can tie the device to a particular controller.
			

 ⁠20.16.12. Graphical framebuffers

				A graphics device allows for graphical interaction with the guest virtual machine OS. A guest virtual machine will typically have either a framebuffer or a text console configured to allow interaction with the admin.
			

				To specify the graphical framebuffer devices configuration settings, use a management tool to make the following changes to the domain XML:
			

 ⁠​
​
​ ...
​ <devices>
​ <graphics type='sdl' display=':0.0'/>
​ <graphics type='vnc' port='5904'>
​ <listen type='address' address='192.0.2.1'/>
​ </graphics>
​ <graphics type='rdp' autoport='yes' multiUser='yes' />
​ <graphics type='desktop' fullscreen='yes'/>
​ <graphics type='spice'>
​ <listen type='network' network='rednet'/>
​ </graphics>
​ </devices>
​ ...

Figure 20.56. Graphical Framebuffers

				The graphics element has a mandatory type attribute which takes the value sdl, vnc, rdp or desktop as explained below:
			

 ⁠Table 20.20. Graphical framebuffer elements
	Parameter	Description
	sdl	This displays a window on the host physical machine desktop, it can take 3 optional arguments: a display attribute for the display to use, an xauth attribute for the authentication identifier, and an optional fullscreen attribute accepting values yes or no
	vnc	Starts a VNC server. The port attribute specifies the TCP port number (with -1 as legacy syntax indicating that it should be auto-allocated). The autoport attribute is the new preferred syntax for indicating autoallocation of the TCP port to use. The listen attribute is an IP address for the server to listen on. The passwd attribute provides a VNC password in clear text. The keymap attribute specifies the keymap to use. It is possible to set a limit on the validity of the password be giving an timestamp passwdValidTo='2010-04-09T15:51:00' assumed to be in UTC. The connected attribute allows control of connected client during password changes. VNC accepts keep value only and note that it may not be supported by all hypervisors. Rather than using listen/port, QEMU supports a socket attribute for listening on a unix domain socket path.
	spice	Starts a SPICE server. The port attribute specifies the TCP port number (with -1 as legacy syntax indicating that it should be auto-allocated), while tlsPort gives an alternative secure port number. The autoport attribute is the new preferred syntax for indicating auto-allocation of both port numbers. The listen attribute is an IP address for the server to listen on. The passwd attribute provides a SPICE password in clear text. The keymap attribute specifies the keymap to use. It is possible to set a limit on the validity of the password be giving an timestamp passwdValidTo='2010-04-09T15:51:00' assumed to be in UTC. The connected attribute allows control of connected client during password changes. SPICE accepts keep to keep client connected, disconnect to disconnect client and fail to fail changing password. Note it is not be supported by all hypervisors. The defaultMode attribute sets the default channel security policy, valid values are secure, insecure and the default any (which is secure if possible, but falls back to insecure rather than erroring out if no secure path is available).

				When SPICE has both a normal and TLS secured TCP port configured, it may be desirable to restrict what channels can be run on each port. This is achieved by adding one or more channel elements inside the main graphics element. Valid channel names include main, display, inputs, cursor, playback, record; smartcard; and usbredir.
			

				To specify the SPICE configuration settings, use a mangement tool to make the following changes to the domain XML:
			

 ⁠​
​
​ <graphics type='spice' port='-1' tlsPort='-1' autoport='yes'>
​ <channel name='main' mode='secure'/>
​ <channel name='record' mode='insecure'/>
​ <image compression='auto_glz'/>
​ <streaming mode='filter'/>
​ <clipboard copypaste='no'/>
​ <mouse mode='client'/>
​ </graphics>

Figure 20.57. SPICE configuration

				SPICE supports variable compression settings for audio, images and streaming. These settings are accessible by using the compression attribute in all following elements: image to set image compression (accepts auto_glz, auto_lz, quick, glz, lz, off), jpeg for JPEG compression for images over wan (accepts auto, never, always), zlib for configuring wan image compression (accepts auto, never, always) and playback for enabling audio stream compression (accepts on or off).
			

				Streaming mode is set by the streaming element, settings its mode attribute to one of filter, all or off.
			

				In addition, Copy and paste functionality (using the SPICE agent) is set by the clipboard element. It is enabled by default, and can be disabled by setting the copypaste property to no.
			

				Mouse mode is set by the mouse element, setting its mode attribute to one of server or client. If no mode is specified, the qemu default will be used (client mode).
			

				Additional elements include:
			

 ⁠Table 20.21. Additional graphical framebuffer elements
	Parameter	Description
	rdp	Starts a RDP server. The port attribute specifies the TCP port number (with -1 as legacy syntax indicating that it should be auto-allocated). The autoport attribute is the new preferred syntax for indicating autoallocation of the TCP port to use. The replaceUser attribute is a boolean deciding whether multiple simultaneous connections to the VM are permitted. The multiUser whether the existing connection must be dropped and a new connection must be established by the VRDP server, when a new client connects in single connection mode.
	desktop	This value is reserved for VirtualBox domains for the moment. It displays a window on the host physical machine desktop, similarly to "sdl", but uses the VirtualBox viewer. Just like "sdl", it accepts the optional attributes display and fullscreen.
	listen	Rather than putting the address information used to set up the listening socket for graphics types vnc and spice in the graphics, the listen attribute, a separate subelement of graphics, called listen can be specified (see the examples above). listen accepts the following attributes:
								
										type - Set to either address or network. This tells whether this listen element is specifying the address to be used directly, or by naming a network (which will then be used to determine an appropriate address for listening).
									

	
										address - this attribute will contain either an IP address or host name (which will be resolved to an IP address via a DNS query) to listen on. In the "live" XML of a running domain, this attribute will be set to the IP address used for listening, even if type='network'.
									

	
										network - if type='network', the network attribute will contain the name of a network in libvirt's list of configured networks. The named network configuration will be examined to determine an appropriate listen address. For example, if the network has an IPv4 address in its configuration (for instance if it has a forward type of route, nat, or no forward type (isolated)), the first IPv4 address listed in the network's configuration will be used. If the network is describing a host physical machine bridge, the first IPv4 address associated with that bridge device will be used, and if the network is describing one of the 'direct' (macvtap) modes, the first IPv4 address of the first forward dev will be used.
									

							

 ⁠20.16.13. Video Devices

				A video device.
			

				To specify the video devices configuration settings, use a management tool to make the following changes to the domain XML:
			

 ⁠​
​
​ ...
​ <devices>
​ <video>
​ <model type='vga' vram='8192' heads='1'>
​ <acceleration accel3d='yes' accel2d='yes'/>
​ </model>
​ </video>
​ </devices>
​ ...

Figure 20.58. Video devices

				The graphics element has a mandatory type attribute which takes the value "sdl", "vnc", "rdp" or "desktop" as explained below:
			

 ⁠Table 20.22. Graphical framebuffer elements
	Parameter	Description
	video	The video element is the container for describing video devices. For backwards compatibility, if no video is set but there is a graphics element in domain xml, then libvirt will add a default video according to the guest virtual machine type. If "ram" or "vram" are not supplied a default value is used.
	model	This has a mandatory type attribute which takes the value vga, cirrus, vmvga, xen, vbox, or qxl depending on the hypervisor features available. You can also provide the amount of video memory in kibibytes (blocks of 1024 bytes) using vram and the number of figure with heads.
	acceleration	If acceleration is supported it should be enabled using the accel3d and accel2d attributes in the acceleration element.
	address	The optional address sub-element can be used to tie the video device to a particular PCI slot.

 ⁠20.16.14. Consoles, Serial, Parallel, and Channel Devices

				A character device provides a way to interact with the virtual machine. Paravirtualized consoles, serial ports, parallel ports and channels are all classed as character devices and so represented using the same syntax.
			

				To specify the consols, channel and other devices configuration settings, use a management tool to make the following changes to the domain XML:
			

 ⁠​
​
​ ...
​ <devices>
​ <parallel type='pty'>
​ <source path='/dev/pts/2'/>
​ <target port='0'/>
​ </parallel>
​ <serial type='pty'>
​ <source path='/dev/pts/3'/>
​ <target port='0'/>
​ </serial>
​ <console type='pty'>
​ <source path='/dev/pts/4'/>
​ <target port='0'/>
​ </console>
​ <channel type='unix'>
​ <source mode='bind' path='/tmp/guestfwd'/>
​ <target type='guestfwd' address='10.0.2.1' port='4600'/>
​ </channel>
​ </devices>
​ ...

Figure 20.59. Consoles, serial, parallel, and channel devices

				In each of these directives, the top-level element name (parallel, serial, console, channel) describes how the device is presented to the guest virtual machine. The guest virtual machine interface is configured by the target element. The interface presented to the host physical machine is given in the type attribute of the top-level element. The host physical machine interface is configured by the source element. The source element may contain an optional seclabel to override the way that labelling is done on the socket path. If this element is not present, the security label is inherited from the per-domain setting. Each character device element has an optional sub-element address which can tie the device to a particular controller or PCI slot.
			

 ⁠20.16.15. Guest Virtual Machine Interfaces

				A character device presents itself to the guest virtual machine as one of the following types.
			

				To set the parallel port, use a management tool to make the following change to the domain XML
			

 ⁠​
​
​...
​ <devices>
​ <parallel type='pty'>
​ <source path='/dev/pts/2'/>
​ <target port='0'/>
​ </parallel>
​ </devices>
​ ...

Figure 20.60. Guest virtual machine interface Parallel Port

				<target> can have a port attribute, which specifies the port number. Ports are numbered starting from 0. There are usually 0, 1 or 2 parallel ports.
			

				To set the serial port use a management tool to make the following change to the domain XML:
			

 ⁠​
​
​ ...
​ <devices>
​ <serial type='pty'>
​ <source path='/dev/pts/3'/>
​ <target port='0'/>
​ </serial>
​ </devices>
​ ...

Figure 20.61. Guest virtual machine interface serial port

				<target> can have a port attribute, which specifies the port number. Ports are numbered starting from 0. There are usually 0, 1 or 2 serial ports. There is also an optional type attribute, which has two choices for its value, one is isa-serial, the other is usb-serial. If type is missing, isa-serial will be used by default. For usb-serial an optional sub-element <address> with type='usb' can tie the device to a particular controller, documented above.
			

				The <console> element is used to represent interactive consoles. Depending on the type of guest virtual machine in use, the consoles might be paravirtualized devices, or they might be a clone of a serial device, according to the following rules:
			
	
						If no targetType attribute is set, then the default device type is according to the hypervisor's rules. The default type will be added when re-querying the XML fed into libvirt. For fully virtualized guest virtual machines, the default device type will usually be a serial port.
					

	
						If the targetType attribute is serial, and if no <serial> element exists, the console element will be copied to the <serial> element. If a <serial> element does already exist, the console element will be ignored.
					

	
						If the targetType attribute is not serial, it will be treated normally.
					

	
						Only the first <console> element may use a targetType of serial. Secondary consoles must all be paravirtualized.
					

	
						On s390, the console element may use a targetType of sclp or sclplm (line mode). SCLP is the native console type for s390. There's no controller associated to SCLP consoles.
					

				In the example below, a virtio console device is exposed in the guest virtual machine as /dev/hvc[0-7] (for more information, see http://fedoraproject.org/wiki/Features/VirtioSerial):
			

 ⁠​
​
​ ...
​ <devices>
​ <console type='pty'>
​ <source path='/dev/pts/4'/>
​ <target port='0'/>
​ </console>
​
​ <!-- KVM virtio console -->
​ <console type='pty'>
​ <source path='/dev/pts/5'/>
​ <target type='virtio' port='0'/>
​ </console>
​ </devices>
​ ...
​
​ ...
​ <devices>
​ <!-- KVM s390 sclp console -->
​ <console type='pty'>
​ <source path='/dev/pts/1'/>
​ <target type='sclp' port='0'/>
​ </console>
​ </devices>
​ ...

Figure 20.62. Guest virtual machine interface - virtio console device

				If the console is presented as a serial port, the <target> element has the same attributes as for a serial port. There is usually only one console.
			

 ⁠20.16.16. Channel

				This represents a private communication channel between the host physical machine and the guest virtual machine and is manipulated by making changes to your guest virtual machine virtual machine using a management tool that results in changes made to the following section of the domain xml
			

 ⁠​
​
​ ...
​ <devices>
​ <channel type='unix'>
​ <source mode='bind' path='/tmp/guestfwd'/>
​ <target type='guestfwd' address='10.0.2.1' port='4600'/>
​ </channel>
​
​ <!-- KVM virtio channel -->
​ <channel type='pty'>
​ <target type='virtio' name='arbitrary.virtio.serial.port.name'/>
​ </channel>
​ <channel type='unix'>
​ <source mode='bind' path='/var/lib/libvirt/qemu/f16x86_64.agent'/>
​ <target type='virtio' name='org.qemu.guest_agent.0'/>
​ </channel>
​ <channel type='spicevmc'>
​ <target type='virtio' name='com.redhat.spice.0'/>
​ </channel>
​ </devices>
​ ...

Figure 20.63. Channel

				This can be implemented in a variety of ways. The specific type of <channel> is given in the type attribute of the <target> element. Different channel types have different target attributes as follows:
			
	
						guestfwd - Dictates that TCP traffic sent by the guest virtual machine to a given IP address and port is forwarded to the channel device on the host physical machine. The target element must have address and port attributes.
					

	
						virtio - Paravirtualized virtio channel. <channel> is exposed in the guest virtual machine under /dev/vport*, and if the optional element nameis specified, /dev/virtio-ports/$name (for more info, see http://fedoraproject.org/wiki/Features/VirtioSerial). The optional element address can tie the channel to a particular type='virtio-serial' controller, documented above. With QEMU, if name is "org.qemu.guest_agent.0", then libvirt can interact with a guest virtual machine agent installed in the guest virtual machine, for actions such as guest virtual machine shutdown or file system quiescing.
					

	
						spicevmc - Paravirtualized SPICE channel. The domain must also have a SPICE server as a graphics device, at which point the host physical machine piggy-backs messages across the main channel. The target element must be present, with attribute type='virtio'; an optional attribute name controls how the guest virtual machine will have access to the channel, and defaults to name='com.redhat.spice.0'. The optional <address> element can tie the channel to a particular type='virtio-serial' controller.
					

 ⁠20.16.17. Host Physical Machine Interface

				A character device presents itself to the host physical machine as one of the following types:
			

 ⁠Table 20.23. Character device elements
	Parameter	Description	XML snippet
	Domain logfile	Disables all input on the character device, and sends output into the virtual machine's logfile	

 			 	 <devices>
 			 	 <console type='stdio'>
 			 	 <target port='1'/>
 </console>
 </devices>

							
	Device logfile	A file is opened and all data sent to the character device is written to the file.	

 			 	 <devices>
 			 	 <serial type="file">
 			 	 <source path="/var/log/vm/vm-serial.log"/>
 			 	 <target port="1"/>
 			 	 </serial>
 			 	 </devices>

							
	Virtual console	Connects the character device to the graphical framebuffer in a virtual console. This is typically accessed via a special hotkey sequence such as "ctrl+alt+3"	

 			 	 <devices>
 			 	 <serial type='vc'>
 <target port="1"/>
 </serial>
 </devices>

							
	Null device	Connects the character device to the void. No data is ever provided to the input. All data written is discarded.	

 <devices>
 <serial type='null'>
 <target port="1"/>
 </serial>
 </devices>

							
	Pseudo TTY	A Pseudo TTY is allocated using /dev/ptmx. A suitable client such as virsh console can connect to interact with the serial port locally.	

 <devices>
 <serial type="pty">
 <source path="/dev/pts/3"/>
 <target port="1"/>
 </serial>
 </devices>

							
	NB Special case	NB special case if <console type='pty'>, then the TTY path is also duplicated as an attribute tty='/dev/pts/3' on the top level <console> tag. This provides compat with existing syntax for <console> tags.	
	Host physical machine device proxy	The character device is passed through to the underlying physical character device. The device types must match, eg the emulated serial port should only be connected to a host physical machine serial port - do not connect a serial port to a parallel port.	

 <devices>
 <serial type="dev">
 <source path="/dev/ttyS0"/>
 <target port="1"/>
 </serial>
 </devices>

							
	Named pipe	The character device writes output to a named pipe. See pipe(7) man page for more info.	

 <devices>
 <serial type="pipe">
 <source path="/tmp/mypipe"/>
 <target port="1"/>
 </serial>
 </devices>

							
	TCP client/server	The character device acts as a TCP client connecting to a remote server.	

 <devices>
 <serial type="tcp">
 <source mode="connect" host="0.0.0.0" service="2445"/>
 <protocol type="raw"/>
 <target port="1"/>
 </serial>
 </devices>

							
								Or as a TCP server waiting for a client connection.
							

							

 <devices>
 <serial type="tcp">
 <source mode="bind" host="127.0.0.1" service="2445"/>
 <protocol type="raw"/>
 <target port="1"/>
 </serial>
 </devices>

							
								Alternatively you can use telnet instead of raw TCP. In addition, you can also use telnets (secure telnet) and tls.
							

							

 <devices>
 <serial type="tcp">
 <source mode="connect" host="0.0.0.0" service="2445"/>
 <protocol type="telnet"/>
 <target port="1"/>
 </serial>
 <serial type="tcp">
 <source mode="bind" host="127.0.0.1" service="2445"/>
 <protocol type="telnet"/>
 <target port="1"/>
 </serial>
 </devices>

							
	UDP network console	The character device acts as a UDP netconsole service, sending and receiving packets. This is a lossy service.	

 <devices>
 <serial type="udp">
 <source mode="bind" host="0.0.0.0" service="2445"/>
 <source mode="connect" host="0.0.0.0" service="2445"/>
 <target port="1"/>
 </serial>
 </devices>

							
	UNIX domain socket client/server	The character device acts as a UNIX domain socket server, accepting connections from local clients.	

 <devices>
 <serial type="unix">
 <source mode="bind" path="/tmp/foo"/>
 <target port="1"/>
 </serial>
 </devices>

							

 ⁠20.17. Sound Devices

			A virtual sound card can be attached to the host physical machine by using the sound element.
		

 ⁠​
​
​ ...
​ <devices>
​ <sound model='es1370'/>
​ </devices>
​ ...

Figure 20.64. Virtual sound card

			The sound element has one mandatory attribute, model, which specifies what real sound device is emulated. Valid values are specific to the underlying hypervisor, though typical choices are 'es1370', 'sb16', 'ac97', and 'ich6'. In addition, a sound element with ich6 model can have optional sub-elements codec to attach various audio codecs to the audio device. If not specified, a default codec will be attached to allow playback and recording. Valid values are 'duplex' (advertises a line-in and a line-out) and 'micro' (advertises a speaker and a microphone).
		

 ⁠​
​
​ ...
​ <devices>
​ <sound model='ich6'>
​ <codec type='micro'/>
​ <sound/>
​ </devices>
​ ...

Figure 20.65. Sound devices

			Each sound element has an optional sub-element <address> which can tie the device to a particular PCI slot, documented above.
		

 ⁠20.18. Watchdog Device

			A virtual hardware watchdog device can be added to the guest virtual machine via the <watchdog> element. The watchdog device requires an additional driver and management daemon in the guest virtual machine. As merely enabling the watchdog in the libvirt configuration does not do anything useful on its own. Currently there is no support notification when the watchdog fires.
		

 ⁠​
​
​ ...
​ <devices>
​ <watchdog model='i6300esb'/>
​ </devices>
​ ...
​
​ ...
​ <devices>
​ <watchdog model='i6300esb' action='poweroff'/>
​ </devices>
​</domain>

Figure 20.66. Watchdog Device

			The following attributes are declared in this XML:
		
	
					model - The required model attribute specifies what real watchdog device is emulated. Valid values are specific to the underlying hypervisor.
				

	
					The model attribute may take the following values:
				
	
							i6300esb — the recommended device, emulating a PCI Intel 6300ESB
						

	
							ib700 — emulates an ISA iBase IB700
						

	
					action - The optional action attribute describes what action to take when the watchdog expires. Valid values are specific to the underlying hypervisor. The action attribute can have the following values:
				
	
							reset — default setting, forcefully resets the guest virtual machine
						

	
							shutdown — gracefully shuts down the guest virtual machine (not recommended)
						

	
							poweroff — forcefully powers off the guest virtual machine
						

	
							pause — pauses the guest virtual machine
						

	
							none — does nothing
						

	
							dump — automatically dumps the guest virtual machine.
						

			Note that the 'shutdown' action requires that the guest virtual machine is responsive to ACPI signals. In the sort of situations where the watchdog has expired, guest virtual machines are usually unable to respond to ACPI signals. Therefore using 'shutdown' is not recommended. In addition, the directory to save dump files can be configured by auto_dump_path in file /etc/libvirt/qemu.conf.
		

 ⁠20.19. Memory Balloon Device

			A virtual memory balloon device is added to all Xen and KVM/QEMU guest virtual machines. It will be seen as <memballoon> element. It will be automatically added when appropriate, so there is no need to explicitly add this element in the guest virtual machine XML unless a specific PCI slot needs to be assigned. Note that if the memballoon device needs to be explicitly disabled, model='none' may be used.
		

			The following example automatically added device with KVM
		

 ⁠​
​
​ ...
​ <devices>
​ <memballoon model='virtio'/>
​ </devices>
​ ...

Figure 20.67. Memory balloon device

			Here is an example where the device is added manually with static PCI slot 2 requested
		

 ⁠​
​
​ ...
​ <devices>
​ <memballoon model='virtio'>
​ <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>
​ </memballoon>
​ </devices>
​</domain>

Figure 20.68. Memory balloon device added manually

			The required model attribute specifies what type of balloon device is provided. Valid values are specific to the virtualization platform are: 'virtio' which is the default setting with the KVM hypervisor or 'xen' which is the default setting with the Xen hypervisor.
		

 ⁠20.20. Security Label

			The <seclabel> element allows control over the operation of the security drivers. There are three basic modes of operation, 'dynamic' where libvirt automatically generates a unique security label, 'static' where the application/administrator chooses the labels, or 'none' where confinement is disabled. With dynamic label generation, libvirt will always automatically relabel any resources associated with the virtual machine. With static label assignment, by default, the administrator or application must ensure labels are set correctly on any resources. However, automatic relabeling can be enabled if desired.
		

			If more than one security driver is used by libvirt, multiple seclabel tags can be used, one for each driver and the security driver referenced by each tag can be defined using the attribute model Valid input XML configurations for the top-level security label are:
		

 ⁠​
​
​ <seclabel type='dynamic' model='selinux'/>
​
​ <seclabel type='dynamic' model='selinux'>
​ <baselabel>system_u:system_r:my_svirt_t:s0</baselabel>
​ </seclabel>
​
​ <seclabel type='static' model='selinux' relabel='no'>
​ <label>system_u:system_r:svirt_t:s0:c392,c662</label>
​ </seclabel>
​
​ <seclabel type='static' model='selinux' relabel='yes'>
​ <label>system_u:system_r:svirt_t:s0:c392,c662</label>
​ </seclabel>
​
​ <seclabel type='none'/>

Figure 20.69. Security label

			If no 'type' attribute is provided in the input XML, then the security driver default setting will be used, which may be either 'none' or 'dynamic'. If a <baselabel> is set but no 'type' is set, then the type is presumed to be 'dynamic'. When viewing the XML for a running guest virtual machine with automatic resource relabeling active, an additional XML element, imagelabel, will be included. This is an output-only element, so will be ignored in user supplied XML documents.
		

			The following elements can be manipulated with the following values:
		
	
					type - Either static, dynamic or none to determine whether libvirt automatically generates a unique security label or not.
				

	
					model - A valid security model name, matching the currently activated security model
				

	
					relabel - Either yes or no. This must always be yes if dynamic label assignment is used. With static label assignment it will default to no.
				

	
					<label> - If static labelling is used, this must specify the full security label to assign to the virtual domain. The format of the content depends on the security driver in use:
				
	
							SELinux: a SELinux context.
						

	
							AppArmor: an AppArmor profile.
						

	
							DAC: owner and group separated by colon. They can be defined both as user/group names or uid/gid. The driver will first try to parse these values as names, but a leading plus sign can used to force the driver to parse them as uid or gid.
						

	
					<baselabel> - If dynamic labelling is used, this can optionally be used to specify the base security label. The format of the content depends on the security driver in use.
				

	
					<imagelabel> - This is an output only element, which shows the security label used on resources associated with the virtual domain. The format of the content depends on the security driver in use When relabeling is in effect, it is also possible to fine-tune the labeling done for specific source file names, by either disabling the labeling (useful if the file lives on NFS or other file system that lacks security labeling) or requesting an alternate label (useful when a management application creates a special label to allow sharing of some, but not all, resources between domains). When a seclabel element is attached to a specific path rather than the top-level domain assignment, only the attribute relabel or the sub-element label are supported.
				

 ⁠20.21. Example Domain XML Configuration

			QEMU emulated guest virtual machine on AMD64 and Intel
		

 ⁠​
​
​<domain type='qemu'>
​ <name>QEmu-fedora-i686</name>
​ <uuid>c7a5fdbd-cdaf-9455-926a-d65c16db1809</uuid>
​ <memory>219200</memory>
​ <currentMemory>219200</currentMemory>
​ <vcpu>2</vcpu>
​ <os>
​ <type arch='i686' machine='pc'>hvm</type>
​ <boot dev='cdrom'/>
​ </os>
​ <devices>
​ <emulator>/usr/bin/qemu-system-x86_64</emulator>
​ <disk type='file' device='cdrom'>
​ <source file='/home/user/boot.iso'/>
​ <target dev='hdc'/>
​ <readonly/>
​ </disk>
​ <disk type='file' device='disk'>
​ <source file='/home/user/fedora.img'/>
​ <target dev='hda'/>
​ </disk>
​ <interface type='network'>
​ <source network='default'/>
​ </interface>
​ <graphics type='vnc' port='-1'/>
​ </devices>
​</domain>

Figure 20.70. Example domain XML config

			KVM hardware accelerated guest virtual machine on i686
		

 ⁠​
​
​<domain type='kvm'>
​ <name>demo2</name>
​ <uuid>4dea24b3-1d52-d8f3-2516-782e98a23fa0</uuid>
​ <memory>131072</memory>
​ <vcpu>1</vcpu>
​ <os>
​ <type arch="i686">hvm</type>
​ </os>
​ <clock sync="localtime"/>
​ <devices>
​ <emulator>/usr/bin/qemu-kvm</emulator>
​ <disk type='file' device='disk'>
​ <source file='/var/lib/libvirt/images/demo2.img'/>
​ <target dev='hda'/>
​ </disk>
​ <interface type='network'>
​ <source network='default'/>
​ <mac address='24:42:53:21:52:45'/>
​ </interface>
​ <graphics type='vnc' port='-1' keymap='de'/>
​ </devices>
​</domain>

Figure 20.71. Example domain XML config

 ⁠Chapter 21. Troubleshooting

		This chapter covers common problems and solutions for Red Hat Enterprise Linux 6 virtualization issues.
	

		Read this chapter to develop an understanding of some of the common problems associated with virtualization technologies. Troubleshooting takes practice and experience which are difficult to learn from a book. It is recommended that you experiment and test virtualization on Red Hat Enterprise Linux 6 to develop your troubleshooting skills.
	

		If you cannot find the answer in this document there may be an answer online from the virtualization community. Refer to Section B.1, “Online Resources” for a list of Linux virtualization websites.
	

 ⁠21.1. Debugging and Troubleshooting Tools

			This section summarizes the System Administrator applications, the networking utilities, and debugging tools. You can employ these standard System administration tools and logs to assist with troubleshooting:
		
	
					kvm_stat - refer to Section 21.4, “kvm_stat”
				

	
					trace-cmd
				

	
					ftrace Refer to the Red Hat Enterprise Linux Developer Guide
				

	
					vmstat
				

	
					iostat
				

	
					lsof
				

	
					systemtap
				

	
					crash
				

	
					sysrq
				

	
					sysrq t
				

	
					sysrq w
				

			These networking tools can assist with troubleshooting virtualization networking problems:
		
	
					ifconfig
				

	
					tcpdump
				

					The tcpdump command 'sniffs' network packets. tcpdump is useful for finding network abnormalities and problems with network authentication. There is a graphical version of tcpdump named wireshark.
				

	
					brctl
				

					brctl is a networking tool that inspects and configures the Ethernet bridge configuration in the Linux kernel. You must have root access before performing these example commands:
				
brctl show
bridge-name bridge-id STP enabled interfaces

virtbr0 8000.feffffff yes eth0

brctl showmacs virtbr0
port-no mac-addr local? aging timer
1 fe:ff:ff:ff:ff: yes 0.00
2 fe:ff:ff:fe:ff: yes 0.00
brctl showstp virtbr0
virtbr0
bridge-id 8000.fefffffffff
designated-root 8000.fefffffffff
root-port 0 path-cost 0
max-age 20.00 bridge-max-age 20.00
hello-time 2.00 bridge-hello-time 2.00
forward-delay 0.00 bridge-forward-delay 0.00
aging-time 300.01
hello-timer 1.43 tcn-timer 0.00
topology-change-timer 0.00 gc-timer 0.02

			Listed below are some other useful commands for troubleshooting virtualization.
		
	
					strace is a command which traces system calls and events received and used by another process.
				

	
					vncviewer: connect to a VNC server running on your server or a virtual machine. Install vncviwer using the yum install tigervnc command.
				

	
					vncserver: start a remote desktop on your server. Gives you the ability to run graphical user interfaces such as virt-manager via a remote session. Install vncserver using the yum install tigervnc-server command.
				

 ⁠21.2. Preparing for Disaster Recovery

			If at all possible, it is best to prepare for situations where your equipment will be compromised due to weather, or other reasons. It is highly recommended that you perform a backup of the following files and directories on your host physical machine:
		
	
					From the /etc/libvirt directory, all files.
				

	
					From the /var/lib/libvirt directory, back up the following items:
				
	
							The current dnsmasq DHCP leases found in /var/lib/libvirt/dnsmasq
						

	
							The running virtual network configuration files found in /var/lib/libvirt/network
						

	
							Guest virtual machine files created by virt-manager when saving the current state of a guest, if there are any. These can be found in the /var/lib/libvirt/qemu/save/ directory. If the virsh save command was used to create virtual machines, the files can be found in the location specified for virsh save by the user.
						

	
							The guest virtual machine snapshot files, created by the qemu-img create and virsh snapshot-create commands and found in the locations specified for the commands by the user.
						

	
							Guest virtual machine disk images created by virt-manager, if any, which can be found in the /var/lib/libvirt/images/ directory. If the virsh pool-define command was used to create virtual storage, the image file can be found in the location specified for virsh pool-define by the user. For instructions on how to back up the guest image files, use the steps described in Procedure 21.1, “Creating a backup of the guest virtual machine's disk image for disaster recovery purposes”.
						

	
					If you are using bridges, you will also need to back up the files located in /etc/sysconfig/network-scripts/ifcfg-<bridge_name>
				

	
					Optionally, the guest virtual machine core dump files found in /var/lib/libvirt/qemu/dump can also be backed up to be used for analysing the causes of the failure. Note, however, that these files can be very large for some systems.
				

 ⁠Procedure 21.1. Creating a backup of the guest virtual machine's disk image for disaster recovery purposes

				This procedure will cover how to back up several different disk image types.
			
	
					To back up only the guest virtual machine disk image, back up the files located in /var/lib/libvirt/images. To back up guest virtual machine disk images with LVM logical volumes, run the following command:
				
lvcreate --snapshot --name snap --size 8G /dev/vg0/data

					This command creates a snapshot volume named snap with a size of 8G as part of a 64G volume.
				

	
					Create a file for the snapshots using a command similar to this one:
				
mkdir /mnt/virt.snapshot

	
					Mount the directory you created and the snapshot volume using the following command:
				
mount /dev/vg0/snap /mnt/virt.snapshot

	
					Use one of the following commands to back up the volume:
				
	# tar -pzc -f /mnt/backup/virt-snapshot-MM-DD-YYYY.tgz /mnt/virt.snapshot++++++++++++

	# rsync -a /mnt/virt.snapshot/ /mnt/backup/virt-snapshot.MM-DD-YYYY/

 ⁠21.3. Creating virsh Dump Files

			Executing a virsh dump command sends a request to dump the core of a guest virtual machine to a file so errors in the virtual machine can be diagnosed. Running this command may require you to manually ensure proper permissions on file and path specified by the argument corefilepath. The virsh dump command is similar to a coredump (or the crash utility). To create the virsh dump file, run:
		
#virsh dump <domain> <corefilepath> [--bypass-cache] { [--live] | [--crash] | [--reset] } [--verbose] [--memory-only]

			While the domain (guest virtual machine domain name) and corefilepath (location of the newly created core dump file) are mandatory, the following arguments are optional:
		
	
					--live creates a dump file on a running machine and does not pause it.
				

	
					--crash stops the guest virtual machine and generates the dump file. The main difference is that the guest virtual machine will not be listed as Stopped, with the reason as Crashed. Note that in virt-manager the status will be listed as Paused.
				

	
					--reset will reset the guest virtual machine following a successful dump. Note, these three switches are mutually exclusive.
				

	
					--bypass-cache uses O_DIRECT to bypass the file system cache.
				

	
					--memory-only the dump file will be saved as an elf file, and will only include domain’s memory and cpu common register value. This option is very useful if the domain uses host devices directly.
				

	
					--verbose displays the progress of the dump
				

			The entire dump process may be monitored using virsh domjobinfo command and can be canceled by running virsh domjobabort.
		

 ⁠21.4. kvm_stat

			The kvm_stat command is a python script which retrieves runtime statistics from the kvm kernel module. The kvm_stat command can be used to diagnose guest behavior visible to kvm. In particular, performance related issues with guests. Currently, the reported statistics are for the entire system; the behavior of all running guests is reported. To run this script you need to install the qemu-kvm-tools package.
		

			The kvm_stat command requires that the kvm kernel module is loaded and debugfs is mounted. If either of these features are not enabled, the command will output the required steps to enable debugfs or the kvm module. For example:
		
kvm_stat
Please mount debugfs ('mount -t debugfs debugfs /sys/kernel/debug')
and ensure the kvm modules are loaded

			Mount debugfs if required:
		
mount -t debugfs debugfs /sys/kernel/debug
kvm_stat Output

				The kvm_stat command outputs statistics for all guests and the host. The output is updated until the command is terminated (using Ctrl+c or the q key).
			
kvm_stat

kvm statistics

efer_reload 94 0
exits 4003074 31272
fpu_reload 1313881 10796
halt_exits 14050 259
halt_wakeup 4496 203
host_state_reload	1638354 24893
hypercalls 0 0
insn_emulation 1093850 1909
insn_emulation_fail 0 0
invlpg 75569 0
io_exits 1596984 24509
irq_exits 21013 363
irq_injections 48039 1222
irq_window 24656 870
largepages 0 0
mmio_exits 11873 0
mmu_cache_miss 42565 8
mmu_flooded 14752 0
mmu_pde_zapped 58730 0
mmu_pte_updated 6 0
mmu_pte_write 138795 0
mmu_recycled 0 0
mmu_shadow_zapped 40358 0
mmu_unsync 793 0
nmi_injections 0 0
nmi_window 0 0
pf_fixed 697731 3150
pf_guest 279349 0
remote_tlb_flush 5 0
request_irq 0 0
signal_exits 1 0
tlb_flush 200190 0

Explanation of variables:
	efer_reload
	
						The number of Extended Feature Enable Register (EFER) reloads.
					

	exits
	
						The count of all VMEXIT calls.
					

	fpu_reload
	
						The number of times a VMENTRY reloaded the FPU state. The fpu_reload is incremented when a guest is using the Floating Point Unit (FPU).
					

	halt_exits
	
						Number of guest exits due to halt calls. This type of exit is usually seen when a guest is idle.
					

	halt_wakeup
	
						Number of wakeups from a halt.
					

	host_state_reload
	
						Count of full reloads of the host state (currently tallies MSR setup and guest MSR reads).
					

	hypercalls
	
						Number of guest hypervisor service calls.
					

	insn_emulation
	
						Number of guest instructions emulated by the host.
					

	insn_emulation_fail
	
						Number of failed insn_emulation attempts.
					

	io_exits
	
						Number of guest exits from I/O port accesses.
					

	irq_exits
	
						Number of guest exits due to external interrupts.
					

	irq_injections
	
						Number of interrupts sent to guests.
					

	irq_window
	
						Number of guest exits from an outstanding interrupt window.
					

	largepages
	
						Number of large pages currently in use.
					

	mmio_exits
	
						Number of guest exits due to memory mapped I/O (MMIO) accesses.
					

	mmu_cache_miss
	
						Number of KVM MMU shadow pages created.
					

	mmu_flooded
	
						Detection count of excessive write operations to an MMU page. This counts detected write operations not of individual write operations.
					

	mmu_pde_zapped
	
						Number of page directory entry (PDE) destruction operations.
					

	mmu_pte_updated
	
						Number of page table entry (PTE) destruction operations.
					

	mmu_pte_write
	
						Number of guest page table entry (PTE) write operations.
					

	mmu_recycled
	
						Number of shadow pages that can be reclaimed.
					

	mmu_shadow_zapped
	
						Number of invalidated shadow pages.
					

	mmu_unsync
	
						Number of non-synchronized pages which are not yet unlinked.
					

	nmi_injections
	
						Number of Non-maskable Interrupt (NMI) injections to the guest.
					

	nmi_window
	
						Number of guest exits from (outstanding) Non-maskable Interrupt (NMI) windows.
					

	pf_fixed
	
						Number of fixed (non-paging) page table entry (PTE) maps.
					

	pf_guest
	
						Number of page faults injected into guests.
					

	remote_tlb_flush
	
						Number of remote (sibling CPU) Translation Lookaside Buffer (TLB) flush requests.
					

	request_irq
	
						Number of guest interrupt window request exits.
					

	signal_exits
	
						Number of guest exits due to pending signals from the host.
					

	tlb_flush
	
						Number of tlb_flush operations performed by the hypervisor.
					

Note

				The output information from the kvm_stat command is exported by the KVM hypervisor as pseudo files located in the /sys/kernel/debug/kvm/ directory.
			

 ⁠21.5. Guest Virtual Machine Fails to Shutdown

			Traditionally, executing a virsh shutdown command causes a power button ACPI event to be sent, thus copying the same action as when someone presses a power button on a physical machine. Within every physical machine, it is up to the OS to handle this event. In the past operating systems would just silently shutdown. Today, the most usual action is to show a dialog asking what should be done. Some operating systems even ignore this event completely, especially when no users are logged in. When such operating systems are installed on a guest virtual machine, running virsh shutdown just does not work (it is either ignored or a dialog is shown on a virtual display). However, if a qemu-guest-agent channel is added to a guest virtual machine and this agent is running inside the guest virtual machine's OS, the virsh shutdown command will ask the agent to shutdown the guest OS instead of sending the ACPI event. The agent will call for a shutdown from inside the guest virtual machine OS and everything works as expected.
		

 ⁠Procedure 21.2. Configuring the guest agent channel in a guest virtual machine
	
					Stop the guest virtual machine.
				

	
					Open the Domain XML for the guest virtual machine and add the following snippet:
				

 ⁠​
​
​<channel type='unix'>
​ <source mode='bind'/>
​ <target type='virtio' name='org.qemu.guest_agent.0'/>
​</channel>

Figure 21.1. Configuring the guest agent channel

	
					Start the guest virtual machine, by running virsh start [domain].
				

	
					Install qemu-guest-agent on the guest virtual machine (yum install qemu-guest-agent) and make it run automatically at every boot as a service (qemu-guest-agent.service). Refer to Chapter 10, QEMU-img and QEMU Guest Agent for more information.
				

 ⁠21.6. Troubleshooting with Serial Consoles

			Linux kernels can output information to serial ports. This is useful for debugging kernel panics and hardware issues with video devices or headless servers. The subsections in this section cover setting up serial console output for host physical machines using the KVM hypervisor.
		

			This section covers how to enable serial console output for fully virtualized guests.
		

			Fully virtualized guest serial console output can be viewed with the virsh console command.
		

			Be aware fully virtualized guest serial consoles have some limitations. Present limitations include:
		
	
					output data may be dropped or scrambled.
				

			The serial port is called ttyS0 on Linux or COM1 on Windows.
		

			You must configure the virtualized operating system to output information to the virtual serial port.
		

			To output kernel information from a fully virtualized Linux guest into the domain, modify the /boot/grub/grub.conf file. Append the following to the kernel line: console=tty0 console=ttyS0,115200.
		
title Red Hat Enterprise Linux Server (2.6.32-36.x86-64)
	root (hd0,0)
	kernel /vmlinuz-2.6.32-36.x86-64 ro root=/dev/volgroup00/logvol00 \
	console=tty0 console=ttyS0,115200
	initrd /initrd-2.6.32-36.x86-64.img

			Reboot the guest.
		

			On the host, access the serial console with the following command:
		
virsh console

			You can also use virt-manager to display the virtual text console. In the guest console window, select Serial 1 in Text Consoles from the View menu.
		

 ⁠21.7. Virtualization Log Files

	
					Each fully virtualized guest log is in the /var/log/libvirt/qemu/ directory. Each guest log is named as GuestName.log and will be periodically compressed once a size limit is reached.
				

			If you encounter any errors with the Virtual Machine Manager, you can review the generated data in the virt-manager.log file that resides in the $HOME/.virt-manager directory.
		

 ⁠21.8. Loop Device Errors

			If file-based guest images are used you may have to increase the number of configured loop devices. The default configuration allows up to eight active loop devices. If more than eight file-based guests or loop devices are needed the number of loop devices configured can be adjusted in the /etc/modprobe.d/directory. Add the following line:
		
options loop max_loop=64

			This example uses 64 but you can specify another number to set the maximum loop value. You may also have to implement loop device backed guests on your system. To use a loop device backed guests for a full virtualized system, use the phy: device or file: file commands.
		

 ⁠21.9. Live Migration Errors

			There may be cases where a live migration causes the memory contents to be re-transferred over and over again. This process causes the guest to be in a state where it is constantly writing to memory and therefore will slow down migration. If this should occur, and the guest is writing more than several tens of MBs per second, then live migration may fail to finish (converge). This issue is not scheduled to be resolved at the moment for Red Hat Enterprise Linux 6, and is scheduled to be fixed in Red Hat Enterprise Linux 7.
		

			The current live-migration implementation has a default migration time configured to 30ms. This value determines the guest pause time at the end of the migration in order to transfer the leftovers. Higher values increase the odds that live migration will converge
		

 ⁠21.10. Enabling Intel VT-x and AMD-V Virtualization Hardware Extensions in BIOS

			Note

					To expand your expertise, you might also be interested in the Red Hat Virtualization (RH318) training course.
				

		

			This section describes how to identify hardware virtualization extensions and enable them in your BIOS if they are disabled.
		

			The Intel VT-x extensions can be disabled in the BIOS. Certain laptop vendors have disabled the Intel VT-x extensions by default in their CPUs.
		

			The virtualization extensions cannot be disabled in the BIOS for AMD-V.
		

			Refer to the following section for instructions on enabling disabled virtualization extensions.
		

			Verify the virtualization extensions are enabled in BIOS. The BIOS settings for Intel VT or AMD-V are usually in the Chipset or Processor menus. The menu names may vary from this guide, the virtualization extension settings may be found in Security Settings or other non standard menu names.
		

 ⁠Procedure 21.3. Enabling virtualization extensions in BIOS
	
					Reboot the computer and open the system's BIOS menu. This can usually be done by pressing the delete key, the F1 key or Alt and F4 keys depending on the system.
				

	Enabling the virtualization extensions in BIOS
Note

						Many of the steps below may vary depending on your motherboard, processor type, chipset and OEM. Refer to your system's accompanying documentation for the correct information on configuring your system.
					

	
							Open the Processor submenu The processor settings menu may be hidden in the Chipset, Advanced CPU Configuration or Northbridge.
						

	
							Enable Intel Virtualization Technology (also known as Intel VT-x). AMD-V extensions cannot be disabled in the BIOS and should already be enabled. The virtualization extensions may be labeled Virtualization Extensions, Vanderpool or various other names depending on the OEM and system BIOS.
						

	
							Enable Intel VT-d or AMD IOMMU, if the options are available. Intel VT-d and AMD IOMMU are used for PCI device assignment.
						

	
							Select Save & Exit.
						

	
					Reboot the machine.
				

	
					When the machine has booted, run cat /proc/cpuinfo |grep -E "vmx|svm". Specifying --color is optional, but useful if you want the search term highlighted. If the command outputs, the virtualization extensions are now enabled. If there is no output your system may not have the virtualization extensions or the correct BIOS setting enabled.
				

 ⁠21.11. KVM Networking Performance

			By default, KVM virtual machines are assigned a virtual Realtek 8139 (rtl8139) NIC (network interface controller). Whereas Red Hat Enterprise Linux guests are assigned a virtio NIC by default, Windows guests or the guest type is not specified.
		

			The rtl8139 virtualized NIC works fine in most environments,but this device can suffer from performance degradation problems on some networks, such as a 10 Gigabit Ethernet.
		

			To improve performance, you can switch to the paravirtualized network driver.
		
Note

				Note that the virtualized Intel PRO/1000 (e1000) driver is also supported as an emulated driver choice. To use the e1000 driver, replace virtio in the procedure below with e1000. For the best performance it is recommended to use the virtio driver.
			

 ⁠Procedure 21.4. Switching to the virtio driver
	
					Shutdown the guest operating system.
				

	
					Edit the guest's configuration file with the virsh command (where GUEST is the guest's name):
				
virsh edit GUEST

					The virsh edit command uses the $EDITOR shell variable to determine which editor to use.
				

	
					Find the network interface section of the configuration. This section resembles the snippet below:
				
<interface type='network'>
 [output truncated]
 <model type='rtl8139' />
</interface>

	
					Change the type attribute of the model element from 'rtl8139' to 'virtio'. This will change the driver from the rtl8139 driver to the e1000 driver.
				
<interface type='network'>
 [output truncated]
 <model type='virtio' />
</interface>

	
					Save the changes and exit the text editor
				

	
					Restart the guest operating system.
				

Creating New Guests Using Other Network Drivers

				Alternatively, new guests can be created with a different network driver. This may be required if you are having difficulty installing guests over a network connection. This method requires you to have at least one guest already created (possibly installed from CD or DVD) to use as a template.
			
	
					Create an XML template from an existing guest (in this example, named Guest1):
				
virsh dumpxml Guest1 > /tmp/guest-template.xml

	
					Copy and edit the XML file and update the unique fields: virtual machine name, UUID, disk image, MAC address, and any other unique parameters. Note that you can delete the UUID and MAC address lines and virsh will generate a UUID and MAC address.
				
cp /tmp/guest-template.xml /tmp/new-guest.xml
vi /tmp/new-guest.xml

					Add the model line in the network interface section:
				
 <interface type='network'>
 [output truncated]
 <model type='virtio' />
</interface>

	
					Create the new virtual machine:
				
virsh define /tmp/new-guest.xml
virsh start new-guest

 ⁠21.12. Workaround for Creating External Snapshots with libvirt

			There are two classes of snapshots for QEMU guests. Internal snapshots are contained completely within a qcow2 file, and fully supported by libvirt, allowing for creating, deleting, and reverting of snapshots. This is the default setting used by libvirt when creating a snapshot, especially when no option is specified. Although this file type takes a bit longer than others in creating the snapshot, it is required by libvirt to use qcow2 disks. Another drawback to this file type is that qcow2 disks are not subject to receive improvements from QEMU.
		

			External snapshots, on the other hand work with any type of original disk image, can be taken with no guest downtime, and are able to receive active improvements from QEMU. In libvirt, they are created when using the --disk-only option to snapshot-create-as (or when specifying an explicit XML file to snapshot-create that does the same). At the moment external snapshots are a one-way operation as libvirt can create them but cannot do anything further with them.
		

 ⁠21.13. Missing Characters on Guest Console with Japanese Keyboard

			On a Red Hat Enterprise Linux 6 host, connecting a Japanese keyboard locally to a machine may result in typed characters such as the underscore (the _ character) not being displayed correctly in guest consoles. This occurs because the required keymap is not set correctly by default.
		

			With Red Hat Enterprise Linux 3 and Red Hat Enterprise Linux 6 guests, there is usually no error message produced when pressing the associated key. However, Red Hat Enterprise Linux 4 and Red Hat Enterprise Linux 5 guests may display an error similar to the following:
		

atkdb.c: Unknown key pressed (translated set 2, code 0x0 on isa0060/serio0).
atkbd.c: Use 'setkeycodes 00 <keycode>' to make it known.

			To fix this issue in virt-manager, perform the following steps:
		
	
					Open the affected guest in virt-manager.
				

	
					Click View → Details.
				

	
					Select Display VNC in the list.
				

	
					Change Auto to ja in the Keymap pull-down menu.
				

	
					Click the Apply button.
				

			Alternatively, to fix this issue using the virsh edit command on the target guest:
		
	
					Run virsh edit <target guest>
				

	
					Add the following attribute to the <graphics> tag: keymap='ja'. For example:

 <graphics type='vnc' port='-1' autoport='yes' keymap='ja'/>

				

 ⁠21.14. Verifying Virtualization Extensions

			Use this section to determine whether your system has the hardware virtualization extensions. Virtualization extensions (Intel VT-x or AMD-V) are required for full virtualization.
		
	
					Run the following command to verify the CPU virtualization extensions are available:
				
$ grep -E 'svm|vmx' /proc/cpuinfo

	
					Analyze the output.
				
	
							The following output contains a vmx entry indicating an Intel processor with the Intel VT-x extension:
						
flags : fpu tsc msr pae mce cx8 apic mtrr mca cmov pat pse36 clflush
	dts acpi mmx fxsr sse sse2 ss ht tm syscall lm constant_tsc pni monitor ds_cpl
	vmx est tm2 cx16 xtpr lahf_lm

	
							The following output contains an svm entry indicating an AMD processor with the AMD-V extensions:
						
flags : fpu tsc msr pae mce cx8 apic mtrr mca cmov pat pse36 clflush
	mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt lm 3dnowext 3dnow pni cx16
	lahf_lm cmp_legacy svm cr8legacy ts fid vid ttp tm stc

					If any output is received, the processor has the hardware virtualization extensions. However in some circumstances manufacturers disable the virtualization extensions in BIOS.
				

					The "flags:" output content may appear multiple times, once for each hyperthread, core or CPU on the system.
				

					The virtualization extensions may be disabled in the BIOS. If the extensions do not appear or full virtualization does not work refer to Procedure 21.3, “Enabling virtualization extensions in BIOS”.
				

	Ensure KVM subsystem is loaded

					As an additional check, verify that the kvm modules are loaded in the kernel:
				
lsmod | grep kvm

					If the output includes kvm_intel or kvm_amd then the kvm hardware virtualization modules are loaded and your system meets requirements.
				

Note

				If the libvirt package is installed, the virsh command can output a full list of virtualization system capabilities. Run virsh capabilities as root to receive the complete list.
			

 ⁠Appendix A. The Virtual Host Metrics Daemon (vhostmd)

		vhostmd (the Virtual Host Metrics Daemon) allows virtual machines to see limited information about the host they are running on. This daemon is only supplied with Red Hat Enterprise Linux for SAP.
	

		In the host, a daemon (vhostmd) runs which writes metrics periodically into a disk image. This disk image is exported read-only to guest virtual machines. Guest virtual machines can read the disk image to see metrics. Simple synchronization stops guest virtual machines from seeing out of date or corrupt metrics.
	

		The system administrator chooses which metrics are available for use on a per guest virtual machine basis. In addition, the system administrator may block one or more guest virtual machines from having any access to metric configurations.
	

		Customers who want to use vhostmd and vm-dump-metrics therefore need subscriptions for "RHEL for SAP Business Applications" to be able to subscribe their RHEL systems running SAP to the "RHEL for SAP" channel on the Customer Portal or Red Hat Subscription Management to install the packages. The following kbase article in the customer portal describes the setup of vhostmd on RHEL: https://access.redhat.com/knowledge/solutions/41566
	

 ⁠Appendix B. Additional Resources

		To learn more about virtualization and Red Hat Enterprise Linux, refer to the following resources.
	

 ⁠B.1. Online Resources

	
					http://www.libvirt.org/ is the official website for the libvirt virtualization API.
				

	
					https://virt-manager.org/ is the project website for the Virtual Machine Manager (virt-manager), the graphical application for managing virtual machines.
				

	
					Red Hat Virtualization - http://www.redhat.com/products/cloud-computing/virtualization/
				

	
					Red Hat product documentation - https://access.redhat.com/documentation/en/
				

	
					Virtualization technologies overview - http://virt.kernelnewbies.org
				

 ⁠B.2. Installed Documentation

	
					man virsh and /usr/share/doc/libvirt-<version-number> — Contains sub-commands and options for the virsh virtual machine management utility as well as comprehensive information about the libvirt virtualization library API.
				

	
					/usr/share/doc/gnome-applet-vm-<version-number> — Documentation for the GNOME graphical panel applet that monitors and manages locally-running virtual machines.
				

	
					/usr/share/doc/libvirt-python-<version-number> — Provides details on the Python bindings for the libvirt library. The libvirt-python package allows python developers to create programs that interface with the libvirt virtualization management library.
				

	
					/usr/share/doc/python-virtinst-<version-number> — Provides documentation on the virt-install command that helps in starting installations of Fedora and Red Hat Enterprise Linux related distributions inside of virtual machines.
				

	
					/usr/share/doc/virt-manager-<version-number> — Provides documentation on the Virtual Machine Manager, which provides a graphical tool for administering virtual machines.
				

 ⁠Appendix C. Revision History

			Revision History
	Revision 1-502	Mon Mar 08 2017	Jiri Herrmann
	
						Updates for the 6.9 GA release

				
	Revision 1-501	Mon May 02 2016	Jiri Herrmann
	
						Updates for the 6.8 GA release

				
	Revision 1-500	Thu Mar 01 2016	Jiri Herrmann
	
						Multiple updates for the 6.8 beta release

				
	Revision 1-449	Thu Oct 08 2015	Jiri Herrmann
	
						Cleaned up the Revision History

				
	Revision 1-447	Fri Jul 10 2015	Dayle Parker
	
						Updates for the 6.7 GA release.

				

	

OEBPS/Common_Content/images/18.png

OEBPS/Common_Content/images/dot2.png

OEBPS/images/vmm_vnet_create2.png
Naming your virtual netwo

Please choose a name for your virtual network

Network Name: [networkl |

2 Example: networkl

Ccancel Back Forward

OEBPS/Common_Content/images/documentation.png

OEBPS/images/PCIremoval.png
File Virtual Machine View Send Key.

=
B overview Physical PCI Device
B Performance Device: 00:1D:0 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #1

&} Processor

Memory

Boot Options
Virtlo Disk 1
NIC :f4:28:82
Tablet
Mouse

Display Spice

=
=
7]
=
i

Sound: ich6

Serial 1

[

Channel

| PCI0000:00:1d.0

Video
Controller USB

LEY

Controller Virtio Serial

Add Hardware

cancel | | Ap

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Medium.woff2

OEBPS/images/Virt-Manager-Add-Connection.png
Hypervisor: | QEMU/KVM S
Connect to remote host
Method: | SSH S

Usemname: | root

Hostname: |myhypervisor| v

H

Autoconnect: []
Generated URI: gemu+ssh://root@myhyper...

OEBPS/Common_Content/fonts/redhat/text/RedHatText-MediumItalic.woff2

OEBPS/Common_Content/images/26.png

OEBPS/images/selinux_uuid_block.png
User Space User Space
DNS Server

Kernel

Host Kernel

OEBPS/Common_Content/fonts/overpass_light-web.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Regular.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Bold.woff

OEBPS/images/vn-12-network-tab-default.png
File

Overview | Virtual Networks

=

Network Interfaces.

Basic details
State: 2 Active

Autostart: ¥ On Boot

IPv4 configuration
Network: [192.168.122.0/24
DHCP start: [192.168.122.2

DHCP en

Forwarding: <6| NAT

192.168.122.254

‘ Appl

OEBPS/images/Screenshot-VIrt-Manager-fig31pt18.png
File | - | View Help

Connection Details.
Virtual Machine Details

Delete

v | CPU usage

guestl-win2k3-64
Shutoff

Fhel6-64-pxe
Shutoff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Medium.eot

OEBPS/images/step5-3.png
File Edit View Help

L omoe - m @ v

Name v CPU usage
= ccurran.bne.redhat.com (QEMU)
Fedoral2
Lyt
RHEL6-testing
L
RHELGlive
Shutort
[>] RHELGm

RHELG6-test
Shutof

b localhost (QEMU)

OEBPS/Common_Content/fonts/overpass_regular-web.eot

OEBPS/images/vn-02-switchandtwoguests.png
HOST

Virtual Machine

Network Virtual Network Switch

Virtual Machine

OEBPS/images/Screenshot-admin-18pt7-pic2.png
reating a new virtual network

This assistant will quide you through creating a new
virtual network. You will be asked for some
information about the virtual network you'd like to
create, such as:

® Aname for your new virtual network
® The IPv4 address and netmask to assign

The address range from which the DHCP
server will allocate addresses for virtual machines

® Whether to forward traffic to the physical network

Cancel

OEBPS/images/virt-manager_select_host.png
| view Help
Connection Detai
Virtual Machine Details

< localhost (QEMU)

VM-RHEL
Running

v myhypervisor (QEMU)

[VM-RHEL

Running

OEBPS/images/Screenshot-Virt-Manager-fig31pt13.png
FEile Virtual Machine View Send Key

C) w @ v

= overview

£} Processor

=8 Memory
32 Boot Options
() virtio pisk 1
EL NIC:79:35:e9
7] Tablet

Mouse
[E Display VNC
Eiif Sound: iche

& Serial 1
B video

Add Hardware

Performance

cPu
usage:

Memory
usage:

Disk
1/0:

Network
1/0:

0%

2048 MB of 6033 MB

0 KB/s read
0 KB/s write

0 KB/s in
0 KB/s out

OEBPS/images/Screenshot-admin-18pt7-pic6.png
Connecting to physical network

Please indicate whether this virtual network
should be connected to the physical network.

® Isolated virtual network
Forwarding to physical network

Destination:

Mode:

Cancel Back

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BlackItalic.woff

OEBPS/Common_Content/images/rhlogo.png
& RedHat

OEBPS/images/virt-manager_host_details_storage.png
Eile

Overview | Virtual Networks | Storage | Network Interfaces

default: 21.36 GB Free/8.17 GB In Use
Pool Type: Filesystem Directory

Location: [VirtualMachines

Volumes. @

State: B Active
Autostart: ¥ On Boot

Volumes v |Size | Format | Used By
lost+found 0.00MB dir
VM_2img 8.00GB raw
VM2.img 8.00GB raw
VM_RHELimg 8.00GB raw VM_RHEL

delete Volume |

Ar

OEBPS/images/v2v-select_host.png
Name

~locahost QEMU) vy

thevh23
fihedics Connect

Disconnect

Delete

OEBPS/images/step2-1.png
File

Overview | Virtual Networks | Storage | Network Interfaces

default: 7.26 GB Free / 44.65 GB In Use
Pool Type: Filesystem Directory

Location: [jvar/lib/libvirt/images

State: Il Active
Autostart: ¥ On Boot

Volumes. @

Volumes v |size Format
boot.iso 9.06 MB iso
Fedoral2.img 5.00GB raw
RHEL6.0-20100429.n.0-Server-x86_64-DVDL.iso 2.88 GB iso
RHELG-testing.img 6.58GB raw

delete Volume |

Ar

OEBPS/images/Screenshot-pic7-Migrating-guest1-rhel6-64.png
Migrating VM ‘guest1-rhel6-64' from virtlab18
to virtlab22. This may take awhile.

Migrating domain

87% 912 MB

OEBPS/images/Screenshot-Virt-Manager-fig31pt11.png
File View Help

Connection Details

v | CPU usage

Preferences

guestl-rhel5-64
Running

guestl-win2k3-64
Shutoff

Fhel6-64-pxe
Shutoff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-RegularItalic.eot

OEBPS/Common_Content/scripts/css_conflicts.js
function fixCSSConflicts() {}

OEBPS/images/Screenshot-Virt-Manager-fig31pt15.png
File Virtual Machine View Send Key

B overview
[Performance

{7} Processor
Memory

&3 Boot Options
(3 Virtio Disk 1
B NIC:79:35:e9
Tablet

(%) Mouse
[E Display VNC
Eiif Sound: iche
2 serial 1
B video

Memory
Total host memory: (FSEEN]

Current allocation: 2048
Maximum allocation: 2048

OEBPS/Common_Content/images/34.png

OEBPS/images/Connection_Details.png
Virtual Machine Details.
Nam{ Delete v | CPU usage
M ferences

'VM_RHEL
Runni

OEBPS/Common_Content/images/dot.png

OEBPS/Common_Content/images/30.png

OEBPS/Common_Content/images/22.png

OEBPS/images/Screenshot-admin-18pt7-pic9.png
Input Please indicate how| Host device eth0 (Bridge 'br0")
Graphics new virtual network'yirtual network 'default: : NAT

sound Ll *H

Serial
~ parallel MAC address:

53 USB Host Device
53 PCI Host Device

[video
B Wwatchdog

Device model:

Specify shared device name

Cancel Finish

OEBPS/images/virt-manager_storage_pools_add_dir_step_3_result.png
Eile

Overview | Virtual Networks | Storage

26 default 36.41 GB Free/12.80 GBIn Use
Filesystem Directory Filesystem Directory

guest_images._dir o -
Location: [fguest images

State: |3 Active
Autostart: on Boot
Volumes

Volumes v | Size | Format

+[e/a) ewinn] o

OEBPS/images/step4-2.png
File Virtual Machine View Send ey

n @ v

Red Hat Enterprise Linux Server release 6.8 Beta (Santiago)
Kernel 2.6.32-37.e16.x86_64 on an xB6_64

localhost login:

Red Hat Enterprise Linux Server release 6.8 Beta (Santiago)
Kernel 2.6.32-37.e16.x86_64 on an xB6_64

localhost login: root

Passuord:

Last login: Thu fug 26 18:49:49 on ttyl
[root@localhost “1# _

OEBPS/images/vm_info_button_new.png
File Virtual N

OEBPS/images/v2v-storage_tab.png
File

Overview | Virtual Networks | Storage | Network Interfaces |

default defaul 44.89 GB Free / 4.32 GB In Use
Flesystem Directory Pool Type: Filesystem Directory

Location: | /var/lib/libvirt/images

State: Il Active
Autostart: 1 On Boot

Volumes. @

Volumes v | Size Format
rhevh23.img 8.00 GB raw

clete Volume| |

o/

OEBPS/images/macvtap_modes-VEPA.png
ethO PPEEEd macvtapO macvtapO

macvtapl

VM TO VM VM TO EXTERNAL

RHEL_437030_0417

OEBPS/Common_Content/images/note.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BoldItalic.woff

OEBPS/images/step1-1.png
Hypervisor: | QEMU/KVM S

Connection: | Remote tunnel over SSH S

Name v

Hostname: | ccurran.bne.redhat.com

Autoconnect: [

Connect

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Bold.woff2

OEBPS/images/virt-manager_storage_pools_add_fs_step_1_name_and_type.png
| "/ Add Storage Pool Step1of 2

Specify a storage location to be later split into virtual machine storage.

Name: |guest_images_fs|

Type: | fs: Pre-Formatted Block Device S

Eorward

OEBPS/images/Screenshot-Virt-Manager-fig31pt16.png
File Virtual Machine View Send Key

@ n@© v

B overview
[Performance
£} Processor
&8 Memory
52 Boot Options
(c) IDECDROM 1
B2 NIC:e8:05:34
[# Tablet

o

[E pisplay vNC
Eiif Sound: iche
& Serial 1

@ uss odsc:000c
B video

[controller IDE
[controller usb

Mouse

&

Virtual Disk
Target device: IDE Disk 1

Source path: /home/guest-images/guestl-rhel6-64.img
Storage size: 12.00 GB

Readonly: [J
Shareable: []

< Advanced options

Storage format: [raw

Disk Bus:

source' refers to information seen from the host S,
while 'target' refers to information seen from the guest 05

OEBPS/images/step-1-1.png
Hypervisor: | QEMU/KVM S

Connection: | Remote tunnel over SSH S

Name v

Hostname: [ccurran.bne.redhat.cor

Autoconnect: [

Connect

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-MediumItalic.woff2

OEBPS/images/virt-manager-enable-disk-io.png
General | Stats | VM Details | Feedback

Stats Options N
Update status every [1 [S]seconds

Maintain history of [120 |2| samples

Enable Stats Polling
Disk /O
Network I/0

oE

Close

OEBPS/Common_Content/images/37.png

OEBPS/images/Screenshot-Virt-Manager-fig31pt7.png
File Edit View Help

i}

Name

v | CPU usage

< 192.168.122.1 (QEMU)

i veree
= Running
< locainost (QEMU)
i veree
= Running

< myhypervisor (QEMU)

OEBPS/images/virt-manager_storage_pools_add_lvm_step_2b_format_warning.png
Source device. Are you sure you want to "build"

' Building a pool of this type will format the
this pool?

(o J[e

OEBPS/images/vmm_vnet_maintab.png
Fi

le

Overview | Virtual Networks | storage | Network Interfaces

default

Basic details

Name: [default

Device: [virbro

State: 3 Active
Autostart: ¥ On Boot

IPv4 configuration

Network: [192.168.122.0/24

DHCP start: [192.168.122.2

DHCP end: [192.168.122.254

Forwarding: <6| NAT

OEBPS/images/Screenshot-Virt-Manager-fig31pt24.png
File Edit [/ /] Help

uest CPU Usage
[JHost CPU Usage

[ODisk I/0 (disabled)
[INetwork I/O (disabled)

(i3 VvM-RHEL

Running

< localhost (QEMU)

(i3 vm-ReEL

Running

v myhypervisor (QEMU)

(i3 vm-ReEL

Running

OEBPS/images/Screenshot-pic6-final-before-migrate.png
Migrate 'guestl-rhel6-64'

Name: guestl-rhel6-64
Original host: virtlab18

New host: | virtlab22 (QEMU) <

Migrate offline: O

~ Advanced options

Tunnel migration through libvirt's daemon:

Max downtime: [|20 I ms

Connectivity

port: O [49152[]
Bandwidth: [|0 | Mbps

[}

OEBPS/images/step2-4.png
File

Overview | Virtual Networks | Storage | Network Interfaces

.. default
Filesystem Directory

0% tria

Test: 7.26 GB Free/44.65 GB In Use
Pool Type: Network Exported Directory

Location: [/var/lib/libvirt/images/Test

State: Il Active
Autostart: ¥ On Boot

v |sSize Format

[+]@)a]

clete Volume| [apply

OEBPS/images/Screenshot-admin-18pt7-pic3.png
Naming your virtual network

Please choose a name for your virtual network

Network Name: [network1| |

5}
2 Exampl

Cancel Back Forward

OEBPS/Common_Content/scripts/menu.js
/* global window document labels lang_menu_2_div hljs */
var docs = (function(docs){
 /*
 * NOTE: The docs module will not work properly unless the init function is called, as the jQuery object is dynamically
 * loaded using requirejs.
 */
 var jQuery = window.jQuery;
 var listeners = [];
 var ready = false;

 // BEGIN UTIL FUNCTIONS
 docs.utils = (function() {
 var exports = {};

 exports.setCookie = function(name, value, expires, path, domain, secure) {
 document.cookie = name + "=" + value +
 ((expires) ? ";expires=" + expires.toGMTString() : "") +
 ((path) ? ";path=" + path : "");
 // +
 //		((domain) ? ";domain=" + domain : "") +
 //		((secure) ? ";secure" : "");
 };

 exports.isSafari = function() {
 return navigator.userAgent.indexOf("Safari") != -1 && navigator.userAgent.indexOf("Chrome") == -1;
 };

 exports.scrollToTarget = function() {
 if (jQuery(window.location.hash).length > 0) {
 jQuery('html, body').animate({ scrollTop: jQuery(window.location.hash).offset().top}, 1000);
 }
 };

 exports.getCurrentPageName = function() {
 return window.location.href.substr(window.location.href.lastIndexOf("/") + 1);
 };

 exports.escapeElementId = function(elem) {
 return elem.replace('&', '\\&');
 };

 return exports;
 }());
 // END UTIL FUNCTIONS

 // BEGIN TOC FUNCTIONS
 docs.toc = (function(utils) {
 var num_days = 7;
 var name_menu = window.location.hostname + '-publican-menu';

 function init() {
 // New toc
 var navigation = jQuery('#navigation');
 if (navigation.is(":visible")) {
 initNewToc(navigation);
 }

 // Old selectbox toc
 var docToc = jQuery(".doctoc");
 if (docToc.is(":visible")) {
 initOldToc(docToc);
 }
 }

 function initOldToc(docToc) {
 checkToc();
 docToc.load('index.html .toc:eq(0)', function () {
 loadDocNav();
 });
 utils.scrollToTarget();
 }

 function initNewToc(navigation) {
 navigation.load('index.html div > div.toc:eq(0), section > div.toc:eq(0)', function () {
 // Add the close button and bind the click event
 var tocButton = jQuery('<button class="menu-toggle"></button>');
 navigation.append(tocButton);
 tocButton.click(function (e) {
 toggleToc();
 });

 // Check the saved state and apply the toc styling
 styleToc();
 checkToc();

 // Safari has a bug in getBoundingClientRect that needs the page to be loaded to return valid info.
 if (utils.isSafari()) {
 jQuery(window).load(function () {
 styleToc();
 });
 }
 });

 jQuery(window).scroll(function (e) {
 styleToc();
 }).resize(function (e) {
 styleToc();
 });

 // Add a mechanism to handle the the main menu dropdowns.
 // TODO: This is hacky and a better way should be found to handle this.
 jQuery('.primary-nav a').on('click', function () {
 setTimeout(function () {
 styleToc();
 }, 600);
 });
 }

 function loadDocNav() {
 var topDocNav = getTopDocNav();
 var bottomDocNav = getBottomDocNav();

 updateDocNavItems(utils.getCurrentPageName(), topDocNav, bottomDocNav);

 var onChange = function () {
 var currentPage = utils.getCurrentPageName();
 var newSelection = jQuery(this).val();
 window.location = newSelection;
 if (newSelection.indexOf(currentPage) === 0) {
 updateDocNavItems(newSelection, getTopDocNav(), getBottomDocNav());
 }
 };
 topDocNav.change(onChange);
 bottomDocNav.change(onChange);
 }

 function updateDocNavItems(filename, topDocNav, bottomDocNav) {
 topDocNav.val(filename);
 bottomDocNav.val(filename);
 }

 function getTopDocNav() {
 return jQuery(".docnav.top").find(".pageSelect");
 }

 function getBottomDocNav() {
 return jQuery(".docnav.bottom").find("select");
 }

 function styleToc() {
 /* NOTE: We need to use an absolute position due to the portal adding content (ie outage messages), which then makes the toc overlap
 * that. There is a minor effect of some flickering, but it's minimal and currently the best situation since no events are fired by the
 * portal to say it's finished.
 */
 var nav = jQuery('#navigation');
 var navToc = nav.find('.toc');

 var main = jQuery('#legacy-portal');
 var main_rect = main[0].getBoundingClientRect();
 var main_height = main.height();
 var main_bottom = main_rect.bottom;
 var main_top = main_rect.top;

 var my_top = main.offset().top - jQuery('#main').offset().top + 5;
 var height = main_height - 5;
 var pos = "absolute";
 if (main_top <= 0) {
 my_top = 0;
 pos = "fixed";
 }

 if (navToc.is(':visible')) {
 if (pos === "fixed") {
 if (height > ((window.innerHeight || document.documentElement.clientHeight) - my_top)) {
 height = (window.innerHeight || document.documentElement.clientHeight) - my_top;
 }

 if (my_top + height > main_bottom) {
 height = main_bottom - my_top;
 }
 } else {
 if (height > ((window.innerHeight || document.documentElement.clientHeight) - main_top)) {
 height = (window.innerHeight || document.documentElement.clientHeight) - main_top - 5;
 }

 if (height > main_bottom) {
 height = main_bottom;
 }
 }

 nav.attr('style', 'top: ' + my_top + 'px !important; height: ' + height + 'px; position: ' + pos);
 navToc.attr('style', 'top: 0px !important; height: ' + height + 'px;');
 } else {
 nav.attr('style', 'top: ' + my_top + 'px !important; height: 0px; position: ' + pos);
 }
 }

 function checkToc() {
 if (document.cookie) {
 var cookies = document.cookie.split(/ *; */);
 for (var i = 0; i < cookies.length; i++) {
 var current_c = cookies[i].split("=");
 if (current_c[0] == name_menu) {
 var menu_status = current_c[1];
 if (menu_status == "closed") {
 hideToc();
 }
 break;
 }
 }
 }
 }

 function toggleToc() {
 if (jQuery("#navigation .toc").is(':visible')) {
 hideToc();
 } else {
 showToc();
 }
 }

 function hideToc() {
 var nav = jQuery("#navigation");
 nav.find("button").addClass("tocClosed");
 nav.find(".toc").hide();
 jQuery("#main").addClass('noLtoc');
 styleToc();

 var expDate = new Date();
 expDate.setDate(expDate.getDate() + num_days);
 utils.setCookie(name_menu, 'closed', expDate, '/', false, false);
 }

 function showToc() {
 var nav = jQuery("#navigation");
 nav.find("button").removeClass("tocClosed");
 nav.find(".toc").show();
 jQuery("#main").removeClass('noLtoc');
 styleToc();

 var expDate = new Date();
 expDate.setDate(expDate.getDate() + num_days);
 utils.setCookie(name_menu, 'open', expDate, '/', false, false);
 }

 return {
 init: init,
 toggleToc: toggleToc,
 getTopDocNav: getTopDocNav,
 getBottomDocNav: getBottomDocNav
 };
 }(docs.utils));
 // END TOC FUNCTIONS

 // BEGIN BREADCRUMB FUNCTIONS
 docs.breadcrumbs = (function(labels, utils) {
 var work = 1;

 function init(current_product, current_version, current_book) {
 var support_label = labels["trans_strings"]["Support"];
 var doc_label = labels["trans_strings"]["Product_Documentation"];

 // Create the very basic breadcrumb array
 var doc_array = [doc_label];
 var breadcrumbs = [
 [support_label, "/support/"],
 doc_array
];

 // Create the base breadcrumb, which will later be replaced with the extended version
 if (typeof current_product != "undefined" && current_product != '') {
 var prod_label = getProductLabel(current_product);
 var prod_array = [prod_label];
 breadcrumbs.push(prod_array);

 doc_array[1] = "../";

 if (typeof current_version != "undefined" && current_version != '') {
 var version_label = getVersionLabel(current_product, current_version);
 var version_array = [version_label];
 breadcrumbs.push(version_array);

 doc_array[1] = "../../";
 prod_array[1] = "../";

 if (typeof current_book != "undefined" && current_book != '') {
 doc_array[1] = "../../../../";
 prod_array[1] = "../../../";
 version_array[1] = "../../";

 var book_label = getBookLabel(current_product, current_version, current_book);
 breadcrumbs.push([book_label]);
 }
 }
 }

 window.breadcrumbs = breadcrumbs;
 }

 function getProductLabel(current_product) {
 if (current_product !== 'Products') {
 return labels[current_product]["label"];
 } else {
 return labels["trans_strings"]["Products"];
 }
 }

 function getVersionLabel(current_product, current_version) {
 if (current_version !== 'Versions') {
 return labels[current_product][current_version]["label"];
 } else {
 return labels["trans_strings"]["Versions"];
 }
 }

 function getBookLabel(current_product, current_version, current_book) {
 if (current_book !== 'Books') {
 return labels[current_product][current_version][current_book]["label"];
 } else {
 return labels["trans_strings"]["Books"];
 }
 }

 function loadMenus(toc_path, current_product, current_version, current_book) {
 var breadcrumbs = jQuery("#breadcrumbs");

 // Add a small timeout, to try to fix the items not loading
 setTimeout(function () {
 // We only care about fixing up the default breadcrumbs if we have a current product
 if (typeof current_product !== "undefined" && current_product != '') {
 // Build the new breadcrumbs html
 var html = jQuery(buildHTML(toc_path, current_product, current_version, current_book));

 // Remove the dummy Product Documentation text node
 var breadcrumbsDiv = breadcrumbs.get(0);
 while (breadcrumbsDiv.childNodes.length > 1) {
 breadcrumbsDiv.removeChild(breadcrumbsDiv.lastChild);
 }

 // Add the new breadcrumbs
 breadcrumbs.append(html);

 // Add a small timeout, to try to fix the items not loading
 // Load and add the hover menus
 loadMenu("product_menu", toc_path + "/products_menu.html");
 loadMenu("version_menu", toc_path + '/' + current_product + "/versions_menu.html");
 if (typeof current_version !== "undefined" && current_version != '') {
 loadMenu("book_menu", toc_path + '/' + current_product + '/' + current_version + '/' + "/books_menu.html");
 if (typeof current_book != "undefined" && current_book != '') {
 loadMenu("book_lang_menu", toc_path + '/' + current_product + '/' + current_version + '/' + current_book + "/lang_menu.html");
 loadMenu("book_format_menu", toc_path + '/' + current_product + '/' + current_version + '/' + current_book + "/format_menu.html", true);
 }
 }
 }

 // For splash pages the language menu is loaded in a global javascript variable
 if (typeof lang_menu_2_div != "undefined" && lang_menu_2_div != '') {
 breadcrumbs.append(lang_menu_2_div);
 bindMouseEvents(breadcrumbs, 'lang_menu_2', 'lang_menu_list');
 }

 bindMenuEvents(breadcrumbs, current_version, current_book);
 }, 500);
 }

 function buildHTML(toc_path, current_product, current_version, current_book) {
 // Get the labels
 var prod_label = getProductLabel(current_product);

 // Convert the default menu into something we can use
 var html = '' + labels["trans_strings"]["Product_Documentation"] + '';
 html += '<div id="product_menu"><div>' + prod_label + '</div></div>';
 if (typeof current_version !== "undefined" && current_version !== '') {
 var version_label = getVersionLabel(current_product, current_version);
 html += '<div id="version_menu"><div>' + version_label + '</div></div>';
 if (typeof current_book !== "undefined" && current_book !== '') {
 var book_label = getBookLabel(current_product, current_version, current_book);
 html += '<div id="book_menu"><div>' + book_label + '</div></div>';

 if (current_book !== 'Books') {
 html += '<div id="left-menu"><div id="book_format_menu"><div>' + labels["trans_strings"]["Formats"] + '</div></div>';
 html += '<div id="book_lang_menu"></div></div>';
 }
 }
 }
 return html;
 }

 // Setup the menu expand/retract listeners
 function bindMenuEvents(breadcrumbs, current_version, current_book) {
 bindMouseEvents(breadcrumbs, 'product_menu', 'product_menu_list');

 if (typeof current_version !== "undefined" && current_version !== '') {
 bindMouseEvents(breadcrumbs, 'version_menu', 'version_menu_list');

 if (typeof current_book !== "undefined" && current_book !== '') {
 bindMouseEvents(breadcrumbs, 'book_menu', 'book_menu_list');

 if (current_book !== 'Books') {
 bindMouseEvents(breadcrumbs, 'book_format_menu', 'book_format_menu_list');
 bindMouseEvents(breadcrumbs, 'book_lang_menu', 'book_lang_menu_list');
 }
 }
 }
 }

 function bindMouseEvents(parent_ele, id, menu_id) {
 var menu_ele = jQuery('#' + id, parent_ele);
 menu_ele.on('mouseout', function () {
 work = 1;
 retractMenu(menu_id);
 });
 menu_ele.on('mouseover', function () {
 work = 1;
 expandMenu(menu_id);
 });
 }

 function loadMenu(id, url, replace) {
 jQuery.get(url, function(data) {
 if (replace) {
 jQuery('#' + id).html(data);
 } else {
 jQuery('#' + id).append(data);
 }
 });
 }

 function expandMenu(id) {
 if (work) {
 work = 0;
 var entity = document.getElementById(id);
 if (entity) {
 var my_class = entity.className;
 var my_parent = entity.parentNode;
 if (my_class.indexOf("hidden") != -1) {
 entity.className = my_class.replace(/hidden/, "visible");
 my_parent.className = my_parent.className.replace(/collapsed/, "expanded");
 }
 }
 }
 }

 function retractMenu(id) {
 if (work) {
 work = 0;
 var entity = document.getElementById(id);
 if (entity) {
 var my_class = entity.className;
 var my_parent = entity.parentNode;
 if (my_class.indexOf("visible") != -1) {
 entity.className = my_class.replace(/visible/, "hidden");
 my_parent.className = my_parent.className.replace(/expanded/, "collapsed");
 }
 }
 }
 }

 return {
 init: init,
 loadMenus: loadMenus,
 expandMenu: expandMenu,
 retractMenu: retractMenu
 };
 }(window.labels, docs.utils));
 // END BREADCRUMBS FUNCTIONS

 // START ANALYTICS FUNCTIONS
 docs.analytics = (function() {
 function runAnalytics(ajq) {
 /*
 var pkBaseUrl = (('https:' == document.location.protocol) ? 'https://engstats.redhat.com/piwik/' : 'http://engstats.redhat.com/piwik/');
 var pkUrl = pkBaseUrl + 'piwik.js';
 ajq('body').append('<noscript><p></p></noscript>');
 require([pkUrl], function() {
 try {
 var piwikTracker = Piwik.getTracker(pkBaseUrl + 'piwik.php', 3);
 if (document.location.hostname == 'access.redhat.com') {
 piwikTracker.trackPageView();
 piwikTracker.enableLinkTracking();
 }
 } catch(err) {}
 });
 */
 }

 return {
 runAnalytics: runAnalytics
 };
 }());
 // END ANALYTICS FUNCTIONS

 // START SPLASH PAGE FUNCTIONS
 docs.splash_page = (function(utils) {
 function init() {
 jQuery(window).bind('hashchange', function () {
 if (window.location.hash === "") {
 // activate the default section
 } else {
 //Grab what is after the # from the url bar and remove the #
 var anchorid = window.location.hash.replace("#", "");
 var id = anchorid;
 if (anchorid.match("_")) {
 id = id.replace(/_.*/g, '');
 }
 activateElement2(id + '-selector');
 activateElement(id + '-categories');
 activateElement(id);
 if (anchorid.match("_")) {
 activateElement2(anchorid, 1);
 }
 }
 });
 jQuery(window).trigger('hashchange');
 }

 function _activateElement(ele) {
 ele.addClass('active');
 ele.removeClass('hidden');
 ele.siblings().addClass('hidden');
 ele.siblings().removeClass('active');
 }

 function activateElement(elem) {
 _activateElement(jQuery('#' + utils.escapeElementId(elem)));
 }

 function activateElement2(elem, focus) {
 var ele = jQuery('#' + utils.escapeElementId(elem));
 ele.addClass('active');
 ele.siblings().removeClass('active');
 if (focus) {
 jQuery('html,body').animate({scrollTop: ele.offset().top},'slow');
 }
 }

 function activateParentElement(elem) {
 _activateElement(jQuery('#' + utils.escapeElementId(elem)).parent());
 }

 function resetCategories(categ, vers, me) {
 categ = utils.escapeElementId(categ);
 vers = utils.escapeElementId(vers);
 jQuery('#' + categ).children().removeClass('active');
 jQuery(me).addClass('active');
 jQuery('#' +vers).children().removeClass('active');
 jQuery('#' +vers).children().removeClass('hidden');
 }

 return {
 init: init,
 activateElement: activateElement,
 activateElement2: activateElement2,
 activateParentElement: activateParentElement,
 resetCategories: resetCategories
 }
 }(docs.utils));
 // END SPLASH PAGE FUNCTIONS

 function _init(ajq) {
 // Update the JQuery reference, as jquery may only have been loaded during this call
 jQuery = ajq;

 // The docs module is now ready so fire an event
 fireReady();
 }

 function fireReady() {
 if (!ready) {
 ready = true;

 // Fire the ready event to any listeners
 for (var i = 0; i < listeners.length; i++) {
 listeners[i]();
 }
 }
 }

 docs.whenReady = function(callback) {
 if (ready) {
 callback();
 } else {
 listeners.push(callback);
 }
 };

 docs.isReady = function() {
 return ready;
 };

 docs.init = function(toc_path, current_product, current_version, current_book) {
 // Set the siteMapState variable so that the main tab is highlighted
 window.siteMapState = "products & services";

 // Build the core breadcrumbs window object
 docs.breadcrumbs.init(current_product, current_version, current_book);

 // Load the rest of the content when the chroming is ready
 chrometwo_require(['jquery', 'chrome_lib'], function (ajq, lib) {
 // Init the internals
 _init(ajq);

 // Initialise the table of contents
 docs.toc.init();

 // Enable highlighting
 if (typeof hljs !== "undefined") {
 ajq('pre[class*="language-"]').each(function (i, block) {
 hljs.highlightBlock(block);
 });
 }

 // Load the breadcrumbs menu items
 lib.whenBreadcrumbsReady(function() {
 docs.breadcrumbs.loadMenus(toc_path, current_product, current_version, current_book);
 });
 });
 };

 docs.init_splash_page = function() {
 chrometwo_require(['jquery'], function (ajq) {
 // Init the internals
 _init(ajq);

 // Export some functions to the window, since the templates use window based functions
 window.activateElement = docs.splash_page.activateElement;
 window.activateElement2 = docs.splash_page.activateElement2;
 window.activateParentElement = docs.splash_page.activateParentElement;
 window.resetCategories = docs.splash_page.resetCategories;

 // Initialise the splash page functionality
 docs.splash_page.init();
 });
 };

 // Export some functions to the window for legacy purposes
 window.initializeBreadcrumbs = docs.init;
 window.runAnalytics = docs.analytics.runAnalytics;

 // jQuery may already be available, if that's the case then fire the ready event
 if (typeof jQuery !== 'undefined') {
 fireReady();
 }

 return docs;
}({}));

OEBPS/Common_Content/images/1.png

OEBPS/Common_Content/fonts/overpass_regular-web.woff

OEBPS/images/virt-manager-rng.png
Add New Virtual Hardware

[Storage

Random Number Generator

& Network
G input Please indicate the parameters of the RNG device.
B Graphics
Type: | Random

Eiif sound

Serial Backend Type

Parallel Backend Mode

Channel
85 USB Host Device Device: | /dev/random
3 PCIHost Device Host:
B video

= Bind Host:

B watchdog
=]

@ Smartcard

@ UsB Redirection

2 RNG

Cancel Finish

OEBPS/Common_Content/images/green.png

OEBPS/images/Screenshot-pic4-OpenSSH.png
root@virtlab22's password:

Passphrase length hidden intentionally

OEBPS/Common_Content/fonts/overpass_light-web.ttf

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Regular.woff2

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Bold.woff2

OEBPS/Common_Content/images/17.png

OEBPS/images/pci_host_device.png
guestl-rhel6-64 Virtual Machine.

File Virtual Machine View Send Key

n @ v
= Basic Details
Performance
Nome: [goestirnele6q
Processor
Memory UUID: bBd7388a bb2-db3a-e962-b97cabes 14bd
8ot Options Status: GRuning
& virto Disk 1 Description:
& ncses
2 Tt
& Mouse
<Y
Hypervisor Details
S8 oispay Hypervisor: kvm
B sound: icho Architecture: x86_64
@ serial1 Emulator: /ustibexec/qemu-kvm
B »ci0000:01:000
= video Operating System

Hostname: unknown
Product name: unknown

b Applications
b Machine Settings.

b security

‘Add Hardware

OEBPS/images/Screenshot-Virt-Manager_fig31pt26.png
File Edit [/ /] Help

VM-RHEL
Running

< localhost (QEMU)

VM-RHEL
Running

v 192.168.122.1 (QEMU)

VM-RHEL
Running

| Host CPU usage

| Disk I/0

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BoldItalic.eot

OEBPS/Common_Content/images/yellow.png

OEBPS/images/vmm_vnet_create4_dhcprange.png
Selecting the DHCP range

Please choose the range of addresses the DHCP server will
allocate to virtual machines attached to the virtual network.

Enable DHCP:

Start: [192.168.100.128 I
End: [192.168.100.254 I

© Tip: Unless you wish to reserve some addresses to

= allow static network configuration in virtual
machines, these parameters can be left with their
default values.

Cancel Back Forward

OEBPS/Common_Content/images/27.png

OEBPS/images/Screenshot-Virt-Manager-fig31pt27.png
File Edit View Help

Name ~ | Disk I/O
< mynypervisor (QEMU)

VM-RHEL
Runni

< localhost (QEMU)

VM-RHEL
Running

v 192.168.122.1 (QEMU)

VM-RHEL
Running

OEBPS/Common_Content/images/stock-go-back.png

OEBPS/images/CloneVM.png
= Clone Virtual Machine

7] clone virtual machine

Create a clone based on: RHEL7.3_VM

Name: [RHEL7.3_VM-clone

Networking: - AT (52:54:00:04:cL:e7)

storage:] RHEL7.3_VM.img

Clone this disk (8.0 GB) B

(© - (Removable, Read Only)

Share disk with RHEL7.3 VM ¢

Nothing to clone.

Cloning creates a new, independent copy of the original disk. Sharing
uses the existing disk image for both the original and the new machine.

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Bold.eot

OEBPS/images/Screenshot-virtlab22-Host-Details.png
Eile

Overview |Virtual Networks | Storage | Network Interfaces |

default

7%
Filesystem Directory

iscsirhel6guest: 0.00 MB Free /30.00 GB In Use

Pool Type: iSCS| Target
Location: [rdev/disk/by-path

State: i Active

Autostart: [Never

vatumes]

Volumes v | Size Format | Used By
unit:0:0:0 30.00 GB dos guestl-rhel6-64

)

Apply

q

OEBPS/images/step5-2.png
Migrate 'RHEL6minimal’

Name: RHEL6minimal
Original host: trogdor.bne.redhat.com

New host: | ccurran (QEMU) S
Migrate offline: O
~ Advanced options

Tunnel migration through libvirt's daemon: []
Connectivity

port: O [49152[]
Bandwidth: [|0 | Mbps

OEBPS/images/virt-manager_storage_pools_add_fs_step_2_paths_and_format.png
[/ Add Storage Pool Step 2 of 2

Specify a storage location to be later split into virtual machine storage.

Target Path: |/guest_images .
Source Path: |/dev/sdcl] v

‘Source path: The
existing device to
‘mount for the pool.

Finish

OEBPS/images/vn-08-network-overview.png
HOST

— 3
& LINUX NETWORK STACK

Network

DNS AND DHCP SERVER
(DNSMAQ)

Virtual Network Switch Virtual Machine
in NAT MODE

OEBPS/Common_Content/scripts/jquery-1.7.1.min.js
/*! jQuery v1.7.1 jquery.com | jquery.org/license */
(function(a,b){function cy(a){return f.isWindow(a)?a:a.nodeType===9?a.defaultView||a.parentWindow:!1}function cv(a){if(!ck[a]){var b=c.body,d=f("<"+a+">").appendTo(b),e=d.css("display");d.remove();if(e==="none"||e===""){cl||(cl=c.createElement("iframe"),cl.frameBorder=cl.width=cl.height=0),b.appendChild(cl);if(!cm||!cl.createElement)cm=(cl.contentWindow||cl.contentDocument).document,cm.write((c.compatMode==="CSS1Compat"?"<!doctype html>":"")+"<html><body>"),cm.close();d=cm.createElement(a),cm.body.appendChild(d),e=f.css(d,"display"),b.removeChild(cl)}ck[a]=e}return ck[a]}function cu(a,b){var c={};f.each(cq.concat.apply([],cq.slice(0,b)),function(){c[this]=a});return c}function ct(){cr=b}function cs(){setTimeout(ct,0);return cr=f.now()}function cj(){try{return new a.ActiveXObject("Microsoft.XMLHTTP")}catch(b){}}function ci(){try{return new a.XMLHttpRequest}catch(b){}}function cc(a,c){a.dataFilter&&(c=a.dataFilter(c,a.dataType));var d=a.dataTypes,e={},g,h,i=d.length,j,k=d[0],l,m,n,o,p;for(g=1;g<i;g++){if(g===1)for(h in a.converters)typeof h=="string"&&(e[h.toLowerCase()]=a.converters[h]);l=k,k=d[g];if(k==="*")k=l;else if(l!=="*"&&l!==k){m=l+" "+k,n=e[m]||e["* "+k];if(!n){p=b;for(o in e){j=o.split(" ");if(j[0]===l||j[0]==="*"){p=e[j[1]+" "+k];if(p){o=e[o],o===!0?n=p:p===!0&&(n=o);break}}}}!n&&!p&&f.error("No conversion from "+m.replace(" "," to ")),n!==!0&&(c=n?n(c):p(o(c)))}}return c}function cb(a,c,d){var e=a.contents,f=a.dataTypes,g=a.responseFields,h,i,j,k;for(i in g)i in d&&(c[g[i]]=d[i]);while(f[0]==="*")f.shift(),h===b&&(h=a.mimeType||c.getResponseHeader("content-type"));if(h)for(i in e)if(e[i]&&e[i].test(h)){f.unshift(i);break}if(f[0]in d)j=f[0];else{for(i in d){if(!f[0]||a.converters[i+" "+f[0]]){j=i;break}k||(k=i)}j=j||k}if(j){j!==f[0]&&f.unshift(j);return d[j]}}function ca(a,b,c,d){if(f.isArray(b))f.each(b,function(b,e){c||bE.test(a)?d(a,e):ca(a+"["+(typeof e=="object"||f.isArray(e)?b:"")+"]",e,c,d)});else if(!c&&b!=null&&typeof b=="object")for(var e in b)ca(a+"["+e+"]",b[e],c,d);else d(a,b)}function b_(a,c){var d,e,g=f.ajaxSettings.flatOptions||{};for(d in c)c[d]!==b&&((g[d]?a:e||(e={}))[d]=c[d]);e&&f.extend(!0,a,e)}function b$(a,c,d,e,f,g){f=f||c.dataTypes[0],g=g||{},g[f]=!0;var h=a[f],i=0,j=h?h.length:0,k=a===bT,l;for(;i<j&&(k||!l);i++)l=h[i](c,d,e),typeof l=="string"&&(!k||g[l]?l=b:(c.dataTypes.unshift(l),l=b$(a,c,d,e,l,g)));(k||!l)&&!g["*"]&&(l=b$(a,c,d,e,"*",g));return l}function bZ(a){return function(b,c){typeof b!="string"&&(c=b,b="*");if(f.isFunction(c)){var d=b.toLowerCase().split(bP),e=0,g=d.length,h,i,j;for(;e<g;e++)h=d[e],j=/^\+/.test(h),j&&(h=h.substr(1)||"*"),i=a[h]=a[h]||[],i[j?"unshift":"push"](c)}}}function bC(a,b,c){var d=b==="width"?a.offsetWidth:a.offsetHeight,e=b==="width"?bx:by,g=0,h=e.length;if(d>0){if(c!=="border")for(;g<h;g++)c||(d-=parseFloat(f.css(a,"padding"+e[g]))||0),c==="margin"?d+=parseFloat(f.css(a,c+e[g]))||0:d-=parseFloat(f.css(a,"border"+e[g]+"Width"))||0;return d+"px"}d=bz(a,b,b);if(d<0||d==null)d=a.style[b]||0;d=parseFloat(d)||0;if(c)for(;g<h;g++)d+=parseFloat(f.css(a,"padding"+e[g]))||0,c!=="padding"&&(d+=parseFloat(f.css(a,"border"+e[g]+"Width"))||0),c==="margin"&&(d+=parseFloat(f.css(a,c+e[g]))||0);return d+"px"}function bp(a,b){b.src?f.ajax({url:b.src,async:!1,dataType:"script"}):f.globalEval((b.text||b.textContent||b.innerHTML||"").replace(bf,"/*$0*/")),b.parentNode&&b.parentNode.removeChild(b)}function bo(a){var b=c.createElement("div");bh.appendChild(b),b.innerHTML=a.outerHTML;return b.firstChild}function bn(a){var b=(a.nodeName||"").toLowerCase();b==="input"?bm(a):b!=="script"&&typeof a.getElementsByTagName!="undefined"&&f.grep(a.getElementsByTagName("input"),bm)}function bm(a){if(a.type==="checkbox"||a.type==="radio")a.defaultChecked=a.checked}function bl(a){return typeof a.getElementsByTagName!="undefined"?a.getElementsByTagName("*"):typeof a.querySelectorAll!="undefined"?a.querySelectorAll("*"):[]}function bk(a,b){var c;if(b.nodeType===1){b.clearAttributes&&b.clearAttributes(),b.mergeAttributes&&b.mergeAttributes(a),c=b.nodeName.toLowerCase();if(c==="object")b.outerHTML=a.outerHTML;else if(c!=="input"||a.type!=="checkbox"&&a.type!=="radio"){if(c==="option")b.selected=a.defaultSelected;else if(c==="input"||c==="textarea")b.defaultValue=a.defaultValue}else a.checked&&(b.defaultChecked=b.checked=a.checked),b.value!==a.value&&(b.value=a.value);b.removeAttribute(f.expando)}}function bj(a,b){if(b.nodeType===1&&!!f.hasData(a)){var c,d,e,g=f._data(a),h=f._data(b,g),i=g.events;if(i){delete h.handle,h.events={};for(c in i)for(d=0,e=i[c].length;d<e;d++)f.event.add(b,c+(i[c][d].namespace?".":"")+i[c][d].namespace,i[c][d],i[c][d].data)}h.data&&(h.data=f.extend({},h.data))}}function bi(a,b){return f.nodeName(a,"table")?a.getElementsByTagName("tbody")[0]||a.appendChild(a.ownerDocument.createElement("tbody")):a}function U(a){var b=V.split("|"),c=a.createDocumentFragment();if(c.createElement)while(b.length)c.createElement(b.pop());return c}function T(a,b,c){b=b||0;if(f.isFunction(b))return f.grep(a,function(a,d){var e=!!b.call(a,d,a);return e===c});if(b.nodeType)return f.grep(a,function(a,d){return a===b===c});if(typeof b=="string"){var d=f.grep(a,function(a){return a.nodeType===1});if(O.test(b))return f.filter(b,d,!c);b=f.filter(b,d)}return f.grep(a,function(a,d){return f.inArray(a,b)>=0===c})}function S(a){return!a||!a.parentNode||a.parentNode.nodeType===11}function K(){return!0}function J(){return!1}function n(a,b,c){var d=b+"defer",e=b+"queue",g=b+"mark",h=f._data(a,d);h&&(c==="queue"||!f._data(a,e))&&(c==="mark"||!f._data(a,g))&&setTimeout(function(){!f._data(a,e)&&!f._data(a,g)&&(f.removeData(a,d,!0),h.fire())},0)}function m(a){for(var b in a){if(b==="data"&&f.isEmptyObject(a[b]))continue;if(b!=="toJSON")return!1}return!0}function l(a,c,d){if(d===b&&a.nodeType===1){var e="data-"+c.replace(k,"-$1").toLowerCase();d=a.getAttribute(e);if(typeof d=="string"){try{d=d==="true"?!0:d==="false"?!1:d==="null"?null:f.isNumeric(d)?parseFloat(d):j.test(d)?f.parseJSON(d):d}catch(g){}f.data(a,c,d)}else d=b}return d}function h(a){var b=g[a]={},c,d;a=a.split(/\s+/);for(c=0,d=a.length;c<d;c++)b[a[c]]=!0;return b}var c=a.document,d=a.navigator,e=a.location,f=function(){function J(){if(!e.isReady){try{c.documentElement.doScroll("left")}catch(a){setTimeout(J,1);return}e.ready()}}var e=function(a,b){return new e.fn.init(a,b,h)},f=a.jQuery,g=a.$,h,i=/^(?:[^#<]*(<[\w\W]+>)[^>]*$|#([\w\-]*)$)/,j=/\S/,k=/^\s+/,l=/\s+$/,m=/^<(\w+)\s*\/?>(?:<\/\1>)?$/,n=/^[\],:{}\s]*$/,o=/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g,p=/"[^"\\\n\r]*"|true|false|null|-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g,q=/(?:^|:|,)(?:\s*\[)+/g,r=/(webkit)[\/]([\w.]+)/,s=/(opera)(?:.*version)?[\/]([\w.]+)/,t=/(msie) ([\w.]+)/,u=/(mozilla)(?:.*? rv:([\w.]+))?/,v=/-([a-z]|[0-9])/ig,w=/^-ms-/,x=function(a,b){return(b+"").toUpperCase()},y=d.userAgent,z,A,B,C=Object.prototype.toString,D=Object.prototype.hasOwnProperty,E=Array.prototype.push,F=Array.prototype.slice,G=String.prototype.trim,H=Array.prototype.indexOf,I={};e.fn=e.prototype={constructor:e,init:function(a,d,f){var g,h,j,k;if(!a)return this;if(a.nodeType){this.context=this[0]=a,this.length=1;return this}if(a==="body"&&!d&&c.body){this.context=c,this[0]=c.body,this.selector=a,this.length=1;return this}if(typeof a=="string"){a.charAt(0)!=="<"||a.charAt(a.length-1)!==">"||a.length<3?g=i.exec(a):g=[null,a,null];if(g&&(g[1]||!d)){if(g[1]){d=d instanceof e?d[0]:d,k=d?d.ownerDocument||d:c,j=m.exec(a),j?e.isPlainObject(d)?(a=[c.createElement(j[1])],e.fn.attr.call(a,d,!0)):a=[k.createElement(j[1])]:(j=e.buildFragment([g[1]],[k]),a=(j.cacheable?e.clone(j.fragment):j.fragment).childNodes);return e.merge(this,a)}h=c.getElementById(g[2]);if(h&&h.parentNode){if(h.id!==g[2])return f.find(a);this.length=1,this[0]=h}this.context=c,this.selector=a;return this}return!d||d.jquery?(d||f).find(a):this.constructor(d).find(a)}if(e.isFunction(a))return f.ready(a);a.selector!==b&&(this.selector=a.selector,this.context=a.context);return e.makeArray(a,this)},selector:"",jquery:"1.7.1",length:0,size:function(){return this.length},toArray:function(){return F.call(this,0)},get:function(a){return a==null?this.toArray():a<0?this[this.length+a]:this[a]},pushStack:function(a,b,c){var d=this.constructor();e.isArray(a)?E.apply(d,a):e.merge(d,a),d.prevObject=this,d.context=this.context,b==="find"?d.selector=this.selector+(this.selector?" ":"")+c:b&&(d.selector=this.selector+"."+b+"("+c+")");return d},each:function(a,b){return e.each(this,a,b)},ready:function(a){e.bindReady(),A.add(a);return this},eq:function(a){a=+a;return a===-1?this.slice(a):this.slice(a,a+1)},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},slice:function(){return this.pushStack(F.apply(this,arguments),"slice",F.call(arguments).join(","))},map:function(a){return this.pushStack(e.map(this,function(b,c){return a.call(b,c,b)}))},end:function(){return this.prevObject||this.constructor(null)},push:E,sort:[].sort,splice:[].splice},e.fn.init.prototype=e.fn,e.extend=e.fn.extend=function(){var a,c,d,f,g,h,i=arguments[0]||{},j=1,k=arguments.length,l=!1;typeof i=="boolean"&&(l=i,i=arguments[1]||{},j=2),typeof i!="object"&&!e.isFunction(i)&&(i={}),k===j&&(i=this,--j);for(;j<k;j++)if((a=arguments[j])!=null)for(c in a){d=i[c],f=a[c];if(i===f)continue;l&&f&&(e.isPlainObject(f)||(g=e.isArray(f)))?(g?(g=!1,h=d&&e.isArray(d)?d:[]):h=d&&e.isPlainObject(d)?d:{},i[c]=e.extend(l,h,f)):f!==b&&(i[c]=f)}return i},e.extend({noConflict:function(b){a.$===e&&(a.$=g),b&&a.jQuery===e&&(a.jQuery=f);return e},isReady:!1,readyWait:1,holdReady:function(a){a?e.readyWait++:e.ready(!0)},ready:function(a){if(a===!0&&!--e.readyWait||a!==!0&&!e.isReady){if(!c.body)return setTimeout(e.ready,1);e.isReady=!0;if(a!==!0&&--e.readyWait>0)return;A.fireWith(c,[e]),e.fn.trigger&&e(c).trigger("ready").off("ready")}},bindReady:function(){if(!A){A=e.Callbacks("once memory");if(c.readyState==="complete")return setTimeout(e.ready,1);if(c.addEventListener)c.addEventListener("DOMContentLoaded",B,!1),a.addEventListener("load",e.ready,!1);else if(c.attachEvent){c.attachEvent("onreadystatechange",B),a.attachEvent("onload",e.ready);var b=!1;try{b=a.frameElement==null}catch(d){}c.documentElement.doScroll&&b&&J()}}},isFunction:function(a){return e.type(a)==="function"},isArray:Array.isArray||function(a){return e.type(a)==="array"},isWindow:function(a){return a&&typeof a=="object"&&"setInterval"in a},isNumeric:function(a){return!isNaN(parseFloat(a))&&isFinite(a)},type:function(a){return a==null?String(a):I[C.call(a)]||"object"},isPlainObject:function(a){if(!a||e.type(a)!=="object"||a.nodeType||e.isWindow(a))return!1;try{if(a.constructor&&!D.call(a,"constructor")&&!D.call(a.constructor.prototype,"isPrototypeOf"))return!1}catch(c){return!1}var d;for(d in a);return d===b||D.call(a,d)},isEmptyObject:function(a){for(var b in a)return!1;return!0},error:function(a){throw new Error(a)},parseJSON:function(b){if(typeof b!="string"||!b)return null;b=e.trim(b);if(a.JSON&&a.JSON.parse)return a.JSON.parse(b);if(n.test(b.replace(o,"@").replace(p,"]").replace(q,"")))return(new Function("return "+b))();e.error("Invalid JSON: "+b)},parseXML:function(c){var d,f;try{a.DOMParser?(f=new DOMParser,d=f.parseFromString(c,"text/xml")):(d=new ActiveXObject("Microsoft.XMLDOM"),d.async="false",d.loadXML(c))}catch(g){d=b}(!d||!d.documentElement||d.getElementsByTagName("parsererror").length)&&e.error("Invalid XML: "+c);return d},noop:function(){},globalEval:function(b){b&&j.test(b)&&(a.execScript||function(b){a.eval.call(a,b)})(b)},camelCase:function(a){return a.replace(w,"ms-").replace(v,x)},nodeName:function(a,b){return a.nodeName&&a.nodeName.toUpperCase()===b.toUpperCase()},each:function(a,c,d){var f,g=0,h=a.length,i=h===b||e.isFunction(a);if(d){if(i){for(f in a)if(c.apply(a[f],d)===!1)break}else for(;g<h;)if(c.apply(a[g++],d)===!1)break}else if(i){for(f in a)if(c.call(a[f],f,a[f])===!1)break}else for(;g<h;)if(c.call(a[g],g,a[g++])===!1)break;return a},trim:G?function(a){return a==null?"":G.call(a)}:function(a){return a==null?"":(a+"").replace(k,"").replace(l,"")},makeArray:function(a,b){var c=b||[];if(a!=null){var d=e.type(a);a.length==null||d==="string"||d==="function"||d==="regexp"||e.isWindow(a)?E.call(c,a):e.merge(c,a)}return c},inArray:function(a,b,c){var d;if(b){if(H)return H.call(b,a,c);d=b.length,c=c?c<0?Math.max(0,d+c):c:0;for(;c<d;c++)if(c in b&&b[c]===a)return c}return-1},merge:function(a,c){var d=a.length,e=0;if(typeof c.length=="number")for(var f=c.length;e<f;e++)a[d++]=c[e];else while(c[e]!==b)a[d++]=c[e++];a.length=d;return a},grep:function(a,b,c){var d=[],e;c=!!c;for(var f=0,g=a.length;f<g;f++)e=!!b(a[f],f),c!==e&&d.push(a[f]);return d},map:function(a,c,d){var f,g,h=[],i=0,j=a.length,k=a instanceof e||j!==b&&typeof j=="number"&&(j>0&&a[0]&&a[j-1]||j===0||e.isArray(a));if(k)for(;i<j;i++)f=c(a[i],i,d),f!=null&&(h[h.length]=f);else for(g in a)f=c(a[g],g,d),f!=null&&(h[h.length]=f);return h.concat.apply([],h)},guid:1,proxy:function(a,c){if(typeof c=="string"){var d=a[c];c=a,a=d}if(!e.isFunction(a))return b;var f=F.call(arguments,2),g=function(){return a.apply(c,f.concat(F.call(arguments)))};g.guid=a.guid=a.guid||g.guid||e.guid++;return g},access:function(a,c,d,f,g,h){var i=a.length;if(typeof c=="object"){for(var j in c)e.access(a,j,c[j],f,g,d);return a}if(d!==b){f=!h&&f&&e.isFunction(d);for(var k=0;k<i;k++)g(a[k],c,f?d.call(a[k],k,g(a[k],c)):d,h);return a}return i?g(a[0],c):b},now:function(){return(new Date).getTime()},uaMatch:function(a){a=a.toLowerCase();var b=r.exec(a)||s.exec(a)||t.exec(a)||a.indexOf("compatible")<0&&u.exec(a)||[];return{browser:b[1]||"",version:b[2]||"0"}},sub:function(){function a(b,c){return new a.fn.init(b,c)}e.extend(!0,a,this),a.superclass=this,a.fn=a.prototype=this(),a.fn.constructor=a,a.sub=this.sub,a.fn.init=function(d,f){f&&f instanceof e&&!(f instanceof a)&&(f=a(f));return e.fn.init.call(this,d,f,b)},a.fn.init.prototype=a.fn;var b=a(c);return a},browser:{}}),e.each("Boolean Number String Function Array Date RegExp Object".split(" "),function(a,b){I["[object "+b+"]"]=b.toLowerCase()}),z=e.uaMatch(y),z.browser&&(e.browser[z.browser]=!0,e.browser.version=z.version),e.browser.webkit&&(e.browser.safari=!0),j.test(" ")&&(k=/^[\s\xA0]+/,l=/[\s\xA0]+$/),h=e(c),c.addEventListener?B=function(){c.removeEventListener("DOMContentLoaded",B,!1),e.ready()}:c.attachEvent&&(B=function(){c.readyState==="complete"&&(c.detachEvent("onreadystatechange",B),e.ready())});return e}(),g={};f.Callbacks=function(a){a=a?g[a]||h(a):{};var c=[],d=[],e,i,j,k,l,m=function(b){var d,e,g,h,i;for(d=0,e=b.length;d<e;d++)g=b[d],h=f.type(g),h==="array"?m(g):h==="function"&&(!a.unique||!o.has(g))&&c.push(g)},n=function(b,f){f=f||[],e=!a.memory||[b,f],i=!0,l=j||0,j=0,k=c.length;for(;c&&l<k;l++)if(c[l].apply(b,f)===!1&&a.stopOnFalse){e=!0;break}i=!1,c&&(a.once?e===!0?o.disable():c=[]:d&&d.length&&(e=d.shift(),o.fireWith(e[0],e[1])))},o={add:function(){if(c){var a=c.length;m(arguments),i?k=c.length:e&&e!==!0&&(j=a,n(e[0],e[1]))}return this},remove:function(){if(c){var b=arguments,d=0,e=b.length;for(;d<e;d++)for(var f=0;f<c.length;f++)if(b[d]===c[f]){i&&f<=k&&(k--,f<=l&&l--),c.splice(f--,1);if(a.unique)break}}return this},has:function(a){if(c){var b=0,d=c.length;for(;b<d;b++)if(a===c[b])return!0}return!1},empty:function(){c=[];return this},disable:function(){c=d=e=b;return this},disabled:function(){return!c},lock:function(){d=b,(!e||e===!0)&&o.disable();return this},locked:function(){return!d},fireWith:function(b,c){d&&(i?a.once||d.push([b,c]):(!a.once||!e)&&n(b,c));return this},fire:function(){o.fireWith(this,arguments);return this},fired:function(){return!!e}};return o};var i=[].slice;f.extend({Deferred:function(a){var b=f.Callbacks("once memory"),c=f.Callbacks("once memory"),d=f.Callbacks("memory"),e="pending",g={resolve:b,reject:c,notify:d},h={done:b.add,fail:c.add,progress:d.add,state:function(){return e},isResolved:b.fired,isRejected:c.fired,then:function(a,b,c){i.done(a).fail(b).progress(c);return this},always:function(){i.done.apply(i,arguments).fail.apply(i,arguments);return this},pipe:function(a,b,c){return f.Deferred(function(d){f.each({done:[a,"resolve"],fail:[b,"reject"],progress:[c,"notify"]},function(a,b){var c=b[0],e=b[1],g;f.isFunction(c)?i[a](function(){g=c.apply(this,arguments),g&&f.isFunction(g.promise)?g.promise().then(d.resolve,d.reject,d.notify):d[e+"With"](this===i?d:this,[g])}):i[a](d[e])})}).promise()},promise:function(a){if(a==null)a=h;else for(var b in h)a[b]=h[b];return a}},i=h.promise({}),j;for(j in g)i[j]=g[j].fire,i[j+"With"]=g[j].fireWith;i.done(function(){e="resolved"},c.disable,d.lock).fail(function(){e="rejected"},b.disable,d.lock),a&&a.call(i,i);return i},when:function(a){function m(a){return function(b){e[a]=arguments.length>1?i.call(arguments,0):b,j.notifyWith(k,e)}}function l(a){return function(c){b[a]=arguments.length>1?i.call(arguments,0):c,--g||j.resolveWith(j,b)}}var b=i.call(arguments,0),c=0,d=b.length,e=Array(d),g=d,h=d,j=d<=1&&a&&f.isFunction(a.promise)?a:f.Deferred(),k=j.promise();if(d>1){for(;c<d;c++)b[c]&&b[c].promise&&f.isFunction(b[c].promise)?b[c].promise().then(l(c),j.reject,m(c)):--g;g||j.resolveWith(j,b)}else j!==a&&j.resolveWith(j,d?[a]:[]);return k}}),f.support=function(){var b,d,e,g,h,i,j,k,l,m,n,o,p,q=c.createElement("div"),r=c.documentElement;q.setAttribute("className","t"),q.innerHTML=" <link/><table></table>a<input type='checkbox'/>",d=q.getElementsByTagName("*"),e=q.getElementsByTagName("a")[0];if(!d||!d.length||!e)return{};g=c.createElement("select"),h=g.appendChild(c.createElement("option")),i=q.getElementsByTagName("input")[0],b={leadingWhitespace:q.firstChild.nodeType===3,tbody:!q.getElementsByTagName("tbody").length,htmlSerialize:!!q.getElementsByTagName("link").length,style:/top/.test(e.getAttribute("style")),hrefNormalized:e.getAttribute("href")==="/a",opacity:/^0.55/.test(e.style.opacity),cssFloat:!!e.style.cssFloat,checkOn:i.value==="on",optSelected:h.selected,getSetAttribute:q.className!=="t",enctype:!!c.createElement("form").enctype,html5Clone:c.createElement("nav").cloneNode(!0).outerHTML!=="<:nav></:nav>",submitBubbles:!0,changeBubbles:!0,focusinBubbles:!1,deleteExpando:!0,noCloneEvent:!0,inlineBlockNeedsLayout:!1,shrinkWrapBlocks:!1,reliableMarginRight:!0},i.checked=!0,b.noCloneChecked=i.cloneNode(!0).checked,g.disabled=!0,b.optDisabled=!h.disabled;try{delete q.test}catch(s){b.deleteExpando=!1}!q.addEventListener&&q.attachEvent&&q.fireEvent&&(q.attachEvent("onclick",function(){b.noCloneEvent=!1}),q.cloneNode(!0).fireEvent("onclick")),i=c.createElement("input"),i.value="t",i.setAttribute("type","radio"),b.radioValue=i.value==="t",i.setAttribute("checked","checked"),q.appendChild(i),k=c.createDocumentFragment(),k.appendChild(q.lastChild),b.checkClone=k.cloneNode(!0).cloneNode(!0).lastChild.checked,b.appendChecked=i.checked,k.removeChild(i),k.appendChild(q),q.innerHTML="",a.getComputedStyle&&(j=c.createElement("div"),j.style.width="0",j.style.marginRight="0",q.style.width="2px",q.appendChild(j),b.reliableMarginRight=(parseInt((a.getComputedStyle(j,null)||{marginRight:0}).marginRight,10)||0)===0);if(q.attachEvent)for(o in{submit:1,change:1,focusin:1})n="on"+o,p=n in q,p||(q.setAttribute(n,"return;"),p=typeof q[n]=="function"),b[o+"Bubbles"]=p;k.removeChild(q),k=g=h=j=q=i=null,f(function(){var a,d,e,g,h,i,j,k,m,n,o,r=c.getElementsByTagName("body")[0];!r||(j=1,k="position:absolute;top:0;left:0;width:1px;height:1px;margin:0;",m="visibility:hidden;border:0;",n="style='"+k+"border:5px solid #000;padding:0;'",o="<div "+n+"><div></div></div>"+"<table "+n+" cellpadding='0' cellspacing='0'>"+"<tr><td></td></tr></table>",a=c.createElement("div"),a.style.cssText=m+"width:0;height:0;position:static;top:0;margin-top:"+j+"px",r.insertBefore(a,r.firstChild),q=c.createElement("div"),a.appendChild(q),q.innerHTML="<table><tr><td style='padding:0;border:0;display:none'></td><td>t</td></tr></table>",l=q.getElementsByTagName("td"),p=l[0].offsetHeight===0,l[0].style.display="",l[1].style.display="none",b.reliableHiddenOffsets=p&&l[0].offsetHeight===0,q.innerHTML="",q.style.width=q.style.paddingLeft="1px",f.boxModel=b.boxModel=q.offsetWidth===2,typeof q.style.zoom!="undefined"&&(q.style.display="inline",q.style.zoom=1,b.inlineBlockNeedsLayout=q.offsetWidth===2,q.style.display="",q.innerHTML="<div style='width:4px;'></div>",b.shrinkWrapBlocks=q.offsetWidth!==2),q.style.cssText=k+m,q.innerHTML=o,d=q.firstChild,e=d.firstChild,h=d.nextSibling.firstChild.firstChild,i={doesNotAddBorder:e.offsetTop!==5,doesAddBorderForTableAndCells:h.offsetTop===5},e.style.position="fixed",e.style.top="20px",i.fixedPosition=e.offsetTop===20||e.offsetTop===15,e.style.position=e.style.top="",d.style.overflow="hidden",d.style.position="relative",i.subtractsBorderForOverflowNotVisible=e.offsetTop===-5,i.doesNotIncludeMarginInBodyOffset=r.offsetTop!==j,r.removeChild(a),q=a=null,f.extend(b,i))});return b}();var j=/^(?:\{.*\}|\[.*\])$/,k=/([A-Z])/g;f.extend({cache:{},uuid:0,expando:"jQuery"+(f.fn.jquery+Math.random()).replace(/\D/g,""),noData:{embed:!0,object:"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000",applet:!0},hasData:function(a){a=a.nodeType?f.cache[a[f.expando]]:a[f.expando];return!!a&&!m(a)},data:function(a,c,d,e){if(!!f.acceptData(a)){var g,h,i,j=f.expando,k=typeof c=="string",l=a.nodeType,m=l?f.cache:a,n=l?a[j]:a[j]&&j,o=c==="events";if((!n||!m[n]||!o&&!e&&!m[n].data)&&k&&d===b)return;n||(l?a[j]=n=++f.uuid:n=j),m[n]||(m[n]={},l||(m[n].toJSON=f.noop));if(typeof c=="object"||typeof c=="function")e?m[n]=f.extend(m[n],c):m[n].data=f.extend(m[n].data,c);g=h=m[n],e||(h.data||(h.data={}),h=h.data),d!==b&&(h[f.camelCase(c)]=d);if(o&&!h[c])return g.events;k?(i=h[c],i==null&&(i=h[f.camelCase(c)])):i=h;return i}},removeData:function(a,b,c){if(!!f.acceptData(a)){var d,e,g,h=f.expando,i=a.nodeType,j=i?f.cache:a,k=i?a[h]:h;if(!j[k])return;if(b){d=c?j[k]:j[k].data;if(d){f.isArray(b)||(b in d?b=[b]:(b=f.camelCase(b),b in d?b=[b]:b=b.split(" ")));for(e=0,g=b.length;e<g;e++)delete d[b[e]];if(!(c?m:f.isEmptyObject)(d))return}}if(!c){delete j[k].data;if(!m(j[k]))return}f.support.deleteExpando||!j.setInterval?delete j[k]:j[k]=null,i&&(f.support.deleteExpando?delete a[h]:a.removeAttribute?a.removeAttribute(h):a[h]=null)}},_data:function(a,b,c){return f.data(a,b,c,!0)},acceptData:function(a){if(a.nodeName){var b=f.noData[a.nodeName.toLowerCase()];if(b)return b!==!0&&a.getAttribute("classid")===b}return!0}}),f.fn.extend({data:function(a,c){var d,e,g,h=null;if(typeof a=="undefined"){if(this.length){h=f.data(this[0]);if(this[0].nodeType===1&&!f._data(this[0],"parsedAttrs")){e=this[0].attributes;for(var i=0,j=e.length;i<j;i++)g=e[i].name,g.indexOf("data-")===0&&(g=f.camelCase(g.substring(5)),l(this[0],g,h[g]));f._data(this[0],"parsedAttrs",!0)}}return h}if(typeof a=="object")return this.each(function(){f.data(this,a)});d=a.split("."),d[1]=d[1]?"."+d[1]:"";if(c===b){h=this.triggerHandler("getData"+d[1]+"!",[d[0]]),h===b&&this.length&&(h=f.data(this[0],a),h=l(this[0],a,h));return h===b&&d[1]?this.data(d[0]):h}return this.each(function(){var b=f(this),e=[d[0],c];b.triggerHandler("setData"+d[1]+"!",e),f.data(this,a,c),b.triggerHandler("changeData"+d[1]+"!",e)})},removeData:function(a){return this.each(function(){f.removeData(this,a)})}}),f.extend({_mark:function(a,b){a&&(b=(b||"fx")+"mark",f._data(a,b,(f._data(a,b)||0)+1))},_unmark:function(a,b,c){a!==!0&&(c=b,b=a,a=!1);if(b){c=c||"fx";var d=c+"mark",e=a?0:(f._data(b,d)||1)-1;e?f._data(b,d,e):(f.removeData(b,d,!0),n(b,c,"mark"))}},queue:function(a,b,c){var d;if(a){b=(b||"fx")+"queue",d=f._data(a,b),c&&(!d||f.isArray(c)?d=f._data(a,b,f.makeArray(c)):d.push(c));return d||[]}},dequeue:function(a,b){b=b||"fx";var c=f.queue(a,b),d=c.shift(),e={};d==="inprogress"&&(d=c.shift()),d&&(b==="fx"&&c.unshift("inprogress"),f._data(a,b+".run",e),d.call(a,function(){f.dequeue(a,b)},e)),c.length||(f.removeData(a,b+"queue "+b+".run",!0),n(a,b,"queue"))}}),f.fn.extend({queue:function(a,c){typeof a!="string"&&(c=a,a="fx");if(c===b)return f.queue(this[0],a);return this.each(function(){var b=f.queue(this,a,c);a==="fx"&&b[0]!=="inprogress"&&f.dequeue(this,a)})},dequeue:function(a){return this.each(function(){f.dequeue(this,a)})},delay:function(a,b){a=f.fx?f.fx.speeds[a]||a:a,b=b||"fx";return this.queue(b,function(b,c){var d=setTimeout(b,a);c.stop=function(){clearTimeout(d)}})},clearQueue:function(a){return this.queue(a||"fx",[])},promise:function(a,c){function m(){--h||d.resolveWith(e,[e])}typeof a!="string"&&(c=a,a=b),a=a||"fx";var d=f.Deferred(),e=this,g=e.length,h=1,i=a+"defer",j=a+"queue",k=a+"mark",l;while(g--)if(l=f.data(e[g],i,b,!0)||(f.data(e[g],j,b,!0)||f.data(e[g],k,b,!0))&&f.data(e[g],i,f.Callbacks("once memory"),!0))h++,l.add(m);m();return d.promise()}});var o=/[\n\t\r]/g,p=/\s+/,q=/\r/g,r=/^(?:button|input)$/i,s=/^(?:button|input|object|select|textarea)$/i,t=/^a(?:rea)?$/i,u=/^(?:autofocus|autoplay|async|checked|controls|defer|disabled|hidden|loop|multiple|open|readonly|required|scoped|selected)$/i,v=f.support.getSetAttribute,w,x,y;f.fn.extend({attr:function(a,b){return f.access(this,a,b,!0,f.attr)},removeAttr:function(a){return this.each(function(){f.removeAttr(this,a)})},prop:function(a,b){return f.access(this,a,b,!0,f.prop)},removeProp:function(a){a=f.propFix[a]||a;return this.each(function(){try{this[a]=b,delete this[a]}catch(c){}})},addClass:function(a){var b,c,d,e,g,h,i;if(f.isFunction(a))return this.each(function(b){f(this).addClass(a.call(this,b,this.className))});if(a&&typeof a=="string"){b=a.split(p);for(c=0,d=this.length;c<d;c++){e=this[c];if(e.nodeType===1)if(!e.className&&b.length===1)e.className=a;else{g=" "+e.className+" ";for(h=0,i=b.length;h<i;h++)~g.indexOf(" "+b[h]+" ")||(g+=b[h]+" ");e.className=f.trim(g)}}}return this},removeClass:function(a){var c,d,e,g,h,i,j;if(f.isFunction(a))return this.each(function(b){f(this).removeClass(a.call(this,b,this.className))});if(a&&typeof a=="string"||a===b){c=(a||"").split(p);for(d=0,e=this.length;d<e;d++){g=this[d];if(g.nodeType===1&&g.className)if(a){h=(" "+g.className+" ").replace(o," ");for(i=0,j=c.length;i<j;i++)h=h.replace(" "+c[i]+" "," ");g.className=f.trim(h)}else g.className=""}}return this},toggleClass:function(a,b){var c=typeof a,d=typeof b=="boolean";if(f.isFunction(a))return this.each(function(c){f(this).toggleClass(a.call(this,c,this.className,b),b)});return this.each(function(){if(c==="string"){var e,g=0,h=f(this),i=b,j=a.split(p);while(e=j[g++])i=d?i:!h.hasClass(e),h[i?"addClass":"removeClass"](e)}else if(c==="undefined"||c==="boolean")this.className&&f._data(this,"__className__",this.className),this.className=this.className||a===!1?"":f._data(this,"__className__")||""})},hasClass:function(a){var b=" "+a+" ",c=0,d=this.length;for(;c<d;c++)if(this[c].nodeType===1&&(" "+this[c].className+" ").replace(o," ").indexOf(b)>-1)return!0;return!1},val:function(a){var c,d,e,g=this[0];{if(!!arguments.length){e=f.isFunction(a);return this.each(function(d){var g=f(this),h;if(this.nodeType===1){e?h=a.call(this,d,g.val()):h=a,h==null?h="":typeof h=="number"?h+="":f.isArray(h)&&(h=f.map(h,function(a){return a==null?"":a+""})),c=f.valHooks[this.nodeName.toLowerCase()]||f.valHooks[this.type];if(!c||!("set"in c)||c.set(this,h,"value")===b)this.value=h}})}if(g){c=f.valHooks[g.nodeName.toLowerCase()]||f.valHooks[g.type];if(c&&"get"in c&&(d=c.get(g,"value"))!==b)return d;d=g.value;return typeof d=="string"?d.replace(q,""):d==null?"":d}}}}),f.extend({valHooks:{option:{get:function(a){var b=a.attributes.value;return!b||b.specified?a.value:a.text}},select:{get:function(a){var b,c,d,e,g=a.selectedIndex,h=[],i=a.options,j=a.type==="select-one";if(g<0)return null;c=j?g:0,d=j?g+1:i.length;for(;c<d;c++){e=i[c];if(e.selected&&(f.support.optDisabled?!e.disabled:e.getAttribute("disabled")===null)&&(!e.parentNode.disabled||!f.nodeName(e.parentNode,"optgroup"))){b=f(e).val();if(j)return b;h.push(b)}}if(j&&!h.length&&i.length)return f(i[g]).val();return h},set:function(a,b){var c=f.makeArray(b);f(a).find("option").each(function(){this.selected=f.inArray(f(this).val(),c)>=0}),c.length||(a.selectedIndex=-1);return c}}},attrFn:{val:!0,css:!0,html:!0,text:!0,data:!0,width:!0,height:!0,offset:!0},attr:function(a,c,d,e){var g,h,i,j=a.nodeType;if(!!a&&j!==3&&j!==8&&j!==2){if(e&&c in f.attrFn)return f(a)[c](d);if(typeof a.getAttribute=="undefined")return f.prop(a,c,d);i=j!==1||!f.isXMLDoc(a),i&&(c=c.toLowerCase(),h=f.attrHooks[c]||(u.test(c)?x:w));if(d!==b){if(d===null){f.removeAttr(a,c);return}if(h&&"set"in h&&i&&(g=h.set(a,d,c))!==b)return g;a.setAttribute(c,""+d);return d}if(h&&"get"in h&&i&&(g=h.get(a,c))!==null)return g;g=a.getAttribute(c);return g===null?b:g}},removeAttr:function(a,b){var c,d,e,g,h=0;if(b&&a.nodeType===1){d=b.toLowerCase().split(p),g=d.length;for(;h<g;h++)e=d[h],e&&(c=f.propFix[e]||e,f.attr(a,e,""),a.removeAttribute(v?e:c),u.test(e)&&c in a&&(a[c]=!1))}},attrHooks:{type:{set:function(a,b){if(r.test(a.nodeName)&&a.parentNode)f.error("type property can't be changed");else if(!f.support.radioValue&&b==="radio"&&f.nodeName(a,"input")){var c=a.value;a.setAttribute("type",b),c&&(a.value=c);return b}}},value:{get:function(a,b){if(w&&f.nodeName(a,"button"))return w.get(a,b);return b in a?a.value:null},set:function(a,b,c){if(w&&f.nodeName(a,"button"))return w.set(a,b,c);a.value=b}}},propFix:{tabindex:"tabIndex",readonly:"readOnly","for":"htmlFor","class":"className",maxlength:"maxLength",cellspacing:"cellSpacing",cellpadding:"cellPadding",rowspan:"rowSpan",colspan:"colSpan",usemap:"useMap",frameborder:"frameBorder",contenteditable:"contentEditable"},prop:function(a,c,d){var e,g,h,i=a.nodeType;if(!!a&&i!==3&&i!==8&&i!==2){h=i!==1||!f.isXMLDoc(a),h&&(c=f.propFix[c]||c,g=f.propHooks[c]);return d!==b?g&&"set"in g&&(e=g.set(a,d,c))!==b?e:a[c]=d:g&&"get"in g&&(e=g.get(a,c))!==null?e:a[c]}},propHooks:{tabIndex:{get:function(a){var c=a.getAttributeNode("tabindex");return c&&c.specified?parseInt(c.value,10):s.test(a.nodeName)||t.test(a.nodeName)&&a.href?0:b}}}}),f.attrHooks.tabindex=f.propHooks.tabIndex,x={get:function(a,c){var d,e=f.prop(a,c);return e===!0||typeof e!="boolean"&&(d=a.getAttributeNode(c))&&d.nodeValue!==!1?c.toLowerCase():b},set:function(a,b,c){var d;b===!1?f.removeAttr(a,c):(d=f.propFix[c]||c,d in a&&(a[d]=!0),a.setAttribute(c,c.toLowerCase()));return c}},v||(y={name:!0,id:!0},w=f.valHooks.button={get:function(a,c){var d;d=a.getAttributeNode(c);return d&&(y[c]?d.nodeValue!=="":d.specified)?d.nodeValue:b},set:function(a,b,d){var e=a.getAttributeNode(d);e||(e=c.createAttribute(d),a.setAttributeNode(e));return e.nodeValue=b+""}},f.attrHooks.tabindex.set=w.set,f.each(["width","height"],function(a,b){f.attrHooks[b]=f.extend(f.attrHooks[b],{set:function(a,c){if(c===""){a.setAttribute(b,"auto");return c}}})}),f.attrHooks.contenteditable={get:w.get,set:function(a,b,c){b===""&&(b="false"),w.set(a,b,c)}}),f.support.hrefNormalized||f.each(["href","src","width","height"],function(a,c){f.attrHooks[c]=f.extend(f.attrHooks[c],{get:function(a){var d=a.getAttribute(c,2);return d===null?b:d}})}),f.support.style||(f.attrHooks.style={get:function(a){return a.style.cssText.toLowerCase()||b},set:function(a,b){return a.style.cssText=""+b}}),f.support.optSelected||(f.propHooks.selected=f.extend(f.propHooks.selected,{get:function(a){var b=a.parentNode;b&&(b.selectedIndex,b.parentNode&&b.parentNode.selectedIndex);return null}})),f.support.enctype||(f.propFix.enctype="encoding"),f.support.checkOn||f.each(["radio","checkbox"],function(){f.valHooks[this]={get:function(a){return a.getAttribute("value")===null?"on":a.value}}}),f.each(["radio","checkbox"],function(){f.valHooks[this]=f.extend(f.valHooks[this],{set:function(a,b){if(f.isArray(b))return a.checked=f.inArray(f(a).val(),b)>=0}})});var z=/^(?:textarea|input|select)$/i,A=/^([^\.]*)?(?:\.(.+))?$/,B=/\bhover(\.\S+)?\b/,C=/^key/,D=/^(?:mouse|contextmenu)|click/,E=/^(?:focusinfocus|focusoutblur)$/,F=/^(\w*)(?:#([\w\-]+))?(?:\.([\w\-]+))?$/,G=function(a){var b=F.exec(a);b&&(b[1]=(b[1]||"").toLowerCase(),b[3]=b[3]&&new RegExp("(?:^|\\s)"+b[3]+"(?:\\s|$)"));return b},H=function(a,b){var c=a.attributes||{};return(!b[1]||a.nodeName.toLowerCase()===b[1])&&(!b[2]||(c.id||{}).value===b[2])&&(!b[3]||b[3].test((c["class"]||{}).value))},I=function(a){return f.event.special.hover?a:a.replace(B,"mouseenter$1 mouseleave$1")};
 f.event={add:function(a,c,d,e,g){var h,i,j,k,l,m,n,o,p,q,r,s;if(!(a.nodeType===3||a.nodeType===8||!c||!d||!(h=f._data(a)))){d.handler&&(p=d,d=p.handler),d.guid||(d.guid=f.guid++),j=h.events,j||(h.events=j={}),i=h.handle,i||(h.handle=i=function(a){return typeof f!="undefined"&&(!a||f.event.triggered!==a.type)?f.event.dispatch.apply(i.elem,arguments):b},i.elem=a),c=f.trim(I(c)).split(" ");for(k=0;k<c.length;k++){l=A.exec(c[k])||[],m=l[1],n=(l[2]||"").split(".").sort(),s=f.event.special[m]||{},m=(g?s.delegateType:s.bindType)||m,s=f.event.special[m]||{},o=f.extend({type:m,origType:l[1],data:e,handler:d,guid:d.guid,selector:g,quick:G(g),namespace:n.join(".")},p),r=j[m];if(!r){r=j[m]=[],r.delegateCount=0;if(!s.setup||s.setup.call(a,e,n,i)===!1)a.addEventListener?a.addEventListener(m,i,!1):a.attachEvent&&a.attachEvent("on"+m,i)}s.add&&(s.add.call(a,o),o.handler.guid||(o.handler.guid=d.guid)),g?r.splice(r.delegateCount++,0,o):r.push(o),f.event.global[m]=!0}a=null}},global:{},remove:function(a,b,c,d,e){var g=f.hasData(a)&&f._data(a),h,i,j,k,l,m,n,o,p,q,r,s;if(!!g&&!!(o=g.events)){b=f.trim(I(b||"")).split(" ");for(h=0;h<b.length;h++){i=A.exec(b[h])||[],j=k=i[1],l=i[2];if(!j){for(j in o)f.event.remove(a,j+b[h],c,d,!0);continue}p=f.event.special[j]||{},j=(d?p.delegateType:p.bindType)||j,r=o[j]||[],m=r.length,l=l?new RegExp("(^|\\.)"+l.split(".").sort().join("\\.(?:.*\\.)?")+"(\\.|$)"):null;for(n=0;n<r.length;n++)s=r[n],(e||k===s.origType)&&(!c||c.guid===s.guid)&&(!l||l.test(s.namespace))&&(!d||d===s.selector||d==="**"&&s.selector)&&(r.splice(n--,1),s.selector&&r.delegateCount--,p.remove&&p.remove.call(a,s));r.length===0&&m!==r.length&&((!p.teardown||p.teardown.call(a,l)===!1)&&f.removeEvent(a,j,g.handle),delete o[j])}f.isEmptyObject(o)&&(q=g.handle,q&&(q.elem=null),f.removeData(a,["events","handle"],!0))}},customEvent:{getData:!0,setData:!0,changeData:!0},trigger:function(c,d,e,g){if(!e||e.nodeType!==3&&e.nodeType!==8){var h=c.type||c,i=[],j,k,l,m,n,o,p,q,r,s;if(E.test(h+f.event.triggered))return;h.indexOf("!")>=0&&(h=h.slice(0,-1),k=!0),h.indexOf(".")>=0&&(i=h.split("."),h=i.shift(),i.sort());if((!e||f.event.customEvent[h])&&!f.event.global[h])return;c=typeof c=="object"?c[f.expando]?c:new f.Event(h,c):new f.Event(h),c.type=h,c.isTrigger=!0,c.exclusive=k,c.namespace=i.join("."),c.namespace_re=c.namespace?new RegExp("(^|\\.)"+i.join("\\.(?:.*\\.)?")+"(\\.|$)"):null,o=h.indexOf(":")<0?"on"+h:"";if(!e){j=f.cache;for(l in j)j[l].events&&j[l].events[h]&&f.event.trigger(c,d,j[l].handle.elem,!0);return}c.result=b,c.target||(c.target=e),d=d!=null?f.makeArray(d):[],d.unshift(c),p=f.event.special[h]||{};if(p.trigger&&p.trigger.apply(e,d)===!1)return;r=[[e,p.bindType||h]];if(!g&&!p.noBubble&&!f.isWindow(e)){s=p.delegateType||h,m=E.test(s+h)?e:e.parentNode,n=null;for(;m;m=m.parentNode)r.push([m,s]),n=m;n&&n===e.ownerDocument&&r.push([n.defaultView||n.parentWindow||a,s])}for(l=0;l<r.length&&!c.isPropagationStopped();l++)m=r[l][0],c.type=r[l][1],q=(f._data(m,"events")||{})[c.type]&&f._data(m,"handle"),q&&q.apply(m,d),q=o&&m[o],q&&f.acceptData(m)&&q.apply(m,d)===!1&&c.preventDefault();c.type=h,!g&&!c.isDefaultPrevented()&&(!p._default||p._default.apply(e.ownerDocument,d)===!1)&&(h!=="click"||!f.nodeName(e,"a"))&&f.acceptData(e)&&o&&e[h]&&(h!=="focus"&&h!=="blur"||c.target.offsetWidth!==0)&&!f.isWindow(e)&&(n=e[o],n&&(e[o]=null),f.event.triggered=h,e[h](),f.event.triggered=b,n&&(e[o]=n));return c.result}},dispatch:function(c){c=f.event.fix(c||a.event);var d=(f._data(this,"events")||{})[c.type]||[],e=d.delegateCount,g=[].slice.call(arguments,0),h=!c.exclusive&&!c.namespace,i=[],j,k,l,m,n,o,p,q,r,s,t;g[0]=c,c.delegateTarget=this;if(e&&!c.target.disabled&&(!c.button||c.type!=="click")){m=f(this),m.context=this.ownerDocument||this;for(l=c.target;l!=this;l=l.parentNode||this){o={},q=[],m[0]=l;for(j=0;j<e;j++)r=d[j],s=r.selector,o[s]===b&&(o[s]=r.quick?H(l,r.quick):m.is(s)),o[s]&&q.push(r);q.length&&i.push({elem:l,matches:q})}}d.length>e&&i.push({elem:this,matches:d.slice(e)});for(j=0;j<i.length&&!c.isPropagationStopped();j++){p=i[j],c.currentTarget=p.elem;for(k=0;k<p.matches.length&&!c.isImmediatePropagationStopped();k++){r=p.matches[k];if(h||!c.namespace&&!r.namespace||c.namespace_re&&c.namespace_re.test(r.namespace))c.data=r.data,c.handleObj=r,n=((f.event.special[r.origType]||{}).handle||r.handler).apply(p.elem,g),n!==b&&(c.result=n,n===!1&&(c.preventDefault(),c.stopPropagation()))}}return c.result},props:"attrChange attrName relatedNode srcElement altKey bubbles cancelable ctrlKey currentTarget eventPhase metaKey relatedTarget shiftKey target timeStamp view which".split(" "),fixHooks:{},keyHooks:{props:"char charCode key keyCode".split(" "),filter:function(a,b){a.which==null&&(a.which=b.charCode!=null?b.charCode:b.keyCode);return a}},mouseHooks:{props:"button buttons clientX clientY fromElement offsetX offsetY pageX pageY screenX screenY toElement".split(" "),filter:function(a,d){var e,f,g,h=d.button,i=d.fromElement;a.pageX==null&&d.clientX!=null&&(e=a.target.ownerDocument||c,f=e.documentElement,g=e.body,a.pageX=d.clientX+(f&&f.scrollLeft||g&&g.scrollLeft||0)-(f&&f.clientLeft||g&&g.clientLeft||0),a.pageY=d.clientY+(f&&f.scrollTop||g&&g.scrollTop||0)-(f&&f.clientTop||g&&g.clientTop||0)),!a.relatedTarget&&i&&(a.relatedTarget=i===a.target?d.toElement:i),!a.which&&h!==b&&(a.which=h&1?1:h&2?3:h&4?2:0);return a}},fix:function(a){if(a[f.expando])return a;var d,e,g=a,h=f.event.fixHooks[a.type]||{},i=h.props?this.props.concat(h.props):this.props;a=f.Event(g);for(d=i.length;d;)e=i[--d],a[e]=g[e];a.target||(a.target=g.srcElement||c),a.target.nodeType===3&&(a.target=a.target.parentNode),a.metaKey===b&&(a.metaKey=a.ctrlKey);return h.filter?h.filter(a,g):a},special:{ready:{setup:f.bindReady},load:{noBubble:!0},focus:{delegateType:"focusin"},blur:{delegateType:"focusout"},beforeunload:{setup:function(a,b,c){f.isWindow(this)&&(this.onbeforeunload=c)},teardown:function(a,b){this.onbeforeunload===b&&(this.onbeforeunload=null)}}},simulate:function(a,b,c,d){var e=f.extend(new f.Event,c,{type:a,isSimulated:!0,originalEvent:{}});d?f.event.trigger(e,null,b):f.event.dispatch.call(b,e),e.isDefaultPrevented()&&c.preventDefault()}},f.event.handle=f.event.dispatch,f.removeEvent=c.removeEventListener?function(a,b,c){a.removeEventListener&&a.removeEventListener(b,c,!1)}:function(a,b,c){a.detachEvent&&a.detachEvent("on"+b,c)},f.Event=function(a,b){if(!(this instanceof f.Event))return new f.Event(a,b);a&&a.type?(this.originalEvent=a,this.type=a.type,this.isDefaultPrevented=a.defaultPrevented||a.returnValue===!1||a.getPreventDefault&&a.getPreventDefault()?K:J):this.type=a,b&&f.extend(this,b),this.timeStamp=a&&a.timeStamp||f.now(),this[f.expando]=!0},f.Event.prototype={preventDefault:function(){this.isDefaultPrevented=K;var a=this.originalEvent;!a||(a.preventDefault?a.preventDefault():a.returnValue=!1)},stopPropagation:function(){this.isPropagationStopped=K;var a=this.originalEvent;!a||(a.stopPropagation&&a.stopPropagation(),a.cancelBubble=!0)},stopImmediatePropagation:function(){this.isImmediatePropagationStopped=K,this.stopPropagation()},isDefaultPrevented:J,isPropagationStopped:J,isImmediatePropagationStopped:J},f.each({mouseenter:"mouseover",mouseleave:"mouseout"},function(a,b){f.event.special[a]={delegateType:b,bindType:b,handle:function(a){var c=this,d=a.relatedTarget,e=a.handleObj,g=e.selector,h;if(!d||d!==c&&!f.contains(c,d))a.type=e.origType,h=e.handler.apply(this,arguments),a.type=b;return h}}}),f.support.submitBubbles||(f.event.special.submit={setup:function(){if(f.nodeName(this,"form"))return!1;f.event.add(this,"click._submit keypress._submit",function(a){var c=a.target,d=f.nodeName(c,"input")||f.nodeName(c,"button")?c.form:b;d&&!d._submit_attached&&(f.event.add(d,"submit._submit",function(a){this.parentNode&&!a.isTrigger&&f.event.simulate("submit",this.parentNode,a,!0)}),d._submit_attached=!0)})},teardown:function(){if(f.nodeName(this,"form"))return!1;f.event.remove(this,"._submit")}}),f.support.changeBubbles||(f.event.special.change={setup:function(){if(z.test(this.nodeName)){if(this.type==="checkbox"||this.type==="radio")f.event.add(this,"propertychange._change",function(a){a.originalEvent.propertyName==="checked"&&(this._just_changed=!0)}),f.event.add(this,"click._change",function(a){this._just_changed&&!a.isTrigger&&(this._just_changed=!1,f.event.simulate("change",this,a,!0))});return!1}f.event.add(this,"beforeactivate._change",function(a){var b=a.target;z.test(b.nodeName)&&!b._change_attached&&(f.event.add(b,"change._change",function(a){this.parentNode&&!a.isSimulated&&!a.isTrigger&&f.event.simulate("change",this.parentNode,a,!0)}),b._change_attached=!0)})},handle:function(a){var b=a.target;if(this!==b||a.isSimulated||a.isTrigger||b.type!=="radio"&&b.type!=="checkbox")return a.handleObj.handler.apply(this,arguments)},teardown:function(){f.event.remove(this,"._change");return z.test(this.nodeName)}}),f.support.focusinBubbles||f.each({focus:"focusin",blur:"focusout"},function(a,b){var d=0,e=function(a){f.event.simulate(b,a.target,f.event.fix(a),!0)};f.event.special[b]={setup:function(){d++===0&&c.addEventListener(a,e,!0)},teardown:function(){--d===0&&c.removeEventListener(a,e,!0)}}}),f.fn.extend({on:function(a,c,d,e,g){var h,i;if(typeof a=="object"){typeof c!="string"&&(d=c,c=b);for(i in a)this.on(i,c,d,a[i],g);return this}d==null&&e==null?(e=c,d=c=b):e==null&&(typeof c=="string"?(e=d,d=b):(e=d,d=c,c=b));if(e===!1)e=J;else if(!e)return this;g===1&&(h=e,e=function(a){f().off(a);return h.apply(this,arguments)},e.guid=h.guid||(h.guid=f.guid++));return this.each(function(){f.event.add(this,a,e,d,c)})},one:function(a,b,c,d){return this.on.call(this,a,b,c,d,1)},off:function(a,c,d){if(a&&a.preventDefault&&a.handleObj){var e=a.handleObj;f(a.delegateTarget).off(e.namespace?e.type+"."+e.namespace:e.type,e.selector,e.handler);return this}if(typeof a=="object"){for(var g in a)this.off(g,c,a[g]);return this}if(c===!1||typeof c=="function")d=c,c=b;d===!1&&(d=J);return this.each(function(){f.event.remove(this,a,d,c)})},bind:function(a,b,c){return this.on(a,null,b,c)},unbind:function(a,b){return this.off(a,null,b)},live:function(a,b,c){f(this.context).on(a,this.selector,b,c);return this},die:function(a,b){f(this.context).off(a,this.selector||"**",b);return this},delegate:function(a,b,c,d){return this.on(b,a,c,d)},undelegate:function(a,b,c){return arguments.length==1?this.off(a,"**"):this.off(b,a,c)},trigger:function(a,b){return this.each(function(){f.event.trigger(a,b,this)})},triggerHandler:function(a,b){if(this[0])return f.event.trigger(a,b,this[0],!0)},toggle:function(a){var b=arguments,c=a.guid||f.guid++,d=0,e=function(c){var e=(f._data(this,"lastToggle"+a.guid)||0)%d;f._data(this,"lastToggle"+a.guid,e+1),c.preventDefault();return b[e].apply(this,arguments)||!1};e.guid=c;while(d<b.length)b[d++].guid=c;return this.click(e)},hover:function(a,b){return this.mouseenter(a).mouseleave(b||a)}}),f.each("blur focus focusin focusout load resize scroll unload click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup error contextmenu".split(" "),function(a,b){f.fn[b]=function(a,c){c==null&&(c=a,a=null);return arguments.length>0?this.on(b,null,a,c):this.trigger(b)},f.attrFn&&(f.attrFn[b]=!0),C.test(b)&&(f.event.fixHooks[b]=f.event.keyHooks),D.test(b)&&(f.event.fixHooks[b]=f.event.mouseHooks)}),function(){function x(a,b,c,e,f,g){for(var h=0,i=e.length;h<i;h++){var j=e[h];if(j){var k=!1;j=j[a];while(j){if(j[d]===c){k=e[j.sizset];break}if(j.nodeType===1){g||(j[d]=c,j.sizset=h);if(typeof b!="string"){if(j===b){k=!0;break}}else if(m.filter(b,[j]).length>0){k=j;break}}j=j[a]}e[h]=k}}}function w(a,b,c,e,f,g){for(var h=0,i=e.length;h<i;h++){var j=e[h];if(j){var k=!1;j=j[a];while(j){if(j[d]===c){k=e[j.sizset];break}j.nodeType===1&&!g&&(j[d]=c,j.sizset=h);if(j.nodeName.toLowerCase()===b){k=j;break}j=j[a]}e[h]=k}}}var a=/((?:\((?:\([^()]+\)|[^()]+)+\)|\[(?:\[[^\[\]]*\]|['"][^'"]*['"]|[^\[\]'"]+)+\]|\\.|[^ >+~,(\[\\]+)+|[>+~])(\s*,\s*)?((?:.|\r|\n)*)/g,d="sizcache"+(Math.random()+"").replace(".",""),e=0,g=Object.prototype.toString,h=!1,i=!0,j=/\\/g,k=/\r\n/g,l=/\W/;[0,0].sort(function(){i=!1;return 0});var m=function(b,d,e,f){e=e||[],d=d||c;var h=d;if(d.nodeType!==1&&d.nodeType!==9)return[];if(!b||typeof b!="string")return e;var i,j,k,l,n,q,r,t,u=!0,v=m.isXML(d),w=[],x=b;do{a.exec(""),i=a.exec(x);if(i){x=i[3],w.push(i[1]);if(i[2]){l=i[3];break}}}while(i);if(w.length>1&&p.exec(b))if(w.length===2&&o.relative[w[0]])j=y(w[0]+w[1],d,f);else{j=o.relative[w[0]]?[d]:m(w.shift(),d);while(w.length)b=w.shift(),o.relative[b]&&(b+=w.shift()),j=y(b,j,f)}else{!f&&w.length>1&&d.nodeType===9&&!v&&o.match.ID.test(w[0])&&!o.match.ID.test(w[w.length-1])&&(n=m.find(w.shift(),d,v),d=n.expr?m.filter(n.expr,n.set)[0]:n.set[0]);if(d){n=f?{expr:w.pop(),set:s(f)}:m.find(w.pop(),w.length===1&&(w[0]==="~"||w[0]==="+")&&d.parentNode?d.parentNode:d,v),j=n.expr?m.filter(n.expr,n.set):n.set,w.length>0?k=s(j):u=!1;while(w.length)q=w.pop(),r=q,o.relative[q]?r=w.pop():q="",r==null&&(r=d),o.relative[q](k,r,v)}else k=w=[]}k||(k=j),k||m.error(q||b);if(g.call(k)==="[object Array]")if(!u)e.push.apply(e,k);else if(d&&d.nodeType===1)for(t=0;k[t]!=null;t++)k[t]&&(k[t]===!0||k[t].nodeType===1&&m.contains(d,k[t]))&&e.push(j[t]);else for(t=0;k[t]!=null;t++)k[t]&&k[t].nodeType===1&&e.push(j[t]);else s(k,e);l&&(m(l,h,e,f),m.uniqueSort(e));return e};m.uniqueSort=function(a){if(u){h=i,a.sort(u);if(h)for(var b=1;b<a.length;b++)a[b]===a[b-1]&&a.splice(b--,1)}return a},m.matches=function(a,b){return m(a,null,null,b)},m.matchesSelector=function(a,b){return m(b,null,null,[a]).length>0},m.find=function(a,b,c){var d,e,f,g,h,i;if(!a)return[];for(e=0,f=o.order.length;e<f;e++){h=o.order[e];if(g=o.leftMatch[h].exec(a)){i=g[1],g.splice(1,1);if(i.substr(i.length-1)!=="\\"){g[1]=(g[1]||"").replace(j,""),d=o.find[h](g,b,c);if(d!=null){a=a.replace(o.match[h],"");break}}}}d||(d=typeof b.getElementsByTagName!="undefined"?b.getElementsByTagName("*"):[]);return{set:d,expr:a}},m.filter=function(a,c,d,e){var f,g,h,i,j,k,l,n,p,q=a,r=[],s=c,t=c&&c[0]&&m.isXML(c[0]);while(a&&c.length){for(h in o.filter)if((f=o.leftMatch[h].exec(a))!=null&&f[2]){k=o.filter[h],l=f[1],g=!1,f.splice(1,1);if(l.substr(l.length-1)==="\\")continue;s===r&&(r=[]);if(o.preFilter[h]){f=o.preFilter[h](f,s,d,r,e,t);if(!f)g=i=!0;else if(f===!0)continue}if(f)for(n=0;(j=s[n])!=null;n++)j&&(i=k(j,f,n,s),p=e^i,d&&i!=null?p?g=!0:s[n]=!1:p&&(r.push(j),g=!0));if(i!==b){d||(s=r),a=a.replace(o.match[h],"");if(!g)return[];break}}if(a===q)if(g==null)m.error(a);else break;q=a}return s},m.error=function(a){throw new Error("Syntax error, unrecognized expression: "+a)};var n=m.getText=function(a){var b,c,d=a.nodeType,e="";if(d){if(d===1||d===9){if(typeof a.textContent=="string")return a.textContent;if(typeof a.innerText=="string")return a.innerText.replace(k,"");for(a=a.firstChild;a;a=a.nextSibling)e+=n(a)}else if(d===3||d===4)return a.nodeValue}else for(b=0;c=a[b];b++)c.nodeType!==8&&(e+=n(c));return e},o=m.selectors={order:["ID","NAME","TAG"],match:{ID:/#((?:[\w\u00c0-\uFFFF\-]|\\.)+)/,CLASS:/\.((?:[\w\u00c0-\uFFFF\-]|\\.)+)/,NAME:/\[name=['"]*((?:[\w\u00c0-\uFFFF\-]|\\.)+)['"]*\]/,ATTR:/\[\s*((?:[\w\u00c0-\uFFFF\-]|\\.)+)\s*(?:(\S?=)\s*(?:(['"])(.*?)\3|(#?(?:[\w\u00c0-\uFFFF\-]|\\.)*)|)|)\s*\]/,TAG:/^((?:[\w\u00c0-\uFFFF*\-]|\\.)+)/,CHILD:/:(only|nth|last|first)-child(?:\(\s*(even|odd|(?:[+\-]?\d+|(?:[+\-]?\d*)?n\s*(?:[+\-]\s*\d+)?))\s*\))?/,POS:/:(nth|eq|gt|lt|first|last|even|odd)(?:\((\d*)\))?(?=[^\-]|$)/,PSEUDO:/:((?:[\w\u00c0-\uFFFF\-]|\\.)+)(?:\((['"]?)((?:\([^\)]+\)|[^\(\)]*)+)\2\))?/},leftMatch:{},attrMap:{"class":"className","for":"htmlFor"},attrHandle:{href:function(a){return a.getAttribute("href")},type:function(a){return a.getAttribute("type")}},relative:{"+":function(a,b){var c=typeof b=="string",d=c&&!l.test(b),e=c&&!d;d&&(b=b.toLowerCase());for(var f=0,g=a.length,h;f<g;f++)if(h=a[f]){while((h=h.previousSibling)&&h.nodeType!==1);a[f]=e||h&&h.nodeName.toLowerCase()===b?h||!1:h===b}e&&m.filter(b,a,!0)},">":function(a,b){var c,d=typeof b=="string",e=0,f=a.length;if(d&&!l.test(b)){b=b.toLowerCase();for(;e<f;e++){c=a[e];if(c){var g=c.parentNode;a[e]=g.nodeName.toLowerCase()===b?g:!1}}}else{for(;e<f;e++)c=a[e],c&&(a[e]=d?c.parentNode:c.parentNode===b);d&&m.filter(b,a,!0)}},"":function(a,b,c){var d,f=e++,g=x;typeof b=="string"&&!l.test(b)&&(b=b.toLowerCase(),d=b,g=w),g("parentNode",b,f,a,d,c)},"~":function(a,b,c){var d,f=e++,g=x;typeof b=="string"&&!l.test(b)&&(b=b.toLowerCase(),d=b,g=w),g("previousSibling",b,f,a,d,c)}},find:{ID:function(a,b,c){if(typeof b.getElementById!="undefined"&&!c){var d=b.getElementById(a[1]);return d&&d.parentNode?[d]:[]}},NAME:function(a,b){if(typeof b.getElementsByName!="undefined"){var c=[],d=b.getElementsByName(a[1]);for(var e=0,f=d.length;e<f;e++)d[e].getAttribute("name")===a[1]&&c.push(d[e]);return c.length===0?null:c}},TAG:function(a,b){if(typeof b.getElementsByTagName!="undefined")return b.getElementsByTagName(a[1])}},preFilter:{CLASS:function(a,b,c,d,e,f){a=" "+a[1].replace(j,"")+" ";if(f)return a;for(var g=0,h;(h=b[g])!=null;g++)h&&(e^(h.className&&(" "+h.className+" ").replace(/[\t\n\r]/g," ").indexOf(a)>=0)?c||d.push(h):c&&(b[g]=!1));return!1},ID:function(a){return a[1].replace(j,"")},TAG:function(a,b){return a[1].replace(j,"").toLowerCase()},CHILD:function(a){if(a[1]==="nth"){a[2]||m.error(a[0]),a[2]=a[2].replace(/^\+|\s*/g,"");var b=/(-?)(\d*)(?:n([+\-]?\d*))?/.exec(a[2]==="even"&&"2n"||a[2]==="odd"&&"2n+1"||!/\D/.test(a[2])&&"0n+"+a[2]||a[2]);a[2]=b[1]+(b[2]||1)-0,a[3]=b[3]-0}else a[2]&&m.error(a[0]);a[0]=e++;return a},ATTR:function(a,b,c,d,e,f){var g=a[1]=a[1].replace(j,"");!f&&o.attrMap[g]&&(a[1]=o.attrMap[g]),a[4]=(a[4]||a[5]||"").replace(j,""),a[2]==="~="&&(a[4]=" "+a[4]+" ");return a},PSEUDO:function(b,c,d,e,f){if(b[1]==="not")if((a.exec(b[3])||"").length>1||/^\w/.test(b[3]))b[3]=m(b[3],null,null,c);else{var g=m.filter(b[3],c,d,!0^f);d||e.push.apply(e,g);return!1}else if(o.match.POS.test(b[0])||o.match.CHILD.test(b[0]))return!0;return b},POS:function(a){a.unshift(!0);return a}},filters:{enabled:function(a){return a.disabled===!1&&a.type!=="hidden"},disabled:function(a){return a.disabled===!0},checked:function(a){return a.checked===!0},selected:function(a){a.parentNode&&a.parentNode.selectedIndex;return a.selected===!0},parent:function(a){return!!a.firstChild},empty:function(a){return!a.firstChild},has:function(a,b,c){return!!m(c[3],a).length},header:function(a){return/h\d/i.test(a.nodeName)},text:function(a){var b=a.getAttribute("type"),c=a.type;return a.nodeName.toLowerCase()==="input"&&"text"===c&&(b===c||b===null)},radio:function(a){return a.nodeName.toLowerCase()==="input"&&"radio"===a.type},checkbox:function(a){return a.nodeName.toLowerCase()==="input"&&"checkbox"===a.type},file:function(a){return a.nodeName.toLowerCase()==="input"&&"file"===a.type},password:function(a){return a.nodeName.toLowerCase()==="input"&&"password"===a.type},submit:function(a){var b=a.nodeName.toLowerCase();return(b==="input"||b==="button")&&"submit"===a.type},image:function(a){return a.nodeName.toLowerCase()==="input"&&"image"===a.type},reset:function(a){var b=a.nodeName.toLowerCase();return(b==="input"||b==="button")&&"reset"===a.type},button:function(a){var b=a.nodeName.toLowerCase();return b==="input"&&"button"===a.type||b==="button"},input:function(a){return/input|select|textarea|button/i.test(a.nodeName)},focus:function(a){return a===a.ownerDocument.activeElement}},setFilters:{first:function(a,b){return b===0},last:function(a,b,c,d){return b===d.length-1},even:function(a,b){return b%2===0},odd:function(a,b){return b%2===1},lt:function(a,b,c){return b<c[3]-0},gt:function(a,b,c){return b>c[3]-0},nth:function(a,b,c){return c[3]-0===b},eq:function(a,b,c){return c[3]-0===b}},filter:{PSEUDO:function(a,b,c,d){var e=b[1],f=o.filters[e];if(f)return f(a,c,b,d);if(e==="contains")return(a.textContent||a.innerText||n([a])||"").indexOf(b[3])>=0;if(e==="not"){var g=b[3];for(var h=0,i=g.length;h<i;h++)if(g[h]===a)return!1;return!0}m.error(e)},CHILD:function(a,b){var c,e,f,g,h,i,j,k=b[1],l=a;switch(k){case"only":case"first":while(l=l.previousSibling)if(l.nodeType===1)return!1;if(k==="first")return!0;l=a;case"last":while(l=l.nextSibling)if(l.nodeType===1)return!1;return!0;case"nth":c=b[2],e=b[3];if(c===1&&e===0)return!0;f=b[0],g=a.parentNode;if(g&&(g[d]!==f||!a.nodeIndex)){i=0;for(l=g.firstChild;l;l=l.nextSibling)l.nodeType===1&&(l.nodeIndex=++i);g[d]=f}j=a.nodeIndex-e;return c===0?j===0:j%c===0&&j/c>=0}},ID:function(a,b){return a.nodeType===1&&a.getAttribute("id")===b},TAG:function(a,b){return b==="*"&&a.nodeType===1||!!a.nodeName&&a.nodeName.toLowerCase()===b},CLASS:function(a,b){return(" "+(a.className||a.getAttribute("class"))+" ").indexOf(b)>-1},ATTR:function(a,b){var c=b[1],d=m.attr?m.attr(a,c):o.attrHandle[c]?o.attrHandle[c](a):a[c]!=null?a[c]:a.getAttribute(c),e=d+"",f=b[2],g=b[4];return d==null?f==="!=":!f&&m.attr?d!=null:f==="="?e===g:f==="*="?e.indexOf(g)>=0:f==="~="?(" "+e+" ").indexOf(g)>=0:g?f==="!="?e!==g:f==="^="?e.indexOf(g)===0:f==="$="?e.substr(e.length-g.length)===g:f==="|="?e===g||e.substr(0,g.length+1)===g+"-":!1:e&&d!==!1},POS:function(a,b,c,d){var e=b[2],f=o.setFilters[e];if(f)return f(a,c,b,d)}}},p=o.match.POS,q=function(a,b){return"\\"+(b-0+1)};for(var r in o.match)o.match[r]=new RegExp(o.match[r].source+/(?![^\[]*\])(?![^\(]*\))/.source),o.leftMatch[r]=new RegExp(/(^(?:.|\r|\n)*?)/.source+o.match[r].source.replace(/\\(\d+)/g,q));var s=function(a,b){a=Array.prototype.slice.call(a,0);if(b){b.push.apply(b,a);return b}return a};try{Array.prototype.slice.call(c.documentElement.childNodes,0)[0].nodeType}catch(t){s=function(a,b){var c=0,d=b||[];if(g.call(a)==="[object Array]")Array.prototype.push.apply(d,a);else if(typeof a.length=="number")for(var e=a.length;c<e;c++)d.push(a[c]);else for(;a[c];c++)d.push(a[c]);return d}}var u,v;c.documentElement.compareDocumentPosition?u=function(a,b){if(a===b){h=!0;return 0}if(!a.compareDocumentPosition||!b.compareDocumentPosition)return a.compareDocumentPosition?-1:1;return a.compareDocumentPosition(b)&4?-1:1}:(u=function(a,b){if(a===b){h=!0;return 0}if(a.sourceIndex&&b.sourceIndex)return a.sourceIndex-b.sourceIndex;var c,d,e=[],f=[],g=a.parentNode,i=b.parentNode,j=g;if(g===i)return v(a,b);if(!g)return-1;if(!i)return 1;while(j)e.unshift(j),j=j.parentNode;j=i;while(j)f.unshift(j),j=j.parentNode;c=e.length,d=f.length;for(var k=0;k<c&&k<d;k++)if(e[k]!==f[k])return v(e[k],f[k]);return k===c?v(a,f[k],-1):v(e[k],b,1)},v=function(a,b,c){if(a===b)return c;var d=a.nextSibling;while(d){if(d===b)return-1;d=d.nextSibling}return 1}),function(){var a=c.createElement("div"),d="script"+(new Date).getTime(),e=c.documentElement;a.innerHTML="",e.insertBefore(a,e.firstChild),c.getElementById(d)&&(o.find.ID=function(a,c,d){if(typeof c.getElementById!="undefined"&&!d){var e=c.getElementById(a[1]);return e?e.id===a[1]||typeof e.getAttributeNode!="undefined"&&e.getAttributeNode("id").nodeValue===a[1]?[e]:b:[]}},o.filter.ID=function(a,b){var c=typeof a.getAttributeNode!="undefined"&&a.getAttributeNode("id");return a.nodeType===1&&c&&c.nodeValue===b}),e.removeChild(a),e=a=null}(),function(){var a=c.createElement("div");a.appendChild(c.createComment("")),a.getElementsByTagName("*").length>0&&(o.find.TAG=function(a,b){var c=b.getElementsByTagName(a[1]);if(a[1]==="*"){var d=[];for(var e=0;c[e];e++)c[e].nodeType===1&&d.push(c[e]);c=d}return c}),a.innerHTML="",a.firstChild&&typeof a.firstChild.getAttribute!="undefined"&&a.firstChild.getAttribute("href")!=="#"&&(o.attrHandle.href=function(a){return a.getAttribute("href",2)}),a=null}(),c.querySelectorAll&&function(){var a=m,b=c.createElement("div"),d="__sizzle__";b.innerHTML="<p class='TEST'></p>";if(!b.querySelectorAll||b.querySelectorAll(".TEST").length!==0){m=function(b,e,f,g){e=e||c;if(!g&&!m.isXML(e)){var h=/^(\w+$)|^\.([\w\-]+$)|^#([\w\-]+$)/.exec(b);if(h&&(e.nodeType===1||e.nodeType===9)){if(h[1])return s(e.getElementsByTagName(b),f);if(h[2]&&o.find.CLASS&&e.getElementsByClassName)return s(e.getElementsByClassName(h[2]),f)}if(e.nodeType===9){if(b==="body"&&e.body)return s([e.body],f);if(h&&h[3]){var i=e.getElementById(h[3]);if(!i||!i.parentNode)return s([],f);if(i.id===h[3])return s([i],f)}try{return s(e.querySelectorAll(b),f)}catch(j){}}else if(e.nodeType===1&&e.nodeName.toLowerCase()!=="object"){var k=e,l=e.getAttribute("id"),n=l||d,p=e.parentNode,q=/^\s*[+~]/.test(b);l?n=n.replace(/'/g,"\\$&"):e.setAttribute("id",n),q&&p&&(e=e.parentNode);try{if(!q||p)return s(e.querySelectorAll("[id='"+n+"'] "+b),f)}catch(r){}finally{l||k.removeAttribute("id")}}}return a(b,e,f,g)};for(var e in a)m[e]=a[e];b=null}}(),function(){var a=c.documentElement,b=a.matchesSelector||a.mozMatchesSelector||a.webkitMatchesSelector||a.msMatchesSelector;if(b){var d=!b.call(c.createElement("div"),"div"),e=!1;try{b.call(c.documentElement,"[test!='']:sizzle")}catch(f){e=!0}m.matchesSelector=function(a,c){c=c.replace(/\=\s*([^'"\]]*)\s*\]/g,"='$1']");if(!m.isXML(a))try{if(e||!o.match.PSEUDO.test(c)&&!/!=/.test(c)){var f=b.call(a,c);if(f||!d||a.document&&a.document.nodeType!==11)return f}}catch(g){}return m(c,null,null,[a]).length>0}}}(),function(){var a=c.createElement("div");a.innerHTML="<div class='test e'></div><div class='test'></div>";if(!!a.getElementsByClassName&&a.getElementsByClassName("e").length!==0){a.lastChild.className="e";if(a.getElementsByClassName("e").length===1)return;o.order.splice(1,0,"CLASS"),o.find.CLASS=function(a,b,c){if(typeof b.getElementsByClassName!="undefined"&&!c)return b.getElementsByClassName(a[1])},a=null}}(),c.documentElement.contains?m.contains=function(a,b){return a!==b&&(a.contains?a.contains(b):!0)}:c.documentElement.compareDocumentPosition?m.contains=function(a,b){return!!(a.compareDocumentPosition(b)&16)}:m.contains=function(){return!1},m.isXML=function(a){var b=(a?a.ownerDocument||a:0).documentElement;return b?b.nodeName!=="HTML":!1};var y=function(a,b,c){var d,e=[],f="",g=b.nodeType?[b]:b;while(d=o.match.PSEUDO.exec(a))f+=d[0],a=a.replace(o.match.PSEUDO,"");a=o.relative[a]?a+"*":a;for(var h=0,i=g.length;h<i;h++)m(a,g[h],e,c);return m.filter(f,e)};m.attr=f.attr,m.selectors.attrMap={},f.find=m,f.expr=m.selectors,f.expr[":"]=f.expr.filters,f.unique=m.uniqueSort,f.text=m.getText,f.isXMLDoc=m.isXML,f.contains=m.contains}();var L=/Until$/,M=/^(?:parents|prevUntil|prevAll)/,N=/,/,O=/^.[^:#\[\.,]*$/,P=Array.prototype.slice,Q=f.expr.match.POS,R={children:!0,contents:!0,next:!0,prev:!0};f.fn.extend({find:function(a){var b=this,c,d;if(typeof a!="string")return f(a).filter(function(){for(c=0,d=b.length;c<d;c++)if(f.contains(b[c],this))return!0});var e=this.pushStack("","find",a),g,h,i;for(c=0,d=this.length;c<d;c++){g=e.length,f.find(a,this[c],e);if(c>0)for(h=g;h<e.length;h++)for(i=0;i<g;i++)if(e[i]===e[h]){e.splice(h--,1);break}}return e},has:function(a){var b=f(a);return this.filter(function(){for(var a=0,c=b.length;a<c;a++)if(f.contains(this,b[a]))return!0})},not:function(a){return this.pushStack(T(this,a,!1),"not",a)},filter:function(a){return this.pushStack(T(this,a,!0),"filter",a)},is:function(a){return!!a&&(typeof a=="string"?Q.test(a)?f(a,this.context).index(this[0])>=0:f.filter(a,this).length>0:this.filter(a).length>0)},closest:function(a,b){var c=[],d,e,g=this[0];if(f.isArray(a)){var h=1;while(g&&g.ownerDocument&&g!==b){for(d=0;d<a.length;d++)f(g).is(a[d])&&c.push({selector:a[d],elem:g,level:h});g=g.parentNode,h++}return c}var i=Q.test(a)||typeof a!="string"?f(a,b||this.context):0;for(d=0,e=this.length;d<e;d++){g=this[d];while(g){if(i?i.index(g)>-1:f.find.matchesSelector(g,a)){c.push(g);break}g=g.parentNode;if(!g||!g.ownerDocument||g===b||g.nodeType===11)break}}c=c.length>1?f.unique(c):c;return this.pushStack(c,"closest",a)},index:function(a){if(!a)return this[0]&&this[0].parentNode?this.prevAll().length:-1;if(typeof a=="string")return f.inArray(this[0],f(a));return f.inArray(a.jquery?a[0]:a,this)},add:function(a,b){var c=typeof a=="string"?f(a,b):f.makeArray(a&&a.nodeType?[a]:a),d=f.merge(this.get(),c);return this.pushStack(S(c[0])||S(d[0])?d:f.unique(d))},andSelf:function(){return this.add(this.prevObject)}}),f.each({parent:function(a){var b=a.parentNode;return b&&b.nodeType!==11?b:null},parents:function(a){return f.dir(a,"parentNode")},parentsUntil:function(a,b,c){return f.dir(a,"parentNode",c)},next:function(a){return f.nth(a,2,"nextSibling")},prev:function(a){return f.nth(a,2,"previousSibling")},nextAll:function(a){return f.dir(a,"nextSibling")},prevAll:function(a){return f.dir(a,"previousSibling")},nextUntil:function(a,b,c){return f.dir(a,"nextSibling",c)},prevUntil:function(a,b,c){return f.dir(a,"previousSibling",c)},siblings:function(a){return f.sibling(a.parentNode.firstChild,a)},children:function(a){return f.sibling(a.firstChild)},contents:function(a){return f.nodeName(a,"iframe")?a.contentDocument||a.contentWindow.document:f.makeArray(a.childNodes)}},function(a,b){f.fn[a]=function(c,d){var e=f.map(this,b,c);L.test(a)||(d=c),d&&typeof d=="string"&&(e=f.filter(d,e)),e=this.length>1&&!R[a]?f.unique(e):e,(this.length>1||N.test(d))&&M.test(a)&&(e=e.reverse());return this.pushStack(e,a,P.call(arguments).join(","))}}),f.extend({filter:function(a,b,c){c&&(a=":not("+a+")");return b.length===1?f.find.matchesSelector(b[0],a)?[b[0]]:[]:f.find.matches(a,b)},dir:function(a,c,d){var e=[],g=a[c];while(g&&g.nodeType!==9&&(d===b||g.nodeType!==1||!f(g).is(d)))g.nodeType===1&&e.push(g),g=g[c];return e},nth:function(a,b,c,d){b=b||1;var e=0;for(;a;a=a[c])if(a.nodeType===1&&++e===b)break;return a},sibling:function(a,b){var c=[];for(;a;a=a.nextSibling)a.nodeType===1&&a!==b&&c.push(a);return c}});var V="abbr|article|aside|audio|canvas|datalist|details|figcaption|figure|footer|header|hgroup|mark|meter|nav|output|progress|section|summary|time|video",W=/ jQuery\d+="(?:\d+|null)"/g,X=/^\s+/,Y=/<(?!area|br|col|embed|hr|img|input|link|meta|param)(([\w:]+)[^>]*)\/>/ig,Z=/<([\w:]+)/,$=/<tbody/i,_=/<|&#?\w+;/,ba=/<(?:script|style)/i,bb=/<(?:script|object|embed|option|style)/i,bc=new RegExp("<(?:"+V+")","i"),bd=/checked\s*(?:[^=]|=\s*.checked.)/i,be=/\/(java|ecma)script/i,bf=/^\s*<!(?:\[CDATA\[|\-\-)/,bg={option:[1,"<select multiple='multiple'>","</select>"],legend:[1,"<fieldset>","</fieldset>"],thead:[1,"<table>","</table>"],tr:[2,"<table><tbody>","</tbody></table>"],td:[3,"<table><tbody><tr>","</tr></tbody></table>"],col:[2,"<table><tbody></tbody><colgroup>","</colgroup></table>"],area:[1,"<map>","</map>"],_default:[0,"",""]},bh=U(c);bg.optgroup=bg.option,bg.tbody=bg.tfoot=bg.colgroup=bg.caption=bg.thead,bg.th=bg.td,f.support.htmlSerialize||(bg._default=[1,"div<div>","</div>"]),f.fn.extend({text:function(a){if(f.isFunction(a))return this.each(function(b){var c=f(this);c.text(a.call(this,b,c.text()))});if(typeof a!="object"&&a!==b)return this.empty().append((this[0]&&this[0].ownerDocument||c).createTextNode(a));return f.text(this)},wrapAll:function(a){if(f.isFunction(a))return this.each(function(b){f(this).wrapAll(a.call(this,b))});if(this[0]){var b=f(a,this[0].ownerDocument).eq(0).clone(!0);this[0].parentNode&&b.insertBefore(this[0]),b.map(function(){var a=this;while(a.firstChild&&a.firstChild.nodeType===1)a=a.firstChild;return a}).append(this)}return this},wrapInner:function(a){if(f.isFunction(a))return this.each(function(b){f(this).wrapInner(a.call(this,b))});return this.each(function(){var b=f(this),c=b.contents();c.length?c.wrapAll(a):b.append(a)})},wrap:function(a){var b=f.isFunction(a);return this.each(function(c){f(this).wrapAll(b?a.call(this,c):a)})},unwrap:function(){return this.parent().each(function(){f.nodeName(this,"body")||f(this).replaceWith(this.childNodes)}).end()},append:function(){return this.domManip(arguments,!0,function(a){this.nodeType===1&&this.appendChild(a)})},prepend:function(){return this.domManip(arguments,!0,function(a){this.nodeType===1&&this.insertBefore(a,this.firstChild)})},before:function(){if(this[0]&&this[0].parentNode)return this.domManip(arguments,!1,function(a){this.parentNode.insertBefore(a,this)});if(arguments.length){var a=f.clean(arguments);a.push.apply(a,this.toArray());return this.pushStack(a,"before",arguments)}},after:function(){if(this[0]&&this[0].parentNode)return this.domManip(arguments,!1,function(a){this.parentNode.insertBefore(a,this.nextSibling)});if(arguments.length){var a=this.pushStack(this,"after",arguments);a.push.apply(a,f.clean(arguments));return a}},remove:function(a,b){for(var c=0,d;(d=this[c])!=null;c++)if(!a||f.filter(a,[d]).length)!b&&d.nodeType===1&&(f.cleanData(d.getElementsByTagName("*")),f.cleanData([d])),d.parentNode&&d.parentNode.removeChild(d);return this},empty:function()
 {for(var a=0,b;(b=this[a])!=null;a++){b.nodeType===1&&f.cleanData(b.getElementsByTagName("*"));while(b.firstChild)b.removeChild(b.firstChild)}return this},clone:function(a,b){a=a==null?!1:a,b=b==null?a:b;return this.map(function(){return f.clone(this,a,b)})},html:function(a){if(a===b)return this[0]&&this[0].nodeType===1?this[0].innerHTML.replace(W,""):null;if(typeof a=="string"&&!ba.test(a)&&(f.support.leadingWhitespace||!X.test(a))&&!bg[(Z.exec(a)||["",""])[1].toLowerCase()]){a=a.replace(Y,"<$1></$2>");try{for(var c=0,d=this.length;c<d;c++)this[c].nodeType===1&&(f.cleanData(this[c].getElementsByTagName("*")),this[c].innerHTML=a)}catch(e){this.empty().append(a)}}else f.isFunction(a)?this.each(function(b){var c=f(this);c.html(a.call(this,b,c.html()))}):this.empty().append(a);return this},replaceWith:function(a){if(this[0]&&this[0].parentNode){if(f.isFunction(a))return this.each(function(b){var c=f(this),d=c.html();c.replaceWith(a.call(this,b,d))});typeof a!="string"&&(a=f(a).detach());return this.each(function(){var b=this.nextSibling,c=this.parentNode;f(this).remove(),b?f(b).before(a):f(c).append(a)})}return this.length?this.pushStack(f(f.isFunction(a)?a():a),"replaceWith",a):this},detach:function(a){return this.remove(a,!0)},domManip:function(a,c,d){var e,g,h,i,j=a[0],k=[];if(!f.support.checkClone&&arguments.length===3&&typeof j=="string"&&bd.test(j))return this.each(function(){f(this).domManip(a,c,d,!0)});if(f.isFunction(j))return this.each(function(e){var g=f(this);a[0]=j.call(this,e,c?g.html():b),g.domManip(a,c,d)});if(this[0]){i=j&&j.parentNode,f.support.parentNode&&i&&i.nodeType===11&&i.childNodes.length===this.length?e={fragment:i}:e=f.buildFragment(a,this,k),h=e.fragment,h.childNodes.length===1?g=h=h.firstChild:g=h.firstChild;if(g){c=c&&f.nodeName(g,"tr");for(var l=0,m=this.length,n=m-1;l<m;l++)d.call(c?bi(this[l],g):this[l],e.cacheable||m>1&&l<n?f.clone(h,!0,!0):h)}k.length&&f.each(k,bp)}return this}}),f.buildFragment=function(a,b,d){var e,g,h,i,j=a[0];b&&b[0]&&(i=b[0].ownerDocument||b[0]),i.createDocumentFragment||(i=c),a.length===1&&typeof j=="string"&&j.length<512&&i===c&&j.charAt(0)==="<"&&!bb.test(j)&&(f.support.checkClone||!bd.test(j))&&(f.support.html5Clone||!bc.test(j))&&(g=!0,h=f.fragments[j],h&&h!==1&&(e=h)),e||(e=i.createDocumentFragment(),f.clean(a,i,e,d)),g&&(f.fragments[j]=h?e:1);return{fragment:e,cacheable:g}},f.fragments={},f.each({appendTo:"append",prependTo:"prepend",insertBefore:"before",insertAfter:"after",replaceAll:"replaceWith"},function(a,b){f.fn[a]=function(c){var d=[],e=f(c),g=this.length===1&&this[0].parentNode;if(g&&g.nodeType===11&&g.childNodes.length===1&&e.length===1){e[b](this[0]);return this}for(var h=0,i=e.length;h<i;h++){var j=(h>0?this.clone(!0):this).get();f(e[h])[b](j),d=d.concat(j)}return this.pushStack(d,a,e.selector)}}),f.extend({clone:function(a,b,c){var d,e,g,h=f.support.html5Clone||!bc.test("<"+a.nodeName)?a.cloneNode(!0):bo(a);if((!f.support.noCloneEvent||!f.support.noCloneChecked)&&(a.nodeType===1||a.nodeType===11)&&!f.isXMLDoc(a)){bk(a,h),d=bl(a),e=bl(h);for(g=0;d[g];++g)e[g]&&bk(d[g],e[g])}if(b){bj(a,h);if(c){d=bl(a),e=bl(h);for(g=0;d[g];++g)bj(d[g],e[g])}}d=e=null;return h},clean:function(a,b,d,e){var g;b=b||c,typeof b.createElement=="undefined"&&(b=b.ownerDocument||b[0]&&b[0].ownerDocument||c);var h=[],i;for(var j=0,k;(k=a[j])!=null;j++){typeof k=="number"&&(k+="");if(!k)continue;if(typeof k=="string")if(!_.test(k))k=b.createTextNode(k);else{k=k.replace(Y,"<$1></$2>");var l=(Z.exec(k)||["",""])[1].toLowerCase(),m=bg[l]||bg._default,n=m[0],o=b.createElement("div");b===c?bh.appendChild(o):U(b).appendChild(o),o.innerHTML=m[1]+k+m[2];while(n--)o=o.lastChild;if(!f.support.tbody){var p=$.test(k),q=l==="table"&&!p?o.firstChild&&o.firstChild.childNodes:m[1]==="<table>"&&!p?o.childNodes:[];for(i=q.length-1;i>=0;--i)f.nodeName(q[i],"tbody")&&!q[i].childNodes.length&&q[i].parentNode.removeChild(q[i])}!f.support.leadingWhitespace&&X.test(k)&&o.insertBefore(b.createTextNode(X.exec(k)[0]),o.firstChild),k=o.childNodes}var r;if(!f.support.appendChecked)if(k[0]&&typeof (r=k.length)=="number")for(i=0;i<r;i++)bn(k[i]);else bn(k);k.nodeType?h.push(k):h=f.merge(h,k)}if(d){g=function(a){return!a.type||be.test(a.type)};for(j=0;h[j];j++)if(e&&f.nodeName(h[j],"script")&&(!h[j].type||h[j].type.toLowerCase()==="text/javascript"))e.push(h[j].parentNode?h[j].parentNode.removeChild(h[j]):h[j]);else{if(h[j].nodeType===1){var s=f.grep(h[j].getElementsByTagName("script"),g);h.splice.apply(h,[j+1,0].concat(s))}d.appendChild(h[j])}}return h},cleanData:function(a){var b,c,d=f.cache,e=f.event.special,g=f.support.deleteExpando;for(var h=0,i;(i=a[h])!=null;h++){if(i.nodeName&&f.noData[i.nodeName.toLowerCase()])continue;c=i[f.expando];if(c){b=d[c];if(b&&b.events){for(var j in b.events)e[j]?f.event.remove(i,j):f.removeEvent(i,j,b.handle);b.handle&&(b.handle.elem=null)}g?delete i[f.expando]:i.removeAttribute&&i.removeAttribute(f.expando),delete d[c]}}}});var bq=/alpha\([^)]*\)/i,br=/opacity=([^)]*)/,bs=/([A-Z]|^ms)/g,bt=/^-?\d+(?:px)?$/i,bu=/^-?\d/,bv=/^([\-+])=([\-+.\de]+)/,bw={position:"absolute",visibility:"hidden",display:"block"},bx=["Left","Right"],by=["Top","Bottom"],bz,bA,bB;f.fn.css=function(a,c){if(arguments.length===2&&c===b)return this;return f.access(this,a,c,!0,function(a,c,d){return d!==b?f.style(a,c,d):f.css(a,c)})},f.extend({cssHooks:{opacity:{get:function(a,b){if(b){var c=bz(a,"opacity","opacity");return c===""?"1":c}return a.style.opacity}}},cssNumber:{fillOpacity:!0,fontWeight:!0,lineHeight:!0,opacity:!0,orphans:!0,widows:!0,zIndex:!0,zoom:!0},cssProps:{"float":f.support.cssFloat?"cssFloat":"styleFloat"},style:function(a,c,d,e){if(!!a&&a.nodeType!==3&&a.nodeType!==8&&!!a.style){var g,h,i=f.camelCase(c),j=a.style,k=f.cssHooks[i];c=f.cssProps[i]||i;if(d===b){if(k&&"get"in k&&(g=k.get(a,!1,e))!==b)return g;return j[c]}h=typeof d,h==="string"&&(g=bv.exec(d))&&(d=+(g[1]+1)*+g[2]+parseFloat(f.css(a,c)),h="number");if(d==null||h==="number"&&isNaN(d))return;h==="number"&&!f.cssNumber[i]&&(d+="px");if(!k||!("set"in k)||(d=k.set(a,d))!==b)try{j[c]=d}catch(l){}}},css:function(a,c,d){var e,g;c=f.camelCase(c),g=f.cssHooks[c],c=f.cssProps[c]||c,c==="cssFloat"&&(c="float");if(g&&"get"in g&&(e=g.get(a,!0,d))!==b)return e;if(bz)return bz(a,c)},swap:function(a,b,c){var d={};for(var e in b)d[e]=a.style[e],a.style[e]=b[e];c.call(a);for(e in b)a.style[e]=d[e]}}),f.curCSS=f.css,f.each(["height","width"],function(a,b){f.cssHooks[b]={get:function(a,c,d){var e;if(c){if(a.offsetWidth!==0)return bC(a,b,d);f.swap(a,bw,function(){e=bC(a,b,d)});return e}},set:function(a,b){if(!bt.test(b))return b;b=parseFloat(b);if(b>=0)return b+"px"}}}),f.support.opacity||(f.cssHooks.opacity={get:function(a,b){return br.test((b&&a.currentStyle?a.currentStyle.filter:a.style.filter)||"")?parseFloat(RegExp.$1)/100+"":b?"1":""},set:function(a,b){var c=a.style,d=a.currentStyle,e=f.isNumeric(b)?"alpha(opacity="+b*100+")":"",g=d&&d.filter||c.filter||"";c.zoom=1;if(b>=1&&f.trim(g.replace(bq,""))===""){c.removeAttribute("filter");if(d&&!d.filter)return}c.filter=bq.test(g)?g.replace(bq,e):g+" "+e}}),f(function(){f.support.reliableMarginRight||(f.cssHooks.marginRight={get:function(a,b){var c;f.swap(a,{display:"inline-block"},function(){b?c=bz(a,"margin-right","marginRight"):c=a.style.marginRight});return c}})}),c.defaultView&&c.defaultView.getComputedStyle&&(bA=function(a,b){var c,d,e;b=b.replace(bs,"-$1").toLowerCase(),(d=a.ownerDocument.defaultView)&&(e=d.getComputedStyle(a,null))&&(c=e.getPropertyValue(b),c===""&&!f.contains(a.ownerDocument.documentElement,a)&&(c=f.style(a,b)));return c}),c.documentElement.currentStyle&&(bB=function(a,b){var c,d,e,f=a.currentStyle&&a.currentStyle[b],g=a.style;f===null&&g&&(e=g[b])&&(f=e),!bt.test(f)&&bu.test(f)&&(c=g.left,d=a.runtimeStyle&&a.runtimeStyle.left,d&&(a.runtimeStyle.left=a.currentStyle.left),g.left=b==="fontSize"?"1em":f||0,f=g.pixelLeft+"px",g.left=c,d&&(a.runtimeStyle.left=d));return f===""?"auto":f}),bz=bA||bB,f.expr&&f.expr.filters&&(f.expr.filters.hidden=function(a){var b=a.offsetWidth,c=a.offsetHeight;return b===0&&c===0||!f.support.reliableHiddenOffsets&&(a.style&&a.style.display||f.css(a,"display"))==="none"},f.expr.filters.visible=function(a){return!f.expr.filters.hidden(a)});var bD=/%20/g,bE=/\[\]$/,bF=/\r?\n/g,bG=/#.*$/,bH=/^(.*?):[\t]*([^\r\n]*)\r?$/mg,bI=/^(?:color|date|datetime|datetime-local|email|hidden|month|number|password|range|search|tel|text|time|url|week)$/i,bJ=/^(?:about|app|app\-storage|.+\-extension|file|res|widget):$/,bK=/^(?:GET|HEAD)$/,bL=/^\/\//,bM=/\?/,bN=/<script\b[^<]*(?:(?!<\/script>)<[^<]*)*<\/script>/gi,bO=/^(?:select|textarea)/i,bP=/\s+/,bQ=/([?&])_=[^&]*/,bR=/^([\w\+\.\-]+:)(?:\/\/([^\/?#:]*)(?::(\d+))?)?/,bS=f.fn.load,bT={},bU={},bV,bW,bX=["*/"]+["*"];try{bV=e.href}catch(bY){bV=c.createElement("a"),bV.href="",bV=bV.href}bW=bR.exec(bV.toLowerCase())||[],f.fn.extend({load:function(a,c,d){if(typeof a!="string"&&bS)return bS.apply(this,arguments);if(!this.length)return this;var e=a.indexOf(" ");if(e>=0){var g=a.slice(e,a.length);a=a.slice(0,e)}var h="GET";c&&(f.isFunction(c)?(d=c,c=b):typeof c=="object"&&(c=f.param(c,f.ajaxSettings.traditional),h="POST"));var i=this;f.ajax({url:a,type:h,dataType:"html",data:c,complete:function(a,b,c){c=a.responseText,a.isResolved()&&(a.done(function(a){c=a}),i.html(g?f("<div>").append(c.replace(bN,"")).find(g):c)),d&&i.each(d,[c,b,a])}});return this},serialize:function(){return f.param(this.serializeArray())},serializeArray:function(){return this.map(function(){return this.elements?f.makeArray(this.elements):this}).filter(function(){return this.name&&!this.disabled&&(this.checked||bO.test(this.nodeName)||bI.test(this.type))}).map(function(a,b){var c=f(this).val();return c==null?null:f.isArray(c)?f.map(c,function(a,c){return{name:b.name,value:a.replace(bF,"\r\n")}}):{name:b.name,value:c.replace(bF,"\r\n")}}).get()}}),f.each("ajaxStart ajaxStop ajaxComplete ajaxError ajaxSuccess ajaxSend".split(" "),function(a,b){f.fn[b]=function(a){return this.on(b,a)}}),f.each(["get","post"],function(a,c){f[c]=function(a,d,e,g){f.isFunction(d)&&(g=g||e,e=d,d=b);return f.ajax({type:c,url:a,data:d,success:e,dataType:g})}}),f.extend({getScript:function(a,c){return f.get(a,b,c,"script")},getJSON:function(a,b,c){return f.get(a,b,c,"json")},ajaxSetup:function(a,b){b?b_(a,f.ajaxSettings):(b=a,a=f.ajaxSettings),b_(a,b);return a},ajaxSettings:{url:bV,isLocal:bJ.test(bW[1]),global:!0,type:"GET",contentType:"application/x-www-form-urlencoded",processData:!0,async:!0,accepts:{xml:"application/xml, text/xml",html:"text/html",text:"text/plain",json:"application/json, text/javascript","*":bX},contents:{xml:/xml/,html:/html/,json:/json/},responseFields:{xml:"responseXML",text:"responseText"},converters:{"* text":a.String,"text html":!0,"text json":f.parseJSON,"text xml":f.parseXML},flatOptions:{context:!0,url:!0}},ajaxPrefilter:bZ(bT),ajaxTransport:bZ(bU),ajax:function(a,c){function w(a,c,l,m){if(s!==2){s=2,q&&clearTimeout(q),p=b,n=m||"",v.readyState=a>0?4:0;var o,r,u,w=c,x=l?cb(d,v,l):b,y,z;if(a>=200&&a<300||a===304){if(d.ifModified){if(y=v.getResponseHeader("Last-Modified"))f.lastModified[k]=y;if(z=v.getResponseHeader("Etag"))f.etag[k]=z}if(a===304)w="notmodified",o=!0;else try{r=cc(d,x),w="success",o=!0}catch(A){w="parsererror",u=A}}else{u=w;if(!w||a)w="error",a<0&&(a=0)}v.status=a,v.statusText=""+(c||w),o?h.resolveWith(e,[r,w,v]):h.rejectWith(e,[v,w,u]),v.statusCode(j),j=b,t&&g.trigger("ajax"+(o?"Success":"Error"),[v,d,o?r:u]),i.fireWith(e,[v,w]),t&&(g.trigger("ajaxComplete",[v,d]),--f.active||f.event.trigger("ajaxStop"))}}typeof a=="object"&&(c=a,a=b),c=c||{};var d=f.ajaxSetup({},c),e=d.context||d,g=e!==d&&(e.nodeType||e instanceof f)?f(e):f.event,h=f.Deferred(),i=f.Callbacks("once memory"),j=d.statusCode||{},k,l={},m={},n,o,p,q,r,s=0,t,u,v={readyState:0,setRequestHeader:function(a,b){if(!s){var c=a.toLowerCase();a=m[c]=m[c]||a,l[a]=b}return this},getAllResponseHeaders:function(){return s===2?n:null},getResponseHeader:function(a){var c;if(s===2){if(!o){o={};while(c=bH.exec(n))o[c[1].toLowerCase()]=c[2]}c=o[a.toLowerCase()]}return c===b?null:c},overrideMimeType:function(a){s||(d.mimeType=a);return this},abort:function(a){a=a||"abort",p&&p.abort(a),w(0,a);return this}};h.promise(v),v.success=v.done,v.error=v.fail,v.complete=i.add,v.statusCode=function(a){if(a){var b;if(s<2)for(b in a)j[b]=[j[b],a[b]];else b=a[v.status],v.then(b,b)}return this},d.url=((a||d.url)+"").replace(bG,"").replace(bL,bW[1]+"//"),d.dataTypes=f.trim(d.dataType||"*").toLowerCase().split(bP),d.crossDomain==null&&(r=bR.exec(d.url.toLowerCase()),d.crossDomain=!(!r||r[1]==bW[1]&&r[2]==bW[2]&&(r[3]||(r[1]==="http:"?80:443))==(bW[3]||(bW[1]==="http:"?80:443)))),d.data&&d.processData&&typeof d.data!="string"&&(d.data=f.param(d.data,d.traditional)),b$(bT,d,c,v);if(s===2)return!1;t=d.global,d.type=d.type.toUpperCase(),d.hasContent=!bK.test(d.type),t&&f.active++===0&&f.event.trigger("ajaxStart");if(!d.hasContent){d.data&&(d.url+=(bM.test(d.url)?"&":"?")+d.data,delete d.data),k=d.url;if(d.cache===!1){var x=f.now(),y=d.url.replace(bQ,"$1_="+x);d.url=y+(y===d.url?(bM.test(d.url)?"&":"?")+"_="+x:"")}}(d.data&&d.hasContent&&d.contentType!==!1||c.contentType)&&v.setRequestHeader("Content-Type",d.contentType),d.ifModified&&(k=k||d.url,f.lastModified[k]&&v.setRequestHeader("If-Modified-Since",f.lastModified[k]),f.etag[k]&&v.setRequestHeader("If-None-Match",f.etag[k])),v.setRequestHeader("Accept",d.dataTypes[0]&&d.accepts[d.dataTypes[0]]?d.accepts[d.dataTypes[0]]+(d.dataTypes[0]!=="*"?", "+bX+"; q=0.01":""):d.accepts["*"]);for(u in d.headers)v.setRequestHeader(u,d.headers[u]);if(d.beforeSend&&(d.beforeSend.call(e,v,d)===!1||s===2)){v.abort();return!1}for(u in{success:1,error:1,complete:1})v[u](d[u]);p=b$(bU,d,c,v);if(!p)w(-1,"No Transport");else{v.readyState=1,t&&g.trigger("ajaxSend",[v,d]),d.async&&d.timeout>0&&(q=setTimeout(function(){v.abort("timeout")},d.timeout));try{s=1,p.send(l,w)}catch(z){if(s<2)w(-1,z);else throw z}}return v},param:function(a,c){var d=[],e=function(a,b){b=f.isFunction(b)?b():b,d[d.length]=encodeURIComponent(a)+"="+encodeURIComponent(b)};c===b&&(c=f.ajaxSettings.traditional);if(f.isArray(a)||a.jquery&&!f.isPlainObject(a))f.each(a,function(){e(this.name,this.value)});else for(var g in a)ca(g,a[g],c,e);return d.join("&").replace(bD,"+")}}),f.extend({active:0,lastModified:{},etag:{}});var cd=f.now(),ce=/(\=)\?(&|$)|\?\?/i;f.ajaxSetup({jsonp:"callback",jsonpCallback:function(){return f.expando+"_"+cd++}}),f.ajaxPrefilter("json jsonp",function(b,c,d){var e=b.contentType==="application/x-www-form-urlencoded"&&typeof b.data=="string";if(b.dataTypes[0]==="jsonp"||b.jsonp!==!1&&(ce.test(b.url)||e&&ce.test(b.data))){var g,h=b.jsonpCallback=f.isFunction(b.jsonpCallback)?b.jsonpCallback():b.jsonpCallback,i=a[h],j=b.url,k=b.data,l="$1"+h+"$2";b.jsonp!==!1&&(j=j.replace(ce,l),b.url===j&&(e&&(k=k.replace(ce,l)),b.data===k&&(j+=(/\?/.test(j)?"&":"?")+b.jsonp+"="+h))),b.url=j,b.data=k,a[h]=function(a){g=[a]},d.always(function(){a[h]=i,g&&f.isFunction(i)&&a[h](g[0])}),b.converters["script json"]=function(){g||f.error(h+" was not called");return g[0]},b.dataTypes[0]="json";return"script"}}),f.ajaxSetup({accepts:{script:"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript"},contents:{script:/javascript|ecmascript/},converters:{"text script":function(a){f.globalEval(a);return a}}}),f.ajaxPrefilter("script",function(a){a.cache===b&&(a.cache=!1),a.crossDomain&&(a.type="GET",a.global=!1)}),f.ajaxTransport("script",function(a){if(a.crossDomain){var d,e=c.head||c.getElementsByTagName("head")[0]||c.documentElement;return{send:function(f,g){d=c.createElement("script"),d.async="async",a.scriptCharset&&(d.charset=a.scriptCharset),d.src=a.url,d.onload=d.onreadystatechange=function(a,c){if(c||!d.readyState||/loaded|complete/.test(d.readyState))d.onload=d.onreadystatechange=null,e&&d.parentNode&&e.removeChild(d),d=b,c||g(200,"success")},e.insertBefore(d,e.firstChild)},abort:function(){d&&d.onload(0,1)}}}});var cf=a.ActiveXObject?function(){for(var a in ch)ch[a](0,1)}:!1,cg=0,ch;f.ajaxSettings.xhr=a.ActiveXObject?function(){return!this.isLocal&&ci()||cj()}:ci,function(a){f.extend(f.support,{ajax:!!a,cors:!!a&&"withCredentials"in a})}(f.ajaxSettings.xhr()),f.support.ajax&&f.ajaxTransport(function(c){if(!c.crossDomain||f.support.cors){var d;return{send:function(e,g){var h=c.xhr(),i,j;c.username?h.open(c.type,c.url,c.async,c.username,c.password):h.open(c.type,c.url,c.async);if(c.xhrFields)for(j in c.xhrFields)h[j]=c.xhrFields[j];c.mimeType&&h.overrideMimeType&&h.overrideMimeType(c.mimeType),!c.crossDomain&&!e["X-Requested-With"]&&(e["X-Requested-With"]="XMLHttpRequest");try{for(j in e)h.setRequestHeader(j,e[j])}catch(k){}h.send(c.hasContent&&c.data||null),d=function(a,e){var j,k,l,m,n;try{if(d&&(e||h.readyState===4)){d=b,i&&(h.onreadystatechange=f.noop,cf&&delete ch[i]);if(e)h.readyState!==4&&h.abort();else{j=h.status,l=h.getAllResponseHeaders(),m={},n=h.responseXML,n&&n.documentElement&&(m.xml=n),m.text=h.responseText;try{k=h.statusText}catch(o){k=""}!j&&c.isLocal&&!c.crossDomain?j=m.text?200:404:j===1223&&(j=204)}}}catch(p){e||g(-1,p)}m&&g(j,k,m,l)},!c.async||h.readyState===4?d():(i=++cg,cf&&(ch||(ch={},f(a).unload(cf)),ch[i]=d),h.onreadystatechange=d)},abort:function(){d&&d(0,1)}}}});var ck={},cl,cm,cn=/^(?:toggle|show|hide)$/,co=/^([+\-]=)?([\d+.\-]+)([a-z%]*)$/i,cp,cq=[["height","marginTop","marginBottom","paddingTop","paddingBottom"],["width","marginLeft","marginRight","paddingLeft","paddingRight"],["opacity"]],cr;f.fn.extend({show:function(a,b,c){var d,e;if(a||a===0)return this.animate(cu("show",3),a,b,c);for(var g=0,h=this.length;g<h;g++)d=this[g],d.style&&(e=d.style.display,!f._data(d,"olddisplay")&&e==="none"&&(e=d.style.display=""),e===""&&f.css(d,"display")==="none"&&f._data(d,"olddisplay",cv(d.nodeName)));for(g=0;g<h;g++){d=this[g];if(d.style){e=d.style.display;if(e===""||e==="none")d.style.display=f._data(d,"olddisplay")||""}}return this},hide:function(a,b,c){if(a||a===0)return this.animate(cu("hide",3),a,b,c);var d,e,g=0,h=this.length;for(;g<h;g++)d=this[g],d.style&&(e=f.css(d,"display"),e!=="none"&&!f._data(d,"olddisplay")&&f._data(d,"olddisplay",e));for(g=0;g<h;g++)this[g].style&&(this[g].style.display="none");return this},_toggle:f.fn.toggle,toggle:function(a,b,c){var d=typeof a=="boolean";f.isFunction(a)&&f.isFunction(b)?this._toggle.apply(this,arguments):a==null||d?this.each(function(){var b=d?a:f(this).is(":hidden");f(this)[b?"show":"hide"]()}):this.animate(cu("toggle",3),a,b,c);return this},fadeTo:function(a,b,c,d){return this.filter(":hidden").css("opacity",0).show().end().animate({opacity:b},a,c,d)},animate:function(a,b,c,d){function g(){e.queue===!1&&f._mark(this);var b=f.extend({},e),c=this.nodeType===1,d=c&&f(this).is(":hidden"),g,h,i,j,k,l,m,n,o;b.animatedProperties={};for(i in a){g=f.camelCase(i),i!==g&&(a[g]=a[i],delete a[i]),h=a[g],f.isArray(h)?(b.animatedProperties[g]=h[1],h=a[g]=h[0]):b.animatedProperties[g]=b.specialEasing&&b.specialEasing[g]||b.easing||"swing";if(h==="hide"&&d||h==="show"&&!d)return b.complete.call(this);c&&(g==="height"||g==="width")&&(b.overflow=[this.style.overflow,this.style.overflowX,this.style.overflowY],f.css(this,"display")==="inline"&&f.css(this,"float")==="none"&&(!f.support.inlineBlockNeedsLayout||cv(this.nodeName)==="inline"?this.style.display="inline-block":this.style.zoom=1))}b.overflow!=null&&(this.style.overflow="hidden");for(i in a)j=new f.fx(this,b,i),h=a[i],cn.test(h)?(o=f._data(this,"toggle"+i)||(h==="toggle"?d?"show":"hide":0),o?(f._data(this,"toggle"+i,o==="show"?"hide":"show"),j[o]()):j[h]()):(k=co.exec(h),l=j.cur(),k?(m=parseFloat(k[2]),n=k[3]||(f.cssNumber[i]?"":"px"),n!=="px"&&(f.style(this,i,(m||1)+n),l=(m||1)/j.cur()*l,f.style(this,i,l+n)),k[1]&&(m=(k[1]==="-="?-1:1)*m+l),j.custom(l,m,n)):j.custom(l,h,""));return!0}var e=f.speed(b,c,d);if(f.isEmptyObject(a))return this.each(e.complete,[!1]);a=f.extend({},a);return e.queue===!1?this.each(g):this.queue(e.queue,g)},stop:function(a,c,d){typeof a!="string"&&(d=c,c=a,a=b),c&&a!==!1&&this.queue(a||"fx",[]);return this.each(function(){function h(a,b,c){var e=b[c];f.removeData(a,c,!0),e.stop(d)}var b,c=!1,e=f.timers,g=f._data(this);d||f._unmark(!0,this);if(a==null)for(b in g)g[b]&&g[b].stop&&b.indexOf(".run")===b.length-4&&h(this,g,b);else g[b=a+".run"]&&g[b].stop&&h(this,g,b);for(b=e.length;b--;)e[b].elem===this&&(a==null||e[b].queue===a)&&(d?e[b](!0):e[b].saveState(),c=!0,e.splice(b,1));(!d||!c)&&f.dequeue(this,a)})}}),f.each({slideDown:cu("show",1),slideUp:cu("hide",1),slideToggle:cu("toggle",1),fadeIn:{opacity:"show"},fadeOut:{opacity:"hide"},fadeToggle:{opacity:"toggle"}},function(a,b){f.fn[a]=function(a,c,d){return this.animate(b,a,c,d)}}),f.extend({speed:function(a,b,c){var d=a&&typeof a=="object"?f.extend({},a):{complete:c||!c&&b||f.isFunction(a)&&a,duration:a,easing:c&&b||b&&!f.isFunction(b)&&b};d.duration=f.fx.off?0:typeof d.duration=="number"?d.duration:d.duration in f.fx.speeds?f.fx.speeds[d.duration]:f.fx.speeds._default;if(d.queue==null||d.queue===!0)d.queue="fx";d.old=d.complete,d.complete=function(a){f.isFunction(d.old)&&d.old.call(this),d.queue?f.dequeue(this,d.queue):a!==!1&&f._unmark(this)};return d},easing:{linear:function(a,b,c,d){return c+d*a},swing:function(a,b,c,d){return(-Math.cos(a*Math.PI)/2+.5)*d+c}},timers:[],fx:function(a,b,c){this.options=b,this.elem=a,this.prop=c,b.orig=b.orig||{}}}),f.fx.prototype={update:function(){this.options.step&&this.options.step.call(this.elem,this.now,this),(f.fx.step[this.prop]||f.fx.step._default)(this)},cur:function(){if(this.elem[this.prop]!=null&&(!this.elem.style||this.elem.style[this.prop]==null))return this.elem[this.prop];var a,b=f.css(this.elem,this.prop);return isNaN(a=parseFloat(b))?!b||b==="auto"?0:b:a},custom:function(a,c,d){function h(a){return e.step(a)}var e=this,g=f.fx;this.startTime=cr||cs(),this.end=c,this.now=this.start=a,this.pos=this.state=0,this.unit=d||this.unit||(f.cssNumber[this.prop]?"":"px"),h.queue=this.options.queue,h.elem=this.elem,h.saveState=function(){e.options.hide&&f._data(e.elem,"fxshow"+e.prop)===b&&f._data(e.elem,"fxshow"+e.prop,e.start)},h()&&f.timers.push(h)&&!cp&&(cp=setInterval(g.tick,g.interval))},show:function(){var a=f._data(this.elem,"fxshow"+this.prop);this.options.orig[this.prop]=a||f.style(this.elem,this.prop),this.options.show=!0,a!==b?this.custom(this.cur(),a):this.custom(this.prop==="width"||this.prop==="height"?1:0,this.cur()),f(this.elem).show()},hide:function(){this.options.orig[this.prop]=f._data(this.elem,"fxshow"+this.prop)||f.style(this.elem,this.prop),this.options.hide=!0,this.custom(this.cur(),0)},step:function(a){var b,c,d,e=cr||cs(),g=!0,h=this.elem,i=this.options;if(a||e>=i.duration+this.startTime){this.now=this.end,this.pos=this.state=1,this.update(),i.animatedProperties[this.prop]=!0;for(b in i.animatedProperties)i.animatedProperties[b]!==!0&&(g=!1);if(g){i.overflow!=null&&!f.support.shrinkWrapBlocks&&f.each(["","X","Y"],function(a,b){h.style["overflow"+b]=i.overflow[a]}),i.hide&&f(h).hide();if(i.hide||i.show)for(b in i.animatedProperties)f.style(h,b,i.orig[b]),f.removeData(h,"fxshow"+b,!0),f.removeData(h,"toggle"+b,!0);d=i.complete,d&&(i.complete=!1,d.call(h))}return!1}i.duration==Infinity?this.now=e:(c=e-this.startTime,this.state=c/i.duration,this.pos=f.easing[i.animatedProperties[this.prop]](this.state,c,0,1,i.duration),this.now=this.start+(this.end-this.start)*this.pos),this.update();return!0}},f.extend(f.fx,{tick:function(){var a,b=f.timers,c=0;for(;c<b.length;c++)a=b[c],!a()&&b[c]===a&&b.splice(c--,1);b.length||f.fx.stop()},interval:13,stop:function(){clearInterval(cp),cp=null},speeds:{slow:600,fast:200,_default:400},step:{opacity:function(a){f.style(a.elem,"opacity",a.now)},_default:function(a){a.elem.style&&a.elem.style[a.prop]!=null?a.elem.style[a.prop]=a.now+a.unit:a.elem[a.prop]=a.now}}}),f.each(["width","height"],function(a,b){f.fx.step[b]=function(a){f.style(a.elem,b,Math.max(0,a.now)+a.unit)}}),f.expr&&f.expr.filters&&(f.expr.filters.animated=function(a){return f.grep(f.timers,function(b){return a===b.elem}).length});var cw=/^t(?:able|d|h)$/i,cx=/^(?:body|html)$/i;"getBoundingClientRect"in c.documentElement?f.fn.offset=function(a){var b=this[0],c;if(a)return this.each(function(b){f.offset.setOffset(this,a,b)});if(!b||!b.ownerDocument)return null;if(b===b.ownerDocument.body)return f.offset.bodyOffset(b);try{c=b.getBoundingClientRect()}catch(d){}var e=b.ownerDocument,g=e.documentElement;if(!c||!f.contains(g,b))return c?{top:c.top,left:c.left}:{top:0,left:0};var h=e.body,i=cy(e),j=g.clientTop||h.clientTop||0,k=g.clientLeft||h.clientLeft||0,l=i.pageYOffset||f.support.boxModel&&g.scrollTop||h.scrollTop,m=i.pageXOffset||f.support.boxModel&&g.scrollLeft||h.scrollLeft,n=c.top+l-j,o=c.left+m-k;return{top:n,left:o}}:f.fn.offset=function(a){var b=this[0];if(a)return this.each(function(b){f.offset.setOffset(this,a,b)});if(!b||!b.ownerDocument)return null;if(b===b.ownerDocument.body)return f.offset.bodyOffset(b);var c,d=b.offsetParent,e=b,g=b.ownerDocument,h=g.documentElement,i=g.body,j=g.defaultView,k=j?j.getComputedStyle(b,null):b.currentStyle,l=b.offsetTop,m=b.offsetLeft;while((b=b.parentNode)&&b!==i&&b!==h){if(f.support.fixedPosition&&k.position==="fixed")break;c=j?j.getComputedStyle(b,null):b.currentStyle,l-=b.scrollTop,m-=b.scrollLeft,b===d&&(l+=b.offsetTop,m+=b.offsetLeft,f.support.doesNotAddBorder&&(!f.support.doesAddBorderForTableAndCells||!cw.test(b.nodeName))&&(l+=parseFloat(c.borderTopWidth)||0,m+=parseFloat(c.borderLeftWidth)||0),e=d,d=b.offsetParent),f.support.subtractsBorderForOverflowNotVisible&&c.overflow!=="visible"&&(l+=parseFloat(c.borderTopWidth)||0,m+=parseFloat(c.borderLeftWidth)||0),k=c}if(k.position==="relative"||k.position==="static")l+=i.offsetTop,m+=i.offsetLeft;f.support.fixedPosition&&k.position==="fixed"&&(l+=Math.max(h.scrollTop,i.scrollTop),m+=Math.max(h.scrollLeft,i.scrollLeft));return{top:l,left:m}},f.offset={bodyOffset:function(a){var b=a.offsetTop,c=a.offsetLeft;f.support.doesNotIncludeMarginInBodyOffset&&(b+=parseFloat(f.css(a,"marginTop"))||0,c+=parseFloat(f.css(a,"marginLeft"))||0);return{top:b,left:c}},setOffset:function(a,b,c){var d=f.css(a,"position");d==="static"&&(a.style.position="relative");var e=f(a),g=e.offset(),h=f.css(a,"top"),i=f.css(a,"left"),j=(d==="absolute"||d==="fixed")&&f.inArray("auto",[h,i])>-1,k={},l={},m,n;j?(l=e.position(),m=l.top,n=l.left):(m=parseFloat(h)||0,n=parseFloat(i)||0),f.isFunction(b)&&(b=b.call(a,c,g)),b.top!=null&&(k.top=b.top-g.top+m),b.left!=null&&(k.left=b.left-g.left+n),"using"in b?b.using.call(a,k):e.css(k)}},f.fn.extend({position:function(){if(!this[0])return null;var a=this[0],b=this.offsetParent(),c=this.offset(),d=cx.test(b[0].nodeName)?{top:0,left:0}:b.offset();c.top-=parseFloat(f.css(a,"marginTop"))||0,c.left-=parseFloat(f.css(a,"marginLeft"))||0,d.top+=parseFloat(f.css(b[0],"borderTopWidth"))||0,d.left+=parseFloat(f.css(b[0],"borderLeftWidth"))||0;return{top:c.top-d.top,left:c.left-d.left}},offsetParent:function(){return this.map(function(){var a=this.offsetParent||c.body;while(a&&!cx.test(a.nodeName)&&f.css(a,"position")==="static")a=a.offsetParent;return a})}}),f.each(["Left","Top"],function(a,c){var d="scroll"+c;f.fn[d]=function(c){var e,g;if(c===b){e=this[0];if(!e)return null;g=cy(e);return g?"pageXOffset"in g?g[a?"pageYOffset":"pageXOffset"]:f.support.boxModel&&g.document.documentElement[d]||g.document.body[d]:e[d]}return this.each(function(){g=cy(this),g?g.scrollTo(a?f(g).scrollLeft():c,a?c:f(g).scrollTop()):this[d]=c})}}),f.each(["Height","Width"],function(a,c){var d=c.toLowerCase();f.fn["inner"+c]=function(){var a=this[0];return a?a.style?parseFloat(f.css(a,d,"padding")):this[d]():null},f.fn["outer"+c]=function(a){var b=this[0];return b?b.style?parseFloat(f.css(b,d,a?"margin":"border")):this[d]():null},f.fn[d]=function(a){var e=this[0];if(!e)return a==null?null:this;if(f.isFunction(a))return this.each(function(b){var c=f(this);c[d](a.call(this,b,c[d]()))});if(f.isWindow(e)){var g=e.document.documentElement["client"+c],h=e.document.body;return e.document.compatMode==="CSS1Compat"&&g||h&&h["client"+c]||g}if(e.nodeType===9)return Math.max(e.documentElement["client"+c],e.body["scroll"+c],e.documentElement["scroll"+c],e.body["offset"+c],e.documentElement["offset"+c]);if(a===b){var i=f.css(e,d),j=parseFloat(i);return f.isNumeric(j)?j:i}return this.css(d,typeof a=="string"?a:a+"px")}}),a.jQuery=a.$=f,typeof define=="function"&&define.amd&&define.amd.jQuery&&define("jquery",[],function(){return f})})(window);

OEBPS/Common_Content/fonts/overpass_bold-web.eot

OEBPS/Common_Content/fonts/portal/nimbus/iconfont.eot

OEBPS/Common_Content/fonts/redhat/text/RedHatText-MediumItalic.woff

OEBPS/images/vn-06-routed-switch.png
H O ST 10.10.10.190

—
& m LINUX NETWORK STACK

(ROUTING IS APPLIED HERE)

Virtual Machine

Network 192.168.122.210

10.10.10.0/24

Virtual Network Switch Virtual Machine
in ROUTED MODE 192168.122.220

192168.122.1/24

OEBPS/images/Screenshot-admin-18pt7-pic4.png
osing an IPv4 address space

You will need to choose an IPv4 address
space for the virtual network

Network: [192.168.100.0/24

@ Hin
g

: The network should be chosen from one
of the IPv4 private address ranges. eg
10.0.0.0/8, 172.16.0.0/12, or 192.168.0.0/16
Netmask: 255.255.255.0
Broadcast: 192.168.100.255
Gateway: 192.168.100.1
Size: 256 addresses
Type: Private

Cancel Back

OEBPS/Common_Content/images/33.png

OEBPS/images/virt-viewer-GUI.png
Trash

OEBPS/images/virt-manager_storage_pools_add_dir_step_2_target_path.png
| Add Storage Pool Step 2 of 2

Specify a storage location to be later split into virtual machine storage.

Target Path: [/quest_images| [Browse| Targetpath:
Directory to use for
Format: the storage pool.
Host Name:
Source Path:
Build Pool: ¥

cancel | [Back | | Finish

OEBPS/Common_Content/fonts/overpass_bold-web.woff

OEBPS/images/before_virtualization.png
User Space User Space

Web App DNS Server

Host Kernel Host Kernel

OEBPS/images/Screenshot-pic1-virt-mgr-guests.png
File Edit View Help

Name

~ | CPU usage

< localhost (QEMU)

RHEL-3.9
Shutoff

RHEL-4.5
Shutoff

RHEL-6
Shutoff

guestl-rhel6.64
Running

-

OEBPS/images/Screenshot-admin-18pt7-pic5.png
Selecting the DHCP range

Please choose the range of addresses the DHCP server will
allocate to virtual machines attached to the virtual network.

Enable DHCP:

Start: [192.168.100.128 I
End: [192.168.100.254 I

© Tip: Unless you wish to reserve some addresses to

= allow static network configuration in virtual
machines, these parameters can be left with their
default values.

Cancel Back

OEBPS/Common_Content/images/11.png

OEBPS/Common_Content/images/12.png

OEBPS/Common_Content/images/10.png

OEBPS/Common_Content/images/15.png

OEBPS/Common_Content/images/23.png

OEBPS/images/virt-manager_add_nfs_step1.png
[/ Add Storage Pool

Specify a storage location to be later split into virtual machine storage.

Name:

Tpe:

nfstrial

netfs: Network Exported Directory

Step10f 2

Eorward

OEBPS/Common_Content/images/13.png

OEBPS/Common_Content/images/14.png

OEBPS/images/step4-1.png
File Edit View Help

Ed | Sopen > @

Name v CPU usage

b ccurran.bne.redhat.com (QEMU)

RHEL6minimal

Running e

RHELGtesting
Shutoff

RHELminimal
Shutoff

Windows2008
Shutoff

fedoral2
Shutoff

fedoral3
Shutoff

openfiler
Shutort

windowsXP
Shutoff

BN NME

OEBPS/images/vmm_vnet_create7_maintab.png
File

Overview | Virtual Networks | storage | Network Interfaces

& default

Basic details
State: 2 Active

Autostart: 7/ On Boot

IPv4 configuration

Network:

192.168.100.0/24
DHCP start: [192.168.100.128

DHCP end: [192.168.100.254

Forwarding: &|Isolated network

OEBPS/Common_Content/images/40.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-RegularItalic.woff2

OEBPS/images/vn-09-routed-mode-DMZ.png
Q HOST

Wide Area Network

Virtual Machine

DMZ
FIREWALL +— e —————>

Virtual Network Switch
in ROUTED MODE

& Virtual Machine

Local Area Network

OEBPS/images/Screenshot-admin-18pt7-pic11.png
File Virtual Machine View Send Key

B overview Virtual Network Interface
& performance Source device: Virtual network ‘network1 : Isolated network

{3 Processor Device model: | Hypervisor default | ¢

Memor
= v MAC address: 52
& Boot Options

(2 Virtlo Disk 1

() Mouse
[E Display VNC
Eiif Sound: iche
& serial 1

B video

Add Hardware

OEBPS/Common_Content/fonts/redhat/text/RedHatText-BoldItalic.eot

OEBPS/images/step3-1.png
|/ New Storage Volume
Create a storage unit that can be used directly by a virtual machine.

Name: [RHEL6minimal dmg Mame: Name o the

extension may be
Format: | qcow2 <] |

Format: File/Partition
Storage Volume Quota format of the volume

Test's available space: 7.26 GB s v

- Size of the volume.
Max Capacity: (1000 || MB

= Aflocation: Actual size
Allocation: [0 [%|MB TR & vl

at this time.

cancel | | Finish

OEBPS/Common_Content/images/38.png

OEBPS/images/Change_MAC_address.png
Change MAC address

Type: NAT
MAC: 52:54:00:04:c1:e7

New MAC: 52:54:00:46:€7:c4

| cancel || ok |

OEBPS/Common_Content/images/8.png

OEBPS/Common_Content/images/9.png

OEBPS/Common_Content/images/bkgrnd_greydots.png

OEBPS/images/virt-manager_storage_pools_add_lvm_step_2a_paths_and_pool.png
[/ Add Storage Pool Step 2 of 2

Specify a storage location to be later split into virtual machine storage.

Target Path: [/dev/guest images_vm | v |
Source Path: [/dev/sdc

Build Pool: []

Build: Create a logical
volume group from
the source device.

Finish

OEBPS/images/Screenshot-admin-18pt7-pic1.png
File

Overview |Virtual Netw

ris | storage | Network Interfaces

Basic details

Name: [default

Device: [virbro

State: 3 Active
Autostart: ¥ On Boot

IPv4 configuration

Network: [192.168.122.0/24

DHCP start: [192.168.122.2

DHCP end: [192.168.122.254

Forwarding: <6| NAT

OEBPS/Common_Content/images/6.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-BoldItalic.woff

OEBPS/Common_Content/images/7.png

OEBPS/Common_Content/images/4.png

OEBPS/images/vm_info_button.png
File Virtual M;

=@ >

OEBPS/images/Screenshot-Virt-Manager-fig31pt1.png
FEile Edit View Help

B | ®mopen P> [0 (

Name v

localhost (QEMU)

guestl-rhels-64
Running

guestl-rhel6-64
Running

[guestl-winzks-64
Shutoff

[rhels-6a-pxe
Shutoff

OEBPS/Common_Content/images/5.png

OEBPS/Common_Content/images/2.png

OEBPS/images/vmm_vnet_create6_finish.png
Ready to create netwo!

Summary
Network name: networkl
1Pv4 network

Network: 192.168.100.0/24
Gateway: 192.168.100.1
Netmask: 255.255.255.0

DHCP

Start address: 192.168.100.128
End address: 192.168.100.254

Forwarding
Connectivity: Isolated network

Ccancel Back Finish

OEBPS/Common_Content/images/3.png

OEBPS/images/virt-manager_hardware.png
guestl-rhel6-64 Virtual Machine.

File Virtual Machine View Send Key

Performance

et e, [quesihele ot
Memory UUID: bad7388a bb2-db3a-e962-b97cates 14bd
8ot Options Status: = Shutoft
Virto isk 1 Description:

& ncses

2 Tt

Q Mome Hypervisor Details

B sound: chs Architecture: xB6_64

@ serial1 Emulator: /ust/libexec/gemu-kvm

Video

Operating System
Hostname: unknown

Product name: unknown
b Applications
b Machine Settings

b security

Add Hardware

OEBPS/Common_Content/fonts/redhat/text/RedHatText-RegularItalic.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Regular.eot

OEBPS/Common_Content/images/h1-bg.png

OEBPS/images/macvtap_modes-Bridge.png
ethO PPEEEEd macvtapO

macvtapl

ethO

VM TO VM

VM TO EXTERNAL

macvtapO

macvtapl

RHEL_437030_0417

OEBPS/images/step2-3.png
[/ Add Storage Pool Step2 of 2

Specify a storage location to be later split into virtual machine storage.

Target Path: [/var/lib/libviryimages/Test | - | [5rowse| |Format: Type of
network filesystem.

Host Name: | trogdor.bne.redhat.com
Source Path: |/storage/virt/ w:

Build Pool:

Finish

OEBPS/content.opf
 6_idm140176445741824 Virtualization Administration Guide The Virtualization Administration Guide covers administration of host physical machines, networking, storage, device and guest virtual machine management, and troubleshooting. To expand your expertise, you might also be interested in the Red Hat Virtualization (RH318) training course. Jiri Herrmann Yehuda Zimmerman Laura Novich Scott Radvan Dayle Parker en

OEBPS/images/Screenshot-Virt-Manager-fig31pt6.png
Hypervisor: | QEMU/KVM S
Connect to remote host
Method: | SSH S

Username: |root

Hostname: [dhcp-100-19-175 j

[

Autoconnect:
Generated URI: qemu-+ssh://root@dhcp-100-19-175/system

OEBPS/Common_Content/images/shine.png

OEBPS/Common_Content/images/shade.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BoldItalic.woff2

OEBPS/images/Screenshot-pic5-guest-select-migrate.png
FEile Edit View Help

L moe m @ v

Name v CPU usage

< localhost @EMU)

neL-2
Lo

neL-as
Lo

RHEL-6
Shutoff

estl-rhel6-64

e oo e
RHEL6 Shut Down >
Clone...
Delete

Open

OEBPS/images/virt-manager_add_storage_pool2.png
[/ Add Storage Pool Step 2 of 2
Specify a storage location to be later split into virtual machine storage.
Source path: Path on

Target Path: |/dev/disk/by-path .
the host that is being
Host e o
Source Path: |demo-target| v | | Browse
IQN: @ (ign.2010-05.com.example serverL:iscsi

OEBPS/Common_Content/images/36.png

OEBPS/Common_Content/images/stock-home.png

OEBPS/images/Screenshot-Virt-Manager-fig31pt28.png
VM-RHEL
Running

< localhost (QEMU)

VM-RHEL
Running

v 192.168.122.1 (QEMU)

VM-RHEL
Running

| Host CPU usage

| Disk I/0

OEBPS/images/before_virtualization2.png
User Space User Space

Web App DNS Server

Host Kernel Host Kernel

OEBPS/images/step5-1.png
File Edit View Help

View Al virual machines |+

Name “ o s Chuussge CrUs Wemaryusage Dkl e
~ apss03 amu A | wosong 4 lzicom[rmlo 1 o
N . gjsmeor ooo% 1 szoows [0%]o o o

et funning G200 IO 1
nps67058 qemu Acwe | 000% 4 ocoms [0%]o o o

Gose | Suow] @aoen

OEBPS/images/vn-05-switchwithdnsmasq.jpg
@ Virtualization Host Server

i Virtual
Virtual network
= " nework oy Q@R wachine

192.168.122.210

_ Virtual

S
Using DHCP range: > Machine

192.168.122.2 - 192.168.122.254 192.168.122.220

OEBPS/Common_Content/images/image_right.png

OEBPS/images/Screenshot-Virt-Manager-fig31pt17.png
File Virtual Machine View Send Key

(= overview Virtual Network Interface
(EF| Performance Source device: Bridge 'bro*
£} processor Device model: | virtio
&= Memory

MAC address: 52:54:00:79:35:€9

32 Boot Options
(2 Virtlo Disk 1
35:e9

Tablet

() Mouse
[E Display VNC

Eiif Sound: iche

& serial 1

B video

OEBPS/Common_Content/images/red.png

OEBPS/Common_Content/images/stock-go-up.png

OEBPS/Common_Content/images/32.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-RegularItalic.woff

OEBPS/Common_Content/images/28.png

OEBPS/images/step1-2.png
File Edit View Help
K| Sopen > 1

Name v CPU usage

b localhost (QEMU)

OEBPS/Common_Content/fonts/redhat/text/RedHatText-BoldItalic.woff2

OEBPS/images/vmm_vnet_create3_ipv4addspace.png
oosing an IPv4 address space

You will need to choose an IPv4 address
space for the virtual network

Network: [192.168.100.0/24

© Hint: The network should be chosen from one
= of the IPv4 private address ranges. eg
10.0.0.0/8, 172.16.0.0/12, or 192.168.0.0/16
Netmask: 255.255.255.0
Broadcast: 192.168.100.255
Gateway: 192.168.100.1
Size: 256 addresses
Type: Private

Cancel Back

OEBPS/images/Screenshot-Virt-Manager-fig31pt3.png
FEile Virtual Machine View Send Key

virtual hardware details

Basic Details
& performance Name: guestl-rhel6-64
{3 Processor vuID: b8(17388a-bbf2-db3a-e962-b97cabes14bd
== Memory Status: 3l Running
Boot Options Description:
() Virtlo Disk 1
& NI :e9
Tablet
© Mouse Hypervisor Detail
[E Display VNC Hypervisor: kvm
Eiif Sound: iche Architecture: x86_64
& serial 1 Emulator: /usr/libexec/gemu-kvm
B video

D Machine settings

D security

Add Hardware

OEBPS/images/virtual_machine_overview.png
File Virtual Machine View Send Key

=@ re®-
Basic Details

[Performance

Name: VM-RHEL

{7} Processor

== Memory vuiD: d2ce805d-caab-757a-e8e9-9b8f5702592
2 Boot Options = & Running

Description:

(3 virtio Disk 1
(c) IDECDROM 1

B NIC:74:47:2
Tablet \
Hypervisor Details
() Mouse e n
— Hypervisor: kvm
& Display VNC Architecture: x86_64
Serial 1 Emulator: /ust/libexec/gemu-kvm
B video
B controller IDE Cpereliing Ey=Em
Hostname: unknown
B8 Controller usb

Product name: unknown
D Applications
D Machine Settings.

D security

Add Hardware

OEBPS/Common_Content/images/image_left.png
& RedHat

OEBPS/Common_Content/fonts/overpass_regular-web.ttf

OEBPS/Common_Content/images/16.png

OEBPS/images/virt-manager_storage_pools_add_lvm_step_3_result.png
| overview | Virtual Networks| Storage

default
5% Fiesystem irectory

guest_images_Ilvm: 465.76 GB Free / 0.00 MB In Use

Pool Type: LVM Volume Group
Location: [rdeviguest_images_lvm
State: 1 Active

Autostart: & On Boot

Volumes

Volumes v | Size | Format

Delete Volume| (Apply

OEBPS/images/v2v-add_storagepool.png
[/ Add Storage Pool Step10f 2

Specify a storage location to be later split into virtual machine storage.

Name: [transferimages| | mame: Name for the
storage object.

Type: | dir: Filesystem birectory :)

OEBPS/images/vn-Bridged-Mode-Diagram.png
HOST

Virtual Machine
101010.4

Network Virtual Network Switch
in BRIDGED MODE
1010.10.0/24
101010190

Virtual Machine
10.1010.5

OEBPS/images/virt-manager_add_nfs_step2.png
[/ Add Storage Pool Step 2 of 2

Specify a storage location to be later split into virtual machine storage.

Target Path: | jvar/libjlibvirt/images/nfstria

Forma

Source Path: |/nfstrial v | [Browse

Source path: Path on
the host that is being
shared.

Finish

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BlackItalic.woff2

OEBPS/Common_Content/images/39.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-MediumItalic.eot

OEBPS/images/macvtap_modes-Private.png
macvtapO macvtapO

macvtapl macvtapl

ethO
1)
2
g
=2

@

VM TO VM VM TO EXTERNAL

RHEL_437030_0417

OEBPS/images/add-usb-device.png
Aaa New virtual Haraware

L storage
o USB Device
B Network
) Input Please indicate what physical device
(& Graphics to connect to the virtual machine.
Eiif sound Host Device:
-4 Serial 001:001 Linux 2.6.32-358.23.2.e16.x86_64 ehci_hcd EHCI Host Cor|
~4| Parallel 001:002
~ Channel 001:005 Chicony Electronics Co., Ltd

001:070 Dell Dell Quietkey Keyboard

53 PCI Host Device 001:071 Logitech USB Optical Mouse

@ Video 001:072 Broadcom Corp Broadcom Bluetooth Device

.F Watchdog 002:001 Linux 2.6.32-358.23.2.e16.x86_64 ehci_hcd EHCI Host Cor|

002:002

& Smartcard

[T D]

Cancel Finish

3

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Medium.woff2

OEBPS/Common_Content/fonts/overpass_bold-web.ttf

OEBPS/images/Screenshot-pic3-Add Connection.png
Hypervisor: | QEMU/KVM S
Connect to remote host
Method: | SSH S

Username: |root

Hostname: |virtlab22

|

Autoconnect: []
Generated URI: gemu-+ssh://root@virtiab22/system

OEBPS/Common_Content/images/Enterprise_title_logo.png
& RedHat

OEBPS/Common_Content/images/bullet_arrowblue.png

OEBPS/Common_Content/fonts/portal/nimbus/iconfont.woff

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Medium.eot

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Black.eot

OEBPS/Common_Content/images/24.png

OEBPS/images/vn-01-switch.png
=

virtual network switch

OEBPS/Common_Content/images/title_logo.png
& RedHat

OEBPS/Common_Content/images/Online_title_logo.png
& RedHat

OEBPS/images/Screenshot-Virt-Manager_fig31pt25.png
Eile Edit View Help

L omoe - w @ v

Name

v | CPU usage

< localhost (QEMU)

guestl-rhels-64
Running

guestl-win2k3-64
Shutoff

[rhels-6a-pxe
Shutoff

OEBPS/images/vn-07-isolated-switch.png
HOST

Virtual Machine
192.168.122.210

Virtual Network Switch
Network in ISOLATED MODE

192.168.122.1/24

Virtual Machine
192.168.122.220

OEBPS/Common_Content/images/warning.png

OEBPS/images/Screenshot-admin-18pt7-pic7.png
Ready to create network

Summary
Network name: networkl
1Pv4 network

Network: 192.168.100.0/24
Gateway: 192.168.100.1
Netmask: 255.255.255.0

DHCP

Start address: 192.168.100.128
End address: 192.168.100.254

Forwarding
Connectivity: Isolated network

Cancel Back

OEBPS/images/virt-manager_storage_pools_add_lvm_step_1_name_and_type.png
[/ Add Storage Pool

Specify a storage location to be later split into virtual machine storage.

Name:

Tpe:

guest_images_ivm

logical: LVM Volume Group

Step10f 2

Eorward

OEBPS/images/Screenshot-Virt-Manager-fig31pt4.png
File Virtual Machine View Send Key

[Performance

{7} Processor

=5 Memory
32 Boot Options
(2 Virtlo Disk 1
B NIC:79:35:e9
Tablet

() Mouse
[E Display VNC
Eiif Sound: iche
& serial 1

B video

Add Hardware

Basic Details.

Name: guestl-rhel6-64

uuiD: b8d7388a-bbf2-db3a-e962-b97cabe514bd
Status: L Running

Description:

Hypervisor Details
Hypervisor: kvm
Architecture: x86_64
Emulator: /usr/libexec/qemu-kvm

D Machine settings

D security

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Medium.woff

OEBPS/images/virt-manager_add_storage_pool1.png
[/ Add Storage Pool

Specify a storage location to be later split into virtual machine storage.

Name: [iscsirhel6guest

Type: | iscsi: iSCSI Target &

Step10f 2

Eorward

OEBPS/Common_Content/images/important.png

OEBPS/images/vmm_vnet_create5_connectphysnet.png
Connecting to physical netwo

Please indicate whether this virtual network
should be connected to the physical network.

® Isolated virtual network
Forwarding to physical network

Destination:

Mode:

Ccancel Back

OEBPS/images/vn-11-router-mode-mac-restricted.png
The host acts as a
router, letting the
outside world
communicate with
the virtual machines
by IP address.

192.168.1.10
and 192.168.1.11
in this example.

@ Host Server
A ey

192.168.0.1

virtual network switch
in routed mode

Virtual

‘ﬁ)ﬂ Machine

192.168.1.11

OEBPS/images/add-Hardware.png
rneis virtuar Macnine

File Virtual Machine View Send Key

oo
Basic Details

Performance
Name: thel7
£} Processor
Memory vuiD: 6b65716b-f474-3437-5a1-83c8a15506d4
S5 Boot options Status: Shutoff
puad Description:
(3 virtio Disk 1
(c) IDECDROM 1
& NIC:12fe:50
Tablet
S Hypervisor Details
ouse
= ool Hypervisor: kvm
&5 Display VNC Architecture: x86_64
Bif sound: iche Emulator: /usr/libexec/qemu-kvm
& Serial1
B video Operating System
N Conrollerush Hostname: unknown
:% o '“HE' o Product name: unknown
Controller IDE

D Applications

D Machine settings

D security

Add Hardware

OEBPS/images/3_PCI_Device.png
— storage
& Network
() Input

B Graphics

Eif sound

4| serial

~4 Parallel

~4 channel

3% USB Host Device
B video
[Watchdog

& Smartcard

PCI Device

Please indicate what physical device
to connect to the virtual machine.

Host Device:

00:1D:2 828011 (ICH10 Family) USB UHCI Controller #3 |
00:1D:7 828011 (ICH10 Family) USB2 EHCI Controller #1
00:1E:0 82801 PCI Bridge

00:1F:0 82801JIR (ICH10R) LPC Interface Controller

00:1F:2 828011 (ICH10 Family) SATA AHCI Controller

00:1F:3 828011 (ICH10 Family) SMBus Controller

01:00:0 82576 Gigabit Network Connection

01:00:1 Interface eth3 (82576 Gigabit Network Connection)
02:00:0 R580 [Radeon X1900 XT] (Primary)

02:00:1 R580 [Radeon X1900 XT] (Secondary)

06:00:0 88SE6121 SATA Il Controller (o]

@ | D

cancel | [Finish |

OEBPS/images/Screenshot-admin-18pt7-pic10.png
[storage
Input
Graphics

=
Eiif sound

Serial

parallel
53 USB Host Device
$% PCI Host Device
B video
B Wwatchdog

Please indicate how you'd like to connect your
new virtual network device to the host network.

Host device: | virtual network ‘network1" : Isolated network ¢ |

MAC address: |52:54:00:24:df:61 |

Device model: | Hypervisor default | &

Cancel Finish

OEBPS/Common_Content/images/35.png

OEBPS/images/virt-manager-enable-networkio.png
General | Stats | VM Details | Feedback

Stats Options

Update status every [1 |2 seconds

Maintain history of [120 |2| samples
Enable Stats Polling
Disk 1/0

Network /0 [

®o

Close

OEBPS/images/macvtap_modes-passthrough.png
macvtapO

macvtapl

ethO

VM TO VM

VM TO EXTERNAL

macvtapO

macvtapl

RHEL_437030_0417

OEBPS/images/Screenshot-Virt-Manager-fig31pt29.png
File Edit View Help

- om© v
Name A | Network /0
< myhypervisor (QEMU)
] VM-RHEL

Running

< localhost (QEMU)

VM-RHEL
Running

v 192.168.122.1 (QEMU)

[VM-RHEL

Running

OEBPS/Common_Content/images/19.png

OEBPS/images/vmm_vnet_create1.png
reating a new virtual network

This assistant will quide you through creating a new
virtual network. You will be asked for some
information about the virtual network you'd like to
create, such as:

® Aname for your new virtual network
® The IPv4 address and netmask to assign

The address range from which the DHCP
server will allocate addresses for virtual machines

® Whether to forward traffic to the physical network

Cancel

OEBPS/images/Screenshot-pic8-migrated.png
File Edit View Help

| Smopen > 0
Name v CPU usage

< localhost (QEMU)

[RHEL3.S

Shutoff

[RHEL48

Shutoff

[RHELS

Shutoff

v virtlab22 (QEMU)

[ReELs

Shutoff

guestl-rhel6-64
Running

OEBPS/images/vmm_vnet_menuselect.png
Connection Detai
Virtual Machine Details

Nam(Delete v | CPU usage

19 "

Preferences
v localhost @eMU)

myhypervisor (QEMU) - Not Connected

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Bold.woff

OEBPS/images/step2-2.png
| "/ Add Storage Pool Step1of 2

Specify a storage location to be later split into virtual machine storage.

Name: [Test]

Type: | netfs: Network Exported Directory.]

o

Eorward

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Regular.woff

OEBPS/images/after_virtualization.png
User Space User Space

Web App DNS Server

Guest Kernel Guest Kernel

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-MediumItalic.woff

OEBPS/images/Screenshot-Virt-Manager_fig31pt25a.png
File Edit View Help

| ®open | W @ v

Name. ~ | Host CPU usage
< myhypervisor (QEMU)
[VM-RHEL
Running

< localhost (QEMU)

VM-RHEL
Running

(QEMU)

HEL

OEBPS/images/Screenshot-Virt-Manager-fig31pt5.png
File Virtual Machine View Send Key

OEBPS/images/Screenshot-Virt-Manager-fig31pt19.png
General | Stats | vM Details | Feedback
Stats Options N
Update status every |2 [S]seconds
Maintain history of ~ [120 |2| samples

Enable Stats Polling
Disk /O

Network /0

Close

OEBPS/Common_Content/images/watermark-draft.png

OEBPS/images/virt-manager_add_storage_pool-iscsi-step2.png
[/ Add Storage Pool Step 2 of 2

Specify a storage location to be later split into virtual machine storage.

Target Path: |/dev/disk/by-path |Browse | Host: Name of the
host sharing the

host1.example.com| storage.

Source Path: |ign.2010-05.com.example.se

iqn.2010-05.com.example host L:iscsirh

Host Name:

cancel | | Back | | FEinish

OEBPS/images/Screenshot-Virt-Manager-fig31pt14.png
File Virtual Machine View Send Key

B overview e

[Performance Logical host CPUs: 6

current allocations (2|
Maximum allocation: |2

Virti Disk 1 < Configuration
Tablet

Copy host CPU configuration
Mouse

Display VNC v Topology
Sound: ich6 (] Manually set CPU topology

Serial 1 sockets: (1 []

) ()

Video Cores

Threads

< Pinning

Default pinning: (ex:01,35,7)
Generate from host NUMA configuration

Runtime pinning:

VCPU | OnCPU | Pinning

0 3 012345
1 0 012345

OEBPS/Common_Content/images/20.png

OEBPS/Common_Content/fonts/overpass_light-web.eot

OEBPS/Common_Content/scripts/highlight.pack.js
/*! highlight.js v9.2.0 | BSD3 License | git.io/hljslicense */
!function(e){var n="object"==typeof window&&window||"object"==typeof self&&self;"undefined"!=typeof exports?e(exports):n&&(n.hljs=e({}),"function"==typeof define&&define.amd&&define([],function(){return n.hljs}))}(function(e){function n(e){return e.replace(/&/gm,"&").replace(/</gm,"<").replace(/>/gm,">")}function t(e){return e.nodeName.toLowerCase()}function r(e,n){var t=e&&e.exec(n);return t&&0==t.index}function a(e){return/^(no-?highlight|plain|text)$/i.test(e)}function i(e){var n,t,r,i=e.className+" ";if(i+=e.parentNode?e.parentNode.className:"",t=/\blang(?:uage)?-([\w-]+)\b/i.exec(i))return w(t[1])?t[1]:"no-highlight";for(i=i.split(/\s+/),n=0,r=i.length;r>n;n++)if(w(i[n])||a(i[n]))return i[n]}function o(e,n){var t,r={};for(t in e)r[t]=e[t];if(n)for(t in n)r[t]=n[t];return r}function u(e){var n=[];return function r(e,a){for(var i=e.firstChild;i;i=i.nextSibling)3==i.nodeType?a+=i.nodeValue.length:1==i.nodeType&&(n.push({event:"start",offset:a,node:i}),a=r(i,a),t(i).match(/br|hr|img|input/)||n.push({event:"stop",offset:a,node:i}));return a}(e,0),n}function c(e,r,a){function i(){return e.length&&r.length?e[0].offset!=r[0].offset?e[0].offset<r[0].offset?e:r:"start"==r[0].event?e:r:e.length?e:r}function o(e){function r(e){return" "+e.nodeName+'="'+n(e.value)+'"'}f+="<"+t(e)+Array.prototype.map.call(e.attributes,r).join("")+">"}function u(e){f+="</"+t(e)+">"}function c(e){("start"==e.event?o:u)(e.node)}for(var s=0,f="",l=[];e.length||r.length;){var g=i();if(f+=n(a.substr(s,g[0].offset-s)),s=g[0].offset,g==e){l.reverse().forEach(u);do c(g.splice(0,1)[0]),g=i();while(g==e&&g.length&&g[0].offset==s);l.reverse().forEach(o)}else"start"==g[0].event?l.push(g[0].node):l.pop(),c(g.splice(0,1)[0])}return f+n(a.substr(s))}function s(e){function n(e){return e&&e.source||e}function t(t,r){return new RegExp(n(t),"m"+(e.cI?"i":"")+(r?"g":""))}function r(a,i){if(!a.compiled){if(a.compiled=!0,a.k=a.k||a.bK,a.k){var u={},c=function(n,t){e.cI&&(t=t.toLowerCase()),t.split(" ").forEach(function(e){var t=e.split("|");u[t[0]]=[n,t[1]?Number(t[1]):1]})};"string"==typeof a.k?c("keyword",a.k):Object.keys(a.k).forEach(function(e){c(e,a.k[e])}),a.k=u}a.lR=t(a.l||/\b\w+\b/,!0),i&&(a.bK&&(a.b="\\b("+a.bK.split(" ").join("|")+")\\b"),a.b||(a.b=/\B|\b/),a.bR=t(a.b),a.e||a.eW||(a.e=/\B|\b/),a.e&&(a.eR=t(a.e)),a.tE=n(a.e)||"",a.eW&&i.tE&&(a.tE+=(a.e?"|":"")+i.tE)),a.i&&(a.iR=t(a.i)),void 0===a.r&&(a.r=1),a.c||(a.c=[]);var s=[];a.c.forEach(function(e){e.v?e.v.forEach(function(n){s.push(o(e,n))}):s.push("self"==e?a:e)}),a.c=s,a.c.forEach(function(e){r(e,a)}),a.starts&&r(a.starts,i);var f=a.c.map(function(e){return e.bK?"\\.?("+e.b+")\\.?":e.b}).concat([a.tE,a.i]).map(n).filter(Boolean);a.t=f.length?t(f.join("|"),!0):{exec:function(){return null}}}}r(e)}function f(e,t,a,i){function o(e,n){for(var t=0;t<n.c.length;t++)if(r(n.c[t].bR,e))return n.c[t]}function u(e,n){if(r(e.eR,n)){for(;e.endsParent&&e.parent;)e=e.parent;return e}return e.eW?u(e.parent,n):void 0}function c(e,n){return!a&&r(n.iR,e)}function g(e,n){var t=N.cI?n[0].toLowerCase():n[0];return e.k.hasOwnProperty(t)&&e.k[t]}function p(e,n,t,r){var a=r?"":E.classPrefix,i='<span class="'+a,o=t?"":"";return i+=e+'">',i+n+o}function h(){if(!k.k)return n(M);var e="",t=0;k.lR.lastIndex=0;for(var r=k.lR.exec(M);r;){e+=n(M.substr(t,r.index-t));var a=g(k,r);a?(B+=a[1],e+=p(a[0],n(r[0]))):e+=n(r[0]),t=k.lR.lastIndex,r=k.lR.exec(M)}return e+n(M.substr(t))}function d(){var e="string"==typeof k.sL;if(e&&!R[k.sL])return n(M);var t=e?f(k.sL,M,!0,y[k.sL]):l(M,k.sL.length?k.sL:void 0);return k.r>0&&(B+=t.r),e&&(y[k.sL]=t.top),p(t.language,t.value,!1,!0)}function b(){L+=void 0!==k.sL?d():h(),M=""}function v(e,n){L+=e.cN?p(e.cN,"",!0):"",k=Object.create(e,{parent:{value:k}})}function m(e,n){if(M+=e,void 0===n)return b(),0;var t=o(n,k);if(t)return t.skip?M+=n:(t.eB&&(M+=n),b(),t.rB||t.eB||(M=n)),v(t,n),t.rB?0:n.length;var r=u(k,n);if(r){var a=k;a.skip?M+=n:(a.rE||a.eE||(M+=n),b(),a.eE&&(M=n));do k.cN&&(L+=""),k.skip||(B+=k.r),k=k.parent;while(k!=r.parent);return r.starts&&v(r.starts,""),a.rE?0:n.length}if(c(n,k))throw new Error('Illegal lexeme "'+n+'" for mode "'+(k.cN||"<unnamed>")+'"');return M+=n,n.length||1}var N=w(e);if(!N)throw new Error('Unknown language: "'+e+'"');s(N);var x,k=i||N,y={},L="";for(x=k;x!=N;x=x.parent)x.cN&&(L=p(x.cN,"",!0)+L);var M="",B=0;try{for(var C,j,I=0;;){if(k.t.lastIndex=I,C=k.t.exec(t),!C)break;j=m(t.substr(I,C.index-I),C[0]),I=C.index+j}for(m(t.substr(I)),x=k;x.parent;x=x.parent)x.cN&&(L+="");return{r:B,value:L,language:e,top:k}}catch(O){if(-1!=O.message.indexOf("Illegal"))return{r:0,value:n(t)};throw O}}function l(e,t){t=t||E.languages||Object.keys(R);var r={r:0,value:n(e)},a=r;return t.forEach(function(n){if(w(n)){var t=f(n,e,!1);t.language=n,t.r>a.r&&(a=t),t.r>r.r&&(a=r,r=t)}}),a.language&&(r.second_best=a),r}function g(e){return E.tabReplace&&(e=e.replace(/^((<[^>]+>|\t)+)/gm,function(e,n){return n.replace(/\t/g,E.tabReplace)})),E.useBR&&(e=e.replace(/\n/g,"
")),e}function p(e,n,t){var r=n?x[n]:t,a=[e.trim()];return e.match(/\bhljs\b/)||a.push("hljs"),-1===e.indexOf(r)&&a.push(r),a.join(" ").trim()}function h(e){var n=i(e);if(!a(n)){var t;E.useBR?(t=document.createElementNS("http://www.w3.org/1999/xhtml","div"),t.innerHTML=e.innerHTML.replace(/\n/g,"").replace(/<br[\/]*>/g,"\n")):t=e;var r=t.textContent,o=n?f(n,r,!0):l(r),s=u(t);if(s.length){var h=document.createElementNS("http://www.w3.org/1999/xhtml","div");h.innerHTML=o.value,o.value=c(s,u(h),r)}o.value=g(o.value),e.innerHTML=o.value,e.className=p(e.className,n,o.language),e.result={language:o.language,re:o.r},o.second_best&&(e.second_best={language:o.second_best.language,re:o.second_best.r})}}function d(e){E=o(E,e)}function b(){if(!b.called){b.called=!0;var e=document.querySelectorAll("pre code");Array.prototype.forEach.call(e,h)}}function v(){addEventListener("DOMContentLoaded",b,!1),addEventListener("load",b,!1)}function m(n,t){var r=R[n]=t(e);r.aliases&&r.aliases.forEach(function(e){x[e]=n})}function N(){return Object.keys(R)}function w(e){return e=(e||"").toLowerCase(),R[e]||R[x[e]]}var E={classPrefix:"hljs-",tabReplace:null,useBR:!1,languages:void 0},R={},x={};return e.highlight=f,e.highlightAuto=l,e.fixMarkup=g,e.highlightBlock=h,e.configure=d,e.initHighlighting=b,e.initHighlightingOnLoad=v,e.registerLanguage=m,e.listLanguages=N,e.getLanguage=w,e.inherit=o,e.IR="[a-zA-Z]\\w*",e.UIR="[a-zA-Z_]\\w*",e.NR="\\b\\d+(\\.\\d+)?",e.CNR="(-?)(\\b0[xX][a-fA-F0-9]+|(\\b\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)",e.BNR="\\b(0b[01]+)",e.RSR="!|!=|!==|%|%=|&|&&|&=|*|*=|\\+|\\+=|,|-|-=|/=|/|:|;|<<|<<=|<=|<|===|==|=|>>>=|>>=|>=|>>>|>>|>|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~",e.BE={b:"\\\\[\\s\\S]",r:0},e.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[e.BE]},e.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[e.BE]},e.PWM={b:/\b(a|an|the|are|I|I'm|isn't|don't|doesn't|won't|but|just|should|pretty|simply|enough|gonna|going|wtf|so|such|will|you|your|like)\b/},e.C=function(n,t,r){var a=e.inherit({cN:"comment",b:n,e:t,c:[]},r||{});return a.c.push(e.PWM),a.c.push({cN:"doctag",b:"(?:TODO|FIXME|NOTE|BUG|XXX):",r:0}),a},e.CLCM=e.C("//","$"),e.CBCM=e.C("/*","*/"),e.HCM=e.C("#","$"),e.NM={cN:"number",b:e.NR,r:0},e.CNM={cN:"number",b:e.CNR,r:0},e.BNM={cN:"number",b:e.BNR,r:0},e.CSSNM={cN:"number",b:e.NR+"(%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?",r:0},e.RM={cN:"regexp",b:/\//,e:/\/[gimuy]*/,i:/\n/,c:[e.BE,{b:/\[/,e:/\]/,r:0,c:[e.BE]}]},e.TM={cN:"title",b:e.IR,r:0},e.UTM={cN:"title",b:e.UIR,r:0},e.METHOD_GUARD={b:"\\.\\s*"+e.UIR,r:0},e});hljs.registerLanguage("basic",function(E){return{cI:!0,i:"^.",l:"[a-zA-Z][a-zA-Z0-9_$%!#]*",k:{keyword:"ABS ASC AND ATN AUTO|0 BEEP BLOAD|10 BSAVE|10 CALL CALLS CDBL CHAIN CHDIR CHR$|10 CINT CIRCLE CLEAR CLOSE CLS COLOR COM COMMON CONT COS CSNG CSRLIN CVD CVI CVS DATA DATE$ DEFDBL DEFINT DEFSNG DEFSTR DEF|0 SEG USR DELETE DIM DRAW EDIT END ENVIRON ENVIRON$ EOF EQV ERASE ERDEV ERDEV$ ERL ERR ERROR EXP FIELD FILES FIX FOR|0 FRE GET GOSUB|10 GOTO HEX$ IF|0 THEN ELSE|0 INKEY$ INP INPUT INPUT# INPUT$ INSTR IMP INT IOCTL IOCTL$ KEY ON OFF LIST KILL LEFT$ LEN LET LINE LLIST LOAD LOC LOCATE LOF LOG LPRINT USING LSET MERGE MID$ MKDIR MKD$ MKI$ MKS$ MOD NAME NEW NEXT NOISE NOT OCT$ ON OR PEN PLAY STRIG OPEN OPTION BASE OUT PAINT PALETTE PCOPY PEEK PMAP POINT POKE POS PRINT PRINT] PSET PRESET PUT RANDOMIZE READ REM RENUM RESET|0 RESTORE RESUME RETURN|0 RIGHT$ RMDIR RND RSET RUN SAVE SCREEN SGN SHELL SIN SOUND SPACE$ SPC SQR STEP STICK STOP STR$ STRING$ SWAP SYSTEM TAB TAN TIME$ TIMER TROFF TRON TO USR VAL VARPTR VARPTR$ VIEW WAIT WHILE WEND WIDTH WINDOW WRITE XOR"},c:[E.QSM,E.C("REM","$",{r:10}),E.C("'","$",{r:0}),{cN:"symbol",b:"^[0-9]+ ",r:10},{cN:"number",b:"\\b([0-9]+[0-9edED.]*[#!]?)",r:0},{cN:"number",b:"(&[hH][0-9a-fA-F]{1,4})"},{cN:"number",b:"(&[oO][0-7]{1,6})"}]}});hljs.registerLanguage("vbnet",function(e){return{aliases:["vb"],cI:!0,k:{keyword:"addhandler addressof alias and andalso aggregate ansi as assembly auto binary by byref byval call case catch class compare const continue custom declare default delegate dim distinct do each equals else elseif end enum erase error event exit explicit finally for friend from function get global goto group handles if implements imports in inherits interface into is isfalse isnot istrue join key let lib like loop me mid mod module mustinherit mustoverride mybase myclass namespace narrowing new next not notinheritable notoverridable of off on operator option optional or order orelse overloads overridable overrides paramarray partial preserve private property protected public raiseevent readonly redim rem removehandler resume return select set shadows shared skip static step stop structure strict sub synclock take text then throw to try unicode until using when where while widening with withevents writeonly xor",built_in:"boolean byte cbool cbyte cchar cdate cdec cdbl char cint clng cobj csbyte cshort
csng cstr ctype date decimal directcast double gettype getxmlnamespace iif integer long object sbyte short single string trycast typeof uinteger ulong ushort",literal:"true false nothing"},i:"//|{|}|endif|gosub|variant|wend",c:[e.inherit(e.QSM,{c:[{b:'""'}]}),e.C("'","$",{rB:!0,c:[{cN:"doctag",b:"'''|<!--|-->",c:[e.PWM]},{cN:"doctag",b:"</?",e:">",c:[e.PWM]}]}),e.CNM,{cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elseif end region externalsource"}}]}});hljs.registerLanguage("dockerfile",function(e){return{aliases:["docker"],cI:!0,k:"from maintainer cmd expose add copy entrypoint volume user workdir onbuild run env label",c:[e.HCM,{k:"run cmd entrypoint volume add copy workdir onbuild label",b:/^ *(onbuild +)?(run|cmd|entrypoint|volume|add|copy|workdir|label) +/,starts:{e:/[^\\]\n/,sL:"bash"}},{k:"from maintainer expose env user onbuild",b:/^ *(onbuild +)?(from|maintainer|expose|env|user|onbuild) +/,e:/[^\\]\n/,c:[e.ASM,e.QSM,e.NM,e.HCM]}]}});hljs.registerLanguage("php",function(e){var c={b:"\\$+[a-zA-Z_�-ÿ][a-zA-Z0-9_�-ÿ]*"},a={cN:"meta",b:/<\?(php)?|\?>/},i={cN:"string",c:[e.BE,a],v:[{b:'b"',e:'"'},{b:"b'",e:"'"},e.inherit(e.ASM,{i:null}),e.inherit(e.QSM,{i:null})]},t={v:[e.BNM,e.CNM]};return{aliases:["php3","php4","php5","php6"],cI:!0,k:"and include_once list abstract global private echo interface as static endswitch array null if endwhile or const for endforeach self var while isset public protected exit foreach throw elseif include __FILE__ empty require_once do xor return parent clone use __CLASS__ __LINE__ else break print eval new catch __METHOD__ case exception default die require __FUNCTION__ enddeclare final try switch continue endfor endif declare unset true false trait goto instanceof insteadof __DIR__ __NAMESPACE__ yield finally",c:[e.HCM,e.C("//","$",{c:[a]}),e.C("/*","*/",{c:[{cN:"doctag",b:"@[A-Za-z]+"}]}),e.C("__halt_compiler.+?;",!1,{eW:!0,k:"__halt_compiler",l:e.UIR}),{cN:"string",b:/<<<['"]?\w+['"]?$/,e:/^\w+;?$/,c:[e.BE,{cN:"subst",v:[{b:/\$\w+/},{b:/\{\$/,e:/\}/}]}]},a,c,{b:/(::|->)+[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*/},{cN:"function",bK:"function",e:/[;{]/,eE:!0,i:"\\$|\\[|%",c:[e.UTM,{cN:"params",b:"\\(",e:"\\)",c:["self",c,e.CBCM,i,t]}]},{cN:"class",bK:"class interface",e:"{",eE:!0,i:/[:\(\$"]/,c:[{bK:"extends implements"},e.UTM]},{bK:"namespace",e:";",i:/[\.']/,c:[e.UTM]},{bK:"use",e:";",c:[e.UTM]},{b:"=>"},i,t]}});hljs.registerLanguage("haml",function(s){return{cI:!0,c:[{cN:"meta",b:"^!!!((5|1\\.1|Strict|Frameset|Basic|Mobile|RDFa|XML\\b.*))?$",r:10},s.C("^\\s*(!=#|=#|-#|/).*$",!1,{r:0}),{b:"^\\s*(-|=|!=)(?!#)",starts:{e:"\\n",sL:"ruby"}},{cN:"tag",b:"^\\s*%",c:[{cN:"selector-tag",b:"\\w+"},{cN:"selector-id",b:"#[\\w-]+"},{cN:"selector-class",b:"\\.[\\w-]+"},{b:"{\\s*",e:"\\s*}",c:[{b:":\\w+\\s*=>",e:",\\s+",rB:!0,eW:!0,c:[{cN:"attr",b:":\\w+"},s.ASM,s.QSM,{b:"\\w+",r:0}]}]},{b:"\\(\\s*",e:"\\s*\\)",eE:!0,c:[{b:"\\w+\\s*=",e:"\\s+",rB:!0,eW:!0,c:[{cN:"attr",b:"\\w+",r:0},s.ASM,s.QSM,{b:"\\w+",r:0}]}]}]},{b:"^\\s*[=~]\\s*"},{b:"#{",starts:{e:"}",sL:"ruby"}}]}});hljs.registerLanguage("perl",function(e){var t="getpwent getservent quotemeta msgrcv scalar kill dbmclose undef lc ma syswrite tr send umask sysopen shmwrite vec qx utime local oct semctl localtime readpipe do return format read sprintf dbmopen pop getpgrp not getpwnam rewinddir qqfileno qw endprotoent wait sethostent bless s|0 opendir continue each sleep endgrent shutdown dump chomp connect getsockname die socketpair close flock exists index shmgetsub for endpwent redo lstat msgctl setpgrp abs exit select print ref gethostbyaddr unshift fcntl syscall goto getnetbyaddr join gmtime symlink semget splice x|0 getpeername recv log setsockopt cos last reverse gethostbyname getgrnam study formline endhostent times chop length gethostent getnetent pack getprotoent getservbyname rand mkdir pos chmod y|0 substr endnetent printf next open msgsnd readdir use unlink getsockopt getpriority rindex wantarray hex system getservbyport endservent int chr untie rmdir prototype tell listen fork shmread ucfirst setprotoent else sysseek link getgrgid shmctl waitpid unpack getnetbyname reset chdir grep split require caller lcfirst until warn while values shift telldir getpwuid my getprotobynumber delete and sort uc defined srand accept package seekdir getprotobyname semop our rename seek if q|0 chroot sysread setpwent no crypt getc chown sqrt write setnetent setpriority foreach tie sin msgget map stat getlogin unless elsif truncate exec keys glob tied closedirioctl socket readlink eval xor readline binmode setservent eof ord bind alarm pipe atan2 getgrent exp time push setgrent gt lt or ne m|0 break given say state when",r={cN:"subst",b:"[$@]\\{",e:"\\}",k:t},s={b:"->{",e:"}"},n={v:[{b:/\$\d/},{b:/[\$%@](\^\w\b|#\w+(::\w+)*|{\w+}|\w+(::\w*)*)/},{b:/[\$%@][^\s\w{]/,r:0}]},i=[e.BE,r,n],o=[n,e.HCM,e.C("^\\=\\w","\\=cut",{eW:!0}),s,{cN:"string",c:i,v:[{b:"q[qwxr]?\\s*\\(",e:"\\)",r:5},{b:"q[qwxr]?\\s*\\[",e:"\\]",r:5},{b:"q[qwxr]?\\s*\\{",e:"\\}",r:5},{b:"q[qwxr]?\\s*\\|",e:"\\|",r:5},{b:"q[qwxr]?\\s*\\<",e:"\\>",r:5},{b:"qw\\s+q",e:"q",r:5},{b:"'",e:"'",c:[e.BE]},{b:'"',e:'"'},{b:"`",e:"`",c:[e.BE]},{b:"{\\w+}",c:[],r:0},{b:"-?\\w+\\s*\\=\\>",c:[],r:0}]},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},{b:"(\\/\\/|"+e.RSR+"|\\b(split|return|print|reverse|grep)\\b)\\s*",k:"split return print reverse grep",r:0,c:[e.HCM,{cN:"regexp",b:"(s|tr|y)/(\\\\.|[^/])*/(\\\\.|[^/])*/[a-z]*",r:10},{cN:"regexp",b:"(m|qr)?/",e:"/[a-z]*",c:[e.BE],r:0}]},{cN:"function",bK:"sub",e:"(\\s*\\(.*?\\))?[;{]",eE:!0,r:5,c:[e.TM]},{b:"-\\w\\b",r:0},{b:"^__DATA__$",e:"^__END__$",sL:"mojolicious",c:[{b:"^@@.*",e:"$",cN:"comment"}]}];return r.c=o,s.c=o,{aliases:["pl"],k:t,c:o}});hljs.registerLanguage("accesslog",function(T){return{c:[{cN:"number",b:"\\b\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}(:\\d{1,5})?\\b"},{cN:"number",b:"\\b\\d+\\b",r:0},{cN:"string",b:'"(GET|POST|HEAD|PUT|DELETE|CONNECT|OPTIONS|PATCH|TRACE)',e:'"',k:"GET POST HEAD PUT DELETE CONNECT OPTIONS PATCH TRACE",i:"\\n",r:10},{cN:"string",b:/\[/,e:/\]/,i:"\\n"},{cN:"string",b:'"',e:'"',i:"\\n"}]}});hljs.registerLanguage("d",function(e){var t={keyword:"abstract alias align asm assert auto body break byte case cast catch class const continue debug default delete deprecated do else enum export extern final finally for foreach foreach_reverse|10 goto if immutable import in inout int interface invariant is lazy macro mixin module new nothrow out override package pragma private protected public pure ref return scope shared static struct super switch synchronized template this throw try typedef typeid typeof union unittest version void volatile while with __FILE__ __LINE__ __gshared|10 __thread __traits __DATE__ __EOF__ __TIME__ __TIMESTAMP__ __VENDOR__ __VERSION__",built_in:"bool cdouble cent cfloat char creal dchar delegate double dstring float function idouble ifloat ireal long real short string ubyte ucent uint ulong ushort wchar wstring",literal:"false null true"},r="(0|[1-9][\\d_]*)",a="(0|[1-9][\\d_]*|\\d[\\d_]*|[\\d_]+?\\d)",i="0[bB][01_]+",n="([\\da-fA-F][\\da-fA-F_]*|_[\\da-fA-F][\\da-fA-F_]*)",_="0[xX]"+n,c="([eE][+-]?"+a+")",d="("+a+"(\\.\\d*|"+c+")|\\d+\\."+a+a+"|\\."+r+c+"?)",o="(0[xX]("+n+"\\."+n+"|\\.?"+n+")[pP][+-]?"+a+")",s="("+r+"|"+i+"|"+_+")",l="("+o+"|"+d+")",u="\\\\(['\"\\?\\\\abfnrtv]|u[\\dA-Fa-f]{4}|[0-7]{1,3}|x[\\dA-Fa-f]{2}|U[\\dA-Fa-f]{8})|&[a-zA-Z\\d]{2,};",b={cN:"number",b:"\\b"+s+"(L|u|U|Lu|LU|uL|UL)?",r:0},f={cN:"number",b:"\\b("+l+"([fF]|L|i|[fF]i|Li)?|"+s+"(i|[fF]i|Li))",r:0},g={cN:"string",b:"'("+u+"|.)",e:"'",i:"."},h={b:u,r:0},p={cN:"string",b:'"',c:[h],e:'"[cwd]?'},m={cN:"string",b:'[rq]"',e:'"[cwd]?',r:5},w={cN:"string",b:"`",e:"`[cwd]?"},N={cN:"string",b:'x"[\\da-fA-F\\s\\n\\r]*"[cwd]?',r:10},A={cN:"string",b:'q"\\{',e:'\\}"'},F={cN:"meta",b:"^#!",e:"$",r:5},y={cN:"meta",b:"#(line)",e:"$",r:5},L={cN:"keyword",b:"@[a-zA-Z_][a-zA-Z_\\d]*"},v=e.C("\\/\\+","\\+\\/",{c:["self"],r:10});return{l:e.UIR,k:t,c:[e.CLCM,e.CBCM,v,N,p,m,w,A,f,b,g,F,y,L]}});hljs.registerLanguage("csp",function(r){return{cI:!1,l:"[a-zA-Z][a-zA-Z0-9_-]*",k:{keyword:"base-uri child-src connect-src default-src font-src form-action frame-ancestors frame-src img-src media-src object-src plugin-types report-uri sandbox script-src style-src"},c:[{cN:"string",b:"'",e:"'"},{cN:"attribute",b:"^Content",e:":",eE:!0}]}});hljs.registerLanguage("apache",function(e){var r={cN:"number",b:"[\\$%]\\d+"};return{aliases:["apacheconf"],cI:!0,c:[e.HCM,{cN:"section",b:"</?",e:">"},{cN:"attribute",b:/\w+/,r:0,k:{nomarkup:"order deny allow setenv rewriterule rewriteengine rewritecond documentroot sethandler errordocument loadmodule options header listen serverroot servername"},starts:{e:/$/,r:0,k:{literal:"on off all"},c:[{cN:"meta",b:"\\s\\[",e:"\\]$"},{cN:"variable",b:"[\\$%]\\{",e:"\\}",c:["self",r]},r,e.QSM]}}],i:/\S/}});hljs.registerLanguage("prolog",function(c){var b={b:/[a-z][A-Za-z0-9_]*/,r:0},r={cN:"symbol",v:[{b:/[A-Z][a-zA-Z0-9_]*/},{b:/_[A-Za-z0-9_]*/}],r:0},e={b:/\(/,e:/\)/,r:0},n={b:/\[/,e:/\]/},a={cN:"comment",b:/%/,e:/$/,c:[c.PWM]},t={cN:"string",b:/`/,e:/`/,c:[c.BE]},g={cN:"string",b:/0\'(\\\'|.)/},s={cN:"string",b:/0\'\\s/},o={b:/:-/},N=[b,r,e,o,n,a,c.CBCM,c.QSM,c.ASM,t,g,s,c.CNM];return e.c=N,n.c=N,{c:N.concat([{b:/\.$/}])}});hljs.registerLanguage("lisp",function(b){var e="[a-zA-Z_\\-\\+*\\/\\<\\=\\>\\&\\#][a-zA-Z0-9_\\-\\+*\\/\\<\\=\\>\\&\\#!]*",c="\\|[^]*?\\|",r="(\\-|\\+)?\\d+(\\.\\d+|\\/\\d+)?((d|e|f|l|s|D|E|F|L|S)(\\+|\\-)?\\d+)?",a={cN:"meta",b:"^#!",e:"$"},l={cN:"literal",b:"\\b(t{1}|nil)\\b"},n={cN:"number",v:[{b:r,r:0},{b:"#(b|B)[0-1]+(/[0-1]+)?"},{b:"#(o|O)[0-7]+(/[0-7]+)?"},{b:"#(x|X)[0-9a-fA-F]+(/[0-9a-fA-F]+)?"},{b:"#(c|C)\\("+r+" +"+r,e:"\\)"}]},i=b.inherit(b.QSM,{i:null}),t=b.C(";","$",{r:0}),s={b:"*",e:"*"},u={cN:"symbol",b:"[:&]"+e},d={b:e,r:0},f={b:c},m={b:"\\(",e:"\\)",c:["self",l,i,n,d]},o={c:[n,i,s,u,m,d],v:[{b:"['`]\\(",e:"\\)"},{b:"\\(quote
",e:"\\)",k:{name:"quote"}},{b:"'"+c}]},v={v:[{b:"'"+e},{b:"#'"+e+"(::"+e+")*"}]},N={b:"\\(\\s*",e:"\\)"},A={eW:!0,r:0};return N.c=[{cN:"name",v:[{b:e},{b:c}]},A],A.c=[o,v,N,l,n,i,t,s,u,f,d],{i:/\S/,c:[n,a,l,i,t,o,v,N,d]}});hljs.registerLanguage("swift",function(e){var i={keyword:"__COLUMN__ __FILE__ __FUNCTION__ __LINE__ as as! as? associativity break case catch class continue convenience default defer deinit didSet do dynamic dynamicType else enum extension fallthrough false final for func get guard if import in indirect infix init inout internal is lazy left let mutating nil none nonmutating operator optional override postfix precedence prefix private protocol Protocol public repeat required rethrows return right self Self set static struct subscript super switch throw throws true try try! try? Type typealias unowned var weak where while willSet",literal:"true false nil",built_in:"abs advance alignof alignofValue anyGenerator assert assertionFailure bridgeFromObjectiveC bridgeFromObjectiveCUnconditional bridgeToObjectiveC bridgeToObjectiveCUnconditional c contains count countElements countLeadingZeros debugPrint debugPrintln distance dropFirst dropLast dump encodeBitsAsWords enumerate equal fatalError filter find getBridgedObjectiveCType getVaList indices insertionSort isBridgedToObjectiveC isBridgedVerbatimToObjectiveC isUniquelyReferenced isUniquelyReferencedNonObjC join lazy lexicographicalCompare map max maxElement min minElement numericCast overlaps partition posix precondition preconditionFailure print println quickSort readLine reduce reflect reinterpretCast reverse roundUpToAlignment sizeof sizeofValue sort split startsWith stride strideof strideofValue swap toString transcode underestimateCount unsafeAddressOf unsafeBitCast unsafeDowncast unsafeUnwrap unsafeReflect withExtendedLifetime withObjectAtPlusZero withUnsafePointer withUnsafePointerToObject withUnsafeMutablePointer withUnsafeMutablePointers withUnsafePointer withUnsafePointers withVaList zip"},t={cN:"type",b:"\\b[A-Z][\\w']*",r:0},n=e.C("/*","*/",{c:["self"]}),r={cN:"subst",b:/\\\(/,e:"\\)",k:i,c:[]},a={cN:"number",b:"\\b([\\d_]+(\\.[\\deE_]+)?|0x[a-fA-F0-9_]+(\\.[a-fA-F0-9p_]+)?|0b[01_]+|0o[0-7_]+)\\b",r:0},o=e.inherit(e.QSM,{c:[r,e.BE]});return r.c=[a],{k:i,c:[o,e.CLCM,n,t,a,{cN:"function",bK:"func",e:"{",eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/,i:/\(/}),{b:/</,e:/>/,i:/>/},{cN:"params",b:/\(/,e:/\)/,endsParent:!0,k:i,c:["self",a,o,e.CBCM,{b:":"}],i:/["']/}],i:/\[|%/},{cN:"class",bK:"struct protocol class extension enum",k:i,e:"\\{",eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/})]},{cN:"meta",b:"(@warn_unused_result|@exported|@lazy|@noescape|@NSCopying|@NSManaged|@objc|@convention|@required|@noreturn|@IBAction|@IBDesignable|@IBInspectable|@IBOutlet|@infix|@prefix|@postfix|@autoclosure|@testable|@available|@nonobjc|@NSApplicationMain|@UIApplicationMain)"},{bK:"import",e:/$/,c:[e.CLCM,n]}]}});hljs.registerLanguage("java",function(e){var a=e.UIR+"(<"+e.UIR+"(\\s*,\\s*"+e.UIR+")*>)?",t="false synchronized int abstract float private char boolean static null if const for true while long strictfp finally protected import native final void enum else break transient catch instanceof byte super volatile case assert short package default double public try this switch continue throws protected public private",r="\\b(0[bB]([01]+[01_]+[01]+|[01]+)|0[xX]([a-fA-F0-9]+[a-fA-F0-9_]+[a-fA-F0-9]+|[a-fA-F0-9]+)|(([\\d]+[\\d_]+[\\d]+|[\\d]+)(\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))?|\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))([eE][-+]?\\d+)?)[lLfF]?",c={cN:"number",b:r,r:0};return{aliases:["jsp"],k:t,i:/<\/|#/,c:[e.C("/**","*/",{r:0,c:[{b:/\w+@/,r:0},{cN:"doctag",b:"@[A-Za-z]+"}]}),e.CLCM,e.CBCM,e.ASM,e.QSM,{cN:"class",bK:"class interface",e:/[{;=]/,eE:!0,k:"class interface",i:/[:"\[\]]/,c:[{bK:"extends implements"},e.UTM]},{bK:"new throw return else",r:0},{cN:"function",b:"("+a+"\\s+)+"+e.UIR+"\\s*\\(",rB:!0,e:/[{;=]/,eE:!0,k:t,c:[{b:e.UIR+"\\s*\\(",rB:!0,r:0,c:[e.UTM]},{cN:"params",b:/\(/,e:/\)/,k:t,r:0,c:[e.ASM,e.QSM,e.CNM,e.CBCM]},e.CLCM,e.CBCM]},c,{cN:"meta",b:"@[A-Za-z]+"}]}});hljs.registerLanguage("objectivec",function(e){var t={cN:"built_in",b:"(AV|CA|CF|CG|CI|MK|MP|NS|UI|XC)\\w+"},i={keyword:"int float while char export sizeof typedef const struct for union unsigned long volatile static bool mutable if do return goto void enum else break extern asm case short default double register explicit signed typename this switch continue wchar_t inline readonly assign readwrite self @synchronized id typeof nonatomic super unichar IBOutlet IBAction strong weak copy in out inout bycopy byref oneway __strong __weak __block __autoreleasing @private @protected @public @try @property @end @throw @catch @finally @autoreleasepool @synthesize @dynamic @selector @optional @required",literal:"false true FALSE TRUE nil YES NO NULL",built_in:"BOOL dispatch_once_t dispatch_queue_t dispatch_sync dispatch_async dispatch_once"},n=/[a-zA-Z@][a-zA-Z0-9_]*/,o="@interface @class @protocol @implementation";return{aliases:["mm","objc","obj-c"],k:i,l:n,i:"</",c:[t,e.CLCM,e.CBCM,e.CNM,e.QSM,{cN:"string",v:[{b:'@"',e:'"',i:"\\n",c:[e.BE]},{b:"'",e:"[^\\\\]'",i:"[^\\\\][^']"}]},{cN:"meta",b:"#",e:"$",c:[{cN:"meta-string",v:[{b:'"',e:'"'},{b:"<",e:">"}]}]},{cN:"class",b:"("+o.split(" ").join("|")+")\\b",e:"({|$)",eE:!0,k:o,l:n,c:[e.UTM]},{b:"\\."+e.UIR,r:0}]}});hljs.registerLanguage("json",function(e){var i={literal:"true false null"},n=[e.QSM,e.CNM],r={e:",",eW:!0,eE:!0,c:n,k:i},t={b:"{",e:"}",c:[{cN:"attr",b:/"/,e:/"/,c:[e.BE],i:"\\n"},e.inherit(r,{b:/:/})],i:"\\S"},c={b:"\\[",e:"\\]",c:[e.inherit(r)],i:"\\S"};return n.splice(n.length,0,t,c),{c:n,k:i,i:"\\S"}});hljs.registerLanguage("cmake",function(e){return{aliases:["cmake.in"],cI:!0,k:{keyword:"add_custom_command add_custom_target add_definitions add_dependencies add_executable add_library add_subdirectory add_test aux_source_directory break build_command cmake_minimum_required cmake_policy configure_file create_test_sourcelist define_property else elseif enable_language enable_testing endforeach endfunction endif endmacro endwhile execute_process export find_file find_library find_package find_path find_program fltk_wrap_ui foreach function get_cmake_property get_directory_property get_filename_component get_property get_source_file_property get_target_property get_test_property if include include_directories include_external_msproject include_regular_expression install link_directories load_cache load_command macro mark_as_advanced message option output_required_files project qt_wrap_cpp qt_wrap_ui remove_definitions return separate_arguments set set_directory_properties set_property set_source_files_properties set_target_properties set_tests_properties site_name source_group string target_link_libraries try_compile try_run unset variable_watch while build_name exec_program export_library_dependencies install_files install_programs install_targets link_libraries make_directory remove subdir_depends subdirs use_mangled_mesa utility_source variable_requires write_file qt5_use_modules qt5_use_package qt5_wrap_cpp on off true false and or equal less greater strless strgreater strequal matches"},c:[{cN:"variable",b:"\\${",e:"}"},e.HCM,e.QSM,e.NM]}});hljs.registerLanguage("bash",function(e){var t={cN:"variable",v:[{b:/\$[\w\d#@][\w\d_]*/},{b:/\$\{(.*?)}/}]},s={cN:"string",b:/"/,e:/"/,c:[e.BE,t,{cN:"variable",b:/\$\(/,e:/\)/,c:[e.BE]}]},a={cN:"string",b:/'/,e:/'/};return{aliases:["sh","zsh"],l:/-?[a-z\.]+/,k:{keyword:"if then else elif fi for while in do done case esac function",literal:"true false",built_in:"break cd continue eval exec exit export getopts hash pwd readonly return shift test times trap umask unset alias bind builtin caller command declare echo enable help let local logout mapfile printf read readarray source type typeset ulimit unalias set shopt autoload bg bindkey bye cap chdir clone comparguments compcall compctl compdescribe compfiles compgroups compquote comptags comptry compvalues dirs disable disown echotc echoti emulate fc fg float functions getcap getln history integer jobs kill limit log noglob popd print pushd pushln rehash sched setcap setopt stat suspend ttyctl unfunction unhash unlimit unsetopt vared wait whence where which zcompile zformat zftp zle zmodload zparseopts zprof zpty zregexparse zsocket zstyle ztcp",_:"-ne -eq -lt -gt -f -d -e -s -l -a"},c:[{cN:"meta",b:/^#![^\n]+sh\s*$/,r:10},{cN:"function",b:/\w[\w\d_]*\s*\(\s*\)\s*\{/,rB:!0,c:[e.inherit(e.TM,{b:/\w[\w\d_]*/})],r:0},e.HCM,s,a,t]}});hljs.registerLanguage("cs",function(e){var t="abstract as base bool break byte case catch char checked const continue decimal dynamic default delegate do double else enum event explicit extern false finally fixed float for foreach goto if implicit in int interface internal is lock long null when object operator out override params private protected public readonly ref sbyte sealed short sizeof stackalloc static string struct switch this true try typeof uint ulong unchecked unsafe ushort using virtual volatile void while async protected public private internal ascending descending from get group into join let orderby partial select set value var where yield",r=e.IR+"(<"+e.IR+">)?";return{aliases:["csharp"],k:t,i:/::/,c:[e.C("///","$",{rB:!0,c:[{cN:"doctag",v:[{b:"///",r:0},{b:"<!--|-->"},{b:"</?",e:">"}]}]}),e.CLCM,e.CBCM,{cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elif endif define undef warning error line region endregion pragma checksum"}},{cN:"string",b:'@"',e:'"',c:[{b:'""'}]},e.ASM,e.QSM,e.CNM,{bK:"class interface",e:/[{;=]/,i:/[^\s:]/,c:[e.TM,e.CLCM,e.CBCM]},{bK:"namespace",e:/[{;=]/,i:/[^\s:]/,c:[e.inherit(e.TM,{b:"[a-zA-Z](\\.?\\w)*"}),e.CLCM,e.CBCM]},{bK:"new return throw
await",r:0},{cN:"function",b:"("+r+"\\s+)+"+e.IR+"\\s*\\(",rB:!0,e:/[{;=]/,eE:!0,k:t,c:[{b:e.IR+"\\s*\\(",rB:!0,c:[e.TM],r:0},{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,k:t,r:0,c:[e.ASM,e.QSM,e.CNM,e.CBCM]},e.CLCM,e.CBCM]}]}});hljs.registerLanguage("livescript",function(e){var t={keyword:"in if for while finally new do return else break catch instanceof throw try this switch continue typeof delete debugger case default function var with then unless until loop of by when and or is isnt not it that otherwise from to til fallthrough super case default function var void const let enum export import native __hasProp __extends __slice __bind __indexOf",literal:"true false null undefined yes no on off it that void",built_in:"npm require console print module global window document"},s="[A-Za-z$_](?:-[0-9A-Za-z$_]|[0-9A-Za-z$_])*",n=e.inherit(e.TM,{b:s}),i={cN:"subst",b:/#\{/,e:/}/,k:t},r={cN:"subst",b:/#[A-Za-z$_]/,e:/(?:\-[0-9A-Za-z$_]|[0-9A-Za-z$_])*/,k:t},c=[e.BNM,{cN:"number",b:"(\\b0[xX][a-fA-F0-9_]+)|(\\b\\d(\\d|_\\d)*(\\.(\\d(\\d|_\\d)*)?)?(_*[eE]([-+]\\d(_\\d|\\d)*)?)?[_a-z]*)",r:0,starts:{e:"(\\s*/)?",r:0}},{cN:"string",v:[{b:/'''/,e:/'''/,c:[e.BE]},{b:/'/,e:/'/,c:[e.BE]},{b:/"""/,e:/"""/,c:[e.BE,i,r]},{b:/"/,e:/"/,c:[e.BE,i,r]},{b:/\\/,e:/(\s|$)/,eE:!0}]},{cN:"regexp",v:[{b:"//",e:"//[gim]*",c:[i,e.HCM]},{b:/\/(?![*])(\\\/|.)*?\/[gim]*(?=\W|$)/}]},{b:"@"+s},{b:"``",e:"``",eB:!0,eE:!0,sL:"javascript"}];i.c=c;var a={cN:"params",b:"\\(",rB:!0,c:[{b:/\(/,e:/\)/,k:t,c:["self"].concat(c)}]};return{aliases:["ls"],k:t,i:/\/*/,c:c.concat([e.C("\\/*","*\\/"),e.HCM,{cN:"function",c:[n,a],rB:!0,v:[{b:"("+s+"\\s*(?:=|:=)\\s*)?(\\(.*\\))?\\s*\\B\\->*?",e:"\\->*?"},{b:"("+s+"\\s*(?:=|:=)\\s*)?!?(\\(.*\\))?\\s*\\B[-~]{1,2}>*?",e:"[-~]{1,2}>*?"},{b:"("+s+"\\s*(?:=|:=)\\s*)?(\\(.*\\))?\\s*\\B!?[-~]{1,2}>*?",e:"!?[-~]{1,2}>*?"}]},{cN:"class",bK:"class",e:"$",i:/[:="\[\]]/,c:[{bK:"extends",eW:!0,i:/[:="\[\]]/,c:[n]},n]},{b:s+":",e:":",rB:!0,rE:!0,r:0}])}});hljs.registerLanguage("makefile",function(e){var a={cN:"variable",b:/\$\(/,e:/\)/,c:[e.BE]};return{aliases:["mk","mak"],c:[e.HCM,{b:/^\w+\s*\W*=/,rB:!0,r:0,starts:{e:/\s*\W*=/,eE:!0,starts:{e:/$/,r:0,c:[a]}}},{cN:"section",b:/^[\w]+:\s*$/},{cN:"meta",b:/^\.PHONY:/,e:/$/,k:{"meta-keyword":".PHONY"},l:/[\.\w]+/},{b:/^\t+/,e:/$/,r:0,c:[e.QSM,a]}]}});hljs.registerLanguage("yaml",function(e){var a={literal:"{ } true false yes no Yes No True False null"},b="^[\\-]*",r="[a-zA-Z_][\\w\\-]*",t={cN:"attr",v:[{b:b+r+":"},{b:b+'"'+r+'":'},{b:b+"'"+r+"':"}]},c={cN:"template-variable",v:[{b:"{{",e:"}}"},{b:"%{",e:"}"}]},l={cN:"string",r:0,v:[{b:/'/,e:/'/},{b:/"/,e:/"/}],c:[e.BE,c]};return{cI:!0,aliases:["yml","YAML","yaml"],c:[t,{cN:"meta",b:"^---s*$",r:10},{cN:"string",b:"[\\|>] *$",rE:!0,c:l.c,e:t.v[0].b},{b:"<%[%=-]?",e:"[%-]?%>",sL:"ruby",eB:!0,eE:!0,r:0},{cN:"type",b:"!!"+e.UIR},{cN:"meta",b:"&"+e.UIR+"$"},{cN:"meta",b:"*"+e.UIR+"$"},{cN:"bullet",b:"^ *-",r:0},l,e.HCM,e.CNM],k:a}});hljs.registerLanguage("dns",function(d){return{aliases:["bind","zone"],k:{keyword:"IN A AAAA AFSDB APL CAA CDNSKEY CDS CERT CNAME DHCID DLV DNAME DNSKEY DS HIP IPSECKEY KEY KX LOC MX NAPTR NS NSEC NSEC3 NSEC3PARAM PTR RRSIG RP SIG SOA SRV SSHFP TA TKEY TLSA TSIG TXT"},c:[d.C(";","$"),{cN:"meta",b:/^\$(TTL|GENERATE|INCLUDE|ORIGIN)\b/},{cN:"number",b:"((([0-9A-Fa-f]{1,4}:){7}([0-9A-Fa-f]{1,4}|:))|(([0-9A-Fa-f]{1,4}:){6}(:[0-9A-Fa-f]{1,4}|((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){5}(((:[0-9A-Fa-f]{1,4}){1,2})|:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){4}(((:[0-9A-Fa-f]{1,4}){1,3})|((:[0-9A-Fa-f]{1,4})?:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){3}(((:[0-9A-Fa-f]{1,4}){1,4})|((:[0-9A-Fa-f]{1,4}){0,2}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){2}(((:[0-9A-Fa-f]{1,4}){1,5})|((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){1}(((:[0-9A-Fa-f]{1,4}){1,6})|((:[0-9A-Fa-f]{1,4}){0,4}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(:(((:[0-9A-Fa-f]{1,4}){1,7})|((:[0-9A-Fa-f]{1,4}){0,5}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:)))\\b"},{cN:"number",b:"((25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9]).){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])\\b"},d.inherit(d.NM,{b:/\b\d+[dhwm]?/})]}});hljs.registerLanguage("sql",function(e){var t=e.C("--","$");return{cI:!0,i:/[<>{}*]/,c:[{bK:"begin end start commit rollback savepoint lock alter create drop rename call delete do handler insert load replace select truncate update set show pragma grant merge describe use explain help declare prepare execute deallocate release unlock purge reset change stop analyze cache flush optimize repair kill install uninstall checksum restore check backup revoke",e:/;/,eW:!0,k:{keyword:"abort abs absolute acc acce accep accept access accessed accessible account acos action activate add addtime admin administer advanced advise aes_decrypt aes_encrypt after agent aggregate ali alia alias allocate allow alter always analyze ancillary and any anydata anydataset anyschema anytype apply archive archived archivelog are as asc ascii asin assembly assertion associate asynchronous at atan atn2 attr attri attrib attribu attribut attribute attributes audit authenticated authentication authid authors auto autoallocate autodblink autoextend automatic availability avg backup badfile basicfile before begin beginning benchmark between bfile bfile_base big bigfile bin binary_double binary_float binlog bit_and bit_count bit_length bit_or bit_xor bitmap blob_base block blocksize body both bound buffer_cache buffer_pool build bulk by byte byteordermark bytes cache caching call calling cancel capacity cascade cascaded case cast catalog category ceil ceiling chain change changed char_base char_length character_length characters characterset charindex charset charsetform charsetid check checksum checksum_agg child choose chr chunk class cleanup clear client clob clob_base clone close cluster_id cluster_probability cluster_set clustering coalesce coercibility col collate collation collect colu colum column column_value columns columns_updated comment commit compact compatibility compiled complete composite_limit compound compress compute concat concat_ws concurrent confirm conn connec connect connect_by_iscycle connect_by_isleaf connect_by_root connect_time connection consider consistent constant constraint constraints constructor container content contents context contributors controlfile conv convert convert_tz corr corr_k corr_s corresponding corruption cos cost count count_big counted covar_pop covar_samp cpu_per_call cpu_per_session crc32 create creation critical cross cube cume_dist curdate current current_date current_time current_timestamp current_user cursor curtime customdatum cycle data database databases datafile datafiles datalength date_add date_cache date_format date_sub dateadd datediff datefromparts datename datepart datetime2fromparts day day_to_second dayname dayofmonth dayofweek dayofyear days db_role_change dbtimezone ddl deallocate declare decode decompose decrement decrypt deduplicate def defa defau defaul default defaults deferred defi defin define degrees delayed delegate delete delete_all delimited demand dense_rank depth dequeue des_decrypt des_encrypt des_key_file desc descr descri describ describe descriptor deterministic diagnostics difference dimension direct_load directory disable disable_all disallow disassociate discardfile disconnect diskgroup distinct distinctrow distribute distributed div do document domain dotnet double downgrade drop dumpfile duplicate duration each edition editionable editions element ellipsis else elsif elt empty enable enable_all enclosed encode encoding encrypt end end-exec endian enforced engine engines enqueue enterprise entityescaping eomonth error errors escaped evalname evaluate event eventdata events except exception exceptions exchange exclude excluding execu execut execute exempt exists exit exp expire explain export export_set extended extent external external_1 external_2 externally extract failed failed_login_attempts failover failure far fast feature_set feature_value fetch field fields file file_name_convert filesystem_like_logging final finish first first_value fixed flash_cache flashback floor flush following follows for forall force form forma format found found_rows freelist freelists freepools fresh from from_base64 from_days ftp full function general generated get get_format get_lock getdate getutcdate global global_name globally go goto grant grants greatest group group_concat group_id grouping grouping_id groups gtid_subtract guarantee guard handler hash hashkeys having hea head headi headin heading heap help hex hierarchy high high_priority hosts hour http id ident_current ident_incr ident_seed identified identity idle_time if ifnull ignore iif ilike ilm immediate import in include including increment index indexes indexing indextype indicator indices inet6_aton inet6_ntoa inet_aton inet_ntoa infile initial initialized initially initrans inmemory inner innodb input insert install instance instantiable instr interface interleaved intersect into invalidate invisible is is_free_lock is_ipv4 is_ipv4_compat is_not is_not_null is_used_lock isdate isnull isolation iterate java join json json_exists keep keep_duplicates key keys kill language large last last_day last_insert_id last_value lax lcase lead leading least leaves left len lenght length less level levels library like like2 like4 likec limit lines link list listagg little ln load load_file lob lobs local localtime localtimestamp locate locator lock locked log log10 log2 logfile logfiles logging logical
logical_reads_per_call logoff logon logs long loop low low_priority lower lpad lrtrim ltrim main make_set makedate maketime managed management manual map mapping mask master master_pos_wait match matched materialized max maxextents maximize maxinstances maxlen maxlogfiles maxloghistory maxlogmembers maxsize maxtrans md5 measures median medium member memcompress memory merge microsecond mid migration min minextents minimum mining minus minute minvalue missing mod mode model modification modify module monitoring month months mount move movement multiset mutex name name_const names nan national native natural nav nchar nclob nested never new newline next nextval no no_write_to_binlog noarchivelog noaudit nobadfile nocheck nocompress nocopy nocycle nodelay nodiscardfile noentityescaping noguarantee nokeep nologfile nomapping nomaxvalue nominimize nominvalue nomonitoring none noneditionable nonschema noorder nopr nopro noprom nopromp noprompt norely noresetlogs noreverse normal norowdependencies noschemacheck noswitch not nothing notice notrim novalidate now nowait nth_value nullif nulls num numb numbe nvarchar nvarchar2 object ocicoll ocidate ocidatetime ociduration ociinterval ociloblocator ocinumber ociref ocirefcursor ocirowid ocistring ocitype oct octet_length of off offline offset oid oidindex old on online only opaque open operations operator optimal optimize option optionally or oracle oracle_date oradata ord ordaudio orddicom orddoc order ordimage ordinality ordvideo organization orlany orlvary out outer outfile outline output over overflow overriding package pad parallel parallel_enable parameters parent parse partial partition partitions pascal passing password password_grace_time password_lock_time password_reuse_max password_reuse_time password_verify_function patch path patindex pctincrease pctthreshold pctused pctversion percent percent_rank percentile_cont percentile_disc performance period period_add period_diff permanent physical pi pipe pipelined pivot pluggable plugin policy position post_transaction pow power pragma prebuilt precedes preceding precision prediction prediction_cost prediction_details prediction_probability prediction_set prepare present preserve prior priority private private_sga privileges procedural procedure procedure_analyze processlist profiles project prompt protection public publishingservername purge quarter query quick quiesce quota quotename radians raise rand range rank raw read reads readsize rebuild record records recover recovery recursive recycle redo reduced ref reference referenced references referencing refresh regexp_like register regr_avgx regr_avgy regr_count regr_intercept regr_r2 regr_slope regr_sxx regr_sxy reject rekey relational relative relaylog release release_lock relies_on relocate rely rem remainder rename repair repeat replace replicate replication required reset resetlogs resize resource respect restore restricted result result_cache resumable resume retention return returning returns reuse reverse revoke right rlike role roles rollback rolling rollup round row row_count rowdependencies rowid rownum rows rtrim rules safe salt sample save savepoint sb1 sb2 sb4 scan schema schemacheck scn scope scroll sdo_georaster sdo_topo_geometry search sec_to_time second section securefile security seed segment select self sequence sequential serializable server servererror session session_user sessions_per_user set sets settings sha sha1 sha2 share shared shared_pool short show shrink shutdown si_averagecolor si_colorhistogram si_featurelist si_positionalcolor si_stillimage si_texture siblings sid sign sin size size_t sizes skip slave sleep smalldatetimefromparts smallfile snapshot some soname sort soundex source space sparse spfile split sql sql_big_result sql_buffer_result sql_cache sql_calc_found_rows sql_small_result sql_variant_property sqlcode sqldata sqlerror sqlname sqlstate sqrt square standalone standby start starting startup statement static statistics stats_binomial_test stats_crosstab stats_ks_test stats_mode stats_mw_test stats_one_way_anova stats_t_test_ stats_t_test_indep stats_t_test_one stats_t_test_paired stats_wsr_test status std stddev stddev_pop stddev_samp stdev stop storage store stored str str_to_date straight_join strcmp strict string struct stuff style subdate subpartition subpartitions substitutable substr substring subtime subtring_index subtype success sum suspend switch switchoffset switchover sync synchronous synonym sys sys_xmlagg sysasm sysaux sysdate sysdatetimeoffset sysdba sysoper system system_user sysutcdatetime table tables tablespace tan tdo template temporary terminated tertiary_weights test than then thread through tier ties time time_format time_zone timediff timefromparts timeout timestamp timestampadd timestampdiff timezone_abbr timezone_minute timezone_region to to_base64 to_date to_days to_seconds todatetimeoffset trace tracking transaction transactional translate translation treat trigger trigger_nestlevel triggers trim truncate try_cast try_convert try_parse type ub1 ub2 ub4 ucase unarchived unbounded uncompress under undo unhex unicode uniform uninstall union unique unix_timestamp unknown unlimited unlock unpivot unrecoverable unsafe unsigned until untrusted unusable unused update updated upgrade upped upper upsert url urowid usable usage use use_stored_outlines user user_data user_resources users using utc_date utc_timestamp uuid uuid_short validate validate_password_strength validation valist value values var var_samp varcharc vari varia variab variabl variable variables variance varp varraw varrawc varray verify version versions view virtual visible void wait wallet warning warnings week weekday weekofyear wellformed when whene whenev wheneve whenever where while whitespace with within without work wrapped xdb xml xmlagg xmlattributes xmlcast xmlcolattval xmlelement xmlexists xmlforest xmlindex xmlnamespaces xmlpi xmlquery xmlroot xmlschema xmlserialize xmltable xmltype xor year year_to_month years yearweek",literal:"true false null",built_in:"array bigint binary bit blob boolean char character date dec decimal float int int8 integer interval number numeric real record serial serial8 smallint text varchar varying void"},c:[{cN:"string",b:"'",e:"'",c:[e.BE,{b:"''"}]},{cN:"string",b:'"',e:'"',c:[e.BE,{b:'""'}]},{cN:"string",b:"`",e:"`",c:[e.BE]},e.CNM,e.CBCM,t]},e.CBCM,t]}});hljs.registerLanguage("python",function(e){var r={cN:"meta",b:/^(>>>|\.\.\.) /},b={cN:"string",c:[e.BE],v:[{b:/(u|b)?r?'''/,e:/'''/,c:[r],r:10},{b:/(u|b)?r?"""/,e:/"""/,c:[r],r:10},{b:/(u|r|ur)'/,e:/'/,r:10},{b:/(u|r|ur)"/,e:/"/,r:10},{b:/(b|br)'/,e:/'/},{b:/(b|br)"/,e:/"/},e.ASM,e.QSM]},a={cN:"number",r:0,v:[{b:e.BNR+"[lLjJ]?"},{b:"\\b(0o[0-7]+)[lLjJ]?"},{b:e.CNR+"[lLjJ]?"}]},l={cN:"params",b:/\(/,e:/\)/,c:["self",r,a,b]};return{aliases:["py","gyp"],k:{keyword:"and elif is global as in if from raise for except finally print import pass return exec else break not with class assert yield try while continue del or def lambda async await nonlocal|10 None True False",built_in:"Ellipsis NotImplemented"},i:/(<\/|->|\?)/,c:[r,a,b,e.HCM,{v:[{cN:"function",bK:"def",r:10},{cN:"class",bK:"class"}],e:/:/,i:/[${=;\n,]/,c:[e.UTM,l,{b:/->/,eW:!0,k:"None"}]},{cN:"meta",b:/^[\t]*@/,e:/$/},{b:/\b(print|exec)\(/}]}});hljs.registerLanguage("mercury",function(e){var i={keyword:"module use_module import_module include_module end_module initialise mutable initialize finalize finalise interface implementation pred mode func type inst solver any_pred any_func is semidet det nondet multi erroneous failure cc_nondet cc_multi typeclass instance where pragma promise external trace atomic or_else require_complete_switch require_det require_semidet require_multi require_nondet require_cc_multi require_cc_nondet require_erroneous require_failure",meta:"inline no_inline type_spec source_file fact_table obsolete memo loop_check minimal_model terminates does_not_terminate check_termination promise_equivalent_clauses foreign_proc foreign_decl foreign_code foreign_type foreign_import_module foreign_export_enum foreign_export foreign_enum may_call_mercury will_not_call_mercury thread_safe not_thread_safe maybe_thread_safe promise_pure promise_semipure tabled_for_io local untrailed trailed attach_to_io_state can_pass_as_mercury_type stable will_not_throw_exception may_modify_trail will_not_modify_trail may_duplicate may_not_duplicate affects_liveness does_not_affect_liveness doesnt_affect_liveness no_sharing unknown_sharing sharing",built_in:"some all not if then else true fail false try catch catch_any semidet_true semidet_false semidet_fail impure_true impure semipure"},r=e.C("%","$"),t={cN:"number",b:"0'.\\|0[box][0-9a-fA-F]*"},_=e.inherit(e.ASM,{r:0}),n=e.inherit(e.QSM,{r:0}),a={cN:"subst",b:"\\\\[abfnrtv]\\|\\\\x[0-9a-fA-F]*\\\\\\|%[-+# *.0-9]*[dioxXucsfeEgGp]",r:0};n.c.push(a);var o={cN:"built_in",v:[{b:"<=>"},{b:"<=",r:0},{b:"=>",r:0},{b:"/\\\\"},{b:"\\\\/"}]},l={cN:"built_in",v:[{b:":-\\|-->"},{b:"=",r:0}]};return{aliases:["m","moo"],k:i,c:[o,l,r,e.CBCM,t,e.NM,_,n,{b:/:-/}]}});hljs.registerLanguage("haskell",function(e){var i={v:[e.C("--","$"),e.C("{-","-}",{c:["self"]})]},a={cN:"meta",b:"{-#",e:"#-}"},l={cN:"meta",b:"^#",e:"$"},c={cN:"type",b:"\\b[A-Z][\\w']*",r:0},n={b:"\\(",e:"\\)",i:'"',c:[a,l,{cN:"type",b:"\\b[A-Z][\\w]*(\\((\\.\\.|,|\\w+)\\))?"},e.inherit(e.TM,{b:"[_a-z][\\w']*"}),i]},s={b:"{",e:"}",c:n.c};return{aliases:["hs"],k:"let in if then else case of where do module import hiding qualified type data newtype deriving class instance as default infix infixl infixr foreign export ccall stdcall cplusplus jvm dotnet safe unsafe family forall mdo proc rec",c:[{bK:"module",e:"where",k:"module where",c:[n,i],i:"\\W\\.|;"},{b:"\\bimport\\b",e:"$",k:"import qualified as hiding",c:[n,i],i:"\\W\\.|;"},{cN:"class",b:"^(\\s*)?(class|instance)\\b",e:"where",k:"class family instance where",c:[c,n,i]},{cN:"class",b:"\\b(data|(new)?type)\\b",e:"$",k:"data family type
newtype deriving",c:[a,c,n,s,i]},{bK:"default",e:"$",c:[c,n,i]},{bK:"infix infixl infixr",e:"$",c:[e.CNM,i]},{b:"\\bforeign\\b",e:"$",k:"foreign import export ccall stdcall cplusplus jvm dotnet safe unsafe",c:[c,e.QSM,i]},{cN:"meta",b:"#!\\/usr\\/bin\\/env runhaskell",e:"$"},a,l,e.QSM,e.CNM,c,e.inherit(e.TM,{b:"^[_a-z][\\w']*"}),i,{b:"->|<-"}]}});hljs.registerLanguage("applescript",function(e){var t=e.inherit(e.QSM,{i:""}),r={cN:"params",b:"\\(",e:"\\)",c:["self",e.CNM,t]},i=e.C("--","$"),o=e.C("\\(*","*\\)",{c:["self",i]}),n=[i,o,e.HCM];return{aliases:["osascript"],k:{keyword:"about above after against and around as at back before beginning behind below beneath beside between but by considering contain contains continue copy div does eighth else end equal equals error every exit fifth first for fourth from front get given global if ignoring in into is it its last local me middle mod my ninth not of on onto or over prop property put ref reference repeat returning script second set seventh since sixth some tell tenth that the|0 then third through thru timeout times to transaction try until where while whose with without",literal:"AppleScript false linefeed return pi quote result space tab true",built_in:"alias application boolean class constant date file integer list number real record string text activate beep count delay launch log offset read round run say summarize write character characters contents day frontmost id item length month name paragraph paragraphs rest reverse running time version weekday word words year"},c:[t,e.CNM,{cN:"built_in",b:"\\b(clipboard info|the clipboard|info for|list (disks|folder)|mount volume|path to|(close|open for) access|(get|set) eof|current date|do shell script|get volume settings|random number|set volume|system attribute|system info|time to GMT|(load|run|store) script|scripting components|ASCII (character|number)|localized string|choose (application|color|file|file name|folder|from list|remote application|URL)|display (alert|dialog))\\b|^\\s*return\\b"},{cN:"literal",b:"\\b(text item delimiters|current application|missing value)\\b"},{cN:"keyword",b:"\\b(apart from|aside from|instead of|out of|greater than|isn't|(doesn't|does not) (equal|come before|come after|contain)|(greater|less) than(or equal)?|(starts?|ends|begins?) with|contained by|comes (before|after)|a (ref|reference)|POSIX file|POSIX path|(date|time) string|quoted form)\\b"},{bK:"on",i:"[${=;\\n]",c:[e.UTM,r]}].concat(n),i:"//|->|=>|\\[\\["}});hljs.registerLanguage("scala",function(e){var t={cN:"meta",b:"@[A-Za-z]+"},a={cN:"subst",v:[{b:"\\$[A-Za-z0-9_]+"},{b:"\\${",e:"}"}]},r={cN:"string",v:[{b:'"',e:'"',i:"\\n",c:[e.BE]},{b:'"""',e:'"""',r:10},{b:'[a-z]+"',e:'"',i:"\\n",c:[e.BE,a]},{cN:"string",b:'[a-z]+"""',e:'"""',c:[a],r:10}]},c={cN:"symbol",b:"'\\w[\\w\\d_]*(?!')"},i={cN:"type",b:"\\b[A-Z][A-Za-z0-9_]*",r:0},s={cN:"title",b:/[^0-9\n\t "'(),.`{}\[\]:;][^\n\t "'(),.`{}\[\]:;]+|[^0-9\n\t "'(),.`{}\[\]:;=]/,r:0},n={cN:"class",bK:"class object trait type",e:/[:={\[\n;]/,eE:!0,c:[{bK:"extends with",r:10},{b:/\[/,e:/\]/,eB:!0,eE:!0,r:0,c:[i]},{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,r:0,c:[i]},s]},l={cN:"function",bK:"def",e:/[:={\[(\n;]/,eE:!0,c:[s]};return{k:{literal:"true false null",keyword:"type yield lazy override def with val var sealed abstract private trait object if forSome for while throw finally protected extends import final return else break new catch super class case package default try this match continue throws implicit"},c:[e.CLCM,e.CBCM,r,c,i,l,n,e.CNM,t]}});hljs.registerLanguage("erlang",function(e){var r="[a-z'][a-zA-Z0-9_']*",c="("+r+":"+r+"|"+r+")",b={keyword:"after and andalso|10 band begin bnot bor bsl bzr bxor case catch cond div end fun if let not of orelse|10 query receive rem try when xor",literal:"false true"},i=e.C("%","$"),n={cN:"number",b:"\\b(\\d+#[a-fA-F0-9]+|\\d+(\\.\\d+)?([eE][-+]?\\d+)?)",r:0},a={b:"fun\\s+"+r+"/\\d+"},d={b:c+"\\(",e:"\\)",rB:!0,r:0,c:[{b:c,r:0},{b:"\\(",e:"\\)",eW:!0,rE:!0,r:0}]},o={b:"{",e:"}",r:0},t={b:"\\b_([A-Z][A-Za-z0-9_]*)?",r:0},f={b:"[A-Z][a-zA-Z0-9_]*",r:0},l={b:"#"+e.UIR,r:0,rB:!0,c:[{b:"#"+e.UIR,r:0},{b:"{",e:"}",r:0}]},s={bK:"fun receive if try case",e:"end",k:b};s.c=[i,a,e.inherit(e.ASM,{cN:""}),s,d,e.QSM,n,o,t,f,l];var u=[i,a,s,d,e.QSM,n,o,t,f,l];d.c[1].c=u,o.c=u,l.c[1].c=u;var h={cN:"params",b:"\\(",e:"\\)",c:u};return{aliases:["erl"],k:b,i:"(</|*=|\\+=|-=|/*|*/|\\(*|*\\))",c:[{cN:"function",b:"^"+r+"\\s*\\(",e:"->",rB:!0,i:"\\(|#|//|/*|\\\\|:|;",c:[h,e.inherit(e.TM,{b:r})],starts:{e:";|\\.",k:b,c:u}},i,{b:"^-",e:"\\.",r:0,eE:!0,rB:!0,l:"-"+e.IR,k:"-module -record -undef -export -ifdef -ifndef -author -copyright -doc -vsn -import -include -include_lib -compile -define -else -endif -file -behaviour -behavior -spec",c:[h]},n,e.QSM,l,t,f,o,{b:/\.$/}]}});hljs.registerLanguage("powershell",function(e){var t={b:"`[\\s\\S]",r:0},r={cN:"variable",v:[{b:/\$[\w\d][\w\d_:]*/}]},o={cN:"literal",b:/\$(null|true|false)\b/},a={cN:"string",b:/"/,e:/"/,c:[t,r,{cN:"variable",b:/\$[A-z]/,e:/[^A-z]/}]},i={cN:"string",b:/'/,e:/'/};return{aliases:["ps"],l:/-?[A-z\.\-]+/,cI:!0,k:{keyword:"if else foreach return function do while until elseif begin for trap data dynamicparam end break throw param continue finally in switch exit filter try process catch",built_in:"Add-Content Add-History Add-Member Add-PSSnapin Clear-Content Clear-Item Clear-Item Property Clear-Variable Compare-Object ConvertFrom-SecureString Convert-Path ConvertTo-Html ConvertTo-SecureString Copy-Item Copy-ItemProperty Export-Alias Export-Clixml Export-Console Export-Csv ForEach-Object Format-Custom Format-List Format-Table Format-Wide Get-Acl Get-Alias Get-AuthenticodeSignature Get-ChildItem Get-Command Get-Content Get-Credential Get-Culture Get-Date Get-EventLog Get-ExecutionPolicy Get-Help Get-History Get-Host Get-Item Get-ItemProperty Get-Location Get-Member Get-PfxCertificate Get-Process Get-PSDrive Get-PSProvider Get-PSSnapin Get-Service Get-TraceSource Get-UICulture Get-Unique Get-Variable Get-WmiObject Group-Object Import-Alias Import-Clixml Import-Csv Invoke-Expression Invoke-History Invoke-Item Join-Path Measure-Command Measure-Object Move-Item Move-ItemProperty New-Alias New-Item New-ItemProperty New-Object New-PSDrive New-Service New-TimeSpan New-Variable Out-Default Out-File Out-Host Out-Null Out-Printer Out-String Pop-Location Push-Location Read-Host Remove-Item Remove-ItemProperty Remove-PSDrive Remove-PSSnapin Remove-Variable Rename-Item Rename-ItemProperty Resolve-Path Restart-Service Resume-Service Select-Object Select-String Set-Acl Set-Alias Set-AuthenticodeSignature Set-Content Set-Date Set-ExecutionPolicy Set-Item Set-ItemProperty Set-Location Set-PSDebug Set-Service Set-TraceSource Set-Variable Sort-Object Split-Path Start-Service Start-Sleep Start-Transcript Stop-Process Stop-Service Stop-Transcript Suspend-Service Tee-Object Test-Path Trace-Command Update-FormatData Update-TypeData Where-Object Write-Debug Write-Error Write-Host Write-Output Write-Progress Write-Verbose Write-Warning",nomarkup:"-ne -eq -lt -gt -ge -le -not -like -notlike -match -notmatch -contains -notcontains -in -notin -replace"},c:[e.HCM,e.NM,a,i,o,r]}});hljs.registerLanguage("dust",function(e){var t="if eq ne lt lte gt gte select default math sep";return{aliases:["dst"],cI:!0,sL:"xml",c:[{cN:"template-tag",b:/\{[#\/]/,e:/\}/,i:/;/,c:[{cN:"name",b:/[a-zA-Z\.-]+/,starts:{eW:!0,r:0,c:[e.QSM]}}]},{cN:"template-variable",b:/\{/,e:/\}/,i:/;/,k:t}]}});hljs.registerLanguage("clojure",function(e){var t={"builtin-name":"def defonce cond apply if-not if-let if not not= = < > <= >= == + / * - rem quot neg? pos? delay? symbol? keyword? true? false? integer? empty? coll? list? set? ifn? fn? associative? sequential? sorted? counted? reversible? number? decimal? class? distinct? isa? float? rational? reduced? ratio? odd? even? char? seq? vector? string? map? nil? contains? zero? instance? not-every? not-any? libspec? -> ->> .. . inc compare do dotimes mapcat take remove take-while drop letfn drop-last take-last drop-while while intern condp case reduced cycle split-at split-with repeat replicate iterate range merge zipmap declare line-seq sort comparator sort-by dorun doall nthnext nthrest partition eval doseq await await-for let agent atom send send-off release-pending-sends add-watch mapv filterv remove-watch agent-error restart-agent set-error-handler error-handler set-error-mode! error-mode shutdown-agents quote var fn loop recur throw try monitor-enter monitor-exit defmacro defn defn- macroexpand macroexpand-1 for dosync and or when when-not when-let comp juxt partial sequence memoize constantly complement identity assert peek pop doto proxy defstruct first rest cons defprotocol cast coll deftype defrecord last butlast sigs reify second ffirst fnext nfirst nnext defmulti defmethod meta with-meta ns in-ns create-ns import refer keys select-keys vals key val rseq name namespace promise into transient persistent! conj! assoc! dissoc! pop! disj! use class type num float double short byte boolean bigint biginteger bigdec print-method print-dup throw-if printf format load compile get-in update-in pr pr-on newline flush read slurp read-line subvec with-open memfn time re-find re-groups rand-int rand mod locking assert-valid-fdecl alias resolve ref deref refset swap! reset! set-validator! compare-and-set! alter-meta! reset-meta! commute get-validator alter ref-set ref-history-count ref-min-history ref-max-history ensure sync io! new next conj set! to-array future future-call into-array aset gen-class reduce map filter find empty hash-map hash-set sorted-map sorted-map-by sorted-set sorted-set-by vec vector seq flatten reverse assoc dissoc list disj get union difference intersection extend extend-type extend-protocol int nth delay count concat chunk chunk-buffer chunk-append chunk-first chunk-rest max min dec unchecked-inc-int unchecked-inc unchecked-dec-inc unchecked-dec unchecked-negate unchecked-add-int unchecked-add
unchecked-subtract-int unchecked-subtract chunk-next chunk-cons chunked-seq? prn vary-meta lazy-seq spread list* str find-keyword keyword symbol gensym force rationalize"},r="a-zA-Z_\\-!.?+*=<>&#'",n="["+r+"]["+r+"0-9/;:]*",a="[-+]?\\d+(\\.\\d+)?",o={b:n,r:0},s={cN:"number",b:a,r:0},i=e.inherit(e.QSM,{i:null}),c=e.C(";","$",{r:0}),d={cN:"literal",b:/\b(true|false|nil)\b/},l={b:"[\\[\\{]",e:"[\\]\\}]"},m={cN:"comment",b:"\\^"+n},p=e.C("\\^\\{","\\}"),u={cN:"symbol",b:"[:]"+n},f={b:"\\(",e:"\\)"},h={eW:!0,r:0},y={k:t,l:n,cN:"name",b:n,starts:h},b=[f,i,m,p,c,u,l,s,d,o];return f.c=[e.C("comment",""),y,h],h.c=b,l.c=b,{aliases:["clj"],i:/\S/,c:[f,i,m,p,c,u,l,s,d]}});hljs.registerLanguage("go",function(e){var t={keyword:"break default func interface select case map struct chan else goto package switch const fallthrough if range type continue for import return var go defer bool byte complex64 complex128 float32 float64 int8 int16 int32 int64 string uint8 uint16 uint32 uint64 int uint uintptr rune",literal:"true false iota nil",built_in:"append cap close complex copy imag len make new panic print println real recover delete"};return{aliases:["golang"],k:t,i:"</",c:[e.CLCM,e.CBCM,e.QSM,{cN:"string",b:"'",e:"[^\\\\]'"},{cN:"string",b:"`",e:"`"},{cN:"number",b:e.CNR+"[dflsi]?",r:0},e.CNM]}});hljs.registerLanguage("tcl",function(e){return{aliases:["tk"],k:"after append apply array auto_execok auto_import auto_load auto_mkindex auto_mkindex_old auto_qualify auto_reset bgerror binary break catch cd chan clock close concat continue dde dict encoding eof error eval exec exit expr fblocked fconfigure fcopy file fileevent filename flush for foreach format gets glob global history http if incr info interp join lappend|10 lassign|10 lindex|10 linsert|10 list llength|10 load lrange|10 lrepeat|10 lreplace|10 lreverse|10 lsearch|10 lset|10 lsort|10 mathfunc mathop memory msgcat namespace open package parray pid pkg::create pkg_mkIndex platform platform::shell proc puts pwd read refchan regexp registry regsub|10 rename return safe scan seek set socket source split string subst switch tcl_endOfWord tcl_findLibrary tcl_startOfNextWord tcl_startOfPreviousWord tcl_wordBreakAfter tcl_wordBreakBefore tcltest tclvars tell time tm trace unknown unload unset update uplevel upvar variable vwait while",c:[e.C(";[\\t]*#","$"),e.C("^[\\t]*#","$"),{bK:"proc",e:"[\\{]",eE:!0,c:[{cN:"title",b:"[\\t\\n\\r]+(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*",e:"[\\t\\n\\r]",eW:!0,eE:!0}]},{eE:!0,v:[{b:"\\$(\\{)?(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*\\(([a-zA-Z0-9_])*\\)",e:"[^a-zA-Z0-9_\\}\\$]"},{b:"\\$(\\{)?(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*",e:"(\\))?[^a-zA-Z0-9_\\}\\$]"}]},{cN:"string",c:[e.BE],v:[e.inherit(e.ASM,{i:null}),e.inherit(e.QSM,{i:null})]},{cN:"number",v:[e.BNM,e.CNM]}]}});hljs.registerLanguage("twig",function(e){var t={cN:"params",b:"\\(",e:"\\)"},a="attribute block constant cycle date dump include max min parent random range source template_from_string",r={bK:a,k:{name:a},r:0,c:[t]},c={b:/\|[A-Za-z_]+:?/,k:"abs batch capitalize convert_encoding date date_modify default escape first format join json_encode keys last length lower merge nl2br number_format raw replace reverse round slice sort split striptags title trim upper url_encode",c:[r]},s="autoescape block do embed extends filter flush for if import include macro sandbox set spaceless use verbatim";return s=s+" "+s.split(" ").map(function(e){return"end"+e}).join(" "),{aliases:["craftcms"],cI:!0,sL:"xml",c:[e.C(/\{#/,/#}/),{cN:"template-tag",b:/\{%/,e:/%}/,c:[{cN:"name",b:/\w+/,k:s,starts:{eW:!0,c:[c,r],r:0}}]},{cN:"template-variable",b:/\{\{/,e:/}}/,c:["self",c,r]}]}});hljs.registerLanguage("vhdl",function(e){var r="\\d(_|\\d)*",t="[eE][-+]?"+r,o=r+"(\\."+r+")?("+t+")?",n="\\w+",i=r+"#"+n+"(\\."+n+")?#("+t+")?",a="\\b("+i+"|"+o+")";return{cI:!0,k:{keyword:"abs access after alias all and architecture array assert attribute begin block body buffer bus case component configuration constant context cover disconnect downto default else elsif end entity exit fairness file for force function generate generic group guarded if impure in inertial inout is label library linkage literal loop map mod nand new next nor not null of on open or others out package port postponed procedure process property protected pure range record register reject release rem report restrict restrict_guarantee return rol ror select sequence severity shared signal sla sll sra srl strong subtype then to transport type unaffected units until use variable vmode vprop vunit wait when while with xnor xor",built_in:"boolean bit character severity_level integer time delay_length natural positive string bit_vector file_open_kind file_open_status std_ulogic std_ulogic_vector std_logic std_logic_vector unsigned signed boolean_vector integer_vector real_vector time_vector"},i:"{",c:[e.CBCM,e.C("--","$"),e.QSM,{cN:"number",b:a,r:0},{cN:"literal",b:"'(U|X|0|1|Z|W|L|H|-)'",c:[e.BE]},{cN:"symbol",b:"'[A-Za-z](_?[A-Za-z0-9])*",c:[e.BE]}]}});hljs.registerLanguage("javascript",function(e){return{aliases:["js","jsx"],k:{keyword:"in of if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const export super debugger as async await static import from as",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document Symbol Set Map WeakSet WeakMap Proxy Reflect Promise"},c:[{cN:"meta",r:10,b:/^\s*['"]use (strict|asm)['"]/},{cN:"meta",b:/^#!/,e:/$/},e.ASM,e.QSM,{cN:"string",b:"`",e:"`",c:[e.BE,{cN:"subst",b:"\\$\\{",e:"\\}"}]},e.CLCM,e.CBCM,{cN:"number",v:[{b:"\\b(0[bB][01]+)"},{b:"\\b(0[oO][0-7]+)"},{b:e.CNR}],r:0},{b:"("+e.RSR+"|\\b(case|return|throw)\\b)\\s*",k:"return throw case",c:[e.CLCM,e.CBCM,e.RM,{b:/</,e:/(\/\w+|\w+\/)>/,sL:"xml",c:[{b:/<\w+\/>/,skip:!0},{b:/<\w+/,e:/(\/\w+|\w+\/)>/,skip:!0,c:["self"]}]}],r:0},{cN:"function",bK:"function",e:/\{/,eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/}),{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,c:[e.CLCM,e.CBCM]}],i:/\[|%/},{b:/\$[(.]/},e.METHOD_GUARD,{cN:"class",bK:"class",e:/[{;=]/,eE:!0,i:/[:"\[\]]/,c:[{bK:"extends"},e.UTM]},{bK:"constructor",e:/\{/,eE:!0}],i:/#(?!!)/}});hljs.registerLanguage("less",function(e){var r="[\\w-]+",t="("+r+"|@{"+r+"})",a=[],c=[],s=function(e){return{cN:"string",b:"~?"+e+".*?"+e}},b=function(e,r,t){return{cN:e,b:r,r:t}},i={b:"\\(",e:"\\)",c:c,r:0};c.push(e.CLCM,e.CBCM,s("'"),s('"'),e.CSSNM,{b:"(url|data-uri)\\(",starts:{cN:"string",e:"[\\)\\n]",eE:!0}},b("number","#[0-9A-Fa-f]+\\b"),i,b("variable","@@?"+r,10),b("variable","@{"+r+"}"),b("built_in","~?`[^`]*?`"),{cN:"attribute",b:r+"\\s*:",e:":",rB:!0,eE:!0},{cN:"meta",b:"!important"});var n=c.concat({b:"{",e:"}",c:a}),o={bK:"when",eW:!0,c:[{bK:"and not"}].concat(c)},u={cN:"attribute",b:t,e:":",eE:!0,c:[e.CLCM,e.CBCM],i:/\S/,starts:{e:"[;}]",rE:!0,c:c,i:"[<=$]"}},C={cN:"keyword",b:"@(import|media|charset|font-face|(-[a-z]+-)?keyframes|supports|document|namespace|page|viewport|host)\\b",starts:{e:"[;{}]",rE:!0,c:c,r:0}},l={cN:"variable",v:[{b:"@"+r+"\\s*:",r:15},{b:"@"+r}],starts:{e:"[;}]",rE:!0,c:n}},p={v:[{b:"[\\.#:&\\[]",e:"[;{}]"},{b:t+"[^;]*{",e:"{"}],rB:!0,rE:!0,i:"[<='$\"]",c:[e.CLCM,e.CBCM,o,b("keyword","all\\b"),b("variable","@{"+r+"}"),b("selector-tag",t+"%?",0),b("selector-id","#"+t),b("selector-class","\\."+t,0),b("selector-tag","&",0),{cN:"selector-attr",b:"\\[",e:"\\]"},{b:"\\(",e:"\\)",c:n},{b:"!important"}]};return a.push(e.CLCM,e.CBCM,C,l,p,u),{cI:!0,i:"[=>'/<($\"]",c:a}});hljs.registerLanguage("q",function(e){var s={keyword:"do while select delete by update from",literal:"0b 1b",built_in:"neg not null string reciprocal floor ceiling signum mod xbar xlog and or each scan over prior mmu lsq inv md5 ltime gtime count first var dev med cov cor all any rand sums prds mins maxs fills deltas ratios avgs differ prev next rank reverse iasc idesc asc desc msum mcount mavg mdev xrank mmin mmax xprev rotate distinct group where flip type key til get value attr cut set upsert raze union inter except cross sv vs sublist enlist read0 read1 hopen hclose hdel hsym hcount peach system ltrim rtrim trim lower upper ssr view tables views cols xcols keys xkey xcol xasc xdesc fkeys meta lj aj aj0 ij pj asof uj ww wj wj1 fby xgroup ungroup ej save load rsave rload show csv parse eval min max avg wavg wsum sin cos tan sum",type:"`float `double int `timestamp `timespan `datetime `time `boolean `symbol `char `byte `short `long `real `month `date `minute `second `guid"};return{aliases:["k","kdb"],k:s,l:/(`?)[A-Za-z0-9_]+\b/,c:[e.CLCM,e.QSM,e.CNM]}});hljs.registerLanguage("gherkin",function(e){return{aliases:["feature"],k:"Feature Background Ability Business Need Scenario Scenarios Scenario Outline Scenario Template Examples Given And Then But When",c:[{cN:"keyword",b:"*"},{cN:"meta",b:"@[^@\\s]+"},{b:"\\|",e:"\\|\\w*$",c:[{cN:"string",b:"[^|]+"}]},{cN:"variable",b:"<",e:">"},e.HCM,{cN:"string",b:'"""',e:'"""'},e.QSM]}});hljs.registerLanguage("nginx",function(e){var r={cN:"variable",v:[{b:/\$\d+/},{b:/\$\{/,e:/}/},{b:"[\\$\\@]"+e.UIR}]},b={eW:!0,l:"[a-z/_]+",k:{literal:"on off yes no true false none blocked debug info notice warn error crit select break last permanent redirect kqueue rtsig epoll poll /dev/poll"},r:0,i:"=>",c:[e.HCM,{cN:"string",c:[e.BE,r],v:[{b:/"/,e:/"/},{b:/'/,e:/'/}]},{b:"([a-z]+):/",e:"\\s",eW:!0,eE:!0,c:[r]},{cN:"regexp",c:[e.BE,r],v:[{b:"\\s\\^",e:"\\s|{|;",rE:!0},{b:"~*?\\s+",e:"\\s|{
;",rE:!0},{b:"*(\\.[a-z\\-]+)+"},{b:"([a-z\\-]+\\.)+*"}]},{cN:"number",b:"\\b\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}(:\\d{1,5})?\\b"},{cN:"number",b:"\\b\\d+[kKmMgGdshdwy]*\\b",r:0},r]};return{aliases:["nginxconf"],c:[e.HCM,{b:e.UIR+"\\s+{",rB:!0,e:"{",c:[{cN:"section",b:e.UIR}],r:0},{b:e.UIR+"\\s",e:";|{",rB:!0,c:[{cN:"attribute",b:e.UIR,starts:b}],r:0}],i:"[^\\s\\}]"}});hljs.registerLanguage("rust",function(e){var t="([uif](8|16|32|64|size))?",r=e.inherit(e.CBCM);r.c.push("self");var n="Copy Send Sized Sync Drop Fn FnMut FnOnce drop Box ToOwned Clone PartialEq PartialOrd Eq Ord AsRef AsMut Into From Default Iterator Extend IntoIterator DoubleEndedIterator ExactSizeIterator Option Result SliceConcatExt String ToString Vec assert! assert_eq! bitflags! bytes! cfg! col! concat! concat_idents! debug_assert! debug_assert_eq! env! panic! file! format! format_args! include_bin! include_str! line! local_data_key! module_path! option_env! print! println! select! stringify! try! unimplemented! unreachable! vec! write! writeln! macro_rules!";return{aliases:["rs"],k:{keyword:"alignof as be box break const continue crate do else enum extern false fn for if impl in let loop match mod mut offsetof once priv proc pub pure ref return self Self sizeof static struct super trait true type typeof unsafe unsized use virtual while where yield int i8 i16 i32 i64 uint u8 u32 u64 float f32 f64 str char bool",literal:"true false Some None Ok Err",built_in:n},l:e.IR+"!?",i:"</",c:[e.CLCM,r,e.inherit(e.QSM,{b:/b?"/,i:null}),{cN:"string",v:[{b:/r(#*)".*?"\1(?!#)/},{b:/b?'\\?(x\w{2}|u\w{4}|U\w{8}|.)'/}]},{cN:"symbol",b:/'[a-zA-Z_][a-zA-Z0-9_]*/},{cN:"number",v:[{b:"\\b0b([01_]+)"+t},{b:"\\b0o([0-7_]+)"+t},{b:"\\b0x([A-Fa-f0-9_]+)"+t},{b:"\\b(\\d[\\d_]*(\\.[0-9_]+)?([eE][+-]?[0-9_]+)?)"+t}],r:0},{cN:"function",bK:"fn",e:"(\\(|<)",eE:!0,c:[e.UTM]},{cN:"meta",b:"#\\!?\\[",e:"\\]",c:[{cN:"meta-string",b:/"/,e:/"/}]},{cN:"class",bK:"type",e:";",c:[e.inherit(e.UTM,{endsParent:!0})],i:"\\S"},{cN:"class",bK:"trait enum struct",e:"{",c:[e.inherit(e.UTM,{endsParent:!0})],i:"[\\w\\d]"},{b:e.IR+"::",k:{built_in:n}},{b:"->"}]}});hljs.registerLanguage("groovy",function(e){return{k:{literal:"true false null",keyword:"byte short char int long boolean float double void def as in assert trait super this abstract static volatile transient public private protected synchronized final class interface enum if else for while switch case break default continue throw throws try catch finally implements extends new import package return instanceof"},c:[e.C("/**","*/",{r:0,c:[{b:/\w+@/,r:0},{cN:"doctag",b:"@[A-Za-z]+"}]}),e.CLCM,e.CBCM,{cN:"string",b:'"""',e:'"""'},{cN:"string",b:"'''",e:"'''"},{cN:"string",b:"\\$/",e:"/\\$",r:10},e.ASM,{cN:"regexp",b:/~?\/[^\/\n]+\//,c:[e.BE]},e.QSM,{cN:"meta",b:"^#!/usr/bin/env",e:"$",i:"\n"},e.BNM,{cN:"class",bK:"class interface trait enum",e:"{",i:":",c:[{bK:"extends implements"},e.UTM]},e.CNM,{cN:"meta",b:"@[A-Za-z]+"},{cN:"string",b:/[^\?]{0}[A-Za-z0-9_$]+ *:/},{b:/\?/,e:/\:/},{cN:"symbol",b:"^\\s*[A-Za-z0-9_$]+:",r:0}],i:/#|<\//}});hljs.registerLanguage("aspectj",function(e){var t="false synchronized int abstract float private char boolean static null if const for true while long throw strictfp finally protected import native final return void enum else extends implements break transient new catch instanceof byte super volatile case assert short package default double public try this switch continue throws privileged aspectOf adviceexecution proceed cflowbelow cflow initialization preinitialization staticinitialization withincode target within execution getWithinTypeName handler thisJoinPoint thisJoinPointStaticPart thisEnclosingJoinPointStaticPart declare parents warning error soft precedence thisAspectInstance",i="get set args call";return{k:t,i:/<\/|#/,c:[e.C("/**","*/",{r:0,c:[{b:/\w+@/,r:0},{cN:"doctag",b:"@[A-Za-z]+"}]}),e.CLCM,e.CBCM,e.ASM,e.QSM,{cN:"class",bK:"aspect",e:/[{;=]/,eE:!0,i:/[:;"\[\]]/,c:[{bK:"extends implements pertypewithin perthis pertarget percflowbelow percflow issingleton"},e.UTM,{b:/\([^\)]*/,e:/[)]+/,k:t+" "+i,eE:!1}]},{cN:"class",bK:"class interface",e:/[{;=]/,eE:!0,r:0,k:"class interface",i:/[:"\[\]]/,c:[{bK:"extends implements"},e.UTM]},{bK:"pointcut after before around throwing returning",e:/[)]/,eE:!1,i:/["\[\]]/,c:[{b:e.UIR+"\\s*\\(",rB:!0,c:[e.UTM]}]},{b:/[:]/,rB:!0,e:/[{;]/,r:0,eE:!1,k:t,i:/["\[\]]/,c:[{b:e.UIR+"\\s*\\(",k:t+" "+i},e.QSM]},{bK:"new throw",r:0},{cN:"function",b:/\w+ +\w+(\.)?\w+\s*\([^\)]*\)\s*((throws)[\w\s,]+)?[\{;]/,rB:!0,e:/[{;=]/,k:t,eE:!0,c:[{b:e.UIR+"\\s*\\(",rB:!0,r:0,c:[e.UTM]},{cN:"params",b:/\(/,e:/\)/,r:0,k:t,c:[e.ASM,e.QSM,e.CNM,e.CBCM]},e.CLCM,e.CBCM]},e.CNM,{cN:"meta",b:"@[A-Za-z]+"}]}});hljs.registerLanguage("actionscript",function(e){var a="[a-zA-Z_$][a-zA-Z0-9_$]*",t="([*]|[a-zA-Z_$][a-zA-Z0-9_$]*)",c={cN:"rest_arg",b:"[.]{3}",e:a,r:10};return{aliases:["as"],k:{keyword:"as break case catch class const continue default delete do dynamic each else extends final finally for function get if implements import in include instanceof interface internal is namespace native new override package private protected public return set static super switch this throw try typeof use var void while with",literal:"true false null undefined"},c:[e.ASM,e.QSM,e.CLCM,e.CBCM,e.CNM,{cN:"class",bK:"package",e:"{",c:[e.TM]},{cN:"class",bK:"class interface",e:"{",eE:!0,c:[{bK:"extends implements"},e.TM]},{cN:"meta",bK:"import include",e:";",k:{"meta-keyword":"import include"}},{cN:"function",bK:"function",e:"[{;]",eE:!0,i:"\\S",c:[e.TM,{cN:"params",b:"\\(",e:"\\)",c:[e.ASM,e.QSM,e.CLCM,e.CBCM,c]},{b:":\\s*"+t}]},e.METHOD_GUARD],i:/#/}});hljs.registerLanguage("diff",function(e){return{aliases:["patch"],c:[{cN:"meta",r:10,v:[{b:/^@@ +\-\d+,\d+ +\+\d+,\d+ +@@$/},{b:/^*** +\d+,\d+ +****$/},{b:/^\-\-\- +\d+,\d+ +\-\-\-\-$/}]},{cN:"comment",v:[{b:/Index: /,e:/$/},{b:/=====/,e:/=====$/},{b:/^\-\-\-/,e:/$/},{b:/^*{3} /,e:/$/},{b:/^\+\+\+/,e:/$/},{b:/*{5}/,e:/*{5}$/}]},{cN:"addition",b:"^\\+",e:"$"},{cN:"deletion",b:"^\\-",e:"$"},{cN:"addition",b:"^\\!",e:"$"}]}});hljs.registerLanguage("ini",function(e){var b={cN:"string",c:[e.BE],v:[{b:"'''",e:"'''",r:10},{b:'"""',e:'"""',r:10},{b:'"',e:'"'},{b:"'",e:"'"}]};return{aliases:["toml"],cI:!0,i:/\S/,c:[e.C(";","$"),e.HCM,{cN:"section",b:/^\s*\[+/,e:/\]+/},{b:/^[a-z0-9\[\]_-]+\s*=\s*/,e:"$",rB:!0,c:[{cN:"attr",b:/[a-z0-9\[\]_-]+/},{b:/=/,eW:!0,r:0,c:[{cN:"literal",b:/\bon|off|true|false|yes|no\b/},{cN:"variable",v:[{b:/\$[\w\d"][\w\d_]*/},{b:/\$\{(.*?)}/}]},b,{cN:"number",b:/([\+\-]+)?[\d]+_[\d_]+/},e.NM]}]}]}});hljs.registerLanguage("fortran",function(e){var t={cN:"params",b:"\\(",e:"\\)"},n={literal:".False. .True.",keyword:"kind do while private call intrinsic where elsewhere type endtype endmodule endselect endinterface end enddo endif if forall endforall only contains default return stop then public subroutine|10 function program .and. .or. .not. .le. .eq. .ge. .gt. .lt. goto save else use module select case access blank direct exist file fmt form formatted iostat name named nextrec number opened rec recl sequential status unformatted unit continue format pause cycle exit c_null_char c_alert c_backspace c_form_feed flush wait decimal round iomsg synchronous nopass non_overridable pass protected volatile abstract extends import non_intrinsic value deferred generic final enumerator class associate bind enum c_int c_short c_long c_long_long c_signed_char c_size_t c_int8_t c_int16_t c_int32_t c_int64_t c_int_least8_t c_int_least16_t c_int_least32_t c_int_least64_t c_int_fast8_t c_int_fast16_t c_int_fast32_t c_int_fast64_t c_intmax_t C_intptr_t c_float c_double c_long_double c_float_complex c_double_complex c_long_double_complex c_bool c_char c_null_ptr c_null_funptr c_new_line c_carriage_return c_horizontal_tab c_vertical_tab iso_c_binding c_loc c_funloc c_associated c_f_pointer c_ptr c_funptr iso_fortran_env character_storage_size error_unit file_storage_size input_unit iostat_end iostat_eor numeric_storage_size output_unit c_f_procpointer ieee_arithmetic ieee_support_underflow_control ieee_get_underflow_mode ieee_set_underflow_mode newunit contiguous recursive pad position action delim readwrite eor advance nml interface procedure namelist include sequence elemental pure integer real character complex logical dimension allocatable|10 parameter external implicit|10 none double precision assign intent optional pointer target in out common equivalence data",built_in:"alog alog10 amax0 amax1 amin0 amin1 amod cabs ccos cexp clog csin csqrt dabs dacos dasin datan datan2 dcos dcosh ddim dexp dint dlog dlog10 dmax1 dmin1 dmod dnint dsign dsin dsinh dsqrt dtan dtanh float iabs idim idint idnint ifix isign max0 max1 min0 min1 sngl algama cdabs cdcos cdexp cdlog cdsin cdsqrt cqabs cqcos cqexp cqlog cqsin cqsqrt dcmplx dconjg derf derfc dfloat dgamma dimag dlgama iqint qabs qacos qasin qatan qatan2 qcmplx qconjg qcos qcosh qdim qerf qerfc qexp qgamma qimag qlgama qlog qlog10 qmax1 qmin1 qmod qnint qsign qsin qsinh qsqrt qtan qtanh abs acos aimag aint anint asin atan atan2 char cmplx conjg cos cosh exp ichar index int log log10 max min nint sign sin sinh sqrt tan tanh print write dim lge lgt lle llt mod nullify allocate deallocate adjustl adjustr all allocated any associated bit_size btest ceiling count cshift date_and_time digits dot_product eoshift epsilon exponent floor fraction huge iand ibclr ibits ibset ieor ior ishft ishftc lbound len_trim matmul maxexponent maxloc maxval merge minexponent minloc minval modulo mvbits nearest pack present product radix random_number random_seed range repeat reshape rrspacing scale scan selected_int_kind selected_real_kind set_exponent shape size spacing spread sum system_clock tiny transpose trim ubound unpack verify achar iachar transfer dble entry dprod cpu_time command_argument_count get_command get_command_argument get_environment_variable is_iostat_end ieee_arithmetic ieee_support_underflow_control
ieee_get_underflow_mode ieee_set_underflow_mode is_iostat_eor move_alloc new_line selected_char_kind same_type_as extends_type_ofacosh asinh atanh bessel_j0 bessel_j1 bessel_jn bessel_y0 bessel_y1 bessel_yn erf erfc erfc_scaled gamma log_gamma hypot norm2 atomic_define atomic_ref execute_command_line leadz trailz storage_size merge_bits bge bgt ble blt dshiftl dshiftr findloc iall iany iparity image_index lcobound ucobound maskl maskr num_images parity popcnt poppar shifta shiftl shiftr this_image"};return{cI:!0,aliases:["f90","f95"],k:n,i:/\/*/,c:[e.inherit(e.ASM,{cN:"string",r:0}),e.inherit(e.QSM,{cN:"string",r:0}),{cN:"function",bK:"subroutine function program",i:"[${=\\n]",c:[e.UTM,t]},e.C("!","$",{r:0}),{cN:"number",b:"(?=\\b|\\+|\\-|\\.)(?=\\.\\d|\\d)(?:\\d+)?(?:\\.?\\d*)(?:[de][+-]?\\d+)?\\b\\.?",r:0}]}});hljs.registerLanguage("tex",function(c){var e={cN:"tag",b:/\\/,r:0,c:[{cN:"name",v:[{b:/[a-zA-Zа-яА-я]+[*]?/},{b:/[^a-zA-Zа-яА-я0-9]/}],starts:{eW:!0,r:0,c:[{cN:"string",v:[{b:/\[/,e:/\]/},{b:/\{/,e:/\}/}]},{b:/\s*=\s*/,eW:!0,r:0,c:[{cN:"number",b:/-?\d*\.?\d+(pt|pc|mm|cm|in|dd|cc|ex|em)?/}]}]}}]};return{c:[e,{cN:"formula",c:[e],r:0,v:[{b:/\$\$/,e:/\$\$/},{b:/\$/,e:/\$/}]},c.C("%","$",{r:0})]}});hljs.registerLanguage("typescript",function(e){var r={keyword:"in if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const class public private protected get set super static implements enum export import declare type namespace abstract",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document any number boolean string void"};return{aliases:["ts"],k:r,c:[{cN:"meta",b:/^\s*['"]use strict['"]/},e.ASM,e.QSM,{cN:"string",b:"`",e:"`",c:[e.BE,{cN:"subst",b:"\\$\\{",e:"\\}"}]},e.CLCM,e.CBCM,{cN:"number",v:[{b:"\\b(0[bB][01]+)"},{b:"\\b(0[oO][0-7]+)"},{b:e.CNR}],r:0},{b:"("+e.RSR+"|\\b(case|return|throw)\\b)\\s*",k:"return throw case",c:[e.CLCM,e.CBCM,e.RM],r:0},{cN:"function",b:"function",e:/[\{;]/,eE:!0,k:r,c:["self",e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/}),{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,k:r,c:[e.CLCM,e.CBCM],i:/["'\(]/}],i:/\[|%/,r:0},{bK:"constructor",e:/\{/,eE:!0},{bK:"module",e:/\{/,eE:!0},{bK:"interface",e:/\{/,eE:!0,k:"interface extends"},{b:/\$[(.]/},{b:"\\."+e.IR,r:0}]}});hljs.registerLanguage("scss",function(e){var t="[a-zA-Z-][a-zA-Z0-9_-]*",i={cN:"variable",b:"(\\$"+t+")\\b"},r={cN:"number",b:"#[0-9A-Fa-f]+"};({cN:"attribute",b:"[A-Z_\\.\\-]+",e:":",eE:!0,i:"[^\\s]",starts:{eW:!0,eE:!0,c:[r,e.CSSNM,e.QSM,e.ASM,e.CBCM,{cN:"meta",b:"!important"}]}});return{cI:!0,i:"[=/|']",c:[e.CLCM,e.CBCM,{cN:"selector-id",b:"\\#[A-Za-z0-9_-]+",r:0},{cN:"selector-class",b:"\\.[A-Za-z0-9_-]+",r:0},{cN:"selector-attr",b:"\\[",e:"\\]",i:"$"},{cN:"selector-tag",b:"\\b(a|abbr|acronym|address|area|article|aside|audio|b|base|big|blockquote|body|br|button|canvas|caption|cite|code|col|colgroup|command|datalist|dd|del|details|dfn|div|dl|dt|em|embed|fieldset|figcaption|figure|footer|form|frame|frameset|(h[1-6])|head|header|hgroup|hr|html|i|iframe|img|input|ins|kbd|keygen|label|legend|li|link|map|mark|meta|meter|nav|noframes|noscript|object|ol|optgroup|option|output|p|param|pre|progress|q|rp|rt|ruby|samp|script|section|select|small|span|strike|strong|style|sub|sup|table|tbody|td|textarea|tfoot|th|thead|time|title|tr|tt|ul|var|video)\\b",r:0},{b:":(visited|valid|root|right|required|read-write|read-only|out-range|optional|only-of-type|only-child|nth-of-type|nth-last-of-type|nth-last-child|nth-child|not|link|left|last-of-type|last-child|lang|invalid|indeterminate|in-range|hover|focus|first-of-type|first-line|first-letter|first-child|first|enabled|empty|disabled|default|checked|before|after|active)"},{b:"::(after|before|choices|first-letter|first-line|repeat-index|repeat-item|selection|value)"},i,{cN:"attribute",b:"\\b(z-index|word-wrap|word-spacing|word-break|width|widows|white-space|visibility|vertical-align|unicode-bidi|transition-timing-function|transition-property|transition-duration|transition-delay|transition|transform-style|transform-origin|transform|top|text-underline-position|text-transform|text-shadow|text-rendering|text-overflow|text-indent|text-decoration-style|text-decoration-line|text-decoration-color|text-decoration|text-align-last|text-align|tab-size|table-layout|right|resize|quotes|position|pointer-events|perspective-origin|perspective|page-break-inside|page-break-before|page-break-after|padding-top|padding-right|padding-left|padding-bottom|padding|overflow-y|overflow-x|overflow-wrap|overflow|outline-width|outline-style|outline-offset|outline-color|outline|orphans|order|opacity|object-position|object-fit|normal|none|nav-up|nav-right|nav-left|nav-index|nav-down|min-width|min-height|max-width|max-height|mask|marks|margin-top|margin-right|margin-left|margin-bottom|margin|list-style-type|list-style-position|list-style-image|list-style|line-height|letter-spacing|left|justify-content|initial|inherit|ime-mode|image-orientation|image-resolution|image-rendering|icon|hyphens|height|font-weight|font-variant-ligatures|font-variant|font-style|font-stretch|font-size-adjust|font-size|font-language-override|font-kerning|font-feature-settings|font-family|font|float|flex-wrap|flex-shrink|flex-grow|flex-flow|flex-direction|flex-basis|flex|filter|empty-cells|display|direction|cursor|counter-reset|counter-increment|content|column-width|column-span|column-rule-width|column-rule-style|column-rule-color|column-rule|column-gap|column-fill|column-count|columns|color|clip-path|clip|clear|caption-side|break-inside|break-before|break-after|box-sizing|box-shadow|box-decoration-break|bottom|border-width|border-top-width|border-top-style|border-top-right-radius|border-top-left-radius|border-top-color|border-top|border-style|border-spacing|border-right-width|border-right-style|border-right-color|border-right|border-radius|border-left-width|border-left-style|border-left-color|border-left|border-image-width|border-image-source|border-image-slice|border-image-repeat|border-image-outset|border-image|border-color|border-collapse|border-bottom-width|border-bottom-style|border-bottom-right-radius|border-bottom-left-radius|border-bottom-color|border-bottom|border|background-size|background-repeat|background-position|background-origin|background-image|background-color|background-clip|background-attachment|background-blend-mode|background|backface-visibility|auto|animation-timing-function|animation-play-state|animation-name|animation-iteration-count|animation-fill-mode|animation-duration|animation-direction|animation-delay|animation|align-self|align-items|align-content)\\b",i:"[^\\s]"},{b:"\\b(whitespace|wait|w-resize|visible|vertical-text|vertical-ideographic|uppercase|upper-roman|upper-alpha|underline|transparent|top|thin|thick|text|text-top|text-bottom|tb-rl|table-header-group|table-footer-group|sw-resize|super|strict|static|square|solid|small-caps|separate|se-resize|scroll|s-resize|rtl|row-resize|ridge|right|repeat|repeat-y|repeat-x|relative|progress|pointer|overline|outside|outset|oblique|nowrap|not-allowed|normal|none|nw-resize|no-repeat|no-drop|newspaper|ne-resize|n-resize|move|middle|medium|ltr|lr-tb|lowercase|lower-roman|lower-alpha|loose|list-item|line|line-through|line-edge|lighter|left|keep-all|justify|italic|inter-word|inter-ideograph|inside|inset|inline|inline-block|inherit|inactive|ideograph-space|ideograph-parenthesis|ideograph-numeric|ideograph-alpha|horizontal|hidden|help|hand|groove|fixed|ellipsis|e-resize|double|dotted|distribute|distribute-space|distribute-letter|distribute-all-lines|disc|disabled|default|decimal|dashed|crosshair|collapse|col-resize|circle|char|center|capitalize|break-word|break-all|bottom|both|bolder|bold|block|bidi-override|below|baseline|auto|always|all-scroll|absolute|table|table-cell)\\b"},{b:":",e:";",c:[i,r,e.CSSNM,e.QSM,e.ASM,{cN:"meta",b:"!important"}]},{b:"@",e:"[{;]",k:"mixin include extend for if else each while charset import debug media page content font-face namespace warn",c:[i,e.QSM,e.ASM,r,e.CSSNM,{b:"\\s[A-Za-z0-9_.-]+",r:0}]}]}});hljs.registerLanguage("puppet",function(e){var s={keyword:"and case default else elsif false if in import enherits node or true undef unless main settings $string ",literal:"alias audit before loglevel noop require subscribe tag owner ensure group mode name|0 changes context force incl lens load_path onlyif provider returns root show_diff type_check en_address ip_address realname command environment hour monute month monthday special target weekday creates cwd ogoutput refresh refreshonly tries try_sleep umask backup checksum content ctime force ignore links mtime purge recurse recurselimit replace selinux_ignore_defaults selrange selrole seltype seluser source souirce_permissions sourceselect validate_cmd validate_replacement allowdupe attribute_membership auth_membership forcelocal gid ia_load_module members system host_aliases ip allowed_trunk_vlans description device_url duplex encapsulation etherchannel native_vlan speed principals allow_root auth_class auth_type authenticate_user k_of_n mechanisms rule session_owner shared options device fstype enable hasrestart directory present absent link atboot blockdevice device dump pass remounts poller_tag use message withpath adminfile allow_virtual allowcdrom category configfiles flavor install_options instance package_settings platform responsefile status uninstall_options vendor unless_system_user unless_uid binary control flags hasstatus manifest pattern
restart running start stop allowdupe auths expiry gid groups home iterations key_membership keys managehome membership password password_max_age password_min_age profile_membership profiles project purge_ssh_keys role_membership roles salt shell uid baseurl cost descr enabled enablegroups exclude failovermethod gpgcheck gpgkey http_caching include includepkgs keepalive metadata_expire metalink mirrorlist priority protect proxy proxy_password proxy_username repo_gpgcheck s3_enabled skip_if_unavailable sslcacert sslclientcert sslclientkey sslverify mounted",built_in:"architecture augeasversion blockdevices boardmanufacturer boardproductname boardserialnumber cfkey dhcp_servers domain ec2_ ec2_userdata facterversion filesystems ldom fqdn gid hardwareisa hardwaremodel hostname id|0 interfaces ipaddress ipaddress_ ipaddress6 ipaddress6_ iphostnumber is_virtual kernel kernelmajversion kernelrelease kernelversion kernelrelease kernelversion lsbdistcodename lsbdistdescription lsbdistid lsbdistrelease lsbmajdistrelease lsbminordistrelease lsbrelease macaddress macaddress_ macosx_buildversion macosx_productname macosx_productversion macosx_productverson_major macosx_productversion_minor manufacturer memoryfree memorysize netmask metmask_ network_ operatingsystem operatingsystemmajrelease operatingsystemrelease osfamily partitions path physicalprocessorcount processor processorcount productname ps puppetversion rubysitedir rubyversion selinux selinux_config_mode selinux_config_policy selinux_current_mode selinux_current_mode selinux_enforced selinux_policyversion serialnumber sp_ sshdsakey sshecdsakey sshrsakey swapencrypted swapfree swapsize timezone type uniqueid uptime uptime_days uptime_hours uptime_seconds uuid virtual vlans xendomains zfs_version zonenae zones zpool_version"},r=e.C("#","$"),a="([A-Za-z_]|::)(\\w|::)*",i=e.inherit(e.TM,{b:a}),o={cN:"variable",b:"\\$"+a},t={cN:"string",c:[e.BE,o],v:[{b:/'/,e:/'/},{b:/"/,e:/"/}]};return{aliases:["pp"],c:[r,o,t,{bK:"class",e:"\\{|;",i:/=/,c:[i,r]},{bK:"define",e:/\{/,c:[{cN:"section",b:e.IR,endsParent:!0}]},{b:e.IR+"\\s+\\{",rB:!0,e:/\S/,c:[{cN:"keyword",b:e.IR},{b:/\{/,e:/\}/,k:s,r:0,c:[t,r,{b:"[a-zA-Z_]+\\s*=>",rB:!0,e:"=>",c:[{cN:"attr",b:e.IR}]},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},o]}],r:0}]}});hljs.registerLanguage("cpp",function(t){var e={cN:"keyword",b:"\\b[a-z\\d_]*_t\\b"},r={cN:"string",v:[t.inherit(t.QSM,{b:'((u8?|U)|L)?"'}),{b:'(u8?|U)?R"',e:'"',c:[t.BE]},{b:"'\\\\?.",e:"'",i:"."}]},i={cN:"number",v:[{b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},{b:t.CNR}],r:0},s={cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elif endif define undef warning error line pragma ifdef ifndef"},c:[{b:/\\\n/,r:0},{bK:"include",e:"$",k:{"meta-keyword":"include"},c:[t.inherit(r,{cN:"meta-string"}),{cN:"meta-string",b:"<",e:">",i:"\\n"}]},r,t.CLCM,t.CBCM]},a=t.IR+"\\s*\\(",c={keyword:"int float while private char catch export virtual operator sizeof dynamic_cast|10 typedef const_cast|10 const struct for static_cast|10 union namespace unsigned long volatile static protected bool template mutable if public friend do goto auto void enum else break extern using class asm case typeid short reinterpret_cast|10 default double register explicit signed typename try this switch continue inline delete alignof constexpr decltype noexcept static_assert thread_local restrict _Bool complex _Complex _Imaginary atomic_bool atomic_char atomic_schar atomic_uchar atomic_short atomic_ushort atomic_int atomic_uint atomic_long atomic_ulong atomic_llong atomic_ullong",built_in:"std string cin cout cerr clog stdin stdout stderr stringstream istringstream ostringstream auto_ptr deque list queue stack vector map set bitset multiset multimap unordered_set unordered_map unordered_multiset unordered_multimap array shared_ptr abort abs acos asin atan2 atan calloc ceil cosh cos exit exp fabs floor fmod fprintf fputs free frexp fscanf isalnum isalpha iscntrl isdigit isgraph islower isprint ispunct isspace isupper isxdigit tolower toupper labs ldexp log10 log malloc realloc memchr memcmp memcpy memset modf pow printf putchar puts scanf sinh sin snprintf sprintf sqrt sscanf strcat strchr strcmp strcpy strcspn strlen strncat strncmp strncpy strpbrk strrchr strspn strstr tanh tan vfprintf vprintf vsprintf endl initializer_list unique_ptr",literal:"true false nullptr NULL"};return{aliases:["c","cc","h","c++","h++","hpp"],k:c,i:"</",c:[e,t.CLCM,t.CBCM,i,r,s,{b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:c,c:["self",e]},{b:t.IR+"::",k:c},{bK:"new throw return else",r:0},{cN:"function",b:"("+t.IR+"[*&\\s]+)+"+a,rB:!0,e:/[{;=]/,eE:!0,k:c,i:/[^\w\s*&]/,c:[{b:a,rB:!0,c:[t.TM],r:0},{cN:"params",b:/\(/,e:/\)/,k:c,r:0,c:[t.CLCM,t.CBCM,r,i]},t.CLCM,t.CBCM,s]}]}});hljs.registerLanguage("gradle",function(e){return{cI:!0,k:{keyword:"task project allprojects subprojects artifacts buildscript configurations dependencies repositories sourceSets description delete from into include exclude source classpath destinationDir includes options sourceCompatibility targetCompatibility group flatDir doLast doFirst flatten todir fromdir ant def abstract break case catch continue default do else extends final finally for if implements instanceof native new private protected public return static switch synchronized throw throws transient try volatile while strictfp package import false null super this true antlrtask checkstyle codenarc copy boolean byte char class double float int interface long short void compile runTime file fileTree abs any append asList asWritable call collect compareTo count div dump each eachByte eachFile eachLine every find findAll flatten getAt getErr getIn getOut getText grep immutable inject inspect intersect invokeMethods isCase join leftShift minus multiply newInputStream newOutputStream newPrintWriter newReader newWriter next plus pop power previous print println push putAt read readBytes readLines reverse reverseEach round size sort splitEachLine step subMap times toInteger toList tokenize upto waitForOrKill withPrintWriter withReader withStream withWriter withWriterAppend write writeLine"},c:[e.CLCM,e.CBCM,e.ASM,e.QSM,e.NM,e.RM]}});hljs.registerLanguage("elixir",function(e){var r="[a-zA-Z_][a-zA-Z0-9_]*(\\!|\\?)?",n="[a-zA-Z_]\\w*[!?=]?|[-+~]\\@|<<|>>|=~|===?|<=>|[<>]=?|**|[-/+%^&*~`|]|\\[\\]=?",b="and false then defined module in return redo retry end for true self when next until do begin unless nil break not case cond alias while ensure or include use alias fn quote",c={cN:"subst",b:"#\\{",e:"}",l:r,k:b},a={cN:"string",c:[e.BE,c],v:[{b:/'/,e:/'/},{b:/"/,e:/"/}]},i={cN:"function",bK:"def defp defmacro",e:/\B\b/,c:[e.inherit(e.TM,{b:r,endsParent:!0})]},s=e.inherit(i,{cN:"class",bK:"defmodule defrecord",e:/\bdo\b|$|;/}),l=[a,e.HCM,s,i,{cN:"symbol",b:":",c:[a,{b:n}],r:0},{cN:"symbol",b:r+":",r:0},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},{cN:"variable",b:"(\\$\\W)|((\\$|\\@\\@?)(\\w+))"},{b:"->"},{b:"("+e.RSR+")\\s*",c:[e.HCM,{cN:"regexp",i:"\\n",c:[e.BE,c],v:[{b:"/",e:"/[a-z]*"},{b:"%r\\[",e:"\\][a-z]*"}]}],r:0}];return c.c=l,{l:r,k:b,c:l}});hljs.registerLanguage("http",function(e){var t="HTTP/[0-9\\.]+";return{aliases:["https"],i:"\\S",c:[{b:"^"+t,e:"$",c:[{cN:"number",b:"\\b\\d{3}\\b"}]},{b:"^[A-Z]+ (.*?) "+t+"$",rB:!0,e:"$",c:[{cN:"string",b:" ",e:" ",eB:!0,eE:!0},{b:t},{cN:"keyword",b:"[A-Z]+"}]},{cN:"attribute",b:"^\\w",e:": ",eE:!0,i:"\\n|\\s|=",starts:{e:"$",r:0}},{b:"\\n\\n",starts:{sL:[],eW:!0}}]}});hljs.registerLanguage("delphi",function(e){var r="exports register file shl array record property for mod while set ally label uses raise not stored class safecall var interface or private static exit index inherited to else stdcall override shr asm far resourcestring finalization packed virtual out and protected library do xorwrite goto near function end div overload object unit begin string on inline repeat until destructor write message program with read initialization except default nil if case cdecl in downto threadvar of try pascal const external constructor type public then implementation finally published procedure",t=[e.CLCM,e.C(/\{/,/\}/,{r:0}),e.C(/\(*/,/*\)/,{r:10})],a={cN:"string",b:/'/,e:/'/,c:[{b:/''/}]},i={cN:"string",b:/(#\d+)+/},c={b:e.IR+"\\s*=\\s*class\\s*\\(",rB:!0,c:[e.TM]},o={cN:"function",bK:"function constructor destructor procedure",e:/[:;]/,k:"function constructor|10 destructor|10 procedure|10",c:[e.TM,{cN:"params",b:/\(/,e:/\)/,k:r,c:[a,i]}].concat(t)};return{aliases:["dpr","dfm","pas","pascal","freepascal","lazarus","lpr","lfm"],cI:!0,k:r,i:/"|\$[G-Zg-z]|\/*|<\/|\|/,c:[a,i,e.NM,c,o].concat(t)}});hljs.registerLanguage("ruby",function(e){var b="[a-zA-Z_]\\w*[!?=]?|[-+~]\\@|<<|>>|=~|===?|<=>|[<>]=?|**|[-/+%^&*~`|]|\\[\\]=?",c="and false then defined module in return redo if BEGIN retry end for true self when next until do begin unless END rescue nil else break undef not super class case require yield alias while ensure elsif or include attr_reader attr_writer attr_accessor",r={cN:"doctag",b:"@[A-Za-z]+"},a={b:"#<",e:">"},s=[e.C("#","$",{c:[r]}),e.C("^\\=begin","^\\=end",{c:[r],r:10}),e.C("^__END__","\\n$")],n={cN:"subst",b:"#\\{",e:"}",k:c},t={cN:"string",c:[e.BE,n],v:[{b:/'/,e:/'/},{b:/"/,e:/"/},{b:/`/,e:/`/},{b:"%[qQwWx]?\\(",e:"\\)"},{b:"%[qQwWx]?\\[",e:"\\]"},{b:"%[qQwWx]?{",e:"}"},{b:"%[qQwWx]?<",e:">"},{b:"%[qQwWx]?/",e:"/"},{b:"%[qQwWx]?%",e:"%"},{b:"%[qQwWx]?-",e:"-"},{b:"%[qQwWx]?\\|",e:"\\|"},{b:/\B\?(\\\d{1,3}|\\x[A-Fa-f0-9]{1,2}|\\u[A-Fa-f0-9]{4}|\\?\S)\b/}]},i={cN:"params",b:"\\(",e:"\\)",endsParent:!0,k:c},d=[t,a,{cN:"class",bK:"class module",e:"$|;",i:/=/,c:[e.inherit(e.TM,{b:"[A-Za-z_]\\w*(::\\w+)*(\\?|\\!)?"}),{b:"<\\s*",c:[{b:"("+e.IR+"::)?"+e.IR}]}].concat(s)},{cN:"function",bK:"def",e:"$
;",c:[e.inherit(e.TM,{b:b}),i].concat(s)},{cN:"symbol",b:e.UIR+"(\\!|\\?)?:",r:0},{cN:"symbol",b:":",c:[t,{b:b}],r:0},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},{b:"(\\$\\W)|((\\$|\\@\\@?)(\\w+))"},{b:"("+e.RSR+")\\s*",c:[a,{cN:"regexp",c:[e.BE,n],i:/\n/,v:[{b:"/",e:"/[a-z]*"},{b:"%r{",e:"}[a-z]*"},{b:"%r\\(",e:"\\)[a-z]*"},{b:"%r!",e:"![a-z]*"},{b:"%r\\[",e:"\\][a-z]*"}]}].concat(s),r:0}].concat(s);n.c=d,i.c=d;var o="[>?]>",l="[\\w#]+\\(\\w+\\):\\d+:\\d+>",u="(\\w+-)?\\d+\\.\\d+\\.\\d(p\\d+)?[^>]+>",w=[{b:/^\s*=>/,starts:{e:"$",c:d}},{cN:"meta",b:"^("+o+"|"+l+"|"+u+")",starts:{e:"$",c:d}}];return{aliases:["rb","gemspec","podspec","thor","irb"],k:c,i:/\/*/,c:s.concat(w).concat(d)}});hljs.registerLanguage("ceylon",function(e){var a="assembly module package import alias class interface object given value assign void function new of extends satisfies abstracts in out return break continue throw assert dynamic if else switch case for while try catch finally then let this outer super is exists nonempty",t="shared abstract formal default actual variable late native deprecatedfinal sealed annotation suppressWarnings small",s="doc by license see throws tagged",n={cN:"subst",eB:!0,eE:!0,b:/``/,e:/``/,k:a,r:10},r=[{cN:"string",b:'"""',e:'"""',r:10},{cN:"string",b:'"',e:'"',c:[n]},{cN:"string",b:"'",e:"'"},{cN:"number",b:"#[0-9a-fA-F_]+|\\$[01_]+|[0-9_]+(?:\\.[0-9_](?:[eE][+-]?\\d+)?)?[kMGTPmunpf]?",r:0}];return n.c=r,{k:{keyword:a+" "+t,meta:s},i:"\\$[^01]|#[^0-9a-fA-F]",c:[e.CLCM,e.C("/*","*/",{c:["self"]}),{cN:"meta",b:'@[a-z]\\w*(?:\\:"[^"]*")?'}].concat(r)}});hljs.registerLanguage("dts",function(e){var a={cN:"string",v:[e.inherit(e.QSM,{b:'((u8?|U)|L)?"'}),{b:'(u8?|U)?R"',e:'"',c:[e.BE]},{b:"'\\\\?.",e:"'",i:"."}]},c={cN:"number",v:[{b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},{b:e.CNR}],r:0},b={cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elif endif define undef ifdef ifndef"},c:[{b:/\\\n/,r:0},{bK:"include",e:"$",k:{"meta-keyword":"include"},c:[e.inherit(a,{cN:"meta-string"}),{cN:"meta-string",b:"<",e:">",i:"\\n"}]},a,e.CLCM,e.CBCM]},i={cN:"variable",b:"\\&[a-z\\d_]*\\b"},r={cN:"meta-keyword",b:"/[a-z][a-z\\d-]*/"},d={cN:"symbol",b:"^\\s*[a-zA-Z_][a-zA-Z\\d_]*:"},n={cN:"params",b:"<",e:">",c:[c,i]},s={cN:"class",b:/[a-zA-Z_][a-zA-Z\d_@]*\s{/,e:/[{;=]/,rB:!0,eE:!0},t={cN:"class",b:"/\\s*{",e:"};",r:10,c:[i,r,d,s,n,e.CLCM,e.CBCM,c,a]};return{k:"",c:[t,i,r,d,s,n,e.CLCM,e.CBCM,c,a,b,{b:e.IR+"::",k:""}]}});hljs.registerLanguage("django",function(e){var t={b:/\|[A-Za-z]+:?/,k:{name:"truncatewords removetags linebreaksbr yesno get_digit timesince random striptags filesizeformat escape linebreaks length_is ljust rjust cut urlize fix_ampersands title floatformat capfirst pprint divisibleby add make_list unordered_list urlencode timeuntil urlizetrunc wordcount stringformat linenumbers slice date dictsort dictsortreversed default_if_none pluralize lower join center default truncatewords_html upper length phone2numeric wordwrap time addslashes slugify first escapejs force_escape iriencode last safe safeseq truncatechars localize unlocalize localtime utc timezone"},c:[e.QSM,e.ASM]};return{aliases:["jinja"],cI:!0,sL:"xml",c:[e.C(/\{%\s*comment\s*%}/,/\{%\s*endcomment\s*%}/),e.C(/\{#/,/#}/),{cN:"template-tag",b:/\{%/,e:/%}/,c:[{cN:"name",b:/\w+/,k:{name:"comment endcomment load templatetag ifchanged endifchanged if endif firstof for endfor ifnotequal endifnotequal widthratio extends include spaceless endspaceless regroup ifequal endifequal ssi now with cycle url filter endfilter debug block endblock else autoescape endautoescape csrf_token empty elif endwith static trans blocktrans endblocktrans get_static_prefix get_media_prefix plural get_current_language language get_available_languages get_current_language_bidi get_language_info get_language_info_list localize endlocalize localtime endlocaltime timezone endtimezone get_current_timezone verbatim"},starts:{eW:!0,k:"in by as",c:[t],r:0}}]},{cN:"template-variable",b:/\{\{/,e:/}}/,c:[t]}]}});hljs.registerLanguage("css",function(e){var c="[a-zA-Z-][a-zA-Z0-9_-]*",t={b:/[A-Z_\.\-]+\s*:/,rB:!0,e:";",eW:!0,c:[{cN:"attribute",b:/\S/,e:":",eE:!0,starts:{eW:!0,eE:!0,c:[{b:/[\w-]+\(/,rB:!0,c:[{cN:"built_in",b:/[\w-]+/},{b:/\(/,e:/\)/,c:[e.ASM,e.QSM]}]},e.CSSNM,e.QSM,e.ASM,e.CBCM,{cN:"number",b:"#[0-9A-Fa-f]+"},{cN:"meta",b:"!important"}]}}]};return{cI:!0,i:/[=\/|'\$]/,c:[e.CBCM,{cN:"selector-id",b:/#[A-Za-z0-9_-]+/},{cN:"selector-class",b:/\.[A-Za-z0-9_-]+/},{cN:"selector-attr",b:/\[/,e:/\]/,i:"$"},{cN:"selector-pseudo",b:/:(:)?[a-zA-Z0-9_\-\+\(\)"'.]+/},{b:"@(font-face|page)",l:"[a-z-]+",k:"font-face page"},{b:"@",e:"[{;]",c:[{cN:"keyword",b:/\S+/},{b:/\s/,eW:!0,eE:!0,r:0,c:[e.ASM,e.QSM,e.CSSNM]}]},{cN:"selector-tag",b:c,r:0},{b:"{",e:"}",i:/\S/,c:[e.CBCM,t]}]}});hljs.registerLanguage("qml",function(r){var e={keyword:"in of on if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const export super debugger as async await",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document Symbol Set Map WeakSet WeakMap Proxy Reflect Behavior bool color coordinate date double enumeration font geocircle georectangle geoshape int list matrix4x4 parent point quaternion real rect size string url var variant vector2d vector3d vector4dPromise"},t="[a-zA-Z_][a-zA-Z0-9\\._]*",a={cN:"string",b:"(\\b|\"|')",e:"(//|/*|$)",i:"\\n",c:[r.BE]},n={bK:"import",e:"$",starts:{cN:"string",e:"(//|/*|$)",rE:!0},c:[a]},o={cN:"keyword",b:"\\bproperty\\b",starts:{cN:"string",e:"(:|=|;|,|//|/*|$)",rE:!0},r:0},i={cN:"keyword",b:"\\bsignal\\b",starts:{cN:"string",e:"(\\(|:|=|;|,|//|/*|$)",rE:!0},r:10},c={cN:"attribute",b:"\\bid\\s*:",starts:{cN:"emphasis",e:t,rE:!1},r:10},s={b:t+"\\s*:",rB:!0,c:[{cN:"attribute",b:t,includeBegin:!0,e:"\\s*:",eE:!0}],r:0},b={b:t+"\\s*{",rB:!0,c:[{cN:"decorator",k:e,b:t,includeBegin:!0,e:"\\s*{",eE:!0}],r:0};return{aliases:["qt"],cI:!1,k:e,c:[{cN:"pi",b:/^\s*['"]use (strict|asm)['"]/},r.ASM,r.QSM,{cN:"string",b:"`",e:"`",c:[r.BE,{cN:"subst",b:"\\$\\{",e:"\\}"}]},r.CLCM,r.CBCM,{cN:"number",v:[{b:"\\b(0[bB][01]+)"},{b:"\\b(0[oO][0-7]+)"},{b:r.CNR}],r:0},{b:"("+r.RSR+"|\\b(case|return|throw)\\b)\\s*",k:"return throw case",c:[r.CLCM,r.CBCM,r.RM,{b:/</,e:/>\s*[);\]]/,r:0,sL:"xml"}],r:0},n,i,o,{cN:"function",bK:"function",e:/\{/,eE:!0,c:[r.inherit(r.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/}),{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,c:[r.CLCM,r.CBCM]}],i:/\[|%/},{b:"\\."+r.IR,r:0},c,s,b],i:/#/}});hljs.registerLanguage("coffeescript",function(e){var c={keyword:"in if for while finally new do return else break catch instanceof throw try this switch continue typeof delete debugger super then unless until loop of by when and or is isnt not",literal:"true false null undefined yes no on off",built_in:"npm require console print module global window document"},n="[A-Za-z$_][0-9A-Za-z$_]*",r={cN:"subst",b:/#\{/,e:/}/,k:c},s=[e.BNM,e.inherit(e.CNM,{starts:{e:"(\\s*/)?",r:0}}),{cN:"string",v:[{b:/'''/,e:/'''/,c:[e.BE]},{b:/'/,e:/'/,c:[e.BE]},{b:/"""/,e:/"""/,c:[e.BE,r]},{b:/"/,e:/"/,c:[e.BE,r]}]},{cN:"regexp",v:[{b:"///",e:"///",c:[r,e.HCM]},{b:"//[gim]*",r:0},{b:/\/(?![*])(\\\/|.)*?\/[gim]*(?=\W|$)/}]},{b:"@"+n},{b:"`",e:"`",eB:!0,eE:!0,sL:"javascript"}];r.c=s;var i=e.inherit(e.TM,{b:n}),t="(\\(.*\\))?\\s*\\B[-=]>",o={cN:"params",b:"\\([^\\(]",rB:!0,c:[{b:/\(/,e:/\)/,k:c,c:["self"].concat(s)}]};return{aliases:["coffee","cson","iced"],k:c,i:/\/*/,c:s.concat([e.C("###","###"),e.HCM,{cN:"function",b:"^\\s*"+n+"\\s*=\\s*"+t,e:"[-=]>",rB:!0,c:[i,o]},{b:/[:\(,=]\s*/,r:0,c:[{cN:"function",b:t,e:"[-=]>",rB:!0,c:[o]}]},{cN:"class",bK:"class",e:"$",i:/[:="\[\]]/,c:[{bK:"extends",eW:!0,i:/[:="\[\]]/,c:[i]},i]},{b:n+":",e:":",rB:!0,rE:!0,r:0}])}});hljs.registerLanguage("vbscript",function(e){return{aliases:["vbs"],cI:!0,k:{keyword:"call class const dim do loop erase execute executeglobal exit for each next function if then else on error option explicit new private property let get public randomize redim rem select case set stop sub while wend with end to elseif is or xor and not class_initialize class_terminate default preserve in me byval byref step resume goto",built_in:"lcase month vartype instrrev ubound setlocale getobject rgb getref string weekdayname rnd dateadd monthname now day minute isarray cbool round formatcurrency conversions csng timevalue second year space abs clng timeserial fixs len asc isempty maths dateserial atn timer isobject filter weekday datevalue ccur isdate instr datediff formatdatetime replace isnull right sgn array snumeric log cdbl hex chr lbound msgbox ucase getlocale cos cdate cbyte rtrim join hour oct typename trim strcomp int createobject loadpicture tan formatnumber mid scriptenginebuildversion scriptengine split scriptengineminorversion cint sin datepart ltrim sqr scriptenginemajorversion time derived eval date formatpercent exp inputbox left ascw chrw regexp server response request cstr err",literal:"true false null nothing empty"},i:"//",c:[e.inherit(e.QSM,{c:[{b:'""'}]}),e.C(/'/,/$/,{r:0}),e.CNM]}});hljs.registerLanguage("fsharp",function(e){var t={b:"<",e:">",c:[e.inherit(e.TM,{b:/'[a-zA-Z0-9_]+/})]};return{aliases:["fs"],k:"abstract and as assert base begin class default delegate do done downcast downto elif else end exception extern false finally for fun function global if in inherit inline interface internal lazy let match member module mutable namespace new null of
open or override private public rec return sig static struct then to true try type upcast use val void when while with yield",i:/\/*/,c:[{cN:"keyword",b:/\b(yield|return|let|do)!/},{cN:"string",b:'@"',e:'"',c:[{b:'""'}]},{cN:"string",b:'"""',e:'"""'},e.C("\\(*","*\\)"),{cN:"class",bK:"type",e:"\\(|=|$",eE:!0,c:[e.UTM,t]},{cN:"meta",b:"\\[<",e:">\\]",r:10},{cN:"symbol",b:"\\B('[A-Za-z])\\b",c:[e.BE]},e.CLCM,e.inherit(e.QSM,{i:null}),e.CNM]}});hljs.registerLanguage("dart",function(e){var t={cN:"subst",b:"\\$\\{",e:"}",k:"true false null this is new super"},r={cN:"string",v:[{b:"r'''",e:"'''"},{b:'r"""',e:'"""'},{b:"r'",e:"'",i:"\\n"},{b:'r"',e:'"',i:"\\n"},{b:"'''",e:"'''",c:[e.BE,t]},{b:'"""',e:'"""',c:[e.BE,t]},{b:"'",e:"'",i:"\\n",c:[e.BE,t]},{b:'"',e:'"',i:"\\n",c:[e.BE,t]}]};t.c=[e.CNM,r];var n={keyword:"assert async await break case catch class const continue default do else enum extends false final finally for if in is new null rethrow return super switch sync this throw true try var void while with yield abstract as dynamic export external factory get implements import library operator part set static typedef",built_in:"print Comparable DateTime Duration Function Iterable Iterator List Map Match Null Object Pattern RegExp Set Stopwatch String StringBuffer StringSink Symbol Type Uri bool double int num document window querySelector querySelectorAll Element ElementList"};return{k:n,c:[r,e.C("/**","*/",{sL:"markdown"}),e.C("///","$",{sL:"markdown"}),e.CLCM,e.CBCM,{cN:"class",bK:"class interface",e:"{",eE:!0,c:[{bK:"extends implements"},e.UTM]},e.CNM,{cN:"meta",b:"@[A-Za-z]+"},{b:"=>"}]}});hljs.registerLanguage("asciidoc",function(e){return{aliases:["adoc"],c:[e.C("^/{4,}\\n","\\n/{4,}$",{r:10}),e.C("^//","$",{r:0}),{cN:"title",b:"^\\.\\w.*$"},{b:"^[=*]{4,}\\n",e:"\\n^[=*]{4,}$",r:10},{cN:"section",r:10,v:[{b:"^(={1,5}) .+?(\\1)?$"},{b:"^[^\\[\\]\\n]+?\\n[=\\-~\\^\\+]{2,}$"}]},{cN:"meta",b:"^:.+?:",e:"\\s",eE:!0,r:10},{cN:"meta",b:"^\\[.+?\\]$",r:0},{cN:"quote",b:"^_{4,}\\n",e:"\\n_{4,}$",r:10},{cN:"code",b:"^[\\-\\.]{4,}\\n",e:"\\n[\\-\\.]{4,}$",r:10},{b:"^\\+{4,}\\n",e:"\\n\\+{4,}$",c:[{b:"<",e:">",sL:"xml",r:0}],r:10},{cN:"bullet",b:"^(*+|\\-+|\\.+|[^\\n]+?::)\\s+"},{cN:"symbol",b:"^(NOTE|TIP|IMPORTANT|WARNING|CAUTION):\\s+",r:10},{cN:"strong",b:"\\B*(?![*\\s])",e:"(\\n{2}|*)",c:[{b:"*\\w",r:0}]},{cN:"emphasis",b:"\\B'(?!['\\s])",e:"(\\n{2}|')",c:[{b:"\\\\'\\w",r:0}],r:0},{cN:"emphasis",b:"_(?![_\\s])",e:"(\\n{2}|_)",r:0},{cN:"string",v:[{b:"``.+?''"},{b:"`.+?'"}]},{cN:"code",b:"(`.+?`|\\+.+?\\+)",r:0},{cN:"code",b:"^[\\t]",e:"$",r:0},{b:"^'{3,}[\\t]*$",r:10},{b:"(link:)?(http|https|ftp|file|irc|image:?):\\S+\\[.*?\\]",rB:!0,c:[{b:"(link|image:?):",r:0},{cN:"link",b:"\\w",e:"[^\\[]+",r:0},{cN:"string",b:"\\[",e:"\\]",eB:!0,eE:!0,r:0}],r:10}]}});hljs.registerLanguage("dos",function(e){var r=e.C(/@?rem\b/,/$/,{r:10}),t={cN:"symbol",b:"^\\s*[A-Za-z._?][A-Za-z0-9_$#@~.?]*(:|\\s+label)",r:0};return{aliases:["bat","cmd"],cI:!0,i:/\/*/,k:{keyword:"if else goto for in do call exit not exist errorlevel defined equ neq lss leq gtr geq",built_in:"prn nul lpt3 lpt2 lpt1 con com4 com3 com2 com1 aux shift cd dir echo setlocal endlocal set pause copy append assoc at attrib break cacls cd chcp chdir chkdsk chkntfs cls cmd color comp compact convert date dir diskcomp diskcopy doskey erase fs find findstr format ftype graftabl help keyb label md mkdir mode more move path pause print popd pushd promt rd recover rem rename replace restore rmdir shiftsort start subst time title tree type ver verify vol ping net ipconfig taskkill xcopy ren del"},c:[{cN:"variable",b:/%%[^]|%[^]+?%|![^]+?!/},{cN:"function",b:t.b,e:"goto:eof",c:[e.inherit(e.TM,{b:"([_a-zA-Z]\\w*\\.)*([_a-zA-Z]\\w*:)?[_a-zA-Z]\\w*"}),r]},{cN:"number",b:"\\b\\d+",r:0},r]}});hljs.registerLanguage("lua",function(e){var t="\\[=*\\[",a="\\]=*\\]",r={b:t,e:a,c:["self"]},n=[e.C("--(?!"+t+")","$"),e.C("--"+t,a,{c:[r],r:10})];return{l:e.UIR,k:{keyword:"and break do else elseif end false for if in local nil not or repeat return then true until while",built_in:"_G _VERSION assert collectgarbage dofile error getfenv getmetatable ipairs load loadfile loadstring module next pairs pcall print rawequal rawget rawset require select setfenv setmetatable tonumber tostring type unpack xpcall coroutine debug io math os package string table"},c:n.concat([{cN:"function",bK:"function",e:"\\)",c:[e.inherit(e.TM,{b:"([_a-zA-Z]\\w*\\.)*([_a-zA-Z]\\w*:)?[_a-zA-Z]\\w*"}),{cN:"params",b:"\\(",eW:!0,c:n}].concat(n)},e.CNM,e.ASM,e.QSM,{cN:"string",b:t,e:a,c:[r],r:5}])}});hljs.registerLanguage("julia",function(e){var r={keyword:"in abstract baremodule begin bitstype break catch ccall const continue do else elseif end export finally for function global if immutable import importall let local macro module quote return try type typealias using while",literal:"true false ARGS CPU_CORES C_NULL DL_LOAD_PATH DevNull ENDIAN_BOM ENV I|0 Inf Inf16 Inf32 InsertionSort JULIA_HOME LOAD_PATH MS_ASYNC MS_INVALIDATE MS_SYNC MergeSort NaN NaN16 NaN32 OS_NAME QuickSort RTLD_DEEPBIND RTLD_FIRST RTLD_GLOBAL RTLD_LAZY RTLD_LOCAL RTLD_NODELETE RTLD_NOLOAD RTLD_NOW RoundDown RoundFromZero RoundNearest RoundToZero RoundUp STDERR STDIN STDOUT VERSION WORD_SIZE catalan cglobal e|0 eu|0 eulergamma golden im nothing pi γ π φ Inf64 NaN64 RoundNearestTiesAway RoundNearestTiesUp ",built_in:"ANY ASCIIString AbstractArray AbstractRNG AbstractSparseArray Any ArgumentError Array Associative Base64Pipe Bidiagonal BigFloat BigInt BitArray BitMatrix BitVector Bool BoundsError Box CFILE Cchar Cdouble Cfloat Char CharString Cint Clong Clonglong ClusterManager Cmd Coff_t Colon Complex Complex128 Complex32 Complex64 Condition Cptrdiff_t Cshort Csize_t Cssize_t Cuchar Cuint Culong Culonglong Cushort Cwchar_t DArray DataType DenseArray Diagonal Dict DimensionMismatch DirectIndexString Display DivideError DomainError EOFError EachLine Enumerate ErrorException Exception Expr Factorization FileMonitor FileOffset Filter Float16 Float32 Float64 FloatRange FloatingPoint Function GetfieldNode GotoNode Hermitian IO IOBuffer IOStream IPv4 IPv6 InexactError Int Int128 Int16 Int32 Int64 Int8 IntSet Integer InterruptException IntrinsicFunction KeyError LabelNode LambdaStaticData LineNumberNode LoadError LocalProcess MIME MathConst MemoryError MersenneTwister Method MethodError MethodTable Module NTuple NewvarNode Nothing Number ObjectIdDict OrdinalRange OverflowError ParseError PollingFileWatcher ProcessExitedException ProcessGroup Ptr QuoteNode Range Range1 Ranges Rational RawFD Real Regex RegexMatch RemoteRef RepString RevString RopeString RoundingMode Set SharedArray Signed SparseMatrixCSC StackOverflowError Stat StatStruct StepRange String SubArray SubString SymTridiagonal Symbol SymbolNode Symmetric SystemError Task TextDisplay Timer TmStruct TopNode Triangular Tridiagonal Type TypeConstructor TypeError TypeName TypeVar UTF16String UTF32String UTF8String UdpSocket Uint Uint128 Uint16 Uint32 Uint64 Uint8 UndefRefError UndefVarError UniformScaling UnionType UnitRange Unsigned Vararg VersionNumber WString WeakKeyDict WeakRef Woodbury Zip AbstractChannel AbstractFloat AbstractString AssertionError Base64DecodePipe Base64EncodePipe BufferStream CapturedException CartesianIndex CartesianRange Channel Cintmax_t CompositeException Cstring Cuintmax_t Cwstring Date DateTime Dims Enum GenSym GlobalRef HTML InitError InvalidStateException Irrational LinSpace LowerTriangular NullException Nullable OutOfMemoryError Pair PartialQuickSort Pipe RandomDevice ReadOnlyMemoryError ReentrantLock Ref RemoteException SegmentationFault SerializationState SimpleVector TCPSocket Text Tuple UDPSocket UInt UInt128 UInt16 UInt32 UInt64 UInt8 UnicodeError Union UpperTriangular Val Void WorkerConfig AbstractMatrix AbstractSparseMatrix AbstractSparseVector AbstractVecOrMat AbstractVector DenseMatrix DenseVecOrMat DenseVector Matrix SharedMatrix SharedVector StridedArray StridedMatrix StridedVecOrMat StridedVector VecOrMat Vector "},t="[A-Za-z_\\u00A1-\\uFFFF][A-Za-z_0-9\\u00A1-\\uFFFF]*",a={l:t,k:r,i:/<\//},n={cN:"type",b:/::/},o={cN:"type",b:/<:/},i={cN:"number",b:/(\b0x[\d_]*(\.[\d_]*)?|0x\.\d[\d_]*)p[-+]?\d+|\b0[box][a-fA-F0-9][a-fA-F0-9_]*|(\b\d[\d_]*(\.[\d_]*)?|\.\d[\d_]*)([eEfF][-+]?\d+)?/,r:0},l={cN:"string",b:/'(.|\\[xXuU][a-zA-Z0-9]+)'/},c={cN:"subst",b:/\$\(/,e:/\)/,k:r},s={cN:"variable",b:"\\$"+t},d={cN:"string",c:[e.BE,c,s],v:[{b:/\w*"""/,e:/"""\w*/,r:10},{b:/\w*"/,e:/"\w*/}]},S={cN:"string",c:[e.BE,c,s],b:"`",e:"`"},u={cN:"meta",b:"@"+t},g={cN:"comment",v:[{b:"#=",e:"=#",r:10},{b:"#",e:"$"}]};return a.c=[i,l,n,o,d,S,u,g,e.HCM],c.c=a.c,a});hljs.registerLanguage("matlab",function(e){var a=[e.CNM,{cN:"string",b:"'",e:"'",c:[e.BE,{b:"''"}]}],s={r:0,c:[{b:/'['\.]*/}]};return{k:{keyword:"break case catch classdef continue else elseif end enumerated events for function global if methods otherwise parfor persistent properties return spmd switch try while",built_in:"sin sind sinh asin asind asinh cos cosd cosh acos acosd acosh tan tand tanh atan atand atan2 atanh sec secd sech asec asecd asech csc cscd csch acsc acscd acsch cot cotd coth acot acotd acoth hypot exp expm1 log log1p log10 log2 pow2 realpow reallog realsqrt sqrt nthroot nextpow2 abs angle complex conj imag real unwrap isreal cplxpair fix floor ceil round mod rem sign airy besselj bessely besselh besseli besselk beta betainc betaln ellipj ellipke erf erfc erfcx erfinv expint gamma gammainc gammaln psi legendre cross dot factor isprime primes gcd lcm rat rats perms nchoosek factorial cart2sph cart2pol pol2cart sph2cart hsv2rgb rgb2hsv zeros ones eye repmat rand randn linspace logspace freqspace meshgrid accumarray size length ndims numel disp isempty isequal isequalwithequalnans cat reshape diag blkdiag tril triu fliplr flipud flipdim rot90 find sub2ind ind2sub bsxfun ndgrid permute ipermute shiftdim circshift squeeze isscalar isvector ans eps realmax realmin pi i inf nan isnan isinf isfinite j why compan
gallery hadamard hankel hilb invhilb magic pascal rosser toeplitz vander wilkinson"},i:'(//|"|#|/*|\\s+/\\w+)',c:[{cN:"function",bK:"function",e:"$",c:[e.UTM,{cN:"params",v:[{b:"\\(",e:"\\)"},{b:"\\[",e:"\\]"}]}]},{b:/[a-zA-Z_][a-zA-Z_0-9]*'['\.]*/,rB:!0,r:0,c:[{b:/[a-zA-Z_][a-zA-Z_0-9]*/,r:0},s.c[0]]},{b:"\\[",e:"\\]",c:a,r:0,starts:s},{b:"\\{",e:/}/,c:a,r:0,starts:s},{b:/\)/,r:0,starts:s},e.C("^\\s*\\%\\{\\s*$","^\\s*\\%\\}\\s*$"),e.C("\\%","$")].concat(a)}});hljs.registerLanguage("markdown",function(e){return{aliases:["md","mkdown","mkd"],c:[{cN:"section",v:[{b:"^#{1,6}",e:"$"},{b:"^.+?\\n[=-]{2,}$"}]},{b:"<",e:">",sL:"xml",r:0},{cN:"bullet",b:"^([*+-]|(\\d+\\.))\\s+"},{cN:"strong",b:"[*_]{2}.+?[*_]{2}"},{cN:"emphasis",v:[{b:"*.+?*"},{b:"_.+?_",r:0}]},{cN:"quote",b:"^>\\s+",e:"$"},{cN:"code",v:[{b:"`.+?`"},{b:"^({4}|)",e:"$",r:0}]},{b:"^[-*]{3,}",e:"$"},{b:"\\[.+?\\][\\(\\[].*?[\\)\\]]",rB:!0,c:[{cN:"string",b:"\\[",e:"\\]",eB:!0,rE:!0,r:0},{cN:"link",b:"\\]\\(",e:"\\)",eB:!0,eE:!0},{cN:"symbol",b:"\\]\\[",e:"\\]",eB:!0,eE:!0}],r:10},{b:"^\\[.+\\]:",rB:!0,c:[{cN:"symbol",b:"\\[",e:"\\]:",eB:!0,eE:!0,starts:{cN:"link",e:"$"}}]}]}});hljs.registerLanguage("vim",function(e){return{l:/[!#@\w]+/,k:{keyword:"N|0 P|0 X|0 a|0 ab abc abo al am an|0 ar arga argd arge argdo argg argl argu as au aug aun b|0 bN ba bad bd be bel bf bl bm bn bo bp br brea breaka breakd breakl bro bufdo buffers bun bw c|0 cN cNf ca cabc caddb cad caddf cal cat cb cc ccl cd ce cex cf cfir cgetb cgete cg changes chd che checkt cl cla clo cm cmapc cme cn cnew cnf cno cnorea cnoreme co col colo com comc comp con conf cope cp cpf cq cr cs cst cu cuna cunme cw delm deb debugg delc delf dif diffg diffo diffp diffpu diffs diffthis dig di dl dell dj dli do doautoa dp dr ds dsp e|0 ea ec echoe echoh echom echon el elsei em en endfo endf endt endw ene ex exe exi exu f|0 files filet fin fina fini fir fix fo foldc foldd folddoc foldo for fu go gr grepa gu gv ha helpf helpg helpt hi hid his ia iabc if ij il im imapc ime ino inorea inoreme int is isp iu iuna iunme j|0 ju k|0 keepa kee keepj lN lNf l|0 lad laddb laddf la lan lat lb lc lch lcl lcs le lefta let lex lf lfir lgetb lgete lg lgr lgrepa lh ll lla lli lmak lm lmapc lne lnew lnf ln loadk lo loc lockv lol lope lp lpf lr ls lt lu lua luad luaf lv lvimgrepa lw m|0 ma mak map mapc marks mat me menut mes mk mks mksp mkv mkvie mod mz mzf nbc nb nbs new nm nmapc nme nn nnoreme noa no noh norea noreme norm nu nun nunme ol o|0 om omapc ome on ono onoreme opt ou ounme ow p|0 profd prof pro promptr pc ped pe perld po popu pp pre prev ps pt ptN ptf ptj ptl ptn ptp ptr pts pu pw py3 python3 py3d py3f py pyd pyf quita qa rec red redi redr redraws reg res ret retu rew ri rightb rub rubyd rubyf rund ru rv sN san sa sal sav sb sbN sba sbf sbl sbm sbn sbp sbr scrip scripte scs se setf setg setl sf sfir sh sim sig sil sl sla sm smap smapc sme sn sni sno snor snoreme sor so spelld spe spelli spellr spellu spellw sp spr sre st sta startg startr star stopi stj sts sun sunm sunme sus sv sw sy synti sync tN tabN tabc tabdo tabe tabf tabfir tabl tabm tabnew tabn tabo tabp tabr tabs tab ta tags tc tcld tclf te tf th tj tl tm tn to tp tr try ts tu u|0 undoj undol una unh unl unlo unm unme uns up ve verb vert vim vimgrepa vi viu vie vm vmapc vme vne vn vnoreme vs vu vunme windo w|0 wN wa wh wi winc winp wn wp wq wqa ws wu wv x|0 xa xmapc xm xme xn xnoreme xu xunme y|0 z|0 ~ Next Print append abbreviate abclear aboveleft all amenu anoremenu args argadd argdelete argedit argglobal arglocal argument ascii autocmd augroup aunmenu buffer bNext ball badd bdelete behave belowright bfirst blast bmodified bnext botright bprevious brewind break breakadd breakdel breaklist browse bunload bwipeout change cNext cNfile cabbrev cabclear caddbuffer caddexpr caddfile call catch cbuffer cclose center cexpr cfile cfirst cgetbuffer cgetexpr cgetfile chdir checkpath checktime clist clast close cmap cmapclear cmenu cnext cnewer cnfile cnoremap cnoreabbrev cnoremenu copy colder colorscheme command comclear compiler continue confirm copen cprevious cpfile cquit crewind cscope cstag cunmap cunabbrev cunmenu cwindow delete delmarks debug debuggreedy delcommand delfunction diffupdate diffget diffoff diffpatch diffput diffsplit digraphs display deletel djump dlist doautocmd doautoall deletep drop dsearch dsplit edit earlier echo echoerr echohl echomsg else elseif emenu endif endfor endfunction endtry endwhile enew execute exit exusage file filetype find finally finish first fixdel fold foldclose folddoopen folddoclosed foldopen function global goto grep grepadd gui gvim hardcopy help helpfind helpgrep helptags highlight hide history insert iabbrev iabclear ijump ilist imap imapclear imenu inoremap inoreabbrev inoremenu intro isearch isplit iunmap iunabbrev iunmenu join jumps keepalt keepmarks keepjumps lNext lNfile list laddexpr laddbuffer laddfile last language later lbuffer lcd lchdir lclose lcscope left leftabove lexpr lfile lfirst lgetbuffer lgetexpr lgetfile lgrep lgrepadd lhelpgrep llast llist lmake lmap lmapclear lnext lnewer lnfile lnoremap loadkeymap loadview lockmarks lockvar lolder lopen lprevious lpfile lrewind ltag lunmap luado luafile lvimgrep lvimgrepadd lwindow move mark make mapclear match menu menutranslate messages mkexrc mksession mkspell mkvimrc mkview mode mzscheme mzfile nbclose nbkey nbsart next nmap nmapclear nmenu nnoremap nnoremenu noautocmd noremap nohlsearch noreabbrev noremenu normal number nunmap nunmenu oldfiles open omap omapclear omenu only onoremap onoremenu options ounmap ounmenu ownsyntax print profdel profile promptfind promptrepl pclose pedit perl perldo pop popup ppop preserve previous psearch ptag ptNext ptfirst ptjump ptlast ptnext ptprevious ptrewind ptselect put pwd py3do py3file python pydo pyfile quit quitall qall read recover redo redir redraw redrawstatus registers resize retab return rewind right rightbelow ruby rubydo rubyfile rundo runtime rviminfo substitute sNext sandbox sargument sall saveas sbuffer sbNext sball sbfirst sblast sbmodified sbnext sbprevious sbrewind scriptnames scriptencoding scscope set setfiletype setglobal setlocal sfind sfirst shell simalt sign silent sleep slast smagic smapclear smenu snext sniff snomagic snoremap snoremenu sort source spelldump spellgood spellinfo spellrepall spellundo spellwrong split sprevious srewind stop stag startgreplace startreplace startinsert stopinsert stjump stselect sunhide sunmap sunmenu suspend sview swapname syntax syntime syncbind tNext tabNext tabclose tabedit tabfind tabfirst tablast tabmove tabnext tabonly tabprevious tabrewind tag tcl tcldo tclfile tearoff tfirst throw tjump tlast tmenu tnext topleft tprevious trewind tselect tunmenu undo undojoin undolist unabbreviate unhide unlet unlockvar unmap unmenu unsilent update vglobal version verbose vertical vimgrep vimgrepadd visual viusage view vmap vmapclear vmenu vnew vnoremap vnoremenu vsplit vunmap vunmenu write wNext wall while winsize wincmd winpos wnext wprevious wqall wsverb wundo wviminfo xit xall xmapclear xmap xmenu xnoremap xnoremenu xunmap xunmenu yank",built_in:"synIDtrans atan2 range matcharg did_filetype asin feedkeys xor argv complete_check add getwinposx getqflist getwinposy screencol clearmatches empty extend getcmdpos mzeval garbagecollect setreg ceil sqrt diff_hlID inputsecret get getfperm getpid filewritable shiftwidth max sinh isdirectory synID system inputrestore winline atan visualmode inputlist tabpagewinnr round getregtype mapcheck hasmapto histdel argidx findfile sha256 exists toupper getcmdline taglist string getmatches bufnr strftime winwidth bufexists strtrans tabpagebuflist setcmdpos remote_read printf setloclist getpos getline bufwinnr float2nr len getcmdtype diff_filler luaeval resolve libcallnr foldclosedend reverse filter has_key bufname str2float strlen setline getcharmod setbufvar index searchpos shellescape undofile foldclosed setqflist buflisted strchars str2nr virtcol floor remove undotree remote_expr winheight gettabwinvar reltime cursor tabpagenr finddir localtime acos getloclist search tanh matchend rename gettabvar strdisplaywidth type abs py3eval setwinvar tolower wildmenumode log10 spellsuggest bufloaded synconcealed nextnonblank server2client complete settabwinvar executable input wincol setmatches getftype hlID inputsave searchpair or screenrow line settabvar histadd deepcopy strpart remote_peek and eval getftime submatch screenchar winsaveview matchadd mkdir screenattr getfontname libcall reltimestr getfsize winnr invert pow getbufline byte2line soundfold repeat fnameescape tagfiles sin strwidth spellbadword trunc maparg log lispindent hostname setpos globpath remote_foreground getchar synIDattr fnamemodify cscope_connection stridx winbufnr indent min complete_add nr2char searchpairpos inputdialog values matchlist items hlexists strridx browsedir expand fmod pathshorten line2byte argc count getwinvar glob foldtextresult getreg foreground cosh matchdelete has char2nr simplify histget searchdecl iconv winrestcmd pumvisible writefile foldlevel haslocaldir keys cos matchstr foldtext histnr tan tempname getcwd byteidx getbufvar islocked escape eventhandler remote_send serverlist winrestview synstack pyeval prevnonblank readfile cindent filereadable changenr exp"},i:/[{:]/,c:[e.NM,e.ASM,{cN:"string",b:/"(\\"|\n\\|[^"\n])*"/},e.C('"',"$"),{cN:"variable",b:/[bwtglsav]:[\w\d_]*/},{cN:"function",bK:"function function!",e:"$",r:0,c:[e.TM,{cN:"params",b:"\\(",e:"\\)"}]},{cN:"symbol",b:/<[\w-]+>/}]}});hljs.registerLanguage("ruleslanguage",function(T){return{k:{keyword:"BILL_PERIOD BILL_START BILL_STOP RS_EFFECTIVE_START RS_EFFECTIVE_STOP RS_JURIS_CODE RS_OPCO_CODE INTDADDATTRIBUTE|5 INTDADDVMSG|5 INTDBLOCKOP|5 INTDBLOCKOPNA|5 INTDCLOSE|5 INTDCOUNT|5 INTDCOUNTSTATUSCODE|5 INTDCREATEMASK|5 INTDCREATEDAYMASK|5 INTDCREATEFACTORMASK|5 INTDCREATEHANDLE|5 INTDCREATEOVERRIDEDAYMASK|5 INTDCREATEOVERRIDEMASK|5 INTDCREATESTATUSCODEMASK|5 INTDCREATETOUPERIOD|5
INTDDELETE|5 INTDDIPTEST|5 INTDEXPORT|5 INTDGETERRORCODE|5 INTDGETERRORMESSAGE|5 INTDISEQUAL|5 INTDJOIN|5 INTDLOAD|5 INTDLOADACTUALCUT|5 INTDLOADDATES|5 INTDLOADHIST|5 INTDLOADLIST|5 INTDLOADLISTDATES|5 INTDLOADLISTENERGY|5 INTDLOADLISTHIST|5 INTDLOADRELATEDCHANNEL|5 INTDLOADSP|5 INTDLOADSTAGING|5 INTDLOADUOM|5 INTDLOADUOMDATES|5 INTDLOADUOMHIST|5 INTDLOADVERSION|5 INTDOPEN|5 INTDREADFIRST|5 INTDREADNEXT|5 INTDRECCOUNT|5 INTDRELEASE|5 INTDREPLACE|5 INTDROLLAVG|5 INTDROLLPEAK|5 INTDSCALAROP|5 INTDSCALE|5 INTDSETATTRIBUTE|5 INTDSETDSTPARTICIPANT|5 INTDSETSTRING|5 INTDSETVALUE|5 INTDSETVALUESTATUS|5 INTDSHIFTSTARTTIME|5 INTDSMOOTH|5 INTDSORT|5 INTDSPIKETEST|5 INTDSUBSET|5 INTDTOU|5 INTDTOURELEASE|5 INTDTOUVALUE|5 INTDUPDATESTATS|5 INTDVALUE|5 STDEV INTDDELETEEX|5 INTDLOADEXACTUAL|5 INTDLOADEXCUT|5 INTDLOADEXDATES|5 INTDLOADEX|5 INTDLOADEXRELATEDCHANNEL|5 INTDSAVEEX|5 MVLOAD|5 MVLOADACCT|5 MVLOADACCTDATES|5 MVLOADACCTHIST|5 MVLOADDATES|5 MVLOADHIST|5 MVLOADLIST|5 MVLOADLISTDATES|5 MVLOADLISTHIST|5 IF FOR NEXT DONE SELECT END CALL ABORT CLEAR CHANNEL FACTOR LIST NUMBER OVERRIDE SET WEEK DISTRIBUTIONNODE ELSE WHEN THEN OTHERWISE IENUM CSV INCLUDE LEAVE RIDER SAVE DELETE NOVALUE SECTION WARN SAVE_UPDATE DETERMINANT LABEL REPORT REVENUE EACH IN FROM TOTAL CHARGE BLOCK AND OR CSV_FILE RATE_CODE AUXILIARY_DEMAND UIDACCOUNT RS BILL_PERIOD_SELECT HOURS_PER_MONTH INTD_ERROR_STOP SEASON_SCHEDULE_NAME ACCOUNTFACTOR ARRAYUPPERBOUND CALLSTOREDPROC GETADOCONNECTION GETCONNECT GETDATASOURCE GETQUALIFIER GETUSERID HASVALUE LISTCOUNT LISTOP LISTUPDATE LISTVALUE PRORATEFACTOR RSPRORATE SETBINPATH SETDBMONITOR WQ_OPEN BILLINGHOURS DATE DATEFROMFLOAT DATETIMEFROMSTRING DATETIMETOSTRING DATETOFLOAT DAY DAYDIFF DAYNAME DBDATETIME HOUR MINUTE MONTH MONTHDIFF MONTHHOURS MONTHNAME ROUNDDATE SAMEWEEKDAYLASTYEAR SECOND WEEKDAY WEEKDIFF YEAR YEARDAY YEARSTR COMPSUM HISTCOUNT HISTMAX HISTMIN HISTMINNZ HISTVALUE MAXNRANGE MAXRANGE MINRANGE COMPIKVA COMPKVA COMPKVARFROMKQKW COMPLF IDATTR FLAG LF2KW LF2KWH MAXKW POWERFACTOR READING2USAGE AVGSEASON MAXSEASON MONTHLYMERGE SEASONVALUE SUMSEASON ACCTREADDATES ACCTTABLELOAD CONFIGADD CONFIGGET CREATEOBJECT CREATEREPORT EMAILCLIENT EXPBLKMDMUSAGE EXPMDMUSAGE EXPORT_USAGE FACTORINEFFECT GETUSERSPECIFIEDSTOP INEFFECT ISHOLIDAY RUNRATE SAVE_PROFILE SETREPORTTITLE USEREXIT WATFORRUNRATE TO TABLE ACOS ASIN ATAN ATAN2 BITAND CEIL COS COSECANT COSH COTANGENT DIVQUOT DIVREM EXP FABS FLOOR FMOD FREPM FREXPN LOG LOG10 MAX MAXN MIN MINNZ MODF POW ROUND ROUND2VALUE ROUNDINT SECANT SIN SINH SQROOT TAN TANH FLOAT2STRING FLOAT2STRINGNC INSTR LEFT LEN LTRIM MID RIGHT RTRIM STRING STRINGNC TOLOWER TOUPPER TRIM NUMDAYS READ_DATE STAGING",built_in:"IDENTIFIER OPTIONS XML_ELEMENT XML_OP XML_ELEMENT_OF DOMDOCCREATE DOMDOCLOADFILE DOMDOCLOADXML DOMDOCSAVEFILE DOMDOCGETROOT DOMDOCADDPI DOMNODEGETNAME DOMNODEGETTYPE DOMNODEGETVALUE DOMNODEGETCHILDCT DOMNODEGETFIRSTCHILD DOMNODEGETSIBLING DOMNODECREATECHILDELEMENT DOMNODESETATTRIBUTE DOMNODEGETCHILDELEMENTCT DOMNODEGETFIRSTCHILDELEMENT DOMNODEGETSIBLINGELEMENT DOMNODEGETATTRIBUTECT DOMNODEGETATTRIBUTEI DOMNODEGETATTRIBUTEBYNAME DOMNODEGETBYNAME"},c:[T.CLCM,T.CBCM,T.ASM,T.QSM,T.CNM,{cN:"literal",v:[{b:"#\\s+[a-zA-Z\\ \\.]*",r:0},{b:"#[a-zA-Z\\ \\.]+"}]}]}});hljs.registerLanguage("xml",function(s){var e="[A-Za-z0-9\\._:-]+",t={eW:!0,i:/</,r:0,c:[{cN:"attr",b:e,r:0},{b:"=",r:0,c:[{cN:"string",v:[{b:/"/,e:/"/},{b:/'/,e:/'/},{b:/[^\s\/>]+/}]}]}]};return{aliases:["html","xhtml","rss","atom","xsl","plist"],cI:!0,c:[{cN:"meta",b:"<!DOCTYPE",e:">",r:10,c:[{b:"\\[",e:"\\]"}]},s.C("<!--","-->",{r:10}),{b:"<\\!\\[CDATA\\[",e:"\\]\\]>",r:10},{b:/<\?(php)?/,e:/\?>/,sL:"php",c:[{b:"/*",e:"*/",skip:!0}]},{cN:"tag",b:"<style(?=\\s|>|$)",e:">",k:{name:"style"},c:[t],starts:{e:"</style>",rE:!0,sL:["css","xml"]}},{cN:"tag",b:"<script(?=\\s|>|$)",e:">",k:{name:"script"},c:[t],starts:{e:"</script>",rE:!0,sL:["actionscript","javascript","handlebars","xml"]}},{cN:"meta",v:[{b:/<\?xml/,e:/\?>/,r:10},{b:/<\?\w+/,e:/\?>/}]},{cN:"tag",b:"</?",e:"/?>",c:[{cN:"name",b:/[^\/><\s]+/,r:0},t]}]}});hljs.registerLanguage("autoit",function(e){var t="ByRef Case Const ContinueCase ContinueLoop Default Dim Do Else ElseIf EndFunc EndIf EndSelect EndSwitch EndWith Enum Exit ExitLoop For Func Global If In Local Next ReDim Return Select Static Step Switch Then To Until Volatile WEnd While With",r="True False And Null Not Or",i="Abs ACos AdlibRegister AdlibUnRegister Asc AscW ASin Assign ATan AutoItSetOption AutoItWinGetTitle AutoItWinSetTitle Beep Binary BinaryLen BinaryMid BinaryToString BitAND BitNOT BitOR BitRotate BitShift BitXOR BlockInput Break Call CDTray Ceiling Chr ChrW ClipGet ClipPut ConsoleRead ConsoleWrite ConsoleWriteError ControlClick ControlCommand ControlDisable ControlEnable ControlFocus ControlGetFocus ControlGetHandle ControlGetPos ControlGetText ControlHide ControlListView ControlMove ControlSend ControlSetText ControlShow ControlTreeView Cos Dec DirCopy DirCreate DirGetSize DirMove DirRemove DllCall DllCallAddress DllCallbackFree DllCallbackGetPtr DllCallbackRegister DllClose DllOpen DllStructCreate DllStructGetData DllStructGetPtr DllStructGetSize DllStructSetData DriveGetDrive DriveGetFileSystem DriveGetLabel DriveGetSerial DriveGetType DriveMapAdd DriveMapDel DriveMapGet DriveSetLabel DriveSpaceFree DriveSpaceTotal DriveStatus EnvGet EnvSet EnvUpdate Eval Execute Exp FileChangeDir FileClose FileCopy FileCreateNTFSLink FileCreateShortcut FileDelete FileExists FileFindFirstFile FileFindNextFile FileFlush FileGetAttrib FileGetEncoding FileGetLongName FileGetPos FileGetShortcut FileGetShortName FileGetSize FileGetTime FileGetVersion FileInstall FileMove FileOpen FileOpenDialog FileRead FileReadLine FileReadToArray FileRecycle FileRecycleEmpty FileSaveDialog FileSelectFolder FileSetAttrib FileSetEnd FileSetPos FileSetTime FileWrite FileWriteLine Floor FtpSetProxy FuncName GUICreate GUICtrlCreateAvi GUICtrlCreateButton GUICtrlCreateCheckbox GUICtrlCreateCombo GUICtrlCreateContextMenu GUICtrlCreateDate GUICtrlCreateDummy GUICtrlCreateEdit GUICtrlCreateGraphic GUICtrlCreateGroup GUICtrlCreateIcon GUICtrlCreateInput GUICtrlCreateLabel GUICtrlCreateList GUICtrlCreateListView GUICtrlCreateListViewItem GUICtrlCreateMenu GUICtrlCreateMenuItem GUICtrlCreateMonthCal GUICtrlCreateObj GUICtrlCreatePic GUICtrlCreateProgress GUICtrlCreateRadio GUICtrlCreateSlider GUICtrlCreateTab GUICtrlCreateTabItem GUICtrlCreateTreeView GUICtrlCreateTreeViewItem GUICtrlCreateUpdown GUICtrlDelete GUICtrlGetHandle GUICtrlGetState GUICtrlRead GUICtrlRecvMsg GUICtrlRegisterListViewSort GUICtrlSendMsg GUICtrlSendToDummy GUICtrlSetBkColor GUICtrlSetColor GUICtrlSetCursor GUICtrlSetData GUICtrlSetDefBkColor GUICtrlSetDefColor GUICtrlSetFont GUICtrlSetGraphic GUICtrlSetImage GUICtrlSetLimit GUICtrlSetOnEvent GUICtrlSetPos GUICtrlSetResizing GUICtrlSetState GUICtrlSetStyle GUICtrlSetTip GUIDelete GUIGetCursorInfo GUIGetMsg GUIGetStyle GUIRegisterMsg GUISetAccelerators GUISetBkColor GUISetCoord GUISetCursor GUISetFont GUISetHelp GUISetIcon GUISetOnEvent GUISetState GUISetStyle GUIStartGroup GUISwitch Hex HotKeySet HttpSetProxy HttpSetUserAgent HWnd InetClose InetGet InetGetInfo InetGetSize InetRead IniDelete IniRead IniReadSection IniReadSectionNames IniRenameSection IniWrite IniWriteSection InputBox Int IsAdmin IsArray IsBinary IsBool IsDeclared IsDllStruct IsFloat IsFunc IsHWnd IsInt IsKeyword IsNumber IsObj IsPtr IsString Log MemGetStats Mod MouseClick MouseClickDrag MouseDown MouseGetCursor MouseGetPos MouseMove MouseUp MouseWheel MsgBox Number ObjCreate ObjCreateInterface ObjEvent ObjGet ObjName OnAutoItExitRegister OnAutoItExitUnRegister Opt Ping PixelChecksum PixelGetColor PixelSearch ProcessClose ProcessExists ProcessGetStats ProcessList ProcessSetPriority ProcessWait ProcessWaitClose ProgressOff ProgressOn ProgressSet Ptr Random RegDelete RegEnumKey RegEnumVal RegRead RegWrite Round Run RunAs RunAsWait RunWait Send SendKeepActive SetError SetExtended ShellExecute ShellExecuteWait Shutdown Sin Sleep SoundPlay SoundSetWaveVolume SplashImageOn SplashOff SplashTextOn Sqrt SRandom StatusbarGetText StderrRead StdinWrite StdioClose StdoutRead String StringAddCR StringCompare StringFormat StringFromASCIIArray StringInStr StringIsAlNum StringIsAlpha StringIsASCII StringIsDigit StringIsFloat StringIsInt StringIsLower StringIsSpace StringIsUpper StringIsXDigit StringLeft StringLen StringLower StringMid StringRegExp StringRegExpReplace StringReplace StringReverse StringRight StringSplit StringStripCR StringStripWS StringToASCIIArray StringToBinary StringTrimLeft StringTrimRight StringUpper Tan TCPAccept TCPCloseSocket TCPConnect TCPListen TCPNameToIP TCPRecv TCPSend TCPShutdown TCPStartup TimerDiff TimerInit ToolTip TrayCreateItem TrayCreateMenu TrayGetMsg TrayItemDelete TrayItemGetHandle TrayItemGetState TrayItemGetText TrayItemSetOnEvent TrayItemSetState TrayItemSetText TraySetClick TraySetIcon TraySetOnEvent TraySetPauseIcon TraySetState TraySetToolTip TrayTip UBound UDPBind UDPCloseSocket UDPOpen UDPRecv UDPSend UDPShutdown UDPStartup VarGetType WinActivate WinActive WinClose WinExists WinFlash WinGetCaretPos WinGetClassList WinGetClientSize WinGetHandle WinGetPos WinGetProcess WinGetState WinGetText WinGetTitle WinKill WinList WinMenuSelectItem WinMinimizeAll WinMinimizeAllUndo WinMove WinSetOnTop WinSetState WinSetTitle WinSetTrans WinWait WinWaitActive WinWaitClose WinWaitNotActive Array1DToHistogram ArrayAdd ArrayBinarySearch ArrayColDelete ArrayColInsert ArrayCombinations ArrayConcatenate ArrayDelete ArrayDisplay ArrayExtract ArrayFindAll ArrayInsert ArrayMax ArrayMaxIndex ArrayMin ArrayMinIndex ArrayPermute ArrayPop ArrayPush ArrayReverse ArraySearch ArrayShuffle ArraySort ArraySwap ArrayToClip ArrayToString ArrayTranspose ArrayTrim ArrayUnique Assert ChooseColor ChooseFont ClipBoard_ChangeChain ClipBoard_Close ClipBoard_CountFormats ClipBoard_Empty ClipBoard_EnumFormats ClipBoard_FormatStr ClipBoard_GetData ClipBoard_GetDataEx
ClipBoard_GetFormatName ClipBoard_GetOpenWindow ClipBoard_GetOwner ClipBoard_GetPriorityFormat ClipBoard_GetSequenceNumber ClipBoard_GetViewer ClipBoard_IsFormatAvailable ClipBoard_Open ClipBoard_RegisterFormat ClipBoard_SetData ClipBoard_SetDataEx ClipBoard_SetViewer ClipPutFile ColorConvertHSLtoRGB ColorConvertRGBtoHSL ColorGetBlue ColorGetCOLORREF ColorGetGreen ColorGetRed ColorGetRGB ColorSetCOLORREF ColorSetRGB Crypt_DecryptData Crypt_DecryptFile Crypt_DeriveKey Crypt_DestroyKey Crypt_EncryptData Crypt_EncryptFile Crypt_GenRandom Crypt_HashData Crypt_HashFile Crypt_Shutdown Crypt_Startup DateAdd DateDayOfWeek DateDaysInMonth DateDiff DateIsLeapYear DateIsValid DateTimeFormat DateTimeSplit DateToDayOfWeek DateToDayOfWeekISO DateToDayValue DateToMonth Date_Time_CompareFileTime Date_Time_DOSDateTimeToArray Date_Time_DOSDateTimeToFileTime Date_Time_DOSDateTimeToStr Date_Time_DOSDateToArray Date_Time_DOSDateToStr Date_Time_DOSTimeToArray Date_Time_DOSTimeToStr Date_Time_EncodeFileTime Date_Time_EncodeSystemTime Date_Time_FileTimeToArray Date_Time_FileTimeToDOSDateTime Date_Time_FileTimeToLocalFileTime Date_Time_FileTimeToStr Date_Time_FileTimeToSystemTime Date_Time_GetFileTime Date_Time_GetLocalTime Date_Time_GetSystemTime Date_Time_GetSystemTimeAdjustment Date_Time_GetSystemTimeAsFileTime Date_Time_GetSystemTimes Date_Time_GetTickCount Date_Time_GetTimeZoneInformation Date_Time_LocalFileTimeToFileTime Date_Time_SetFileTime Date_Time_SetLocalTime Date_Time_SetSystemTime Date_Time_SetSystemTimeAdjustment Date_Time_SetTimeZoneInformation Date_Time_SystemTimeToArray Date_Time_SystemTimeToDateStr Date_Time_SystemTimeToDateTimeStr Date_Time_SystemTimeToFileTime Date_Time_SystemTimeToTimeStr Date_Time_SystemTimeToTzSpecificLocalTime Date_Time_TzSpecificLocalTimeToSystemTime DayValueToDate DebugBugReportEnv DebugCOMError DebugOut DebugReport DebugReportEx DebugReportVar DebugSetup Degree EventLog__Backup EventLog__Clear EventLog__Close EventLog__Count EventLog__DeregisterSource EventLog__Full EventLog__Notify EventLog__Oldest EventLog__Open EventLog__OpenBackup EventLog__Read EventLog__RegisterSource EventLog__Report Excel_BookAttach Excel_BookClose Excel_BookList Excel_BookNew Excel_BookOpen Excel_BookOpenText Excel_BookSave Excel_BookSaveAs Excel_Close Excel_ColumnToLetter Excel_ColumnToNumber Excel_ConvertFormula Excel_Export Excel_FilterGet Excel_FilterSet Excel_Open Excel_PictureAdd Excel_Print Excel_RangeCopyPaste Excel_RangeDelete Excel_RangeFind Excel_RangeInsert Excel_RangeLinkAddRemove Excel_RangeRead Excel_RangeReplace Excel_RangeSort Excel_RangeValidate Excel_RangeWrite Excel_SheetAdd Excel_SheetCopyMove Excel_SheetDelete Excel_SheetList FileCountLines FileCreate FileListToArray FileListToArrayRec FilePrint FileReadToArray FileWriteFromArray FileWriteLog FileWriteToLine FTP_Close FTP_Command FTP_Connect FTP_DecodeInternetStatus FTP_DirCreate FTP_DirDelete FTP_DirGetCurrent FTP_DirPutContents FTP_DirSetCurrent FTP_FileClose FTP_FileDelete FTP_FileGet FTP_FileGetSize FTP_FileOpen FTP_FilePut FTP_FileRead FTP_FileRename FTP_FileTimeLoHiToStr FTP_FindFileClose FTP_FindFileFirst FTP_FindFileNext FTP_GetLastResponseInfo FTP_ListToArray FTP_ListToArray2D FTP_ListToArrayEx FTP_Open FTP_ProgressDownload FTP_ProgressUpload FTP_SetStatusCallback GDIPlus_ArrowCapCreate GDIPlus_ArrowCapDispose GDIPlus_ArrowCapGetFillState GDIPlus_ArrowCapGetHeight GDIPlus_ArrowCapGetMiddleInset GDIPlus_ArrowCapGetWidth GDIPlus_ArrowCapSetFillState GDIPlus_ArrowCapSetHeight GDIPlus_ArrowCapSetMiddleInset GDIPlus_ArrowCapSetWidth GDIPlus_BitmapApplyEffect GDIPlus_BitmapApplyEffectEx GDIPlus_BitmapCloneArea GDIPlus_BitmapConvertFormat GDIPlus_BitmapCreateApplyEffect GDIPlus_BitmapCreateApplyEffectEx GDIPlus_BitmapCreateDIBFromBitmap GDIPlus_BitmapCreateFromFile GDIPlus_BitmapCreateFromGraphics GDIPlus_BitmapCreateFromHBITMAP GDIPlus_BitmapCreateFromHICON GDIPlus_BitmapCreateFromHICON32 GDIPlus_BitmapCreateFromMemory GDIPlus_BitmapCreateFromResource GDIPlus_BitmapCreateFromScan0 GDIPlus_BitmapCreateFromStream GDIPlus_BitmapCreateHBITMAPFromBitmap GDIPlus_BitmapDispose GDIPlus_BitmapGetHistogram GDIPlus_BitmapGetHistogramEx GDIPlus_BitmapGetHistogramSize GDIPlus_BitmapGetPixel GDIPlus_BitmapLockBits GDIPlus_BitmapSetPixel GDIPlus_BitmapUnlockBits GDIPlus_BrushClone GDIPlus_BrushCreateSolid GDIPlus_BrushDispose GDIPlus_BrushGetSolidColor GDIPlus_BrushGetType GDIPlus_BrushSetSolidColor GDIPlus_ColorMatrixCreate GDIPlus_ColorMatrixCreateGrayScale GDIPlus_ColorMatrixCreateNegative GDIPlus_ColorMatrixCreateSaturation GDIPlus_ColorMatrixCreateScale GDIPlus_ColorMatrixCreateTranslate GDIPlus_CustomLineCapClone GDIPlus_CustomLineCapCreate GDIPlus_CustomLineCapDispose GDIPlus_CustomLineCapGetStrokeCaps GDIPlus_CustomLineCapSetStrokeCaps GDIPlus_Decoders GDIPlus_DecodersGetCount GDIPlus_DecodersGetSize GDIPlus_DrawImageFX GDIPlus_DrawImageFXEx GDIPlus_DrawImagePoints GDIPlus_EffectCreate GDIPlus_EffectCreateBlur GDIPlus_EffectCreateBrightnessContrast GDIPlus_EffectCreateColorBalance GDIPlus_EffectCreateColorCurve GDIPlus_EffectCreateColorLUT GDIPlus_EffectCreateColorMatrix GDIPlus_EffectCreateHueSaturationLightness GDIPlus_EffectCreateLevels GDIPlus_EffectCreateRedEyeCorrection GDIPlus_EffectCreateSharpen GDIPlus_EffectCreateTint GDIPlus_EffectDispose GDIPlus_EffectGetParameters GDIPlus_EffectSetParameters GDIPlus_Encoders GDIPlus_EncodersGetCLSID GDIPlus_EncodersGetCount GDIPlus_EncodersGetParamList GDIPlus_EncodersGetParamListSize GDIPlus_EncodersGetSize GDIPlus_FontCreate GDIPlus_FontDispose GDIPlus_FontFamilyCreate GDIPlus_FontFamilyCreateFromCollection GDIPlus_FontFamilyDispose GDIPlus_FontFamilyGetCellAscent GDIPlus_FontFamilyGetCellDescent GDIPlus_FontFamilyGetEmHeight GDIPlus_FontFamilyGetLineSpacing GDIPlus_FontGetHeight GDIPlus_FontPrivateAddFont GDIPlus_FontPrivateAddMemoryFont GDIPlus_FontPrivateCollectionDispose GDIPlus_FontPrivateCreateCollection GDIPlus_GraphicsClear GDIPlus_GraphicsCreateFromHDC GDIPlus_GraphicsCreateFromHWND GDIPlus_GraphicsDispose GDIPlus_GraphicsDrawArc GDIPlus_GraphicsDrawBezier GDIPlus_GraphicsDrawClosedCurve GDIPlus_GraphicsDrawClosedCurve2 GDIPlus_GraphicsDrawCurve GDIPlus_GraphicsDrawCurve2 GDIPlus_GraphicsDrawEllipse GDIPlus_GraphicsDrawImage GDIPlus_GraphicsDrawImagePointsRect GDIPlus_GraphicsDrawImageRect GDIPlus_GraphicsDrawImageRectRect GDIPlus_GraphicsDrawLine GDIPlus_GraphicsDrawPath GDIPlus_GraphicsDrawPie GDIPlus_GraphicsDrawPolygon GDIPlus_GraphicsDrawRect GDIPlus_GraphicsDrawString GDIPlus_GraphicsDrawStringEx GDIPlus_GraphicsFillClosedCurve GDIPlus_GraphicsFillClosedCurve2 GDIPlus_GraphicsFillEllipse GDIPlus_GraphicsFillPath GDIPlus_GraphicsFillPie GDIPlus_GraphicsFillPolygon GDIPlus_GraphicsFillRect GDIPlus_GraphicsFillRegion GDIPlus_GraphicsGetCompositingMode GDIPlus_GraphicsGetCompositingQuality GDIPlus_GraphicsGetDC GDIPlus_GraphicsGetInterpolationMode GDIPlus_GraphicsGetSmoothingMode GDIPlus_GraphicsGetTransform GDIPlus_GraphicsMeasureCharacterRanges GDIPlus_GraphicsMeasureString GDIPlus_GraphicsReleaseDC GDIPlus_GraphicsResetClip GDIPlus_GraphicsResetTransform GDIPlus_GraphicsRestore GDIPlus_GraphicsRotateTransform GDIPlus_GraphicsSave GDIPlus_GraphicsScaleTransform GDIPlus_GraphicsSetClipPath GDIPlus_GraphicsSetClipRect GDIPlus_GraphicsSetClipRegion GDIPlus_GraphicsSetCompositingMode GDIPlus_GraphicsSetCompositingQuality GDIPlus_GraphicsSetInterpolationMode GDIPlus_GraphicsSetPixelOffsetMode GDIPlus_GraphicsSetSmoothingMode GDIPlus_GraphicsSetTextRenderingHint GDIPlus_GraphicsSetTransform GDIPlus_GraphicsTransformPoints GDIPlus_GraphicsTranslateTransform GDIPlus_HatchBrushCreate GDIPlus_HICONCreateFromBitmap GDIPlus_ImageAttributesCreate GDIPlus_ImageAttributesDispose GDIPlus_ImageAttributesSetColorKeys GDIPlus_ImageAttributesSetColorMatrix GDIPlus_ImageDispose GDIPlus_ImageGetDimension GDIPlus_ImageGetFlags GDIPlus_ImageGetGraphicsContext GDIPlus_ImageGetHeight GDIPlus_ImageGetHorizontalResolution GDIPlus_ImageGetPixelFormat GDIPlus_ImageGetRawFormat GDIPlus_ImageGetThumbnail GDIPlus_ImageGetType GDIPlus_ImageGetVerticalResolution GDIPlus_ImageGetWidth GDIPlus_ImageLoadFromFile GDIPlus_ImageLoadFromStream GDIPlus_ImageResize GDIPlus_ImageRotateFlip GDIPlus_ImageSaveToFile GDIPlus_ImageSaveToFileEx GDIPlus_ImageSaveToStream GDIPlus_ImageScale GDIPlus_LineBrushCreate GDIPlus_LineBrushCreateFromRect GDIPlus_LineBrushCreateFromRectWithAngle GDIPlus_LineBrushGetColors GDIPlus_LineBrushGetRect GDIPlus_LineBrushMultiplyTransform GDIPlus_LineBrushResetTransform GDIPlus_LineBrushSetBlend GDIPlus_LineBrushSetColors GDIPlus_LineBrushSetGammaCorrection GDIPlus_LineBrushSetLinearBlend GDIPlus_LineBrushSetPresetBlend GDIPlus_LineBrushSetSigmaBlend GDIPlus_LineBrushSetTransform GDIPlus_MatrixClone GDIPlus_MatrixCreate GDIPlus_MatrixDispose GDIPlus_MatrixGetElements GDIPlus_MatrixInvert GDIPlus_MatrixMultiply GDIPlus_MatrixRotate GDIPlus_MatrixScale GDIPlus_MatrixSetElements GDIPlus_MatrixShear GDIPlus_MatrixTransformPoints GDIPlus_MatrixTranslate GDIPlus_PaletteInitialize GDIPlus_ParamAdd GDIPlus_ParamInit GDIPlus_ParamSize GDIPlus_PathAddArc GDIPlus_PathAddBezier GDIPlus_PathAddClosedCurve GDIPlus_PathAddClosedCurve2 GDIPlus_PathAddCurve GDIPlus_PathAddCurve2 GDIPlus_PathAddCurve3 GDIPlus_PathAddEllipse GDIPlus_PathAddLine GDIPlus_PathAddLine2 GDIPlus_PathAddPath GDIPlus_PathAddPie GDIPlus_PathAddPolygon GDIPlus_PathAddRectangle GDIPlus_PathAddString GDIPlus_PathBrushCreate GDIPlus_PathBrushCreateFromPath GDIPlus_PathBrushGetCenterPoint GDIPlus_PathBrushGetFocusScales GDIPlus_PathBrushGetPointCount GDIPlus_PathBrushGetRect GDIPlus_PathBrushGetWrapMode GDIPlus_PathBrushMultiplyTransform GDIPlus_PathBrushResetTransform GDIPlus_PathBrushSetBlend GDIPlus_PathBrushSetCenterColor GDIPlus_PathBrushSetCenterPoint GDIPlus_PathBrushSetFocusScales GDIPlus_PathBrushSetGammaCorrection GDIPlus_PathBrushSetLinearBlend GDIPlus_PathBrushSetPresetBlend GDIPlus_PathBrushSetSigmaBlend GDIPlus_PathBrushSetSurroundColor
GDIPlus_PathBrushSetSurroundColorsWithCount GDIPlus_PathBrushSetTransform GDIPlus_PathBrushSetWrapMode GDIPlus_PathClone GDIPlus_PathCloseFigure GDIPlus_PathCreate GDIPlus_PathCreate2 GDIPlus_PathDispose GDIPlus_PathFlatten GDIPlus_PathGetData GDIPlus_PathGetFillMode GDIPlus_PathGetLastPoint GDIPlus_PathGetPointCount GDIPlus_PathGetPoints GDIPlus_PathGetWorldBounds GDIPlus_PathIsOutlineVisiblePoint GDIPlus_PathIsVisiblePoint GDIPlus_PathIterCreate GDIPlus_PathIterDispose GDIPlus_PathIterGetSubpathCount GDIPlus_PathIterNextMarkerPath GDIPlus_PathIterNextSubpathPath GDIPlus_PathIterRewind GDIPlus_PathReset GDIPlus_PathReverse GDIPlus_PathSetFillMode GDIPlus_PathSetMarker GDIPlus_PathStartFigure GDIPlus_PathTransform GDIPlus_PathWarp GDIPlus_PathWiden GDIPlus_PathWindingModeOutline GDIPlus_PenCreate GDIPlus_PenCreate2 GDIPlus_PenDispose GDIPlus_PenGetAlignment GDIPlus_PenGetColor GDIPlus_PenGetCustomEndCap GDIPlus_PenGetDashCap GDIPlus_PenGetDashStyle GDIPlus_PenGetEndCap GDIPlus_PenGetMiterLimit GDIPlus_PenGetWidth GDIPlus_PenSetAlignment GDIPlus_PenSetColor GDIPlus_PenSetCustomEndCap GDIPlus_PenSetDashCap GDIPlus_PenSetDashStyle GDIPlus_PenSetEndCap GDIPlus_PenSetLineCap GDIPlus_PenSetLineJoin GDIPlus_PenSetMiterLimit GDIPlus_PenSetStartCap GDIPlus_PenSetWidth GDIPlus_RectFCreate GDIPlus_RegionClone GDIPlus_RegionCombinePath GDIPlus_RegionCombineRect GDIPlus_RegionCombineRegion GDIPlus_RegionCreate GDIPlus_RegionCreateFromPath GDIPlus_RegionCreateFromRect GDIPlus_RegionDispose GDIPlus_RegionGetBounds GDIPlus_RegionGetHRgn GDIPlus_RegionTransform GDIPlus_RegionTranslate GDIPlus_Shutdown GDIPlus_Startup GDIPlus_StringFormatCreate GDIPlus_StringFormatDispose GDIPlus_StringFormatGetMeasurableCharacterRangeCount GDIPlus_StringFormatSetAlign GDIPlus_StringFormatSetLineAlign GDIPlus_StringFormatSetMeasurableCharacterRanges GDIPlus_TextureCreate GDIPlus_TextureCreate2 GDIPlus_TextureCreateIA GetIP GUICtrlAVI_Close GUICtrlAVI_Create GUICtrlAVI_Destroy GUICtrlAVI_IsPlaying GUICtrlAVI_Open GUICtrlAVI_OpenEx GUICtrlAVI_Play GUICtrlAVI_Seek GUICtrlAVI_Show GUICtrlAVI_Stop GUICtrlButton_Click GUICtrlButton_Create GUICtrlButton_Destroy GUICtrlButton_Enable GUICtrlButton_GetCheck GUICtrlButton_GetFocus GUICtrlButton_GetIdealSize GUICtrlButton_GetImage GUICtrlButton_GetImageList GUICtrlButton_GetNote GUICtrlButton_GetNoteLength GUICtrlButton_GetSplitInfo GUICtrlButton_GetState GUICtrlButton_GetText GUICtrlButton_GetTextMargin GUICtrlButton_SetCheck GUICtrlButton_SetDontClick GUICtrlButton_SetFocus GUICtrlButton_SetImage GUICtrlButton_SetImageList GUICtrlButton_SetNote GUICtrlButton_SetShield GUICtrlButton_SetSize GUICtrlButton_SetSplitInfo GUICtrlButton_SetState GUICtrlButton_SetStyle GUICtrlButton_SetText GUICtrlButton_SetTextMargin GUICtrlButton_Show GUICtrlComboBoxEx_AddDir GUICtrlComboBoxEx_AddString GUICtrlComboBoxEx_BeginUpdate GUICtrlComboBoxEx_Create GUICtrlComboBoxEx_CreateSolidBitMap GUICtrlComboBoxEx_DeleteString GUICtrlComboBoxEx_Destroy GUICtrlComboBoxEx_EndUpdate GUICtrlComboBoxEx_FindStringExact GUICtrlComboBoxEx_GetComboBoxInfo GUICtrlComboBoxEx_GetComboControl GUICtrlComboBoxEx_GetCount GUICtrlComboBoxEx_GetCurSel GUICtrlComboBoxEx_GetDroppedControlRect GUICtrlComboBoxEx_GetDroppedControlRectEx GUICtrlComboBoxEx_GetDroppedState GUICtrlComboBoxEx_GetDroppedWidth GUICtrlComboBoxEx_GetEditControl GUICtrlComboBoxEx_GetEditSel GUICtrlComboBoxEx_GetEditText GUICtrlComboBoxEx_GetExtendedStyle GUICtrlComboBoxEx_GetExtendedUI GUICtrlComboBoxEx_GetImageList GUICtrlComboBoxEx_GetItem GUICtrlComboBoxEx_GetItemEx GUICtrlComboBoxEx_GetItemHeight GUICtrlComboBoxEx_GetItemImage GUICtrlComboBoxEx_GetItemIndent GUICtrlComboBoxEx_GetItemOverlayImage GUICtrlComboBoxEx_GetItemParam GUICtrlComboBoxEx_GetItemSelectedImage GUICtrlComboBoxEx_GetItemText GUICtrlComboBoxEx_GetItemTextLen GUICtrlComboBoxEx_GetList GUICtrlComboBoxEx_GetListArray GUICtrlComboBoxEx_GetLocale GUICtrlComboBoxEx_GetLocaleCountry GUICtrlComboBoxEx_GetLocaleLang GUICtrlComboBoxEx_GetLocalePrimLang GUICtrlComboBoxEx_GetLocaleSubLang GUICtrlComboBoxEx_GetMinVisible GUICtrlComboBoxEx_GetTopIndex GUICtrlComboBoxEx_GetUnicode GUICtrlComboBoxEx_InitStorage GUICtrlComboBoxEx_InsertString GUICtrlComboBoxEx_LimitText GUICtrlComboBoxEx_ReplaceEditSel GUICtrlComboBoxEx_ResetContent GUICtrlComboBoxEx_SetCurSel GUICtrlComboBoxEx_SetDroppedWidth GUICtrlComboBoxEx_SetEditSel GUICtrlComboBoxEx_SetEditText GUICtrlComboBoxEx_SetExtendedStyle GUICtrlComboBoxEx_SetExtendedUI GUICtrlComboBoxEx_SetImageList GUICtrlComboBoxEx_SetItem GUICtrlComboBoxEx_SetItemEx GUICtrlComboBoxEx_SetItemHeight GUICtrlComboBoxEx_SetItemImage GUICtrlComboBoxEx_SetItemIndent GUICtrlComboBoxEx_SetItemOverlayImage GUICtrlComboBoxEx_SetItemParam GUICtrlComboBoxEx_SetItemSelectedImage GUICtrlComboBoxEx_SetMinVisible GUICtrlComboBoxEx_SetTopIndex GUICtrlComboBoxEx_SetUnicode GUICtrlComboBoxEx_ShowDropDown GUICtrlComboBox_AddDir GUICtrlComboBox_AddString GUICtrlComboBox_AutoComplete GUICtrlComboBox_BeginUpdate GUICtrlComboBox_Create GUICtrlComboBox_DeleteString GUICtrlComboBox_Destroy GUICtrlComboBox_EndUpdate GUICtrlComboBox_FindString GUICtrlComboBox_FindStringExact GUICtrlComboBox_GetComboBoxInfo GUICtrlComboBox_GetCount GUICtrlComboBox_GetCueBanner GUICtrlComboBox_GetCurSel GUICtrlComboBox_GetDroppedControlRect GUICtrlComboBox_GetDroppedControlRectEx GUICtrlComboBox_GetDroppedState GUICtrlComboBox_GetDroppedWidth GUICtrlComboBox_GetEditSel GUICtrlComboBox_GetEditText GUICtrlComboBox_GetExtendedUI GUICtrlComboBox_GetHorizontalExtent GUICtrlComboBox_GetItemHeight GUICtrlComboBox_GetLBText GUICtrlComboBox_GetLBTextLen GUICtrlComboBox_GetList GUICtrlComboBox_GetListArray GUICtrlComboBox_GetLocale GUICtrlComboBox_GetLocaleCountry GUICtrlComboBox_GetLocaleLang GUICtrlComboBox_GetLocalePrimLang GUICtrlComboBox_GetLocaleSubLang GUICtrlComboBox_GetMinVisible GUICtrlComboBox_GetTopIndex GUICtrlComboBox_InitStorage GUICtrlComboBox_InsertString GUICtrlComboBox_LimitText GUICtrlComboBox_ReplaceEditSel GUICtrlComboBox_ResetContent GUICtrlComboBox_SelectString GUICtrlComboBox_SetCueBanner GUICtrlComboBox_SetCurSel GUICtrlComboBox_SetDroppedWidth GUICtrlComboBox_SetEditSel GUICtrlComboBox_SetEditText GUICtrlComboBox_SetExtendedUI GUICtrlComboBox_SetHorizontalExtent GUICtrlComboBox_SetItemHeight GUICtrlComboBox_SetMinVisible GUICtrlComboBox_SetTopIndex GUICtrlComboBox_ShowDropDown GUICtrlDTP_Create GUICtrlDTP_Destroy GUICtrlDTP_GetMCColor GUICtrlDTP_GetMCFont GUICtrlDTP_GetMonthCal GUICtrlDTP_GetRange GUICtrlDTP_GetRangeEx GUICtrlDTP_GetSystemTime GUICtrlDTP_GetSystemTimeEx GUICtrlDTP_SetFormat GUICtrlDTP_SetMCColor GUICtrlDTP_SetMCFont GUICtrlDTP_SetRange GUICtrlDTP_SetRangeEx GUICtrlDTP_SetSystemTime GUICtrlDTP_SetSystemTimeEx GUICtrlEdit_AppendText GUICtrlEdit_BeginUpdate GUICtrlEdit_CanUndo GUICtrlEdit_CharFromPos GUICtrlEdit_Create GUICtrlEdit_Destroy GUICtrlEdit_EmptyUndoBuffer GUICtrlEdit_EndUpdate GUICtrlEdit_Find GUICtrlEdit_FmtLines GUICtrlEdit_GetCueBanner GUICtrlEdit_GetFirstVisibleLine GUICtrlEdit_GetLimitText GUICtrlEdit_GetLine GUICtrlEdit_GetLineCount GUICtrlEdit_GetMargins GUICtrlEdit_GetModify GUICtrlEdit_GetPasswordChar GUICtrlEdit_GetRECT GUICtrlEdit_GetRECTEx GUICtrlEdit_GetSel GUICtrlEdit_GetText GUICtrlEdit_GetTextLen GUICtrlEdit_HideBalloonTip GUICtrlEdit_InsertText GUICtrlEdit_LineFromChar GUICtrlEdit_LineIndex GUICtrlEdit_LineLength GUICtrlEdit_LineScroll GUICtrlEdit_PosFromChar GUICtrlEdit_ReplaceSel GUICtrlEdit_Scroll GUICtrlEdit_SetCueBanner GUICtrlEdit_SetLimitText GUICtrlEdit_SetMargins GUICtrlEdit_SetModify GUICtrlEdit_SetPasswordChar GUICtrlEdit_SetReadOnly GUICtrlEdit_SetRECT GUICtrlEdit_SetRECTEx GUICtrlEdit_SetRECTNP GUICtrlEdit_SetRectNPEx GUICtrlEdit_SetSel GUICtrlEdit_SetTabStops GUICtrlEdit_SetText GUICtrlEdit_ShowBalloonTip GUICtrlEdit_Undo GUICtrlHeader_AddItem GUICtrlHeader_ClearFilter GUICtrlHeader_ClearFilterAll GUICtrlHeader_Create GUICtrlHeader_CreateDragImage GUICtrlHeader_DeleteItem GUICtrlHeader_Destroy GUICtrlHeader_EditFilter GUICtrlHeader_GetBitmapMargin GUICtrlHeader_GetImageList GUICtrlHeader_GetItem GUICtrlHeader_GetItemAlign GUICtrlHeader_GetItemBitmap GUICtrlHeader_GetItemCount GUICtrlHeader_GetItemDisplay GUICtrlHeader_GetItemFlags GUICtrlHeader_GetItemFormat GUICtrlHeader_GetItemImage GUICtrlHeader_GetItemOrder GUICtrlHeader_GetItemParam GUICtrlHeader_GetItemRect GUICtrlHeader_GetItemRectEx GUICtrlHeader_GetItemText GUICtrlHeader_GetItemWidth GUICtrlHeader_GetOrderArray GUICtrlHeader_GetUnicodeFormat GUICtrlHeader_HitTest GUICtrlHeader_InsertItem GUICtrlHeader_Layout GUICtrlHeader_OrderToIndex GUICtrlHeader_SetBitmapMargin GUICtrlHeader_SetFilterChangeTimeout GUICtrlHeader_SetHotDivider GUICtrlHeader_SetImageList GUICtrlHeader_SetItem GUICtrlHeader_SetItemAlign GUICtrlHeader_SetItemBitmap GUICtrlHeader_SetItemDisplay GUICtrlHeader_SetItemFlags GUICtrlHeader_SetItemFormat GUICtrlHeader_SetItemImage GUICtrlHeader_SetItemOrder GUICtrlHeader_SetItemParam GUICtrlHeader_SetItemText GUICtrlHeader_SetItemWidth GUICtrlHeader_SetOrderArray GUICtrlHeader_SetUnicodeFormat GUICtrlIpAddress_ClearAddress GUICtrlIpAddress_Create GUICtrlIpAddress_Destroy GUICtrlIpAddress_Get GUICtrlIpAddress_GetArray GUICtrlIpAddress_GetEx GUICtrlIpAddress_IsBlank GUICtrlIpAddress_Set GUICtrlIpAddress_SetArray GUICtrlIpAddress_SetEx GUICtrlIpAddress_SetFocus GUICtrlIpAddress_SetFont GUICtrlIpAddress_SetRange GUICtrlIpAddress_ShowHide GUICtrlListBox_AddFile GUICtrlListBox_AddString GUICtrlListBox_BeginUpdate GUICtrlListBox_ClickItem GUICtrlListBox_Create GUICtrlListBox_DeleteString GUICtrlListBox_Destroy GUICtrlListBox_Dir GUICtrlListBox_EndUpdate GUICtrlListBox_FindInText GUICtrlListBox_FindString GUICtrlListBox_GetAnchorIndex GUICtrlListBox_GetCaretIndex GUICtrlListBox_GetCount GUICtrlListBox_GetCurSel GUICtrlListBox_GetHorizontalExtent GUICtrlListBox_GetItemData GUICtrlListBox_GetItemHeight GUICtrlListBox_GetItemRect GUICtrlListBox_GetItemRectEx GUICtrlListBox_GetListBoxInfo
GUICtrlListBox_GetLocale GUICtrlListBox_GetLocaleCountry GUICtrlListBox_GetLocaleLang GUICtrlListBox_GetLocalePrimLang GUICtrlListBox_GetLocaleSubLang GUICtrlListBox_GetSel GUICtrlListBox_GetSelCount GUICtrlListBox_GetSelItems GUICtrlListBox_GetSelItemsText GUICtrlListBox_GetText GUICtrlListBox_GetTextLen GUICtrlListBox_GetTopIndex GUICtrlListBox_InitStorage GUICtrlListBox_InsertString GUICtrlListBox_ItemFromPoint GUICtrlListBox_ReplaceString GUICtrlListBox_ResetContent GUICtrlListBox_SelectString GUICtrlListBox_SelItemRange GUICtrlListBox_SelItemRangeEx GUICtrlListBox_SetAnchorIndex GUICtrlListBox_SetCaretIndex GUICtrlListBox_SetColumnWidth GUICtrlListBox_SetCurSel GUICtrlListBox_SetHorizontalExtent GUICtrlListBox_SetItemData GUICtrlListBox_SetItemHeight GUICtrlListBox_SetLocale GUICtrlListBox_SetSel GUICtrlListBox_SetTabStops GUICtrlListBox_SetTopIndex GUICtrlListBox_Sort GUICtrlListBox_SwapString GUICtrlListBox_UpdateHScroll GUICtrlListView_AddArray GUICtrlListView_AddColumn GUICtrlListView_AddItem GUICtrlListView_AddSubItem GUICtrlListView_ApproximateViewHeight GUICtrlListView_ApproximateViewRect GUICtrlListView_ApproximateViewWidth GUICtrlListView_Arrange GUICtrlListView_BeginUpdate GUICtrlListView_CancelEditLabel GUICtrlListView_ClickItem GUICtrlListView_CopyItems GUICtrlListView_Create GUICtrlListView_CreateDragImage GUICtrlListView_CreateSolidBitMap GUICtrlListView_DeleteAllItems GUICtrlListView_DeleteColumn GUICtrlListView_DeleteItem GUICtrlListView_DeleteItemsSelected GUICtrlListView_Destroy GUICtrlListView_DrawDragImage GUICtrlListView_EditLabel GUICtrlListView_EnableGroupView GUICtrlListView_EndUpdate GUICtrlListView_EnsureVisible GUICtrlListView_FindInText GUICtrlListView_FindItem GUICtrlListView_FindNearest GUICtrlListView_FindParam GUICtrlListView_FindText GUICtrlListView_GetBkColor GUICtrlListView_GetBkImage GUICtrlListView_GetCallbackMask GUICtrlListView_GetColumn GUICtrlListView_GetColumnCount GUICtrlListView_GetColumnOrder GUICtrlListView_GetColumnOrderArray GUICtrlListView_GetColumnWidth GUICtrlListView_GetCounterPage GUICtrlListView_GetEditControl GUICtrlListView_GetExtendedListViewStyle GUICtrlListView_GetFocusedGroup GUICtrlListView_GetGroupCount GUICtrlListView_GetGroupInfo GUICtrlListView_GetGroupInfoByIndex GUICtrlListView_GetGroupRect GUICtrlListView_GetGroupViewEnabled GUICtrlListView_GetHeader GUICtrlListView_GetHotCursor GUICtrlListView_GetHotItem GUICtrlListView_GetHoverTime GUICtrlListView_GetImageList GUICtrlListView_GetISearchString GUICtrlListView_GetItem GUICtrlListView_GetItemChecked GUICtrlListView_GetItemCount GUICtrlListView_GetItemCut GUICtrlListView_GetItemDropHilited GUICtrlListView_GetItemEx GUICtrlListView_GetItemFocused GUICtrlListView_GetItemGroupID GUICtrlListView_GetItemImage GUICtrlListView_GetItemIndent GUICtrlListView_GetItemParam GUICtrlListView_GetItemPosition GUICtrlListView_GetItemPositionX GUICtrlListView_GetItemPositionY GUICtrlListView_GetItemRect GUICtrlListView_GetItemRectEx GUICtrlListView_GetItemSelected GUICtrlListView_GetItemSpacing GUICtrlListView_GetItemSpacingX GUICtrlListView_GetItemSpacingY GUICtrlListView_GetItemState GUICtrlListView_GetItemStateImage GUICtrlListView_GetItemText GUICtrlListView_GetItemTextArray GUICtrlListView_GetItemTextString GUICtrlListView_GetNextItem GUICtrlListView_GetNumberOfWorkAreas GUICtrlListView_GetOrigin GUICtrlListView_GetOriginX GUICtrlListView_GetOriginY GUICtrlListView_GetOutlineColor GUICtrlListView_GetSelectedColumn GUICtrlListView_GetSelectedCount GUICtrlListView_GetSelectedIndices GUICtrlListView_GetSelectionMark GUICtrlListView_GetStringWidth GUICtrlListView_GetSubItemRect GUICtrlListView_GetTextBkColor GUICtrlListView_GetTextColor GUICtrlListView_GetToolTips GUICtrlListView_GetTopIndex GUICtrlListView_GetUnicodeFormat GUICtrlListView_GetView GUICtrlListView_GetViewDetails GUICtrlListView_GetViewLarge GUICtrlListView_GetViewList GUICtrlListView_GetViewRect GUICtrlListView_GetViewSmall GUICtrlListView_GetViewTile GUICtrlListView_HideColumn GUICtrlListView_HitTest GUICtrlListView_InsertColumn GUICtrlListView_InsertGroup GUICtrlListView_InsertItem GUICtrlListView_JustifyColumn GUICtrlListView_MapIDToIndex GUICtrlListView_MapIndexToID GUICtrlListView_RedrawItems GUICtrlListView_RegisterSortCallBack GUICtrlListView_RemoveAllGroups GUICtrlListView_RemoveGroup GUICtrlListView_Scroll GUICtrlListView_SetBkColor GUICtrlListView_SetBkImage GUICtrlListView_SetCallBackMask GUICtrlListView_SetColumn GUICtrlListView_SetColumnOrder GUICtrlListView_SetColumnOrderArray GUICtrlListView_SetColumnWidth GUICtrlListView_SetExtendedListViewStyle GUICtrlListView_SetGroupInfo GUICtrlListView_SetHotItem GUICtrlListView_SetHoverTime GUICtrlListView_SetIconSpacing GUICtrlListView_SetImageList GUICtrlListView_SetItem GUICtrlListView_SetItemChecked GUICtrlListView_SetItemCount GUICtrlListView_SetItemCut GUICtrlListView_SetItemDropHilited GUICtrlListView_SetItemEx GUICtrlListView_SetItemFocused GUICtrlListView_SetItemGroupID GUICtrlListView_SetItemImage GUICtrlListView_SetItemIndent GUICtrlListView_SetItemParam GUICtrlListView_SetItemPosition GUICtrlListView_SetItemPosition32 GUICtrlListView_SetItemSelected GUICtrlListView_SetItemState GUICtrlListView_SetItemStateImage GUICtrlListView_SetItemText GUICtrlListView_SetOutlineColor GUICtrlListView_SetSelectedColumn GUICtrlListView_SetSelectionMark GUICtrlListView_SetTextBkColor GUICtrlListView_SetTextColor GUICtrlListView_SetToolTips GUICtrlListView_SetUnicodeFormat GUICtrlListView_SetView GUICtrlListView_SetWorkAreas GUICtrlListView_SimpleSort GUICtrlListView_SortItems GUICtrlListView_SubItemHitTest GUICtrlListView_UnRegisterSortCallBack GUICtrlMenu_AddMenuItem GUICtrlMenu_AppendMenu GUICtrlMenu_CalculatePopupWindowPosition GUICtrlMenu_CheckMenuItem GUICtrlMenu_CheckRadioItem GUICtrlMenu_CreateMenu GUICtrlMenu_CreatePopup GUICtrlMenu_DeleteMenu GUICtrlMenu_DestroyMenu GUICtrlMenu_DrawMenuBar GUICtrlMenu_EnableMenuItem GUICtrlMenu_FindItem GUICtrlMenu_FindParent GUICtrlMenu_GetItemBmp GUICtrlMenu_GetItemBmpChecked GUICtrlMenu_GetItemBmpUnchecked GUICtrlMenu_GetItemChecked GUICtrlMenu_GetItemCount GUICtrlMenu_GetItemData GUICtrlMenu_GetItemDefault GUICtrlMenu_GetItemDisabled GUICtrlMenu_GetItemEnabled GUICtrlMenu_GetItemGrayed GUICtrlMenu_GetItemHighlighted GUICtrlMenu_GetItemID GUICtrlMenu_GetItemInfo GUICtrlMenu_GetItemRect GUICtrlMenu_GetItemRectEx GUICtrlMenu_GetItemState GUICtrlMenu_GetItemStateEx GUICtrlMenu_GetItemSubMenu GUICtrlMenu_GetItemText GUICtrlMenu_GetItemType GUICtrlMenu_GetMenu GUICtrlMenu_GetMenuBackground GUICtrlMenu_GetMenuBarInfo GUICtrlMenu_GetMenuContextHelpID GUICtrlMenu_GetMenuData GUICtrlMenu_GetMenuDefaultItem GUICtrlMenu_GetMenuHeight GUICtrlMenu_GetMenuInfo GUICtrlMenu_GetMenuStyle GUICtrlMenu_GetSystemMenu GUICtrlMenu_InsertMenuItem GUICtrlMenu_InsertMenuItemEx GUICtrlMenu_IsMenu GUICtrlMenu_LoadMenu GUICtrlMenu_MapAccelerator GUICtrlMenu_MenuItemFromPoint GUICtrlMenu_RemoveMenu GUICtrlMenu_SetItemBitmaps GUICtrlMenu_SetItemBmp GUICtrlMenu_SetItemBmpChecked GUICtrlMenu_SetItemBmpUnchecked GUICtrlMenu_SetItemChecked GUICtrlMenu_SetItemData GUICtrlMenu_SetItemDefault GUICtrlMenu_SetItemDisabled GUICtrlMenu_SetItemEnabled GUICtrlMenu_SetItemGrayed GUICtrlMenu_SetItemHighlighted GUICtrlMenu_SetItemID GUICtrlMenu_SetItemInfo GUICtrlMenu_SetItemState GUICtrlMenu_SetItemSubMenu GUICtrlMenu_SetItemText GUICtrlMenu_SetItemType GUICtrlMenu_SetMenu GUICtrlMenu_SetMenuBackground GUICtrlMenu_SetMenuContextHelpID GUICtrlMenu_SetMenuData GUICtrlMenu_SetMenuDefaultItem GUICtrlMenu_SetMenuHeight GUICtrlMenu_SetMenuInfo GUICtrlMenu_SetMenuStyle GUICtrlMenu_TrackPopupMenu GUICtrlMonthCal_Create GUICtrlMonthCal_Destroy GUICtrlMonthCal_GetCalendarBorder GUICtrlMonthCal_GetCalendarCount GUICtrlMonthCal_GetColor GUICtrlMonthCal_GetColorArray GUICtrlMonthCal_GetCurSel GUICtrlMonthCal_GetCurSelStr GUICtrlMonthCal_GetFirstDOW GUICtrlMonthCal_GetFirstDOWStr GUICtrlMonthCal_GetMaxSelCount GUICtrlMonthCal_GetMaxTodayWidth GUICtrlMonthCal_GetMinReqHeight GUICtrlMonthCal_GetMinReqRect GUICtrlMonthCal_GetMinReqRectArray GUICtrlMonthCal_GetMinReqWidth GUICtrlMonthCal_GetMonthDelta GUICtrlMonthCal_GetMonthRange GUICtrlMonthCal_GetMonthRangeMax GUICtrlMonthCal_GetMonthRangeMaxStr GUICtrlMonthCal_GetMonthRangeMin GUICtrlMonthCal_GetMonthRangeMinStr GUICtrlMonthCal_GetMonthRangeSpan GUICtrlMonthCal_GetRange GUICtrlMonthCal_GetRangeMax GUICtrlMonthCal_GetRangeMaxStr GUICtrlMonthCal_GetRangeMin GUICtrlMonthCal_GetRangeMinStr GUICtrlMonthCal_GetSelRange GUICtrlMonthCal_GetSelRangeMax GUICtrlMonthCal_GetSelRangeMaxStr GUICtrlMonthCal_GetSelRangeMin GUICtrlMonthCal_GetSelRangeMinStr GUICtrlMonthCal_GetToday GUICtrlMonthCal_GetTodayStr GUICtrlMonthCal_GetUnicodeFormat GUICtrlMonthCal_HitTest GUICtrlMonthCal_SetCalendarBorder GUICtrlMonthCal_SetColor GUICtrlMonthCal_SetCurSel GUICtrlMonthCal_SetDayState GUICtrlMonthCal_SetFirstDOW GUICtrlMonthCal_SetMaxSelCount GUICtrlMonthCal_SetMonthDelta GUICtrlMonthCal_SetRange GUICtrlMonthCal_SetSelRange GUICtrlMonthCal_SetToday GUICtrlMonthCal_SetUnicodeFormat GUICtrlRebar_AddBand GUICtrlRebar_AddToolBarBand GUICtrlRebar_BeginDrag GUICtrlRebar_Create GUICtrlRebar_DeleteBand GUICtrlRebar_Destroy GUICtrlRebar_DragMove GUICtrlRebar_EndDrag GUICtrlRebar_GetBandBackColor GUICtrlRebar_GetBandBorders GUICtrlRebar_GetBandBordersEx GUICtrlRebar_GetBandChildHandle GUICtrlRebar_GetBandChildSize GUICtrlRebar_GetBandCount GUICtrlRebar_GetBandForeColor GUICtrlRebar_GetBandHeaderSize GUICtrlRebar_GetBandID GUICtrlRebar_GetBandIdealSize GUICtrlRebar_GetBandLength GUICtrlRebar_GetBandLParam GUICtrlRebar_GetBandMargins GUICtrlRebar_GetBandMarginsEx GUICtrlRebar_GetBandRect GUICtrlRebar_GetBandRectEx GUICtrlRebar_GetBandStyle GUICtrlRebar_GetBandStyleBreak GUICtrlRebar_GetBandStyleChildEdge GUICtrlRebar_GetBandStyleFixedBMP GUICtrlRebar_GetBandStyleFixedSize GUICtrlRebar_GetBandStyleGripperAlways GUICtrlRebar_GetBandStyleHidden GUICtrlRebar_GetBandStyleHideTitle
GUICtrlRebar_GetBandStyleNoGripper GUICtrlRebar_GetBandStyleTopAlign GUICtrlRebar_GetBandStyleUseChevron GUICtrlRebar_GetBandStyleVariableHeight GUICtrlRebar_GetBandText GUICtrlRebar_GetBarHeight GUICtrlRebar_GetBarInfo GUICtrlRebar_GetBKColor GUICtrlRebar_GetColorScheme GUICtrlRebar_GetRowCount GUICtrlRebar_GetRowHeight GUICtrlRebar_GetTextColor GUICtrlRebar_GetToolTips GUICtrlRebar_GetUnicodeFormat GUICtrlRebar_HitTest GUICtrlRebar_IDToIndex GUICtrlRebar_MaximizeBand GUICtrlRebar_MinimizeBand GUICtrlRebar_MoveBand GUICtrlRebar_SetBandBackColor GUICtrlRebar_SetBandForeColor GUICtrlRebar_SetBandHeaderSize GUICtrlRebar_SetBandID GUICtrlRebar_SetBandIdealSize GUICtrlRebar_SetBandLength GUICtrlRebar_SetBandLParam GUICtrlRebar_SetBandStyle GUICtrlRebar_SetBandStyleBreak GUICtrlRebar_SetBandStyleChildEdge GUICtrlRebar_SetBandStyleFixedBMP GUICtrlRebar_SetBandStyleFixedSize GUICtrlRebar_SetBandStyleGripperAlways GUICtrlRebar_SetBandStyleHidden GUICtrlRebar_SetBandStyleHideTitle GUICtrlRebar_SetBandStyleNoGripper GUICtrlRebar_SetBandStyleTopAlign GUICtrlRebar_SetBandStyleUseChevron GUICtrlRebar_SetBandStyleVariableHeight GUICtrlRebar_SetBandText GUICtrlRebar_SetBarInfo GUICtrlRebar_SetBKColor GUICtrlRebar_SetColorScheme GUICtrlRebar_SetTextColor GUICtrlRebar_SetToolTips GUICtrlRebar_SetUnicodeFormat GUICtrlRebar_ShowBand GUICtrlRichEdit_AppendText GUICtrlRichEdit_AutoDetectURL GUICtrlRichEdit_CanPaste GUICtrlRichEdit_CanPasteSpecial GUICtrlRichEdit_CanRedo GUICtrlRichEdit_CanUndo GUICtrlRichEdit_ChangeFontSize GUICtrlRichEdit_Copy GUICtrlRichEdit_Create GUICtrlRichEdit_Cut GUICtrlRichEdit_Deselect GUICtrlRichEdit_Destroy GUICtrlRichEdit_EmptyUndoBuffer GUICtrlRichEdit_FindText GUICtrlRichEdit_FindTextInRange GUICtrlRichEdit_GetBkColor GUICtrlRichEdit_GetCharAttributes GUICtrlRichEdit_GetCharBkColor GUICtrlRichEdit_GetCharColor GUICtrlRichEdit_GetCharPosFromXY GUICtrlRichEdit_GetCharPosOfNextWord GUICtrlRichEdit_GetCharPosOfPreviousWord GUICtrlRichEdit_GetCharWordBreakInfo GUICtrlRichEdit_GetFirstCharPosOnLine GUICtrlRichEdit_GetFont GUICtrlRichEdit_GetLineCount GUICtrlRichEdit_GetLineLength GUICtrlRichEdit_GetLineNumberFromCharPos GUICtrlRichEdit_GetNextRedo GUICtrlRichEdit_GetNextUndo GUICtrlRichEdit_GetNumberOfFirstVisibleLine GUICtrlRichEdit_GetParaAlignment GUICtrlRichEdit_GetParaAttributes GUICtrlRichEdit_GetParaBorder GUICtrlRichEdit_GetParaIndents GUICtrlRichEdit_GetParaNumbering GUICtrlRichEdit_GetParaShading GUICtrlRichEdit_GetParaSpacing GUICtrlRichEdit_GetParaTabStops GUICtrlRichEdit_GetPasswordChar GUICtrlRichEdit_GetRECT GUICtrlRichEdit_GetScrollPos GUICtrlRichEdit_GetSel GUICtrlRichEdit_GetSelAA GUICtrlRichEdit_GetSelText GUICtrlRichEdit_GetSpaceUnit GUICtrlRichEdit_GetText GUICtrlRichEdit_GetTextInLine GUICtrlRichEdit_GetTextInRange GUICtrlRichEdit_GetTextLength GUICtrlRichEdit_GetVersion GUICtrlRichEdit_GetXYFromCharPos GUICtrlRichEdit_GetZoom GUICtrlRichEdit_GotoCharPos GUICtrlRichEdit_HideSelection GUICtrlRichEdit_InsertText GUICtrlRichEdit_IsModified GUICtrlRichEdit_IsTextSelected GUICtrlRichEdit_Paste GUICtrlRichEdit_PasteSpecial GUICtrlRichEdit_PauseRedraw GUICtrlRichEdit_Redo GUICtrlRichEdit_ReplaceText GUICtrlRichEdit_ResumeRedraw GUICtrlRichEdit_ScrollLineOrPage GUICtrlRichEdit_ScrollLines GUICtrlRichEdit_ScrollToCaret GUICtrlRichEdit_SetBkColor GUICtrlRichEdit_SetCharAttributes GUICtrlRichEdit_SetCharBkColor GUICtrlRichEdit_SetCharColor GUICtrlRichEdit_SetEventMask GUICtrlRichEdit_SetFont GUICtrlRichEdit_SetLimitOnText GUICtrlRichEdit_SetModified GUICtrlRichEdit_SetParaAlignment GUICtrlRichEdit_SetParaAttributes GUICtrlRichEdit_SetParaBorder GUICtrlRichEdit_SetParaIndents GUICtrlRichEdit_SetParaNumbering GUICtrlRichEdit_SetParaShading GUICtrlRichEdit_SetParaSpacing GUICtrlRichEdit_SetParaTabStops GUICtrlRichEdit_SetPasswordChar GUICtrlRichEdit_SetReadOnly GUICtrlRichEdit_SetRECT GUICtrlRichEdit_SetScrollPos GUICtrlRichEdit_SetSel GUICtrlRichEdit_SetSpaceUnit GUICtrlRichEdit_SetTabStops GUICtrlRichEdit_SetText GUICtrlRichEdit_SetUndoLimit GUICtrlRichEdit_SetZoom GUICtrlRichEdit_StreamFromFile GUICtrlRichEdit_StreamFromVar GUICtrlRichEdit_StreamToFile GUICtrlRichEdit_StreamToVar GUICtrlRichEdit_Undo GUICtrlSlider_ClearSel GUICtrlSlider_ClearTics GUICtrlSlider_Create GUICtrlSlider_Destroy GUICtrlSlider_GetBuddy GUICtrlSlider_GetChannelRect GUICtrlSlider_GetChannelRectEx GUICtrlSlider_GetLineSize GUICtrlSlider_GetLogicalTics GUICtrlSlider_GetNumTics GUICtrlSlider_GetPageSize GUICtrlSlider_GetPos GUICtrlSlider_GetRange GUICtrlSlider_GetRangeMax GUICtrlSlider_GetRangeMin GUICtrlSlider_GetSel GUICtrlSlider_GetSelEnd GUICtrlSlider_GetSelStart GUICtrlSlider_GetThumbLength GUICtrlSlider_GetThumbRect GUICtrlSlider_GetThumbRectEx GUICtrlSlider_GetTic GUICtrlSlider_GetTicPos GUICtrlSlider_GetToolTips GUICtrlSlider_GetUnicodeFormat GUICtrlSlider_SetBuddy GUICtrlSlider_SetLineSize GUICtrlSlider_SetPageSize GUICtrlSlider_SetPos GUICtrlSlider_SetRange GUICtrlSlider_SetRangeMax GUICtrlSlider_SetRangeMin GUICtrlSlider_SetSel GUICtrlSlider_SetSelEnd GUICtrlSlider_SetSelStart GUICtrlSlider_SetThumbLength GUICtrlSlider_SetTic GUICtrlSlider_SetTicFreq GUICtrlSlider_SetTipSide GUICtrlSlider_SetToolTips GUICtrlSlider_SetUnicodeFormat GUICtrlStatusBar_Create GUICtrlStatusBar_Destroy GUICtrlStatusBar_EmbedControl GUICtrlStatusBar_GetBorders GUICtrlStatusBar_GetBordersHorz GUICtrlStatusBar_GetBordersRect GUICtrlStatusBar_GetBordersVert GUICtrlStatusBar_GetCount GUICtrlStatusBar_GetHeight GUICtrlStatusBar_GetIcon GUICtrlStatusBar_GetParts GUICtrlStatusBar_GetRect GUICtrlStatusBar_GetRectEx GUICtrlStatusBar_GetText GUICtrlStatusBar_GetTextFlags GUICtrlStatusBar_GetTextLength GUICtrlStatusBar_GetTextLengthEx GUICtrlStatusBar_GetTipText GUICtrlStatusBar_GetUnicodeFormat GUICtrlStatusBar_GetWidth GUICtrlStatusBar_IsSimple GUICtrlStatusBar_Resize GUICtrlStatusBar_SetBkColor GUICtrlStatusBar_SetIcon GUICtrlStatusBar_SetMinHeight GUICtrlStatusBar_SetParts GUICtrlStatusBar_SetSimple GUICtrlStatusBar_SetText GUICtrlStatusBar_SetTipText GUICtrlStatusBar_SetUnicodeFormat GUICtrlStatusBar_ShowHide GUICtrlTab_ActivateTab GUICtrlTab_ClickTab GUICtrlTab_Create GUICtrlTab_DeleteAllItems GUICtrlTab_DeleteItem GUICtrlTab_DeselectAll GUICtrlTab_Destroy GUICtrlTab_FindTab GUICtrlTab_GetCurFocus GUICtrlTab_GetCurSel GUICtrlTab_GetDisplayRect GUICtrlTab_GetDisplayRectEx GUICtrlTab_GetExtendedStyle GUICtrlTab_GetImageList GUICtrlTab_GetItem GUICtrlTab_GetItemCount GUICtrlTab_GetItemImage GUICtrlTab_GetItemParam GUICtrlTab_GetItemRect GUICtrlTab_GetItemRectEx GUICtrlTab_GetItemState GUICtrlTab_GetItemText GUICtrlTab_GetRowCount GUICtrlTab_GetToolTips GUICtrlTab_GetUnicodeFormat GUICtrlTab_HighlightItem GUICtrlTab_HitTest GUICtrlTab_InsertItem GUICtrlTab_RemoveImage GUICtrlTab_SetCurFocus GUICtrlTab_SetCurSel GUICtrlTab_SetExtendedStyle GUICtrlTab_SetImageList GUICtrlTab_SetItem GUICtrlTab_SetItemImage GUICtrlTab_SetItemParam GUICtrlTab_SetItemSize GUICtrlTab_SetItemState GUICtrlTab_SetItemText GUICtrlTab_SetMinTabWidth GUICtrlTab_SetPadding GUICtrlTab_SetToolTips GUICtrlTab_SetUnicodeFormat GUICtrlToolbar_AddBitmap GUICtrlToolbar_AddButton GUICtrlToolbar_AddButtonSep GUICtrlToolbar_AddString GUICtrlToolbar_ButtonCount GUICtrlToolbar_CheckButton GUICtrlToolbar_ClickAccel GUICtrlToolbar_ClickButton GUICtrlToolbar_ClickIndex GUICtrlToolbar_CommandToIndex GUICtrlToolbar_Create GUICtrlToolbar_Customize GUICtrlToolbar_DeleteButton GUICtrlToolbar_Destroy GUICtrlToolbar_EnableButton GUICtrlToolbar_FindToolbar GUICtrlToolbar_GetAnchorHighlight GUICtrlToolbar_GetBitmapFlags GUICtrlToolbar_GetButtonBitmap GUICtrlToolbar_GetButtonInfo GUICtrlToolbar_GetButtonInfoEx GUICtrlToolbar_GetButtonParam GUICtrlToolbar_GetButtonRect GUICtrlToolbar_GetButtonRectEx GUICtrlToolbar_GetButtonSize GUICtrlToolbar_GetButtonState GUICtrlToolbar_GetButtonStyle GUICtrlToolbar_GetButtonText GUICtrlToolbar_GetColorScheme GUICtrlToolbar_GetDisabledImageList GUICtrlToolbar_GetExtendedStyle GUICtrlToolbar_GetHotImageList GUICtrlToolbar_GetHotItem GUICtrlToolbar_GetImageList GUICtrlToolbar_GetInsertMark GUICtrlToolbar_GetInsertMarkColor GUICtrlToolbar_GetMaxSize GUICtrlToolbar_GetMetrics GUICtrlToolbar_GetPadding GUICtrlToolbar_GetRows GUICtrlToolbar_GetString GUICtrlToolbar_GetStyle GUICtrlToolbar_GetStyleAltDrag GUICtrlToolbar_GetStyleCustomErase GUICtrlToolbar_GetStyleFlat GUICtrlToolbar_GetStyleList GUICtrlToolbar_GetStyleRegisterDrop GUICtrlToolbar_GetStyleToolTips GUICtrlToolbar_GetStyleTransparent GUICtrlToolbar_GetStyleWrapable GUICtrlToolbar_GetTextRows GUICtrlToolbar_GetToolTips GUICtrlToolbar_GetUnicodeFormat GUICtrlToolbar_HideButton GUICtrlToolbar_HighlightButton GUICtrlToolbar_HitTest GUICtrlToolbar_IndexToCommand GUICtrlToolbar_InsertButton GUICtrlToolbar_InsertMarkHitTest GUICtrlToolbar_IsButtonChecked GUICtrlToolbar_IsButtonEnabled GUICtrlToolbar_IsButtonHidden GUICtrlToolbar_IsButtonHighlighted GUICtrlToolbar_IsButtonIndeterminate GUICtrlToolbar_IsButtonPressed GUICtrlToolbar_LoadBitmap GUICtrlToolbar_LoadImages GUICtrlToolbar_MapAccelerator GUICtrlToolbar_MoveButton GUICtrlToolbar_PressButton GUICtrlToolbar_SetAnchorHighlight GUICtrlToolbar_SetBitmapSize GUICtrlToolbar_SetButtonBitMap GUICtrlToolbar_SetButtonInfo GUICtrlToolbar_SetButtonInfoEx GUICtrlToolbar_SetButtonParam GUICtrlToolbar_SetButtonSize GUICtrlToolbar_SetButtonState GUICtrlToolbar_SetButtonStyle GUICtrlToolbar_SetButtonText GUICtrlToolbar_SetButtonWidth GUICtrlToolbar_SetCmdID GUICtrlToolbar_SetColorScheme GUICtrlToolbar_SetDisabledImageList GUICtrlToolbar_SetDrawTextFlags GUICtrlToolbar_SetExtendedStyle GUICtrlToolbar_SetHotImageList GUICtrlToolbar_SetHotItem GUICtrlToolbar_SetImageList GUICtrlToolbar_SetIndent GUICtrlToolbar_SetIndeterminate GUICtrlToolbar_SetInsertMark GUICtrlToolbar_SetInsertMarkColor GUICtrlToolbar_SetMaxTextRows GUICtrlToolbar_SetMetrics GUICtrlToolbar_SetPadding GUICtrlToolbar_SetParent GUICtrlToolbar_SetRows GUICtrlToolbar_SetStyle GUICtrlToolbar_SetStyleAltDrag
GUICtrlToolbar_SetStyleCustomErase GUICtrlToolbar_SetStyleFlat GUICtrlToolbar_SetStyleList GUICtrlToolbar_SetStyleRegisterDrop GUICtrlToolbar_SetStyleToolTips GUICtrlToolbar_SetStyleTransparent GUICtrlToolbar_SetStyleWrapable GUICtrlToolbar_SetToolTips GUICtrlToolbar_SetUnicodeFormat GUICtrlToolbar_SetWindowTheme GUICtrlTreeView_Add GUICtrlTreeView_AddChild GUICtrlTreeView_AddChildFirst GUICtrlTreeView_AddFirst GUICtrlTreeView_BeginUpdate GUICtrlTreeView_ClickItem GUICtrlTreeView_Create GUICtrlTreeView_CreateDragImage GUICtrlTreeView_CreateSolidBitMap GUICtrlTreeView_Delete GUICtrlTreeView_DeleteAll GUICtrlTreeView_DeleteChildren GUICtrlTreeView_Destroy GUICtrlTreeView_DisplayRect GUICtrlTreeView_DisplayRectEx GUICtrlTreeView_EditText GUICtrlTreeView_EndEdit GUICtrlTreeView_EndUpdate GUICtrlTreeView_EnsureVisible GUICtrlTreeView_Expand GUICtrlTreeView_ExpandedOnce GUICtrlTreeView_FindItem GUICtrlTreeView_FindItemEx GUICtrlTreeView_GetBkColor GUICtrlTreeView_GetBold GUICtrlTreeView_GetChecked GUICtrlTreeView_GetChildCount GUICtrlTreeView_GetChildren GUICtrlTreeView_GetCount GUICtrlTreeView_GetCut GUICtrlTreeView_GetDropTarget GUICtrlTreeView_GetEditControl GUICtrlTreeView_GetExpanded GUICtrlTreeView_GetFirstChild GUICtrlTreeView_GetFirstItem GUICtrlTreeView_GetFirstVisible GUICtrlTreeView_GetFocused GUICtrlTreeView_GetHeight GUICtrlTreeView_GetImageIndex GUICtrlTreeView_GetImageListIconHandle GUICtrlTreeView_GetIndent GUICtrlTreeView_GetInsertMarkColor GUICtrlTreeView_GetISearchString GUICtrlTreeView_GetItemByIndex GUICtrlTreeView_GetItemHandle GUICtrlTreeView_GetItemParam GUICtrlTreeView_GetLastChild GUICtrlTreeView_GetLineColor GUICtrlTreeView_GetNext GUICtrlTreeView_GetNextChild GUICtrlTreeView_GetNextSibling GUICtrlTreeView_GetNextVisible GUICtrlTreeView_GetNormalImageList GUICtrlTreeView_GetParentHandle GUICtrlTreeView_GetParentParam GUICtrlTreeView_GetPrev GUICtrlTreeView_GetPrevChild GUICtrlTreeView_GetPrevSibling GUICtrlTreeView_GetPrevVisible GUICtrlTreeView_GetScrollTime GUICtrlTreeView_GetSelected GUICtrlTreeView_GetSelectedImageIndex GUICtrlTreeView_GetSelection GUICtrlTreeView_GetSiblingCount GUICtrlTreeView_GetState GUICtrlTreeView_GetStateImageIndex GUICtrlTreeView_GetStateImageList GUICtrlTreeView_GetText GUICtrlTreeView_GetTextColor GUICtrlTreeView_GetToolTips GUICtrlTreeView_GetTree GUICtrlTreeView_GetUnicodeFormat GUICtrlTreeView_GetVisible GUICtrlTreeView_GetVisibleCount GUICtrlTreeView_HitTest GUICtrlTreeView_HitTestEx GUICtrlTreeView_HitTestItem GUICtrlTreeView_Index GUICtrlTreeView_InsertItem GUICtrlTreeView_IsFirstItem GUICtrlTreeView_IsParent GUICtrlTreeView_Level GUICtrlTreeView_SelectItem GUICtrlTreeView_SelectItemByIndex GUICtrlTreeView_SetBkColor GUICtrlTreeView_SetBold GUICtrlTreeView_SetChecked GUICtrlTreeView_SetCheckedByIndex GUICtrlTreeView_SetChildren GUICtrlTreeView_SetCut GUICtrlTreeView_SetDropTarget GUICtrlTreeView_SetFocused GUICtrlTreeView_SetHeight GUICtrlTreeView_SetIcon GUICtrlTreeView_SetImageIndex GUICtrlTreeView_SetIndent GUICtrlTreeView_SetInsertMark GUICtrlTreeView_SetInsertMarkColor GUICtrlTreeView_SetItemHeight GUICtrlTreeView_SetItemParam GUICtrlTreeView_SetLineColor GUICtrlTreeView_SetNormalImageList GUICtrlTreeView_SetScrollTime GUICtrlTreeView_SetSelected GUICtrlTreeView_SetSelectedImageIndex GUICtrlTreeView_SetState GUICtrlTreeView_SetStateImageIndex GUICtrlTreeView_SetStateImageList GUICtrlTreeView_SetText GUICtrlTreeView_SetTextColor GUICtrlTreeView_SetToolTips GUICtrlTreeView_SetUnicodeFormat GUICtrlTreeView_Sort GUIImageList_Add GUIImageList_AddBitmap GUIImageList_AddIcon GUIImageList_AddMasked GUIImageList_BeginDrag GUIImageList_Copy GUIImageList_Create GUIImageList_Destroy GUIImageList_DestroyIcon GUIImageList_DragEnter GUIImageList_DragLeave GUIImageList_DragMove GUIImageList_Draw GUIImageList_DrawEx GUIImageList_Duplicate GUIImageList_EndDrag GUIImageList_GetBkColor GUIImageList_GetIcon GUIImageList_GetIconHeight GUIImageList_GetIconSize GUIImageList_GetIconSizeEx GUIImageList_GetIconWidth GUIImageList_GetImageCount GUIImageList_GetImageInfoEx GUIImageList_Remove GUIImageList_ReplaceIcon GUIImageList_SetBkColor GUIImageList_SetIconSize GUIImageList_SetImageCount GUIImageList_Swap GUIScrollBars_EnableScrollBar GUIScrollBars_GetScrollBarInfoEx GUIScrollBars_GetScrollBarRect GUIScrollBars_GetScrollBarRGState GUIScrollBars_GetScrollBarXYLineButton GUIScrollBars_GetScrollBarXYThumbBottom GUIScrollBars_GetScrollBarXYThumbTop GUIScrollBars_GetScrollInfo GUIScrollBars_GetScrollInfoEx GUIScrollBars_GetScrollInfoMax GUIScrollBars_GetScrollInfoMin GUIScrollBars_GetScrollInfoPage GUIScrollBars_GetScrollInfoPos GUIScrollBars_GetScrollInfoTrackPos GUIScrollBars_GetScrollPos GUIScrollBars_GetScrollRange GUIScrollBars_Init GUIScrollBars_ScrollWindow GUIScrollBars_SetScrollInfo GUIScrollBars_SetScrollInfoMax GUIScrollBars_SetScrollInfoMin GUIScrollBars_SetScrollInfoPage GUIScrollBars_SetScrollInfoPos GUIScrollBars_SetScrollRange GUIScrollBars_ShowScrollBar GUIToolTip_Activate GUIToolTip_AddTool GUIToolTip_AdjustRect GUIToolTip_BitsToTTF GUIToolTip_Create GUIToolTip_Deactivate GUIToolTip_DelTool GUIToolTip_Destroy GUIToolTip_EnumTools GUIToolTip_GetBubbleHeight GUIToolTip_GetBubbleSize GUIToolTip_GetBubbleWidth GUIToolTip_GetCurrentTool GUIToolTip_GetDelayTime GUIToolTip_GetMargin GUIToolTip_GetMarginEx GUIToolTip_GetMaxTipWidth GUIToolTip_GetText GUIToolTip_GetTipBkColor GUIToolTip_GetTipTextColor GUIToolTip_GetTitleBitMap GUIToolTip_GetTitleText GUIToolTip_GetToolCount GUIToolTip_GetToolInfo GUIToolTip_HitTest GUIToolTip_NewToolRect GUIToolTip_Pop GUIToolTip_PopUp GUIToolTip_SetDelayTime GUIToolTip_SetMargin GUIToolTip_SetMaxTipWidth GUIToolTip_SetTipBkColor GUIToolTip_SetTipTextColor GUIToolTip_SetTitle GUIToolTip_SetToolInfo GUIToolTip_SetWindowTheme GUIToolTip_ToolExists GUIToolTip_ToolToArray GUIToolTip_TrackActivate GUIToolTip_TrackPosition GUIToolTip_Update GUIToolTip_UpdateTipText HexToString IEAction IEAttach IEBodyReadHTML IEBodyReadText IEBodyWriteHTML IECreate IECreateEmbedded IEDocGetObj IEDocInsertHTML IEDocInsertText IEDocReadHTML IEDocWriteHTML IEErrorNotify IEFormElementCheckBoxSelect IEFormElementGetCollection IEFormElementGetObjByName IEFormElementGetValue IEFormElementOptionSelect IEFormElementRadioSelect IEFormElementSetValue IEFormGetCollection IEFormGetObjByName IEFormImageClick IEFormReset IEFormSubmit IEFrameGetCollection IEFrameGetObjByName IEGetObjById IEGetObjByName IEHeadInsertEventScript IEImgClick IEImgGetCollection IEIsFrameSet IELinkClickByIndex IELinkClickByText IELinkGetCollection IELoadWait IELoadWaitTimeout IENavigate IEPropertyGet IEPropertySet IEQuit IETableGetCollection IETableWriteToArray IETagNameAllGetCollection IETagNameGetCollection IE_Example IE_Introduction IE_VersionInfo INetExplorerCapable INetGetSource INetMail INetSmtpMail IsPressed MathCheckDiv Max MemGlobalAlloc MemGlobalFree MemGlobalLock MemGlobalSize MemGlobalUnlock MemMoveMemory MemVirtualAlloc MemVirtualAllocEx MemVirtualFree MemVirtualFreeEx Min MouseTrap NamedPipes_CallNamedPipe NamedPipes_ConnectNamedPipe NamedPipes_CreateNamedPipe NamedPipes_CreatePipe NamedPipes_DisconnectNamedPipe NamedPipes_GetNamedPipeHandleState NamedPipes_GetNamedPipeInfo NamedPipes_PeekNamedPipe NamedPipes_SetNamedPipeHandleState NamedPipes_TransactNamedPipe NamedPipes_WaitNamedPipe Net_Share_ConnectionEnum Net_Share_FileClose Net_Share_FileEnum Net_Share_FileGetInfo Net_Share_PermStr Net_Share_ResourceStr Net_Share_SessionDel Net_Share_SessionEnum Net_Share_SessionGetInfo Net_Share_ShareAdd Net_Share_ShareCheck Net_Share_ShareDel Net_Share_ShareEnum Net_Share_ShareGetInfo Net_Share_ShareSetInfo Net_Share_StatisticsGetSvr Net_Share_StatisticsGetWrk Now NowCalc NowCalcDate NowDate NowTime PathFull PathGetRelative PathMake PathSplit ProcessGetName ProcessGetPriority Radian ReplaceStringInFile RunDos ScreenCapture_Capture ScreenCapture_CaptureWnd ScreenCapture_SaveImage ScreenCapture_SetBMPFormat ScreenCapture_SetJPGQuality ScreenCapture_SetTIFColorDepth ScreenCapture_SetTIFCompression Security__AdjustTokenPrivileges Security__CreateProcessWithToken Security__DuplicateTokenEx Security__GetAccountSid Security__GetLengthSid Security__GetTokenInformation Security__ImpersonateSelf Security__IsValidSid Security__LookupAccountName Security__LookupAccountSid Security__LookupPrivilegeValue Security__OpenProcessToken Security__OpenThreadToken Security__OpenThreadTokenEx Security__SetPrivilege Security__SetTokenInformation Security__SidToStringSid Security__SidTypeStr Security__StringSidToSid SendMessage SendMessageA SetDate SetTime Singleton SoundClose SoundLength SoundOpen SoundPause SoundPlay SoundPos SoundResume SoundSeek SoundStatus SoundStop SQLite_Changes SQLite_Close SQLite_Display2DResult SQLite_Encode SQLite_ErrCode SQLite_ErrMsg SQLite_Escape SQLite_Exec SQLite_FastEncode SQLite_FastEscape SQLite_FetchData SQLite_FetchNames SQLite_GetTable SQLite_GetTable2d SQLite_LastInsertRowID SQLite_LibVersion SQLite_Open SQLite_Query SQLite_QueryFinalize SQLite_QueryReset SQLite_QuerySingleRow SQLite_SafeMode SQLite_SetTimeout SQLite_Shutdown SQLite_SQLiteExe SQLite_Startup SQLite_TotalChanges StringBetween StringExplode StringInsert StringProper StringRepeat StringTitleCase StringToHex TCPIpToName TempFile TicksToTime Timer_Diff Timer_GetIdleTime Timer_GetTimerID Timer_Init Timer_KillAllTimers Timer_KillTimer Timer_SetTimer TimeToTicks VersionCompare viClose viExecCommand viFindGpib viGpibBusReset viGTL viInteractiveControl viOpen viSetAttribute viSetTimeout WeekNumberISO WinAPI_AbortPath WinAPI_ActivateKeyboardLayout WinAPI_AddClipboardFormatListener WinAPI_AddFontMemResourceEx WinAPI_AddFontResourceEx WinAPI_AddIconOverlay WinAPI_AddIconTransparency WinAPI_AddMRUString WinAPI_AdjustBitmap WinAPI_AdjustTokenPrivileges WinAPI_AdjustWindowRectEx WinAPI_AlphaBlend WinAPI_AngleArc WinAPI_AnimateWindow WinAPI_Arc WinAPI_ArcTo WinAPI_ArrayToStruct WinAPI_AssignProcessToJobObject
WinAPI_AssocGetPerceivedType WinAPI_AssocQueryString WinAPI_AttachConsole WinAPI_AttachThreadInput WinAPI_BackupRead WinAPI_BackupReadAbort WinAPI_BackupSeek WinAPI_BackupWrite WinAPI_BackupWriteAbort WinAPI_Beep WinAPI_BeginBufferedPaint WinAPI_BeginDeferWindowPos WinAPI_BeginPaint WinAPI_BeginPath WinAPI_BeginUpdateResource WinAPI_BitBlt WinAPI_BringWindowToTop WinAPI_BroadcastSystemMessage WinAPI_BrowseForFolderDlg WinAPI_BufferedPaintClear WinAPI_BufferedPaintInit WinAPI_BufferedPaintSetAlpha WinAPI_BufferedPaintUnInit WinAPI_CallNextHookEx WinAPI_CallWindowProc WinAPI_CallWindowProcW WinAPI_CascadeWindows WinAPI_ChangeWindowMessageFilterEx WinAPI_CharToOem WinAPI_ChildWindowFromPointEx WinAPI_ClientToScreen WinAPI_ClipCursor WinAPI_CloseDesktop WinAPI_CloseEnhMetaFile WinAPI_CloseFigure WinAPI_CloseHandle WinAPI_CloseThemeData WinAPI_CloseWindow WinAPI_CloseWindowStation WinAPI_CLSIDFromProgID WinAPI_CoInitialize WinAPI_ColorAdjustLuma WinAPI_ColorHLSToRGB WinAPI_ColorRGBToHLS WinAPI_CombineRgn WinAPI_CombineTransform WinAPI_CommandLineToArgv WinAPI_CommDlgExtendedError WinAPI_CommDlgExtendedErrorEx WinAPI_CompareString WinAPI_CompressBitmapBits WinAPI_CompressBuffer WinAPI_ComputeCrc32 WinAPI_ConfirmCredentials WinAPI_CopyBitmap WinAPI_CopyCursor WinAPI_CopyEnhMetaFile WinAPI_CopyFileEx WinAPI_CopyIcon WinAPI_CopyImage WinAPI_CopyRect WinAPI_CopyStruct WinAPI_CoTaskMemAlloc WinAPI_CoTaskMemFree WinAPI_CoTaskMemRealloc WinAPI_CoUninitialize WinAPI_Create32BitHBITMAP WinAPI_Create32BitHICON WinAPI_CreateANDBitmap WinAPI_CreateBitmap WinAPI_CreateBitmapIndirect WinAPI_CreateBrushIndirect WinAPI_CreateBuffer WinAPI_CreateBufferFromStruct WinAPI_CreateCaret WinAPI_CreateColorAdjustment WinAPI_CreateCompatibleBitmap WinAPI_CreateCompatibleBitmapEx WinAPI_CreateCompatibleDC WinAPI_CreateDesktop WinAPI_CreateDIB WinAPI_CreateDIBColorTable WinAPI_CreateDIBitmap WinAPI_CreateDIBSection WinAPI_CreateDirectory WinAPI_CreateDirectoryEx WinAPI_CreateEllipticRgn WinAPI_CreateEmptyIcon WinAPI_CreateEnhMetaFile WinAPI_CreateEvent WinAPI_CreateFile WinAPI_CreateFileEx WinAPI_CreateFileMapping WinAPI_CreateFont WinAPI_CreateFontEx WinAPI_CreateFontIndirect WinAPI_CreateGUID WinAPI_CreateHardLink WinAPI_CreateIcon WinAPI_CreateIconFromResourceEx WinAPI_CreateIconIndirect WinAPI_CreateJobObject WinAPI_CreateMargins WinAPI_CreateMRUList WinAPI_CreateMutex WinAPI_CreateNullRgn WinAPI_CreateNumberFormatInfo WinAPI_CreateObjectID WinAPI_CreatePen WinAPI_CreatePoint WinAPI_CreatePolygonRgn WinAPI_CreateProcess WinAPI_CreateProcessWithToken WinAPI_CreateRect WinAPI_CreateRectEx WinAPI_CreateRectRgn WinAPI_CreateRectRgnIndirect WinAPI_CreateRoundRectRgn WinAPI_CreateSemaphore WinAPI_CreateSize WinAPI_CreateSolidBitmap WinAPI_CreateSolidBrush WinAPI_CreateStreamOnHGlobal WinAPI_CreateString WinAPI_CreateSymbolicLink WinAPI_CreateTransform WinAPI_CreateWindowEx WinAPI_CreateWindowStation WinAPI_DecompressBuffer WinAPI_DecryptFile WinAPI_DeferWindowPos WinAPI_DefineDosDevice WinAPI_DefRawInputProc WinAPI_DefSubclassProc WinAPI_DefWindowProc WinAPI_DefWindowProcW WinAPI_DeleteDC WinAPI_DeleteEnhMetaFile WinAPI_DeleteFile WinAPI_DeleteObject WinAPI_DeleteObjectID WinAPI_DeleteVolumeMountPoint WinAPI_DeregisterShellHookWindow WinAPI_DestroyCaret WinAPI_DestroyCursor WinAPI_DestroyIcon WinAPI_DestroyWindow WinAPI_DeviceIoControl WinAPI_DisplayStruct WinAPI_DllGetVersion WinAPI_DllInstall WinAPI_DllUninstall WinAPI_DPtoLP WinAPI_DragAcceptFiles WinAPI_DragFinish WinAPI_DragQueryFileEx WinAPI_DragQueryPoint WinAPI_DrawAnimatedRects WinAPI_DrawBitmap WinAPI_DrawEdge WinAPI_DrawFocusRect WinAPI_DrawFrameControl WinAPI_DrawIcon WinAPI_DrawIconEx WinAPI_DrawLine WinAPI_DrawShadowText WinAPI_DrawText WinAPI_DrawThemeBackground WinAPI_DrawThemeEdge WinAPI_DrawThemeIcon WinAPI_DrawThemeParentBackground WinAPI_DrawThemeText WinAPI_DrawThemeTextEx WinAPI_DuplicateEncryptionInfoFile WinAPI_DuplicateHandle WinAPI_DuplicateTokenEx WinAPI_DwmDefWindowProc WinAPI_DwmEnableBlurBehindWindow WinAPI_DwmEnableComposition WinAPI_DwmExtendFrameIntoClientArea WinAPI_DwmGetColorizationColor WinAPI_DwmGetColorizationParameters WinAPI_DwmGetWindowAttribute WinAPI_DwmInvalidateIconicBitmaps WinAPI_DwmIsCompositionEnabled WinAPI_DwmQueryThumbnailSourceSize WinAPI_DwmRegisterThumbnail WinAPI_DwmSetColorizationParameters WinAPI_DwmSetIconicLivePreviewBitmap WinAPI_DwmSetIconicThumbnail WinAPI_DwmSetWindowAttribute WinAPI_DwmUnregisterThumbnail WinAPI_DwmUpdateThumbnailProperties WinAPI_DWordToFloat WinAPI_DWordToInt WinAPI_EjectMedia WinAPI_Ellipse WinAPI_EmptyWorkingSet WinAPI_EnableWindow WinAPI_EncryptFile WinAPI_EncryptionDisable WinAPI_EndBufferedPaint WinAPI_EndDeferWindowPos WinAPI_EndPaint WinAPI_EndPath WinAPI_EndUpdateResource WinAPI_EnumChildProcess WinAPI_EnumChildWindows WinAPI_EnumDesktops WinAPI_EnumDesktopWindows WinAPI_EnumDeviceDrivers WinAPI_EnumDisplayDevices WinAPI_EnumDisplayMonitors WinAPI_EnumDisplaySettings WinAPI_EnumDllProc WinAPI_EnumFiles WinAPI_EnumFileStreams WinAPI_EnumFontFamilies WinAPI_EnumHardLinks WinAPI_EnumMRUList WinAPI_EnumPageFiles WinAPI_EnumProcessHandles WinAPI_EnumProcessModules WinAPI_EnumProcessThreads WinAPI_EnumProcessWindows WinAPI_EnumRawInputDevices WinAPI_EnumResourceLanguages WinAPI_EnumResourceNames WinAPI_EnumResourceTypes WinAPI_EnumSystemGeoID WinAPI_EnumSystemLocales WinAPI_EnumUILanguages WinAPI_EnumWindows WinAPI_EnumWindowsPopup WinAPI_EnumWindowStations WinAPI_EnumWindowsTop WinAPI_EqualMemory WinAPI_EqualRect WinAPI_EqualRgn WinAPI_ExcludeClipRect WinAPI_ExpandEnvironmentStrings WinAPI_ExtCreatePen WinAPI_ExtCreateRegion WinAPI_ExtFloodFill WinAPI_ExtractIcon WinAPI_ExtractIconEx WinAPI_ExtSelectClipRgn WinAPI_FatalAppExit WinAPI_FatalExit WinAPI_FileEncryptionStatus WinAPI_FileExists WinAPI_FileIconInit WinAPI_FileInUse WinAPI_FillMemory WinAPI_FillPath WinAPI_FillRect WinAPI_FillRgn WinAPI_FindClose WinAPI_FindCloseChangeNotification WinAPI_FindExecutable WinAPI_FindFirstChangeNotification WinAPI_FindFirstFile WinAPI_FindFirstFileName WinAPI_FindFirstStream WinAPI_FindNextChangeNotification WinAPI_FindNextFile WinAPI_FindNextFileName WinAPI_FindNextStream WinAPI_FindResource WinAPI_FindResourceEx WinAPI_FindTextDlg WinAPI_FindWindow WinAPI_FlashWindow WinAPI_FlashWindowEx WinAPI_FlattenPath WinAPI_FloatToDWord WinAPI_FloatToInt WinAPI_FlushFileBuffers WinAPI_FlushFRBuffer WinAPI_FlushViewOfFile WinAPI_FormatDriveDlg WinAPI_FormatMessage WinAPI_FrameRect WinAPI_FrameRgn WinAPI_FreeLibrary WinAPI_FreeMemory WinAPI_FreeMRUList WinAPI_FreeResource WinAPI_GdiComment WinAPI_GetActiveWindow WinAPI_GetAllUsersProfileDirectory WinAPI_GetAncestor WinAPI_GetApplicationRestartSettings WinAPI_GetArcDirection WinAPI_GetAsyncKeyState WinAPI_GetBinaryType WinAPI_GetBitmapBits WinAPI_GetBitmapDimension WinAPI_GetBitmapDimensionEx WinAPI_GetBkColor WinAPI_GetBkMode WinAPI_GetBoundsRect WinAPI_GetBrushOrg WinAPI_GetBufferedPaintBits WinAPI_GetBufferedPaintDC WinAPI_GetBufferedPaintTargetDC WinAPI_GetBufferedPaintTargetRect WinAPI_GetBValue WinAPI_GetCaretBlinkTime WinAPI_GetCaretPos WinAPI_GetCDType WinAPI_GetClassInfoEx WinAPI_GetClassLongEx WinAPI_GetClassName WinAPI_GetClientHeight WinAPI_GetClientRect WinAPI_GetClientWidth WinAPI_GetClipboardSequenceNumber WinAPI_GetClipBox WinAPI_GetClipCursor WinAPI_GetClipRgn WinAPI_GetColorAdjustment WinAPI_GetCompressedFileSize WinAPI_GetCompression WinAPI_GetConnectedDlg WinAPI_GetCurrentDirectory WinAPI_GetCurrentHwProfile WinAPI_GetCurrentObject WinAPI_GetCurrentPosition WinAPI_GetCurrentProcess WinAPI_GetCurrentProcessExplicitAppUserModelID WinAPI_GetCurrentProcessID WinAPI_GetCurrentThemeName WinAPI_GetCurrentThread WinAPI_GetCurrentThreadId WinAPI_GetCursor WinAPI_GetCursorInfo WinAPI_GetDateFormat WinAPI_GetDC WinAPI_GetDCEx WinAPI_GetDefaultPrinter WinAPI_GetDefaultUserProfileDirectory WinAPI_GetDesktopWindow WinAPI_GetDeviceCaps WinAPI_GetDeviceDriverBaseName WinAPI_GetDeviceDriverFileName WinAPI_GetDeviceGammaRamp WinAPI_GetDIBColorTable WinAPI_GetDIBits WinAPI_GetDiskFreeSpaceEx WinAPI_GetDlgCtrlID WinAPI_GetDlgItem WinAPI_GetDllDirectory WinAPI_GetDriveBusType WinAPI_GetDriveGeometryEx WinAPI_GetDriveNumber WinAPI_GetDriveType WinAPI_GetDurationFormat WinAPI_GetEffectiveClientRect WinAPI_GetEnhMetaFile WinAPI_GetEnhMetaFileBits WinAPI_GetEnhMetaFileDescription WinAPI_GetEnhMetaFileDimension WinAPI_GetEnhMetaFileHeader WinAPI_GetErrorMessage WinAPI_GetErrorMode WinAPI_GetExitCodeProcess WinAPI_GetExtended WinAPI_GetFileAttributes WinAPI_GetFileID WinAPI_GetFileInformationByHandle WinAPI_GetFileInformationByHandleEx WinAPI_GetFilePointerEx WinAPI_GetFileSizeEx WinAPI_GetFileSizeOnDisk WinAPI_GetFileTitle WinAPI_GetFileType WinAPI_GetFileVersionInfo WinAPI_GetFinalPathNameByHandle WinAPI_GetFinalPathNameByHandleEx WinAPI_GetFocus WinAPI_GetFontMemoryResourceInfo WinAPI_GetFontName WinAPI_GetFontResourceInfo WinAPI_GetForegroundWindow WinAPI_GetFRBuffer WinAPI_GetFullPathName WinAPI_GetGeoInfo WinAPI_GetGlyphOutline WinAPI_GetGraphicsMode WinAPI_GetGuiResources WinAPI_GetGUIThreadInfo WinAPI_GetGValue WinAPI_GetHandleInformation WinAPI_GetHGlobalFromStream WinAPI_GetIconDimension WinAPI_GetIconInfo WinAPI_GetIconInfoEx WinAPI_GetIdleTime WinAPI_GetKeyboardLayout WinAPI_GetKeyboardLayoutList WinAPI_GetKeyboardState WinAPI_GetKeyboardType WinAPI_GetKeyNameText WinAPI_GetKeyState WinAPI_GetLastActivePopup WinAPI_GetLastError WinAPI_GetLastErrorMessage WinAPI_GetLayeredWindowAttributes WinAPI_GetLocaleInfo WinAPI_GetLogicalDrives WinAPI_GetMapMode WinAPI_GetMemorySize WinAPI_GetMessageExtraInfo WinAPI_GetModuleFileNameEx WinAPI_GetModuleHandle WinAPI_GetModuleHandleEx WinAPI_GetModuleInformation WinAPI_GetMonitorInfo WinAPI_GetMousePos WinAPI_GetMousePosX WinAPI_GetMousePosY WinAPI_GetMUILanguage WinAPI_GetNumberFormat WinAPI_GetObject WinAPI_GetObjectID WinAPI_GetObjectInfoByHandle WinAPI_GetObjectNameByHandle WinAPI_GetObjectType WinAPI_GetOpenFileName
WinAPI_GetOutlineTextMetrics WinAPI_GetOverlappedResult WinAPI_GetParent WinAPI_GetParentProcess WinAPI_GetPerformanceInfo WinAPI_GetPEType WinAPI_GetPhysicallyInstalledSystemMemory WinAPI_GetPixel WinAPI_GetPolyFillMode WinAPI_GetPosFromRect WinAPI_GetPriorityClass WinAPI_GetProcAddress WinAPI_GetProcessAffinityMask WinAPI_GetProcessCommandLine WinAPI_GetProcessFileName WinAPI_GetProcessHandleCount WinAPI_GetProcessID WinAPI_GetProcessIoCounters WinAPI_GetProcessMemoryInfo WinAPI_GetProcessName WinAPI_GetProcessShutdownParameters WinAPI_GetProcessTimes WinAPI_GetProcessUser WinAPI_GetProcessWindowStation WinAPI_GetProcessWorkingDirectory WinAPI_GetProfilesDirectory WinAPI_GetPwrCapabilities WinAPI_GetRawInputBuffer WinAPI_GetRawInputBufferLength WinAPI_GetRawInputData WinAPI_GetRawInputDeviceInfo WinAPI_GetRegionData WinAPI_GetRegisteredRawInputDevices WinAPI_GetRegKeyNameByHandle WinAPI_GetRgnBox WinAPI_GetROP2 WinAPI_GetRValue WinAPI_GetSaveFileName WinAPI_GetShellWindow WinAPI_GetStartupInfo WinAPI_GetStdHandle WinAPI_GetStockObject WinAPI_GetStretchBltMode WinAPI_GetString WinAPI_GetSysColor WinAPI_GetSysColorBrush WinAPI_GetSystemDefaultLangID WinAPI_GetSystemDefaultLCID WinAPI_GetSystemDefaultUILanguage WinAPI_GetSystemDEPPolicy WinAPI_GetSystemInfo WinAPI_GetSystemMetrics WinAPI_GetSystemPowerStatus WinAPI_GetSystemTimes WinAPI_GetSystemWow64Directory WinAPI_GetTabbedTextExtent WinAPI_GetTempFileName WinAPI_GetTextAlign WinAPI_GetTextCharacterExtra WinAPI_GetTextColor WinAPI_GetTextExtentPoint32 WinAPI_GetTextFace WinAPI_GetTextMetrics WinAPI_GetThemeAppProperties WinAPI_GetThemeBackgroundContentRect WinAPI_GetThemeBackgroundExtent WinAPI_GetThemeBackgroundRegion WinAPI_GetThemeBitmap WinAPI_GetThemeBool WinAPI_GetThemeColor WinAPI_GetThemeDocumentationProperty WinAPI_GetThemeEnumValue WinAPI_GetThemeFilename WinAPI_GetThemeFont WinAPI_GetThemeInt WinAPI_GetThemeMargins WinAPI_GetThemeMetric WinAPI_GetThemePartSize WinAPI_GetThemePosition WinAPI_GetThemePropertyOrigin WinAPI_GetThemeRect WinAPI_GetThemeString WinAPI_GetThemeSysBool WinAPI_GetThemeSysColor WinAPI_GetThemeSysColorBrush WinAPI_GetThemeSysFont WinAPI_GetThemeSysInt WinAPI_GetThemeSysSize WinAPI_GetThemeSysString WinAPI_GetThemeTextExtent WinAPI_GetThemeTextMetrics WinAPI_GetThemeTransitionDuration WinAPI_GetThreadDesktop WinAPI_GetThreadErrorMode WinAPI_GetThreadLocale WinAPI_GetThreadUILanguage WinAPI_GetTickCount WinAPI_GetTickCount64 WinAPI_GetTimeFormat WinAPI_GetTopWindow WinAPI_GetUDFColorMode WinAPI_GetUpdateRect WinAPI_GetUpdateRgn WinAPI_GetUserDefaultLangID WinAPI_GetUserDefaultLCID WinAPI_GetUserDefaultUILanguage WinAPI_GetUserGeoID WinAPI_GetUserObjectInformation WinAPI_GetVersion WinAPI_GetVersionEx WinAPI_GetVolumeInformation WinAPI_GetVolumeInformationByHandle WinAPI_GetVolumeNameForVolumeMountPoint WinAPI_GetWindow WinAPI_GetWindowDC WinAPI_GetWindowDisplayAffinity WinAPI_GetWindowExt WinAPI_GetWindowFileName WinAPI_GetWindowHeight WinAPI_GetWindowInfo WinAPI_GetWindowLong WinAPI_GetWindowOrg WinAPI_GetWindowPlacement WinAPI_GetWindowRect WinAPI_GetWindowRgn WinAPI_GetWindowRgnBox WinAPI_GetWindowSubclass WinAPI_GetWindowText WinAPI_GetWindowTheme WinAPI_GetWindowThreadProcessId WinAPI_GetWindowWidth WinAPI_GetWorkArea WinAPI_GetWorldTransform WinAPI_GetXYFromPoint WinAPI_GlobalMemoryStatus WinAPI_GradientFill WinAPI_GUIDFromString WinAPI_GUIDFromStringEx WinAPI_HashData WinAPI_HashString WinAPI_HiByte WinAPI_HideCaret WinAPI_HiDWord WinAPI_HiWord WinAPI_InflateRect WinAPI_InitMUILanguage WinAPI_InProcess WinAPI_IntersectClipRect WinAPI_IntersectRect WinAPI_IntToDWord WinAPI_IntToFloat WinAPI_InvalidateRect WinAPI_InvalidateRgn WinAPI_InvertANDBitmap WinAPI_InvertColor WinAPI_InvertRect WinAPI_InvertRgn WinAPI_IOCTL WinAPI_IsAlphaBitmap WinAPI_IsBadCodePtr WinAPI_IsBadReadPtr WinAPI_IsBadStringPtr WinAPI_IsBadWritePtr WinAPI_IsChild WinAPI_IsClassName WinAPI_IsDoorOpen WinAPI_IsElevated WinAPI_IsHungAppWindow WinAPI_IsIconic WinAPI_IsInternetConnected WinAPI_IsLoadKBLayout WinAPI_IsMemory WinAPI_IsNameInExpression WinAPI_IsNetworkAlive WinAPI_IsPathShared WinAPI_IsProcessInJob WinAPI_IsProcessorFeaturePresent WinAPI_IsRectEmpty WinAPI_IsThemeActive WinAPI_IsThemeBackgroundPartiallyTransparent WinAPI_IsThemePartDefined WinAPI_IsValidLocale WinAPI_IsWindow WinAPI_IsWindowEnabled WinAPI_IsWindowUnicode WinAPI_IsWindowVisible WinAPI_IsWow64Process WinAPI_IsWritable WinAPI_IsZoomed WinAPI_Keybd_Event WinAPI_KillTimer WinAPI_LineDDA WinAPI_LineTo WinAPI_LoadBitmap WinAPI_LoadCursor WinAPI_LoadCursorFromFile WinAPI_LoadIcon WinAPI_LoadIconMetric WinAPI_LoadIconWithScaleDown WinAPI_LoadImage WinAPI_LoadIndirectString WinAPI_LoadKeyboardLayout WinAPI_LoadLibrary WinAPI_LoadLibraryEx WinAPI_LoadMedia WinAPI_LoadResource WinAPI_LoadShell32Icon WinAPI_LoadString WinAPI_LoadStringEx WinAPI_LoByte WinAPI_LocalFree WinAPI_LockDevice WinAPI_LockFile WinAPI_LockResource WinAPI_LockWindowUpdate WinAPI_LockWorkStation WinAPI_LoDWord WinAPI_LongMid WinAPI_LookupIconIdFromDirectoryEx WinAPI_LoWord WinAPI_LPtoDP WinAPI_MAKELANGID WinAPI_MAKELCID WinAPI_MakeLong WinAPI_MakeQWord WinAPI_MakeWord WinAPI_MapViewOfFile WinAPI_MapVirtualKey WinAPI_MaskBlt WinAPI_MessageBeep WinAPI_MessageBoxCheck WinAPI_MessageBoxIndirect WinAPI_MirrorIcon WinAPI_ModifyWorldTransform WinAPI_MonitorFromPoint WinAPI_MonitorFromRect WinAPI_MonitorFromWindow WinAPI_Mouse_Event WinAPI_MoveFileEx WinAPI_MoveMemory WinAPI_MoveTo WinAPI_MoveToEx WinAPI_MoveWindow WinAPI_MsgBox WinAPI_MulDiv WinAPI_MultiByteToWideChar WinAPI_MultiByteToWideCharEx WinAPI_NtStatusToDosError WinAPI_OemToChar WinAPI_OffsetClipRgn WinAPI_OffsetPoints WinAPI_OffsetRect WinAPI_OffsetRgn WinAPI_OffsetWindowOrg WinAPI_OpenDesktop WinAPI_OpenFileById WinAPI_OpenFileDlg WinAPI_OpenFileMapping WinAPI_OpenIcon WinAPI_OpenInputDesktop WinAPI_OpenJobObject WinAPI_OpenMutex WinAPI_OpenProcess WinAPI_OpenProcessToken WinAPI_OpenSemaphore WinAPI_OpenThemeData WinAPI_OpenWindowStation WinAPI_PageSetupDlg WinAPI_PaintDesktop WinAPI_PaintRgn WinAPI_ParseURL WinAPI_ParseUserName WinAPI_PatBlt WinAPI_PathAddBackslash WinAPI_PathAddExtension WinAPI_PathAppend WinAPI_PathBuildRoot WinAPI_PathCanonicalize WinAPI_PathCommonPrefix WinAPI_PathCompactPath WinAPI_PathCompactPathEx WinAPI_PathCreateFromUrl WinAPI_PathFindExtension WinAPI_PathFindFileName WinAPI_PathFindNextComponent WinAPI_PathFindOnPath WinAPI_PathGetArgs WinAPI_PathGetCharType WinAPI_PathGetDriveNumber WinAPI_PathIsContentType WinAPI_PathIsDirectory WinAPI_PathIsDirectoryEmpty WinAPI_PathIsExe WinAPI_PathIsFileSpec WinAPI_PathIsLFNFileSpec WinAPI_PathIsRelative WinAPI_PathIsRoot WinAPI_PathIsSameRoot WinAPI_PathIsSystemFolder WinAPI_PathIsUNC WinAPI_PathIsUNCServer WinAPI_PathIsUNCServerShare WinAPI_PathMakeSystemFolder WinAPI_PathMatchSpec WinAPI_PathParseIconLocation WinAPI_PathRelativePathTo WinAPI_PathRemoveArgs WinAPI_PathRemoveBackslash WinAPI_PathRemoveExtension WinAPI_PathRemoveFileSpec WinAPI_PathRenameExtension WinAPI_PathSearchAndQualify WinAPI_PathSkipRoot WinAPI_PathStripPath WinAPI_PathStripToRoot WinAPI_PathToRegion WinAPI_PathUndecorate WinAPI_PathUnExpandEnvStrings WinAPI_PathUnmakeSystemFolder WinAPI_PathUnquoteSpaces WinAPI_PathYetAnotherMakeUniqueName WinAPI_PickIconDlg WinAPI_PlayEnhMetaFile WinAPI_PlaySound WinAPI_PlgBlt WinAPI_PointFromRect WinAPI_PolyBezier WinAPI_PolyBezierTo WinAPI_PolyDraw WinAPI_Polygon WinAPI_PostMessage WinAPI_PrimaryLangId WinAPI_PrintDlg WinAPI_PrintDlgEx WinAPI_PrintWindow WinAPI_ProgIDFromCLSID WinAPI_PtInRect WinAPI_PtInRectEx WinAPI_PtInRegion WinAPI_PtVisible WinAPI_QueryDosDevice WinAPI_QueryInformationJobObject WinAPI_QueryPerformanceCounter WinAPI_QueryPerformanceFrequency WinAPI_RadialGradientFill WinAPI_ReadDirectoryChanges WinAPI_ReadFile WinAPI_ReadProcessMemory WinAPI_Rectangle WinAPI_RectInRegion WinAPI_RectIsEmpty WinAPI_RectVisible WinAPI_RedrawWindow WinAPI_RegCloseKey WinAPI_RegConnectRegistry WinAPI_RegCopyTree WinAPI_RegCopyTreeEx WinAPI_RegCreateKey WinAPI_RegDeleteEmptyKey WinAPI_RegDeleteKey WinAPI_RegDeleteKeyValue WinAPI_RegDeleteTree WinAPI_RegDeleteTreeEx WinAPI_RegDeleteValue WinAPI_RegDisableReflectionKey WinAPI_RegDuplicateHKey WinAPI_RegEnableReflectionKey WinAPI_RegEnumKey WinAPI_RegEnumValue WinAPI_RegFlushKey WinAPI_RegisterApplicationRestart WinAPI_RegisterClass WinAPI_RegisterClassEx WinAPI_RegisterHotKey WinAPI_RegisterPowerSettingNotification WinAPI_RegisterRawInputDevices WinAPI_RegisterShellHookWindow WinAPI_RegisterWindowMessage WinAPI_RegLoadMUIString WinAPI_RegNotifyChangeKeyValue WinAPI_RegOpenKey WinAPI_RegQueryInfoKey WinAPI_RegQueryLastWriteTime WinAPI_RegQueryMultipleValues WinAPI_RegQueryReflectionKey WinAPI_RegQueryValue WinAPI_RegRestoreKey WinAPI_RegSaveKey WinAPI_RegSetValue WinAPI_ReleaseCapture WinAPI_ReleaseDC WinAPI_ReleaseMutex WinAPI_ReleaseSemaphore WinAPI_ReleaseStream WinAPI_RemoveClipboardFormatListener WinAPI_RemoveDirectory WinAPI_RemoveFontMemResourceEx WinAPI_RemoveFontResourceEx WinAPI_RemoveWindowSubclass WinAPI_ReOpenFile WinAPI_ReplaceFile WinAPI_ReplaceTextDlg WinAPI_ResetEvent WinAPI_RestartDlg WinAPI_RestoreDC WinAPI_RGB WinAPI_RotatePoints WinAPI_RoundRect WinAPI_SaveDC WinAPI_SaveFileDlg WinAPI_SaveHBITMAPToFile WinAPI_SaveHICONToFile WinAPI_ScaleWindowExt WinAPI_ScreenToClient WinAPI_SearchPath WinAPI_SelectClipPath WinAPI_SelectClipRgn WinAPI_SelectObject WinAPI_SendMessageTimeout WinAPI_SetActiveWindow WinAPI_SetArcDirection WinAPI_SetBitmapBits WinAPI_SetBitmapDimensionEx WinAPI_SetBkColor WinAPI_SetBkMode WinAPI_SetBoundsRect WinAPI_SetBrushOrg WinAPI_SetCapture WinAPI_SetCaretBlinkTime WinAPI_SetCaretPos WinAPI_SetClassLongEx WinAPI_SetColorAdjustment WinAPI_SetCompression WinAPI_SetCurrentDirectory WinAPI_SetCurrentProcessExplicitAppUserModelID WinAPI_SetCursor WinAPI_SetDCBrushColor WinAPI_SetDCPenColor WinAPI_SetDefaultPrinter WinAPI_SetDeviceGammaRamp WinAPI_SetDIBColorTable WinAPI_SetDIBits WinAPI_SetDIBitsToDevice
WinAPI_SetDllDirectory WinAPI_SetEndOfFile WinAPI_SetEnhMetaFileBits WinAPI_SetErrorMode WinAPI_SetEvent WinAPI_SetFileAttributes WinAPI_SetFileInformationByHandleEx WinAPI_SetFilePointer WinAPI_SetFilePointerEx WinAPI_SetFileShortName WinAPI_SetFileValidData WinAPI_SetFocus WinAPI_SetFont WinAPI_SetForegroundWindow WinAPI_SetFRBuffer WinAPI_SetGraphicsMode WinAPI_SetHandleInformation WinAPI_SetInformationJobObject WinAPI_SetKeyboardLayout WinAPI_SetKeyboardState WinAPI_SetLastError WinAPI_SetLayeredWindowAttributes WinAPI_SetLocaleInfo WinAPI_SetMapMode WinAPI_SetMessageExtraInfo WinAPI_SetParent WinAPI_SetPixel WinAPI_SetPolyFillMode WinAPI_SetPriorityClass WinAPI_SetProcessAffinityMask WinAPI_SetProcessShutdownParameters WinAPI_SetProcessWindowStation WinAPI_SetRectRgn WinAPI_SetROP2 WinAPI_SetSearchPathMode WinAPI_SetStretchBltMode WinAPI_SetSysColors WinAPI_SetSystemCursor WinAPI_SetTextAlign WinAPI_SetTextCharacterExtra WinAPI_SetTextColor WinAPI_SetTextJustification WinAPI_SetThemeAppProperties WinAPI_SetThreadDesktop WinAPI_SetThreadErrorMode WinAPI_SetThreadExecutionState WinAPI_SetThreadLocale WinAPI_SetThreadUILanguage WinAPI_SetTimer WinAPI_SetUDFColorMode WinAPI_SetUserGeoID WinAPI_SetUserObjectInformation WinAPI_SetVolumeMountPoint WinAPI_SetWindowDisplayAffinity WinAPI_SetWindowExt WinAPI_SetWindowLong WinAPI_SetWindowOrg WinAPI_SetWindowPlacement WinAPI_SetWindowPos WinAPI_SetWindowRgn WinAPI_SetWindowsHookEx WinAPI_SetWindowSubclass WinAPI_SetWindowText WinAPI_SetWindowTheme WinAPI_SetWinEventHook WinAPI_SetWorldTransform WinAPI_SfcIsFileProtected WinAPI_SfcIsKeyProtected WinAPI_ShellAboutDlg WinAPI_ShellAddToRecentDocs WinAPI_ShellChangeNotify WinAPI_ShellChangeNotifyDeregister WinAPI_ShellChangeNotifyRegister WinAPI_ShellCreateDirectory WinAPI_ShellEmptyRecycleBin WinAPI_ShellExecute WinAPI_ShellExecuteEx WinAPI_ShellExtractAssociatedIcon WinAPI_ShellExtractIcon WinAPI_ShellFileOperation WinAPI_ShellFlushSFCache WinAPI_ShellGetFileInfo WinAPI_ShellGetIconOverlayIndex WinAPI_ShellGetImageList WinAPI_ShellGetKnownFolderIDList WinAPI_ShellGetKnownFolderPath WinAPI_ShellGetLocalizedName WinAPI_ShellGetPathFromIDList WinAPI_ShellGetSetFolderCustomSettings WinAPI_ShellGetSettings WinAPI_ShellGetSpecialFolderLocation WinAPI_ShellGetSpecialFolderPath WinAPI_ShellGetStockIconInfo WinAPI_ShellILCreateFromPath WinAPI_ShellNotifyIcon WinAPI_ShellNotifyIconGetRect WinAPI_ShellObjectProperties WinAPI_ShellOpenFolderAndSelectItems WinAPI_ShellOpenWithDlg WinAPI_ShellQueryRecycleBin WinAPI_ShellQueryUserNotificationState WinAPI_ShellRemoveLocalizedName WinAPI_ShellRestricted WinAPI_ShellSetKnownFolderPath WinAPI_ShellSetLocalizedName WinAPI_ShellSetSettings WinAPI_ShellStartNetConnectionDlg WinAPI_ShellUpdateImage WinAPI_ShellUserAuthenticationDlg WinAPI_ShellUserAuthenticationDlgEx WinAPI_ShortToWord WinAPI_ShowCaret WinAPI_ShowCursor WinAPI_ShowError WinAPI_ShowLastError WinAPI_ShowMsg WinAPI_ShowOwnedPopups WinAPI_ShowWindow WinAPI_ShutdownBlockReasonCreate WinAPI_ShutdownBlockReasonDestroy WinAPI_ShutdownBlockReasonQuery WinAPI_SizeOfResource WinAPI_StretchBlt WinAPI_StretchDIBits WinAPI_StrFormatByteSize WinAPI_StrFormatByteSizeEx WinAPI_StrFormatKBSize WinAPI_StrFromTimeInterval WinAPI_StringFromGUID WinAPI_StringLenA WinAPI_StringLenW WinAPI_StrLen WinAPI_StrokeAndFillPath WinAPI_StrokePath WinAPI_StructToArray WinAPI_SubLangId WinAPI_SubtractRect WinAPI_SwapDWord WinAPI_SwapQWord WinAPI_SwapWord WinAPI_SwitchColor WinAPI_SwitchDesktop WinAPI_SwitchToThisWindow WinAPI_SystemParametersInfo WinAPI_TabbedTextOut WinAPI_TerminateJobObject WinAPI_TerminateProcess WinAPI_TextOut WinAPI_TileWindows WinAPI_TrackMouseEvent WinAPI_TransparentBlt WinAPI_TwipsPerPixelX WinAPI_TwipsPerPixelY WinAPI_UnhookWindowsHookEx WinAPI_UnhookWinEvent WinAPI_UnionRect WinAPI_UnionStruct WinAPI_UniqueHardwareID WinAPI_UnloadKeyboardLayout WinAPI_UnlockFile WinAPI_UnmapViewOfFile WinAPI_UnregisterApplicationRestart WinAPI_UnregisterClass WinAPI_UnregisterHotKey WinAPI_UnregisterPowerSettingNotification WinAPI_UpdateLayeredWindow WinAPI_UpdateLayeredWindowEx WinAPI_UpdateLayeredWindowIndirect WinAPI_UpdateResource WinAPI_UpdateWindow WinAPI_UrlApplyScheme WinAPI_UrlCanonicalize WinAPI_UrlCombine WinAPI_UrlCompare WinAPI_UrlCreateFromPath WinAPI_UrlFixup WinAPI_UrlGetPart WinAPI_UrlHash WinAPI_UrlIs WinAPI_UserHandleGrantAccess WinAPI_ValidateRect WinAPI_ValidateRgn WinAPI_VerQueryRoot WinAPI_VerQueryValue WinAPI_VerQueryValueEx WinAPI_WaitForInputIdle WinAPI_WaitForMultipleObjects WinAPI_WaitForSingleObject WinAPI_WideCharToMultiByte WinAPI_WidenPath WinAPI_WindowFromDC WinAPI_WindowFromPoint WinAPI_WordToShort WinAPI_Wow64EnableWow64FsRedirection WinAPI_WriteConsole WinAPI_WriteFile WinAPI_WriteProcessMemory WinAPI_ZeroMemory WinNet_AddConnection WinNet_AddConnection2 WinNet_AddConnection3 WinNet_CancelConnection WinNet_CancelConnection2 WinNet_CloseEnum WinNet_ConnectionDialog WinNet_ConnectionDialog1 WinNet_DisconnectDialog WinNet_DisconnectDialog1 WinNet_EnumResource WinNet_GetConnection WinNet_GetConnectionPerformance WinNet_GetLastError WinNet_GetNetworkInformation WinNet_GetProviderName WinNet_GetResourceInformation WinNet_GetResourceParent WinNet_GetUniversalName WinNet_GetUser WinNet_OpenEnum WinNet_RestoreConnection WinNet_UseConnection Word_Create Word_DocAdd Word_DocAttach Word_DocClose Word_DocExport Word_DocFind Word_DocFindReplace Word_DocGet Word_DocLinkAdd Word_DocLinkGet Word_DocOpen Word_DocPictureAdd Word_DocPrint Word_DocRangeSet Word_DocSave Word_DocSaveAs Word_DocTableRead Word_DocTableWrite Word_Quit",I={
v:[e.C(";","$",{r:0}),e.C("#cs","#ce"),e.C("#comments-start","#comments-end")]},n={b:"\\$[A-z0-9_]+"},l={cN:"string",v:[{b:/"/,e:/"/,c:[{b:/""/,r:0}]},{b:/'/,e:/'/,c:[{b:/''/,r:0}]}]},o={v:[e.BNM,e.CNM]},a={cN:"meta",b:"#",e:"$",k:{"meta-keyword":"include include-once NoTrayIcon OnAutoItStartRegister RequireAdmin pragma Au3Stripper_Ignore_Funcs Au3Stripper_Ignore_Variables Au3Stripper_Off Au3Stripper_On Au3Stripper_Parameters AutoIt3Wrapper_Add_Constants AutoIt3Wrapper_Au3Check_Parameters AutoIt3Wrapper_Au3Check_Stop_OnWarning AutoIt3Wrapper_Aut2Exe AutoIt3Wrapper_AutoIt3 AutoIt3Wrapper_AutoIt3Dir AutoIt3Wrapper_Change2CUI AutoIt3Wrapper_Compile_Both AutoIt3Wrapper_Compression AutoIt3Wrapper_EndIf AutoIt3Wrapper_Icon AutoIt3Wrapper_If_Compile AutoIt3Wrapper_If_Run AutoIt3Wrapper_Jump_To_First_Error AutoIt3Wrapper_OutFile AutoIt3Wrapper_OutFile_Type AutoIt3Wrapper_OutFile_X64 AutoIt3Wrapper_PlugIn_Funcs AutoIt3Wrapper_Res_Comment Autoit3Wrapper_Res_Compatibility AutoIt3Wrapper_Res_Description AutoIt3Wrapper_Res_Field AutoIt3Wrapper_Res_File_Add AutoIt3Wrapper_Res_FileVersion AutoIt3Wrapper_Res_FileVersion_AutoIncrement AutoIt3Wrapper_Res_Icon_Add AutoIt3Wrapper_Res_Language AutoIt3Wrapper_Res_LegalCopyright AutoIt3Wrapper_Res_ProductVersion AutoIt3Wrapper_Res_requestedExecutionLevel AutoIt3Wrapper_Res_SaveSource AutoIt3Wrapper_Run_After AutoIt3Wrapper_Run_Au3Check AutoIt3Wrapper_Run_Au3Stripper AutoIt3Wrapper_Run_Before AutoIt3Wrapper_Run_Debug_Mode AutoIt3Wrapper_Run_SciTE_Minimized AutoIt3Wrapper_Run_SciTE_OutputPane_Minimized AutoIt3Wrapper_Run_Tidy AutoIt3Wrapper_ShowProgress AutoIt3Wrapper_Testing AutoIt3Wrapper_Tidy_Stop_OnError AutoIt3Wrapper_UPX_Parameters AutoIt3Wrapper_UseUPX AutoIt3Wrapper_UseX64 AutoIt3Wrapper_Version AutoIt3Wrapper_Versioning AutoIt3Wrapper_Versioning_Parameters Tidy_Off Tidy_On Tidy_Parameters EndRegion Region"},c:[{b:/\\\n/,r:0},{bK:"include",k:{"meta-keyword":"include"},e:"$",c:[l,{cN:"meta-string",v:[{b:"<",e:">"},{b:/"/,e:/"/,c:[{b:/""/,r:0}]},{b:/'/,e:/'/,c:[{b:/''/,r:0}]}]}]},l,I]},_={cN:"symbol",b:"@[A-z0-9_]+"},G={cN:"function",bK:"Func",e:"$",i:"\\$|\\[|%",c:[e.UTM,{cN:"params",b:"\\(",e:"\\)",c:[n,l,o]}]};return{cI:!0,i:/\/*/,k:{keyword:t,built_in:i,literal:r},c:[I,n,l,o,a,_,G]}});hljs.registerLanguage("r",function(e){var r="([a-zA-Z]|\\.[a-zA-Z.])[a-zA-Z0-9._]*";return{c:[e.HCM,{b:r,l:r,k:{keyword:"function if in break next repeat else for return switch while try tryCatch stop warning require library attach detach source setMethod setGeneric setGroupGeneric setClass ...",literal:"NULL NA TRUE FALSE T F Inf NaN NA_integer_|10 NA_real_|10 NA_character_|10 NA_complex_|10"},r:0},{cN:"number",b:"0[xX][0-9a-fA-F]+[Li]?\\b",r:0},{cN:"number",b:"\\d+(?:[eE][+\\-]?\\d*)?L\\b",r:0},{cN:"number",b:"\\d+\\.(?!\\d)(?:i\\b)?",r:0},{cN:"number",b:"\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",r:0},{b:"`",e:"`",r:0},{cN:"string",c:[e.BE],v:[{b:'"',e:'"'},{b:"'",e:"'"}]}]}});

OEBPS/Common_Content/images/29.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BlackItalic.eot

OEBPS/Common_Content/images/21.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-RegularItalic.eot

OEBPS/images/Change_storage_path.png
Change storage path

Existing disk
- path: ./lib/libvirt/images/RHEL7.3_VM.img
Target: vda
Size: 8.0 GB
@

New Path: [mages/RHEL7.3_VM-clone.img| | Browse.

| cancel || ok

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Medium.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Regular.woff2

OEBPS/Common_Content/fonts/portal/nimbus/iconfont.ttf

OEBPS/images/vn-05-switchwithdnsmasq.png
HOST

DNS AND DHCP SERVER (DNSMASQ)
192.168122.2 - 192.168.122.254

Virtual Machine
192.168.122.210

Virtual Network Switch Virtual Machine
192.168.122.220

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Bold.eot

OEBPS/Common_Content/images/31.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Regular.eot

OEBPS/images/virt-manager_storage_pools_add_fs_step_3_result.png
File

Overview | Virtual Networks | Storage

269 default guest_images fs: 458.20 GB Free/197.91 MB In Use
Filesystem Directory Pool Type: Pre-Formatted Block Device
guest_images _fs Location: [/guest images

State: 12 Active
Autostart: On Boot
Volumes

Volumes v | Size | Format

BEOH e o

OEBPS/images/vn-04-hostwithnatswitch.png
HOST 101010190

>
& m LINUX NETWORK STACK

(NAT IS APPLIED HERE)

Virtual Machine

Network 192.168.122.210

10.10.10.0/24

Virtual Network Switch Virtual Machine

in NAT MODE 192168122.220
192168.122.1/24

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-MediumItalic.eot

OEBPS/Common_Content/images/stock-go-forward.png

OEBPS/images/virt-manager_storage_pools_add_dir_step_1_name_and_type.png
[/ Add Storage Pool Step 1of 2

Specify a storage location to be later split into virtual machine storage.

Name: Name for the
storage object.

Name: [guest_images_dir|

J
Type: | dir: Filesystem Directory ™

Cancel Forward

OEBPS/images/Screenshot-admin-18pt7-pic8.png
File

& default

Overview | Virtual Networks | storage | Network Interfaces

Basic details

Name: [networkl
Device: [virbrl
State: A Active

Autostart: 7/ On Boot

IPv4 configuration

Network: [192.168.100.0/24

DHCP start: (192.168.100.128

DHCPend: [192.168.100.254

Forwarding: &|Isolated network

OEBPS/images/remote-viewer-GUI.png
Trash

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Black.woff2

OEBPS/images/Screenshot-pic2-add-connection-pull-down.png
| Edit View Help

Add Connection...

v | CPU usage

RHEL-3.9
Shutoff

RHEL-4.5
Shutoff

RHEL-6
Shutoff

guestl-rhel6-64
Running

OEBPS/images/Screenshot-Virt-Manager-fig31pt24a.png
File Edit [/ /] Help

[]Guest CPU Usage
jost CPU Usage
[JDisk /0
[]Network I/0

A | Host CPU usage

] VM-RHEL
Running

< localhost (QEMU)

[VM-RHEL

Running

v 192.168.122.1 (QEMU)

[VM-RHEL

Running

OEBPS/images/Screenshot-Virt-Manager-fig31pt2.png
Eile Edit View Help

& mmopn | W © v

Name v CPU usage
< localhost (QEMU)

guestl-rhels-64
Running

[guestl-winzk3-64

Shutoff

[rhels-6a-pxe

Shutoff

OEBPS/Common_Content/images/25.png

OEBPS/images/vn-10-routed-mode-datacenter.png
H O ST 10.10.10.190

Virtual Machine
Public IP

Local Area Network

10.10.10.0/24 Virtual Network Switch

in BRIDGED MODE

& Virtual Machine

Wide Area Network Public IP
Public IP Range

OEBPS/images/Screenshot-pic3-Add-Connection.png
Hypervisor: | QEMU/KVM S
Connect to remote host
Method: | SSH S

Username: |root

virtlab22 [v]

Autoconnect: []
Generated URI: gemu-+ssh://root@virtiab22/system

Hostname:

|

OEBPS/Common_Content/fonts/redhat/text/RedHatText-RegularItalic.woff2

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Black.woff

OEBPS/images/vn-03-hostwithswitch.png
Linux
Host Server
"

virtual network switch
virbro

