Red Hat Enterprise Linux 6
SystemTap Tapset Reference

For SystemTap in Red Hat Enterprise Linux 6

		[image: Logo]

	

		Red Hat, Inc.
	
Robert Krátký
Red Hat Customer Content Services
rkratky@redhat.com
William Cohen
Red Hat Performance Tools

Don Domingo
Red Hat Customer Content Services

Edited by
Jacquelynn East
Red Hat Customer Content Services

Legal Notice

		This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation.
	

		This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
	

		You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
	

		For more details see the file COPYING in the source distribution of Linux.
	

Abstract

			The Tapset Reference Guide describes the most common tapset definitions users can apply to SystemTap scripts. All included tapsets documented in this guide are current as of the latest upstream version of SystemTap.
		

 ⁠Preface

	

 ⁠Chapter 1. Introduction

		SystemTap provides free software (GPL) infrastructure to simplify the gathering of information about the running Linux system. This assists diagnosis of a performance or functional problem. SystemTap eliminates the need for the developer to go through the tedious and disruptive instrument, recompile, install, and reboot sequence that may be otherwise required to collect data.
	

		SystemTap provides a simple command line interface and scripting language for writing instrumentation for a live, running kernel. This instrumentation uses probe points and functions provided in the tapset library.
	

		Simply put, tapsets are scripts that encapsulate knowledge about a kernel subsystem into pre-written probes and functions that can be used by other scripts. Tapsets are analogous to libraries for C programs. They hide the underlying details of a kernel area while exposing the key information needed to manage and monitor that aspect of the kernel. They are typically developed by kernel subject-matter experts.
	

		A tapset exposes the high-level data and state transitions of a subsystem. For the most part, good tapset developers assume that SystemTap users know little to nothing about the kernel subsystem's low-level details. As such, tapset developers write tapsets that help ordinary SystemTap users write meaningful and useful SystemTap scripts.
	

 ⁠1.1. Documentation Goals

			This guide aims to document SystemTap's most useful and common tapset entries; it also contains guidelines on proper tapset development and documentation. The tapset definitions contained in this guide are extracted automatically from properly-formatted comments in the code of each tapset file. As such, any revisions to the definitions in this guide should be applied directly to their respective tapset file.
		

 ⁠Chapter 2. Tapset Development Guidelines

		This chapter describes the upstream guidelines on proper tapset documentation. It also contains information on how to properly document your tapsets, to ensure that they are properly defined in this guide.
	

 ⁠2.1. Writing Good Tapsets

			The first step to writing good tapsets is to create a simple model of your subject area. For example, a model of the process subsystem might include the following:
		
Key Data

					
							process ID
						

	
							parent process ID
						

	
							process group ID
						

			
State Transitions

					
							forked
						

	
							exec'd
						

	
							running
						

	
							stopped
						

	
							terminated
						

			
Note

				Both lists are examples, and are not meant to represent a complete list.
			

			Use your subsystem expertise to find probe points (function entries and exits) that expose the elements of the model, then define probe aliases for those points. Be aware that some state transitions can occur in more than one place. In those cases, an alias can place a probe in multiple locations.
		

			For example, process execs can occur in either the do_execve() or the compat_do_execve() functions. The following alias inserts probes at the beginning of those functions:
		

			

probe kprocess.exec = kernel.function("do_execve"),
kernel.function("compat_do_execve")
{probe body}

		

			Try to place probes on stable interfaces (i.e., functions that are unlikely to change at the interface level) whenever possible. This will make the tapset less likely to break due to kernel changes. Where kernel version or architecture dependencies are unavoidable, use preprocessor conditionals (see the stap(1) man page for details).
		

			Fill in the probe bodies with the key data available at the probe points. Function entry probes can access the entry parameters specified to the function, while exit probes can access the entry parameters and the return value. Convert the data into meaningful forms where appropriate (e.g., bytes to kilobytes, state values to strings, etc).
		

			You may need to use auxiliary functions to access or convert some of the data. Auxiliary functions often use embedded C to do things that cannot be done in the SystemTap language, like access structure fields in some contexts, follow linked lists, etc. You can use auxiliary functions defined in other tapsets or write your own.
		

			In the following example, copy_process() returns a pointer to the task_struct for the new process. Note that the process ID of the new process is retrieved by calling task_pid() and passing it the task_struct pointer. In this case, the auxiliary function is an embedded C function defined in task.stp.
		

			

probe kprocess.create = kernel.function("copy_process").return
{
 task = $return
 new_pid = task_pid(task)
}

		

			It is not advisable to write probes for every function. Most SystemTap users will not need or understand them. Keep your tapsets simple and high-level.
		

 ⁠2.2. Elements of a Tapset

			The following sections describe the most important aspects of writing a tapset. Most of the content herein is suitable for developers who wish to contribute to SystemTap's upstream library of tapsets.
		

 ⁠2.2.1. Tapset Files

				Tapset files are stored in src/tapset/ of the SystemTap GIT directory. Most tapset files are kept at that level. If you have code that only works with a specific architecture or kernel version, you may choose to put your tapset in the appropriate subdirectory.
			

				Installed tapsets are located in /usr/share/systemtap/tapset/ or /usr/local/share/systemtap/tapset.
			

				Personal tapsets can be stored anywhere. However, to ensure that SystemTap can use them, use -I tapset_directory to specify their location when invoking stap.
			

 ⁠2.2.2. Namespace

				Probe alias names should take the form tapset_name.probe_name. For example, the probe for sending a signal could be named signal.send.
			

				Global symbol names (probes, functions, and variables) should be unique accross all tapsets. This helps avoid namespace collisions in scripts that use multiple tapsets. To ensure this, use tapset-specific prefixes in your global symbols.
			

				Internal symbol names should be prefixed with an underscore (_).
			

 ⁠2.2.3. Comments and Documentation

				All probes and functions should include comment blocks that describe their purpose, the data they provide, and the context in which they run (e.g. interrupt, process, etc). Use comments in areas where your intent may not be clear from reading the code.
			

				Note that specially-formatted comments are automatically extracted from most tapsets and included in this guide. This helps ensure that tapset contributors can write their tapset and document it in the same place. The specified format for documenting tapsets is as follows:
			

				

/**
 * probe tapset.name - Short summary of what the tapset does.
 * @argument: Explanation of argument.
 * @argument2: Explanation of argument2. Probes can have multiple arguments.
 *
 * Context:
 * A brief explanation of the tapset context.
 * Note that the context should only be 1 paragraph short.
 *
 * Text that will appear under "Description."
 *
 * A new paragraph that will also appear under the heading "Description".
 *
 * Header:
 * A paragraph that will appear under the heading "Header".
 **/

			

				For example:
			

				

/**
 * probe vm.write_shared_copy- Page copy for shared page write.
 * @address: The address of the shared write.
 * @zero: Boolean indicating whether it is a zero page
 * (can do a clear instead of a copy).
 *
 * Context:
 * The process attempting the write.
 *
 * Fires when a write to a shared page requires a page copy. This is
 * always preceded by a vm.shared_write.
 **/

			

				To override the automatically-generated Synopsis content, use:
			

				

 * Synopsis:
 * New Synopsis string
 *

			

				For example:
			

				

/**
 * probe signal.handle - Fires when the signal handler is invoked
 * @sig: The signal number that invoked the signal handler
 *
 * Synopsis:
 * <programlisting>static int handle_signal(unsigned long sig, siginfo_t *info, struct k_sigaction *ka,
 * sigset_t *oldset, struct pt_regs * regs)</programlisting>
 */

			

				It is recommended that you use the <programlisting> tag in this instance, since overriding the Synopsis content of an entry does not automatically form the necessary tags.
			

				For the purposes of improving the DocBook XML output of your comments, you can also use the following XML tags in your comments:
			
	
						command
					

	
						emphasis
					

	
						programlisting
					

	
						remark (tagged strings will appear in Publican beta builds of the document)
					

 ⁠Chapter 3. Context Functions

			The context functions provide additional information about where an event occurred. These functions can provide information such as a backtrace to where the event occurred and the current register values for the processor.
		

 ⁠
Name
function::print_regs — Print a register dump.

 ⁠Synopsis

function print_regs()

 ⁠Arguments

					None
				

 ⁠General Syntax

					print_regs
				

 ⁠Description

					This function prints a register dump.
				

 ⁠
Name
function::execname — Returns the execname of a target process (or group of processes).

 ⁠Synopsis

function execname:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					execname:string
				

 ⁠Description

					Returns the execname of a target process (or group of processes).
				

 ⁠
Name
function::pid — Returns the ID of a target process.

 ⁠Synopsis

function pid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					pid:long
				

 ⁠Description

					This function returns the ID of a targer process.
				

 ⁠
Name
function::tid — Returns the thread ID of a target process.

 ⁠Synopsis

function tid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					tid:long
				

 ⁠Description

					This function returns the thread ID of the target process.
				

 ⁠
Name
function::ppid — Returns the process ID of a target process's parent process.

 ⁠Synopsis

function ppid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					ppid:long
				

 ⁠Description

					This function return the process ID of the target proccess's parent process.
				

 ⁠
Name
function::pgrp — Returns the process group ID of the current process.

 ⁠Synopsis

function pgrp:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					pgrp:long
				

 ⁠Description

					This function returns the process group ID of the current process.
				

 ⁠
Name
function::sid — Returns the session ID of the current process.

 ⁠Synopsis

function sid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					sid:long
				

 ⁠Description

					The session ID of a process is the process group ID of the session leader. Session ID is stored in the signal_struct since Kernel 2.6.0.
				

 ⁠
Name
function::pexecname — Returns the execname of a target process's parent process.

 ⁠Synopsis

function pexecname:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					pexecname:string
				

 ⁠Description

					This function returns the execname of a target process's parent procces.
				

 ⁠
Name
function::gid — Returns the group ID of a target process.

 ⁠Synopsis

function gid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					gid:long
				

 ⁠Description

					This function returns the group ID of a target process.
				

 ⁠
Name
function::egid — Returns the effective gid of a target process.

 ⁠Synopsis

function egid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					egid:long
				

 ⁠Description

					This function returns the effective gid of a target process
				

 ⁠
Name
function::uid — Returns the user ID of a target process.

 ⁠Synopsis

function uid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					uid:long
				

 ⁠Description

					This function returns the user ID of the target process.
				

 ⁠
Name
function::euid — Return the effective uid of a target process.

 ⁠Synopsis

function euid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					euid:long
				

 ⁠Description

					Returns the effective user ID of the target process.
				

 ⁠
Name
function::is_myproc — Determines if the current probe point has occurred in the user's own process.

 ⁠Synopsis

function is_myproc:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					is_myproc:long
				

 ⁠Description

					This function returns 1 if the current probe point has occurred in the user's own process.
				

 ⁠
Name
function::cpu — Returns the current cpu number.

 ⁠Synopsis

function cpu:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					cpu:long
				

 ⁠Description

					This function returns the current cpu number.
				

 ⁠
Name
function::pp — Returns the active probe point.

 ⁠Synopsis

function pp:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					pp:string
				

 ⁠Description

					This function returns the fully-resolved probe point associated with a currently running probe handler, including alias and wild-card expansion effects. Context: The current probe point.
				

 ⁠
Name
function::registers_valid — Determines validity of register and u_register in current context.

 ⁠Synopsis

function registers_valid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					registers_valid:long
				

 ⁠Description

					This function returns 1 if register and u_register can be used in the current context, or 0 otherwise. For example, registers_valid returns 0 when called from a begin or end probe.
				

 ⁠
Name
function::user_mode — Determines if probe point occurs in user-mode.

 ⁠Synopsis

function user_mode:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					user_mode:long
				

					Return 1 if the probe point occurred in user-mode.
				

 ⁠
Name
function::is_return — Whether the current probe context is a return probe.

 ⁠Synopsis

function is_return:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					is_return:long
				

 ⁠Description

					Returns 1 if the current probe context is a return probe, returns 0 otherwise.
				

 ⁠
Name
function::target — Return the process ID of the target process.

 ⁠Synopsis

function target:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					target:long
				

 ⁠Description

					This function returns the process ID of the target process. This is useful in conjunction with the -x PID or -c CMD command-line options to stap. An example of its use is to create scripts that filter on a specific process.
				

 ⁠
Name
function::module_name — The module name of the current script.

 ⁠Synopsis

function module_name:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					module_name:string
				

 ⁠Description

					This function returns the name of the stap module. Either generated randomly (stap_[0-9a-f]+_[0-9a-f]+) or set by stap -m <module_name>.
				

 ⁠
Name
function::stp_pid — The process id of the stapio process.

 ⁠Synopsis

function stp_pid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					stp_pid:long
				

 ⁠Description

					This function returns the process id of the stapio process that launched this script. There could be other SystemTap scripts and stapio processes running on the system.
				

 ⁠
Name
function::stack_size — Return the size of the kernel stack.

 ⁠Synopsis

function stack_size:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					stack_size:long
				

 ⁠Description

					This function returns the size of the kernel stack.
				

 ⁠
Name
function::stack_used — Returns the amount of kernel stack used.

 ⁠Synopsis

function stack_used:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					stack_used:long
				

 ⁠Description

					This function determines how many bytes are currently used in the kernel stack.
				

 ⁠
Name
function::stack_unused — Returns the amount of kernel stack currently available.

 ⁠Synopsis

function stack_unused:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					stack_unused:long
				

 ⁠Description

					This function determines how many bytes are currently available in the kernel stack.
				

 ⁠
Name
function::uaddr — User space address of current running task. EXPERIMENTAL.

 ⁠Synopsis

function uaddr:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					uaddr:long
				

 ⁠Description

					Returns the address in userspace that the current task was at when the probe occurred. When the current running task isn't a user space thread, or the address cannot be found, zero is returned. Can be used to see where the current task is combined with usymname or symdata. Often the task will be in the VDSO where it entered the kernel. FIXME - need VDSO tracking support #10080.
				

 ⁠
Name
function::cmdline_args — Fetch command line arguments from current process

 ⁠Synopsis

function cmdline_args:string(n:long,m:long,delim:string)

 ⁠Arguments
	n
	
								First argument to get (zero is the command itself)
							

	m
	
								Last argument to get (or minus one for all arguments after n)
							

	delim
	
								String to use to delimit arguments when more than one.
							

 ⁠General Syntax

					cmdline_args:string(n:long, m:long, delim:string)
				

 ⁠Description

					Returns arguments from the current process starting with argument number n, up to argument m. If there are less than n arguments, or the arguments cannot be retrieved from the current process, the empty string is returned. If m is smaller than n then all arguments starting from argument n are returned. Argument zero is traditionally the command itself.
				

 ⁠
Name
function::cmdline_arg — Fetch a command line argument.

 ⁠Synopsis

function cmdline_arg:string(n:long)

 ⁠Arguments
	n
	
								Argument to get (zero is the command itself)
							

 ⁠General Syntax

					cmdline_arg:string(n:long)
				

 ⁠Description

					Returns argument the requested argument from the current process or the empty string when there are not that many arguments or there is a problem retrieving the argument. Argument zero is traditionally the command itself.
				

 ⁠
Name
function::cmdline_str — Fetch all command line arguments from current process

 ⁠Synopsis

function cmdline_str:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					cmdline_str:string
				

 ⁠Description

					Returns all arguments from the current process delimited by spaces. Returns the empty string when the arguments cannot be retrieved.
				

 ⁠
Name
function::env_var — Fetch environment variable from current process

 ⁠Synopsis

function env_var:string(name:string)

 ⁠Arguments
	name
	
								Name of the environment variable to fetch
							

 ⁠General Syntax

					evn_var:string(name:string)
				

 ⁠Description

					Returns the contents of the specified environment value for the current process. If the variable isn't set an empty string is returned.
				

 ⁠
Name
function::print_stack — Print out kernel stack from string.

 ⁠Synopsis

function print_stack(stk:string)

 ⁠Arguments
	stk
	
								String with list of hexadecimal addresses.
							

 ⁠General Syntax

					print_stack(stk:string)
				

 ⁠Description

					This function performs a symbolic lookup of the addresses in the given string, which is assumed to be the result of a prior call to backtrace.
				

					Print one line per address, including the address, the name of the function containing the address, and an estimate of its position within that function. Return nothing.
				

 ⁠
Name
function::sprint_stack — Return stack for kernel addresses from string. EXPERIMENTAL!

 ⁠Synopsis

function sprint_stack:string(stk:string)

 ⁠Arguments
	stk
	
								String with list of hexadecimal (kernel) addresses.
							

 ⁠Description

					Perform a symbolic lookup of the addresses in the given string, which is assumed to be the result of a prior call to backtrace.
				

					Returns a simple backtrace from the given hex string. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found). Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_stack.
				

 ⁠
Name
function::probefunc — Return the probe point's function name, if known.

 ⁠Synopsis

function probefunc:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					probefunc:string
				

 ⁠Description

					This function returns the name of the function being probed. It will do this based on the probe point string as returned by pp.
				

 ⁠Please note

					this function is deprecated, please use symname and/or usymname. This function might return a function name based on the current address if the probe point context couldn't be parsed.
				

 ⁠
Name
function::probemod — Return the probe point's kernel module name.

 ⁠Synopsis

function probemod:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					probemod:string
				

 ⁠Description

					This funciton returns the name of the kernel module containing the probe point, if known.
				

 ⁠
Name
function::modname — Return the kernel module name loaded at the address.

 ⁠Synopsis

function modname:string(addr:long)

 ⁠Arguments
	addr
	
								The address.
							

 ⁠Description

					Returns the module name associated with the given address if known. If not known it will return the string “<unknown>”. If the address was not in a kernel module, but in the kernel itself, then the string “kernel” will be returned.
				

 ⁠
Name
function::symname — Return the kernel symbol associated with the given address.

 ⁠Synopsis

function symname:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠General Syntax

					symname:string(addr:long)
				

 ⁠Description

					Returns the (function) symbol name associated with the given address if known. If not known it will return the hex string representation of addr.
				

 ⁠
Name
function::symdata — Return the kernel symbol and module offset for the address.

 ⁠Synopsis

function symdata:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠General Syntax

					symdata:string(addr:long)
				

 ⁠Description

					Returns the (function) symbol name associated with the given address if known, the offset from the start and size of the symbol, plus module name (between brackets). If symbol is unknown, but module is known, the offset inside the module, plus the size of the module is added. If any element is not known it will be omitted and if the symbol name is unknown it will return the hex string for the given address.
				

 ⁠
Name
function::usymname — Return the symbol of an address in the current task. EXPERIMENTAL!

 ⁠Synopsis

function usymname:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the (function) symbol name associated with the given address if known. If not known it will return the hex string representation of addr.
				

 ⁠
Name
function::usymdata — Return the symbol and module offset of an address. EXPERIMENTAL!

 ⁠Synopsis

function usymdata:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the (function) symbol name associated with the given address in the current task if known, the offset from the start and the size of the symbol, plus the module name (between brackets). If symbol is unknown, but module is known, the offset inside the module, plus the size of the module is added. If any element is not known it will be omitted and if the symbol name is unknown it will return the hex string for the given address.
				

 ⁠
Name
function::print_ustack — Print out stack for the current task from string. EXPERIMENTAL!

 ⁠Synopsis

function print_ustack(stk:string)

 ⁠Arguments
	stk
	
								String with list of hexadecimal addresses for the current task.
							

 ⁠Description

					Perform a symbolic lookup of the addresses in the given string, which is assumed to be the result of a prior call to ubacktrace for the current task.
				

					Print one line per address, including the address, the name of the function containing the address, and an estimate of its position within that function. Return nothing.
				

 ⁠
Name
function::sprint_ustack — Return stack for the current task from string. EXPERIMENTAL!

 ⁠Synopsis

function sprint_ustack:string(stk:string)

 ⁠Arguments
	stk
	
								String with list of hexadecimal addresses for the current task.
							

 ⁠Description

					Perform a symbolic lookup of the addresses in the given string, which is assumed to be the result of a prior call to ubacktrace for the current task.
				

					Returns a simple backtrace from the given hex string. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found). Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_ustack.
				

 ⁠
Name
function::print_backtrace — Print stack back trace

 ⁠Synopsis

function print_backtrace()

 ⁠Arguments

					None
				

 ⁠General Syntax

					print_backtrace
				

 ⁠Description

					This function isEquivalent to print_stack(backtrace), except that deeper stack nesting may be supported. The function does not return a value.
				

 ⁠
Name
function::sprint_backtrace — Return stack back trace as string. EXPERIMENTAL!

 ⁠Synopsis

function sprint_backtrace:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns a simple (kernel) backtrace. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found). Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_backtrace. Equivalent to sprint_stack(backtrace), but more efficient (no need to translate between hex strings and final backtrace string).
				

 ⁠
Name
function::backtrace — Hex backtrace of current stack

 ⁠Synopsis

function backtrace:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					backtrace:string
				

 ⁠Description

					This function returns a string of hex addresses that are a backtrace of the stack. Output may be truncated as as per maximum string length (MAXSTRINGLEN).
				

 ⁠
Name
function::task_backtrace — Hex backtrace of an arbitrary task

 ⁠Synopsis

function task_backtrace:string(task:long)

 ⁠Arguments
	task
	
								pointer to task_struct
							

 ⁠General Syntax

					task_backtrace:string(task:long)
				

 ⁠Description

					This function returns a string of hex addresses that are a backtrace of the stack of a particular task Output may be truncated as per maximum string length.
				

 ⁠
Name
function::caller — Return name and address of calling function

 ⁠Synopsis

function caller:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					caller:string
				

 ⁠Description

					This function returns the address and name of the calling function. This is equivalent to calling: sprintf(“s 0xx”, symname(caller_addr, caller_addr)) Works only for return probes at this time.
				

 ⁠
Name
function::caller_addr — Return caller address

 ⁠Synopsis

function caller_addr:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					caller_addr:long
				

 ⁠Description

					This function returns the address of the calling function. Works only for return probes at this time.
				

 ⁠
Name
function::print_ubacktrace — Print stack back trace for current task. EXPERIMENTAL!

 ⁠Synopsis

function print_ubacktrace()

 ⁠Arguments

					None
				

 ⁠Description

					Equivalent to print_ustack(ubacktrace), except that deeper stack nesting may be supported. Returns nothing.
				

 ⁠Note

					To get (full) backtraces for user space applications and shared shared libraries not mentioned in the current script run stap with -d /path/to/exe-or-so and/or add --ldd to load all needed unwind data.
				

 ⁠
Name
function::sprint_ubacktrace — Return stack back trace for current task as string. EXPERIMENTAL!

 ⁠Synopsis

function sprint_ubacktrace:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns a simple backtrace for the current task. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found). Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_ubacktrace. Equivalent to sprint_ustack(ubacktrace), but more efficient (no need to translate between hex strings and final backtrace string).
				

 ⁠Note

					To get (full) backtraces for user space applications and shared shared libraries not mentioned in the current script run stap with -d /path/to/exe-or-so and/or add --ldd to load all needed unwind data.
				

 ⁠
Name
function::print_ubacktrace_brief — Print stack back trace for current task. EXPERIMENTAL!

 ⁠Synopsis

function print_ubacktrace_brief()

 ⁠Arguments

					None
				

 ⁠Description

					Equivalent to print_ubacktrace, but output for each symbol is shorter (just name and offset, or just the hex address of no symbol could be found).
				

 ⁠Note

					To get (full) backtraces for user space applications and shared shared libraries not mentioned in the current script run stap with -d /path/to/exe-or-so and/or add --ldd to load all needed unwind data.
				

 ⁠
Name
function::ubacktrace — Hex backtrace of current task stack. EXPERIMENTAL!

 ⁠Synopsis

function ubacktrace:string()

 ⁠Arguments

					None
				

 ⁠Description

					Return a string of hex addresses that are a backtrace of the stack of the current task. Output may be truncated as per maximum string length. Returns empty string when current probe point cannot determine user backtrace.
				

 ⁠Note

					To get (full) backtraces for user space applications and shared shared libraries not mentioned in the current script run stap with -d /path/to/exe-or-so and/or add --ldd to load all needed unwind data.
				

 ⁠
Name
function::task_current — The current task_struct of the current task.

 ⁠Synopsis

function task_current:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					task_current:long
				

 ⁠Description

					This function returns the task_struct representing the current process. This address can be passed to the various task_*() functions to extract more task-specific data.
				

 ⁠
Name
function::task_parent — The task_struct of the parent task.

 ⁠Synopsis

function task_parent:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_parent:long(task:long)
				

 ⁠Description

					This function returns the parent task_struct of the given task. This address can be passed to the various task_*() functions to extract more task-specific data.
				

 ⁠
Name
function::task_state — The state of the task.

 ⁠Synopsis

function task_state:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_state:long(task:long)
				

 ⁠Description

					Return the state of the given task, one of: TASK_RUNNING (0), TASK_INTERRUPTIBLE (1), TASK_UNINTERRUPTIBLE (2), TASK_STOPPED (4), TASK_TRACED (8), EXIT_ZOMBIE (16), EXIT_DEAD (32).
				

 ⁠
Name
function::task_execname — The name of the task.

 ⁠Synopsis

function task_execname:string(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_execname:string(task:long)
				

 ⁠Description

					Return the name of the given task.
				

 ⁠
Name
function::task_pid — The process identifier of the task.

 ⁠Synopsis

function task_pid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_pid:long (task:long)
				

 ⁠Description

					This fucntion returns the process id of the given task.
				

 ⁠
Name
function::pid2task — The task_struct of the given process identifier.

 ⁠Synopsis

function pid2task:long(pid:long)

 ⁠Arguments
	pid
	
								Process identifier.
							

 ⁠Description

					Return the task struct of the given process id.
				

 ⁠
Name
function::pid2execname — The name of the given process identifier.

 ⁠Synopsis

function pid2execname:string(pid:long)

 ⁠Arguments
	pid
	
								Process identifier.
							

 ⁠Description

					Return the name of the given process id.
				

 ⁠
Name
function::task_tid — The thread identifier of the task.

 ⁠Synopsis

function task_tid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_tid:long(task:long)
				

 ⁠Description

					This function returns the thread id of the given task.
				

 ⁠
Name
function::task_gid — The group identifier of the task.

 ⁠Synopsis

function task_gid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_gid:long(task:long)
				

 ⁠Description

					This function returns the group id of the given task.
				

 ⁠
Name
function::task_egid — The effective group identifier of the task.

 ⁠Synopsis

function task_egid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_egid:long(task:long)
				

 ⁠Description

					This function returns the effective group id of the given task.
				

 ⁠
Name
function::task_uid — The user identifier of the task.

 ⁠Synopsis

function task_uid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_uid:long(task:long)
				

 ⁠Description

					This function returns the user id of the given task.
				

 ⁠
Name
function::task_euid — The effective user identifier of the task.

 ⁠Synopsis

function task_euid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_euid:long(task:long)
				

 ⁠Description

					This function returns the effective user id of the given task.
				

 ⁠
Name
function::task_prio — The priority value of the task.

 ⁠Synopsis

function task_prio:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_prio:long(task:long)
				

 ⁠Description

					This function returns the priority value of the given task.
				

 ⁠
Name
function::task_nice — The nice value of the task.

 ⁠Synopsis

function task_nice:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_nice:long(task:long)
				

 ⁠Description

					This function returns the nice value of the given task.
				

 ⁠
Name
function::task_cpu — The scheduled cpu of the task.

 ⁠Synopsis

function task_cpu:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_cpu:long(task:long)
				

 ⁠Description

					This function returns the scheduled cpu for the given task.
				

 ⁠
Name
function::task_open_file_handles — The number of open files of the task.

 ⁠Synopsis

function task_open_file_handles:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_open_file_handles:long(task:long)
				

 ⁠Description

					This function returns the number of open file handlers for the given task.
				

 ⁠
Name
function::task_max_file_handles — The max number of open files for the task.

 ⁠Synopsis

function task_max_file_handles:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_max_file_handles:long(task:long)
				

 ⁠Description

					This function returns the maximum number of file handlers for the given task.
				

 ⁠
Name
function::pn — Returns the active probe name.

 ⁠Synopsis

function pn:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					pn:string
				

 ⁠Description

					This function returns the script-level probe point associated with a currently running probe handler, including wild-card expansion effects. Context: The current probe point.
				

 ⁠
Name
function::print_regs — Print a register dump.

 ⁠Synopsis

function print_regs()

 ⁠Arguments

					None
				

 ⁠General Syntax

					print_regs
				

 ⁠Description

					This function prints a register dump.
				

 ⁠
Name
function::execname — Returns the execname of a target process (or group of processes).

 ⁠Synopsis

function execname:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					execname:string
				

 ⁠Description

					Returns the execname of a target process (or group of processes).
				

 ⁠
Name
function::pid — Returns the ID of a target process.

 ⁠Synopsis

function pid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					pid:long
				

 ⁠Description

					This function returns the ID of a targer process.
				

 ⁠
Name
function::tid — Returns the thread ID of a target process.

 ⁠Synopsis

function tid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					tid:long
				

 ⁠Description

					This function returns the thread ID of the target process.
				

 ⁠
Name
function::ppid — Returns the process ID of a target process's parent process.

 ⁠Synopsis

function ppid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					ppid:long
				

 ⁠Description

					This function return the process ID of the target proccess's parent process.
				

 ⁠
Name
function::pgrp — Returns the process group ID of the current process.

 ⁠Synopsis

function pgrp:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					pgrp:long
				

 ⁠Description

					This function returns the process group ID of the current process.
				

 ⁠
Name
function::sid — Returns the session ID of the current process.

 ⁠Synopsis

function sid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					sid:long
				

 ⁠Description

					The session ID of a process is the process group ID of the session leader. Session ID is stored in the signal_struct since Kernel 2.6.0.
				

 ⁠
Name
function::pexecname — Returns the execname of a target process's parent process.

 ⁠Synopsis

function pexecname:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					pexecname:string
				

 ⁠Description

					This function returns the execname of a target process's parent procces.
				

 ⁠
Name
function::gid — Returns the group ID of a target process.

 ⁠Synopsis

function gid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					gid:long
				

 ⁠Description

					This function returns the group ID of a target process.
				

 ⁠
Name
function::egid — Returns the effective gid of a target process.

 ⁠Synopsis

function egid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					egid:long
				

 ⁠Description

					This function returns the effective gid of a target process
				

 ⁠
Name
function::uid — Returns the user ID of a target process.

 ⁠Synopsis

function uid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					uid:long
				

 ⁠Description

					This function returns the user ID of the target process.
				

 ⁠
Name
function::euid — Return the effective uid of a target process.

 ⁠Synopsis

function euid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					euid:long
				

 ⁠Description

					Returns the effective user ID of the target process.
				

 ⁠
Name
function::is_myproc — Determines if the current probe point has occurred in the user's own process.

 ⁠Synopsis

function is_myproc:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					is_myproc:long
				

 ⁠Description

					This function returns 1 if the current probe point has occurred in the user's own process.
				

 ⁠
Name
function::cpu — Returns the current cpu number.

 ⁠Synopsis

function cpu:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					cpu:long
				

 ⁠Description

					This function returns the current cpu number.
				

 ⁠
Name
function::pp — Returns the active probe point.

 ⁠Synopsis

function pp:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					pp:string
				

 ⁠Description

					This function returns the fully-resolved probe point associated with a currently running probe handler, including alias and wild-card expansion effects. Context: The current probe point.
				

 ⁠
Name
function::registers_valid — Determines validity of register and u_register in current context.

 ⁠Synopsis

function registers_valid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					registers_valid:long
				

 ⁠Description

					This function returns 1 if register and u_register can be used in the current context, or 0 otherwise. For example, registers_valid returns 0 when called from a begin or end probe.
				

 ⁠
Name
function::user_mode — Determines if probe point occurs in user-mode.

 ⁠Synopsis

function user_mode:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					user_mode:long
				

					Return 1 if the probe point occurred in user-mode.
				

 ⁠
Name
function::is_return — Whether the current probe context is a return probe.

 ⁠Synopsis

function is_return:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					is_return:long
				

 ⁠Description

					Returns 1 if the current probe context is a return probe, returns 0 otherwise.
				

 ⁠
Name
function::target — Return the process ID of the target process.

 ⁠Synopsis

function target:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					target:long
				

 ⁠Description

					This function returns the process ID of the target process. This is useful in conjunction with the -x PID or -c CMD command-line options to stap. An example of its use is to create scripts that filter on a specific process.
				

 ⁠
Name
function::module_name — The module name of the current script.

 ⁠Synopsis

function module_name:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					module_name:string
				

 ⁠Description

					This function returns the name of the stap module. Either generated randomly (stap_[0-9a-f]+_[0-9a-f]+) or set by stap -m <module_name>.
				

 ⁠
Name
function::stp_pid — The process id of the stapio process.

 ⁠Synopsis

function stp_pid:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					stp_pid:long
				

 ⁠Description

					This function returns the process id of the stapio process that launched this script. There could be other SystemTap scripts and stapio processes running on the system.
				

 ⁠
Name
function::stack_size — Return the size of the kernel stack.

 ⁠Synopsis

function stack_size:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					stack_size:long
				

 ⁠Description

					This function returns the size of the kernel stack.
				

 ⁠
Name
function::stack_used — Returns the amount of kernel stack used.

 ⁠Synopsis

function stack_used:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					stack_used:long
				

 ⁠Description

					This function determines how many bytes are currently used in the kernel stack.
				

 ⁠
Name
function::stack_unused — Returns the amount of kernel stack currently available.

 ⁠Synopsis

function stack_unused:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					stack_unused:long
				

 ⁠Description

					This function determines how many bytes are currently available in the kernel stack.
				

 ⁠
Name
function::uaddr — User space address of current running task. EXPERIMENTAL.

 ⁠Synopsis

function uaddr:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					uaddr:long
				

 ⁠Description

					Returns the address in userspace that the current task was at when the probe occurred. When the current running task isn't a user space thread, or the address cannot be found, zero is returned. Can be used to see where the current task is combined with usymname or symdata. Often the task will be in the VDSO where it entered the kernel. FIXME - need VDSO tracking support #10080.
				

 ⁠
Name
function::cmdline_args — Fetch command line arguments from current process

 ⁠Synopsis

function cmdline_args:string(n:long,m:long,delim:string)

 ⁠Arguments
	n
	
								First argument to get (zero is the command itself)
							

	m
	
								Last argument to get (or minus one for all arguments after n)
							

	delim
	
								String to use to delimit arguments when more than one.
							

 ⁠General Syntax

					cmdline_args:string(n:long, m:long, delim:string)
				

 ⁠Description

					Returns arguments from the current process starting with argument number n, up to argument m. If there are less than n arguments, or the arguments cannot be retrieved from the current process, the empty string is returned. If m is smaller than n then all arguments starting from argument n are returned. Argument zero is traditionally the command itself.
				

 ⁠
Name
function::cmdline_arg — Fetch a command line argument.

 ⁠Synopsis

function cmdline_arg:string(n:long)

 ⁠Arguments
	n
	
								Argument to get (zero is the command itself)
							

 ⁠General Syntax

					cmdline_arg:string(n:long)
				

 ⁠Description

					Returns argument the requested argument from the current process or the empty string when there are not that many arguments or there is a problem retrieving the argument. Argument zero is traditionally the command itself.
				

 ⁠
Name
function::cmdline_str — Fetch all command line arguments from current process

 ⁠Synopsis

function cmdline_str:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					cmdline_str:string
				

 ⁠Description

					Returns all arguments from the current process delimited by spaces. Returns the empty string when the arguments cannot be retrieved.
				

 ⁠
Name
function::env_var — Fetch environment variable from current process

 ⁠Synopsis

function env_var:string(name:string)

 ⁠Arguments
	name
	
								Name of the environment variable to fetch
							

 ⁠General Syntax

					evn_var:string(name:string)
				

 ⁠Description

					Returns the contents of the specified environment value for the current process. If the variable isn't set an empty string is returned.
				

 ⁠
Name
function::print_stack — Print out kernel stack from string.

 ⁠Synopsis

function print_stack(stk:string)

 ⁠Arguments
	stk
	
								String with list of hexadecimal addresses.
							

 ⁠General Syntax

					print_stack(stk:string)
				

 ⁠Description

					This function performs a symbolic lookup of the addresses in the given string, which is assumed to be the result of a prior call to backtrace.
				

					Print one line per address, including the address, the name of the function containing the address, and an estimate of its position within that function. Return nothing.
				

 ⁠
Name
function::sprint_stack — Return stack for kernel addresses from string. EXPERIMENTAL!

 ⁠Synopsis

function sprint_stack:string(stk:string)

 ⁠Arguments
	stk
	
								String with list of hexadecimal (kernel) addresses.
							

 ⁠Description

					Perform a symbolic lookup of the addresses in the given string, which is assumed to be the result of a prior call to backtrace.
				

					Returns a simple backtrace from the given hex string. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found). Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_stack.
				

 ⁠
Name
function::probefunc — Return the probe point's function name, if known.

 ⁠Synopsis

function probefunc:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					probefunc:string
				

 ⁠Description

					This function returns the name of the function being probed. It will do this based on the probe point string as returned by pp.
				

 ⁠Please note

					this function is deprecated, please use symname and/or usymname. This function might return a function name based on the current address if the probe point context couldn't be parsed.
				

 ⁠
Name
function::probemod — Return the probe point's kernel module name.

 ⁠Synopsis

function probemod:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					probemod:string
				

 ⁠Description

					This funciton returns the name of the kernel module containing the probe point, if known.
				

 ⁠
Name
function::modname — Return the kernel module name loaded at the address.

 ⁠Synopsis

function modname:string(addr:long)

 ⁠Arguments
	addr
	
								The address.
							

 ⁠Description

					Returns the module name associated with the given address if known. If not known it will return the string “<unknown>”. If the address was not in a kernel module, but in the kernel itself, then the string “kernel” will be returned.
				

 ⁠
Name
function::symname — Return the kernel symbol associated with the given address.

 ⁠Synopsis

function symname:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠General Syntax

					symname:string(addr:long)
				

 ⁠Description

					Returns the (function) symbol name associated with the given address if known. If not known it will return the hex string representation of addr.
				

 ⁠
Name
function::symdata — Return the kernel symbol and module offset for the address.

 ⁠Synopsis

function symdata:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠General Syntax

					symdata:string(addr:long)
				

 ⁠Description

					Returns the (function) symbol name associated with the given address if known, the offset from the start and size of the symbol, plus module name (between brackets). If symbol is unknown, but module is known, the offset inside the module, plus the size of the module is added. If any element is not known it will be omitted and if the symbol name is unknown it will return the hex string for the given address.
				

 ⁠
Name
function::usymname — Return the symbol of an address in the current task. EXPERIMENTAL!

 ⁠Synopsis

function usymname:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the (function) symbol name associated with the given address if known. If not known it will return the hex string representation of addr.
				

 ⁠
Name
function::usymdata — Return the symbol and module offset of an address. EXPERIMENTAL!

 ⁠Synopsis

function usymdata:string(addr:long)

 ⁠Arguments
	addr
	
								The address to translate.
							

 ⁠Description

					Returns the (function) symbol name associated with the given address in the current task if known, the offset from the start and the size of the symbol, plus the module name (between brackets). If symbol is unknown, but module is known, the offset inside the module, plus the size of the module is added. If any element is not known it will be omitted and if the symbol name is unknown it will return the hex string for the given address.
				

 ⁠
Name
function::print_ustack — Print out stack for the current task from string. EXPERIMENTAL!

 ⁠Synopsis

function print_ustack(stk:string)

 ⁠Arguments
	stk
	
								String with list of hexadecimal addresses for the current task.
							

 ⁠Description

					Perform a symbolic lookup of the addresses in the given string, which is assumed to be the result of a prior call to ubacktrace for the current task.
				

					Print one line per address, including the address, the name of the function containing the address, and an estimate of its position within that function. Return nothing.
				

 ⁠
Name
function::sprint_ustack — Return stack for the current task from string. EXPERIMENTAL!

 ⁠Synopsis

function sprint_ustack:string(stk:string)

 ⁠Arguments
	stk
	
								String with list of hexadecimal addresses for the current task.
							

 ⁠Description

					Perform a symbolic lookup of the addresses in the given string, which is assumed to be the result of a prior call to ubacktrace for the current task.
				

					Returns a simple backtrace from the given hex string. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found). Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_ustack.
				

 ⁠
Name
function::print_backtrace — Print stack back trace

 ⁠Synopsis

function print_backtrace()

 ⁠Arguments

					None
				

 ⁠General Syntax

					print_backtrace
				

 ⁠Description

					This function isEquivalent to print_stack(backtrace), except that deeper stack nesting may be supported. The function does not return a value.
				

 ⁠
Name
function::sprint_backtrace — Return stack back trace as string. EXPERIMENTAL!

 ⁠Synopsis

function sprint_backtrace:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns a simple (kernel) backtrace. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found). Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_backtrace. Equivalent to sprint_stack(backtrace), but more efficient (no need to translate between hex strings and final backtrace string).
				

 ⁠
Name
function::backtrace — Hex backtrace of current stack

 ⁠Synopsis

function backtrace:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					backtrace:string
				

 ⁠Description

					This function returns a string of hex addresses that are a backtrace of the stack. Output may be truncated as as per maximum string length (MAXSTRINGLEN).
				

 ⁠
Name
function::task_backtrace — Hex backtrace of an arbitrary task

 ⁠Synopsis

function task_backtrace:string(task:long)

 ⁠Arguments
	task
	
								pointer to task_struct
							

 ⁠General Syntax

					task_backtrace:string(task:long)
				

 ⁠Description

					This function returns a string of hex addresses that are a backtrace of the stack of a particular task Output may be truncated as per maximum string length.
				

 ⁠
Name
function::caller — Return name and address of calling function

 ⁠Synopsis

function caller:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					caller:string
				

 ⁠Description

					This function returns the address and name of the calling function. This is equivalent to calling: sprintf(“s 0xx”, symname(caller_addr, caller_addr)) Works only for return probes at this time.
				

 ⁠
Name
function::caller_addr — Return caller address

 ⁠Synopsis

function caller_addr:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					caller_addr:long
				

 ⁠Description

					This function returns the address of the calling function. Works only for return probes at this time.
				

 ⁠
Name
function::print_ubacktrace — Print stack back trace for current task. EXPERIMENTAL!

 ⁠Synopsis

function print_ubacktrace()

 ⁠Arguments

					None
				

 ⁠Description

					Equivalent to print_ustack(ubacktrace), except that deeper stack nesting may be supported. Returns nothing.
				

 ⁠Note

					To get (full) backtraces for user space applications and shared shared libraries not mentioned in the current script run stap with -d /path/to/exe-or-so and/or add --ldd to load all needed unwind data.
				

 ⁠
Name
function::sprint_ubacktrace — Return stack back trace for current task as string. EXPERIMENTAL!

 ⁠Synopsis

function sprint_ubacktrace:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns a simple backtrace for the current task. One line per address. Includes the symbol name (or hex address if symbol couldn't be resolved) and module name (if found). Includes the offset from the start of the function if found, otherwise the offset will be added to the module (if found, between brackets). Returns the backtrace as string (each line terminated by a newline character). Note that the returned stack will be truncated to MAXSTRINGLEN, to print fuller and richer stacks use print_ubacktrace. Equivalent to sprint_ustack(ubacktrace), but more efficient (no need to translate between hex strings and final backtrace string).
				

 ⁠Note

					To get (full) backtraces for user space applications and shared shared libraries not mentioned in the current script run stap with -d /path/to/exe-or-so and/or add --ldd to load all needed unwind data.
				

 ⁠
Name
function::print_ubacktrace_brief — Print stack back trace for current task. EXPERIMENTAL!

 ⁠Synopsis

function print_ubacktrace_brief()

 ⁠Arguments

					None
				

 ⁠Description

					Equivalent to print_ubacktrace, but output for each symbol is shorter (just name and offset, or just the hex address of no symbol could be found).
				

 ⁠Note

					To get (full) backtraces for user space applications and shared shared libraries not mentioned in the current script run stap with -d /path/to/exe-or-so and/or add --ldd to load all needed unwind data.
				

 ⁠
Name
function::ubacktrace — Hex backtrace of current task stack. EXPERIMENTAL!

 ⁠Synopsis

function ubacktrace:string()

 ⁠Arguments

					None
				

 ⁠Description

					Return a string of hex addresses that are a backtrace of the stack of the current task. Output may be truncated as per maximum string length. Returns empty string when current probe point cannot determine user backtrace.
				

 ⁠Note

					To get (full) backtraces for user space applications and shared shared libraries not mentioned in the current script run stap with -d /path/to/exe-or-so and/or add --ldd to load all needed unwind data.
				

 ⁠
Name
function::task_current — The current task_struct of the current task.

 ⁠Synopsis

function task_current:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					task_current:long
				

 ⁠Description

					This function returns the task_struct representing the current process. This address can be passed to the various task_*() functions to extract more task-specific data.
				

 ⁠
Name
function::task_parent — The task_struct of the parent task.

 ⁠Synopsis

function task_parent:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_parent:long(task:long)
				

 ⁠Description

					This function returns the parent task_struct of the given task. This address can be passed to the various task_*() functions to extract more task-specific data.
				

 ⁠
Name
function::task_state — The state of the task.

 ⁠Synopsis

function task_state:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_state:long(task:long)
				

 ⁠Description

					Return the state of the given task, one of: TASK_RUNNING (0), TASK_INTERRUPTIBLE (1), TASK_UNINTERRUPTIBLE (2), TASK_STOPPED (4), TASK_TRACED (8), EXIT_ZOMBIE (16), EXIT_DEAD (32).
				

 ⁠
Name
function::task_execname — The name of the task.

 ⁠Synopsis

function task_execname:string(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_execname:string(task:long)
				

 ⁠Description

					Return the name of the given task.
				

 ⁠
Name
function::task_pid — The process identifier of the task.

 ⁠Synopsis

function task_pid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_pid:long (task:long)
				

 ⁠Description

					This fucntion returns the process id of the given task.
				

 ⁠
Name
function::pid2task — The task_struct of the given process identifier.

 ⁠Synopsis

function pid2task:long(pid:long)

 ⁠Arguments
	pid
	
								Process identifier.
							

 ⁠Description

					Return the task struct of the given process id.
				

 ⁠
Name
function::pid2execname — The name of the given process identifier.

 ⁠Synopsis

function pid2execname:string(pid:long)

 ⁠Arguments
	pid
	
								Process identifier.
							

 ⁠Description

					Return the name of the given process id.
				

 ⁠
Name
function::task_tid — The thread identifier of the task.

 ⁠Synopsis

function task_tid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_tid:long(task:long)
				

 ⁠Description

					This function returns the thread id of the given task.
				

 ⁠
Name
function::task_gid — The group identifier of the task.

 ⁠Synopsis

function task_gid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_gid:long(task:long)
				

 ⁠Description

					This function returns the group id of the given task.
				

 ⁠
Name
function::task_egid — The effective group identifier of the task.

 ⁠Synopsis

function task_egid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_egid:long(task:long)
				

 ⁠Description

					This function returns the effective group id of the given task.
				

 ⁠
Name
function::task_uid — The user identifier of the task.

 ⁠Synopsis

function task_uid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_uid:long(task:long)
				

 ⁠Description

					This function returns the user id of the given task.
				

 ⁠
Name
function::task_euid — The effective user identifier of the task.

 ⁠Synopsis

function task_euid:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_euid:long(task:long)
				

 ⁠Description

					This function returns the effective user id of the given task.
				

 ⁠
Name
function::task_prio — The priority value of the task.

 ⁠Synopsis

function task_prio:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_prio:long(task:long)
				

 ⁠Description

					This function returns the priority value of the given task.
				

 ⁠
Name
function::task_nice — The nice value of the task.

 ⁠Synopsis

function task_nice:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_nice:long(task:long)
				

 ⁠Description

					This function returns the nice value of the given task.
				

 ⁠
Name
function::task_cpu — The scheduled cpu of the task.

 ⁠Synopsis

function task_cpu:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_cpu:long(task:long)
				

 ⁠Description

					This function returns the scheduled cpu for the given task.
				

 ⁠
Name
function::task_open_file_handles — The number of open files of the task.

 ⁠Synopsis

function task_open_file_handles:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_open_file_handles:long(task:long)
				

 ⁠Description

					This function returns the number of open file handlers for the given task.
				

 ⁠
Name
function::task_max_file_handles — The max number of open files for the task.

 ⁠Synopsis

function task_max_file_handles:long(task:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

 ⁠General Syntax

					task_max_file_handles:long(task:long)
				

 ⁠Description

					This function returns the maximum number of file handlers for the given task.
				

 ⁠
Name
function::pn — Returns the active probe name.

 ⁠Synopsis

function pn:string()

 ⁠Arguments

					None
				

 ⁠General Syntax

					pn:string
				

 ⁠Description

					This function returns the script-level probe point associated with a currently running probe handler, including wild-card expansion effects. Context: The current probe point.
				

 ⁠Chapter 4. Timestamp Functions

			Each timestamp function returns a value to indicate when a function is executed. These returned values can then be used to indicate when an event occurred, provide an ordering for events, or compute the amount of time elapsed between two time stamps.
		

 ⁠
Name
function::get_cycles — Processor cycle count.

 ⁠Synopsis

function get_cycles:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					get_cycles:long
				

 ⁠Description

					This function returns the processor cycle counter value if available, else it returns zero. The cycle counter is free running and unsynchronized on each processor. Thus, the order of events cannot determined by comparing the results of the get_cycles function on different processors.
				

 ⁠
Name
function::gettimeofday_ns — Number of nanoseconds since UNIX epoch.

 ⁠Synopsis

function gettimeofday_ns:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					gettimeofday_ns:long
				

 ⁠Description

					This function returns the number of nanoseconds since the UNIX epoch.
				

 ⁠
Name
function::gettimeofday_us — Number of microseconds since UNIX epoch.

 ⁠Synopsis

function gettimeofday_us:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					gettimeofday_us:long
				

 ⁠Description

					This function returns the number of microseconds since the UNIX epoch.
				

 ⁠
Name
function::gettimeofday_ms — Number of milliseconds since UNIX epoch.

 ⁠Synopsis

function gettimeofday_ms:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					gettimeofday_ms:long
				

 ⁠Description

					This function returns the number of milliseconds since the UNIX epoch.
				

 ⁠
Name
function::gettimeofday_s — Number of seconds since UNIX epoch.

 ⁠Synopsis

function gettimeofday_s:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					gettimeofday_s:long
				

 ⁠Description

					This function returns the number of seconds since the UNIX epoch.
				

 ⁠
Name
function::get_cycles — Processor cycle count.

 ⁠Synopsis

function get_cycles:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					get_cycles:long
				

 ⁠Description

					This function returns the processor cycle counter value if available, else it returns zero. The cycle counter is free running and unsynchronized on each processor. Thus, the order of events cannot determined by comparing the results of the get_cycles function on different processors.
				

 ⁠
Name
function::gettimeofday_ns — Number of nanoseconds since UNIX epoch.

 ⁠Synopsis

function gettimeofday_ns:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					gettimeofday_ns:long
				

 ⁠Description

					This function returns the number of nanoseconds since the UNIX epoch.
				

 ⁠
Name
function::gettimeofday_us — Number of microseconds since UNIX epoch.

 ⁠Synopsis

function gettimeofday_us:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					gettimeofday_us:long
				

 ⁠Description

					This function returns the number of microseconds since the UNIX epoch.
				

 ⁠
Name
function::gettimeofday_ms — Number of milliseconds since UNIX epoch.

 ⁠Synopsis

function gettimeofday_ms:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					gettimeofday_ms:long
				

 ⁠Description

					This function returns the number of milliseconds since the UNIX epoch.
				

 ⁠
Name
function::gettimeofday_s — Number of seconds since UNIX epoch.

 ⁠Synopsis

function gettimeofday_s:long()

 ⁠Arguments

					None
				

 ⁠General Syntax

					gettimeofday_s:long
				

 ⁠Description

					This function returns the number of seconds since the UNIX epoch.
				

 ⁠Chapter 5. Time string utility function

			Utility function to turn seconds since the epoch (as returned by the timestamp function gettimeofday_s()) into a human readable date/time string.
		

 ⁠
Name
function::ctime — Convert seconds since epoch into human readable date/time string.

 ⁠Synopsis

function ctime:string(epochsecs:long)

 ⁠Arguments
	epochsecs
	
								Number of seconds since epoch (as returned by gettimeofday_s).
							

 ⁠General Syntax

					ctime:string(epochsecs:long)
				

 ⁠Description

					Takes an argument of seconds since the epoch as returned by gettimeofday_s. Returns a string of the form
				

					“Wed Jun 30 21:49:08 1993”
				

					The string will always be exactly 24 characters. If the time would be unreasonable far in the past (before what can be represented with a 32 bit offset in seconds from the epoch) the returned string will be “a long, long time ago...”. If the time would be unreasonable far in the future the returned string will be “far far in the future...” (both these strings are also 24 characters wide).
				

					Note that the epoch (zero) corresponds to
				

					“Thu Jan 1 00:00:00 1970”
				

					The earliest full date given by ctime, corresponding to epochsecs -2147483648 is “Fri Dec 13 20:45:52 1901”. The latest full date given by ctime, corresponding to epochsecs 2147483647 is “Tue Jan 19 03:14:07 2038”.
				

					The abbreviations for the days of the week are ‘Sun’, ‘Mon’, ‘Tue’, ‘Wed’, ‘Thu’, ‘Fri’, and ‘Sat’. The abbreviations for the months are ‘Jan’, ‘Feb’, ‘Mar’, ‘Apr’, ‘May’, ‘Jun’, ‘Jul’, ‘Aug’, ‘Sep’, ‘Oct’, ‘Nov’, and ‘Dec’.
				

					Note that the real C library ctime function puts a newline ('\n') character at the end of the string that this function does not. Also note that since the kernel has no concept of timezones, the returned time is always in GMT.
				

 ⁠
Name
function::ctime — Convert seconds since epoch into human readable date/time string.

 ⁠Synopsis

function ctime:string(epochsecs:long)

 ⁠Arguments
	epochsecs
	
								Number of seconds since epoch (as returned by gettimeofday_s).
							

 ⁠General Syntax

					ctime:string(epochsecs:long)
				

 ⁠Description

					Takes an argument of seconds since the epoch as returned by gettimeofday_s. Returns a string of the form
				

					“Wed Jun 30 21:49:08 1993”
				

					The string will always be exactly 24 characters. If the time would be unreasonable far in the past (before what can be represented with a 32 bit offset in seconds from the epoch) the returned string will be “a long, long time ago...”. If the time would be unreasonable far in the future the returned string will be “far far in the future...” (both these strings are also 24 characters wide).
				

					Note that the epoch (zero) corresponds to
				

					“Thu Jan 1 00:00:00 1970”
				

					The earliest full date given by ctime, corresponding to epochsecs -2147483648 is “Fri Dec 13 20:45:52 1901”. The latest full date given by ctime, corresponding to epochsecs 2147483647 is “Tue Jan 19 03:14:07 2038”.
				

					The abbreviations for the days of the week are ‘Sun’, ‘Mon’, ‘Tue’, ‘Wed’, ‘Thu’, ‘Fri’, and ‘Sat’. The abbreviations for the months are ‘Jan’, ‘Feb’, ‘Mar’, ‘Apr’, ‘May’, ‘Jun’, ‘Jul’, ‘Aug’, ‘Sep’, ‘Oct’, ‘Nov’, and ‘Dec’.
				

					Note that the real C library ctime function puts a newline ('\n') character at the end of the string that this function does not. Also note that since the kernel has no concept of timezones, the returned time is always in GMT.
				

 ⁠Chapter 6. Memory Tapset

			This family of probe points is used to probe memory-related events or query the memory usage of the current process. It contains the following probe points:
		

 ⁠
Name
function::vm_fault_contains — Test return value for page fault reason

 ⁠Synopsis

function vm_fault_contains:long(value:long,test:long)

 ⁠Arguments
	value
	
								The fault_type returned by vm.page_fault.return
							

	test
	
								The type of fault to test for (VM_FAULT_OOM or similar)
							

 ⁠
Name
probe::vm.pagefault — Records that a page fault occurred.

 ⁠Synopsis

vm.pagefault

 ⁠Values
	write_access
	
								Indicates whether this was a write or read access; 1 indicates a write, while 0 indicates a read.
							

	name
	
								Name of the probe point
							

	address
	
								The address of the faulting memory access; i.e. the address that caused the page fault.
							

 ⁠Context

					The process which triggered the fault
				

 ⁠
Name
probe::vm.pagefault.return — Indicates what type of fault occurred.

 ⁠Synopsis

vm.pagefault.return

 ⁠Values
	name
	
								Name of the probe point
							

	fault_type
	
								Returns either 0 (VM_FAULT_OOM) for out of memory faults, 2 (VM_FAULT_MINOR) for minor faults, 3 (VM_FAULT_MAJOR) for major faults, or 1 (VM_FAULT_SIGBUS) if the fault was neither OOM, minor fault, nor major fault.
							

 ⁠
Name
function::addr_to_node — Returns which node a given address belongs to within a NUMA system.

 ⁠Synopsis

function addr_to_node:long(addr:long)

 ⁠Arguments
	addr
	
								The address of the faulting memory access.
							

 ⁠General Syntax

					addr_to_node:long(addr:long)
				

 ⁠Description

					This function accepts an address, and returns the node that the given address belongs to in a NUMA system.
				

 ⁠
Name
probe::vm.write_shared — Attempts at writing to a shared page.

 ⁠Synopsis

vm.write_shared

 ⁠Values
	name
	
								Name of the probe point
							

	address
	
								The address of the shared write.
							

 ⁠Context

					The context is the process attempting the write.
				

 ⁠Description

					Fires when a process attempts to write to a shared page. If a copy is necessary, this will be followed by a vm.write_shared_copy.
				

 ⁠
Name
probe::vm.write_shared_copy — Page copy for shared page write.

 ⁠Synopsis

vm.write_shared_copy

 ⁠Values
	name
	
								Name of the probe point
							

	zero
	
								Boolean indicating whether it is a zero page (can do a clear instead of a copy).
							

	address
	
								The address of the shared write.
							

 ⁠Context

					The process attempting the write.
				

 ⁠Description

					Fires when a write to a shared page requires a page copy. This is always preceded by a vm.shared_write.
				

 ⁠
Name
probe::vm.mmap — Fires when an mmap is requested.

 ⁠Synopsis

vm.mmap

 ⁠Values
	length
	
								The length of the memory segment
							

	name
	
								Name of the probe point
							

	address
	
								The requested address
							

 ⁠Context

					The process calling mmap.
				

 ⁠
Name
probe::vm.munmap — Fires when an munmap is requested.

 ⁠Synopsis

vm.munmap

 ⁠Values
	length
	
								The length of the memory segment
							

	name
	
								Name of the probe point
							

	address
	
								The requested address
							

 ⁠Context

					The process calling munmap.
				

 ⁠
Name
probe::vm.brk — Fires when a brk is requested (i.e. the heap will be resized).

 ⁠Synopsis

vm.brk

 ⁠Values
	length
	
								The length of the memory segment
							

	name
	
								Name of the probe point
							

	address
	
								The requested address
							

 ⁠Context

					The process calling brk.
				

 ⁠
Name
probe::vm.oom_kill — Fires when a thread is selected for termination by the OOM killer.

 ⁠Synopsis

vm.oom_kill

 ⁠Values
	name
	
								Name of the probe point
							

	task
	
								The task being killed
							

 ⁠Context

					The process that tried to consume excessive memory, and thus triggered the OOM.
				

 ⁠
Name
probe::vm.kmalloc — Fires when kmalloc is requested.

 ⁠Synopsis

vm.kmalloc

 ⁠Values
	ptr
	
								Pointer to the kmemory allocated
							

	caller_function
	
								Name of the caller function.
							

	call_site
	
								Address of the kmemory function.
							

	gfp_flag_name
	
								type of kmemory to allocate (in String format)
							

	name
	
								Name of the probe point
							

	bytes_req
	
								Requested Bytes
							

	bytes_alloc
	
								Allocated Bytes
							

	gfp_flags
	
								type of kmemory to allocate
							

 ⁠
Name
probe::vm.kmem_cache_alloc — Fires when \

 ⁠Synopsis

vm.kmem_cache_alloc

 ⁠Values
	ptr
	
								Pointer to the kmemory allocated
							

	caller_function
	
								Name of the caller function.
							

	call_site
	
								Address of the function calling this kmemory function.
							

	gfp_flag_name
	
								Type of kmemory to allocate(in string format)
							

	name
	
								Name of the probe point
							

	bytes_req
	
								Requested Bytes
							

	bytes_alloc
	
								Allocated Bytes
							

	gfp_flags
	
								type of kmemory to allocate
							

 ⁠Description

					kmem_cache_alloc is requested.
				

 ⁠
Name
probe::vm.kmalloc_node — Fires when kmalloc_node is requested.

 ⁠Synopsis

vm.kmalloc_node

 ⁠Values
	ptr
	
								Pointer to the kmemory allocated
							

	caller_function
	
								Name of the caller function.
							

	call_site
	
								Address of the function caling this kmemory function.
							

	gfp_flag_name
	
								Type of kmemory to allocate(in string format)
							

	name
	
								Name of the probe point
							

	bytes_req
	
								Requested Bytes
							

	bytes_alloc
	
								Allocated Bytes
							

	gfp_flags
	
								type of kmemory to allocate
							

 ⁠
Name
probe::vm.kmem_cache_alloc_node — Fires when \

 ⁠Synopsis

vm.kmem_cache_alloc_node

 ⁠Values
	ptr
	
								Pointer to the kmemory allocated
							

	caller_function
	
								Name of the caller function.
							

	call_site
	
								Address of the function calling this kmemory function.
							

	gfp_flag_name
	
								Type of kmemory to allocate(in string format)
							

	name
	
								Name of the probe point
							

	bytes_req
	
								Requested Bytes
							

	bytes_alloc
	
								Allocated Bytes
							

	gfp_flags
	
								type of kmemory to allocate
							

 ⁠Description

					kmem_cache_alloc_node is requested.
				

 ⁠
Name
probe::vm.kfree — Fires when kfree is requested.

 ⁠Synopsis

vm.kfree

 ⁠Values
	ptr
	
								Pointer to the kmemory allocated which is returned by kmalloc
							

	caller_function
	
								Name of the caller function.
							

	call_site
	
								Address of the function calling this kmemory function.
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::vm.kmem_cache_free — Fires when \

 ⁠Synopsis

vm.kmem_cache_free

 ⁠Values
	ptr
	
								Pointer to the kmemory allocated which is returned by kmem_cache
							

	caller_function
	
								Name of the caller function.
							

	call_site
	
								Address of the function calling this kmemory function.
							

	name
	
								Name of the probe point
							

 ⁠Description

					kmem_cache_free is requested.
				

 ⁠
Name
function::proc_mem_size — Total program virtual memory size in pages

 ⁠Synopsis

function proc_mem_size:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the total virtual memory size in pages of the current process, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_size_pid — Total program virtual memory size in pages

 ⁠Synopsis

function proc_mem_size_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the total virtual memory size in pages of the given process, or zero when that process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_rss — Program resident set size in pages

 ⁠Synopsis

function proc_mem_rss:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the resident set size in pages of the current process, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_rss_pid — Program resident set size in pages

 ⁠Synopsis

function proc_mem_rss_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the resident set size in pages of the given process, or zero when the process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_shr — Program shared pages (from shared mappings)

 ⁠Synopsis

function proc_mem_shr:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the shared pages (from shared mappings) of the current process, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_shr_pid — Program shared pages (from shared mappings)

 ⁠Synopsis

function proc_mem_shr_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the shared pages (from shared mappings) of the given process, or zero when the process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_txt — Program text (code) size in pages

 ⁠Synopsis

function proc_mem_txt:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the current process text (code) size in pages, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_txt_pid — Program text (code) size in pages

 ⁠Synopsis

function proc_mem_txt_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the given process text (code) size in pages, or zero when the process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_data — Program data size (data + stack) in pages

 ⁠Synopsis

function proc_mem_data:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the current process data size (data + stack) in pages, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_data_pid — Program data size (data + stack) in pages

 ⁠Synopsis

function proc_mem_data_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the given process data size (data + stack) in pages, or zero when the process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::mem_page_size — Number of bytes in a page for this architecture

 ⁠Synopsis

function mem_page_size:long()

 ⁠Arguments

					None
				

 ⁠
Name
function::bytes_to_string — Human readable string for given bytes

 ⁠Synopsis

function bytes_to_string:string(bytes:long)

 ⁠Arguments
	bytes
	
								Number of bytes to translate.
							

 ⁠Description

					Returns a string representing the number of bytes (up to 1024 bytes), the number of kilobytes (when less than 1024K) postfixed by 'K', the number of megabytes (when less than 1024M) postfixed by 'M' or the number of gigabytes postfixed by 'G'. If representing K, M or G, and the number is amount is less than 100, it includes a '.' plus the remainer. The returned string will be 5 characters wide (padding with whitespace at the front) unless negative or representing more than 9999G bytes.
				

 ⁠
Name
function::pages_to_string — Turns pages into a human readable string

 ⁠Synopsis

function pages_to_string:string(pages:long)

 ⁠Arguments
	pages
	
								Number of pages to translate.
							

 ⁠Description

					Multiplies pages by page_size to get the number of bytes and returns the result of bytes_to_string.
				

 ⁠
Name
function::proc_mem_string — Human readable string of current proc memory usage

 ⁠Synopsis

function proc_mem_string:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns a human readable string showing the size, rss, shr, txt and data of the memory used by the current process. For example “size: 301m, rss: 11m, shr: 8m, txt: 52k, data: 2248k”.
				

 ⁠
Name
function::proc_mem_string_pid — Human readable string of process memory usage

 ⁠Synopsis

function proc_mem_string_pid:string(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns a human readable string showing the size, rss, shr, txt and data of the memory used by the given process. For example “size: 301m, rss: 11m, shr: 8m, txt: 52k, data: 2248k”.
				

 ⁠
Name
function::vm_fault_contains — Test return value for page fault reason

 ⁠Synopsis

function vm_fault_contains:long(value:long,test:long)

 ⁠Arguments
	value
	
								The fault_type returned by vm.page_fault.return
							

	test
	
								The type of fault to test for (VM_FAULT_OOM or similar)
							

 ⁠
Name
probe::vm.pagefault — Records that a page fault occurred.

 ⁠Synopsis

vm.pagefault

 ⁠Values
	write_access
	
								Indicates whether this was a write or read access; 1 indicates a write, while 0 indicates a read.
							

	name
	
								Name of the probe point
							

	address
	
								The address of the faulting memory access; i.e. the address that caused the page fault.
							

 ⁠Context

					The process which triggered the fault
				

 ⁠
Name
probe::vm.pagefault.return — Indicates what type of fault occurred.

 ⁠Synopsis

vm.pagefault.return

 ⁠Values
	name
	
								Name of the probe point
							

	fault_type
	
								Returns either 0 (VM_FAULT_OOM) for out of memory faults, 2 (VM_FAULT_MINOR) for minor faults, 3 (VM_FAULT_MAJOR) for major faults, or 1 (VM_FAULT_SIGBUS) if the fault was neither OOM, minor fault, nor major fault.
							

 ⁠
Name
function::addr_to_node — Returns which node a given address belongs to within a NUMA system.

 ⁠Synopsis

function addr_to_node:long(addr:long)

 ⁠Arguments
	addr
	
								The address of the faulting memory access.
							

 ⁠General Syntax

					addr_to_node:long(addr:long)
				

 ⁠Description

					This function accepts an address, and returns the node that the given address belongs to in a NUMA system.
				

 ⁠
Name
probe::vm.write_shared — Attempts at writing to a shared page.

 ⁠Synopsis

vm.write_shared

 ⁠Values
	name
	
								Name of the probe point
							

	address
	
								The address of the shared write.
							

 ⁠Context

					The context is the process attempting the write.
				

 ⁠Description

					Fires when a process attempts to write to a shared page. If a copy is necessary, this will be followed by a vm.write_shared_copy.
				

 ⁠
Name
probe::vm.write_shared_copy — Page copy for shared page write.

 ⁠Synopsis

vm.write_shared_copy

 ⁠Values
	name
	
								Name of the probe point
							

	zero
	
								Boolean indicating whether it is a zero page (can do a clear instead of a copy).
							

	address
	
								The address of the shared write.
							

 ⁠Context

					The process attempting the write.
				

 ⁠Description

					Fires when a write to a shared page requires a page copy. This is always preceded by a vm.shared_write.
				

 ⁠
Name
probe::vm.mmap — Fires when an mmap is requested.

 ⁠Synopsis

vm.mmap

 ⁠Values
	length
	
								The length of the memory segment
							

	name
	
								Name of the probe point
							

	address
	
								The requested address
							

 ⁠Context

					The process calling mmap.
				

 ⁠
Name
probe::vm.munmap — Fires when an munmap is requested.

 ⁠Synopsis

vm.munmap

 ⁠Values
	length
	
								The length of the memory segment
							

	name
	
								Name of the probe point
							

	address
	
								The requested address
							

 ⁠Context

					The process calling munmap.
				

 ⁠
Name
probe::vm.brk — Fires when a brk is requested (i.e. the heap will be resized).

 ⁠Synopsis

vm.brk

 ⁠Values
	length
	
								The length of the memory segment
							

	name
	
								Name of the probe point
							

	address
	
								The requested address
							

 ⁠Context

					The process calling brk.
				

 ⁠
Name
probe::vm.oom_kill — Fires when a thread is selected for termination by the OOM killer.

 ⁠Synopsis

vm.oom_kill

 ⁠Values
	name
	
								Name of the probe point
							

	task
	
								The task being killed
							

 ⁠Context

					The process that tried to consume excessive memory, and thus triggered the OOM.
				

 ⁠
Name
probe::vm.kmalloc — Fires when kmalloc is requested.

 ⁠Synopsis

vm.kmalloc

 ⁠Values
	ptr
	
								Pointer to the kmemory allocated
							

	caller_function
	
								Name of the caller function.
							

	call_site
	
								Address of the kmemory function.
							

	gfp_flag_name
	
								type of kmemory to allocate (in String format)
							

	name
	
								Name of the probe point
							

	bytes_req
	
								Requested Bytes
							

	bytes_alloc
	
								Allocated Bytes
							

	gfp_flags
	
								type of kmemory to allocate
							

 ⁠
Name
probe::vm.kmem_cache_alloc — Fires when \

 ⁠Synopsis

vm.kmem_cache_alloc

 ⁠Values
	ptr
	
								Pointer to the kmemory allocated
							

	caller_function
	
								Name of the caller function.
							

	call_site
	
								Address of the function calling this kmemory function.
							

	gfp_flag_name
	
								Type of kmemory to allocate(in string format)
							

	name
	
								Name of the probe point
							

	bytes_req
	
								Requested Bytes
							

	bytes_alloc
	
								Allocated Bytes
							

	gfp_flags
	
								type of kmemory to allocate
							

 ⁠Description

					kmem_cache_alloc is requested.
				

 ⁠
Name
probe::vm.kmalloc_node — Fires when kmalloc_node is requested.

 ⁠Synopsis

vm.kmalloc_node

 ⁠Values
	ptr
	
								Pointer to the kmemory allocated
							

	caller_function
	
								Name of the caller function.
							

	call_site
	
								Address of the function caling this kmemory function.
							

	gfp_flag_name
	
								Type of kmemory to allocate(in string format)
							

	name
	
								Name of the probe point
							

	bytes_req
	
								Requested Bytes
							

	bytes_alloc
	
								Allocated Bytes
							

	gfp_flags
	
								type of kmemory to allocate
							

 ⁠
Name
probe::vm.kmem_cache_alloc_node — Fires when \

 ⁠Synopsis

vm.kmem_cache_alloc_node

 ⁠Values
	ptr
	
								Pointer to the kmemory allocated
							

	caller_function
	
								Name of the caller function.
							

	call_site
	
								Address of the function calling this kmemory function.
							

	gfp_flag_name
	
								Type of kmemory to allocate(in string format)
							

	name
	
								Name of the probe point
							

	bytes_req
	
								Requested Bytes
							

	bytes_alloc
	
								Allocated Bytes
							

	gfp_flags
	
								type of kmemory to allocate
							

 ⁠Description

					kmem_cache_alloc_node is requested.
				

 ⁠
Name
probe::vm.kfree — Fires when kfree is requested.

 ⁠Synopsis

vm.kfree

 ⁠Values
	ptr
	
								Pointer to the kmemory allocated which is returned by kmalloc
							

	caller_function
	
								Name of the caller function.
							

	call_site
	
								Address of the function calling this kmemory function.
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::vm.kmem_cache_free — Fires when \

 ⁠Synopsis

vm.kmem_cache_free

 ⁠Values
	ptr
	
								Pointer to the kmemory allocated which is returned by kmem_cache
							

	caller_function
	
								Name of the caller function.
							

	call_site
	
								Address of the function calling this kmemory function.
							

	name
	
								Name of the probe point
							

 ⁠Description

					kmem_cache_free is requested.
				

 ⁠
Name
function::proc_mem_size — Total program virtual memory size in pages

 ⁠Synopsis

function proc_mem_size:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the total virtual memory size in pages of the current process, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_size_pid — Total program virtual memory size in pages

 ⁠Synopsis

function proc_mem_size_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the total virtual memory size in pages of the given process, or zero when that process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_rss — Program resident set size in pages

 ⁠Synopsis

function proc_mem_rss:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the resident set size in pages of the current process, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_rss_pid — Program resident set size in pages

 ⁠Synopsis

function proc_mem_rss_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the resident set size in pages of the given process, or zero when the process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_shr — Program shared pages (from shared mappings)

 ⁠Synopsis

function proc_mem_shr:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the shared pages (from shared mappings) of the current process, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_shr_pid — Program shared pages (from shared mappings)

 ⁠Synopsis

function proc_mem_shr_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the shared pages (from shared mappings) of the given process, or zero when the process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_txt — Program text (code) size in pages

 ⁠Synopsis

function proc_mem_txt:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the current process text (code) size in pages, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_txt_pid — Program text (code) size in pages

 ⁠Synopsis

function proc_mem_txt_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the given process text (code) size in pages, or zero when the process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_data — Program data size (data + stack) in pages

 ⁠Synopsis

function proc_mem_data:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the current process data size (data + stack) in pages, or zero when there is no current process or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::proc_mem_data_pid — Program data size (data + stack) in pages

 ⁠Synopsis

function proc_mem_data_pid:long(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns the given process data size (data + stack) in pages, or zero when the process doesn't exist or the number of pages couldn't be retrieved.
				

 ⁠
Name
function::mem_page_size — Number of bytes in a page for this architecture

 ⁠Synopsis

function mem_page_size:long()

 ⁠Arguments

					None
				

 ⁠
Name
function::bytes_to_string — Human readable string for given bytes

 ⁠Synopsis

function bytes_to_string:string(bytes:long)

 ⁠Arguments
	bytes
	
								Number of bytes to translate.
							

 ⁠Description

					Returns a string representing the number of bytes (up to 1024 bytes), the number of kilobytes (when less than 1024K) postfixed by 'K', the number of megabytes (when less than 1024M) postfixed by 'M' or the number of gigabytes postfixed by 'G'. If representing K, M or G, and the number is amount is less than 100, it includes a '.' plus the remainer. The returned string will be 5 characters wide (padding with whitespace at the front) unless negative or representing more than 9999G bytes.
				

 ⁠
Name
function::pages_to_string — Turns pages into a human readable string

 ⁠Synopsis

function pages_to_string:string(pages:long)

 ⁠Arguments
	pages
	
								Number of pages to translate.
							

 ⁠Description

					Multiplies pages by page_size to get the number of bytes and returns the result of bytes_to_string.
				

 ⁠
Name
function::proc_mem_string — Human readable string of current proc memory usage

 ⁠Synopsis

function proc_mem_string:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns a human readable string showing the size, rss, shr, txt and data of the memory used by the current process. For example “size: 301m, rss: 11m, shr: 8m, txt: 52k, data: 2248k”.
				

 ⁠
Name
function::proc_mem_string_pid — Human readable string of process memory usage

 ⁠Synopsis

function proc_mem_string_pid:string(pid:long)

 ⁠Arguments
	pid
	
								The pid of process to examine
							

 ⁠Description

					Returns a human readable string showing the size, rss, shr, txt and data of the memory used by the given process. For example “size: 301m, rss: 11m, shr: 8m, txt: 52k, data: 2248k”.
				

 ⁠Chapter 7. Task Time Tapset

			This tapset defines utility functions to query time related properties of the current tasks, translate those in miliseconds and human readable strings.
		

 ⁠
Name
function::task_utime — User time of the current task

 ⁠Synopsis

function task_utime:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the user time of the current task in cputime. Does not include any time used by other tasks in this process, nor does it include any time of the children of this task.
				

 ⁠
Name
function::task_utime_tid — User time of the given task

 ⁠Synopsis

function task_utime_tid:long(tid:long)

 ⁠Arguments
	tid
	
								Thread id of the given task
							

 ⁠Description

					Returns the user time of the given task in cputime, or zero if the task doesn't exist. Does not include any time used by other tasks in this process, nor does it include any time of the children of this task.
				

 ⁠
Name
function::task_stime — System time of the current task

 ⁠Synopsis

function task_stime:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the system time of the current task in cputime. Does not include any time used by other tasks in this process, nor does it include any time of the children of this task.
				

 ⁠
Name
function::task_stime_tid — System time of the given task

 ⁠Synopsis

function task_stime_tid:long(tid:long)

 ⁠Arguments
	tid
	
								Thread id of the given task
							

 ⁠Description

					Returns the system time of the given task in cputime, or zero if the task doesn't exist. Does not include any time used by other tasks in this process, nor does it include any time of the children of this task.
				

 ⁠
Name
function::cputime_to_msecs — Translates the given cputime into milliseconds

 ⁠Synopsis

function cputime_to_msecs:long(cputime:long)

 ⁠Arguments
	cputime
	
								Time to convert to milliseconds.
							

 ⁠
Name
function::msecs_to_string — Human readable string for given milliseconds

 ⁠Synopsis

function msecs_to_string:string(msecs:long)

 ⁠Arguments
	msecs
	
								Number of milliseconds to translate.
							

 ⁠Description

					Returns a string representing the number of milliseconds as a human readable string consisting of “XmY.ZZZs”, where X is the number of minutes, Y is the number of seconds and ZZZ is the number of milliseconds.
				

 ⁠
Name
function::cputime_to_string — Human readable string for given cputime

 ⁠Synopsis

function cputime_to_string:string(cputime:long)

 ⁠Arguments
	cputime
	
								Time to translate.
							

 ⁠Description

					Equivalent to calling: msec_to_string (cputime_to_msecs (cputime).
				

 ⁠
Name
function::task_time_string — Human readable string of task time usage

 ⁠Synopsis

function task_time_string:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns a human readable string showing the user and system time the current task has used up to now. For example “usr: 0m12.908s, sys: 1m6.851s”.
				

 ⁠
Name
function::task_time_string_tid — Human readable string of task time usage

 ⁠Synopsis

function task_time_string_tid:string(tid:long)

 ⁠Arguments
	tid
	
								Thread id of the given task
							

 ⁠Description

					Returns a human readable string showing the user and system time the given task has used up to now. For example “usr: 0m12.908s, sys: 1m6.851s”.
				

 ⁠
Name
function::task_utime — User time of the current task

 ⁠Synopsis

function task_utime:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the user time of the current task in cputime. Does not include any time used by other tasks in this process, nor does it include any time of the children of this task.
				

 ⁠
Name
function::task_utime_tid — User time of the given task

 ⁠Synopsis

function task_utime_tid:long(tid:long)

 ⁠Arguments
	tid
	
								Thread id of the given task
							

 ⁠Description

					Returns the user time of the given task in cputime, or zero if the task doesn't exist. Does not include any time used by other tasks in this process, nor does it include any time of the children of this task.
				

 ⁠
Name
function::task_stime — System time of the current task

 ⁠Synopsis

function task_stime:long()

 ⁠Arguments

					None
				

 ⁠Description

					Returns the system time of the current task in cputime. Does not include any time used by other tasks in this process, nor does it include any time of the children of this task.
				

 ⁠
Name
function::task_stime_tid — System time of the given task

 ⁠Synopsis

function task_stime_tid:long(tid:long)

 ⁠Arguments
	tid
	
								Thread id of the given task
							

 ⁠Description

					Returns the system time of the given task in cputime, or zero if the task doesn't exist. Does not include any time used by other tasks in this process, nor does it include any time of the children of this task.
				

 ⁠
Name
function::cputime_to_msecs — Translates the given cputime into milliseconds

 ⁠Synopsis

function cputime_to_msecs:long(cputime:long)

 ⁠Arguments
	cputime
	
								Time to convert to milliseconds.
							

 ⁠
Name
function::msecs_to_string — Human readable string for given milliseconds

 ⁠Synopsis

function msecs_to_string:string(msecs:long)

 ⁠Arguments
	msecs
	
								Number of milliseconds to translate.
							

 ⁠Description

					Returns a string representing the number of milliseconds as a human readable string consisting of “XmY.ZZZs”, where X is the number of minutes, Y is the number of seconds and ZZZ is the number of milliseconds.
				

 ⁠
Name
function::cputime_to_string — Human readable string for given cputime

 ⁠Synopsis

function cputime_to_string:string(cputime:long)

 ⁠Arguments
	cputime
	
								Time to translate.
							

 ⁠Description

					Equivalent to calling: msec_to_string (cputime_to_msecs (cputime).
				

 ⁠
Name
function::task_time_string — Human readable string of task time usage

 ⁠Synopsis

function task_time_string:string()

 ⁠Arguments

					None
				

 ⁠Description

					Returns a human readable string showing the user and system time the current task has used up to now. For example “usr: 0m12.908s, sys: 1m6.851s”.
				

 ⁠
Name
function::task_time_string_tid — Human readable string of task time usage

 ⁠Synopsis

function task_time_string_tid:string(tid:long)

 ⁠Arguments
	tid
	
								Thread id of the given task
							

 ⁠Description

					Returns a human readable string showing the user and system time the given task has used up to now. For example “usr: 0m12.908s, sys: 1m6.851s”.
				

 ⁠Chapter 8. IO Scheduler and block IO Tapset

			This family of probe points is used to probe block IO layer and IO scheduler activities. It contains the following probe points:
		

 ⁠
Name
probe::ioscheduler.elv_next_request — Fires when a request is retrieved from the request queue

 ⁠Synopsis

ioscheduler.elv_next_request

 ⁠Values
	name
	
								Name of the probe point
							

	elevator_name
	
								The type of I/O elevator currently enabled
							

 ⁠
Name
probe::ioscheduler.elv_next_request.return — Fires when a request retrieval issues a return signal

 ⁠Synopsis

ioscheduler.elv_next_request.return

 ⁠Values
	disk_major
	
								Disk major number of the request
							

	rq
	
								Address of the request
							

	name
	
								Name of the probe point
							

	disk_minor
	
								Disk minor number of the request
							

	rq_flags
	
								Request flags
							

 ⁠
Name
probe::ioscheduler.elv_completed_request — Fires when a request is completed

 ⁠Synopsis

ioscheduler.elv_completed_request

 ⁠Values
	disk_major
	
								Disk major number of the request
							

	rq
	
								Address of the request
							

	name
	
								Name of the probe point
							

	elevator_name
	
								The type of I/O elevator currently enabled
							

	disk_minor
	
								Disk minor number of the request
							

	rq_flags
	
								Request flags
							

 ⁠
Name
probe::ioscheduler.elv_add_request.kp — kprobe based probe to indicate that a request was added to the request queue

 ⁠Synopsis

ioscheduler.elv_add_request.kp

 ⁠Values
	disk_major
	
								Disk major number of the request
							

	rq
	
								Address of the request
							

	q
	
								pointer to request queue
							

	name
	
								Name of the probe point
							

	elevator_name
	
								The type of I/O elevator currently enabled
							

	disk_minor
	
								Disk minor number of the request
							

	rq_flags
	
								Request flags
							

 ⁠
Name
probe::ioscheduler.elv_add_request.tp — tracepoint based probe to indicate a request is added to the request queue.

 ⁠Synopsis

ioscheduler.elv_add_request.tp

 ⁠Values
	disk_major
	
								Disk major no of request.
							

	rq
	
								Address of request.
							

	q
	
								Pointer to request queue.
							

	name
	
								Name of the probe point
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	disk_minor
	
								Disk minor number of request.
							

	rq_flags
	
								Request flags.
							

 ⁠
Name
probe::ioscheduler.elv_add_request — probe to indicate request is added to the request queue.

 ⁠Synopsis

ioscheduler.elv_add_request

 ⁠Values
	disk_major
	
								Disk major no of request.
							

	rq
	
								Address of request.
							

	q
	
								Pointer to request queue.
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	disk_minor
	
								Disk minor number of request.
							

	rq_flags
	
								Request flags.
							

 ⁠
Name
probe::ioscheduler_trace.elv_completed_request — Fires when a request is

 ⁠Synopsis

ioscheduler_trace.elv_completed_request

 ⁠Values
	disk_major
	
								Disk major no of request.
							

	rq
	
								Address of request.
							

	name
	
								Name of the probe point
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	disk_minor
	
								Disk minor number of request.
							

	rq_flags
	
								Request flags.
							

 ⁠Description

					completed.
				

 ⁠
Name
probe::ioscheduler_trace.elv_issue_request — Fires when a request is

 ⁠Synopsis

ioscheduler_trace.elv_issue_request

 ⁠Values
	disk_major
	
								Disk major no of request.
							

	rq
	
								Address of request.
							

	name
	
								Name of the probe point
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	disk_minor
	
								Disk minor number of request.
							

	rq_flags
	
								Request flags.
							

 ⁠Description

					scheduled.
				

 ⁠
Name
probe::ioscheduler_trace.elv_requeue_request — Fires when a request is

 ⁠Synopsis

ioscheduler_trace.elv_requeue_request

 ⁠Values
	disk_major
	
								Disk major no of request.
							

	rq
	
								Address of request.
							

	name
	
								Name of the probe point
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	disk_minor
	
								Disk minor number of request.
							

	rq_flags
	
								Request flags.
							

 ⁠Description

					put back on the queue, when the hadware cannot accept more requests.
				

 ⁠
Name
probe::ioscheduler_trace.elv_abort_request — Fires when a request is aborted.

 ⁠Synopsis

ioscheduler_trace.elv_abort_request

 ⁠Values
	disk_major
	
								Disk major no of request.
							

	rq
	
								Address of request.
							

	name
	
								Name of the probe point
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	disk_minor
	
								Disk minor number of request.
							

	rq_flags
	
								Request flags.
							

 ⁠
Name
probe::ioscheduler_trace.plug — Fires when a request queue is plugged;

 ⁠Synopsis

ioscheduler_trace.plug

 ⁠Values
	name
	
								Name of the probe point
							

	rq_queue
	
								request queue
							

 ⁠Description

					ie, requests in the queue cannot be serviced by block driver.
				

 ⁠
Name
probe::ioscheduler_trace.unplug_io — Fires when a request queue is unplugged;

 ⁠Synopsis

ioscheduler_trace.unplug_io

 ⁠Values
	name
	
								Name of the probe point
							

	rq_queue
	
								request queue
							

 ⁠Description

					Either, when number of pending requests in the queue exceeds threshold or, upon expiration of timer that was activated when queue was plugged.
				

 ⁠
Name
probe::ioscheduler_trace.unplug_timer — Fires when unplug timer associated

 ⁠Synopsis

ioscheduler_trace.unplug_timer

 ⁠Values
	name
	
								Name of the probe point
							

	rq_queue
	
								request queue
							

 ⁠Description

					with a request queue expires.
				

 ⁠
Name
probe::ioblock.request — Fires whenever making a generic block I/O request.

 ⁠Synopsis

ioblock.request

 ⁠Values

					None
				

 ⁠Description

					name - name of the probe point devname - block device name ino - i-node number of the mapped file sector - beginning sector for the entire bio flags - see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported
				

					rw - binary trace for read/write request vcnt - bio vector count which represents number of array element (page, offset, length) which make up this I/O request idx - offset into the bio vector array phys_segments - number of segments in this bio after physical address coalescing is performed hw_segments - number of segments after physical and DMA remapping hardware coalescing is performed size - total size in bytes bdev - target block device bdev_contains - points to the device object which contains the partition (when bio structure represents a partition) p_start_sect - points to the start sector of the partition structure of the device
				

 ⁠Context

					The process makes block I/O request
				

 ⁠
Name
probe::ioblock.end — Fires whenever a block I/O transfer is complete.

 ⁠Synopsis

ioblock.end

 ⁠Values

					None
				

 ⁠Description

					name - name of the probe point devname - block device name ino - i-node number of the mapped file bytes_done - number of bytes transferred sector - beginning sector for the entire bio flags - see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported error - 0 on success rw - binary trace for read/write request vcnt - bio vector count which represents number of array element (page, offset, length) which makes up this I/O request idx - offset into the bio vector array phys_segments - number of segments in this bio after physical address coalescing is performed. hw_segments - number of segments after physical and DMA remapping hardware coalescing is performed size - total size in bytes
				

 ⁠Context

					The process signals the transfer is done.
				

 ⁠
Name
probe::ioblock_trace.bounce — Fires whenever a buffer bounce is needed for at least one page of a block IO request.

 ⁠Synopsis

ioblock_trace.bounce

 ⁠Values

					None
				

 ⁠Description

					name - name of the probe point q - request queue on which this bio was queued. devname - device for which a buffer bounce was needed. ino - i-node number of the mapped file bytes_done - number of bytes transferred sector - beginning sector for the entire bio flags - see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported rw - binary trace for read/write request vcnt - bio vector count which represents number of array element (page, offset, length) which makes up this I/O request idx - offset into the bio vector array phys_segments - number of segments in this bio after physical address coalescing is performed. size - total size in bytes bdev - target block device bdev_contains - points to the device object which contains the partition (when bio structure represents a partition) p_start_sect - points to the start sector of the partition structure of the device
				

 ⁠Context

					The process creating a block IO request.
				

 ⁠
Name
probe::ioblock_trace.request — Fires just as a generic block I/O request is created for a bio.

 ⁠Synopsis

ioblock_trace.request

 ⁠Values

					None
				

 ⁠Description

					name - name of the probe point q - request queue on which this bio was queued. devname - block device name ino - i-node number of the mapped file bytes_done - number of bytes transferred sector - beginning sector for the entire bio flags - see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported
				

					rw - binary trace for read/write request vcnt - bio vector count which represents number of array element (page, offset, length) which make up this I/O request idx - offset into the bio vector array phys_segments - number of segments in this bio after physical address coalescing is performed. size - total size in bytes bdev - target block device bdev_contains - points to the device object which contains the partition (when bio structure represents a partition) p_start_sect - points to the start sector of the partition structure of the device
				

 ⁠Context

					The process makes block I/O request
				

 ⁠
Name
probe::ioblock_trace.end — Fires whenever a block I/O transfer is complete.

 ⁠Synopsis

ioblock_trace.end

 ⁠Values

					None
				

 ⁠Description

					name - name of the probe point q - request queue on which this bio was queued. devname - block device name ino - i-node number of the mapped file bytes_done - number of bytes transferred sector - beginning sector for the entire bio flags - see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported
				

					rw - binary trace for read/write request vcnt - bio vector count which represents number of array element (page, offset, length) which makes up this I/O request idx - offset into the bio vector array phys_segments - number of segments in this bio after physical address coalescing is performed. size - total size in bytes bdev - target block device bdev_contains - points to the device object which contains the partition (when bio structure represents a partition) p_start_sect - points to the start sector of the partition structure of the device
				

 ⁠Context

					The process signals the transfer is done.
				

 ⁠
Name
probe::ioscheduler.elv_next_request — Fires when a request is retrieved from the request queue

 ⁠Synopsis

ioscheduler.elv_next_request

 ⁠Values
	name
	
								Name of the probe point
							

	elevator_name
	
								The type of I/O elevator currently enabled
							

 ⁠
Name
probe::ioscheduler.elv_next_request.return — Fires when a request retrieval issues a return signal

 ⁠Synopsis

ioscheduler.elv_next_request.return

 ⁠Values
	disk_major
	
								Disk major number of the request
							

	rq
	
								Address of the request
							

	name
	
								Name of the probe point
							

	disk_minor
	
								Disk minor number of the request
							

	rq_flags
	
								Request flags
							

 ⁠
Name
probe::ioscheduler.elv_completed_request — Fires when a request is completed

 ⁠Synopsis

ioscheduler.elv_completed_request

 ⁠Values
	disk_major
	
								Disk major number of the request
							

	rq
	
								Address of the request
							

	name
	
								Name of the probe point
							

	elevator_name
	
								The type of I/O elevator currently enabled
							

	disk_minor
	
								Disk minor number of the request
							

	rq_flags
	
								Request flags
							

 ⁠
Name
probe::ioscheduler.elv_add_request.kp — kprobe based probe to indicate that a request was added to the request queue

 ⁠Synopsis

ioscheduler.elv_add_request.kp

 ⁠Values
	disk_major
	
								Disk major number of the request
							

	rq
	
								Address of the request
							

	q
	
								pointer to request queue
							

	name
	
								Name of the probe point
							

	elevator_name
	
								The type of I/O elevator currently enabled
							

	disk_minor
	
								Disk minor number of the request
							

	rq_flags
	
								Request flags
							

 ⁠
Name
probe::ioscheduler.elv_add_request.tp — tracepoint based probe to indicate a request is added to the request queue.

 ⁠Synopsis

ioscheduler.elv_add_request.tp

 ⁠Values
	disk_major
	
								Disk major no of request.
							

	rq
	
								Address of request.
							

	q
	
								Pointer to request queue.
							

	name
	
								Name of the probe point
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	disk_minor
	
								Disk minor number of request.
							

	rq_flags
	
								Request flags.
							

 ⁠
Name
probe::ioscheduler.elv_add_request — probe to indicate request is added to the request queue.

 ⁠Synopsis

ioscheduler.elv_add_request

 ⁠Values
	disk_major
	
								Disk major no of request.
							

	rq
	
								Address of request.
							

	q
	
								Pointer to request queue.
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	disk_minor
	
								Disk minor number of request.
							

	rq_flags
	
								Request flags.
							

 ⁠
Name
probe::ioscheduler_trace.elv_completed_request — Fires when a request is

 ⁠Synopsis

ioscheduler_trace.elv_completed_request

 ⁠Values
	disk_major
	
								Disk major no of request.
							

	rq
	
								Address of request.
							

	name
	
								Name of the probe point
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	disk_minor
	
								Disk minor number of request.
							

	rq_flags
	
								Request flags.
							

 ⁠Description

					completed.
				

 ⁠
Name
probe::ioscheduler_trace.elv_issue_request — Fires when a request is

 ⁠Synopsis

ioscheduler_trace.elv_issue_request

 ⁠Values
	disk_major
	
								Disk major no of request.
							

	rq
	
								Address of request.
							

	name
	
								Name of the probe point
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	disk_minor
	
								Disk minor number of request.
							

	rq_flags
	
								Request flags.
							

 ⁠Description

					scheduled.
				

 ⁠
Name
probe::ioscheduler_trace.elv_requeue_request — Fires when a request is

 ⁠Synopsis

ioscheduler_trace.elv_requeue_request

 ⁠Values
	disk_major
	
								Disk major no of request.
							

	rq
	
								Address of request.
							

	name
	
								Name of the probe point
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	disk_minor
	
								Disk minor number of request.
							

	rq_flags
	
								Request flags.
							

 ⁠Description

					put back on the queue, when the hadware cannot accept more requests.
				

 ⁠
Name
probe::ioscheduler_trace.elv_abort_request — Fires when a request is aborted.

 ⁠Synopsis

ioscheduler_trace.elv_abort_request

 ⁠Values
	disk_major
	
								Disk major no of request.
							

	rq
	
								Address of request.
							

	name
	
								Name of the probe point
							

	elevator_name
	
								The type of I/O elevator currently enabled.
							

	disk_minor
	
								Disk minor number of request.
							

	rq_flags
	
								Request flags.
							

 ⁠
Name
probe::ioscheduler_trace.plug — Fires when a request queue is plugged;

 ⁠Synopsis

ioscheduler_trace.plug

 ⁠Values
	name
	
								Name of the probe point
							

	rq_queue
	
								request queue
							

 ⁠Description

					ie, requests in the queue cannot be serviced by block driver.
				

 ⁠
Name
probe::ioscheduler_trace.unplug_io — Fires when a request queue is unplugged;

 ⁠Synopsis

ioscheduler_trace.unplug_io

 ⁠Values
	name
	
								Name of the probe point
							

	rq_queue
	
								request queue
							

 ⁠Description

					Either, when number of pending requests in the queue exceeds threshold or, upon expiration of timer that was activated when queue was plugged.
				

 ⁠
Name
probe::ioscheduler_trace.unplug_timer — Fires when unplug timer associated

 ⁠Synopsis

ioscheduler_trace.unplug_timer

 ⁠Values
	name
	
								Name of the probe point
							

	rq_queue
	
								request queue
							

 ⁠Description

					with a request queue expires.
				

 ⁠
Name
probe::ioblock.request — Fires whenever making a generic block I/O request.

 ⁠Synopsis

ioblock.request

 ⁠Values

					None
				

 ⁠Description

					name - name of the probe point devname - block device name ino - i-node number of the mapped file sector - beginning sector for the entire bio flags - see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported
				

					rw - binary trace for read/write request vcnt - bio vector count which represents number of array element (page, offset, length) which make up this I/O request idx - offset into the bio vector array phys_segments - number of segments in this bio after physical address coalescing is performed hw_segments - number of segments after physical and DMA remapping hardware coalescing is performed size - total size in bytes bdev - target block device bdev_contains - points to the device object which contains the partition (when bio structure represents a partition) p_start_sect - points to the start sector of the partition structure of the device
				

 ⁠Context

					The process makes block I/O request
				

 ⁠
Name
probe::ioblock.end — Fires whenever a block I/O transfer is complete.

 ⁠Synopsis

ioblock.end

 ⁠Values

					None
				

 ⁠Description

					name - name of the probe point devname - block device name ino - i-node number of the mapped file bytes_done - number of bytes transferred sector - beginning sector for the entire bio flags - see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported error - 0 on success rw - binary trace for read/write request vcnt - bio vector count which represents number of array element (page, offset, length) which makes up this I/O request idx - offset into the bio vector array phys_segments - number of segments in this bio after physical address coalescing is performed. hw_segments - number of segments after physical and DMA remapping hardware coalescing is performed size - total size in bytes
				

 ⁠Context

					The process signals the transfer is done.
				

 ⁠
Name
probe::ioblock_trace.bounce — Fires whenever a buffer bounce is needed for at least one page of a block IO request.

 ⁠Synopsis

ioblock_trace.bounce

 ⁠Values

					None
				

 ⁠Description

					name - name of the probe point q - request queue on which this bio was queued. devname - device for which a buffer bounce was needed. ino - i-node number of the mapped file bytes_done - number of bytes transferred sector - beginning sector for the entire bio flags - see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported rw - binary trace for read/write request vcnt - bio vector count which represents number of array element (page, offset, length) which makes up this I/O request idx - offset into the bio vector array phys_segments - number of segments in this bio after physical address coalescing is performed. size - total size in bytes bdev - target block device bdev_contains - points to the device object which contains the partition (when bio structure represents a partition) p_start_sect - points to the start sector of the partition structure of the device
				

 ⁠Context

					The process creating a block IO request.
				

 ⁠
Name
probe::ioblock_trace.request — Fires just as a generic block I/O request is created for a bio.

 ⁠Synopsis

ioblock_trace.request

 ⁠Values

					None
				

 ⁠Description

					name - name of the probe point q - request queue on which this bio was queued. devname - block device name ino - i-node number of the mapped file bytes_done - number of bytes transferred sector - beginning sector for the entire bio flags - see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported
				

					rw - binary trace for read/write request vcnt - bio vector count which represents number of array element (page, offset, length) which make up this I/O request idx - offset into the bio vector array phys_segments - number of segments in this bio after physical address coalescing is performed. size - total size in bytes bdev - target block device bdev_contains - points to the device object which contains the partition (when bio structure represents a partition) p_start_sect - points to the start sector of the partition structure of the device
				

 ⁠Context

					The process makes block I/O request
				

 ⁠
Name
probe::ioblock_trace.end — Fires whenever a block I/O transfer is complete.

 ⁠Synopsis

ioblock_trace.end

 ⁠Values

					None
				

 ⁠Description

					name - name of the probe point q - request queue on which this bio was queued. devname - block device name ino - i-node number of the mapped file bytes_done - number of bytes transferred sector - beginning sector for the entire bio flags - see below BIO_UPTODATE 0 ok after I/O completion BIO_RW_BLOCK 1 RW_AHEAD set, and read/write would block BIO_EOF 2 out-out-bounds error BIO_SEG_VALID 3 nr_hw_seg valid BIO_CLONED 4 doesn't own data BIO_BOUNCED 5 bio is a bounce bio BIO_USER_MAPPED 6 contains user pages BIO_EOPNOTSUPP 7 not supported
				

					rw - binary trace for read/write request vcnt - bio vector count which represents number of array element (page, offset, length) which makes up this I/O request idx - offset into the bio vector array phys_segments - number of segments in this bio after physical address coalescing is performed. size - total size in bytes bdev - target block device bdev_contains - points to the device object which contains the partition (when bio structure represents a partition) p_start_sect - points to the start sector of the partition structure of the device
				

 ⁠Context

					The process signals the transfer is done.
				

 ⁠Chapter 9. SCSI Tapset

			This family of probe points is used to probe SCSI activities. It contains the following probe points:
		

 ⁠
Name
probe::scsi.ioentry — Prepares a SCSI mid-layer request

 ⁠Synopsis

scsi.ioentry

 ⁠Values
	disk_major
	
								The major number of the disk (-1 if no information)
							

	device_state_str
	
								The current state of the device, as a string
							

	device_state
	
								The current state of the device
							

	req_addr
	
								The current struct request pointer, as a number
							

	disk_minor
	
								The minor number of the disk (-1 if no information)
							

 ⁠
Name
probe::scsi.iodispatching — SCSI mid-layer dispatched low-level SCSI command

 ⁠Synopsis

scsi.iodispatching

 ⁠Values
	device_state_str
	
								The current state of the device, as a string
							

	dev_id
	
								The scsi device id
							

	channel
	
								The channel number
							

	data_direction
	
								The data_direction specifies whether this command is from/to the device 0 (DMA_BIDIRECTIONAL), 1 (DMA_TO_DEVICE), 2 (DMA_FROM_DEVICE), 3 (DMA_NONE)
							

	lun
	
								The lun number
							

	request_bufflen
	
								The request buffer length
							

	host_no
	
								The host number
							

	device_state
	
								The current state of the device
							

	data_direction_str
	
								Data direction, as a string
							

	req_addr
	
								The current struct request pointer, as a number
							

	request_buffer
	
								The request buffer address
							

 ⁠
Name
probe::scsi.iodone — SCSI command completed by low level driver and enqueued into the done queue.

 ⁠Synopsis

scsi.iodone

 ⁠Values
	device_state_str
	
								The current state of the device, as a string
							

	dev_id
	
								The scsi device id
							

	channel
	
								The channel number
							

	data_direction
	
								The data_direction specifies whether this command is from/to the device.
							

	lun
	
								The lun number
							

	host_no
	
								The host number
							

	data_direction_str
	
								Data direction, as a string
							

	device_state
	
								The current state of the device
							

	scsi_timer_pending
	
								1 if a timer is pending on this request
							

	req_addr
	
								The current struct request pointer, as a number
							

 ⁠
Name
probe::scsi.iocompleted — SCSI mid-layer running the completion processing for block device I/O requests

 ⁠Synopsis

scsi.iocompleted

 ⁠Values
	device_state_str
	
								The current state of the device, as a string
							

	dev_id
	
								The scsi device id
							

	channel
	
								The channel number
							

	data_direction
	
								The data_direction specifies whether this command is from/to the device
							

	lun
	
								The lun number
							

	host_no
	
								The host number
							

	data_direction_str
	
								Data direction, as a string
							

	device_state
	
								The current state of the device
							

	req_addr
	
								The current struct request pointer, as a number
							

	goodbytes
	
								The bytes completed
							

 ⁠
Name
probe::scsi.ioexecute — Create mid-layer SCSI request and wait for the result

 ⁠Synopsis

scsi.ioexecute

 ⁠Values
	retries
	
								Number of times to retry request
							

	device_state_str
	
								The current state of the device, as a string
							

	dev_id
	
								The scsi device id
							

	channel
	
								The channel number
							

	data_direction
	
								The data_direction specifies whether this command is from/to the device.
							

	lun
	
								The lun number
							

	timeout
	
								Request timeout in seconds
							

	request_bufflen
	
								The data buffer buffer length
							

	host_no
	
								The host number
							

	data_direction_str
	
								Data direction, as a string
							

	device_state
	
								The current state of the device
							

	request_buffer
	
								The data buffer address
							

 ⁠
Name
probe::scsi.set_state — Order SCSI device state change

 ⁠Synopsis

scsi.set_state

 ⁠Values
	state_str
	
								The new state of the device, as a string
							

	dev_id
	
								The scsi device id
							

	channel
	
								The channel number
							

	state
	
								The new state of the device
							

	old_state_str
	
								The current state of the device, as a string
							

	lun
	
								The lun number
							

	old_state
	
								The current state of the device
							

	host_no
	
								The host number
							

 ⁠
Name
probe::scsi.ioentry — Prepares a SCSI mid-layer request

 ⁠Synopsis

scsi.ioentry

 ⁠Values
	disk_major
	
								The major number of the disk (-1 if no information)
							

	device_state_str
	
								The current state of the device, as a string
							

	device_state
	
								The current state of the device
							

	req_addr
	
								The current struct request pointer, as a number
							

	disk_minor
	
								The minor number of the disk (-1 if no information)
							

 ⁠
Name
probe::scsi.iodispatching — SCSI mid-layer dispatched low-level SCSI command

 ⁠Synopsis

scsi.iodispatching

 ⁠Values
	device_state_str
	
								The current state of the device, as a string
							

	dev_id
	
								The scsi device id
							

	channel
	
								The channel number
							

	data_direction
	
								The data_direction specifies whether this command is from/to the device 0 (DMA_BIDIRECTIONAL), 1 (DMA_TO_DEVICE), 2 (DMA_FROM_DEVICE), 3 (DMA_NONE)
							

	lun
	
								The lun number
							

	request_bufflen
	
								The request buffer length
							

	host_no
	
								The host number
							

	device_state
	
								The current state of the device
							

	data_direction_str
	
								Data direction, as a string
							

	req_addr
	
								The current struct request pointer, as a number
							

	request_buffer
	
								The request buffer address
							

 ⁠
Name
probe::scsi.iodone — SCSI command completed by low level driver and enqueued into the done queue.

 ⁠Synopsis

scsi.iodone

 ⁠Values
	device_state_str
	
								The current state of the device, as a string
							

	dev_id
	
								The scsi device id
							

	channel
	
								The channel number
							

	data_direction
	
								The data_direction specifies whether this command is from/to the device.
							

	lun
	
								The lun number
							

	host_no
	
								The host number
							

	data_direction_str
	
								Data direction, as a string
							

	device_state
	
								The current state of the device
							

	scsi_timer_pending
	
								1 if a timer is pending on this request
							

	req_addr
	
								The current struct request pointer, as a number
							

 ⁠
Name
probe::scsi.iocompleted — SCSI mid-layer running the completion processing for block device I/O requests

 ⁠Synopsis

scsi.iocompleted

 ⁠Values
	device_state_str
	
								The current state of the device, as a string
							

	dev_id
	
								The scsi device id
							

	channel
	
								The channel number
							

	data_direction
	
								The data_direction specifies whether this command is from/to the device
							

	lun
	
								The lun number
							

	host_no
	
								The host number
							

	data_direction_str
	
								Data direction, as a string
							

	device_state
	
								The current state of the device
							

	req_addr
	
								The current struct request pointer, as a number
							

	goodbytes
	
								The bytes completed
							

 ⁠
Name
probe::scsi.ioexecute — Create mid-layer SCSI request and wait for the result

 ⁠Synopsis

scsi.ioexecute

 ⁠Values
	retries
	
								Number of times to retry request
							

	device_state_str
	
								The current state of the device, as a string
							

	dev_id
	
								The scsi device id
							

	channel
	
								The channel number
							

	data_direction
	
								The data_direction specifies whether this command is from/to the device.
							

	lun
	
								The lun number
							

	timeout
	
								Request timeout in seconds
							

	request_bufflen
	
								The data buffer buffer length
							

	host_no
	
								The host number
							

	data_direction_str
	
								Data direction, as a string
							

	device_state
	
								The current state of the device
							

	request_buffer
	
								The data buffer address
							

 ⁠
Name
probe::scsi.set_state — Order SCSI device state change

 ⁠Synopsis

scsi.set_state

 ⁠Values
	state_str
	
								The new state of the device, as a string
							

	dev_id
	
								The scsi device id
							

	channel
	
								The channel number
							

	state
	
								The new state of the device
							

	old_state_str
	
								The current state of the device, as a string
							

	lun
	
								The lun number
							

	old_state
	
								The current state of the device
							

	host_no
	
								The host number
							

 ⁠Chapter 10. TTY Tapset

			This family of probe points is used to probe TTY (Teletype) activities. It contains the following probe points:
		

 ⁠
Name
probe::tty.open — Called when a tty is opened

 ⁠Synopsis

tty.open

 ⁠Values
	inode_state
	
								the inode state
							

	file_name
	
								the file name
							

	file_mode
	
								the file mode
							

	file_flags
	
								the file flags
							

	inode_number
	
								the inode number
							

	inode_flags
	
								the inode flags
							

 ⁠
Name
probe::tty.release — Called when the tty is closed

 ⁠Synopsis

tty.release

 ⁠Values
	inode_state
	
								the inode state
							

	file_name
	
								the file name
							

	file_mode
	
								the file mode
							

	file_flags
	
								the file flags
							

	inode_number
	
								the inode number
							

	inode_flags
	
								the inode flags
							

 ⁠
Name
probe::tty.resize — Called when a terminal resize happens

 ⁠Synopsis

tty.resize

 ⁠Values
	new_ypixel
	
								the new ypixel value
							

	old_col
	
								the old col value
							

	old_xpixel
	
								the old xpixel
							

	old_ypixel
	
								the old ypixel
							

	name
	
								the tty name
							

	old_row
	
								the old row value
							

	new_row
	
								the new row value
							

	new_xpixel
	
								the new xpixel value
							

	new_col
	
								the new col value
							

 ⁠
Name
probe::tty.ioctl — called when a ioctl is request to the tty

 ⁠Synopsis

tty.ioctl

 ⁠Values
	cmd
	
								the ioctl command
							

	arg
	
								the ioctl argument
							

	name
	
								the file name
							

 ⁠
Name
probe::tty.init — Called when a tty is being initalized

 ⁠Synopsis

tty.init

 ⁠Values
	driver_name
	
								the driver name
							

	name
	
								the driver .dev_name name
							

	module
	
								the module name
							

 ⁠
Name
probe::tty.register — Called when a tty device is registred

 ⁠Synopsis

tty.register

 ⁠Values
	driver_name
	
								the driver name
							

	name
	
								the driver .dev_name name
							

	index
	
								the tty index requested
							

	module
	
								the module name
							

 ⁠
Name
probe::tty.unregister — Called when a tty device is being unregistered

 ⁠Synopsis

tty.unregister

 ⁠Values
	driver_name
	
								the driver name
							

	name
	
								the driver .dev_name name
							

	index
	
								the tty index requested
							

	module
	
								the module name
							

 ⁠
Name
probe::tty.poll — Called when a tty device is being polled

 ⁠Synopsis

tty.poll

 ⁠Values
	file_name
	
								the tty file name
							

	wait_key
	
								the wait queue key
							

 ⁠
Name
probe::tty.receive — called when a tty receives a message

 ⁠Synopsis

tty.receive

 ⁠Values
	driver_name
	
								the driver name
							

	count
	
								The amount of characters received
							

	name
	
								the name of the module file
							

	fp
	
								The flag buffer
							

	cp
	
								the buffer that was received
							

	index
	
								The tty Index
							

	id
	
								the tty id
							

 ⁠
Name
probe::tty.write — write to the tty line

 ⁠Synopsis

tty.write

 ⁠Values
	driver_name
	
								the driver name
							

	buffer
	
								the buffer that will be written
							

	file_name
	
								the file name lreated to the tty
							

	nr
	
								The amount of characters
							

 ⁠
Name
probe::tty.read — called when a tty line will be read

 ⁠Synopsis

tty.read

 ⁠Values
	driver_name
	
								the driver name
							

	buffer
	
								the buffer that will receive the characters
							

	file_name
	
								the file name lreated to the tty
							

	nr
	
								The amount of characters to be read
							

 ⁠
Name
probe::tty.open — Called when a tty is opened

 ⁠Synopsis

tty.open

 ⁠Values
	inode_state
	
								the inode state
							

	file_name
	
								the file name
							

	file_mode
	
								the file mode
							

	file_flags
	
								the file flags
							

	inode_number
	
								the inode number
							

	inode_flags
	
								the inode flags
							

 ⁠
Name
probe::tty.release — Called when the tty is closed

 ⁠Synopsis

tty.release

 ⁠Values
	inode_state
	
								the inode state
							

	file_name
	
								the file name
							

	file_mode
	
								the file mode
							

	file_flags
	
								the file flags
							

	inode_number
	
								the inode number
							

	inode_flags
	
								the inode flags
							

 ⁠
Name
probe::tty.resize — Called when a terminal resize happens

 ⁠Synopsis

tty.resize

 ⁠Values
	new_ypixel
	
								the new ypixel value
							

	old_col
	
								the old col value
							

	old_xpixel
	
								the old xpixel
							

	old_ypixel
	
								the old ypixel
							

	name
	
								the tty name
							

	old_row
	
								the old row value
							

	new_row
	
								the new row value
							

	new_xpixel
	
								the new xpixel value
							

	new_col
	
								the new col value
							

 ⁠
Name
probe::tty.ioctl — called when a ioctl is request to the tty

 ⁠Synopsis

tty.ioctl

 ⁠Values
	cmd
	
								the ioctl command
							

	arg
	
								the ioctl argument
							

	name
	
								the file name
							

 ⁠
Name
probe::tty.init — Called when a tty is being initalized

 ⁠Synopsis

tty.init

 ⁠Values
	driver_name
	
								the driver name
							

	name
	
								the driver .dev_name name
							

	module
	
								the module name
							

 ⁠
Name
probe::tty.register — Called when a tty device is registred

 ⁠Synopsis

tty.register

 ⁠Values
	driver_name
	
								the driver name
							

	name
	
								the driver .dev_name name
							

	index
	
								the tty index requested
							

	module
	
								the module name
							

 ⁠
Name
probe::tty.unregister — Called when a tty device is being unregistered

 ⁠Synopsis

tty.unregister

 ⁠Values
	driver_name
	
								the driver name
							

	name
	
								the driver .dev_name name
							

	index
	
								the tty index requested
							

	module
	
								the module name
							

 ⁠
Name
probe::tty.poll — Called when a tty device is being polled

 ⁠Synopsis

tty.poll

 ⁠Values
	file_name
	
								the tty file name
							

	wait_key
	
								the wait queue key
							

 ⁠
Name
probe::tty.receive — called when a tty receives a message

 ⁠Synopsis

tty.receive

 ⁠Values
	driver_name
	
								the driver name
							

	count
	
								The amount of characters received
							

	name
	
								the name of the module file
							

	fp
	
								The flag buffer
							

	cp
	
								the buffer that was received
							

	index
	
								The tty Index
							

	id
	
								the tty id
							

 ⁠
Name
probe::tty.write — write to the tty line

 ⁠Synopsis

tty.write

 ⁠Values
	driver_name
	
								the driver name
							

	buffer
	
								the buffer that will be written
							

	file_name
	
								the file name lreated to the tty
							

	nr
	
								The amount of characters
							

 ⁠
Name
probe::tty.read — called when a tty line will be read

 ⁠Synopsis

tty.read

 ⁠Values
	driver_name
	
								the driver name
							

	buffer
	
								the buffer that will receive the characters
							

	file_name
	
								the file name lreated to the tty
							

	nr
	
								The amount of characters to be read
							

 ⁠Chapter 11. Networking Tapset

			This family of probe points is used to probe the activities of the network device and protocol layers.
		

 ⁠
Name
probe::netdev.receive — Data received from network device.

 ⁠Synopsis

netdev.receive

 ⁠Values
	protocol
	
								Protocol of received packet.
							

	dev_name
	
								The name of the device. e.g: eth0, ath1.
							

	length
	
								The length of the receiving buffer.
							

 ⁠
Name
probe::netdev.transmit — Network device transmitting buffer

 ⁠Synopsis

netdev.transmit

 ⁠Values
	protocol
	
								The protocol of this packet(defined in include/linux/if_ether.h).
							

	dev_name
	
								The name of the device. e.g: eth0, ath1.
							

	length
	
								The length of the transmit buffer.
							

	truesize
	
								The size of the data to be transmitted.
							

 ⁠
Name
probe::netdev.change_mtu — Called when the netdev MTU is changed

 ⁠Synopsis

netdev.change_mtu

 ⁠Values
	dev_name
	
								The device that will have the MTU changed
							

	new_mtu
	
								The new MTU
							

	old_mtu
	
								The current MTU
							

 ⁠
Name
probe::netdev.open — Called when the device is opened

 ⁠Synopsis

netdev.open

 ⁠Values
	dev_name
	
								The device that is going to be opened
							

 ⁠
Name
probe::netdev.close — Called when the device is closed

 ⁠Synopsis

netdev.close

 ⁠Values
	dev_name
	
								The device that is going to be closed
							

 ⁠
Name
probe::netdev.hard_transmit — Called when the devices is going to TX (hard)

 ⁠Synopsis

netdev.hard_transmit

 ⁠Values
	protocol
	
								The protocol used in the transmission
							

	dev_name
	
								The device scheduled to transmit
							

	length
	
								The length of the transmit buffer.
							

	truesize
	
								The size of the data to be transmitted.
							

 ⁠
Name
probe::netdev.rx — Called when the device is going to receive a packet

 ⁠Synopsis

netdev.rx

 ⁠Values
	protocol
	
								The packet protocol
							

	dev_name
	
								The device received the packet
							

 ⁠
Name
probe::netdev.change_rx_flag — Called when the device RX flag will be changed

 ⁠Synopsis

netdev.change_rx_flag

 ⁠Values
	dev_name
	
								The device that will be changed
							

	flags
	
								The new flags
							

 ⁠
Name
probe::netdev.set_promiscuity — Called when the device enters/leaves promiscuity

 ⁠Synopsis

netdev.set_promiscuity

 ⁠Values
	dev_name
	
								The device that is entering/leaving promiscuity mode
							

	enable
	
								If the device is entering promiscuity mode
							

	inc
	
								Count the number of promiscuity openers
							

	disable
	
								If the device is leaving promiscuity mode
							

 ⁠
Name
probe::netdev.ioctl — Called when the device suffers an IOCTL

 ⁠Synopsis

netdev.ioctl

 ⁠Values
	cmd
	
								The IOCTL request
							

	arg
	
								The IOCTL argument (usually the netdev interface)
							

 ⁠
Name
probe::netdev.register — Called when the device is registered

 ⁠Synopsis

netdev.register

 ⁠Values
	dev_name
	
								The device that is going to be registered
							

 ⁠
Name
probe::netdev.unregister — Called when the device is being unregistered

 ⁠Synopsis

netdev.unregister

 ⁠Values
	dev_name
	
								The device that is going to be unregistered
							

 ⁠
Name
probe::netdev.get_stats — Called when someone asks the device statistics

 ⁠Synopsis

netdev.get_stats

 ⁠Values
	dev_name
	
								The device that is going to provide the statistics
							

 ⁠
Name
probe::netdev.change_mac — Called when the netdev_name has the MAC changed

 ⁠Synopsis

netdev.change_mac

 ⁠Values
	dev_name
	
								The device that will have the MTU changed
							

	new_mac
	
								The new MAC address
							

	mac_len
	
								The MAC length
							

	old_mac
	
								The current MAC address
							

 ⁠
Name
probe::tcp.sendmsg — Sending a tcp message

 ⁠Synopsis

tcp.sendmsg

 ⁠Values
	name
	
								Name of this probe
							

	size
	
								Number of bytes to send
							

	sock
	
								Network socket
							

 ⁠Context

					The process which sends a tcp message
				

 ⁠
Name
probe::tcp.sendmsg.return — Sending TCP message is done

 ⁠Synopsis

tcp.sendmsg.return

 ⁠Values
	name
	
								Name of this probe
							

	size
	
								Number of bytes sent or error code if an error occurred.
							

 ⁠Context

					The process which sends a tcp message
				

 ⁠
Name
probe::tcp.recvmsg — Receiving TCP message

 ⁠Synopsis

tcp.recvmsg

 ⁠Values
	saddr
	
								A string representing the source IP address
							

	daddr
	
								A string representing the destination IP address
							

	name
	
								Name of this probe
							

	sport
	
								TCP source port
							

	dport
	
								TCP destination port
							

	size
	
								Number of bytes to be received
							

	sock
	
								Network socket
							

 ⁠Context

					The process which receives a tcp message
				

 ⁠
Name
probe::tcp.recvmsg.return — Receiving TCP message complete

 ⁠Synopsis

tcp.recvmsg.return

 ⁠Values
	saddr
	
								A string representing the source IP address
							

	daddr
	
								A string representing the destination IP address
							

	name
	
								Name of this probe
							

	sport
	
								TCP source port
							

	dport
	
								TCP destination port
							

	size
	
								Number of bytes received or error code if an error occurred.
							

 ⁠Context

					The process which receives a tcp message
				

 ⁠
Name
probe::tcp.disconnect — TCP socket disconnection

 ⁠Synopsis

tcp.disconnect

 ⁠Values
	saddr
	
								A string representing the source IP address
							

	daddr
	
								A string representing the destination IP address
							

	flags
	
								TCP flags (e.g. FIN, etc)
							

	name
	
								Name of this probe
							

	sport
	
								TCP source port
							

	dport
	
								TCP destination port
							

	sock
	
								Network socket
							

 ⁠Context

					The process which disconnects tcp
				

 ⁠
Name
probe::tcp.disconnect.return — TCP socket disconnection complete

 ⁠Synopsis

tcp.disconnect.return

 ⁠Values
	ret
	
								Error code (0: no error)
							

	name
	
								Name of this probe
							

 ⁠Context

					The process which disconnects tcp
				

 ⁠
Name
probe::tcp.setsockopt — Call to setsockopt

 ⁠Synopsis

tcp.setsockopt

 ⁠Values
	optstr
	
								Resolves optname to a human-readable format
							

	level
	
								The level at which the socket options will be manipulated
							

	optlen
	
								Used to access values for setsockopt
							

	name
	
								Name of this probe
							

	optname
	
								TCP socket options (e.g. TCP_NODELAY, TCP_MAXSEG, etc)
							

	sock
	
								Network socket
							

 ⁠Context

					The process which calls setsockopt
				

 ⁠
Name
probe::tcp.setsockopt.return — Return from setsockopt

 ⁠Synopsis

tcp.setsockopt.return

 ⁠Values
	ret
	
								Error code (0: no error)
							

	name
	
								Name of this probe
							

 ⁠Context

					The process which calls setsockopt
				

 ⁠
Name
probe::tcp.receive — Called when a TCP packet is received

 ⁠Synopsis

tcp.receive

 ⁠Values
	urg
	
								TCP URG flag
							

	protocol
	
								Packet protocol from driver
							

	psh
	
								TCP PSH flag
							

	name
	
								Name of the probe point
							

	rst
	
								TCP RST flag
							

	dport
	
								TCP destination port
							

	saddr
	
								A string representing the source IP address
							

	daddr
	
								A string representing the destination IP address
							

	ack
	
								TCP ACK flag
							

	fin
	
								TCP FIN flag
							

	syn
	
								TCP SYN flag
							

	sport
	
								TCP source port
							

	iphdr
	
								IP header address
							

 ⁠
Name
probe::udp.sendmsg — Fires whenever a process sends a UDP message

 ⁠Synopsis

udp.sendmsg

 ⁠Values
	name
	
								The name of this probe
							

	size
	
								Number of bytes sent by the process
							

	sock
	
								Network socket used by the process
							

 ⁠Context

					The process which sent a UDP message
				

 ⁠
Name
probe::udp.sendmsg.return — Fires whenever an attempt to send a UDP message is completed

 ⁠Synopsis

udp.sendmsg.return

 ⁠Values
	name
	
								The name of this probe
							

	size
	
								Number of bytes sent by the process
							

 ⁠Context

					The process which sent a UDP message
				

 ⁠
Name
probe::udp.recvmsg — Fires whenever a UDP message is received

 ⁠Synopsis

udp.recvmsg

 ⁠Values
	name
	
								The name of this probe
							

	size
	
								Number of bytes received by the process
							

	sock
	
								Network socket used by the process
							

 ⁠Context

					The process which received a UDP message
				

 ⁠
Name
probe::udp.recvmsg.return — Fires whenever an attempt to receive a UDP message received is completed

 ⁠Synopsis

udp.recvmsg.return

 ⁠Values
	name
	
								The name of this probe
							

	size
	
								Number of bytes received by the process
							

 ⁠Context

					The process which received a UDP message
				

 ⁠
Name
probe::udp.disconnect — Fires when a process requests for a UDP disconnection

 ⁠Synopsis

udp.disconnect

 ⁠Values
	flags
	
								Flags (e.g. FIN, etc)
							

	name
	
								The name of this probe
							

	sock
	
								Network socket used by the process
							

 ⁠Context

					The process which requests a UDP disconnection
				

 ⁠
Name
probe::udp.disconnect.return — UDP has been disconnected successfully

 ⁠Synopsis

udp.disconnect.return

 ⁠Values
	ret
	
								Error code (0: no error)
							

	name
	
								The name of this probe
							

 ⁠Context

					The process which requested a UDP disconnection
				

 ⁠
Name
function::ip_ntop — returns a string representation from an integer IP number

 ⁠Synopsis

function ip_ntop:string(addr:long)

 ⁠Arguments
	addr
	
								the ip represented as an integer
							

 ⁠
Name
probe::netdev.receive — Data received from network device.

 ⁠Synopsis

netdev.receive

 ⁠Values
	protocol
	
								Protocol of received packet.
							

	dev_name
	
								The name of the device. e.g: eth0, ath1.
							

	length
	
								The length of the receiving buffer.
							

 ⁠
Name
probe::netdev.transmit — Network device transmitting buffer

 ⁠Synopsis

netdev.transmit

 ⁠Values
	protocol
	
								The protocol of this packet(defined in include/linux/if_ether.h).
							

	dev_name
	
								The name of the device. e.g: eth0, ath1.
							

	length
	
								The length of the transmit buffer.
							

	truesize
	
								The size of the data to be transmitted.
							

 ⁠
Name
probe::netdev.change_mtu — Called when the netdev MTU is changed

 ⁠Synopsis

netdev.change_mtu

 ⁠Values
	dev_name
	
								The device that will have the MTU changed
							

	new_mtu
	
								The new MTU
							

	old_mtu
	
								The current MTU
							

 ⁠
Name
probe::netdev.open — Called when the device is opened

 ⁠Synopsis

netdev.open

 ⁠Values
	dev_name
	
								The device that is going to be opened
							

 ⁠
Name
probe::netdev.close — Called when the device is closed

 ⁠Synopsis

netdev.close

 ⁠Values
	dev_name
	
								The device that is going to be closed
							

 ⁠
Name
probe::netdev.hard_transmit — Called when the devices is going to TX (hard)

 ⁠Synopsis

netdev.hard_transmit

 ⁠Values
	protocol
	
								The protocol used in the transmission
							

	dev_name
	
								The device scheduled to transmit
							

	length
	
								The length of the transmit buffer.
							

	truesize
	
								The size of the data to be transmitted.
							

 ⁠
Name
probe::netdev.rx — Called when the device is going to receive a packet

 ⁠Synopsis

netdev.rx

 ⁠Values
	protocol
	
								The packet protocol
							

	dev_name
	
								The device received the packet
							

 ⁠
Name
probe::netdev.change_rx_flag — Called when the device RX flag will be changed

 ⁠Synopsis

netdev.change_rx_flag

 ⁠Values
	dev_name
	
								The device that will be changed
							

	flags
	
								The new flags
							

 ⁠
Name
probe::netdev.set_promiscuity — Called when the device enters/leaves promiscuity

 ⁠Synopsis

netdev.set_promiscuity

 ⁠Values
	dev_name
	
								The device that is entering/leaving promiscuity mode
							

	enable
	
								If the device is entering promiscuity mode
							

	inc
	
								Count the number of promiscuity openers
							

	disable
	
								If the device is leaving promiscuity mode
							

 ⁠
Name
probe::netdev.ioctl — Called when the device suffers an IOCTL

 ⁠Synopsis

netdev.ioctl

 ⁠Values
	cmd
	
								The IOCTL request
							

	arg
	
								The IOCTL argument (usually the netdev interface)
							

 ⁠
Name
probe::netdev.register — Called when the device is registered

 ⁠Synopsis

netdev.register

 ⁠Values
	dev_name
	
								The device that is going to be registered
							

 ⁠
Name
probe::netdev.unregister — Called when the device is being unregistered

 ⁠Synopsis

netdev.unregister

 ⁠Values
	dev_name
	
								The device that is going to be unregistered
							

 ⁠
Name
probe::netdev.get_stats — Called when someone asks the device statistics

 ⁠Synopsis

netdev.get_stats

 ⁠Values
	dev_name
	
								The device that is going to provide the statistics
							

 ⁠
Name
probe::netdev.change_mac — Called when the netdev_name has the MAC changed

 ⁠Synopsis

netdev.change_mac

 ⁠Values
	dev_name
	
								The device that will have the MTU changed
							

	new_mac
	
								The new MAC address
							

	mac_len
	
								The MAC length
							

	old_mac
	
								The current MAC address
							

 ⁠
Name
probe::tcp.sendmsg — Sending a tcp message

 ⁠Synopsis

tcp.sendmsg

 ⁠Values
	name
	
								Name of this probe
							

	size
	
								Number of bytes to send
							

	sock
	
								Network socket
							

 ⁠Context

					The process which sends a tcp message
				

 ⁠
Name
probe::tcp.sendmsg.return — Sending TCP message is done

 ⁠Synopsis

tcp.sendmsg.return

 ⁠Values
	name
	
								Name of this probe
							

	size
	
								Number of bytes sent or error code if an error occurred.
							

 ⁠Context

					The process which sends a tcp message
				

 ⁠
Name
probe::tcp.recvmsg — Receiving TCP message

 ⁠Synopsis

tcp.recvmsg

 ⁠Values
	saddr
	
								A string representing the source IP address
							

	daddr
	
								A string representing the destination IP address
							

	name
	
								Name of this probe
							

	sport
	
								TCP source port
							

	dport
	
								TCP destination port
							

	size
	
								Number of bytes to be received
							

	sock
	
								Network socket
							

 ⁠Context

					The process which receives a tcp message
				

 ⁠
Name
probe::tcp.recvmsg.return — Receiving TCP message complete

 ⁠Synopsis

tcp.recvmsg.return

 ⁠Values
	saddr
	
								A string representing the source IP address
							

	daddr
	
								A string representing the destination IP address
							

	name
	
								Name of this probe
							

	sport
	
								TCP source port
							

	dport
	
								TCP destination port
							

	size
	
								Number of bytes received or error code if an error occurred.
							

 ⁠Context

					The process which receives a tcp message
				

 ⁠
Name
probe::tcp.disconnect — TCP socket disconnection

 ⁠Synopsis

tcp.disconnect

 ⁠Values
	saddr
	
								A string representing the source IP address
							

	daddr
	
								A string representing the destination IP address
							

	flags
	
								TCP flags (e.g. FIN, etc)
							

	name
	
								Name of this probe
							

	sport
	
								TCP source port
							

	dport
	
								TCP destination port
							

	sock
	
								Network socket
							

 ⁠Context

					The process which disconnects tcp
				

 ⁠
Name
probe::tcp.disconnect.return — TCP socket disconnection complete

 ⁠Synopsis

tcp.disconnect.return

 ⁠Values
	ret
	
								Error code (0: no error)
							

	name
	
								Name of this probe
							

 ⁠Context

					The process which disconnects tcp
				

 ⁠
Name
probe::tcp.setsockopt — Call to setsockopt

 ⁠Synopsis

tcp.setsockopt

 ⁠Values
	optstr
	
								Resolves optname to a human-readable format
							

	level
	
								The level at which the socket options will be manipulated
							

	optlen
	
								Used to access values for setsockopt
							

	name
	
								Name of this probe
							

	optname
	
								TCP socket options (e.g. TCP_NODELAY, TCP_MAXSEG, etc)
							

	sock
	
								Network socket
							

 ⁠Context

					The process which calls setsockopt
				

 ⁠
Name
probe::tcp.setsockopt.return — Return from setsockopt

 ⁠Synopsis

tcp.setsockopt.return

 ⁠Values
	ret
	
								Error code (0: no error)
							

	name
	
								Name of this probe
							

 ⁠Context

					The process which calls setsockopt
				

 ⁠
Name
probe::tcp.receive — Called when a TCP packet is received

 ⁠Synopsis

tcp.receive

 ⁠Values
	urg
	
								TCP URG flag
							

	protocol
	
								Packet protocol from driver
							

	psh
	
								TCP PSH flag
							

	name
	
								Name of the probe point
							

	rst
	
								TCP RST flag
							

	dport
	
								TCP destination port
							

	saddr
	
								A string representing the source IP address
							

	daddr
	
								A string representing the destination IP address
							

	ack
	
								TCP ACK flag
							

	fin
	
								TCP FIN flag
							

	syn
	
								TCP SYN flag
							

	sport
	
								TCP source port
							

	iphdr
	
								IP header address
							

 ⁠
Name
probe::udp.sendmsg — Fires whenever a process sends a UDP message

 ⁠Synopsis

udp.sendmsg

 ⁠Values
	name
	
								The name of this probe
							

	size
	
								Number of bytes sent by the process
							

	sock
	
								Network socket used by the process
							

 ⁠Context

					The process which sent a UDP message
				

 ⁠
Name
probe::udp.sendmsg.return — Fires whenever an attempt to send a UDP message is completed

 ⁠Synopsis

udp.sendmsg.return

 ⁠Values
	name
	
								The name of this probe
							

	size
	
								Number of bytes sent by the process
							

 ⁠Context

					The process which sent a UDP message
				

 ⁠
Name
probe::udp.recvmsg — Fires whenever a UDP message is received

 ⁠Synopsis

udp.recvmsg

 ⁠Values
	name
	
								The name of this probe
							

	size
	
								Number of bytes received by the process
							

	sock
	
								Network socket used by the process
							

 ⁠Context

					The process which received a UDP message
				

 ⁠
Name
probe::udp.recvmsg.return — Fires whenever an attempt to receive a UDP message received is completed

 ⁠Synopsis

udp.recvmsg.return

 ⁠Values
	name
	
								The name of this probe
							

	size
	
								Number of bytes received by the process
							

 ⁠Context

					The process which received a UDP message
				

 ⁠
Name
probe::udp.disconnect — Fires when a process requests for a UDP disconnection

 ⁠Synopsis

udp.disconnect

 ⁠Values
	flags
	
								Flags (e.g. FIN, etc)
							

	name
	
								The name of this probe
							

	sock
	
								Network socket used by the process
							

 ⁠Context

					The process which requests a UDP disconnection
				

 ⁠
Name
probe::udp.disconnect.return — UDP has been disconnected successfully

 ⁠Synopsis

udp.disconnect.return

 ⁠Values
	ret
	
								Error code (0: no error)
							

	name
	
								The name of this probe
							

 ⁠Context

					The process which requested a UDP disconnection
				

 ⁠
Name
function::ip_ntop — returns a string representation from an integer IP number

 ⁠Synopsis

function ip_ntop:string(addr:long)

 ⁠Arguments
	addr
	
								the ip represented as an integer
							

 ⁠Chapter 12. Socket Tapset

			This family of probe points is used to probe socket activities. It contains the following probe points:
		

 ⁠
Name
probe::socket.send — Message sent on a socket.

 ⁠Synopsis

socket.send

 ⁠Values
	success
	
								Was send successful? (1 = yes, 0 = no)
							

	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Size of message sent (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message sender
				

 ⁠
Name
probe::socket.receive — Message received on a socket.

 ⁠Synopsis

socket.receive

 ⁠Values
	success
	
								Was send successful? (1 = yes, 0 = no)
							

	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message receiver
				

 ⁠
Name
probe::socket.sendmsg — Message is currently being sent on a socket.

 ⁠Synopsis

socket.sendmsg

 ⁠Values
	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Message size in bytes
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of sending a message on a socket via the sock_sendmsg function
				

 ⁠
Name
probe::socket.sendmsg.return — Return from socket.sendmsg.

 ⁠Synopsis

socket.sendmsg.return

 ⁠Values
	success
	
								Was send successful? (1 = yes, 0 = no)
							

	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Size of message sent (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message sender.
				

 ⁠Description

					Fires at the conclusion of sending a message on a socket via the sock_sendmsg function
				

 ⁠
Name
probe::socket.recvmsg — Message being received on socket

 ⁠Synopsis

socket.recvmsg

 ⁠Values
	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Message size in bytes
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the beginning of receiving a message on a socket via the sock_recvmsg function
				

 ⁠
Name
probe::socket.recvmsg.return — Return from Message being received on socket

 ⁠Synopsis

socket.recvmsg.return

 ⁠Values
	success
	
								Was receive successful? (1 = yes, 0 = no)
							

	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of receiving a message on a socket via the sock_recvmsg function.
				

 ⁠
Name
probe::socket.aio_write — Message send via sock_aio_write

 ⁠Synopsis

socket.aio_write

 ⁠Values
	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Message size in bytes
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of sending a message on a socket via the sock_aio_write function
				

 ⁠
Name
probe::socket.aio_write.return — Conclusion of message send via sock_aio_write

 ⁠Synopsis

socket.aio_write.return

 ⁠Values
	success
	
								Was receive successful? (1 = yes, 0 = no)
							

	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of sending a message on a socket via the sock_aio_write function
				

 ⁠
Name
probe::socket.aio_read — Receiving message via sock_aio_read

 ⁠Synopsis

socket.aio_read

 ⁠Values
	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Message size in bytes
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of receiving a message on a socket via the sock_aio_read function
				

 ⁠
Name
probe::socket.aio_read.return — Conclusion of message received via sock_aio_read

 ⁠Synopsis

socket.aio_read.return

 ⁠Values
	success
	
								Was receive successful? (1 = yes, 0 = no)
							

	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of receiving a message on a socket via the sock_aio_read function
				

 ⁠
Name
probe::socket.writev — Message sent via socket_writev

 ⁠Synopsis

socket.writev

 ⁠Values
	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Message size in bytes
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of sending a message on a socket via the sock_writev function
				

 ⁠
Name
probe::socket.writev.return — Conclusion of message sent via socket_writev

 ⁠Synopsis

socket.writev.return

 ⁠Values
	success
	
								Was send successful? (1 = yes, 0 = no)
							

	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Size of message sent (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of sending a message on a socket via the sock_writev function
				

 ⁠
Name
probe::socket.readv — Receiving a message via sock_readv

 ⁠Synopsis

socket.readv

 ⁠Values
	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Message size in bytes
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of receiving a message on a socket via the sock_readv function
				

 ⁠
Name
probe::socket.readv.return — Conclusion of receiving a message via sock_readv

 ⁠Synopsis

socket.readv.return

 ⁠Values
	success
	
								Was receive successful? (1 = yes, 0 = no)
							

	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of receiving a message on a socket via the sock_readv function
				

 ⁠
Name
probe::socket.create — Creation of a socket

 ⁠Synopsis

socket.create

 ⁠Values
	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

	requester
	
								Requested by user process or the kernel (1 = kernel, 0 = user)
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The requester (see requester variable)
				

 ⁠Description

					Fires at the beginning of creating a socket.
				

 ⁠
Name
probe::socket.create.return — Return from Creation of a socket

 ⁠Synopsis

socket.create.return

 ⁠Values
	success
	
								Was socket creation successful? (1 = yes, 0 = no)
							

	protocol
	
								Protocol value
							

	err
	
								Error code if success == 0
							

	name
	
								Name of this probe
							

	requester
	
								Requested by user process or the kernel (1 = kernel, 0 = user)
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The requester (user process or kernel)
				

 ⁠Description

					Fires at the conclusion of creating a socket.
				

 ⁠
Name
probe::socket.close — Close a socket

 ⁠Synopsis

socket.close

 ⁠Values
	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The requester (user process or kernel)
				

 ⁠Description

					Fires at the beginning of closing a socket.
				

 ⁠
Name
probe::socket.close.return — Return from closing a socket

 ⁠Synopsis

socket.close.return

 ⁠Values
	name
	
								Name of this probe
							

 ⁠Context

					The requester (user process or kernel)
				

 ⁠Description

					Fires at the conclusion of closing a socket.
				

 ⁠
Name
function::sock_prot_num2str — Given a protocol number, return a string representation.

 ⁠Synopsis

function sock_prot_num2str:string(proto:long)

 ⁠Arguments
	proto
	
								The protocol number.
							

 ⁠
Name
function::sock_prot_str2num — Given a protocol name (string), return the corresponding protocol number.

 ⁠Synopsis

function sock_prot_str2num:long(proto:string)

 ⁠Arguments
	proto
	
								The protocol name.
							

 ⁠
Name
function::sock_fam_num2str — Given a protocol family number, return a string representation.

 ⁠Synopsis

function sock_fam_num2str:string(family:long)

 ⁠Arguments
	family
	
								The family number.
							

 ⁠
Name
function::sock_fam_str2num — Given a protocol family name (string), return the corresponding

 ⁠Synopsis

function sock_fam_str2num:long(family:string)

 ⁠Arguments
	family
	
								The family name.
							

 ⁠Description

					protocol family number.
				

 ⁠
Name
function::sock_state_num2str — Given a socket state number, return a string representation.

 ⁠Synopsis

function sock_state_num2str:string(state:long)

 ⁠Arguments
	state
	
								The state number.
							

 ⁠
Name
function::sock_state_str2num — Given a socket state string, return the corresponding state number.

 ⁠Synopsis

function sock_state_str2num:long(state:string)

 ⁠Arguments
	state
	
								The state name.
							

 ⁠
Name
probe::socket.send — Message sent on a socket.

 ⁠Synopsis

socket.send

 ⁠Values
	success
	
								Was send successful? (1 = yes, 0 = no)
							

	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Size of message sent (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message sender
				

 ⁠
Name
probe::socket.receive — Message received on a socket.

 ⁠Synopsis

socket.receive

 ⁠Values
	success
	
								Was send successful? (1 = yes, 0 = no)
							

	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message receiver
				

 ⁠
Name
probe::socket.sendmsg — Message is currently being sent on a socket.

 ⁠Synopsis

socket.sendmsg

 ⁠Values
	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Message size in bytes
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of sending a message on a socket via the sock_sendmsg function
				

 ⁠
Name
probe::socket.sendmsg.return — Return from socket.sendmsg.

 ⁠Synopsis

socket.sendmsg.return

 ⁠Values
	success
	
								Was send successful? (1 = yes, 0 = no)
							

	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Size of message sent (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message sender.
				

 ⁠Description

					Fires at the conclusion of sending a message on a socket via the sock_sendmsg function
				

 ⁠
Name
probe::socket.recvmsg — Message being received on socket

 ⁠Synopsis

socket.recvmsg

 ⁠Values
	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Message size in bytes
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the beginning of receiving a message on a socket via the sock_recvmsg function
				

 ⁠
Name
probe::socket.recvmsg.return — Return from Message being received on socket

 ⁠Synopsis

socket.recvmsg.return

 ⁠Values
	success
	
								Was receive successful? (1 = yes, 0 = no)
							

	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of receiving a message on a socket via the sock_recvmsg function.
				

 ⁠
Name
probe::socket.aio_write — Message send via sock_aio_write

 ⁠Synopsis

socket.aio_write

 ⁠Values
	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Message size in bytes
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of sending a message on a socket via the sock_aio_write function
				

 ⁠
Name
probe::socket.aio_write.return — Conclusion of message send via sock_aio_write

 ⁠Synopsis

socket.aio_write.return

 ⁠Values
	success
	
								Was receive successful? (1 = yes, 0 = no)
							

	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of sending a message on a socket via the sock_aio_write function
				

 ⁠
Name
probe::socket.aio_read — Receiving message via sock_aio_read

 ⁠Synopsis

socket.aio_read

 ⁠Values
	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Message size in bytes
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of receiving a message on a socket via the sock_aio_read function
				

 ⁠
Name
probe::socket.aio_read.return — Conclusion of message received via sock_aio_read

 ⁠Synopsis

socket.aio_read.return

 ⁠Values
	success
	
								Was receive successful? (1 = yes, 0 = no)
							

	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of receiving a message on a socket via the sock_aio_read function
				

 ⁠
Name
probe::socket.writev — Message sent via socket_writev

 ⁠Synopsis

socket.writev

 ⁠Values
	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Message size in bytes
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of sending a message on a socket via the sock_writev function
				

 ⁠
Name
probe::socket.writev.return — Conclusion of message sent via socket_writev

 ⁠Synopsis

socket.writev.return

 ⁠Values
	success
	
								Was send successful? (1 = yes, 0 = no)
							

	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Size of message sent (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of sending a message on a socket via the sock_writev function
				

 ⁠
Name
probe::socket.readv — Receiving a message via sock_readv

 ⁠Synopsis

socket.readv

 ⁠Values
	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Message size in bytes
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message sender
				

 ⁠Description

					Fires at the beginning of receiving a message on a socket via the sock_readv function
				

 ⁠
Name
probe::socket.readv.return — Conclusion of receiving a message via sock_readv

 ⁠Synopsis

socket.readv.return

 ⁠Values
	success
	
								Was receive successful? (1 = yes, 0 = no)
							

	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	size
	
								Size of message received (in bytes) or error code if success = 0
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The message receiver.
				

 ⁠Description

					Fires at the conclusion of receiving a message on a socket via the sock_readv function
				

 ⁠
Name
probe::socket.create — Creation of a socket

 ⁠Synopsis

socket.create

 ⁠Values
	protocol
	
								Protocol value
							

	name
	
								Name of this probe
							

	requester
	
								Requested by user process or the kernel (1 = kernel, 0 = user)
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The requester (see requester variable)
				

 ⁠Description

					Fires at the beginning of creating a socket.
				

 ⁠
Name
probe::socket.create.return — Return from Creation of a socket

 ⁠Synopsis

socket.create.return

 ⁠Values
	success
	
								Was socket creation successful? (1 = yes, 0 = no)
							

	protocol
	
								Protocol value
							

	err
	
								Error code if success == 0
							

	name
	
								Name of this probe
							

	requester
	
								Requested by user process or the kernel (1 = kernel, 0 = user)
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The requester (user process or kernel)
				

 ⁠Description

					Fires at the conclusion of creating a socket.
				

 ⁠
Name
probe::socket.close — Close a socket

 ⁠Synopsis

socket.close

 ⁠Values
	protocol
	
								Protocol value
							

	flags
	
								Socket flags value
							

	name
	
								Name of this probe
							

	state
	
								Socket state value
							

	type
	
								Socket type value
							

	family
	
								Protocol family value
							

 ⁠Context

					The requester (user process or kernel)
				

 ⁠Description

					Fires at the beginning of closing a socket.
				

 ⁠
Name
probe::socket.close.return — Return from closing a socket

 ⁠Synopsis

socket.close.return

 ⁠Values
	name
	
								Name of this probe
							

 ⁠Context

					The requester (user process or kernel)
				

 ⁠Description

					Fires at the conclusion of closing a socket.
				

 ⁠
Name
function::sock_prot_num2str — Given a protocol number, return a string representation.

 ⁠Synopsis

function sock_prot_num2str:string(proto:long)

 ⁠Arguments
	proto
	
								The protocol number.
							

 ⁠
Name
function::sock_prot_str2num — Given a protocol name (string), return the corresponding protocol number.

 ⁠Synopsis

function sock_prot_str2num:long(proto:string)

 ⁠Arguments
	proto
	
								The protocol name.
							

 ⁠
Name
function::sock_fam_num2str — Given a protocol family number, return a string representation.

 ⁠Synopsis

function sock_fam_num2str:string(family:long)

 ⁠Arguments
	family
	
								The family number.
							

 ⁠
Name
function::sock_fam_str2num — Given a protocol family name (string), return the corresponding

 ⁠Synopsis

function sock_fam_str2num:long(family:string)

 ⁠Arguments
	family
	
								The family name.
							

 ⁠Description

					protocol family number.
				

 ⁠
Name
function::sock_state_num2str — Given a socket state number, return a string representation.

 ⁠Synopsis

function sock_state_num2str:string(state:long)

 ⁠Arguments
	state
	
								The state number.
							

 ⁠
Name
function::sock_state_str2num — Given a socket state string, return the corresponding state number.

 ⁠Synopsis

function sock_state_str2num:long(state:string)

 ⁠Arguments
	state
	
								The state name.
							

 ⁠Chapter 13. Kernel Process Tapset

			This family of probe points is used to probe process-related activities. It contains the following probe points:
		

 ⁠
Name
probe::kprocess.create — Fires whenever a new process is successfully created

 ⁠Synopsis

kprocess.create

 ⁠Values
	new_pid
	
								The PID of the newly created process
							

 ⁠Context

					Parent of the created process.
				

 ⁠Description

					Fires whenever a new process is successfully created, either as a result of fork (or one of its syscall variants), or a new kernel thread.
				

 ⁠
Name
probe::kprocess.start — Starting new process

 ⁠Synopsis

kprocess.start

 ⁠Values

					None
				

 ⁠Context

					Newly created process.
				

 ⁠Description

					Fires immediately before a new process begins execution.
				

 ⁠
Name
probe::kprocess.exec — Attempt to exec to a new program

 ⁠Synopsis

kprocess.exec

 ⁠Values
	filename
	
								The path to the new executable
							

 ⁠Context

					The caller of exec.
				

 ⁠Description

					Fires whenever a process attempts to exec to a new program.
				

 ⁠
Name
probe::kprocess.exec_complete — Return from exec to a new program

 ⁠Synopsis

kprocess.exec_complete

 ⁠Values
	success
	
								A boolean indicating whether the exec was successful
							

	errno
	
								The error number resulting from the exec
							

 ⁠Context

					On success, the context of the new executable. On failure, remains in the context of the caller.
				

 ⁠Description

					Fires at the completion of an exec call.
				

 ⁠
Name
probe::kprocess.exit — Exit from process

 ⁠Synopsis

kprocess.exit

 ⁠Values
	code
	
								The exit code of the process
							

 ⁠Context

					The process which is terminating.
				

 ⁠Description

					Fires when a process terminates. This will always be followed by a kprocess.release, though the latter may be delayed if the process waits in a zombie state.
				

 ⁠
Name
probe::kprocess.release — Process released

 ⁠Synopsis

kprocess.release

 ⁠Values
	pid
	
								PID of the process being released
							

	task
	
								A task handle to the process being released
							

 ⁠Context

					The context of the parent, if it wanted notification of this process' termination, else the context of the process itself.
				

 ⁠Description

					Fires when a process is released from the kernel. This always follows a kprocess.exit, though it may be delayed somewhat if the process waits in a zombie state.
				

 ⁠
Name
probe::kprocess.create — Fires whenever a new process is successfully created

 ⁠Synopsis

kprocess.create

 ⁠Values
	new_pid
	
								The PID of the newly created process
							

 ⁠Context

					Parent of the created process.
				

 ⁠Description

					Fires whenever a new process is successfully created, either as a result of fork (or one of its syscall variants), or a new kernel thread.
				

 ⁠
Name
probe::kprocess.start — Starting new process

 ⁠Synopsis

kprocess.start

 ⁠Values

					None
				

 ⁠Context

					Newly created process.
				

 ⁠Description

					Fires immediately before a new process begins execution.
				

 ⁠
Name
probe::kprocess.exec — Attempt to exec to a new program

 ⁠Synopsis

kprocess.exec

 ⁠Values
	filename
	
								The path to the new executable
							

 ⁠Context

					The caller of exec.
				

 ⁠Description

					Fires whenever a process attempts to exec to a new program.
				

 ⁠
Name
probe::kprocess.exec_complete — Return from exec to a new program

 ⁠Synopsis

kprocess.exec_complete

 ⁠Values
	success
	
								A boolean indicating whether the exec was successful
							

	errno
	
								The error number resulting from the exec
							

 ⁠Context

					On success, the context of the new executable. On failure, remains in the context of the caller.
				

 ⁠Description

					Fires at the completion of an exec call.
				

 ⁠
Name
probe::kprocess.exit — Exit from process

 ⁠Synopsis

kprocess.exit

 ⁠Values
	code
	
								The exit code of the process
							

 ⁠Context

					The process which is terminating.
				

 ⁠Description

					Fires when a process terminates. This will always be followed by a kprocess.release, though the latter may be delayed if the process waits in a zombie state.
				

 ⁠
Name
probe::kprocess.release — Process released

 ⁠Synopsis

kprocess.release

 ⁠Values
	pid
	
								PID of the process being released
							

	task
	
								A task handle to the process being released
							

 ⁠Context

					The context of the parent, if it wanted notification of this process' termination, else the context of the process itself.
				

 ⁠Description

					Fires when a process is released from the kernel. This always follows a kprocess.exit, though it may be delayed somewhat if the process waits in a zombie state.
				

 ⁠Chapter 14. Signal Tapset

			This family of probe points is used to probe signal activities. It contains the following probe points:
		

 ⁠
Name
probe::signal.send — Signal being sent to a process

 ⁠Synopsis

signal.send

 ⁠Values
	send2queue
	
								Indicates whether the signal is sent to an existing sigqueue
							

	name
	
								The name of the function used to send out the signal
							

	task
	
								A task handle to the signal recipient
							

	sinfo
	
								The address of siginfo struct
							

	si_code
	
								Indicates the signal type
							

	sig_name
	
								A string representation of the signal
							

	sig
	
								The number of the signal
							

	shared
	
								Indicates whether the signal is shared by the thread group
							

	sig_pid
	
								The PID of the process receiving the signal
							

	pid_name
	
								The name of the signal recipient
							

 ⁠Context

					The signal's sender.
				

 ⁠
Name
probe::signal.send.return — Signal being sent to a process completed

 ⁠Synopsis

signal.send.return

 ⁠Values
	retstr
	
								The return value to either __group_send_sig_info, specific_send_sig_info, or send_sigqueue
							

	send2queue
	
								Indicates whether the sent signal was sent to an existing sigqueue
							

	name
	
								The name of the function used to send out the signal
							

	shared
	
								Indicates whether the sent signal is shared by the thread group.
							

 ⁠Context

					The signal's sender. (correct?)
				

 ⁠Description

					Possible __group_send_sig_info and specific_send_sig_info return values are as follows;
				

					0 -- The signal is sucessfully sent to a process,
				

 ⁠which means that

					(1) the signal was ignored by the receiving process, (2) this is a non-RT signal and the system already has one queued, and (3) the signal was successfully added to the sigqueue of the receiving process.
				

					-EAGAIN -- The sigqueue of the receiving process is overflowing, the signal was RT, and the signal was sent by a user using something other than kill.
				

					Possible send_group_sigqueue and send_sigqueue return values are as follows;
				

					0 -- The signal was either sucessfully added into the sigqueue of the receiving process, or a SI_TIMER entry is already queued (in which case, the overrun count will be simply incremented).
				

					1 -- The signal was ignored by the receiving process.
				

					-1 -- (send_sigqueue only) The task was marked exiting, allowing * posix_timer_event to redirect it to the group leader.
				

 ⁠
Name
probe::signal.checkperm — Check being performed on a sent signal

 ⁠Synopsis

signal.checkperm

 ⁠Values
	name
	
								Name of the probe point
							

	task
	
								A task handle to the signal recipient
							

	sinfo
	
								The address of the siginfo structure
							

	si_code
	
								Indicates the signal type
							

	sig_name
	
								A string representation of the signal
							

	sig
	
								The number of the signal
							

	pid_name
	
								Name of the process receiving the signal
							

	sig_pid
	
								The PID of the process receiving the signal
							

 ⁠
Name
probe::signal.checkperm.return — Check performed on a sent signal completed

 ⁠Synopsis

signal.checkperm.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.wakeup — Sleeping process being wakened for signal

 ⁠Synopsis

signal.wakeup

 ⁠Values
	resume
	
								Indicates whether to wake up a task in a STOPPED or TRACED state
							

	state_mask
	
								A string representation indicating the mask of task states to wake. Possible values are TASK_INTERRUPTIBLE, TASK_STOPPED, TASK_TRACED, and TASK_INTERRUPTIBLE.
							

	pid_name
	
								Name of the process to wake
							

	sig_pid
	
								The PID of the process to wake
							

 ⁠
Name
probe::signal.check_ignored — Checking to see signal is ignored

 ⁠Synopsis

signal.check_ignored

 ⁠Values
	sig_name
	
								A string representation of the signal
							

	sig
	
								The number of the signal
							

	pid_name
	
								Name of the process receiving the signal
							

	sig_pid
	
								The PID of the process receiving the signal
							

 ⁠
Name
probe::signal.check_ignored.return — Check to see signal is ignored completed

 ⁠Synopsis

signal.check_ignored.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.force_segv — Forcing send of SIGSEGV

 ⁠Synopsis

signal.force_segv

 ⁠Values
	name
	
								Name of the probe point
							

	sig_name
	
								A string representation of the signal
							

	sig
	
								The number of the signal
							

	pid_name
	
								Name of the process receiving the signal
							

	sig_pid
	
								The PID of the process receiving the signal
							

 ⁠
Name
probe::signal.force_segv.return — Forcing send of SIGSEGV complete

 ⁠Synopsis

signal.force_segv.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.syskill — Sending kill signal to a process

 ⁠Synopsis

signal.syskill

 ⁠Values
	name
	
								Name of the probe point
							

	sig_name
	
								A string representation of the signal
							

	sig
	
								The specific signal sent to the process
							

	pid_name
	
								The name of the signal recipient
							

	sig_pid
	
								The PID of the process receiving the signal
							

 ⁠
Name
probe::signal.syskill.return — Sending kill signal completed

 ⁠Synopsis

signal.syskill.return

 ⁠Values

					None
				

 ⁠
Name
probe::signal.sys_tkill — Sending a kill signal to a thread

 ⁠Synopsis

signal.sys_tkill

 ⁠Values
	name
	
								Name of the probe point
							

	sig_name
	
								A string representation of the signal
							

	sig
	
								The specific signal sent to the process
							

	pid_name
	
								The name of the signal recipient
							

	sig_pid
	
								The PID of the process receiving the kill signal
							

 ⁠Description

					The tkill call is analogous to kill(2), except that it also allows a process within a specific thread group to be targeted. Such processes are targeted through their unique thread IDs (TID).
				

 ⁠
Name
probe::signal.systkill.return — Sending kill signal to a thread completed

 ⁠Synopsis

signal.systkill.return

 ⁠Values
	retstr
	
								The return value to either __group_send_sig_info,
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.sys_tgkill — Sending kill signal to a thread group

 ⁠Synopsis

signal.sys_tgkill

 ⁠Values
	name
	
								Name of the probe point
							

	sig_name
	
								A string representation of the signal
							

	sig
	
								The specific kill signal sent to the process
							

	tgid
	
								The thread group ID of the thread receiving the kill signal
							

	pid_name
	
								The name of the signal recipient
							

	sig_pid
	
								The PID of the thread receiving the kill signal
							

 ⁠Description

					The tgkill call is similar to tkill, except that it also allows the caller to specify the thread group ID of the thread to be signalled. This protects against TID reuse.
				

 ⁠
Name
probe::signal.sys_tgkill.return — Sending kill signal to a thread group completed

 ⁠Synopsis

signal.sys_tgkill.return

 ⁠Values
	retstr
	
								The return value to either __group_send_sig_info,
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.send_sig_queue — Queuing a signal to a process

 ⁠Synopsis

signal.send_sig_queue

 ⁠Values
	sigqueue_addr
	
								The address of the signal queue
							

	name
	
								Name of the probe point
							

	sig_name
	
								A string representation of the signal
							

	sig
	
								The queued signal
							

	pid_name
	
								Name of the process to which the signal is queued
							

	sig_pid
	
								The PID of the process to which the signal is queued
							

 ⁠
Name
probe::signal.send_sig_queue.return — Queuing a signal to a process completed

 ⁠Synopsis

signal.send_sig_queue.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.pending — Examining pending signal

 ⁠Synopsis

signal.pending

 ⁠Values
	name
	
								Name of the probe point
							

	sigset_size
	
								The size of the user-space signal set
							

	sigset_add
	
								The address of the user-space signal set (sigset_t)
							

 ⁠Description

					This probe is used to examine a set of signals pending for delivery to a specific thread. This normally occurs when the do_sigpending kernel function is executed.
				

 ⁠
Name
probe::signal.pending.return — Examination of pending signal completed

 ⁠Synopsis

signal.pending.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.handle — Signal handler being invoked

 ⁠Synopsis

signal.handle

 ⁠Values
	regs
	
								The address of the kernel-mode stack area
							

	sig_code
	
								The si_code value of the siginfo signal
							

	name
	
								Name of the probe point
							

	sig_mode
	
								Indicates whether the signal was a user-mode or kernel-mode signal
							

	sinfo
	
								The address of the siginfo table
							

	sig_name
	
								A string representation of the signal
							

	oldset_addr
	
								The address of the bitmask array of blocked signals
							

	sig
	
								The signal number that invoked the signal handler
							

	ka_addr
	
								The address of the k_sigaction table associated with the signal
							

 ⁠
Name
probe::signal.handle.return — Signal handler invocation completed

 ⁠Synopsis

signal.handle.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.do_action — Examining or changing a signal action

 ⁠Synopsis

signal.do_action

 ⁠Values
	sa_mask
	
								The new mask of the signal
							

	name
	
								Name of the probe point
							

	sig_name
	
								A string representation of the signal
							

	oldsigact_addr
	
								The address of the old sigaction struct associated with the signal
							

	sig
	
								The signal to be examined/changed
							

	sa_handler
	
								The new handler of the signal
							

	sigact_addr
	
								The address of the new sigaction struct associated with the signal
							

 ⁠
Name
probe::signal.do_action.return — Examining or changing a signal action completed

 ⁠Synopsis

signal.do_action.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.procmask — Examining or changing blocked signals

 ⁠Synopsis

signal.procmask

 ⁠Values
	how
	
								Indicates how to change the blocked signals; possible values are SIG_BLOCK=0 (for blocking signals), SIG_UNBLOCK=1 (for unblocking signals), and SIG_SETMASK=2 for setting the signal mask.
							

	name
	
								Name of the probe point
							

	oldsigset_addr
	
								The old address of the signal set (sigset_t)
							

	sigset
	
								The actual value to be set for sigset_t (correct?)
							

	sigset_addr
	
								The address of the signal set (sigset_t) to be implemented
							

 ⁠
Name
probe::signal.procmask.return — Examining or changing blocked signals completed

 ⁠Synopsis

signal.procmask.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.flush — Flushing all pending signals for a task

 ⁠Synopsis

signal.flush

 ⁠Values
	name
	
								Name of the probe point
							

	task
	
								The task handler of the process performing the flush
							

	pid_name
	
								The name of the process associated with the task performing the flush
							

	sig_pid
	
								The PID of the process associated with the task performing the flush
							

 ⁠
Name
probe::signal.send — Signal being sent to a process

 ⁠Synopsis

signal.send

 ⁠Values
	send2queue
	
								Indicates whether the signal is sent to an existing sigqueue
							

	name
	
								The name of the function used to send out the signal
							

	task
	
								A task handle to the signal recipient
							

	sinfo
	
								The address of siginfo struct
							

	si_code
	
								Indicates the signal type
							

	sig_name
	
								A string representation of the signal
							

	sig
	
								The number of the signal
							

	shared
	
								Indicates whether the signal is shared by the thread group
							

	sig_pid
	
								The PID of the process receiving the signal
							

	pid_name
	
								The name of the signal recipient
							

 ⁠Context

					The signal's sender.
				

 ⁠
Name
probe::signal.send.return — Signal being sent to a process completed

 ⁠Synopsis

signal.send.return

 ⁠Values
	retstr
	
								The return value to either __group_send_sig_info, specific_send_sig_info, or send_sigqueue
							

	send2queue
	
								Indicates whether the sent signal was sent to an existing sigqueue
							

	name
	
								The name of the function used to send out the signal
							

	shared
	
								Indicates whether the sent signal is shared by the thread group.
							

 ⁠Context

					The signal's sender. (correct?)
				

 ⁠Description

					Possible __group_send_sig_info and specific_send_sig_info return values are as follows;
				

					0 -- The signal is sucessfully sent to a process,
				

 ⁠which means that

					(1) the signal was ignored by the receiving process, (2) this is a non-RT signal and the system already has one queued, and (3) the signal was successfully added to the sigqueue of the receiving process.
				

					-EAGAIN -- The sigqueue of the receiving process is overflowing, the signal was RT, and the signal was sent by a user using something other than kill.
				

					Possible send_group_sigqueue and send_sigqueue return values are as follows;
				

					0 -- The signal was either sucessfully added into the sigqueue of the receiving process, or a SI_TIMER entry is already queued (in which case, the overrun count will be simply incremented).
				

					1 -- The signal was ignored by the receiving process.
				

					-1 -- (send_sigqueue only) The task was marked exiting, allowing * posix_timer_event to redirect it to the group leader.
				

 ⁠
Name
probe::signal.checkperm — Check being performed on a sent signal

 ⁠Synopsis

signal.checkperm

 ⁠Values
	name
	
								Name of the probe point
							

	task
	
								A task handle to the signal recipient
							

	sinfo
	
								The address of the siginfo structure
							

	si_code
	
								Indicates the signal type
							

	sig_name
	
								A string representation of the signal
							

	sig
	
								The number of the signal
							

	pid_name
	
								Name of the process receiving the signal
							

	sig_pid
	
								The PID of the process receiving the signal
							

 ⁠
Name
probe::signal.checkperm.return — Check performed on a sent signal completed

 ⁠Synopsis

signal.checkperm.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.wakeup — Sleeping process being wakened for signal

 ⁠Synopsis

signal.wakeup

 ⁠Values
	resume
	
								Indicates whether to wake up a task in a STOPPED or TRACED state
							

	state_mask
	
								A string representation indicating the mask of task states to wake. Possible values are TASK_INTERRUPTIBLE, TASK_STOPPED, TASK_TRACED, and TASK_INTERRUPTIBLE.
							

	pid_name
	
								Name of the process to wake
							

	sig_pid
	
								The PID of the process to wake
							

 ⁠
Name
probe::signal.check_ignored — Checking to see signal is ignored

 ⁠Synopsis

signal.check_ignored

 ⁠Values
	sig_name
	
								A string representation of the signal
							

	sig
	
								The number of the signal
							

	pid_name
	
								Name of the process receiving the signal
							

	sig_pid
	
								The PID of the process receiving the signal
							

 ⁠
Name
probe::signal.check_ignored.return — Check to see signal is ignored completed

 ⁠Synopsis

signal.check_ignored.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.force_segv — Forcing send of SIGSEGV

 ⁠Synopsis

signal.force_segv

 ⁠Values
	name
	
								Name of the probe point
							

	sig_name
	
								A string representation of the signal
							

	sig
	
								The number of the signal
							

	pid_name
	
								Name of the process receiving the signal
							

	sig_pid
	
								The PID of the process receiving the signal
							

 ⁠
Name
probe::signal.force_segv.return — Forcing send of SIGSEGV complete

 ⁠Synopsis

signal.force_segv.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.syskill — Sending kill signal to a process

 ⁠Synopsis

signal.syskill

 ⁠Values
	name
	
								Name of the probe point
							

	sig_name
	
								A string representation of the signal
							

	sig
	
								The specific signal sent to the process
							

	pid_name
	
								The name of the signal recipient
							

	sig_pid
	
								The PID of the process receiving the signal
							

 ⁠
Name
probe::signal.syskill.return — Sending kill signal completed

 ⁠Synopsis

signal.syskill.return

 ⁠Values

					None
				

 ⁠
Name
probe::signal.sys_tkill — Sending a kill signal to a thread

 ⁠Synopsis

signal.sys_tkill

 ⁠Values
	name
	
								Name of the probe point
							

	sig_name
	
								A string representation of the signal
							

	sig
	
								The specific signal sent to the process
							

	pid_name
	
								The name of the signal recipient
							

	sig_pid
	
								The PID of the process receiving the kill signal
							

 ⁠Description

					The tkill call is analogous to kill(2), except that it also allows a process within a specific thread group to be targeted. Such processes are targeted through their unique thread IDs (TID).
				

 ⁠
Name
probe::signal.systkill.return — Sending kill signal to a thread completed

 ⁠Synopsis

signal.systkill.return

 ⁠Values
	retstr
	
								The return value to either __group_send_sig_info,
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.sys_tgkill — Sending kill signal to a thread group

 ⁠Synopsis

signal.sys_tgkill

 ⁠Values
	name
	
								Name of the probe point
							

	sig_name
	
								A string representation of the signal
							

	sig
	
								The specific kill signal sent to the process
							

	tgid
	
								The thread group ID of the thread receiving the kill signal
							

	pid_name
	
								The name of the signal recipient
							

	sig_pid
	
								The PID of the thread receiving the kill signal
							

 ⁠Description

					The tgkill call is similar to tkill, except that it also allows the caller to specify the thread group ID of the thread to be signalled. This protects against TID reuse.
				

 ⁠
Name
probe::signal.sys_tgkill.return — Sending kill signal to a thread group completed

 ⁠Synopsis

signal.sys_tgkill.return

 ⁠Values
	retstr
	
								The return value to either __group_send_sig_info,
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.send_sig_queue — Queuing a signal to a process

 ⁠Synopsis

signal.send_sig_queue

 ⁠Values
	sigqueue_addr
	
								The address of the signal queue
							

	name
	
								Name of the probe point
							

	sig_name
	
								A string representation of the signal
							

	sig
	
								The queued signal
							

	pid_name
	
								Name of the process to which the signal is queued
							

	sig_pid
	
								The PID of the process to which the signal is queued
							

 ⁠
Name
probe::signal.send_sig_queue.return — Queuing a signal to a process completed

 ⁠Synopsis

signal.send_sig_queue.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.pending — Examining pending signal

 ⁠Synopsis

signal.pending

 ⁠Values
	name
	
								Name of the probe point
							

	sigset_size
	
								The size of the user-space signal set
							

	sigset_add
	
								The address of the user-space signal set (sigset_t)
							

 ⁠Description

					This probe is used to examine a set of signals pending for delivery to a specific thread. This normally occurs when the do_sigpending kernel function is executed.
				

 ⁠
Name
probe::signal.pending.return — Examination of pending signal completed

 ⁠Synopsis

signal.pending.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.handle — Signal handler being invoked

 ⁠Synopsis

signal.handle

 ⁠Values
	regs
	
								The address of the kernel-mode stack area
							

	sig_code
	
								The si_code value of the siginfo signal
							

	name
	
								Name of the probe point
							

	sig_mode
	
								Indicates whether the signal was a user-mode or kernel-mode signal
							

	sinfo
	
								The address of the siginfo table
							

	sig_name
	
								A string representation of the signal
							

	oldset_addr
	
								The address of the bitmask array of blocked signals
							

	sig
	
								The signal number that invoked the signal handler
							

	ka_addr
	
								The address of the k_sigaction table associated with the signal
							

 ⁠
Name
probe::signal.handle.return — Signal handler invocation completed

 ⁠Synopsis

signal.handle.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.do_action — Examining or changing a signal action

 ⁠Synopsis

signal.do_action

 ⁠Values
	sa_mask
	
								The new mask of the signal
							

	name
	
								Name of the probe point
							

	sig_name
	
								A string representation of the signal
							

	oldsigact_addr
	
								The address of the old sigaction struct associated with the signal
							

	sig
	
								The signal to be examined/changed
							

	sa_handler
	
								The new handler of the signal
							

	sigact_addr
	
								The address of the new sigaction struct associated with the signal
							

 ⁠
Name
probe::signal.do_action.return — Examining or changing a signal action completed

 ⁠Synopsis

signal.do_action.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.procmask — Examining or changing blocked signals

 ⁠Synopsis

signal.procmask

 ⁠Values
	how
	
								Indicates how to change the blocked signals; possible values are SIG_BLOCK=0 (for blocking signals), SIG_UNBLOCK=1 (for unblocking signals), and SIG_SETMASK=2 for setting the signal mask.
							

	name
	
								Name of the probe point
							

	oldsigset_addr
	
								The old address of the signal set (sigset_t)
							

	sigset
	
								The actual value to be set for sigset_t (correct?)
							

	sigset_addr
	
								The address of the signal set (sigset_t) to be implemented
							

 ⁠
Name
probe::signal.procmask.return — Examining or changing blocked signals completed

 ⁠Synopsis

signal.procmask.return

 ⁠Values
	retstr
	
								Return value as a string
							

	name
	
								Name of the probe point
							

 ⁠
Name
probe::signal.flush — Flushing all pending signals for a task

 ⁠Synopsis

signal.flush

 ⁠Values
	name
	
								Name of the probe point
							

	task
	
								The task handler of the process performing the flush
							

	pid_name
	
								The name of the process associated with the task performing the flush
							

	sig_pid
	
								The PID of the process associated with the task performing the flush
							

 ⁠Chapter 15. Directory-entry (dentry) Tapset

			This family of functions is used to map kernel VFS directory entry pointers to file or full path names.
		

 ⁠
Name
function::d_name — get the dirent name

 ⁠Synopsis

function d_name:string(dentry:long)

 ⁠Arguments
	dentry
	
								Pointer to dentry.
							

 ⁠Description

					Returns the dirent name (path basename).
				

 ⁠
Name
function::reverse_path_walk — get the full dirent path

 ⁠Synopsis

function reverse_path_walk:string(dentry:long)

 ⁠Arguments
	dentry
	
								Pointer to dentry.
							

 ⁠Description

					Returns the path name (partial path to mount point).
				

 ⁠
Name
function::task_dentry_path — get the full dentry path

 ⁠Synopsis

function task_dentry_path:string(task:long,dentry:long,vfsmnt:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

	dentry
	
								direntry pointer.
							

	vfsmnt
	
								vfsmnt pointer.
							

 ⁠Description

					Returns the full dirent name (full path to the root), like the kernel d_path function.
				

 ⁠
Name
function::d_path — get the full nameidata path

 ⁠Synopsis

function d_path:string(nd:long)

 ⁠Arguments
	nd
	
								Pointer to nameidata.
							

 ⁠Description

					Returns the full dirent name (full path to the root), like the kernel d_path function.
				

 ⁠
Name
function::d_name — get the dirent name

 ⁠Synopsis

function d_name:string(dentry:long)

 ⁠Arguments
	dentry
	
								Pointer to dentry.
							

 ⁠Description

					Returns the dirent name (path basename).
				

 ⁠
Name
function::reverse_path_walk — get the full dirent path

 ⁠Synopsis

function reverse_path_walk:string(dentry:long)

 ⁠Arguments
	dentry
	
								Pointer to dentry.
							

 ⁠Description

					Returns the path name (partial path to mount point).
				

 ⁠
Name
function::task_dentry_path — get the full dentry path

 ⁠Synopsis

function task_dentry_path:string(task:long,dentry:long,vfsmnt:long)

 ⁠Arguments
	task
	
								task_struct pointer.
							

	dentry
	
								direntry pointer.
							

	vfsmnt
	
								vfsmnt pointer.
							

 ⁠Description

					Returns the full dirent name (full path to the root), like the kernel d_path function.
				

 ⁠
Name
function::d_path — get the full nameidata path

 ⁠Synopsis

function d_path:string(nd:long)

 ⁠Arguments
	nd
	
								Pointer to nameidata.
							

 ⁠Description

					Returns the full dirent name (full path to the root), like the kernel d_path function.
				

 ⁠Chapter 16. Logging Tapset

			This family of functions is used to send simple message strings to various destinations.
		

 ⁠
Name
function::log — Send a line to the common trace buffer.

 ⁠Synopsis

function log(msg:string)

 ⁠Arguments
	msg
	
								The formatted message string.
							

 ⁠General Syntax

					log(msg:string)
				

 ⁠Description

					This function logs data. log sends the message immediately to staprun and to the bulk transport (relayfs) if it is being used. If the last character given is not a newline, then one is added. This function is not as effecient as printf and should be used only for urgent messages.
				

 ⁠
Name
function::warn — Send a line to the warning stream.

 ⁠Synopsis

function warn(msg:string)

 ⁠Arguments
	msg
	
								The formatted message string.
							

 ⁠General Syntax

					warn (msg:string)
				

 ⁠Description

					This function sends a warning message immediately to staprun. It is also sent over the bulk transport (relayfs) if it is being used. If the last characater is not a newline, the one is added.
				

 ⁠
Name
function::exit — Start shutting down probing script.

 ⁠Synopsis

function exit()

 ⁠Arguments

					None
				

 ⁠General Syntax

					exit
				

 ⁠Description

					This only enqueues a request to start shutting down the script. New probes will not fire (except “end” probes), but all currently running ones may complete their work.
				

 ⁠
Name
function::error — Send an error message.

 ⁠Synopsis

function error(msg:string)

 ⁠Arguments
	msg
	
								The formatted message string.
							

 ⁠Description

					An implicit end-of-line is added. staprun prepends the string “ERROR:”. Sending an error message aborts the currently running probe. Depending on the MAXERRORS parameter, it may trigger an exit.
				

 ⁠
Name
function::ftrace — Send a message to the ftrace ring-buffer.

 ⁠Synopsis

function ftrace(msg:string)

 ⁠Arguments
	msg
	
								The formatted message string.
							

 ⁠Description

					If the ftrace ring-buffer is configured & available, see /debugfs/tracing/trace for the message. Otherwise, the message may be quietly dropped. An implicit end-of-line is added.
				

 ⁠
Name
function::log — Send a line to the common trace buffer.

 ⁠Synopsis

function log(msg:string)

 ⁠Arguments
	msg
	
								The formatted message string.
							

 ⁠General Syntax

					log(msg:string)
				

 ⁠Description

					This function logs data. log sends the message immediately to staprun and to the bulk transport (relayfs) if it is being used. If the last character given is not a newline, then one is added. This function is not as effecient as printf and should be used only for urgent messages.
				

 ⁠
Name
function::warn — Send a line to the warning stream.

 ⁠Synopsis

function warn(msg:string)

 ⁠Arguments
	msg
	
								The formatted message string.
							

 ⁠General Syntax

					warn (msg:string)
				

 ⁠Description

					This function sends a warning message immediately to staprun. It is also sent over the bulk transport (relayfs) if it is being used. If the last characater is not a newline, the one is added.
				

 ⁠
Name
function::exit — Start shutting down probing script.

 ⁠Synopsis

function exit()

 ⁠Arguments

					None
				

 ⁠General Syntax

					exit
				

 ⁠Description

					This only enqueues a request to start shutting down the script. New probes will not fire (except “end” probes), but all currently running ones may complete their work.
				

 ⁠
Name
function::error — Send an error message.

 ⁠Synopsis

function error(msg:string)

 ⁠Arguments
	msg
	
								The formatted message string.
							

 ⁠Description

					An implicit end-of-line is added. staprun prepends the string “ERROR:”. Sending an error message aborts the currently running probe. Depending on the MAXERRORS parameter, it may trigger an exit.
				

 ⁠
Name
function::ftrace — Send a message to the ftrace ring-buffer.

 ⁠Synopsis

function ftrace(msg:string)

 ⁠Arguments
	msg
	
								The formatted message string.
							

 ⁠Description

					If the ftrace ring-buffer is configured & available, see /debugfs/tracing/trace for the message. Otherwise, the message may be quietly dropped. An implicit end-of-line is added.
				

 ⁠Chapter 17. Random functions Tapset

			These functions deal with random number generation.
		

 ⁠
Name
function::randint — Return a random number between [0,n)

 ⁠Synopsis

function randint:long(n:long)

 ⁠Arguments
	n
	
								Number past upper limit of range, not larger than 2**20.
							

 ⁠
Name
function::randint — Return a random number between [0,n)

 ⁠Synopsis

function randint:long(n:long)

 ⁠Arguments
	n
	
								Number past upper limit of range, not larger than 2**20.
							

 ⁠Chapter 18. String and data retrieving functions Tapset

			Functions to retrieve strings and other primitive types from the kernel or a user space programs based on addresses. All strings are of a maximum length given by MAXSTRINGLEN.
		

 ⁠
Name
function::kernel_string — Retrieves string from kernel memory.

 ⁠Synopsis

function kernel_string:string(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from.
							

 ⁠General Syntax

					kernel_string:string(addr:long)
				

 ⁠Description

					This function returns the null terminated C string from a given kernel memory address. Reports an error on string copy fault.
				

 ⁠
Name
function::kernel_string2 — Retrieves string from kernel memory with alternative error string.

 ⁠Synopsis

function kernel_string2:string(addr:long,err_msg:string)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from.
							

	err_msg
	
								The error message to return when data isn't available.
							

 ⁠General Syntax

					kernel_string2:string(addr:long, err_msg:string)
				

 ⁠Description

					This function returns the null terminated C string from a given kernel memory address. Reports the given error message on string copy fault.
				

 ⁠
Name
function::kernel_string_n — Retrieves string of given length from kernel memory.

 ⁠Synopsis

function kernel_string_n:string(addr:long,n:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from.
							

	n
	
								The maximum length of the string (if not null terminated).
							

 ⁠General Syntax

					kernel_string_n:string(addr:long, n:long)
				

 ⁠Description

					Returns the C string of a maximum given length from a given kernel memory address. Reports an error on string copy fault.
				

 ⁠
Name
function::kernel_long — Retrieves a long value stored in kernel memory.

 ⁠Synopsis

function kernel_long:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the long from.
							

 ⁠General Syntax

					kernel_long:long(addr:long)
				

 ⁠Description

					Returns the long value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::kernel_int — Retrieves an int value stored in kernel memory.

 ⁠Synopsis

function kernel_int:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the int from.
							

 ⁠Description

					Returns the int value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::kernel_short — Retrieves a short value stored in kernel memory.

 ⁠Synopsis

function kernel_short:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the short from.
							

 ⁠General Syntax

					kernel_short:long(addr:long)
				

 ⁠Description

					Returns the short value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::kernel_char — Retrieves a char value stored in kernel memory.

 ⁠Synopsis

function kernel_char:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the char from.
							

 ⁠General Syntax

					kernel_char:long(addr:long)
				

 ⁠Description

					Returns the char value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::kernel_pointer — Retrieves a pointer value stored in kernel memory.

 ⁠Synopsis

function kernel_pointer:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the pointer from.
							

 ⁠General Syntax

					kernel_pointer:long(addr:long)
				

 ⁠Description

					Returns the pointer value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::user_string — Retrieves string from user space.

 ⁠Synopsis

function user_string:string(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the string from.
							

 ⁠General Syntax

					user_string:string(addr:long)
				

 ⁠Description

					Returns the null terminated C string from a given user space memory address. Reports “<unknown>” on the rare cases when userspace data is not accessible.
				

 ⁠
Name
function::user_string2 — Retrieves string from user space with alternative error string.

 ⁠Synopsis

function user_string2:string(addr:long,err_msg:string)

 ⁠Arguments
	addr
	
								The user space address to retrieve the string from.
							

	err_msg
	
								The error message to return when data isn't available.
							

 ⁠General Syntax

					user_string2:string(addr:long, err_msg:string)
				

 ⁠Description

					Returns the null terminated C string from a given user space memory address. Reports the given error message on the rare cases when userspace data is not accessible.
				

 ⁠
Name
function::user_string_warn — Retrieves string from user space.

 ⁠Synopsis

function user_string_warn:string(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the string from.
							

 ⁠General Syntax

					user_string_warn:string(addr:long)
				

 ⁠Description

					Returns the null terminated C string from a given user space memory address. Reports “<unknown>” on the rare cases when userspace data is not accessible and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_string_quoted — Retrieves and quotes string from user space.

 ⁠Synopsis

function user_string_quoted:string(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the string from.
							

 ⁠General Syntax

					user_string_quoted:string(addr:long)
				

 ⁠Description

					Returns the null terminated C string from a given user space memory address where any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string. Reports “NULL” for address zero. Returns “<unknown>” on the rare cases when userspace data is not accessible at the given address.
				

 ⁠
Name
function::user_string_n — Retrieves string of given length from user space.

 ⁠Synopsis

function user_string_n:string(addr:long,n:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the string from.
							

	n
	
								The maximum length of the string (if not null terminated).
							

 ⁠General Syntax

					user_string_n:string(addr:long, n:long)
				

 ⁠Description

					Returns the C string of a maximum given length from a given user space address. Returns “<unknown>” on the rare cases when userspace data is not accessible at the given address.
				

 ⁠
Name
function::user_string_n2 — Retrieves string of given length from user space.

 ⁠Synopsis

function user_string_n2:string(addr:long,n:long,err_msg:string)

 ⁠Arguments
	addr
	
								The user space address to retrieve the string from.
							

	n
	
								The maximum length of the string (if not null terminated).
							

	err_msg
	
								The error message to return when data isn't available.
							

 ⁠General Syntax

					user_string_n2:string(addr:long, n:long, err_msg:string)
				

 ⁠Description

					Returns the C string of a maximum given length from a given user space address. Returns the given error message string on the rare cases when userspace data is not accessible at the given address.
				

 ⁠
Name
function::user_string_n_warn — Retrieves string from user space.

 ⁠Synopsis

function user_string_n_warn:string(addr:long,n:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the string from.
							

	n
	
								The maximum length of the string (if not null terminated).
							

 ⁠General Syntax

					user_string_n_warn:string(addr:long, n:long)
				

 ⁠Description

					Returns up to n characters of a C string from a given user space memory address. Reports “<unknown>” on the rare cases when userspace data is not accessible and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_string_n_quoted — Retrieves and quotes string from user space.

 ⁠Synopsis

function user_string_n_quoted:string(addr:long,n:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the string from.
							

	n
	
								The maximum length of the string (if not null terminated).
							

 ⁠General Syntax

					user_string_n_quoted:string(addr:long, n:long)
				

 ⁠Description

					Returns up to n characters of a C string from the given user space memory address where any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string. Reports “NULL” for address zero. Returns “<unknown>” on the rare cases when userspace data is not accessible at the given address.
				

 ⁠
Name
function::user_short — Retrieves a short value stored in user space.

 ⁠Synopsis

function user_short:long(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the short from.
							

 ⁠General Syntax

					user_short:long(addr:long)
				

 ⁠Description

					Returns the short value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_short_warn — Retrieves a short value stored in user space.

 ⁠Synopsis

function user_short_warn:long(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the short from.
							

 ⁠General Syntax

					user_short_warn:long(addr:long)
				

 ⁠Description

					Returns the short value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_int — Retrieves an int value stored in user space.

 ⁠Synopsis

function user_int:long(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the int from.
							

 ⁠General Syntax

					user_int:long(addr:long)
				

 ⁠Description

					Returns the int value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_int_warn — Retrieves an int value stored in user space.

 ⁠Synopsis

function user_int_warn:long(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the int from.
							

 ⁠General Syntax

					user_ing_warn:long(addr:long)
				

 ⁠Description

					Returns the int value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_long — Retrieves a long value stored in user space.

 ⁠Synopsis

function user_long:long(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the long from.
							

 ⁠General Syntax

					user_long:long(addr:long)
				

 ⁠Description

					Returns the long value from a given user space address. Returns zero when user space data is not accessible. Note that the size of the long depends on the architecture of the current user space task (for those architectures that support both 64/32 bit compat tasks).
				

 ⁠
Name
function::user_long_warn — Retrieves a long value stored in user space.

 ⁠Synopsis

function user_long_warn:long(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the long from.
							

 ⁠General Syntax

					user_long_warn:long(addr:long)
				

 ⁠Description

					Returns the long value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure. Note that the size of the long depends on the architecture of the current user space task (for those architectures that support both 64/32 bit compat tasks).
				

 ⁠
Name
function::user_char — Retrieves a char value stored in user space.

 ⁠Synopsis

function user_char:long(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the char from.
							

 ⁠General Syntax

					user_char:long(addr:long)
				

 ⁠Description

					Returns the char value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_char_warn — Retrieves a char value stored in user space.

 ⁠Synopsis

function user_char_warn:long(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the char from.
							

 ⁠General Syntax

					user_char_warn:long(addr:long)
				

 ⁠Description

					Returns the char value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure.
				

 ⁠
Name
function::kernel_string — Retrieves string from kernel memory.

 ⁠Synopsis

function kernel_string:string(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from.
							

 ⁠General Syntax

					kernel_string:string(addr:long)
				

 ⁠Description

					This function returns the null terminated C string from a given kernel memory address. Reports an error on string copy fault.
				

 ⁠
Name
function::kernel_string2 — Retrieves string from kernel memory with alternative error string.

 ⁠Synopsis

function kernel_string2:string(addr:long,err_msg:string)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from.
							

	err_msg
	
								The error message to return when data isn't available.
							

 ⁠General Syntax

					kernel_string2:string(addr:long, err_msg:string)
				

 ⁠Description

					This function returns the null terminated C string from a given kernel memory address. Reports the given error message on string copy fault.
				

 ⁠
Name
function::kernel_string_n — Retrieves string of given length from kernel memory.

 ⁠Synopsis

function kernel_string_n:string(addr:long,n:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the string from.
							

	n
	
								The maximum length of the string (if not null terminated).
							

 ⁠General Syntax

					kernel_string_n:string(addr:long, n:long)
				

 ⁠Description

					Returns the C string of a maximum given length from a given kernel memory address. Reports an error on string copy fault.
				

 ⁠
Name
function::kernel_long — Retrieves a long value stored in kernel memory.

 ⁠Synopsis

function kernel_long:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the long from.
							

 ⁠General Syntax

					kernel_long:long(addr:long)
				

 ⁠Description

					Returns the long value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::kernel_int — Retrieves an int value stored in kernel memory.

 ⁠Synopsis

function kernel_int:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the int from.
							

 ⁠Description

					Returns the int value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::kernel_short — Retrieves a short value stored in kernel memory.

 ⁠Synopsis

function kernel_short:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the short from.
							

 ⁠General Syntax

					kernel_short:long(addr:long)
				

 ⁠Description

					Returns the short value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::kernel_char — Retrieves a char value stored in kernel memory.

 ⁠Synopsis

function kernel_char:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the char from.
							

 ⁠General Syntax

					kernel_char:long(addr:long)
				

 ⁠Description

					Returns the char value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::kernel_pointer — Retrieves a pointer value stored in kernel memory.

 ⁠Synopsis

function kernel_pointer:long(addr:long)

 ⁠Arguments
	addr
	
								The kernel address to retrieve the pointer from.
							

 ⁠General Syntax

					kernel_pointer:long(addr:long)
				

 ⁠Description

					Returns the pointer value from a given kernel memory address. Reports an error when reading from the given address fails.
				

 ⁠
Name
function::user_string — Retrieves string from user space.

 ⁠Synopsis

function user_string:string(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the string from.
							

 ⁠General Syntax

					user_string:string(addr:long)
				

 ⁠Description

					Returns the null terminated C string from a given user space memory address. Reports “<unknown>” on the rare cases when userspace data is not accessible.
				

 ⁠
Name
function::user_string2 — Retrieves string from user space with alternative error string.

 ⁠Synopsis

function user_string2:string(addr:long,err_msg:string)

 ⁠Arguments
	addr
	
								The user space address to retrieve the string from.
							

	err_msg
	
								The error message to return when data isn't available.
							

 ⁠General Syntax

					user_string2:string(addr:long, err_msg:string)
				

 ⁠Description

					Returns the null terminated C string from a given user space memory address. Reports the given error message on the rare cases when userspace data is not accessible.
				

 ⁠
Name
function::user_string_warn — Retrieves string from user space.

 ⁠Synopsis

function user_string_warn:string(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the string from.
							

 ⁠General Syntax

					user_string_warn:string(addr:long)
				

 ⁠Description

					Returns the null terminated C string from a given user space memory address. Reports “<unknown>” on the rare cases when userspace data is not accessible and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_string_quoted — Retrieves and quotes string from user space.

 ⁠Synopsis

function user_string_quoted:string(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the string from.
							

 ⁠General Syntax

					user_string_quoted:string(addr:long)
				

 ⁠Description

					Returns the null terminated C string from a given user space memory address where any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string. Reports “NULL” for address zero. Returns “<unknown>” on the rare cases when userspace data is not accessible at the given address.
				

 ⁠
Name
function::user_string_n — Retrieves string of given length from user space.

 ⁠Synopsis

function user_string_n:string(addr:long,n:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the string from.
							

	n
	
								The maximum length of the string (if not null terminated).
							

 ⁠General Syntax

					user_string_n:string(addr:long, n:long)
				

 ⁠Description

					Returns the C string of a maximum given length from a given user space address. Returns “<unknown>” on the rare cases when userspace data is not accessible at the given address.
				

 ⁠
Name
function::user_string_n2 — Retrieves string of given length from user space.

 ⁠Synopsis

function user_string_n2:string(addr:long,n:long,err_msg:string)

 ⁠Arguments
	addr
	
								The user space address to retrieve the string from.
							

	n
	
								The maximum length of the string (if not null terminated).
							

	err_msg
	
								The error message to return when data isn't available.
							

 ⁠General Syntax

					user_string_n2:string(addr:long, n:long, err_msg:string)
				

 ⁠Description

					Returns the C string of a maximum given length from a given user space address. Returns the given error message string on the rare cases when userspace data is not accessible at the given address.
				

 ⁠
Name
function::user_string_n_warn — Retrieves string from user space.

 ⁠Synopsis

function user_string_n_warn:string(addr:long,n:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the string from.
							

	n
	
								The maximum length of the string (if not null terminated).
							

 ⁠General Syntax

					user_string_n_warn:string(addr:long, n:long)
				

 ⁠Description

					Returns up to n characters of a C string from a given user space memory address. Reports “<unknown>” on the rare cases when userspace data is not accessible and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_string_n_quoted — Retrieves and quotes string from user space.

 ⁠Synopsis

function user_string_n_quoted:string(addr:long,n:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the string from.
							

	n
	
								The maximum length of the string (if not null terminated).
							

 ⁠General Syntax

					user_string_n_quoted:string(addr:long, n:long)
				

 ⁠Description

					Returns up to n characters of a C string from the given user space memory address where any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string. Reports “NULL” for address zero. Returns “<unknown>” on the rare cases when userspace data is not accessible at the given address.
				

 ⁠
Name
function::user_short — Retrieves a short value stored in user space.

 ⁠Synopsis

function user_short:long(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the short from.
							

 ⁠General Syntax

					user_short:long(addr:long)
				

 ⁠Description

					Returns the short value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_short_warn — Retrieves a short value stored in user space.

 ⁠Synopsis

function user_short_warn:long(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the short from.
							

 ⁠General Syntax

					user_short_warn:long(addr:long)
				

 ⁠Description

					Returns the short value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_int — Retrieves an int value stored in user space.

 ⁠Synopsis

function user_int:long(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the int from.
							

 ⁠General Syntax

					user_int:long(addr:long)
				

 ⁠Description

					Returns the int value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_int_warn — Retrieves an int value stored in user space.

 ⁠Synopsis

function user_int_warn:long(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the int from.
							

 ⁠General Syntax

					user_ing_warn:long(addr:long)
				

 ⁠Description

					Returns the int value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure.
				

 ⁠
Name
function::user_long — Retrieves a long value stored in user space.

 ⁠Synopsis

function user_long:long(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the long from.
							

 ⁠General Syntax

					user_long:long(addr:long)
				

 ⁠Description

					Returns the long value from a given user space address. Returns zero when user space data is not accessible. Note that the size of the long depends on the architecture of the current user space task (for those architectures that support both 64/32 bit compat tasks).
				

 ⁠
Name
function::user_long_warn — Retrieves a long value stored in user space.

 ⁠Synopsis

function user_long_warn:long(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the long from.
							

 ⁠General Syntax

					user_long_warn:long(addr:long)
				

 ⁠Description

					Returns the long value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure. Note that the size of the long depends on the architecture of the current user space task (for those architectures that support both 64/32 bit compat tasks).
				

 ⁠
Name
function::user_char — Retrieves a char value stored in user space.

 ⁠Synopsis

function user_char:long(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the char from.
							

 ⁠General Syntax

					user_char:long(addr:long)
				

 ⁠Description

					Returns the char value from a given user space address. Returns zero when user space data is not accessible.
				

 ⁠
Name
function::user_char_warn — Retrieves a char value stored in user space.

 ⁠Synopsis

function user_char_warn:long(addr:long)

 ⁠Arguments
	addr
	
								The user space address to retrieve the char from.
							

 ⁠General Syntax

					user_char_warn:long(addr:long)
				

 ⁠Description

					Returns the char value from a given user space address. Returns zero when user space and warns (but does not abort) about the failure.
				

 ⁠Chapter 19. A collection of standard string functions

			Functions to get the length, a substring, getting at individual characters, string seaching, escaping, tokenizing, and converting strings to longs.
		

 ⁠
Name
function::strlen — Returns the length of a string.

 ⁠Synopsis

function strlen:long(s:string)

 ⁠Arguments
	s
	
								the string
							

 ⁠General Syntax

					strlen: long (str:string)
				

 ⁠Description

					This function returns the length of the string, which can be zero up to MAXSTRINGLEN.
				

 ⁠
Name
function::substr — Returns a substring.

 ⁠Synopsis

function substr:string(str:string,start:long,length:long)

 ⁠Arguments
	str
	
								The string to take a substring from
							

	start
	
								Starting position. 0 = start of the string.
							

	length
	
								Length of string to return.
							

 ⁠General Syntax

					substr:string (str:string, start:long, stop:long)
				

 ⁠Description

					Returns the substring of the up to the given length starting at the given start position and ending at given stop position.
				

 ⁠
Name
function::stringat — Returns the char at a given position in the string.

 ⁠Synopsis

function stringat:long(str:string,pos:long)

 ⁠Arguments
	str
	
								The string to fetch the character from.
							

	pos
	
								The position to get the character from. 0 = start of the string.
							

 ⁠General Syntax

					stringat:long(srt:string, pos:long)
				

 ⁠Description

					This function returns the character at a given position in the string or zero if thestring doesn't have as many characters.
				

 ⁠
Name
function::isinstr — Returns whether a string is a substring of another string.

 ⁠Synopsis

function isinstr:long(s1:string,s2:string)

 ⁠Arguments
	s1
	
								String to search in.
							

	s2
	
								Substring to find.
							

 ⁠General syntax

					isinstr:long (s1:string, s2:string)
				

 ⁠Description

					This function returns 1 if string s1 contains s2, otherwise zero.
				

 ⁠
Name
function::text_str — Escape any non-printable chars in a string.

 ⁠Synopsis

function text_str:string(input:string)

 ⁠Arguments
	input
	
								The string to escape.
							

 ⁠General Syntax

					text_str:string (input:string)
				

 ⁠Description

					This function accepts a string argument, and any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string.
				

 ⁠
Name
function::text_strn — Escape any non-printable chars in a string.

 ⁠Synopsis

function text_strn:string(input:string,len:long,quoted:long)

 ⁠Arguments
	input
	
								The string to escape.
							

	len
	
								Maximum length of string to return. 0 means MAXSTRINGLEN.
							

	quoted
	
								Put double quotes around the string. If input string is truncated it will have “...” after the second quote.
							

 ⁠General Syntax

					text_strn:string (input:string, len:long, quoted:long)
				

 ⁠Description

					This function accepts a string of designated length, and any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string.
				

 ⁠
Name
function::tokenize — Return the next non-empty token in a string.

 ⁠Synopsis

function tokenize:string(input:string,delim:string)

 ⁠Arguments
	input
	
								String to tokenize. If NULL, returns the next non-empty token in the string passed in the previous call to tokenize.
							

	delim
	
								Token delimiter. Set of characters that delimit the tokens.
							

 ⁠General Syntax

					tokenize:string (input:string, delim:string)
				

 ⁠Description

					This function returns the next non-empty token in the given input string, where the tokens are delimited by characters in the delim string. If the input string is non-NULL, it returns the first token. If the input string is NULL, it returns the next token in the string passed in the previous call to tokenize. If no delimiter is found, the entire remaining input string is returned. It returns NULL when no more tokens are available.
				

 ⁠
Name
function::str_replace — str_replace Replaces all instances of a substring with another.

 ⁠Synopsis

function str_replace:string(prnt_str:string,srch_str:string,rplc_str:string)

 ⁠Arguments
	prnt_str
	
								The string to search and replace in.
							

	srch_str
	
								The substring which is used to search in prnt_str string.
							

	rplc_str
	
								The substring which is used to replace srch_str.
							

 ⁠General Syntax

					str_replace:string(prnt_str:string, srch_str:string, rplc_str:string)
				

 ⁠Description

					This function returns the given string with substrings replaced.
				

 ⁠
Name
function::strtol — strtol - Convert a string to a long.

 ⁠Synopsis

function strtol:long(str:string,base:long)

 ⁠Arguments
	str
	
								String to convert.
							

	base
	
								The base to use
							

 ⁠General Syntax

					strtol:long (str:string, base:long)
				

 ⁠Description

					This function converts the string representation of a number to an integer. The base parameter indicates the number base to assume for the string (eg. 16 for hex, 8 for octal, 2 for binary).
				

 ⁠
Name
function::isdigit — Checks for a digit.

 ⁠Synopsis

function isdigit:long(str:string)

 ⁠Arguments
	str
	
								String to check.
							

 ⁠General Syntax

					isdigit:long(str:string)
				

 ⁠Description

					Checks for a digit (0 through 9) as the first character of a string. Returns non-zero if true, and a zero if false.
				

 ⁠
Name
function::strlen — Returns the length of a string.

 ⁠Synopsis

function strlen:long(s:string)

 ⁠Arguments
	s
	
								the string
							

 ⁠General Syntax

					strlen: long (str:string)
				

 ⁠Description

					This function returns the length of the string, which can be zero up to MAXSTRINGLEN.
				

 ⁠
Name
function::substr — Returns a substring.

 ⁠Synopsis

function substr:string(str:string,start:long,length:long)

 ⁠Arguments
	str
	
								The string to take a substring from
							

	start
	
								Starting position. 0 = start of the string.
							

	length
	
								Length of string to return.
							

 ⁠General Syntax

					substr:string (str:string, start:long, stop:long)
				

 ⁠Description

					Returns the substring of the up to the given length starting at the given start position and ending at given stop position.
				

 ⁠
Name
function::stringat — Returns the char at a given position in the string.

 ⁠Synopsis

function stringat:long(str:string,pos:long)

 ⁠Arguments
	str
	
								The string to fetch the character from.
							

	pos
	
								The position to get the character from. 0 = start of the string.
							

 ⁠General Syntax

					stringat:long(srt:string, pos:long)
				

 ⁠Description

					This function returns the character at a given position in the string or zero if thestring doesn't have as many characters.
				

 ⁠
Name
function::isinstr — Returns whether a string is a substring of another string.

 ⁠Synopsis

function isinstr:long(s1:string,s2:string)

 ⁠Arguments
	s1
	
								String to search in.
							

	s2
	
								Substring to find.
							

 ⁠General syntax

					isinstr:long (s1:string, s2:string)
				

 ⁠Description

					This function returns 1 if string s1 contains s2, otherwise zero.
				

 ⁠
Name
function::text_str — Escape any non-printable chars in a string.

 ⁠Synopsis

function text_str:string(input:string)

 ⁠Arguments
	input
	
								The string to escape.
							

 ⁠General Syntax

					text_str:string (input:string)
				

 ⁠Description

					This function accepts a string argument, and any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string.
				

 ⁠
Name
function::text_strn — Escape any non-printable chars in a string.

 ⁠Synopsis

function text_strn:string(input:string,len:long,quoted:long)

 ⁠Arguments
	input
	
								The string to escape.
							

	len
	
								Maximum length of string to return. 0 means MAXSTRINGLEN.
							

	quoted
	
								Put double quotes around the string. If input string is truncated it will have “...” after the second quote.
							

 ⁠General Syntax

					text_strn:string (input:string, len:long, quoted:long)
				

 ⁠Description

					This function accepts a string of designated length, and any ASCII characters that are not printable are replaced by the corresponding escape sequence in the returned string.
				

 ⁠
Name
function::tokenize — Return the next non-empty token in a string.

 ⁠Synopsis

function tokenize:string(input:string,delim:string)

 ⁠Arguments
	input
	
								String to tokenize. If NULL, returns the next non-empty token in the string passed in the previous call to tokenize.
							

	delim
	
								Token delimiter. Set of characters that delimit the tokens.
							

 ⁠General Syntax

					tokenize:string (input:string, delim:string)
				

 ⁠Description

					This function returns the next non-empty token in the given input string, where the tokens are delimited by characters in the delim string. If the input string is non-NULL, it returns the first token. If the input string is NULL, it returns the next token in the string passed in the previous call to tokenize. If no delimiter is found, the entire remaining input string is returned. It returns NULL when no more tokens are available.
				

 ⁠
Name
function::str_replace — str_replace Replaces all instances of a substring with another.

 ⁠Synopsis

function str_replace:string(prnt_str:string,srch_str:string,rplc_str:string)

 ⁠Arguments
	prnt_str
	
								The string to search and replace in.
							

	srch_str
	
								The substring which is used to search in prnt_str string.
							

	rplc_str
	
								The substring which is used to replace srch_str.
							

 ⁠General Syntax

					str_replace:string(prnt_str:string, srch_str:string, rplc_str:string)
				

 ⁠Description

					This function returns the given string with substrings replaced.
				

 ⁠
Name
function::strtol — strtol - Convert a string to a long.

 ⁠Synopsis

function strtol:long(str:string,base:long)

 ⁠Arguments
	str
	
								String to convert.
							

	base
	
								The base to use
							

 ⁠General Syntax

					strtol:long (str:string, base:long)
				

 ⁠Description

					This function converts the string representation of a number to an integer. The base parameter indicates the number base to assume for the string (eg. 16 for hex, 8 for octal, 2 for binary).
				

 ⁠
Name
function::isdigit — Checks for a digit.

 ⁠Synopsis

function isdigit:long(str:string)

 ⁠Arguments
	str
	
								String to check.
							

 ⁠General Syntax

					isdigit:long(str:string)
				

 ⁠Description

					Checks for a digit (0 through 9) as the first character of a string. Returns non-zero if true, and a zero if false.
				

 ⁠Chapter 20. Utility functions for using ansi control chars in logs

			Utility functions for logging using ansi control characters. This lets you manipulate the cursor position and character color output and attributes of log messages.
		

 ⁠
Name
function::ansi_clear_screen — Move cursor to top left and clear screen.

 ⁠Synopsis

function ansi_clear_screen()

 ⁠Arguments

					None
				

 ⁠General Syntax

					ansi_clear_screen
				

 ⁠Description

					Sends ansi code for moving cursor to top left and then the ansi code for clearing the screen from the cursor position to the end.
				

 ⁠
Name
function::ansi_set_color — Set the ansi Select Graphic Rendition mode.

 ⁠Synopsis

function ansi_set_color(fg:long)

 ⁠Arguments
	fg
	
								Foreground color to set.
							

 ⁠General Syntax

					ansi_set_color(fh:long)
				

 ⁠Description

					Sends ansi code for Select Graphic Rendition mode for the given forground color. Black (30), Blue (34), Green (32), Cyan (36), Red (31), Purple (35), Brown (33), Light Gray (37).
				

 ⁠
Name
function::ansi_set_color2 — Set the ansi Select Graphic Rendition mode.

 ⁠Synopsis

function ansi_set_color2(fg:long,bg:long)

 ⁠Arguments
	fg
	
								Foreground color to set.
							

	bg
	
								Background color to set.
							

 ⁠General Syntax

					ansi_set_color2(fg:long, bg:long)
				

 ⁠Description

					Sends ansi code for Select Graphic Rendition mode for the given forground color, Black (30), Blue (34), Green (32), Cyan (36), Red (31), Purple (35), Brown (33), Light Gray (37) and the given background color, Black (40), Red (41), Green (42), Yellow (43), Blue (44), Magenta (45), Cyan (46), White (47).
				

 ⁠
Name
function::ansi_set_color3 — Set the ansi Select Graphic Rendition mode.

 ⁠Synopsis

function ansi_set_color3(fg:long,bg:long,attr:long)

 ⁠Arguments
	fg
	
								Foreground color to set.
							

	bg
	
								Background color to set.
							

	attr
	
								Color attribute to set.
							

 ⁠General Syntax

					ansi_set_color3(fg:long, bg:long, attr:long)
				

 ⁠Description

					Sends ansi code for Select Graphic Rendition mode for the given forground color, Black (30), Blue (34), Green (32), Cyan (36), Red (31), Purple (35), Brown (33), Light Gray (37), the given background color, Black (40), Red (41), Green (42), Yellow (43), Blue (44), Magenta (45), Cyan (46), White (47) and the color attribute All attributes off (0), Intensity Bold (1), Underline Single (4), Blink Slow (5), Blink Rapid (6), Image Negative (7).
				

 ⁠
Name
function::ansi_reset_color — Resets Select Graphic Rendition mode.

 ⁠Synopsis

function ansi_reset_color()

 ⁠Arguments

					None
				

 ⁠General Syntax

					ansi_reset_color
				

 ⁠Description

					Sends ansi code to reset foreground, background and color attribute to default values.
				

 ⁠
Name
function::ansi_new_line — Move cursor to new line.

 ⁠Synopsis

function ansi_new_line()

 ⁠Arguments

					None
				

 ⁠General Syntax

					ansi_new_line
				

 ⁠Description

					Sends ansi code new line.
				

 ⁠
Name
function::ansi_cursor_move — Move cursor to new coordinates.

 ⁠Synopsis

function ansi_cursor_move(x:long,y:long)

 ⁠Arguments
	x
	
								Row to move the cursor to.
							

	y
	
								Colomn to move the cursor to.
							

 ⁠General Syntax

					ansi_curos_move(x:long, y:long)
				

 ⁠Description

					Sends ansi code for positioning the cursor at row x and column y. Coordinates start at one, (1,1) is the top-left corner.
				

 ⁠
Name
function::ansi_cursor_hide — Hides the cursor.

 ⁠Synopsis

function ansi_cursor_hide()

 ⁠Arguments

					None
				

 ⁠General Syntax

					ansi_cusor_hide
				

 ⁠Description

					Sends ansi code for hiding the cursor.
				

 ⁠
Name
function::ansi_cursor_save — Saves the cursor position.

 ⁠Synopsis

function ansi_cursor_save()

 ⁠Arguments

					None
				

 ⁠General Syntax

					ansi_cursor_save
				

 ⁠Description

					Sends ansi code for saving the current cursor position.
				

 ⁠
Name
function::ansi_cursor_restore — Restores a previously saved cursor position.

 ⁠Synopsis

function ansi_cursor_restore()

 ⁠Arguments

					None
				

 ⁠General Syntax

					ansi_cursor_restore
				

 ⁠Description

					Sends ansi code for restoring the current cursor position previously saved with ansi_cursor_save.
				

 ⁠
Name
function::ansi_cursor_show — Shows the cursor.

 ⁠Synopsis

function ansi_cursor_show()

 ⁠Arguments

					None
				

 ⁠General Syntax

					ansi_cursor_show
				

 ⁠Description

					Sends ansi code for showing the cursor.
				

 ⁠
Name
function::ansi_clear_screen — Move cursor to top left and clear screen.

 ⁠Synopsis

function ansi_clear_screen()

 ⁠Arguments

					None
				

 ⁠General Syntax

					ansi_clear_screen
				

 ⁠Description

					Sends ansi code for moving cursor to top left and then the ansi code for clearing the screen from the cursor position to the end.
				

 ⁠
Name
function::ansi_set_color — Set the ansi Select Graphic Rendition mode.

 ⁠Synopsis

function ansi_set_color(fg:long)

 ⁠Arguments
	fg
	
								Foreground color to set.
							

 ⁠General Syntax

					ansi_set_color(fh:long)
				

 ⁠Description

					Sends ansi code for Select Graphic Rendition mode for the given forground color. Black (30), Blue (34), Green (32), Cyan (36), Red (31), Purple (35), Brown (33), Light Gray (37).
				

 ⁠
Name
function::ansi_set_color2 — Set the ansi Select Graphic Rendition mode.

 ⁠Synopsis

function ansi_set_color2(fg:long,bg:long)

 ⁠Arguments
	fg
	
								Foreground color to set.
							

	bg
	
								Background color to set.
							

 ⁠General Syntax

					ansi_set_color2(fg:long, bg:long)
				

 ⁠Description

					Sends ansi code for Select Graphic Rendition mode for the given forground color, Black (30), Blue (34), Green (32), Cyan (36), Red (31), Purple (35), Brown (33), Light Gray (37) and the given background color, Black (40), Red (41), Green (42), Yellow (43), Blue (44), Magenta (45), Cyan (46), White (47).
				

 ⁠
Name
function::ansi_set_color3 — Set the ansi Select Graphic Rendition mode.

 ⁠Synopsis

function ansi_set_color3(fg:long,bg:long,attr:long)

 ⁠Arguments
	fg
	
								Foreground color to set.
							

	bg
	
								Background color to set.
							

	attr
	
								Color attribute to set.
							

 ⁠General Syntax

					ansi_set_color3(fg:long, bg:long, attr:long)
				

 ⁠Description

					Sends ansi code for Select Graphic Rendition mode for the given forground color, Black (30), Blue (34), Green (32), Cyan (36), Red (31), Purple (35), Brown (33), Light Gray (37), the given background color, Black (40), Red (41), Green (42), Yellow (43), Blue (44), Magenta (45), Cyan (46), White (47) and the color attribute All attributes off (0), Intensity Bold (1), Underline Single (4), Blink Slow (5), Blink Rapid (6), Image Negative (7).
				

 ⁠
Name
function::ansi_reset_color — Resets Select Graphic Rendition mode.

 ⁠Synopsis

function ansi_reset_color()

 ⁠Arguments

					None
				

 ⁠General Syntax

					ansi_reset_color
				

 ⁠Description

					Sends ansi code to reset foreground, background and color attribute to default values.
				

 ⁠
Name
function::ansi_new_line — Move cursor to new line.

 ⁠Synopsis

function ansi_new_line()

 ⁠Arguments

					None
				

 ⁠General Syntax

					ansi_new_line
				

 ⁠Description

					Sends ansi code new line.
				

 ⁠
Name
function::ansi_cursor_move — Move cursor to new coordinates.

 ⁠Synopsis

function ansi_cursor_move(x:long,y:long)

 ⁠Arguments
	x
	
								Row to move the cursor to.
							

	y
	
								Colomn to move the cursor to.
							

 ⁠General Syntax

					ansi_curos_move(x:long, y:long)
				

 ⁠Description

					Sends ansi code for positioning the cursor at row x and column y. Coordinates start at one, (1,1) is the top-left corner.
				

 ⁠
Name
function::ansi_cursor_hide — Hides the cursor.

 ⁠Synopsis

function ansi_cursor_hide()

 ⁠Arguments

					None
				

 ⁠General Syntax

					ansi_cusor_hide
				

 ⁠Description

					Sends ansi code for hiding the cursor.
				

 ⁠
Name
function::ansi_cursor_save — Saves the cursor position.

 ⁠Synopsis

function ansi_cursor_save()

 ⁠Arguments

					None
				

 ⁠General Syntax

					ansi_cursor_save
				

 ⁠Description

					Sends ansi code for saving the current cursor position.
				

 ⁠
Name
function::ansi_cursor_restore — Restores a previously saved cursor position.

 ⁠Synopsis

function ansi_cursor_restore()

 ⁠Arguments

					None
				

 ⁠General Syntax

					ansi_cursor_restore
				

 ⁠Description

					Sends ansi code for restoring the current cursor position previously saved with ansi_cursor_save.
				

 ⁠
Name
function::ansi_cursor_show — Shows the cursor.

 ⁠Synopsis

function ansi_cursor_show()

 ⁠Arguments

					None
				

 ⁠General Syntax

					ansi_cursor_show
				

 ⁠Description

					Sends ansi code for showing the cursor.
				

OEBPS/Common_Content/fonts/overpass_light-web.woff

OEBPS/Common_Content/images/rhlogo.png
E) redhat.

OEBPS/Common_Content/images/dot.png

OEBPS/Common_Content/images/30.png

OEBPS/Common_Content/images/22.png

OEBPS/Common_Content/images/5.png

OEBPS/Common_Content/images/note.png

OEBPS/Common_Content/images/37.png

OEBPS/Common_Content/fonts/overpass_regular-web.woff

OEBPS/Common_Content/images/green.png

OEBPS/Common_Content/fonts/overpass_light-web.ttf

OEBPS/Common_Content/fonts/overpass_bold-web.eot

OEBPS/Common_Content/images/4.png

OEBPS/Common_Content/images/23.png

OEBPS/Common_Content/images/40.png

OEBPS/Common_Content/images/38.png

OEBPS/Common_Content/images/bkgrnd_greydots.png

OEBPS/Common_Content/images/shine.png

OEBPS/Common_Content/images/shade.png

OEBPS/Common_Content/images/36.png

OEBPS/Common_Content/images/stock-home.png

OEBPS/Common_Content/images/image_right.png

OEBPS/Common_Content/images/red.png

OEBPS/Common_Content/images/stock-go-up.png

OEBPS/Common_Content/images/28.png

OEBPS/Common_Content/images/3.png

OEBPS/Common_Content/images/image_left.png
E) redhat.

OEBPS/Common_Content/fonts/overpass_regular-web.ttf

OEBPS/Common_Content/images/16.png

OEBPS/Common_Content/images/13.png

OEBPS/Common_Content/fonts/overpass_bold-web.ttf

OEBPS/Common_Content/images/Enterprise_title_logo.png
E) redhat.

OEBPS/Common_Content/images/Online_title_logo.png
E) redhat.

OEBPS/Common_Content/images/warning.png

OEBPS/Common_Content/images/important.png

OEBPS/Common_Content/images/35.png

OEBPS/Common_Content/images/2.png

OEBPS/Common_Content/images/15.png

OEBPS/Common_Content/images/20.png

OEBPS/Common_Content/fonts/overpass_light-web.eot

OEBPS/Common_Content/images/29.png

OEBPS/Common_Content/images/21.png

OEBPS/Common_Content/images/14.png

OEBPS/Common_Content/images/1.png

OEBPS/Common_Content/images/18.png

OEBPS/Common_Content/images/dot2.png

OEBPS/Common_Content/images/documentation.png

OEBPS/Common_Content/images/26.png

OEBPS/Common_Content/fonts/overpass_regular-web.eot

OEBPS/Common_Content/images/34.png

OEBPS/Common_Content/images/11.png

OEBPS/Common_Content/images/9.png

OEBPS/Common_Content/images/17.png

OEBPS/Common_Content/images/yellow.png

OEBPS/Common_Content/images/27.png

OEBPS/Common_Content/images/stock-go-back.png

OEBPS/Common_Content/fonts/portal/nimbus/iconfont.eot

OEBPS/Common_Content/images/33.png

OEBPS/Common_Content/fonts/overpass_bold-web.woff

OEBPS/Common_Content/images/12.png

OEBPS/Common_Content/images/8.png

OEBPS/Common_Content/images/h1-bg.png

OEBPS/content.opf
 6_TapsetRef SystemTap Tapset Reference The Tapset Reference Guide describes the most common tapset definitions users can apply to SystemTap scripts. All included tapsets documented in this guide are current as of the latest upstream version of SystemTap. Red Hat, Inc. Robert Krátký William Cohen Don Domingo en

OEBPS/Common_Content/images/32.png

OEBPS/Common_Content/images/39.png

OEBPS/Common_Content/images/bullet_arrowblue.png

OEBPS/Common_Content/images/24.png

OEBPS/Common_Content/images/title_logo.png
E) redhat.

OEBPS/Common_Content/images/7.png

OEBPS/Common_Content/images/19.png

OEBPS/Common_Content/images/10.png

OEBPS/Common_Content/images/watermark-draft.png

OEBPS/Common_Content/images/31.png

OEBPS/Common_Content/images/stock-go-forward.png

OEBPS/Common_Content/images/6.png

OEBPS/Common_Content/images/25.png

