
Red Hat Enterprise Linux
5
Logical Volume Manager
Administration

LVM Administrator's Guide
Edition 1

Red Hat Enterprise Linux 5 Logical Volume Manager Administration

LVM Administrator's Guide
Edition 1

Legal Notice

Copyright © 2014 Red Hat Inc..

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
This book describes the LVM logical volume manager, including information on running LVM in a
clustered environment. The content of this document is specific to the LVM2 release.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

Chapter 1. Introduction
1.1. About This Guide
1.2. Audience
1.3. Software Versions
1.4. Related Documentation

Chapter 2. The LVM Logical Volume Manager
2.1. New and Changed Features
2.2. Logical Volumes
2.3. LVM Architecture Overview
2.4. The Clustered Logical Volume Manager (CLVM)
2.5. Document Overview

Chapter 3. LVM Components
3.1. Physical Volumes
3.2. Volume Groups
3.3. LVM Logical Volumes

Chapter 4. LVM Administration Overview
4.1. Creating LVM Volumes in a Cluster
4.2. Logical Volume Creation Overview
4.3. Growing a File System on a Logical Volume
4.4. Logical Volume Backup
4.5. Logging
4.6. Online Device Reconfiguration

Chapter 5. LVM Administration with CLI Commands
5.1. Using CLI Commands
5.2. Physical Volume Administration
5.3. Volume Group Administration
5.4. Logical Volume Administration
5.5. Creating Snapshot Volumes
5.6. Controlling LVM Device Scans with Filters
5.7. Online Data Relocation
5.8. Activating Logical Volumes on Individual Nodes in a Cluster
5.9. Customized Reporting for LVM

Chapter 6. LVM Configuration Examples
6.1. Creating an LVM Logical Volume on Three Disks
6.2. Creating a Striped Logical Volume
6.3. Splitting a Volume Group
6.4. Removing a Disk from a Logical Volume
6.5. Creating a Mirrored LVM Logical Volume in a Cluster

Chapter 7. LVM Troubleshooting
7.1. Troubleshooting Diagnostics
7.2. Displaying Information on Failed Devices
7.3. Recovering from LVM Mirror Failure
7.4. Recovering Physical Volume Metadata
7.5. Replacing a Missing Physical Volume
7.6. Removing Lost Physical Volumes from a Volume Group
7.7. Insufficient Free Extents for a Logical Volume

Chapter 8. LVM Administration with the LVM GUI

3
3
3
3
3

5
5
6
7
8

10

12
12
13
14

19
19
20
20
20
21
21

22
22
23
26
33
46
47
48
49
49

59
59
60
61
63
66

70
70
70
71
74
75
76
76

78

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

Chapter 8. LVM Administration with the LVM GUI

Appendix A. The Device Mapper
A.1. Device Table Mappings
A.2. The dmsetup Command

Appendix B. The LVM Configuration Files
B.1. The LVM Configuration Files
B.2. Sample lvm.conf File

Appendix C. LVM Object Tags
C.1. Adding and Removing Object Tags
C.2. Host Tags
C.3. Controlling Activation with Tags

Appendix D. LVM Volume Group Metadata
D.1. The Physical Volume Label
D.2. Metadata Contents
D.3. Sample Metadata

Appendix E. Revision History

Index

78

79
79
89

93
93
93

110
110
110
110

112
112
113
113

116

118

Logical Volume Manager Administration

2

Chapter 1. Introduction

1.1. About This Guide

This book describes the Logical Volume Manager (LVM), including information on running LVM in a clustered
environment. The content of this document is specific to the LVM2 release.

1.2. Audience

This book is intended to be used by system administrators managing systems running the Linux operating
system. It requires familiarity with Red Hat Enterprise Linux 5 and GFS or GFS2 file system administration.

1.3. Software Versions

Table 1.1. Software Versions

Software Description
Red Hat Enterprise Linux
5

refers to Red Hat Enterprise Linux 5 and higher

GFS refers to GFS for Red Hat Enterprise Linux and higher

1.4. Related Documentation

For more information about using Red Hat Enterprise Linux, refer to the following resources:

Red Hat Enterprise Linux Installation Guide — Provides information regarding installation of Red Hat
Enterprise Linux 5.

Red Hat Enterprise Linux Deployment Guide — Provides information regarding the deployment,
configuration and administration of Red Hat Enterprise Linux 5.

For more information about Red Hat Cluster Suite for Red Hat Enterprise Linux 5, refer to the following
resources:

Red Hat Cluster Suite Overview — Provides a high level overview of the Red Hat Cluster Suite.

Cluster Administration — Provides information about installing, configuring and managing Red Hat
Cluster components.

Global File System: Configuration and Administration — Provides information about installing,
configuring, and maintaining Red Hat GFS (Red Hat Global File System).

Global File System 2: Configuration and Administration — Provides information about installing,
configuring, and maintaining Red Hat GFS2 (Red Hat Global File System 2).

Using Device-Mapper Multipath — Provides information about using the Device-Mapper Multipath feature
of Red Hat Enterprise Linux 5.

Using GNBD with Global File System — Provides an overview on using Global Network Block Device
(GNBD) with Red Hat GFS.

Linux Virtual Server Administration — Provides information on configuring high-performance systems and
services with the Linux Virtual Server (LVS).

Chapter 1. Introduction

3

Red Hat Cluster Suite Release Notes — Provides information about the current release of Red Hat
Cluster Suite.

Red Hat Cluster Suite documentation and other Red Hat documents are available in HTML, PDF, and RPM
versions on the Red Hat Enterprise Linux Documentation CD and online at
https://access.redhat.com/site/documentation/en-US/.

Logical Volume Manager Administration

4

https://access.redhat.com/site/documentation/en-US/

Chapter 2. The LVM Logical Volume Manager

This chapter provides a summary of the features of the LVM logical volume manager that are new since the
release of Red Hat Enterprise Linux 5.6. Following that, this chapter provides a high-level overview of the
components of the Logical Volume Manager (LVM).

2.1. New and Changed Features

This section lists new and changed features of the LVM logical volume manager that are included with the
release of Red Hat Enterprise Linux 5.6 and later.

2.1.1. New and Changed Features for Red Hat Enterprise Linux 5.6

Red Hat Enterprise Linux 5.6 includes the following documentation and feature updates and changes.

In Red Hat Enterprise Linux 5.6, the lvm.conf configuration file includes a default_data_alignment
parameter that allows you to set the default alignment of the start of a data area. For information on data
alignment in LVM as well as information on changing the default value of default_data_alignment,
see the inline documentation for the /etc/lvm/lvm.conf file, which is also documented in Appendix B,
The LVM Configuration Files.

In the Red Hat Enterprise Linux 5.6 release, you can use the --splitmirrors argument of the
lvconvert command to split off a redundant image of a mirrored logical volume to form a new logical
volume. For information on using this option, see Section 5.4.1.3.3, “Splitting Off a Redundant Image of a
Mirrored Logical Volume”.

You can now create a mirror log for a mirrored logical device that is itself mirrored by using the --
mirrorlog mirrored argument of the lvcreate command when creating a mirrored logical device.
For information on using this option, see Section 5.4.1.3.1, “Mirroring the Mirror Log”.

In the Red Hat Enterprise Linux 5.6 release, you can control metadata storage on a physical volume by
using the --metadataignore option of the pvcreate command. For information on setting this value,
see Appendix D, LVM Volume Group Metadata and the pvcreate man page.

In the Red Hat Enterprise Linux 5.6 release, you can determine the number of metadata copies at the
volume group level with the --vgmetadatacopies option of the vgcreate command. For information
on setting this value, see Appendix D, LVM Volume Group Metadata and the vgcreate man page.

2.1.2. New and Changed Features for Red Hat Enterprise Linux 5.7

Red Hat Enterprise Linux 5.7 includes the following documentation and feature updates and changes.

You can now combine RAID0 (striping) and RAID1 (mirroring) in a single logical volume. Creating a
logical volume while simultaneously specifying the number of mirrors (--mirrors X) and the number of
stripes (--stripes Y) results in a mirror device whose constituent devices are striped. For information
on creating mirrored logical volumes, see Section 5.4.1.3, “Creating Mirrored Volumes”.

As of the Red Hat Enterprise Linux 5.7 release, there are two new features related to snapshots. First, in
addition to the snapshot itself being invalidated when full, any mounted file systems on that snapshot
device are forcibly unmounted, avoiding the inevitable file system errors upon access to the mount point.
Second, you can specify the snapshot_autoextend_threshold option in the lvm.conf file. This
option allows automatic extension of a snapshot whenever the remaining snapshot space drops below
the threshold you set. This feature requires that there be unallocated space in the volume group.

Chapter 2. The LVM Logical Volume Manager

5

Information on setting snapshot_autoextend_threshold and snapshot_autoextend_percent is
provided in the lvm.conf file itself. For information about the lvm.conf file, refer to Appendix B, The
LVM Configuration Files.

When extending an LVM volume, you can now use the --alloc cling option of the lvextend
command to specify the cling allocation policy. This policy will choose space on the same physical
volumes as the last segment of the existing logical volume. If there is insufficient space on the physical
volumes and a list of tags is defined in the lvm.conf file, LVM will check whether any of the tags are
attached to the physical volumes and seek to match those physical volume tags between existing extents
and new extents.

For information on extending LVM mirrored volumes with the --alloc cling option of the lvextend
command, see Section 5.4.11, “Extending a Logical Volume with the cling Allocation Policy”.

As of the Red Hat Enterprise Linux 5.7 release, if you need to create a consistent backup of data on a
clustered logical volume you can activate the volume exclusively and then create the snapshot. For
information on activating logical volumes exclusively on one node, see Section 5.8, “Activating Logical
Volumes on Individual Nodes in a Cluster”.

2.1.3. New and Changed Features for Red Hat Enterprise Linux 5.8

Red Hat Enterprise Linux 5.8 includes the following documentation and feature updates and changes.

As of the Red Hat Enterprise Linux 5.8 release, it is possible to grow mirrored logical volumes with the
lvextend command without performing a synchronization of the new mirror regions. For information on
extending a mirrored logical volume, see Section 5.4.10, “Extending a Mirrored Volume”.

Small clarifactions have been made throughout this document.

2.1.4. New and Changed Features for Red Hat Enterprise Linux 5.9 and Red Hat
Enterprise LInux 5.10

Red Hat Enterprise Linux 5.9 and Red Hat Enterprise Linux 5.10 include the following documentation and
feature updates and changes.

Small clarifactions have been made throughout this document.

2.1.5. New and Changed Features for Red Hat Enterprise Linux 5.11

Red Hat Enterprise Linux 5.11 includes the following documentation and feature updates and changes.

This manual documents the lvm tags command, which lists the currently active host tags. For
information on LVM object tags, see Appendix C, LVM Object Tags.

As of the Red Hat Enterprise Linux 5.11 release, you no longer need to specify a major number when
using the --persistent option of the lvcreate or lvchange command. This had no effect on the
major number, which the kernel assigned dynamically. For information on persistent device numbers, see
Section 5.4.2, “Persistent Device Numbers”.

2.2. Logical Volumes

Volume management creates a layer of abstraction over physical storage, allowing you to create logical
storage volumes. This provides much greater flexibility in a number of ways than using physical storage
directly. With a logical volume, you are not restricted to physical disk sizes. In addition, the hardware storage
configuration is hidden from the software so it can be resized and moved without stopping applications or

Logical Volume Manager Administration

6

unmounting file systems. This can reduce operational costs.

Logical volumes provide the following advantages over using physical storage directly:

Flexible capacity

When using logical volumes, file systems can extend across multiple disks, since you can aggregate
disks and partitions into a single logical volume.

Resizeable storage pools

You can extend logical volumes or reduce logical volumes in size with simple software commands,
without reformatting and repartitioning the underlying disk devices.

Online data relocation

To deploy newer, faster, or more resilient storage subsystems, you can move data while your system is
active. Data can be rearranged on disks while the disks are in use. For example, you can empty a hot-
swappable disk before removing it.

Convenient device naming

Logical storage volumes can be managed in user-defined groups, which you can name according to your
convenience.

Disk striping

You can create a logical volume that stripes data across two or more disks. This can dramatically
increase throughput.

Mirroring volumes

Logical volumes provide a convenient way to configure a mirror for your data.

Volume Snapshots

Using logical volumes, you can take device snapshots for consistent backups or to test the effect of
changes without affecting the real data.

The implementation of these features in LVM is described in the remainder of this document.

2.3. LVM Architecture Overview

For the Red Hat Enterprise Linux 4 release, the original LVM1 logical volume manager was replaced by
LVM2, which has a more generic kernel framework than LVM1. LVM2 provides the following improvements
over LVM1:

flexible capacity

more efficient metadata storage

better recovery format

new ASCII metadata format

atomic changes to metadata

redundant copies of metadata

Chapter 2. The LVM Logical Volume Manager

7

LVM2 is backwards compatible with LVM1, with the exception of snapshot and cluster support. You can
convert a volume group from LVM1 format to LVM2 format with the vgconvert command. For information
on converting LVM metadata format, see the vgconvert(8) man page.

The underlying physical storage unit of an LVM logical volume is a block device such as a partition or whole
disk. This device is initialized as an LVM physical volume (PV).

To create an LVM logical volume, the physical volumes are combined into a volume group (VG). This creates
a pool of disk space out of which LVM logical volumes (LVs) can be allocated. This process is analogous to
the way in which disks are divided into partitions. A logical volume is used by file systems and applications
(such as databases).

Figure 2.1, “LVM Logical Volume Components” shows the components of a simple LVM logical volume:

Figure 2.1. LVM Logical Volume Components

For detailed information on the components of an LVM logical volume, see Chapter 3, LVM Components.

2.4. The Clustered Logical Volume Manager (CLVM)

The Clustered Logical Volume Manager (CLVM) is a set of clustering extensions to LVM. These extensions
allow a cluster of computers to manage shared storage (for example, on a SAN) using LVM.

Whether you should use CLVM depends on your system requirements:

If only one node of your system requires access to the storage you are configuring as logical volumes,
then you can use LVM without the CLVM extensions and the logical volumes created with that node are
all local to the node.

If you are using a clustered system for failover where only a single node that accesses the storage is
active at any one time, you should use High Availability Logical Volume Management agents (HA-LVM).

Logical Volume Manager Administration

8

If more than one node of your cluster will require access to your storage which is then shared among the
active nodes, then you must use CLVM. CLVM allows a user to configure logical volumes on shared
storage by locking access to physical storage while a logical volume is being configured, and uses
clustered locking services to manage the shared storage.

In order to use CLVM, the Red Hat Cluster Suite software, including the clvmd daemon, must be running.
The clvmd daemon is the key clustering extension to LVM. The clvmd daemon runs in each cluster
computer and distributes LVM metadata updates in a cluster, presenting each cluster computer with the
same view of the logical volumes. For information on installing and administering Red Hat Cluster Suite, see
Cluster Administration.

To ensure that clvmd is started at boot time, you can execute a chkconfig ... on command on the
clvmd service, as follows:

chkconfig clvmd on

If the clvmd daemon has not been started, you can execute a service ... start command on the
clvmd service, as follows:

service clvmd start

Creating LVM logical volumes in a cluster environment is identical to creating LVM logical volumes on a
single node. There is no difference in the LVM commands themselves, or in the LVM graphical user
interface, as described in Chapter 5, LVM Administration with CLI Commands and Chapter 8, LVM
Administration with the LVM GUI. In order to enable the LVM volumes you are creating in a cluster, the
cluster infrastructure must be running and the cluster must be quorate.

By default, logical volumes created with CLVM on shared storage are visible to all systems that have access
to the shared storage. It is possible to create volume groups in which all of the storage devices are visible to
only one node in the cluster. It is also possible to change the status of a volume group from a local volume
group to a clustered volume group. For information, see Section 5.3.3, “Creating Volume Groups in a Cluster”
and Section 5.3.8, “Changing the Parameters of a Volume Group”.

Warning

When you create volume groups with CLVM on shared storage, you must ensure that all nodes in the
cluster have access to the physical volumes that constitute the volume group. Asymmmetric cluster
configurations in which some nodes have access to the storage and others do not are not supported.

Figure 2.2, “CLVM Overview” shows a CLVM overview in a Red Hat cluster.

Chapter 2. The LVM Logical Volume Manager

9

Figure 2.2. CLVM Overview

Note

Shared storage for use in Red Hat Cluster Suite requires that you be running the cluster logical
volume manager daemon (clvmd) or the High Availability Logical Volume Management agents (HA-
LVM). If you are not able to use either the clvmd daemon or HA-LVM for operational reasons or
because you do not have the correct entitlements, you must not use single-instance LVM on the
shared disk as this may result in data corruption. If you have any concerns please contact your Red
Hat service representative.

Note

CLVM requires changes to the lvm.conf file for cluster-wide locking. Information on configuring the
lvm.conf file to support clustered locking is provided within the lvm.conf file itself. For information
about the lvm.conf file, see Appendix B, The LVM Configuration Files.

2.5. Document Overview

This remainder of this document includes the following chapters:

Chapter 3, LVM Components describes the components that make up an LVM logical volume.

Logical Volume Manager Administration

10

Chapter 4, LVM Administration Overview provides an overview of the basic steps you perform to
configure LVM logical volumes, whether you are using the LVM Command Line Interface (CLI)
commands or the LVM Graphical User Interface (GUI).

Chapter 5, LVM Administration with CLI Commands summarizes the individual administrative tasks you
can perform with the LVM CLI commands to create and maintain logical volumes.

Chapter 6, LVM Configuration Examples provides a variety of LVM configuration examples.

Chapter 7, LVM Troubleshooting provides instructions for troubleshooting a variety of LVM issues.

Chapter 8, LVM Administration with the LVM GUI summarizes the operating of the LVM GUI.

Appendix A, The Device Mapper describes the Device Mapper that LVM uses to map logical and physical
volumes.

Appendix B, The LVM Configuration Files describes the LVM configuration files.

Appendix C, LVM Object Tags describes LVM object tags and host tags.

Appendix D, LVM Volume Group Metadata describes LVM volume group metadata, and includes a
sample copy of metadata for an LVM volume group.

Chapter 2. The LVM Logical Volume Manager

11

Chapter 3. LVM Components

This chapter describes the components of an LVM Logical volume.

3.1. Physical Volumes

The underlying physical storage unit of an LVM logical volume is a block device such as a partition or whole
disk. To use the device for an LVM logical volume the device must be initialized as a physical volume (PV).
Initializing a block device as a physical volume places a label near the start of the device.

By default, the LVM label is placed in the second 512-byte sector. You can overwrite this default by placing
the label on any of the first 4 sectors. This allows LVM volumes to co-exist with other users of these sectors,
if necessary.

An LVM label provides correct identification and device ordering for a physical device, since devices can
come up in any order when the system is booted. An LVM label remains persistent across reboots and
throughout a cluster.

The LVM label identifies the device as an LVM physical volume. It contains a random unique identifier (the
UUID) for the physical volume. It also stores the size of the block device in bytes, and it records where the
LVM metadata will be stored on the device.

The LVM metadata contains the configuration details of the LVM volume groups on your system. By default,
an identical copy of the metadata is maintained in every metadata area in every physical volume within the
volume group. LVM metadata is small and stored as ASCII.

Currently LVM allows you to store 0, 1 or 2 identical copies of its metadata on each physical volume. The
default is 1 copy. Once you configure the number of metadata copies on the physical volume, you cannot
change that number at a later time. The first copy is stored at the start of the device, shortly after the label. If
there is a second copy, it is placed at the end of the device. If you accidentally overwrite the area at the
beginning of your disk by writing to a different disk than you intend, a second copy of the metadata at the end
of the device will allow you to recover the metadata.

For detailed information about the LVM metadata and changing the metadata parameters, see Appendix D,
LVM Volume Group Metadata.

3.1.1. LVM Physical Volume Layout

Figure 3.1, “Physical Volume layout” shows the layout of an LVM physical volume. The LVM label is on the
second sector, followed by the metadata area, followed by the usable space on the device.

Note

In the Linux kernel (and throughout this document), sectors are considered to be 512 bytes in size.

Logical Volume Manager Administration

12

Figure 3.1. Physical Volume layout

3.1.2. Multiple Partitions on a Disk

LVM allows you to create physical volumes out of disk partitions. It is generally recommended that you
create a single partition that covers the whole disk to label as an LVM physical volume for the following
reasons:

Administrative convenience

It is easier to keep track of the hardware in a system if each real disk only appears once. This becomes
particularly true if a disk fails. In addition, multiple physical volumes on a single disk may cause a kernel
warning about unknown partition types at boot-up.

Striping performance

LVM cannot tell that two physical volumes are on the same physical disk. If you create a striped logical
volume when two physical volumes are on the same physical disk, the stripes could be on different
partitions on the same disk. This would result in a decrease in performance rather than an increase.

Although it is not recommended, there may be specific circumstances when you will need to divide a disk into
separate LVM physical volumes. For example, on a system with few disks it may be necessary to move data
around partitions when you are migrating an existing system to LVM volumes. Additionally, if you have a very
large disk and want to have more than one volume group for administrative purposes then it is necessary to
partition the disk. If you do have a disk with more than one partition and both of those partitions are in the
same volume group, take care to specify which partitions are to be included in a logical volume when creating
striped volumes.

3.2. Volume Groups

Physical volumes are combined into volume groups (VGs). This creates a pool of disk space out of which
logical volumes can be allocated.

Within a volume group, the disk space available for allocation is divided into units of a fixed-size called
extents. An extent is the smallest unit of space that can be allocated. Within a physical volume, extents are
referred to as physical extents.

A logical volume is allocated into logical extents of the same size as the physical extents. The extent size is
thus the same for all logical volumes in the volume group. The volume group maps the logical extents to
physical extents.

Chapter 3. LVM Components

13

3.3. LVM Logical Volumes

In LVM, a volume group is divided up into logical volumes. There are three types of LVM logical volumes:
linear volumes, striped volumes, and mirrored volumes. These are described in the following sections.

3.3.1. Linear Volumes

A linear volume aggregates space from one or more physical volumes into one logical volume. For example,
if you have two 60GB disks, you can create a 120GB logical volume. The physical storage is concatenated.

Creating a linear volume assigns a range of physical extents to an area of a logical volume in order. For
example, as shown in Figure 3.2, “Extent Mapping” logical extents 1 to 99 could map to one physical volume
and logical extents 100 to 198 could map to a second physical volume. From the point of view of the
application, there is one device that is 198 extents in size.

Figure 3.2. Extent Mapping

The physical volumes that make up a logical volume do not have to be the same size. Figure 3.3, “Linear
Volume with Unequal Physical Volumes” shows volume group VG1 with a physical extent size of 4MB. This
volume group includes 2 physical volumes named PV1 and PV2. The physical volumes are divided into 4MB
units, since that is the extent size. In this example, PV1 is 200 extents in size (800MB) and PV2 is 100 extents

Logical Volume Manager Administration

14

in size (400MB). You can create a linear volume any size between 1 and 300 extents (4MB to 1200MB). In
this example, the linear volume named LV1 is 300 extents in size.

Figure 3.3. Linear Volume with Unequal Physical Volumes

You can configure more than one linear logical volume of whatever size you require from the pool of physical
extents. Figure 3.4, “Multiple Logical Volumes” shows the same volume group as in Figure 3.3, “Linear
Volume with Unequal Physical Volumes”, but in this case two logical volumes have been carved out of the
volume group: LV1, which is 250 extents in size (1000MB) and LV2 which is 50 extents in size (200MB).

Figure 3.4. Multiple Logical Volumes

3.3.2. Striped Logical Volumes

Chapter 3. LVM Components

15

When you write data to an LVM logical volume, the file system lays the data out across the underlying
physical volumes. You can control the way the data is written to the physical volumes by creating a striped
logical volume. For large sequential reads and writes, this can improve the efficiency of the data I/O.

Striping enhances performance by writing data to a predetermined number of physical volumes in round-
robin fashion. With striping, I/O can be done in parallel. In some situations, this can result in near-linear
performance gain for each additional physical volume in the stripe.

The following illustration shows data being striped across three physical volumes. In this figure:

the first stripe of data is written to PV1

the second stripe of data is written to PV2

the third stripe of data is written to PV3

the fourth stripe of data is written to PV1

In a striped logical volume, the size of the stripe cannot exceed the size of an extent.

Figure 3.5. Striping Data Across Three PVs

Striped logical volumes can be extended by concatenating another set of devices onto the end of the first set.
In order to extend a striped logical volume, however, there must be enough free space on the underlying
physical volumes that make up the volume group to support the stripe. For example, if you have a two-way
stripe that uses up an entire volume group, adding a single physical volume to the volume group will not
enable you to extend the stripe. Instead, you must add at least two physical volumes to the volume group. For
more information on extending a striped volume, see Section 5.4.9, “Extending a Striped Volume”.

Logical Volume Manager Administration

16

3.3.3. Mirrored Logical Volumes

A mirror maintains identical copies of data on different devices. When data is written to one device, it is
written to a second device as well, mirroring the data. This provides protection for device failures. When one
leg of a mirror fails, the logical volume becomes a linear volume and can still be accessed.

LVM supports mirrored volumes. When you create a mirrored logical volume, LVM ensures that data written
to an underlying physical volume is mirrored onto a separate physical volume. With LVM, you can create
mirrored logical volumes with multiple mirrors.

An LVM mirror divides the device being copied into regions that are typically 512KB in size. LVM maintains a
small log which it uses to keep track of which regions are in sync with the mirror or mirrors. This log can be
kept on disk, which will keep it persistent across reboots, or it can be maintained in memory.

Figure 3.6, “Mirrored Logical Volume” shows a mirrored logical volume with one mirror. In this configuration,
the log is maintained on disk.

Figure 3.6. Mirrored Logical Volume

Note

As of the Red Hat Enterprise Linux 5.3 release, mirrored logical volumes are supported in a cluster.

For information on creating and modifying mirrors, see Section 5.4.1.3, “Creating Mirrored Volumes”.

3.3.4. Snapshot Volumes

The LVM snapshot feature provides the ability to create virtual images of a device at a particular instant
without causing a service interruption. When a change is made to the original device (the origin) after a
snapshot is taken, the snapshot feature makes a copy of the changed data area as it was prior to the change
so that it can reconstruct the state of the device.

Chapter 3. LVM Components

17

Note

LVM snapshots are not supported across the nodes in a cluster. You cannot create a snapshot
volume in a clustered volume group.

Because a snapshot copies only the data areas that change after the snapshot is created, the snapshot
feature requires a minimal amount of storage. For example, with a rarely updated origin, 3-5 % of the origin's
capacity is sufficient to maintain the snapshot.

Note

Snapshot copies of a file system are virtual copies, not actual media backup for a file system.
Snapshots do not provide a substitute for a backup procedure.

The size of the snapshot governs the amount of space set aside for storing the changes to the origin volume.
For example, if you made a snapshot and then completely overwrote the origin the snapshot would have to
be at least as big as the origin volume to hold the changes. You need to dimension a snapshot according to
the expected level of change. So for example a short-lived snapshot of a read-mostly volume, such as /usr,
would need less space than a long-lived snapshot of a volume that sees a greater number of writes, such as
/home.

If a snapshot runs full, the snapshot becomes invalid, since it can no longer track changes on the origin
volumed. You should regularly monitor the size of the snapshot. Snapshots are fully resizeable, however, so
if you have the storage capacity you can increase the size of the snapshot volume to prevent it from getting
dropped. Conversely, if you find that the snapshot volume is larger than you need, you can reduce the size of
the volume to free up space that is needed by other logical volumes.

When you create a snapshot file system, full read and write access to the origin stays possible. If a chunk on
a snapshot is changed, that chunk is marked and never gets copied from the original volume.

There are several uses for the snapshot feature:

Most typically, a snapshot is taken when you need to perform a backup on a logical volume without halting
the live system that is continuously updating the data.

You can execute the fsck command on a snapshot file system to check the file system integrity and
determine whether the original file system requires file system repair.

Because the snapshot is read/write, you can test applications against production data by taking a
snapshot and running tests against the snapshot, leaving the real data untouched.

You can create volumes for use with the Xen virtual machine monitor. You can use the snapshot feature
to create a disk image, snapshot it, and modify the snapshot for a particular domU instance. You can then
create another snapshot and modify it for another domU instance. Since the only storage used is chunks
that were changed on the origin or snapshot, the majority of the volume is shared.

Logical Volume Manager Administration

18

Chapter 4. LVM Administration Overview

This chapter provides an overview of the administrative procedures you use to configure LVM logical
volumes. This chapter is intended to provide a general understanding of the steps involved. For specific step-
by-step examples of common LVM configuration procedures, see Chapter 6, LVM Configuration Examples.

For descriptions of the CLI commands you can use to perform LVM administration, see Chapter 5, LVM
Administration with CLI Commands. Alternately, you can use the LVM GUI, which is described in Chapter 8,
LVM Administration with the LVM GUI .

4.1. Creating LVM Volumes in a Cluster

To create logical volumes in a cluster environment, you use the Clustered Logical Volume Manager (CLVM),
which is a set of clustering extensions to LVM. These extensions allow a cluster of computers to manage
shared storage (for example, on a SAN) using LVM. In order to use CLVM, the Red Hat Cluster Suite
software, including the clvmd daemon, must be started at boot time, as described in Section 2.4, “The
Clustered Logical Volume Manager (CLVM)”.

Creating LVM logical volumes in a cluster environment is identical to creating LVM logical volumes on a
single node. There is no difference in the LVM commands themselves, or in the LVM GUI interface. In order
to enable the LVM volumes you are creating in a cluster, the cluster infrastructure must be running and the
cluster must be quorate.

CLVM requires changes to the lvm.conf file for cluster-wide locking. Information on configuring the
lvm.conf file to support clustered locking is provided within the lvm.conf file itself. For information about
the lvm.conf file, see Appendix B, The LVM Configuration Files.

By default, logical volumes created with CLVM on shared storage are visible to all systems that have access
to the shared storage. It is possible to create volume groups in which all of the storage devices are visible to
only one node in the cluster. It is also possible to change the status of a volume group from a local volume
group to a clustered volume group. For information, see Section 5.3.3, “Creating Volume Groups in a Cluster”
and Section 5.3.8, “Changing the Parameters of a Volume Group”

Warning

When you create volume groups with CLVM on shared storage, you must ensure that all nodes in the
cluster have access to the physical volumes that constitute the volume group. Asymmmetric cluster
configurations in which some nodes have access to the storage and others do not are not supported.

Note

Shared storage for use in Red Hat Cluster Suite requires that you be running the cluster logical
volume manager daemon (clvmd) or the High Availability Logical Volume Management agents (HA-
LVM). If you are not able to use either the clvmd daemon or HA-LVM for operational reasons or
because you do not have the correct entitlements, you must not use single-instance LVM on the
shared disk as this may result in data corruption. If you have any concerns please contact your Red
Hat service representative.

For information on how to install Red Hat Cluster Suite and set up the cluster infrastructure, see Cluster
Administration.

Chapter 4. LVM Administration Overview

19

For an example of creating a mirrored logical volume in a cluster, see Section 6.5, “Creating a Mirrored LVM
Logical Volume in a Cluster”.

4.2. Logical Volume Creation Overview

The following is a summary of the steps to perform to create an LVM logical volume.

1. Initialize the partitions you will use for the LVM volume as physical volumes (this labels them).

2. Create a volume group.

3. Create a logical volume.

After creating the logical volume you can create and mount the file system. The examples in this document
use GFS file systems.

1. Create a GFS file system on the logical volume with the gfs_mkfs command.

2. Create a new mount point with the mkdir command. In a clustered system, create the mount point
on all nodes in the cluster.

3. Mount the file system. You may want to add a line to the fstab file for each node in the system.

Alternately, you can create and mount the GFS file system with the LVM GUI.

Creating the LVM volume is machine independent, since the storage area for LVM setup information is on
the physical volumes and not the machine where the volume was created. Servers that use the storage have
local copies, but can recreate that from what is on the physical volumes. You can attach physical volumes to
a different server if the LVM versions are compatible.

4.3. Growing a File System on a Logical Volume

To grow a file system on a logical volume, perform the following steps:

1. Make a new physical volume.

2. Extend the volume group that contains the logical volume with the file system you are growing to
include the new physical volume.

3. Extend the logical volume to include the new physical volume.

4. Grow the file system.

If you have sufficient unallocated space in the volume group, you can use that space to extend the logical
volume instead of performing steps 1 and 2.

4.4. Logical Volume Backup

Metadata backups and archives are automatically created on every volume group and logical volume
configuration change unless disabled in the lvm.conf file. By default, the metadata backup is stored in the
/etc/lvm/backup file and the metadata archives are stored in the /etc/lvm/archive file. How long the
metadata archives stored in the /etc/lvm/archive file are kept and how many archive files are kept is
determined by parameters you can set in the lvm.conf file. A daily system backup should include the
contents of the /etc/lvm directory in the backup.

Note that a metadata backup does not back up the user and system data contained in the logical volumes.

Logical Volume Manager Administration

20

You can manually back up the metadata to the /etc/lvm/backup file with the vgcfgbackup command.
You can restore metadata with the vgcfgrestore command. The vgcfgbackup and vgcfgrestore
commands are described in Section 5.3.13, “Backing Up Volume Group Metadata”.

4.5. Logging

All message output passes through a logging module with independent choices of logging levels for:

standard output/error

syslog

log file

external log function

The logging levels are set in the /etc/lvm/lvm.conf file, which is described in Appendix B, The LVM
Configuration Files.

4.6. Online Device Reconfiguration

When you change your hardware configuration after system bootup and add or delete a device on a node,
you may need to update the LVM cache file, which maintains a listing of current LVM devices. For example,
when you add new disks to the system on a SAN or hotplug a new disk that is an LVM physical volume, you
may need to update this file.

You can update the LVM cache file by running the vgscan command. For information on the vgscan
command and the LVM cache file, see Section 5.3.6, “Scanning Disks for Volume Groups to Build the Cache
File”.

Chapter 4. LVM Administration Overview

21

Chapter 5. LVM Administration with CLI Commands

This chapter summarizes the individual administrative tasks you can perform with the LVM Command Line
Interface (CLI) commands to create and maintain logical volumes.

Note

If you are creating or modifying an LVM volume for a clustered environment, you must ensure that
you are running the clvmd daemon. For information, see Section 4.1, “Creating LVM Volumes in a
Cluster”.

5.1. Using CLI Commands

There are several general features of all LVM CLI commands.

When sizes are required in a command line argument, units can always be specified explicitly. If you do not
specify a unit, then a default is assumed, usually KB or MB. LVM CLI commands do not accept fractions.

When specifying units in a command line argument, LVM is case-insensitive; specifying M or m is equivalent,
for example, and powers of 2 (multiples of 1024) are used. However, when specifying the --units argument
in a command, lower-case indicates that units are in multiples of 1024 while upper-case indicates that units
are in multiples of 1000.

Where commands take volume group or logical volume names as arguments, the full path name is optional.
A logical volume called lvol0 in a volume group called vg0 can be specified as vg0/lvol0. Where a list of
volume groups is required but is left empty, a list of all volume groups will be substituted. Where a list of
logical volumes is required but a volume group is given, a list of all the logical volumes in that volume group
will be substituted. For example, the lvdisplay vg0 command will display all the logical volumes in volume
group vg0.

All LVM commands accept a -v argument, which can be entered multiple times to increase the output
verbosity. For example, the following examples shows the default output of the lvcreate command.

lvcreate -L 50MB new_vg
 Rounding up size to full physical extent 52.00 MB
 Logical volume "lvol0" created

The following command shows the output of the lvcreate command with the -v argument.

lvcreate -v -L 50MB new_vg
 Finding volume group "new_vg"
 Rounding up size to full physical extent 52.00 MB
 Archiving volume group "new_vg" metadata (seqno 4).
 Creating logical volume lvol0
 Creating volume group backup "/etc/lvm/backup/new_vg" (seqno 5).
 Found volume group "new_vg"
 Creating new_vg-lvol0
 Loading new_vg-lvol0 table
 Resuming new_vg-lvol0 (253:2)
 Clearing start of logical volume "lvol0"
 Creating volume group backup "/etc/lvm/backup/new_vg" (seqno 5).
 Logical volume "lvol0" created

Logical Volume Manager Administration

22

You could also have used the -vv, -vvv or the -vvvv argument to display increasingly more details about
the command execution. The -vvvv argument provides the maximum amount of information at this time. The
following example shows only the first few lines of output for the lvcreate command with the -vvvv
argument specified.

lvcreate -vvvv -L 50MB new_vg
#lvmcmdline.c:913 Processing: lvcreate -vvvv -L 50MB new_vg
#lvmcmdline.c:916 O_DIRECT will be used
#config/config.c:864 Setting global/locking_type to 1
#locking/locking.c:138 File-based locking selected.
#config/config.c:841 Setting global/locking_dir to /var/lock/lvm
#activate/activate.c:358 Getting target version for linear
#ioctl/libdm-iface.c:1569 dm version OF [16384]
#ioctl/libdm-iface.c:1569 dm versions OF [16384]
#activate/activate.c:358 Getting target version for striped
#ioctl/libdm-iface.c:1569 dm versions OF [16384]
#config/config.c:864 Setting activation/mirror_region_size to 512
...

You can display help for any of the LVM CLI commands with the --help argument of the command.

commandname --help

To display the man page for a command, execute the man command:

man commandname

The man lvm command provides general online information about LVM.

All LVM objects are referenced internally by a UUID, which is assigned when you create the object. This can
be useful in a situation where you remove a physical volume called /dev/sdf which is part of a volume
group and, when you plug it back in, you find that it is now /dev/sdk. LVM will still find the physical volume
because it identifies the physical volume by its UUID and not its device name. For information on specifying
the UUID of a physical volume when creating a physical volume, see Section 7.4, “Recovering Physical
Volume Metadata”.

5.2. Physical Volume Administration

This section describes the commands that perform the various aspects of physical volume administration.

5.2.1. Creating Physical Volumes

The following subsections describe the commands used for creating physical volumes.

5.2.1.1. Setting the Partition Type

If you are using a whole disk device for your physical volume, the disk must have no partition table. For DOS
disk partitions, the partition id should be set to 0x8e using the fdisk or cfdisk command or an equivalent.
For whole disk devices only the partition table must be erased, which will effectively destroy all data on that
disk. You can remove an existing partition table by zeroing the first sector with the following command:

dd if=/dev/zero of=PhysicalVolume bs=512 count=1

Chapter 5. LVM Administration with CLI Commands

23

5.2.1.2. Initializing Physical Volumes

Use the pvcreate command to initialize a block device to be used as a physical volume. Initialization is
analogous to formatting a file system.

The following command initializes /dev/sdd, /dev/sde, and /dev/sdf as LVM physical volumes for later
use as part of LVM logical volumes.

pvcreate /dev/sdd /dev/sde /dev/sdf

To initialize partitions rather than whole disks: run the pvcreate command on the partition. The following
example initializes the partition /dev/hdb1 as an LVM physical volume for later use as part of an LVM
logical volume.

pvcreate /dev/hdb1

5.2.1.3. Scanning for Block Devices

You can scan for block devices that may be used as physical volumes with the lvmdiskscan command, as
shown in the following example.

lvmdiskscan
/dev/ram0 [16.00 MB]
 /dev/sda [17.15 GB]
 /dev/root [13.69 GB]
 /dev/ram [16.00 MB]
 /dev/sda1 [17.14 GB] LVM physical volume
 /dev/VolGroup00/LogVol01 [512.00 MB]
 /dev/ram2 [16.00 MB]
 /dev/new_vg/lvol0 [52.00 MB]
 /dev/ram3 [16.00 MB]
 /dev/pkl_new_vg/sparkie_lv [7.14 GB]
 /dev/ram4 [16.00 MB]
 /dev/ram5 [16.00 MB]
 /dev/ram6 [16.00 MB]
 /dev/ram7 [16.00 MB]
 /dev/ram8 [16.00 MB]
 /dev/ram9 [16.00 MB]
 /dev/ram10 [16.00 MB]
 /dev/ram11 [16.00 MB]
 /dev/ram12 [16.00 MB]
 /dev/ram13 [16.00 MB]
 /dev/ram14 [16.00 MB]
 /dev/ram15 [16.00 MB]
 /dev/sdb [17.15 GB]
 /dev/sdb1 [17.14 GB] LVM physical volume
 /dev/sdc [17.15 GB]
 /dev/sdc1 [17.14 GB] LVM physical volume
 /dev/sdd [17.15 GB]
 /dev/sdd1 [17.14 GB] LVM physical volume

Logical Volume Manager Administration

24

 7 disks
 17 partitions
 0 LVM physical volume whole disks
 4 LVM physical volumes

5.2.2. Displaying Physical Volumes

There are three commands you can use to display properties of LVM physical volumes: pvs, pvdisplay,
and pvscan.

The pvs command provides physical volume information in a configurable form, displaying one line per
physical volume. The pvs command provides a great deal of format control, and is useful for scripting. For
information on using the pvs command to customize your output, see Section 5.9, “Customized Reporting for
LVM”.

The pvdisplay command provides a verbose multi-line output for each physical volume. It displays
physical properties (size, extents, volume group, etc.) in a fixed format.

The following example shows the output of the pvdisplay command for a single physical volume.

pvdisplay
 --- Physical volume ---
 PV Name /dev/sdc1
 VG Name new_vg
 PV Size 17.14 GB / not usable 3.40 MB
 Allocatable yes
 PE Size (KByte) 4096
 Total PE 4388
 Free PE 4375
 Allocated PE 13
 PV UUID Joqlch-yWSj-kuEn-IdwM-01S9-XO8M-mcpsVe

The pvscan command scans all supported LVM block devices in the system for physical volumes.

The following command shows all physical devices found:

pvscan
 PV /dev/sdb2 VG vg0 lvm2 [964.00 MB / 0 free]
 PV /dev/sdc1 VG vg0 lvm2 [964.00 MB / 428.00 MB free]
 PV /dev/sdc2 lvm2 [964.84 MB]
 Total: 3 [2.83 GB] / in use: 2 [1.88 GB] / in no VG: 1 [964.84 MB]

You can define a filter in the lvm.conf so that this command will avoid scanning specific physical volumes.
For information on using filters to control which devices are scanned, see Section 5.6, “Controlling LVM
Device Scans with Filters”.

5.2.3. Preventing Allocation on a Physical Volume

You can prevent allocation of physical extents on the free space of one or more physical volumes with the
pvchange command. This may be necessary if there are disk errors, or if you will be removing the physical
volume.

The following command disallows the allocation of physical extents on /dev/sdk1.

Chapter 5. LVM Administration with CLI Commands

25

pvchange -x n /dev/sdk1

You can also use the -xy arguments of the pvchange command to allow allocation where it had previously
been disallowed.

5.2.4. Resizing a Physical Volume

If you need to change the size of an underlying block device for any reason, use the pvresize command to
update LVM with the new size. You can execute this command while LVM is using the physical volume.

5.2.5. Removing Physical Volumes

If a device is no longer required for use by LVM, you can remove the LVM label with the pvremove
command. Executing the pvremove command zeroes the LVM metadata on an empty physical volume.

If the physical volume you want to remove is currently part of a volume group, you must remove it from the
volume group with the vgreduce command, as described in Section 5.3.7, “Removing Physical Volumes
from a Volume Group”.

pvremove /dev/ram15
 Labels on physical volume "/dev/ram15" successfully wiped

5.3. Volume Group Administration

This section describes the commands that perform the various aspects of volume group administration.

5.3.1. Creating Volume Groups

To create a volume group from one or more physical volumes, use the vgcreate command. The vgcreate
command creates a new volume group by name and adds at least one physical volume to it.

The following command creates a volume group named vg1 that contains physical volumes /dev/sdd1 and
/dev/sde1.

vgcreate vg1 /dev/sdd1 /dev/sde1

When physical volumes are used to create a volume group, its disk space is divided into 4 MB extents, by
default. This extent is the minimum amount by which the logical volume may be increased or decreased in
size. Large numbers of extents will have no impact on I/O performance of the logical volume.

You can specify the extent size with the -s option to the vgcreate command if the default extent size is not
suitable. You can put limits on the number of physical or logical volumes the volume group can have by using
the -p and -l arguments of the vgcreate command.

By default, a volume group allocates physical extents according to common-sense rules such as not placing
parallel stripes on the same physical volume. This is the normal allocation policy. You can use the --alloc
argument of the vgcreate command to specify an allocation policy of contiguous, anywhere, or cling.

The contiguous policy requires that new extents are adjacent to existing extents. If there are sufficient free
extents to satisfy an allocation request but a normal allocation policy would not use them, the anywhere
allocation policy will, even if that reduces performance by placing two stripes on the same physical volume.
The cling policy places new extents on the same physical volume as existing extents in the same stripe of

Logical Volume Manager Administration

26

the logical volume. These policies can be changed using the vgchange command.

For information on using the cling policy in conjunction with LVM tags to specify which additional physical
volumes to use when extending an LVM volume, see Section 5.4.11, “Extending a Logical Volume with the
cling Allocation Policy”.

In general, allocation policies other than normal are required only in special cases where you need to
specify unusual or nonstandard extent allocation.

LVM volume groups and underlying logical volumes are included in the device special file directory tree in the
/dev directory with the following layout:

/dev/vg/lv/

For example, if you create two volume groups myvg1 and myvg2, each with three logical volumes named
lv01, lv02, and lv03, this creates six device special files:

/dev/myvg1/lv01
/dev/myvg1/lv02
/dev/myvg1/lv03
/dev/myvg2/lv01
/dev/myvg2/lv02
/dev/myvg2/lv03

The maximum device size with LVM is 8 Exabytes on 64-bit CPUs.

5.3.2. LVM Allocation

When an LVM operation needs to allocate physical extents for one or more logical volumes, the allocation
proceeds as follows:

The complete set of unallocated physical extents in the volume group is generated for consideration. If
you supply any ranges of physical extents at the end of the command line, only unallocated physical
extents within those ranges on the specified physical volumes are considered.

Each allocation policy is tried in turn, starting with the strictest policy (contiguous) and ending with the
allocation policy specified using the --alloc option or set as the default for the particular logical volume
or volume group. For each policy, working from the lowest-numbered logical extent of the empty logical
volume space that needs to be filled, as much space as possible is allocated, according to the restrictions
imposed by the allocation policy. If more space is needed, LVM moves on to the next policy.

The allocation policy restrictions are as follows:

An allocation policy of contiguous requires that the physical location of any logical extent that is not the
first logical extent of a logical volume is adjacent to the physical location of the logical extent immediately
preceding it.

When a logical volume is striped or mirrored, the contiguous allocation restriction is applied
independently to each stripe or mirror image (leg) that needs space.

An allocation policy of cling requires that the physical volume used for any logical extent to be added to
an existing logical volume is already in use by at least one logical extent earlier in that logical volume. If
the configuration parameter allocation/cling_tag_list is defined, then two physical volumes are
considered to match if any of the listed tags is present on both physical volumes. This allows groups of

Chapter 5. LVM Administration with CLI Commands

27

physical volumes with similar properties (such as their physical location) to be tagged and treated as
equivalent for allocation purposes. For more information on using the cling policy in conjunction with
LVM tags to specify which additional physical volumes to use when extending an LVM volume, see
Section 5.4.11, “Extending a Logical Volume with the cling Allocation Policy”.

When a Logical Volume is striped or mirrored, the cling allocation restriction is applied independently to
each stripe or mirror image (leg) that needs space.

An allocation policy of normal will not choose a physical extent that shares the same physical volume as
a logical extent already allocated to a parallel logical volume (that is, a different stripe or mirror image/leg)
at the same offset within that parallel logical volume.

When allocating a mirror log at the same time as logical volumes to hold the mirror data, an allocation
policy of normal will first try to select different physical volumes for the log and the data. If that is not
possible and the allocation/mirror_logs_require_separate_pvs configuration parameter is set
to 0, it will then allow the log to share physical volume(s) with part of the data.

If there are sufficient free extents to satisfy an allocation request but a normal allocation policy would not
use them, the anywhere allocation policy will, even if that reduces performance by placing two stripes on
the same physical volume.

The allocation policies can be changed using the vgchange command.

Note

If you rely upon any layout behaviour beyond that documented in this section according to the defined
allocation policies, you should note that this might change in future versions of the code. For example,
if you supply on the command line two empty physical volumes that have an identical number of free
physical extents available for allocation, LVM currently considers using each of them in the order they
are listed; there is no guarantee that future releases will maintain that property. If it is important to
obtain a specific layout for a particular Logical Volume, then you should build it up through a sequence
of lvcreate and lvconvert steps such that the allocation policies applied to each step leave LVM
no discretion over the layout.

To view the way the allocation process currently works in any specific case, you can read the debug logging
output, for example by adding the -vvvv option to a command.

5.3.3. Creating Volume Groups in a Cluster

You create volume groups in a cluster environment with the vgcreate command, just as you create them
on a single node.

By default, volume groups created with CLVM on shared storage are visible to all computers that have
access to the shared storage. It is possible, however, to create volume groups that are local, visible only to
one node in the cluster, by using the -c n of the vgcreate command.

The following command, when executed in a cluster environment, creates a volume group that is local to the
node from which the command was executed. The command creates a local volume named vg1 that
contains physical volumes /dev/sdd1 and /dev/sde1.

vgcreate -c n vg1 /dev/sdd1 /dev/sde1

You can change whether an existing volume group is local or clustered with the -c option of the vgchange
command, which is described in Section 5.3.8, “Changing the Parameters of a Volume Group”.

Logical Volume Manager Administration

28

You can check whether an existing volume group is a clustered volume group with the vgs command, which
displays the c attribute if the volume is clustered. The following command displays the attributes of the
volume groups VolGroup00 and testvg1. In this example, VolGroup00 is not clustered, while testvg1 is
clustered, as indicated by the c attribute under the Attr heading.

vgs
 VG #PV #LV #SN Attr VSize VFree
 VolGroup00 1 2 0 wz--n- 19.88G 0
 testvg1 1 1 0 wz--nc 46.00G 8.00M

For more information on the vgs command, see Section 5.3.5, “Displaying Volume Groups”Section 5.9,
“Customized Reporting for LVM”, and the vgs man page.

5.3.4. Adding Physical Volumes to a Volume Group

To add additional physical volumes to an existing volume group, use the vgextend command. The
vgextend command increases a volume group's capacity by adding one or more free physical volumes.

The following command adds the physical volume /dev/sdf1 to the volume group vg1.

vgextend vg1 /dev/sdf1

5.3.5. Displaying Volume Groups

There are two commands you can use to display properties of LVM volume groups: vgs and vgdisplay.

The vgscan command, which scans all the disks for volume groups and rebuilds the LVM cache file, also
displays the volume groups. For information on the vgscan command, see Section 5.3.6, “Scanning Disks
for Volume Groups to Build the Cache File”.

The vgs command provides volume group information in a configurable form, displaying one line per volume
group. The vgs command provides a great deal of format control, and is useful for scripting. For information
on using the vgs command to customize your output, see Section 5.9, “Customized Reporting for LVM”.

The vgdisplay command displays volume group properties (such as size, extents, number of physical
volumes, etc.) in a fixed form. The following example shows the output of a vgdisplay command for the
volume group new_vg. If you do not specify a volume group, all existing volume groups are displayed.

vgdisplay new_vg
 --- Volume group ---
 VG Name new_vg
 System ID
 Format lvm2
 Metadata Areas 3
 Metadata Sequence No 11
 VG Access read/write
 VG Status resizable
 MAX LV 0
 Cur LV 1
 Open LV 0
 Max PV 0
 Cur PV 3
 Act PV 3
 VG Size 51.42 GB

Chapter 5. LVM Administration with CLI Commands

29

 PE Size 4.00 MB
 Total PE 13164
 Alloc PE / Size 13 / 52.00 MB
 Free PE / Size 13151 / 51.37 GB
 VG UUID jxQJ0a-ZKk0-OpMO-0118-nlwO-wwqd-fD5D32

5.3.6. Scanning Disks for Volume Groups to Build the Cache File

The vgscan command scans all supported disk devices in the system looking for LVM physical volumes and
volume groups. This builds the LVM cache in the /etc/lvm/.cache file, which maintains a listing of current
LVM devices.

LVM runs the vgscan command automatically at system startup and at other times during LVM operation,
such as when you execute a vgcreate command or when LVM detects an inconsistency.

Note

You may need to run the vgscan command manually when you change your hardware configuration
and add or delete a device from a node, causing new devices to be visible to the system that were not
present at system bootup. This may be necessary, for example, when you add new disks to the
system on a SAN or hotplug a new disk that has been labeled as a physical volume.

You can define a filter in the lvm.conf file to restrict the scan to avoid specific devices. For information on
using filters to control which devices are scanned, see Section 5.6, “Controlling LVM Device Scans with
Filters”.

The following example shows the output of a vgscan command.

vgscan
 Reading all physical volumes. This may take a while...
 Found volume group "new_vg" using metadata type lvm2
 Found volume group "officevg" using metadata type lvm2

5.3.7. Removing Physical Volumes from a Volume Group

To remove unused physical volumes from a volume group, use the vgreduce command. The vgreduce
command shrinks a volume group's capacity by removing one or more empty physical volumes. This frees
those physical volumes to be used in different volume groups or to be removed from the system.

Before removing a physical volume from a volume group, you can make sure that the physical volume is not
used by any logical volumes by using the pvdisplay command.

pvdisplay /dev/hda1

-- Physical volume ---
PV Name /dev/hda1
VG Name myvg
PV Size 1.95 GB / NOT usable 4 MB [LVM: 122 KB]
PV# 1
PV Status available
Allocatable yes (but full)
Cur LV 1

Logical Volume Manager Administration

30

PE Size (KByte) 4096
Total PE 499
Free PE 0
Allocated PE 499
PV UUID Sd44tK-9IRw-SrMC-MOkn-76iP-iftz-OVSen7

If the physical volume is still being used you will have to migrate the data to another physical volume using
the pvmove command. Then use the vgreduce command to remove the physical volume:

The following command removes the physical volume /dev/hda1 from the volume group
my_volume_group.

vgreduce my_volume_group /dev/hda1

5.3.8. Changing the Parameters of a Volume Group

The vgchange command is used to deactivate and activate volume groups, as described in Section 5.3.9,
“Activating and Deactivating Volume Groups”. You can also use this command to change several volume
group parameters for an existing volume group.

The following command changes the maximum number of logical volumes of volume group vg00 to 128.

vgchange -l 128 /dev/vg00

For a description of the volume group parameters you can change with the vgchange command, see the
vgchange(8) man page.

5.3.9. Activating and Deactivating Volume Groups

When you create a volume group it is, by default, activated. This means that the logical volumes in that group
are accessible and subject to change.

There are various circumstances for which you need to make a volume group inactive and thus unknown to
the kernel. To deactivate or activate a volume group, use the -a (--available) argument of the vgchange
command.

The following example deactivates the volume group my_volume_group.

vgchange -a n my_volume_group

If clustered locking is enabled, add ’e’ to activate or deactivate a volume group exclusively on one node or ’l’
to activate or/deactivate a volume group only on the local node. Logical volumes with single-host snapshots
are always activated exclusively because they can only be used on one node at once.

You can deactivate individual logical volumes with the lvchange command, as described in Section 5.4.4,
“Changing the Parameters of a Logical Volume Group”, For information on activating logical volumes on
individual nodes in a cluster, see Section 5.8, “Activating Logical Volumes on Individual Nodes in a Cluster”.

5.3.10. Removing Volume Groups

To remove a volume group that contains no logical volumes, use the vgremove command.

Chapter 5. LVM Administration with CLI Commands

31

vgremove officevg
 Volume group "officevg" successfully removed

5.3.11. Splitting a Volume Group

To split the physical volumes of a volume group and create a new volume group, use the vgsplit
command.

Logical volumes cannot be split between volume groups. Each existing logical volume must be entirely on the
physical volumes forming either the old or the new volume group. If necessary, however, you can use the
pvmove command to force the split.

The following example splits off the new volume group smallvg from the original volume group bigvg.

vgsplit bigvg smallvg /dev/ram15
 Volume group "smallvg" successfully split from "bigvg"

5.3.12. Combining Volume Groups

To combine two volume groups into a single volume group, use the vgmerge command. You can merge an
inactive "source" volume with an active or an inactive "destination" volume if the physical extent sizes of the
volume are equal and the physical and logical volume summaries of both volume groups fit into the
destination volume groups limits.

The following command merges the inactive volume group my_vg into the active or inactive volume group
databases giving verbose runtime information.

vgmerge -v databases my_vg

5.3.13. Backing Up Volume Group Metadata

Metadata backups and archives are automatically created on every volume group and logical volume
configuration change unless disabled in the lvm.conf file. By default, the metadata backup is stored in the
/etc/lvm/backup file and the metadata archives are stored in the /etc/lvm/archives file. You can
manually back up the metadata to the /etc/lvm/backup file with the vgcfgbackup command.

The vgcfrestore command restores the metadata of a volume group from the archive to all the physical
volumes in the volume groups.

For an example of using the vgcfgrestore command to recover physical volume metadata, see
Section 7.4, “Recovering Physical Volume Metadata”.

5.3.14. Renaming a Volume Group

Use the vgrename command to rename an existing volume group.

Either of the following commands renames the existing volume group vg02 to my_volume_group

vgrename /dev/vg02 /dev/my_volume_group

vgrename vg02 my_volume_group

Logical Volume Manager Administration

32

5.3.15. Moving a Volume Group to Another System

You can move an entire LVM volume group to another system. It is recommended that you use the
vgexport and vgimport commands when you do this.

The vgexport command makes an inactive volume group inaccessible to the system, which allows you to
detach its physical volumes. The vgimport command makes a volume group accessible to a machine again
after the vgexport command has made it inactive.

To move a volume group form one system to another, perform the following steps:

1. Make sure that no users are accessing files on the active volumes in the volume group, then
unmount the logical volumes.

2. Use the -a n argument of the vgchange command to mark the volume group as inactive, which
prevents any further activity on the volume group.

3. Use the vgexport command to export the volume group. This prevents it from being accessed by
the system from which you are removing it.

After you export the volume group, the physical volume will show up as being in an exported volume
group when you execute the pvscan command, as in the following example.

pvscan
 PV /dev/sda1 is in exported VG myvg [17.15 GB / 7.15 GB free]
 PV /dev/sdc1 is in exported VG myvg [17.15 GB / 15.15 GB free]
 PV /dev/sdd1 is in exported VG myvg [17.15 GB / 15.15 GB free]
 ...

When the system is next shut down, you can unplug the disks that constitute the volume group and
connect them to the new system.

4. When the disks are plugged into the new system, use the vgimport command to import the volume
group, making it accessible to the new system.

5. Activate the volume group with the -a y argument of the vgchange command.

6. Mount the file system to make it available for use.

5.3.16. Recreating a Volume Group Directory

To recreate a volume group directory and logical volume special files, use the vgmknodes command. This
command checks the LVM2 special files in the /dev directory that are needed for active logical volumes. It
creates any special files that are missing removes unused ones.

You can incorporate the vgmknodes command into the vgscan command by specifying the mknodes
argument to the vgscan command.

5.4. Logical Volume Administration

This section describes the commands that perform the various aspects of logical volume administration.

5.4.1. Creating Logical Volumes

Chapter 5. LVM Administration with CLI Commands

33

To create a logical volume, use the lvcreate command. You can create linear volumes, striped volumes,
and mirrored volumes, as described in the following subsections.

If you do not specify a name for the logical volume, the default name lvol# is used where # is the internal
number of the logical volume.

The following sections provide examples of logical volume creation for the three types of logical volumes you
can create with LVM.

5.4.1.1. Creating Linear Volumes

When you create a logical volume, the logical volume is carved from a volume group using the free extents on
the physical volumes that make up the volume group. Normally logical volumes use up any space available
on the underlying physical volumes on a next-free basis. Modifying the logical volume frees and reallocates
space in the physical volumes.

The following command creates a logical volume 10 gigabytes in size in the volume group vg1.

lvcreate -L 10G vg1

The following command creates a 1500 MB linear logical volume named testlv in the volume group
testvg, creating the block device /dev/testvg/testlv.

lvcreate -L1500 -n testlv testvg

The following command creates a 50 gigabyte logical volume named gfslv from the free extents in volume
group vg0.

lvcreate -L 50G -n gfslv vg0

You can use the -l argument of the lvcreate command to specify the size of the logical volume in extents.
You can also use this argument to specify the percentage of the volume group to use for the logical volume.
The following command creates a logical volume called mylv that uses 60% of the total space in volume
group testvg.

lvcreate -l 60%VG -n mylv testvg

You can also use the -l argument of the lvcreate command to specify the percentage of the remaining
free space in a volume group as the size of the logical volume. The following command creates a logical
volume called yourlv that uses all of the unallocated space in the volume group testvg.

lvcreate -l 100%FREE -n yourlv testvg

You can use -l argument of the lvcreate command to create a logical volume that uses the entire volume
group. Another way to create a logical volume that uses the entire volume group is to use the vgdisplay
command to find the "Total PE" size and to use those results as input to the lvcreate command.

The following commands create a logical volume called mylv that fills the volume group named testvg.

vgdisplay testvg | grep "Total PE"
Total PE 10230
lvcreate -l 10230 testvg -n mylv

Logical Volume Manager Administration

34

The underlying physical volumes used to create a logical volume can be important if the physical volume
needs to be removed, so you may need to consider this possibility when you create the logical volume. For
information on removing a physical volume from a volume group, see Section 5.3.7, “Removing Physical
Volumes from a Volume Group”.

To create a logical volume to be allocated from a specific physical volume in the volume group, specify the
physical volume or volumes at the end at the lvcreate command line. The following command creates a
logical volume named testlv in volume group testvg allocated from the physical volume /dev/sdg1,

lvcreate -L 1500 -ntestlv testvg /dev/sdg1

You can specify which extents of a physical volume are to be used for a logical volume. The following
example creates a linear logical volume out of extents 0 through 24 of physical volume /dev/sda1 and
extents 50 through 124 of physical volume /dev/sdb1 in volume group testvg.

lvcreate -l 100 -n testlv testvg /dev/sda1:0-24 /dev/sdb1:50-124

The following example creates a linear logical volume out of extents 0 through 24 of physical volume
/dev/sda1 and then continues laying out the logical volume at extent 100.

lvcreate -l 100 -n testlv testvg /dev/sda1:0-24:100-

The default policy for how the extents of a logical volume are allocated is inherit, which applies the same
policy as for the volume group. These policies can be changed using the lvchange command. For
information on allocation policies, see Section 5.3.1, “Creating Volume Groups”.

5.4.1.2. Creating Striped Volumes

For large sequential reads and writes, creating a striped logical volume can improve the efficiency of the data
I/O. For general information about striped volumes, see Section 3.3.2, “Striped Logical Volumes”.

When you create a striped logical volume, you specify the number of stripes with the -i argument of the
lvcreate command. This determines over how many physical volumes the logical volume will be striped.
The number of stripes cannot be greater than the number of physical volumes in the volume group (unless the
--alloc anywhere argument is used).

If the underlying physical devices that make up a striped logical volume are different sizes, the maximum size
of the striped volume is determined by the smallest underlying device. For example, in a two-legged stripe,
the maximum size is twice the size of the smaller device. In a three-legged stripe, the maximum size is three
times the size of the smallest device.

The following command creates a striped logical volume across 2 physical volumes with a stripe of 64kB. The
logical volume is 50 gigabytes in size, is named gfslv, and is carved out of volume group vg0.

lvcreate -L 50G -i2 -I64 -n gfslv vg0

As with linear volumes, you can specify the extents of the physical volume that you are using for the stripe.
The following command creates a striped volume 100 extents in size that stripes across two physical
volumes, is named stripelv and is in volume group testvg. The stripe will use sectors 0-49 of
/dev/sda1 and sectors 50-99 of /dev/sdb1.

lvcreate -l 100 -i2 -nstripelv testvg /dev/sda1:0-49 /dev/sdb1:50-99
 Using default stripesize 64.00 KB
 Logical volume "stripelv" created

Chapter 5. LVM Administration with CLI Commands

35

5.4.1.3. Creating Mirrored Volumes

Note

As of the Red Hat Enterprise Linux 5.3 release, mirrored logical volumes are supported in a cluster.
Creating a mirrored LVM logical volume in a cluster requires the same commands and procedures as
creating a mirrored LVM logical volume on a single node. However, in order to create a mirrored LVM
volume in a cluster the cluster and cluster mirror infrastructure must be running, the cluster must be
quorate, and the locking type in the lvm.conf file must be set correctly to enable cluster locking. For
an example of creating a mirrored volume in a cluster, see Section 6.5, “Creating a Mirrored LVM
Logical Volume in a Cluster”.

When you create a mirrored volume, you specify the number of copies of the data to make with the -m
argument of the lvcreate command. Specifying -m1 creates one mirror, which yields two copies of the file
system: a linear logical volume plus one copy. Similarly, specifying -m2 creates two mirrors, yielding three
copies of the file system.

The following command creates a mirrored logical volume with a single mirror. The volume is 50 gigabytes in
size, is named mirrorlv, and is carved out of volume group vg0:

lvcreate -L 50G -m1 -n mirrorlv vg0

An LVM mirror divides the device being copied into regions that, by default, are 512KB in size. You can use
the -R argument of the lvcreate command to specify the region size in megabytes. You can also change
the default region size by editing the mirror_region_size setting in the lvm.conf file.

Note

Due to limitations in the cluster infrastructure, cluster mirrors greater than 1.5TB cannot be created
with the default region size of 512KB. Users that require larger mirrors should increase the region size
from its default to something larger. Failure to increase the region size will cause LVM creation to
hang and may hang other LVM commands as well.

As a general guideline for specifying the region size for mirrors that are larger than 1.5TB, you could
take your mirror size in terabytes and round up that number to the next power of 2, using that number
as the -R argument to the lvcreate command. For example, if your mirror size is 1.5TB, you could
specify -R 2. If your mirror size is 3TB, you could specify -R 4. For a mirror size of 5TB, you could
specify -R 8.

The following command creates a mirrored logical volume with a region size of 2 MB:

 # lvcreate -m1 -L 2T -R 2 -n mirror vol_group

When a mirror is created, the mirror regions are synchronized. For large mirror components, the sync
process may take a long time. When you are creating a new mirror that does not need to be revived, you can
specify the --nosync argument to indicate that an initial synchronization from the first device is not required.

Logical Volume Manager Administration

36

LVM maintains a small log which it uses to keep track of which regions are in sync with the mirror or mirrors.
By default, this log is kept on disk, which keeps it persistent across reboots. You can specify instead that this
log be kept in memory with the --corelog argument; this eliminates the need for an extra log device, but it
requires that the entire mirror be resynchronized at every reboot.

The following command creates a mirrored logical volume from the volume group bigvg. The logical is
named ondiskmirvol and has a single mirror. The volume is 12 MB in size and keeps the mirror log in
memory.

lvcreate -L 12MB -m1 --corelog -n ondiskmirvol bigvg
 Logical volume "ondiskmirvol" created

The mirror log is created on a separate device from the devices on which any of the mirror legs are created. It
is possible, however, to create the mirror log on the same device as one of the mirror legs by using the --
alloc anywhere argument of the vgcreate command. This may degrade performance, but it allows you
to create a mirror even if you have only two underlying devices.

The following command creates a mirrored logical volume with a single mirror for which the mirror log is on
the same device as one of the mirror legs. In this example, the volume group vg0 consists of only two
devices. This command creates a 500 MB volume named mirrorlv in the vg0 volume group.

lvcreate -L 500M -m1 -n mirrorlv -alloc anywhere vg0

Note

As of the Red Hat Enterprise Linux 5.7 release, you can combine RAID0 (striping) and RAID1
(mirroring) in a single logical volume. Creating a logical volume while simultaneously specifying the
number of mirrors (--mirrors X) and the number of stripes (--stripes Y) results in a mirror
device whose constituent devices are striped.

Note

With clustered mirrors, the mirror log management is completely the responsibility of the cluster node
with the currently lowest cluster ID. Therefore, when the device holding the cluster mirror log becomes
unavailable on a subset of the cluster, the clustered mirror can continue operating without any impact,
as long as the cluster node with lowest ID retains access to the mirror log. Since the mirror is
undisturbed, no automatic corrective action (repair) is issued, either. When the lowest-ID cluster node
loses access to the mirror log, however, automatic action will kick in (regardless of accessibility of the
log from other nodes).

5.4.1.3.1. Mirroring the Mirror Log

To create a mirror log that is itself mirrored, you can specify the --mirrorlog mirrored argument. The
following command creates a mirrored logical volume from the volume group bigvg. The logical volume is
named twologvol and has a single mirror. The volume is 12 MB in size and the mirror log is mirrored, with
each log kept on a separate device.

lvcreate -L 12MB -m1 --mirrorlog mirrored -n twologvol bigvg
 Logical volume "twologvol" created

Chapter 5. LVM Administration with CLI Commands

37

Just as with a standard mirror log, it is possible to create the redundant mirror logs on the same device as
the mirror legs by using the --alloc anywhere argument of the vgcreate command. This may degrade
performance, but it allows you to create a redundant mirror log even if you do not have sufficient underlying
devices for each log to be kept on a separate device than the mirror legs.

5.4.1.3.2. Specifying Devices for Mirror Components

You can specify which devices to use for the mirror legs and log, and which extents of the devices to use. To
force the log onto a particular disk, specify exactly one extent on the disk on which it will be placed. LVM does
not necessary respect the order in which devices are listed in the command line. If any physical volumes are
listed that is the only space on which allocation will take place. Any physical extents included in the list that
are already allocated will get ignored.

The following command creates a mirrored logical volume with a single mirror. The volume is 500 MB in size,
it is named mirrorlv, and it is carved out of volume group vg0. The first leg of the mirror is on device
/dev/sda1, the second leg of the mirror is on device /dev/sdb1, and the mirror log is on /dev/sdc1.

lvcreate -L 500M -m1 -n mirrorlv vg0 /dev/sda1 /dev/sdb1 /dev/sdc1

The following command creates a mirrored logical volume with a single mirror. The volume is 500 MB in size,
it is named mirrorlv, and it is carved out of volume group vg0. The first leg of the mirror is on extents 0
through 499 of device /dev/sda1, the second leg of the mirror is on extents 0 through 499 of device
/dev/sdb1, and the mirror log starts on extent 0 of device /dev/sdc1. These are 1 MB extents. If any of
the specified extents have already been allocated, they will be ignored.

lvcreate -L 500M -m1 -n mirrorlv vg0 /dev/sda1:0-499 /dev/sdb1:0-499
/dev/sdc1:0

5.4.1.3.3. Splitting Off a Redundant Image of a Mirrored Logical Volume

You can split off a redundant image of a mirrored logical volume to form a new logical volume. To split off an
image, you use the --splitmirrors argument of the lvconvert command, specifying the number of
redundant images to split off. You must use the --name argument of the command to specify a name for the
newly-split-off logical volume.

The following command splits off a new logical volume named copy from the mirrored logical volume vg/lv.
The new logical volume contains two mirror legs. In this example, LVM selects which devices to split off.

lvconvert --splitmirrors 2 --name copy vg/lv

You can specify which devices to split off. The following command splits off a new logical volume named
copy from the mirrored logical volume vg/lv. The new logical volume contains two mirror legs consisting of
devices /dev/sdc1 and /dev/sde1.

lvconvert --splitmirrors 2 --name copy vg/lv /dev/sd[ce]1

5.4.1.4. Changing Mirrored Volume Configuration

You can convert a logical volume from a mirrored volume to a linear volume or from a linear volume to a
mirrored volume with the lvconvert command. You can also use this command to reconfigure other mirror
parameters of an existing logical volume, such as corelog.

Logical Volume Manager Administration

38

When you convert a logical volume to a mirrored volume, you are basically creating mirror legs for an existing
volume. This means that your volume group must contain the devices and space for the mirror legs and for
the mirror log.

If you lose a leg of a mirror, LVM converts the volume to a linear volume so that you still have access to the
volume, without the mirror redundancy. After you replace the leg, you can use the lvconvert command to
restore the mirror. This procedure is provided in Section 7.3, “Recovering from LVM Mirror Failure”.

The following command converts the linear logical volume vg00/lvol1 to a mirrored logical volume.

lvconvert -m1 vg00/lvol1

The following command converts the mirrored logical volume vg00/lvol1 to a linear logical volume,
removing the mirror leg.

lvconvert -m0 vg00/lvol1

5.4.2. Persistent Device Numbers

Major and minor device numbers are allocated dynamically at module load. Some applications work best if
the block device always is activated with the same device minor number. You can specify this with the
lvcreate and the lvchange commands by using the following arguments:

--persistent y --minor minor

Use a large minor number to be sure that it has not already been allocated to another device dynamically.

If you are exporting a file system using NFS, specifying the fsid parameter in the exports file may avoid the
need to set a persistent device number within LVM.

Note

Prior to the Red Hat Enterprise Linux 5.11 release, it was necessary to specify a major number when
using the --persistent option. This had no effect on the major number, which the kernel assigned
dynamically.

5.4.3. Resizing Logical Volumes

To reduce the size of a logical volume, use the lvreduce command. If the logical volume contains a file
system, be sure to reduce the file system first (or use the LVM GUI) so that the logical volume is always at
least as large as the file system expects it to be.

The following command reduces the size of logical volume lvol1 in volume group vg00 by 3 logical extents.

lvreduce -l -3 vg00/lvol1

5.4.4. Changing the Parameters of a Logical Volume Group

To change the parameters of a logical volume, use the lvchange command. For a listing of the parameters
you can change, see the lvchange(8) man page.

Chapter 5. LVM Administration with CLI Commands

39

You can use the lvchange command to activate and deactivate logical volumes. To activate and deactivate
all the logical volumes in a volume group at the same time, use the vgchange command, as described in
Section 5.3.8, “Changing the Parameters of a Volume Group”.

The following command changes the permission on volume lvol1 in volume group vg00 to be read-only.

lvchange -pr vg00/lvol1

5.4.5. Renaming Logical Volumes

To rename an existing logical volume, use the lvrename command.

Either of the following commands renames logical volume lvold in volume group vg02 to lvnew.

lvrename /dev/vg02/lvold /dev/vg02/lvnew

lvrename vg02 lvold lvnew

For more information on activating logical volumes on individual nodes in a cluster, see Section 5.8,
“Activating Logical Volumes on Individual Nodes in a Cluster”.

5.4.6. Removing Logical Volumes

To remove an inactive logical volume, use the lvremove command. If the logical volume is currently
mounted, unmount the volume before removing it. In addition, in a clustered environment you must
deactivate a logical volume before it can be removed.

The following command removes the logical volume /dev/testvg/testlv. from the volume group
testvg. Note that in this case the logical volume has not been deactivated.

lvremove /dev/testvg/testlv
Do you really want to remove active logical volume "testlv"? [y/n]: y
 Logical volume "testlv" successfully removed

You could explicitly deactivate the logical volume before removing it with the lvchange -an command, in
which case you would not see the prompt verifying whether you want to remove an active logical volume.

5.4.7. Displaying Logical Volumes

There are three commands you can use to display properties of LVM logical volumes: lvs, lvdisplay, and
lvscan.

The lvs command provides logical volume information in a configurable form, displaying one line per logical
volume. The lvs command provides a great deal of format control, and is useful for scripting. For information
on using the lvs command to customize your output, see Section 5.9, “Customized Reporting for LVM”.

The lvdisplay command displays logical volume properties (such as size, layout, and mapping) in a fixed
format.

The following command shows the attributes of lvol2 in vg00. If snapshot logical volumes have been
created for this original logical volume, this command shows a list of all snapshot logical volumes and their
status (active or inactive) as well.

Logical Volume Manager Administration

40

lvdisplay -v /dev/vg00/lvol2

The lvscan command scans for all logical volumes in the system and lists them, as in the following
example.

lvscan
 ACTIVE '/dev/vg0/gfslv' [1.46 GB] inherit

5.4.8. Growing Logical Volumes

To increase the size of a logical volume, use the lvextend command.

After extending the logical volume, you will need to increase the size of the associated file system to match.

When you extend the logical volume, you can indicate how much you want to extend the volume, or how
large you want it to be after you extend it.

The following command extends the logical volume /dev/myvg/homevol to 12 gigabytes.

lvextend -L12G /dev/myvg/homevol
lvextend -- extending logical volume "/dev/myvg/homevol" to 12 GB
lvextend -- doing automatic backup of volume group "myvg"
lvextend -- logical volume "/dev/myvg/homevol" successfully extended

The following command adds another gigabyte to the logical volume /dev/myvg/homevol.

lvextend -L+1G /dev/myvg/homevol
lvextend -- extending logical volume "/dev/myvg/homevol" to 13 GB
lvextend -- doing automatic backup of volume group "myvg"
lvextend -- logical volume "/dev/myvg/homevol" successfully extended

As with the lvcreate command, you can use the -l argument of the lvextend command to specify the
number of extents by which to increase the size of the logical volume. You can also use this argument to
specify a percentage of the volume group, or a percentage of the remaining free space in the volume group.
The following command extends the logical volume called testlv to fill all of the unallocated space in the
volume group myvg.

lvextend -l +100%FREE /dev/myvg/testlv
 Extending logical volume testlv to 68.59 GB
 Logical volume testlv successfully resized

After you have extended the logical volume it is necessary to increase the file system size to match.

By default, most file system resizing tools will increase the size of the file system to be the size of the
underlying logical volume so you do not need to worry about specifying the same size for each of the two
commands.

5.4.9. Extending a Striped Volume

In order to increase the size of a striped logical volume, there must be enough free space on the underlying
physical volumes that make up the volume group to support the stripe. For example, if you have a two-way
stripe that that uses up an entire volume group, adding a single physical volume to the volume group will not
enable you to extend the stripe. Instead, you must add at least two physical volumes to the volume group.

Chapter 5. LVM Administration with CLI Commands

41

For example, consider a volume group vg that consists of two underlying physical volumes, as displayed with
the following vgs command.

vgs
 VG #PV #LV #SN Attr VSize VFree
 vg 2 0 0 wz--n- 271.31G 271.31G

You can create a stripe using the entire amount of space in the volume group.

lvcreate -n stripe1 -L 271.31G -i 2 vg
 Using default stripesize 64.00 KB
 Rounding up size to full physical extent 271.31 GB
 Logical volume "stripe1" created
lvs -a -o +devices
 LV VG Attr LSize Origin Snap% Move Log Copy% Devices
 stripe1 vg -wi-a- 271.31G
/dev/sda1(0),/dev/sdb1(0)

Note that the volume group now has no more free space.

vgs
 VG #PV #LV #SN Attr VSize VFree
 vg 2 1 0 wz--n- 271.31G 0

The following command adds another physical volume to the volume group, which then has 135G of
additional space.

vgextend vg /dev/sdc1
 Volume group "vg" successfully extended
vgs
 VG #PV #LV #SN Attr VSize VFree
 vg 3 1 0 wz--n- 406.97G 135.66G

At this point you cannot extend the striped logical volume to the full size of the volume group, because two
underlying devices are needed in order to stripe the data.

lvextend vg/stripe1 -L 406G
 Using stripesize of last segment 64.00 KB
 Extending logical volume stripe1 to 406.00 GB
 Insufficient suitable allocatable extents for logical volume stripe1:
34480
more required

To extend the striped logical volume, add another physical volume and then extend the logical volume. In this
example, having added two physical volumes to the volume group we can extend the logical volume to the full
size of the volume group.

vgextend vg /dev/sdd1
 Volume group "vg" successfully extended
vgs
 VG #PV #LV #SN Attr VSize VFree
 vg 4 1 0 wz--n- 542.62G 271.31G

Logical Volume Manager Administration

42

lvextend vg/stripe1 -L 542G
 Using stripesize of last segment 64.00 KB
 Extending logical volume stripe1 to 542.00 GB
 Logical volume stripe1 successfully resized

If you do not have enough underlying physical devices to extend the striped logical volume, it is possible to
extend the volume anyway if it does not matter that the extension is not striped, which may result in uneven
performance. When adding space to the logical volume, the default operation is to use the same striping
parameters of the last segment of the existing logical volume, but you can override those parameters. The
following example extends the existing striped logical volume to use the remaining free space after the initial
lvextend command fails.

lvextend vg/stripe1 -L 406G
 Using stripesize of last segment 64.00 KB
 Extending logical volume stripe1 to 406.00 GB
 Insufficient suitable allocatable extents for logical volume stripe1:
34480
more required
lvextend -i1 -l+100%FREE vg/stripe1

5.4.10. Extending a Mirrored Volume

As of the Red Hat Enterprise Linux 5.8 release, it is possible to grow mirrored logical volumes with the
lvextend command without performing a synchronization of the new mirror regions.

If you specify the --nosync option when you create a mirrored logical volume with the lvcreate
command, the mirror regions are not synchronized when the mirror is created, as described in
Section 5.4.1.3, “Creating Mirrored Volumes”. If you later extend a mirror that you have created with the --
nosync option, the mirror extensions are not synchronized at that time, either.

You can determine whether an existing logical volume was created with the --nosync option by using the
lvs command to display the volume's attributes. A logical volume will have an attribute of "M" if it is a
mirrored volume that was created without an initial synchronization, and it will have an attribute of "m" if it
was created with initial synchronization.

The following command displays the attributes of a mirrored logical volume named lv that was created
without initial synchronization.

lvs vg
 LV VG Attr LSize Pool Origin Snap% Move Log Copy% Convert
 lv vg Mwi-a-m- 5.00g lv_mlog 100.00

If you grow this mirrored logical volume with the lvextend command, the mirror extension will not be
resynchronized. For more information on displaying the attributes of logical volumes with the lvs command,
refer to Table 5.3, “lvs Display Fields”.

If you created a mirrored logical volume without specifying the --nosync option of the lvcreate command,
you can grow the logical volume without resynchronizing the mirror by specifying the --nosync option of the
lvextend command.

The following example extends a logical volume that was created without the --nosync option, indicated
that the mirror was synchronized when it was created. This example, however, specifies that the mirror not
be synchronized when the volume is extended. Note that the volume has an attribute of "m", but after
executing the lvextend commmand with the --nosync option the volume has an attribute of "M".

Chapter 5. LVM Administration with CLI Commands

43

lvs vg
 LV VG Attr LSize Pool Origin Snap% Move Log Copy% Convert
 lv vg mwi-a-m- 20.00m lv_mlog 100.00
lvextend -L +5G vg/lv --nosync
 Extending 2 mirror images.
 Extending logical volume lv to 5.02 GiB
 Logical volume lv successfully resized
lvs vg
 LV VG Attr LSize Pool Origin Snap% Move Log Copy% Convert
 lv vg Mwi-a-m- 5.02g lv_mlog 100.00

If a mirror is inactive, it will not automatically skip synchronization when you extend the mirror, even if you
create the mirror with the --nosync option specified. Instead, you will be prompted whether to do a full
resync of the extended portion of the logical volume.

Note

If a mirror is performing recovery, you cannot extend the mirrored logical volume if you created or
extended the volume with the --nosync option specified. If you did not specify the --nosync option,
however, you can extend the mirror while it is recovering.

5.4.11. Extending a Logical Volume with the cling Allocation Policy

As of the Red Hat Enterprise Linux 5.7 release, when extending an LVM volume, you can use the --alloc
cling option of the lvextend command to specify the cling allocation policy. This policy will choose
space on the same physical volumes as the last segment of the existing logical volume. If there is insufficient
space on the physical volumes and a list of tags is defined in the lvm.conf file, LVM will check whether any
of the tags are attached to the physical volumes and seek to match those physical volume tags between
existing extents and new extents.

For example, if you have logical volumes that are mirrored between two sites within a single volume group,
you can tag the physical volumes according to where they are situated by tagging the physical volumes with
@site1 and @site2 tags and specify the following line in the lvm.conf file:

cling_tag_list = ["@site1", "@site2"]

For information on tagging physical volumes, see Appendix C, LVM Object Tags.

In the following example, the lvm.conf file has been modified to contain the following line:

cling_tag_list = ["@A", "@B"]

Also in this example, a volume group taft has been created that consists of the physical volumes
/dev/sdb1, /dev/sdc1, /dev/sdd1, /dev/sde1, /dev/sdf1, /dev/sdg1, and /dev/sdh1. These
physical volumes have been tagged with tags A, B, and C. The example does not use the C tag, but this will
show that LVM uses the tags to select which physical volumes to use for the mirror legs.

pvs -a -o +pv_tags /dev/sd[bcdefgh]1
 PV VG Fmt Attr PSize PFree PV Tags
 /dev/sdb1 taft lvm2 a- 135.66g 135.66g A
 /dev/sdc1 taft lvm2 a- 135.66g 135.66g B
 /dev/sdd1 taft lvm2 a- 135.66g 135.66g B

Logical Volume Manager Administration

44

 /dev/sde1 taft lvm2 a- 135.66g 135.66g C
 /dev/sdf1 taft lvm2 a- 135.66g 135.66g C
 /dev/sdg1 taft lvm2 a- 135.66g 135.66g A
 /dev/sdh1 taft lvm2 a- 135.66g 135.66g A

The following command creates a 100G mirrored volume from the volume group taft.

lvcreate -m 1 -n mirror --nosync -L 100G taft

The following command shows which devices are used for the mirror legs and mirror log.

lvs -a -o +devices
 LV VG Attr LSize Log Copy% Devices
 mirror taft Mwi-a- 100.00g mirror_mlog 100.00
mirror_mimage_0(0),mirror_mimage_1(0)
 [mirror_mimage_0] taft iwi-ao 100.00g
/dev/sdb1(0)
 [mirror_mimage_1] taft iwi-ao 100.00g
/dev/sdc1(0)
 [mirror_mlog] taft lwi-ao 4.00m
/dev/sdh1(0)

The following command extends the size of the mirrored volume, using the cling allocation policy to indicate
that the mirror legs should be extended using physical volumes with the same tag.

lvextend --alloc cling -L +100G taft/mirror
 Extending 2 mirror images.
 Extending logical volume mirror to 200.00 GiB
 Logical volume mirror successfully resized

The following display command shows that the mirror legs have been extended using physical volumes with
the same tag as the leg. Note that the physical volumes with a tag of C were ignored.

lvs -a -o +devices
 LV VG Attr LSize Log Copy% Devices
 mirror taft Mwi-a- 200.00g mirror_mlog 50.16
mirror_mimage_0(0),mirror_mimage_1(0)
 [mirror_mimage_0] taft Iwi-ao 200.00g
/dev/sdb1(0)
 [mirror_mimage_0] taft Iwi-ao 200.00g
/dev/sdg1(0)
 [mirror_mimage_1] taft Iwi-ao 200.00g
/dev/sdc1(0)
 [mirror_mimage_1] taft Iwi-ao 200.00g
/dev/sdd1(0)
 [mirror_mlog] taft lwi-ao 4.00m
/dev/sdh1(0)

5.4.12. Shrinking Logical Volumes

To reduce the size of a logical volume, first unmount the file system. You can then use the lvreduce
command to shrink the volume. After shrinking the volume, remount the file system.

Chapter 5. LVM Administration with CLI Commands

45

Warning

It is important to reduce the size of the file system or whatever is residing in the volume before
shrinking the volume itself, otherwise you risk losing data.

Shrinking a logical volume frees some of the volume group to be allocated to other logical volumes in the
volume group.

The following example reduces the size of logical volume lvol1 in volume group vg00 by 3 logical extents.

lvreduce -l -3 vg00/lvol1

5.5. Creating Snapshot Volumes

Use the -s argument of the lvcreate command to create a snapshot volume. A snapshot volume is
writable.

Note

LVM snapshots are not supported across the nodes in a cluster. You cannot create a snapshot
volume in a clustered volume group. As of the Red Hat Enterprise Linux 5.7 release, however, if you
need to create a consistent backup of data on a clustered logical volume that is not mirrored, you can
activate the volume exclusively and then create the snapshot. For information on activating logical
volumes exclusively on one node, see Section 5.8, “Activating Logical Volumes on Individual Nodes in
a Cluster”.

The following command creates a snapshot logical volume that is 100 MB in size named /dev/vg00/snap.
This creates a snapshot of the origin logical volume named /dev/vg00/lvol1. If the original logical volume
contains a file system, you can mount the snapshot logical volume on an arbitrary directory in order to access
the contents of the file system to run a backup while the original file system continues to get updated.

lvcreate --size 100M --snapshot --name snap /dev/vg00/lvol1

After you create a snapshot logical volume, specifying the origin volume on the lvdisplay command yields
output that includes a list of all snapshot logical volumes and their status (active or inactive).

The following example shows the status of the logical volume /dev/new_vg/lvol0, for which a snapshot
volume /dev/new_vg/newvgsnap has been created.

lvdisplay /dev/new_vg/lvol0
 --- Logical volume ---
 LV Name /dev/new_vg/lvol0
 VG Name new_vg
 LV UUID LBy1Tz-sr23-OjsI-LT03-nHLC-y8XW-EhCl78
 LV Write Access read/write
 LV snapshot status source of
 /dev/new_vg/newvgsnap1 [active]
 LV Status available
 # open 0
 LV Size 52.00 MB

Logical Volume Manager Administration

46

 Current LE 13
 Segments 1
 Allocation inherit
 Read ahead sectors 0
 Block device 253:2

The lvs command, by default, displays the origin volume and the current percentage of the snapshot volume
being used for each snapshot volume. The following example shows the default output for the lvs command
for a system that includes the logical volume /dev/new_vg/lvol0, for which a snapshot volume
/dev/new_vg/newvgsnap has been created.

lvs
 LV VG Attr LSize Origin Snap% Move Log Copy%
 lvol0 new_vg owi-a- 52.00M
 newvgsnap1 new_vg swi-a- 8.00M lvol0 0.20

Warning

Because the snapshot increases in size as the origin volume changes, it is important to monitor the
percentage of the snapshot volume regularly with the lvs command to be sure it does not fill. A
snapshot that is 100% full is lost completely, as a write to unchanged parts of the origin would be
unable to succeed without corrupting the snapshot.

As of the Red Hat Enterprise Linux 5.7 release, there are two new features related to snapshots. First,
in addition to the snapshot itself being invalidated when full, any mounted file systems on that
snapshot device are forcibly unmounted, avoiding the inevitable file system errors upon access to the
mount point. Second, you can specify the snapshot_autoextend_threshold option in the
lvm.conf file. This option allows automatic extension of a snapshot whenever the remaining
snapshot space drops below the threshold you set. This feature requires that there be unallocated
space in the volume group.

Information on setting snapshot_autoextend_threshold and
snapshot_autoextend_percent is provided in the lvm.conf file itself. For information about the
lvm.conf file, refer to Appendix B, The LVM Configuration Files.

5.6. Controlling LVM Device Scans with Filters

At startup, the vgscan command is run to scan the block devices on the system looking for LVM labels, to
determine which of them are physical volumes and to read the metadata and build up a list of volume groups.
The names of the physical volumes are stored in the cache file of each node in the system,
/etc/lvm/.cache. Subsequent commands may read that file to avoiding rescanning.

You can control which devices LVM scans by setting up filters in the lvm.conf configuration file. The filters
in the lvm.conf file consist of a series of simple regular expressions that get applied to the device names
that are in the /dev directory to decide whether to accept or reject each block device found.

The following examples show the use of filters to control which devices LVM scans. Note that some of these
examples do not necessarily represent best practice, as the regular expressions are matched freely against
the complete pathname. For example, a/loop/ is equivalent to a/.*loop.*/ and would match
/dev/solooperation/lvol1.

Chapter 5. LVM Administration with CLI Commands

47

The following filter adds all discovered devices, which is the default behavior as there is no filter configured in
the configuration file:

filter = ["a/.*/"]

The following filter removes the cdrom device in order to avoid delays if the drive contains no media:

filter = ["r|/dev/cdrom|"]

The following filter adds all loop and removes all other block devices:

filter = ["a/loop.*/", "r/.*/"]

The following filter adds all loop and IDE and removes all other block devices:

filter =["a|loop.*|", "a|/dev/hd.*|", "r|.*|"]

The following filter adds just partition 8 on the first IDE drive and removes all other block devices:

filter = ["a|^/dev/hda8$|", "r/.*/"]

For more information on the lvm.conf file, see Appendix B, The LVM Configuration Files and the
lvm.conf(5) man page.

5.7. Online Data Relocation

You can move data while the system is in use with the pvmove command.

The pvmove command breaks up the data to be moved into sections and creates a temporary mirror to move
each section. For more information on the operation of the pvmove command, see the pvmove(8) man page.

Note

In order to perform a pvmove operation in a cluster, you should ensure that the cmirror and
cmirror-kmod packages are installed and that the cmirror service is running. The cmirror-kmod
package that must be installed depends on the kernel that is running. For example, if the running
kernel is kernel-largesmp, it is necessary to have cmirror-kmod-largesmp for the
corresponding kernel version.

The following command moves all allocated space off the physical volume /dev/sdc1 to other free physical
volumes in the volume group:

pvmove /dev/sdc1

The following command moves just the extents of the logical volume MyLV.

pvmove -n MyLV /dev/sdc1

Since the pvmove command can take a long time to execute, you may want to run the command in the
background to avoid display of progress updates in the foreground. The following command moves all extents

Logical Volume Manager Administration

48

allocated to the physical volume /dev/sdc1 over to /dev/sdf1 in the background.

pvmove -b /dev/sdc1 /dev/sdf1

The following command reports the progress of the move as a percentage at five second intervals.

pvmove -i5 /dev/sdd1

5.8. Activating Logical Volumes on Individual Nodes in a Cluster

If you have LVM installed in a cluster environment, you may at times need to activate logical volumes
exclusively on one node.

To activate logical volumes exclusively on one node, use the lvchange -aey command. Alternatively, you
can use lvchange -aly command to activate logical volumes only on the local node but not exclusively.
You can later activate them on additional nodes concurrently.

You can also activate logical volumes on individual nodes by using LVM tags, which are described in
Appendix C, LVM Object Tags. You can also specify activation of nodes in the configuration file, which is
described in Appendix B, The LVM Configuration Files.

5.9. Customized Reporting for LVM

You can produce concise and customizable reports of LVM objects with the pvs, lvs, and vgs commands.
The reports that these commands generate include one line of output for each object. Each line contains an
ordered list of fields of properties related to the object. There are five ways to select the objects to be
reported: by physical volume, volume group, logical volume, physical volume segment, and logical volume
segment.

The following sections provide:

A summary of command arguments you can use to control the format of the generated report.

A list of the fields you can select for each LVM object.

A summary of command arguments you can use to sort the generated report.

Instructions for specifying the units of the report output.

5.9.1. Format Control

Whether you use the pvs, lvs, or vgs command determines the default set of fields displayed and the sort
order. You can control the output of these commands with the following arguments:

You can change what fields are displayed to something other than the default by using the -o argument.
For example, the following output is the default display for the pvs command (which displays information
about physcial volumes).

pvs
 PV VG Fmt Attr PSize PFree
 /dev/sdb1 new_vg lvm2 a- 17.14G 17.14G
 /dev/sdc1 new_vg lvm2 a- 17.14G 17.09G
 /dev/sdd1 new_vg lvm2 a- 17.14G 17.14G

Chapter 5. LVM Administration with CLI Commands

49

The following command displays only the physical volume name and size.

pvs -o pv_name,pv_size
 PV PSize
 /dev/sdb1 17.14G
 /dev/sdc1 17.14G
 /dev/sdd1 17.14G

You can append a field to the output with the plus sign (+), which is used in combination with the -o
argument.

The following example displays the UUID of the physical volume in addition to the default fields.

pvs -o +pv_uuid
 PV VG Fmt Attr PSize PFree PV UUID
 /dev/sdb1 new_vg lvm2 a- 17.14G 17.14G onFF2w-1fLC-ughJ-D9eB-M7iv-
6XqA-dqGeXY
 /dev/sdc1 new_vg lvm2 a- 17.14G 17.09G Joqlch-yWSj-kuEn-IdwM-01S9-
X08M-mcpsVe
 /dev/sdd1 new_vg lvm2 a- 17.14G 17.14G yvfvZK-Cf31-j75k-dECm-0RZ3-
0dGW-UqkCS

Adding the -v argument to a command includes some extra fields. For example, the pvs -v command
will display the DevSize and PV UUID fields in addition to the default fields.

pvs -v
 Scanning for physical volume names
 PV VG Fmt Attr PSize PFree DevSize PV UUID
 /dev/sdb1 new_vg lvm2 a- 17.14G 17.14G 17.14G onFF2w-1fLC-ughJ-D9eB-
M7iv-6XqA-dqGeXY
 /dev/sdc1 new_vg lvm2 a- 17.14G 17.09G 17.14G Joqlch-yWSj-kuEn-IdwM-
01S9-XO8M-mcpsVe
 /dev/sdd1 new_vg lvm2 a- 17.14G 17.14G 17.14G yvfvZK-Cf31-j75k-dECm-
0RZ3-0dGW-tUqkCS

The --noheadings argument suppresses the headings line. This can be useful for writing scripts.

The following example uses the --noheadings argument in combination with the pv_name argument,
which will generate a list of all physical volumes.

pvs --noheadings -o pv_name
 /dev/sdb1
 /dev/sdc1
 /dev/sdd1

The --separator separator argument uses separator to separate each field.

The following example separates the default output fields of the pvs command with an equals sign (=).

pvs --separator =
 PV=VG=Fmt=Attr=PSize=PFree
 /dev/sdb1=new_vg=lvm2=a-=17.14G=17.14G
 /dev/sdc1=new_vg=lvm2=a-=17.14G=17.09G
 /dev/sdd1=new_vg=lvm2=a-=17.14G=17.14G

Logical Volume Manager Administration

50

To keep the fields aligned when using the separator argument, use the separator argument in
conjunction with the --aligned argument.

pvs --separator = --aligned
 PV =VG =Fmt =Attr=PSize =PFree
 /dev/sdb1 =new_vg=lvm2=a- =17.14G=17.14G
 /dev/sdc1 =new_vg=lvm2=a- =17.14G=17.09G
 /dev/sdd1 =new_vg=lvm2=a- =17.14G=17.14G

You can use the -P argument of the lvs or vgs command to display information about a failed volume that
would otherwise not appear in the output. For information on the output this argument yields, see Section 7.2,
“Displaying Information on Failed Devices”.

For a full listing of display arguments, see the pvs(8), vgs(8) and lvs(8) man pages.

Volume group fields can be mixed with either physical volume (and physical volume segment) fields or with
logical volume (and logical volume segment) fields, but physical volume and logical volume fields cannot be
mixed. For example, the following command will display one line of output for each physical volume.

vgs -o +pv_name
 VG #PV #LV #SN Attr VSize VFree PV
 new_vg 3 1 0 wz--n- 51.42G 51.37G /dev/sdc1
 new_vg 3 1 0 wz--n- 51.42G 51.37G /dev/sdd1
 new_vg 3 1 0 wz--n- 51.42G 51.37G /dev/sdb1

5.9.2. Object Selection

This section provides a series of tables that list the information you can display about the LVM objects with
the pvs, vgs, and lvs commands.

For convenience, a field name prefix can be dropped if it matches the default for the command. For example,
with the pvs command, name means pv_name, but with the vgs command, name is interpreted as vg_name.

Executing the following command is the equivalent of executing pvs -o pv_free.

pvs -o +free
 PFree
 17.14G
 17.09G
 17.14G

The pvs Command

Table 5.1, “pvs Display Fields” lists the display arguments of the pvs command, along with the field name as
it appears in the header display and a description of the field.

Table 5.1. pvs Display Fields

Argument Header Description
dev_size DevSize The size of the underlying device on which the physical

volume was created
pe_start 1st PE Offset to the start of the first physical extent in the

underlying device

Chapter 5. LVM Administration with CLI Commands

51

pv_attr Attr Status of the physical volume: (a)llocatable or e(x)ported.

pv_fmt Fmt The metadata format of the physical volume (lvm2 or lvm1)

pv_free PFree The free space remaining on the physical volume

pv_name PV The physical volume name

pv_pe_alloc_count Alloc Number of used physical extents

pv_pe_count PE Number of physical extents

pvseg_size SSize The segment size of the physical volume

pvseg_start Start The starting physical extent of the physical volume segment

pv_size PSize The size of the physical volume

pv_tags PV Tags LVM tags attached to the physical volume

pv_used Used The amount of space currently used on the physical volume

pv_uuid PV UUID The UUID of the physical volume

Argument Header Description

The pvs command displays the following fields by default: pv_name, vg_name, pv_fmt, pv_attr,
pv_size, pv_free. The display is sorted by pv_name.

pvs
 PV VG Fmt Attr PSize PFree
 /dev/sdb1 new_vg lvm2 a- 17.14G 17.14G
 /dev/sdc1 new_vg lvm2 a- 17.14G 17.09G
 /dev/sdd1 new_vg lvm2 a- 17.14G 17.13G

Using the -v argument with the pvs command adds the following fields to the default display: dev_size,
pv_uuid.

pvs -v
 Scanning for physical volume names
 PV VG Fmt Attr PSize PFree DevSize PV UUID
 /dev/sdb1 new_vg lvm2 a- 17.14G 17.14G 17.14G onFF2w-1fLC-ughJ-D9eB-
M7iv-6XqA-dqGeXY
 /dev/sdc1 new_vg lvm2 a- 17.14G 17.09G 17.14G Joqlch-yWSj-kuEn-IdwM-
01S9-XO8M-mcpsVe
 /dev/sdd1 new_vg lvm2 a- 17.14G 17.13G 17.14G yvfvZK-Cf31-j75k-dECm-
0RZ3-0dGW-tUqkCS

You can use the --segments argument of the pvs command to display information about each physical
volume segment. A segment is a group of extents. A segment view can be useful if you want to see whether
your logical volume is fragmented.

The pvs --segments command displays the following fields by default: pv_name, vg_name, pv_fmt,
pv_attr, pv_size, pv_free, pvseg_start, pvseg_size. The display is sorted by pv_name and
pvseg_size within the physical volume.

pvs --segments
 PV VG Fmt Attr PSize PFree Start SSize
 /dev/hda2 VolGroup00 lvm2 a- 37.16G 32.00M 0 1172
 /dev/hda2 VolGroup00 lvm2 a- 37.16G 32.00M 1172 16
 /dev/hda2 VolGroup00 lvm2 a- 37.16G 32.00M 1188 1
 /dev/sda1 vg lvm2 a- 17.14G 16.75G 0 26
 /dev/sda1 vg lvm2 a- 17.14G 16.75G 26 24
 /dev/sda1 vg lvm2 a- 17.14G 16.75G 50 26

Logical Volume Manager Administration

52

 /dev/sda1 vg lvm2 a- 17.14G 16.75G 76 24
 /dev/sda1 vg lvm2 a- 17.14G 16.75G 100 26
 /dev/sda1 vg lvm2 a- 17.14G 16.75G 126 24
 /dev/sda1 vg lvm2 a- 17.14G 16.75G 150 22
 /dev/sda1 vg lvm2 a- 17.14G 16.75G 172 4217
 /dev/sdb1 vg lvm2 a- 17.14G 17.14G 0 4389
 /dev/sdc1 vg lvm2 a- 17.14G 17.14G 0 4389
 /dev/sdd1 vg lvm2 a- 17.14G 17.14G 0 4389
 /dev/sde1 vg lvm2 a- 17.14G 17.14G 0 4389
 /dev/sdf1 vg lvm2 a- 17.14G 17.14G 0 4389
 /dev/sdg1 vg lvm2 a- 17.14G 17.14G 0 4389

You can use the pvs -a command to see devices detected by LVM that have not been initialized as LVM
physical volumes.

pvs -a
 PV VG Fmt Attr PSize PFree
 /dev/VolGroup00/LogVol01 -- 0 0
 /dev/new_vg/lvol0 -- 0 0
 /dev/ram -- 0 0
 /dev/ram0 -- 0 0
 /dev/ram2 -- 0 0
 /dev/ram3 -- 0 0
 /dev/ram4 -- 0 0
 /dev/ram5 -- 0 0
 /dev/ram6 -- 0 0
 /dev/root -- 0 0
 /dev/sda -- 0 0
 /dev/sdb -- 0 0
 /dev/sdb1 new_vg lvm2 a- 17.14G 17.14G
 /dev/sdc -- 0 0
 /dev/sdc1 new_vg lvm2 a- 17.14G 17.09G
 /dev/sdd -- 0 0
 /dev/sdd1 new_vg lvm2 a- 17.14G 17.14G

The vgs Command

Table 5.2, “vgs Display Fields” lists the display arguments of the vgs command, along with the field name as
it appears in the header display and a description of the field.

Table 5.2. vgs Display Fields

Argument Header Description
lv_count #LV The number of logical volumes the volume group contains

max_lv MaxLV The maximum number of logical volumes allowed in the
volume group (0 if unlimited)

max_pv MaxPV The maximum number of physical volumes allowed in the
volume group (0 if unlimited)

pv_count #PV The number of physical volumes that define the volume
group

snap_count #SN The number of snapshots the volume group contains

vg_attr Attr Status of the volume group: (w)riteable, (r)eadonly,
resi(z)eable, e(x)ported, (p)artial and (c)lustered.

Chapter 5. LVM Administration with CLI Commands

53

vg_extent_count #Ext The number of physical extents in the volume group

vg_extent_size Ext The size of the physical extents in the volume group

vg_fmt Fmt The metadata format of the volume group (lvm2 or lvm1)

vg_free VFree Size of the free space remaining in the volume group

vg_free_count Free Number of free physical extents in the volume group

vg_name VG The volume group name

vg_seqno Seq Number representing the revision of the volume group

vg_size VSize The size of the volume group

vg_sysid SYS ID LVM1 System ID

vg_tags VG Tags LVM tags attached to the volume group

vg_uuid VG UUID The UUID of the volume group

Argument Header Description

The vgs command displays the following fields by default: vg_name, pv_count, lv_count, snap_count,
vg_attr, vg_size, vg_free. The display is sorted by vg_name.

vgs
 VG #PV #LV #SN Attr VSize VFree
 new_vg 3 1 1 wz--n- 51.42G 51.36G

Using the -v argument with the vgs command adds the following fields to the default display:
vg_extent_size, vg_uuid.

vgs -v
 Finding all volume groups
 Finding volume group "new_vg"
 VG Attr Ext #PV #LV #SN VSize VFree VG UUID
 new_vg wz--n- 4.00M 3 1 1 51.42G 51.36G jxQJ0a-ZKk0-OpMO-0118-nlwO-
wwqd-fD5D32

The lvs Command

Table 5.3, “lvs Display Fields” lists the display arguments of the lvs command, along with the field name as
it appears in the header display and a description of the field.

Table 5.3. lvs Display Fields

Argument Header Description

chunksize

chunk_size

Chunk Unit size in a snapshot volume

copy_percent Copy% The synchronization percentage of a mirrored logical
volume; also used when physical extents are being moved
with the pv_move command

devices Devices The underlying devices that make up the logical volume: the
physical volumes, logical volumes, and start physical
extents and logical extents

Logical Volume Manager Administration

54

lv_attr Attr The status of the logical volume. The logical volume
attribute bits are as follows:

Bit 1: Volume type: (m)irrored, (M)irrored without initial sync,
(o)rigin, (p)vmove, (s)napshot, invalid (S)napshot, (v)irtual

Bit2: Permissions: (w)riteable, (r)ead-only

Bit 3: Allocation policy: (c)ontiguous, (n)ormal, (a)nywhere,
(i)nherited. This is capitalized if the volume is currently
locked against allocation changes, for example while
executing the pvmove command.

Bit 4: fixed (m)inor

Bit 5 State: (a)ctive, (s)uspended, (I)nvalid snapshot, invalid
(S)uspended snapshot, mapped (d)evice present without
tables, mapped device present with (i)nactive table

Bit 6: device (o)pen

lv_kernel_major KMaj Actual major device number of the logical volume (-1 if
inactive)

lv_kernel_minor KMIN Actual minor device number of the logical volume (-1 if
inactive)

lv_major Maj The persistent major device number of the logical volume (-
1 if not specified)

lv_minor Min The persistent minor device number of the logical volume (-
1 if not specified)

lv_name LV The name of the logical volume

lv_size LSize The size of the logical volume

lv_tags LV Tags LVM tags attached to the logical volume

lv_uuid LV UUID The UUID of the logical volume.

mirror_log Log Device on which the mirror log resides

modules Modules Corresponding kernel device-mapper target necessary to
use this logical volume

move_pv Move Source physical volume of a temporary logical volume
created with the pvmove command

origin Origin The origin device of a snapshot volume

regionsize

region_size

Region The unit size of a mirrored logical volume

seg_count #Seg The number of segments in the logical volume

seg_size SSize The size of the segments in the logical volume

seg_start Start Offset of the segment in the logical volume

seg_tags Seg Tags LVM tags attached to the segments of the logical volume

segtype Type The segment type of a logical volume (for example: mirror,
striped, linear)

snap_percent Snap% Current percentage of a snapshot volume that is in use

stripes #Str Number of stripes or mirrors in a logical volume

Argument Header Description

Chapter 5. LVM Administration with CLI Commands

55

stripesize

stripe_size

Stripe Unit size of the stripe in a striped logical volume

Argument Header Description

The lvs command displays the following fields by default: lv_name, vg_name, lv_attr, lv_size,
origin, snap_percent, move_pv, mirror_log, copy_percent, convert_lv. The default display is
sorted by vg_name and lv_name within the volume group.

lvs
 LV VG Attr LSize Origin Snap% Move Log Copy% Convert
 lvol0 new_vg owi-a- 52.00M
 newvgsnap1 new_vg swi-a- 8.00M lvol0 0.20

Using the -v argument with the lvs command adds the following fields to the default display: seg_count,
lv_major, lv_minor, lv_kernel_major, lv_kernel_minor, lv_uuid.

lvs -v
 Finding all logical volumes
 LV VG #Seg Attr LSize Maj Min KMaj KMin Origin Snap% Move
Copy% Log Convert LV UUID
 lvol0 new_vg 1 owi-a- 52.00M -1 -1 253 3
LBy1Tz-sr23-OjsI-LT03-nHLC-y8XW-EhCl78
 newvgsnap1 new_vg 1 swi-a- 8.00M -1 -1 253 5 lvol0 0.20
1ye1OU-1cIu-o79k-20h2-ZGF0-qCJm-CfbsIx

You can use the --segments argument of the lvs command to display information with default columns
that emphasize the segment information. When you use the segments argument, the seg prefix is optional.
The lvs --segments command displays the following fields by default: lv_name, vg_name, lv_attr,
stripes, segtype, seg_size. The default display is sorted by vg_name, lv_name within the volume
group, and seg_start within the logical volume. If the logical volumes were fragmented, the output from this
command would show that.

lvs --segments
 LV VG Attr #Str Type SSize
 LogVol00 VolGroup00 -wi-ao 1 linear 36.62G
 LogVol01 VolGroup00 -wi-ao 1 linear 512.00M
 lv vg -wi-a- 1 linear 104.00M
 lv vg -wi-a- 1 linear 104.00M
 lv vg -wi-a- 1 linear 104.00M
 lv vg -wi-a- 1 linear 88.00M

Using the -v argument with the lvs --segments command adds the following fields to the default display:
seg_start, stripesize, chunksize.

lvs -v --segments
 Finding all logical volumes
 LV VG Attr Start SSize #Str Type Stripe Chunk
 lvol0 new_vg owi-a- 0 52.00M 1 linear 0 0
 newvgsnap1 new_vg swi-a- 0 8.00M 1 linear 0 8.00K

Logical Volume Manager Administration

56

The following example shows the default output of the lvs command on a system with one logical volume
configured, followed by the default output of the lvs command with the segments argument specified.

lvs
 LV VG Attr LSize Origin Snap% Move Log Copy%
 lvol0 new_vg -wi-a- 52.00M
lvs --segments
 LV VG Attr #Str Type SSize
 lvol0 new_vg -wi-a- 1 linear 52.00M

5.9.3. Sorting LVM Reports

Normally the entire output of the lvs, vgs, or pvs command has to be generated and stored internally
before it can be sorted and columns aligned correctly. You can specify the --unbuffered argument to
display unsorted output as soon as it is generated.

To specify an alternative ordered list of columns to sort on, use the -O argument of any of the reporting
commands. It is not necessary to include these fields within the output itself.

The following example shows the output of the pvs command that displays the physical volume name, size,
and free space.

pvs -o pv_name,pv_size,pv_free
 PV PSize PFree
 /dev/sdb1 17.14G 17.14G
 /dev/sdc1 17.14G 17.09G
 /dev/sdd1 17.14G 17.14G

The following example shows the same output, sorted by the free space field.

pvs -o pv_name,pv_size,pv_free -O pv_free
 PV PSize PFree
 /dev/sdc1 17.14G 17.09G
 /dev/sdd1 17.14G 17.14G
 /dev/sdb1 17.14G 17.14G

The following example shows that you do not need to display the field on which you are sorting.

pvs -o pv_name,pv_size -O pv_free
 PV PSize
 /dev/sdc1 17.14G
 /dev/sdd1 17.14G
 /dev/sdb1 17.14G

To display a reverse sort, precede a field you specify after the -O argument with the - character.

pvs -o pv_name,pv_size,pv_free -O -pv_free
 PV PSize PFree
 /dev/sdd1 17.14G 17.14G
 /dev/sdb1 17.14G 17.14G
 /dev/sdc1 17.14G 17.09G

5.9.4. Specifying Units

Chapter 5. LVM Administration with CLI Commands

57

To specify the unit for the LVM report display, use the --units argument of the report command. You can
specify (b)ytes, (k)ilobytes, (m)egabytes, (g)igabytes, (t)erabytes, (e)xabytes, (p)etabytes, and (h)uman-
readable. The default display is human-readable. You can override the default by setting the units
parameter in the global section of the lvm.conf file.

The following example specifies the output of the pvs command in megabytes rather than the default
gigabytes.

pvs --units m
 PV VG Fmt Attr PSize PFree
 /dev/sda1 lvm2 -- 17555.40M 17555.40M
 /dev/sdb1 new_vg lvm2 a- 17552.00M 17552.00M
 /dev/sdc1 new_vg lvm2 a- 17552.00M 17500.00M
 /dev/sdd1 new_vg lvm2 a- 17552.00M 17552.00M

By default, units are displayed in powers of 2 (multiples of 1024). You can specify that units be displayed in
multiples of 1000 by capitalizing the unit specification (B, K, M, G, T, H).

The following command displays the output as a multiple of 1024, the default behavior.

pvs
 PV VG Fmt Attr PSize PFree
 /dev/sdb1 new_vg lvm2 a- 17.14G 17.14G
 /dev/sdc1 new_vg lvm2 a- 17.14G 17.09G
 /dev/sdd1 new_vg lvm2 a- 17.14G 17.14G

The following command displays the output as a multiple of 1000.

pvs --units G
 PV VG Fmt Attr PSize PFree
 /dev/sdb1 new_vg lvm2 a- 18.40G 18.40G
 /dev/sdc1 new_vg lvm2 a- 18.40G 18.35G
 /dev/sdd1 new_vg lvm2 a- 18.40G 18.40G

You can also specify (s)ectors (defined as 512 bytes) or custom units.

The following example displays the output of the pvs command as a number of sectors.

pvs --units s
 PV VG Fmt Attr PSize PFree
 /dev/sdb1 new_vg lvm2 a- 35946496S 35946496S
 /dev/sdc1 new_vg lvm2 a- 35946496S 35840000S
 /dev/sdd1 new_vg lvm2 a- 35946496S 35946496S

The following example displays the output of the pvs command in units of 4 megabytes.

pvs --units 4m
 PV VG Fmt Attr PSize PFree
 /dev/sdb1 new_vg lvm2 a- 4388.00U 4388.00U
 /dev/sdc1 new_vg lvm2 a- 4388.00U 4375.00U
 /dev/sdd1 new_vg lvm2 a- 4388.00U 4388.00U

Logical Volume Manager Administration

58

Chapter 6. LVM Configuration Examples

This chapter provides some basic LVM configuration examples.

6.1. Creating an LVM Logical Volume on Three Disks

This example creates an LVM logical volume called new_logical_volume that consists of the disks at
/dev/sda1, /dev/sdb1, and /dev/sdc1.

6.1.1. Creating the Physical Volumes

To use disks in a volume group, you label them as LVM physical volumes.

Warning

This command destroys any data on /dev/sda1, /dev/sdb1, and /dev/sdc1.

pvcreate /dev/sda1 /dev/sdb1 /dev/sdc1
 Physical volume "/dev/sda1" successfully created
 Physical volume "/dev/sdb1" successfully created
 Physical volume "/dev/sdc1" successfully created

6.1.2. Creating the Volume Group

The following command creates the volume group new_vol_group.

vgcreate new_vol_group /dev/sda1 /dev/sdb1 /dev/sdc1
 Volume group "new_vol_group" successfully created

You can use the vgs command to display the attributes of the new volume group.

vgs
 VG #PV #LV #SN Attr VSize VFree
 new_vol_group 3 0 0 wz--n- 51.45G 51.45G

6.1.3. Creating the Logical Volume

The following command creates the logical volume new_logical_volume from the volume group
new_vol_group. This example creates a logical volume that uses 2GB of the volume group.

lvcreate -L2G -n new_logical_volume new_vol_group
 Logical volume "new_logical_volume" created

6.1.4. Creating the File System

The following command creates a GFS file system on the logical volume.

Chapter 6. LVM Configuration Examples

59

gfs_mkfs -plock_nolock -j 1 /dev/new_vol_group/new_logical_volume
This will destroy any data on /dev/new_vol_group/new_logical_volume.

Are you sure you want to proceed? [y/n] y

Device: /dev/new_vol_group/new_logical_volume
Blocksize: 4096
Filesystem Size: 491460
Journals: 1
Resource Groups: 8
Locking Protocol: lock_nolock
Lock Table:

Syncing...
All Done

The following commands mount the logical volume and report the file system disk space usage.

mount /dev/new_vol_group/new_logical_volume /mnt
df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/new_vol_group/new_logical_volume
 1965840 20 1965820 1% /mnt

6.2. Creating a Striped Logical Volume

This example creates an LVM striped logical volume called striped_logical_volume that stripes data
across the disks at /dev/sda1, /dev/sdb1, and /dev/sdc1.

6.2.1. Creating the Physical Volumes

Label the disks you will use in the volume groups as LVM physical volumes.

Warning

This command destroys any data on /dev/sda1, /dev/sdb1, and /dev/sdc1.

pvcreate /dev/sda1 /dev/sdb1 /dev/sdc1
 Physical volume "/dev/sda1" successfully created
 Physical volume "/dev/sdb1" successfully created
 Physical volume "/dev/sdc1" successfully created

6.2.2. Creating the Volume Group

The following command creates the volume group volgroup01.

vgcreate volgroup01 /dev/sda1 /dev/sdb1 /dev/sdc1
 Volume group "volgroup01" successfully created

Logical Volume Manager Administration

60

You can use the vgs command to display the attributes of the new volume group.

vgs
 VG #PV #LV #SN Attr VSize VFree
 volgroup01 3 0 0 wz--n- 51.45G 51.45G

6.2.3. Creating the Logical Volume

The following command creates the striped logical volume striped_logical_volume from the volume
group volgroup01. This example creates a logical volume that is 2 gigabytes in size, with three stripes and
a stripe size of 4 kilobytes.

lvcreate -i3 -I4 -L2G -nstriped_logical_volume volgroup01
 Rounding size (512 extents) up to stripe boundary size (513 extents)
 Logical volume "striped_logical_volume" created

6.2.4. Creating the File System

The following command creates a GFS file system on the logical volume.

gfs_mkfs -plock_nolock -j 1 /dev/volgroup01/striped_logical_volume
This will destroy any data on /dev/volgroup01/striped_logical_volume.

Are you sure you want to proceed? [y/n] y

Device: /dev/volgroup01/striped_logical_volume
Blocksize: 4096
Filesystem Size: 492484
Journals: 1
Resource Groups: 8
Locking Protocol: lock_nolock
Lock Table:

Syncing...
All Done

The following commands mount the logical volume and report the file system disk space usage.

mount /dev/volgroup01/striped_logical_volume /mnt
df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/VolGroup00-LogVol00
 13902624 1656776 11528232 13% /
/dev/hda1 101086 10787 85080 12% /boot
tmpfs 127880 0 127880 0% /dev/shm
/dev/volgroup01/striped_logical_volume
 1969936 20 1969916 1% /mnt

6.3. Splitting a Volume Group

In this example, an existing volume group consists of three physical volumes. If there is enough unused
space on the physical volumes, a new volume group can be created without adding new disks.

Chapter 6. LVM Configuration Examples

61

In the initial set up, the logical volume mylv is carved from the volume group myvol, which in turn consists of
the three physical volumes, /dev/sda1, /dev/sdb1, and /dev/sdc1.

After completing this procedure, the volume group myvg will consist of /dev/sda1 and /dev/sdb1. A
second volume group, yourvg, will consist of /dev/sdc1.

6.3.1. Determining Free Space

You can use the pvscan command to determine how much free space is currently available in the volume
group.

pvscan
 PV /dev/sda1 VG myvg lvm2 [17.15 GB / 0 free]
 PV /dev/sdb1 VG myvg lvm2 [17.15 GB / 12.15 GB free]
 PV /dev/sdc1 VG myvg lvm2 [17.15 GB / 15.80 GB free]
 Total: 3 [51.45 GB] / in use: 3 [51.45 GB] / in no VG: 0 [0]

6.3.2. Moving the Data

You can move all the used physical extents in /dev/sdc1 to /dev/sdb1 with the pvmove command. The
pvmove command can take a long time to execute.

pvmove /dev/sdc1 /dev/sdb1
 /dev/sdc1: Moved: 14.7%
 /dev/sdc1: Moved: 30.3%
 /dev/sdc1: Moved: 45.7%
 /dev/sdc1: Moved: 61.0%
 /dev/sdc1: Moved: 76.6%
 /dev/sdc1: Moved: 92.2%
 /dev/sdc1: Moved: 100.0%

After moving the data, you can see that all of the space on /dev/sdc1 is free.

pvscan
 PV /dev/sda1 VG myvg lvm2 [17.15 GB / 0 free]
 PV /dev/sdb1 VG myvg lvm2 [17.15 GB / 10.80 GB free]
 PV /dev/sdc1 VG myvg lvm2 [17.15 GB / 17.15 GB free]
 Total: 3 [51.45 GB] / in use: 3 [51.45 GB] / in no VG: 0 [0]

6.3.3. Splitting the Volume Group

To create the new volume group yourvg, use the vgsplit command to split the volume group myvg.

Before you can split the volume group, the logical volume must be inactive. If the file system is mounted, you
must unmount the file system before deactivating the logical volume.

You can deactivate the logical volumes with the lvchange command or the vgchange command. The
following command deactivates the logical volume mylv and then splits the volume group yourvg from the
volume group myvg, moving the physical volume /dev/sdc1 into the new volume group yourvg.

lvchange -a n /dev/myvg/mylv
vgsplit myvg yourvg /dev/sdc1
 Volume group "yourvg" successfully split from "myvg"

Logical Volume Manager Administration

62

You can use the vgs command to see the attributes of the two volume groups.

vgs
 VG #PV #LV #SN Attr VSize VFree
 myvg 2 1 0 wz--n- 34.30G 10.80G
 yourvg 1 0 0 wz--n- 17.15G 17.15G

6.3.4. Creating the New Logical Volume

After creating the new volume group, you can create the new logical volume yourlv.

lvcreate -L5G -n yourlv yourvg
 Logical volume "yourlv" created

6.3.5. Making a File System and Mounting the New Logical Volume

You can make a file system on the new logical volume and mount it.

gfs_mkfs -plock_nolock -j 1 /dev/yourvg/yourlv
This will destroy any data on /dev/yourvg/yourlv.

Are you sure you want to proceed? [y/n] y

Device: /dev/yourvg/yourlv
Blocksize: 4096
Filesystem Size: 1277816
Journals: 1
Resource Groups: 20
Locking Protocol: lock_nolock
Lock Table:

Syncing...
All Done

mount /dev/yourvg/yourlv /mnt

6.3.6. Activating and Mounting the Original Logical Volume

Since you had to deactivate the logical volume mylv, you need to activate it again before you can mount it.

lvchange -a y /dev/myvg/mylv

mount /dev/myvg/mylv /mnt
df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/yourvg/yourlv 24507776 32 24507744 1% /mnt
/dev/myvg/mylv 24507776 32 24507744 1% /mnt

6.4. Removing a Disk from a Logical Volume

Chapter 6. LVM Configuration Examples

63

This example shows how you can remove a disk from an existing logical volume, either to replace the disk or
to use the disk as part of a different volume. In order to remove a disk, you must first move the extents on the
LVM physical volume to a different disk or set of disks.

6.4.1. Moving Extents to Existing Physical Volumes

In this example, the logical volume is distributed across four physical volumes in the volume group myvg.

pvs -o+pv_used
 PV VG Fmt Attr PSize PFree Used
 /dev/sda1 myvg lvm2 a- 17.15G 12.15G 5.00G
 /dev/sdb1 myvg lvm2 a- 17.15G 12.15G 5.00G
 /dev/sdc1 myvg lvm2 a- 17.15G 12.15G 5.00G
 /dev/sdd1 myvg lvm2 a- 17.15G 2.15G 15.00G

We want to move the extents off of /dev/sdb1 so that we can remove it from the volume group.

If there are enough free extents on the other physical volumes in the volume group, you can execute the
pvmove command on the device you want to remove with no other options and the extents will be distributed
to the other devices.

pvmove /dev/sdb1
 /dev/sdb1: Moved: 2.0%
 ...
 /dev/sdb1: Moved: 79.2%
 ...
 /dev/sdb1: Moved: 100.0%

After the pvmove command has finished executing, the distribution of extents is as follows:

pvs -o+pv_used
 PV VG Fmt Attr PSize PFree Used
 /dev/sda1 myvg lvm2 a- 17.15G 7.15G 10.00G
 /dev/sdb1 myvg lvm2 a- 17.15G 17.15G 0
 /dev/sdc1 myvg lvm2 a- 17.15G 12.15G 5.00G
 /dev/sdd1 myvg lvm2 a- 17.15G 2.15G 15.00G

Use the vgreduce command to remove the physical volume /dev/sdb1 from the volume group.

vgreduce myvg /dev/sdb1
 Removed "/dev/sdb1" from volume group "myvg"
pvs
 PV VG Fmt Attr PSize PFree
 /dev/sda1 myvg lvm2 a- 17.15G 7.15G
 /dev/sdb1 lvm2 -- 17.15G 17.15G
 /dev/sdc1 myvg lvm2 a- 17.15G 12.15G
 /dev/sdd1 myvg lvm2 a- 17.15G 2.15G

The disk can now be physically removed or allocated to other users.

6.4.2. Moving Extents to a New Disk

In this example, the logical volume is distributed across three physical volumes in the volume group myvg as
follows:

Logical Volume Manager Administration

64

pvs -o+pv_used
 PV VG Fmt Attr PSize PFree Used
 /dev/sda1 myvg lvm2 a- 17.15G 7.15G 10.00G
 /dev/sdb1 myvg lvm2 a- 17.15G 15.15G 2.00G
 /dev/sdc1 myvg lvm2 a- 17.15G 15.15G 2.00G

We want to move the extents of /dev/sdb1 to a new device, /dev/sdd1.

6.4.2.1. Creating the New Physical Volume

Create a new physical volume from /dev/sdd1.

pvcreate /dev/sdd1
 Physical volume "/dev/sdd1" successfully created

6.4.2.2. Adding the New Physical Volume to the Volume Group

Add /dev/sdd1 to the existing volume group myvg.

vgextend myvg /dev/sdd1
 Volume group "myvg" successfully extended
pvs -o+pv_used
 PV VG Fmt Attr PSize PFree Used
 /dev/sda1 myvg lvm2 a- 17.15G 7.15G 10.00G
 /dev/sdb1 myvg lvm2 a- 17.15G 15.15G 2.00G
 /dev/sdc1 myvg lvm2 a- 17.15G 15.15G 2.00G
 /dev/sdd1 myvg lvm2 a- 17.15G 17.15G 0

6.4.2.3. Moving the Data

Use the pvmove command to move the data from /dev/sdb1 to /dev/sdd1.

pvmove /dev/sdb1 /dev/sdd1
 /dev/sdb1: Moved: 10.0%
...
 /dev/sdb1: Moved: 79.7%
...
 /dev/sdb1: Moved: 100.0%

pvs -o+pv_used
 PV VG Fmt Attr PSize PFree Used
 /dev/sda1 myvg lvm2 a- 17.15G 7.15G 10.00G
 /dev/sdb1 myvg lvm2 a- 17.15G 17.15G 0
 /dev/sdc1 myvg lvm2 a- 17.15G 15.15G 2.00G
 /dev/sdd1 myvg lvm2 a- 17.15G 15.15G 2.00G

6.4.2.4. Removing the Old Physical Volume from the Volume Group

After you have moved the data off /dev/sdb1, you can remove it from the volume group.

Chapter 6. LVM Configuration Examples

65

vgreduce myvg /dev/sdb1
 Removed "/dev/sdb1" from volume group "myvg"

You can now reallocate the disk to another volume group or remove the disk from the system.

6.5. Creating a Mirrored LVM Logical Volume in a Cluster

Creating a mirrored LVM logical volume in a cluster requires the same commands and procedures as
creating a mirrored LVM logical volume on a single node. However, in order to create a mirrored LVM volume
in a cluster the cluster and cluster mirror infrastructure must be running, the cluster must be quorate, and the
locking type in the lvm.conf file must be set correctly to enable cluster locking, either directly or by means
of the lvmconf command as described in Section 4.1, “Creating LVM Volumes in a Cluster”.

The following procedure creates a mirrored LVM volume in a cluster. First the procedure checks to see
whether the cluster services are installed and running, then the procedure creates the mirrored volume.

1. In order to create a mirrored logical volume that is shared by all of the nodes in a cluster, the locking
type must be set correctly in the lvm.conf file in every node of the cluster. By default, the locking
type is set to local. To change this, execute the following command in each node of the cluster to
enable clustered locking:

/usr/sbin/lvmconf --enable-cluster

2. To create a clustered logical volume, the cluster infrastructure must be up and running on every node
in the cluster. The following example verifies that the clvmd daemon is running on the node from
which it was issued:

ps auxw | grep clvmd
root 17642 0.0 0.1 32164 1072 ? Ssl Apr06 0:00 clvmd
-T20 -t 90

The following command shows the local view of the cluster status:

cman_tool services
Service Name GID LID State
Code
...
DLM Lock Space: "clvmd" 7 3 run
-
[1 2 3]
...

3. Ensure that the cmirror and cmirror-kmod packages are installed. The cmirror-kmod package
that must be installed depends on the kernel that is running. For example, if the running kernel is
kernel-largesmp, it is necessary to have cmirror-kmod-largesmp for the corresponding
kernel version.

4. Start the cmirror service.

service cmirror start
Loading clustered mirror log: [OK]

Logical Volume Manager Administration

66

5. Create the mirror. The first step is creating the physical volumes. The following commands create
three physical volumes. Two of the physical volumes will be used for the legs of the mirror, and the
third physical volume will contain the mirror log.

pvcreate /dev/xvdb1
 Physical volume "/dev/xvdb1" successfully created
pvcreate /dev/xvdb2
 Physical volume "/dev/xvdb2" successfully created
pvcreate /dev/xvdc1
 Physical volume "/dev/xvdc1" successfully created

6. Create the volume group. This example creates a volume group vg001 that consists of the three
physical volumes that were created in the previous step.

vgcreate vg001 /dev/xvdb1 /dev/xvdb2 /dev/xvdc1
 Clustered volume group "vg001" successfully created

Note that the output of the vgcreate command indicates that the volume group is clustered. You
can verify that a volume group is clustered with the vgs command, which will show the volume
group's attributes. If a volume group is clustered, it will show a c attribute.

vgs vg001
 VG #PV #LV #SN Attr VSize VFree
 vg001 3 0 0 wz--nc 68.97G 68.97G

7. Create the mirrored logical volume. This example creates the logical volume mirrorlv from the
volume group vg001. This volume has one mirror leg. This example specifies which extents of the
physical volume will be used for the logical volume.

lvcreate -l 1000 -m1 vg001 -n mirrorlv /dev/xvdb1:1-1000
/dev/xvdb2:1-1000 /dev/xvdc1:0
 Logical volume "mirrorlv" created

You can use the lvs command to display the progress of the mirror creation. The following example
shows that the mirror is 47% synced, then 91% synced, then 100% synced when the mirror is
complete.

lvs vg001/mirrorlv
 LV VG Attr LSize Origin Snap% Move Log
Copy% Convert
 mirrorlv vg001 mwi-a- 3.91G vg001_mlog
47.00
lvs vg001/mirrorlv
 LV VG Attr LSize Origin Snap% Move Log
Copy% Convert
 mirrorlv vg001 mwi-a- 3.91G vg001_mlog
91.00
lvs vg001/mirrorlv
 LV VG Attr LSize Origin Snap% Move Log
Copy% Convert
 mirrorlv vg001 mwi-a- 3.91G vg001_mlog
100.00

The completion of the mirror is noted in the system log:

Chapter 6. LVM Configuration Examples

67

May 10 14:52:52 doc-07 [19402]: Monitoring mirror device vg001-
mirrorlv for events
May 10 14:55:00 doc-07 lvm[19402]: vg001-mirrorlv is now in-sync

8. You can use the lvs with the -o +devices options to display the configuration of the mirror,
including which devices make up the mirror legs. You can see that the logical volume in this example
is composed of two linear images and one log.

lvs -a -o +devices
 LV VG Attr LSize Origin Snap% Move
Log Copy% Convert Devices
 mirrorlv vg001 mwi-a- 3.91G
mirrorlv_mlog 100.00 mirrorlv_mimage_0(0),mirrorlv_mimage_1(0)
 [mirrorlv_mimage_0] vg001 iwi-ao 3.91G
/dev/xvdb1(1)
 [mirrorlv_mimage_1] vg001 iwi-ao 3.91G
/dev/xvdb2(1)
 [mirrorlv_mlog] vg001 lwi-ao 4.00M
/dev/xvdc1(0)

For Red Hat Enterprise Linux 5.2 and later, you can use the seg_pe_ranges option of the lvs to
display the data layout. You can use this option to verify that your layout is properly redundant. The
output of this command displays PE ranges in the same format that the lvcreate and lvresize
commands take as input.

lvs -a -o +seg_pe_ranges --segments
 PE Ranges
 mirrorlv_mimage_0:0-999 mirrorlv_mimage_1:0-999
 /dev/xvdb1:1-1000
 /dev/xvdb2:1-1000
 /dev/xvdc1:0-0

When you create the mirrored volume, you create the clustered_log dlm space, which will
contain the dlm locks for all mirrors.

cman_tool services
Service Name GID LID State
Code
Fence Domain: "default" 4 2 run
-
[1 2 3]

DLM Lock Space: "clvmd" 12 7 run
-
[1 2 3]

DLM Lock Space: "clustered_log" 14 9 run
-
[1 2 3]

User: "usrm::manager" 10 4 run
-
[1 2 3]

Logical Volume Manager Administration

68

Note

For information on recovering from the failure of one of the legs of an LVM mirrored volume, see
Section 7.3, “Recovering from LVM Mirror Failure”.

Chapter 6. LVM Configuration Examples

69

Chapter 7. LVM Troubleshooting

This chapter provide instructions for troubleshooting a variety of LVM issues.

7.1. Troubleshooting Diagnostics

If a command is not working as expected, you can gather diagnostics in the following ways:

Use the -v, -vv, -vvv, or -vvvv argument of any command for increasingly verbose levels of output.

If the problem is related to the logical volume activation, set 'activation = 1' in the 'log' section of the
configuration file and run the command with the -vvvv argument. After you have finished examining this
output be sure to reset this parameter to 0, to avoid possible problems with the machine locking during
low memory situations.

Run the lvmdump command, which provides an information dump for diagnostic purposes. For
information, see the lvmdump(8) man page.

Execute the lvs -v, pvs -a or dmsetup info -c command for additional system information.

Examine the last backup of the metadata in the /etc/lvm/backup file and archived versions in the
/etc/lvm/archive file.

Check the current configuration information by running the lvm dumpconfig command.

Check the .cache file in the /etc/lvm directory for a record of which devices have physical volumes on
them.

7.2. Displaying Information on Failed Devices

You can use the -P argument of the lvs or vgs command to display information about a failed volume that
would otherwise not appear in the output. This argument permits some operations even though the metatdata
is not completely consistent internally. For example, if one of the devices that made up the volume group vg
failed, the vgs command might show the following output.

vgs -o +devices
 Volume group "vg" not found

If you specify the -P argument of the vgs command, the volume group is still unusable but you can see more
information about the failed device.

 vgs -P -o +devices
 Partial mode. Incomplete volume groups will be activated read-only.
 VG #PV #LV #SN Attr VSize VFree Devices
 vg 9 2 0 rz-pn- 2.11T 2.07T unknown device(0)
 vg 9 2 0 rz-pn- 2.11T 2.07T unknown device(5120),/dev/sda1(0)

In this example, the failed device caused both a linear and a striped logical volume in the volume group to fail.
The lvs command without the -P argument shows the following output.

lvs -a -o +devices
 Volume group "vg" not found

Logical Volume Manager Administration

70

Using the -P argument shows the logical volumes that have failed.

lvs -P -a -o +devices
 Partial mode. Incomplete volume groups will be activated read-only.
 LV VG Attr LSize Origin Snap% Move Log Copy% Devices
 linear vg -wi-a- 20.00G unknown
device(0)
 stripe vg -wi-a- 20.00G unknown
device(5120),/dev/sda1(0)

The following examples show the output of the pvs and lvs commands with the -P argument specified
when a leg of a mirrored logical volume has failed.

vgs -a -o +devices -P
 Partial mode. Incomplete volume groups will be activated read-only.
 VG #PV #LV #SN Attr VSize VFree Devices
 corey 4 4 0 rz-pnc 1.58T 1.34T
my_mirror_mimage_0(0),my_mirror_mimage_1(0)
 corey 4 4 0 rz-pnc 1.58T 1.34T /dev/sdd1(0)
 corey 4 4 0 rz-pnc 1.58T 1.34T unknown device(0)
 corey 4 4 0 rz-pnc 1.58T 1.34T /dev/sdb1(0)

lvs -a -o +devices -P
 Partial mode. Incomplete volume groups will be activated read-only.
 LV VG Attr LSize Origin Snap% Move Log
Copy% Devices
 my_mirror corey mwi-a- 120.00G
my_mirror_mlog 1.95 my_mirror_mimage_0(0),my_mirror_mimage_1(0)
 [my_mirror_mimage_0] corey iwi-ao 120.00G
unknown device(0)
 [my_mirror_mimage_1] corey iwi-ao 120.00G
/dev/sdb1(0)
 [my_mirror_mlog] corey lwi-ao 4.00M
/dev/sdd1(0)

7.3. Recovering from LVM Mirror Failure

This section provides an example of recovering from a situation where one leg of an LVM mirrored volume
fails because the underlying device for a physical volume goes down. When a mirror leg fails, LVM converts
the mirrored volume into a linear volume, which continues to operate as before but without the mirrored
redundancy. At that point, you can add a new disk device to the system to use as a replacement physical
device and rebuild the mirror.

The following command creates the physical volumes which will be used for the mirror.

pvcreate /dev/sd[abcdefgh][12]
 Physical volume "/dev/sda1" successfully created
 Physical volume "/dev/sda2" successfully created
 Physical volume "/dev/sdb1" successfully created
 Physical volume "/dev/sdb2" successfully created
 Physical volume "/dev/sdc1" successfully created
 Physical volume "/dev/sdc2" successfully created
 Physical volume "/dev/sdd1" successfully created

Chapter 7. LVM Troubleshooting

71

 Physical volume "/dev/sdd2" successfully created
 Physical volume "/dev/sde1" successfully created
 Physical volume "/dev/sde2" successfully created
 Physical volume "/dev/sdf1" successfully created
 Physical volume "/dev/sdf2" successfully created
 Physical volume "/dev/sdg1" successfully created
 Physical volume "/dev/sdg2" successfully created
 Physical volume "/dev/sdh1" successfully created
 Physical volume "/dev/sdh2" successfully created

The following commands creates the volume group vg and the mirrored volume groupfs.

vgcreate vg /dev/sd[abcdefgh][12]
 Volume group "vg" successfully created
lvcreate -L 750M -n groupfs -m 1 vg /dev/sda1 /dev/sdb1 /dev/sdc1
 Rounding up size to full physical extent 752.00 MB
 Logical volume "groupfs" created

You can use the lvs command to verify the layout of the mirrored volume and the underlying devices for the
mirror leg and the mirror log. Note that in the first example the mirror is not yet completely synced; you
should wait until the Copy% field displays 100.00 before continuing.

lvs -a -o +devices
 LV VG Attr LSize Origin Snap% Move Log
Copy% Devices
 groupfs vg mwi-a- 752.00M groupfs_mlog
21.28 groupfs_mimage_0(0),groupfs_mimage_1(0)
 [groupfs_mimage_0] vg iwi-ao 752.00M
/dev/sda1(0)
 [groupfs_mimage_1] vg iwi-ao 752.00M
/dev/sdb1(0)
 [groupfs_mlog] vg lwi-ao 4.00M
/dev/sdc1(0)

lvs -a -o +devices
 LV VG Attr LSize Origin Snap% Move Log
Copy% Devices
 groupfs vg mwi-a- 752.00M groupfs_mlog
100.00 groupfs_mimage_0(0),groupfs_mimage_1(0)
 [groupfs_mimage_0] vg iwi-ao 752.00M
/dev/sda1(0)
 [groupfs_mimage_1] vg iwi-ao 752.00M
/dev/sdb1(0)
 [groupfs_mlog] vg lwi-ao 4.00M i
/dev/sdc1(0)

In this example, the primary leg of the mirror /dev/sda1 fails. Any write activity to the mirrored volume
causes LVM to detect the failed mirror. When this occurs, LVM converts the mirror into a single linear
volume. In this case, to trigger the conversion, we execute a dd command

dd if=/dev/zero of=/dev/vg/groupfs count=10
10+0 records in
10+0 records out

Logical Volume Manager Administration

72

You can use the lvs command to verify that the device is now a linear device. Because of the failed disk, I/O
errors occur.

lvs -a -o +devices
 /dev/sda1: read failed after 0 of 2048 at 0: Input/output error
 /dev/sda2: read failed after 0 of 2048 at 0: Input/output error
 LV VG Attr LSize Origin Snap% Move Log Copy% Devices
 groupfs vg -wi-a- 752.00M /dev/sdb1(0)

At this point you should still be able to use the logical volume, but there will be no mirror redundancy.

To rebuild the mirrored volume, you replace the broken drive and recreate the physical volume. If you use the
same disk rather than replacing it with a new one, you will see "inconsistent" warnings when you run the
pvcreate command.

pvcreate /dev/sda[12]
 Physical volume "/dev/sda1" successfully created
 Physical volume "/dev/sda2" successfully created

pvscan
 PV /dev/sdb1 VG vg lvm2 [67.83 GB / 67.10 GB free]
 PV /dev/sdb2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdc1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdc2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdd1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdd2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sde1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sde2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdf1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdf2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdg1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdg2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdh1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdh2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sda1 lvm2 [603.94 GB]
 PV /dev/sda2 lvm2 [603.94 GB]
 Total: 16 [2.11 TB] / in use: 14 [949.65 GB] / in no VG: 2 [1.18 TB]

Next you extend the original volume group with the new physical volume.

vgextend vg /dev/sda[12]
 Volume group "vg" successfully extended

pvscan
 PV /dev/sdb1 VG vg lvm2 [67.83 GB / 67.10 GB free]
 PV /dev/sdb2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdc1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdc2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdd1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdd2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sde1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sde2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdf1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdf2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdg1 VG vg lvm2 [67.83 GB / 67.83 GB free]

Chapter 7. LVM Troubleshooting

73

 PV /dev/sdg2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdh1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdh2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sda1 VG vg lvm2 [603.93 GB / 603.93 GB free]
 PV /dev/sda2 VG vg lvm2 [603.93 GB / 603.93 GB free]
 Total: 16 [2.11 TB] / in use: 16 [2.11 TB] / in no VG: 0 [0]

Convert the linear volume back to its original mirrored state.

lvconvert -m 1 /dev/vg/groupfs /dev/sda1 /dev/sdb1 /dev/sdc1
 Logical volume mirror converted.

You can use the lvs command to verify that the mirror is restored.

lvs -a -o +devices
 LV VG Attr LSize Origin Snap% Move Log
Copy% Devices
 groupfs vg mwi-a- 752.00M groupfs_mlog
68.62 groupfs_mimage_0(0),groupfs_mimage_1(0)
 [groupfs_mimage_0] vg iwi-ao 752.00M
/dev/sdb1(0)
 [groupfs_mimage_1] vg iwi-ao 752.00M
/dev/sda1(0)
 [groupfs_mlog] vg lwi-ao 4.00M
/dev/sdc1(0)

7.4. Recovering Physical Volume Metadata

If the volume group metadata area of a physical volume is accidentally overwritten or otherwise destroyed,
you will get an error message indicating that the metadata area is incorrect, or that the system was unable to
find a physical volume with a particular UUID. You may be able to recover the data the physical volume by
writing a new metadata area on the physical volume specifying the same UUID as the lost metadata.

Warning

You should not attempt this procedure with a working LVM logical volume. You will lose your data if
you specify the incorrect UUID.

The following example shows the sort of output you may see if the metadata area is missing or corrupted.

lvs -a -o +devices
 Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk'.
 Couldn't find all physical volumes for volume group VG.
 Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk'.
 Couldn't find all physical volumes for volume group VG.
 ...

You may be able to find the UUID for the physical volume that was overwritten by looking in the
/etc/lvm/archive directory. Look in the file VolumeGroupName_xxxx.vg for the last known valid
archived LVM metadata for that volume group.

Alternately, you may find that deactivating the volume and setting the partial (-P) argument will enable

Logical Volume Manager Administration

74

you to find the UUID of the missing corrupted physical volume.

vgchange -an --partial
 Partial mode. Incomplete volume groups will be activated read-only.
 Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk'.
 Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk'.
 ...

Use the --uuid and --restorefile arguments of the pvcreate command to restore the physical
volume. The following example labels the /dev/sdh1 device as a physical volume with the UUID indicated
above, FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk. This command restores the physical volume
label with the metadata information contained in VG_00050.vg, the most recent good archived metatdata for
volume group . The restorefile argument instructs the pvcreate command to make the new physical
volume compatible with the old one on the volume group, ensuring that the new metadata will not be placed
where the old physical volume contained data (which could happen, for example, if the original pvcreate
command had used the command line arguments that control metadata placement, or it the physical volume
was originally created using a different version of the software that used different defaults). The pvcreate
command overwrites only the LVM metadata areas and does not affect the existing data areas.

pvcreate --uuid "FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk" --restorefile
/etc/lvm/archive/VG_00050.vg /dev/sdh1
 Physical volume "/dev/sdh1" successfully created

You can then use the vgcfgrestore command to restore the volume group's metadata.

vgcfgrestore VG
 Restored volume group VG

You can now display the logical volumes.

lvs -a -o +devices
 LV VG Attr LSize Origin Snap% Move Log Copy% Devices
 stripe VG -wi--- 300.00G /dev/sdh1
(0),/dev/sda1(0)
 stripe VG -wi--- 300.00G /dev/sdh1
(34728),/dev/sdb1(0)

The following commands activate the volumes and display the active volumes.

lvchange -ay /dev/VG/stripe
lvs -a -o +devices
 LV VG Attr LSize Origin Snap% Move Log Copy% Devices
 stripe VG -wi-a- 300.00G /dev/sdh1
(0),/dev/sda1(0)
 stripe VG -wi-a- 300.00G /dev/sdh1
(34728),/dev/sdb1(0)

If the on-disk LVM metadata takes as least as much space as what overrode it, this command can recover
the physical volume. If what overrode the metadata went past the metadata area, the data on the volume may
have been affected. You might be able to use the fsck command to recover that data.

7.5. Replacing a Missing Physical Volume

Chapter 7. LVM Troubleshooting

75

If a physical volume fails or otherwise needs to be replaced, you can label a new physical volume to replace
the one that has been lost in the existing volume group by following the same procedure as you would for
recovering physical volume metadata, described in Section 7.4, “Recovering Physical Volume Metadata”.
You can use the --partial and --verbose arguments of the vgdisplay command to display the UUIDs
and sizes of any physical volumes that are no longer present. If you wish to substitute another physical
volume of the same size, you can use the pvcreate command with the --restorefile and --uuid
arguments to initialize a new device with the same UUID as the missing physical volume. You can then use
the vgcfgrestore command to restore the volume group's metadata.

7.6. Removing Lost Physical Volumes from a Volume Group

If you lose a physical volume, you can activate the remaining physical volumes in the volume group with the
--partial argument of the vgchange command. You can remove all the logical volumes that used that
physical volume from the volume group with the --removemissing argument of the vgreduce command.

It is recommended that you run the vgreduce command with the --test argument to verify what you will be
destroying.

Like most LVM operations, the vgreduce command is reversible in a sense if you immediately use the
vgcfgrestore command to restore the volume group metadata to its previous state. For example, if you
used the --removemissing argument of the vgreduce command without the --test argument and find
you have removed logical volumes you wanted to keep, you can still replace the physical volume and use
another vgcfgrestore command to return the volume group to its previous state.

7.7. Insufficient Free Extents for a Logical Volume

You may get the error message "Insufficient free extents" when creating a logical volume when you think you
have enough extents based on the output of the vgdisplay or vgs commands. This is because these
commands round figures to 2 decimal places to provide human-readable output. To specify exact size, use
free physical extent count instead of some multiple of bytes to determine the size of the logical volume.

The vgdisplay command, by default, includes this line of output that indicates the free physical extents.

vgdisplay
 --- Volume group ---
 ...
 Free PE / Size 8780 / 34.30 GB

Alternately, you can use the vg_free_count and vg_extent_count arguments of the vgs command to
display the free extents and the total number of extents.

vgs -o +vg_free_count,vg_extent_count
 VG #PV #LV #SN Attr VSize VFree Free #Ext
 testvg 2 0 0 wz--n- 34.30G 34.30G 8780 8780

With 8780 free physical extents, you can run the following command, using the lower-case l argument to use
extents instead of bytes:

lvcreate -l8780 -n testlv testvg

This uses all the free extents in the volume group.

vgs -o +vg_free_count,vg_extent_count

Logical Volume Manager Administration

76

 VG #PV #LV #SN Attr VSize VFree Free #Ext
 testvg 2 1 0 wz--n- 34.30G 0 0 8780

Alternately, you can extend the logical volume to use a percentage of the remaining free space in the volume
group by using the -l argument of the lvcreate command. For information, see Section 5.4.1.1, “Creating
Linear Volumes”.

Chapter 7. LVM Troubleshooting

77

Chapter 8. LVM Administration with the LVM GUI

In addition to the Command Line Interface (CLI), LVM provides a Graphical User Interface (GUI) which you
can use to configure LVM logical volumes. You can bring up this utility by typing system-config-lvm. The
LVM chapter of the Red Hat Enterprise Linux Deployment Guide provides step-by-step instructions for
configuring an LVM logical volume using this utility.

In addition, the LVM GUI is available as part of the Conga management interface. For information on using
the LVM GUI with Conga, see the online help for Conga.

Logical Volume Manager Administration

78

Appendix A. The Device Mapper

The Device Mapper is a kernel driver that provides a framework for volume management. It provides a
generic way of creating mapped devices, which may be used as logical volumes. It does not specifically know
about volume groups or metadata formats.

The Device Mapper provides the foundation for a number of higher-level technologies. In addition to LVM,
Device-Mapper multipath and the dmraid command use the Device Mapper. The application interface to the
Device Mapper is the ioctl system call. The user interface is the dmsetup command.

LVM logical volumes are activated using the Device Mapper. Each logical volume is translated into a mapped
device. Each segment translates into a line in the mapping table that describes the device. The Device
Mapper supports a variety of mapping targets, including linear mapping, striped mapping, and error mapping.
So, for example, two disks may be concatenated into one logical volume with a pair of linear mappings, one
for each disk. When LVM2 creates a volume, it creates an underlying device-mapper device that can be
queried with the dmsetup command. For information about the format of devices in a mapping table, see
Section A.1, “Device Table Mappings”. For information about using the dmsetup command to query a
device, see Section A.2, “The dmsetup Command”.

A.1. Device Table Mappings

A mapped device is defined by a table that specifies how to map each range of logical sectors of the device
using a supported Device Table mapping. The table for a mapped device is constructed from a list of lines of
the form:

start length mapping [mapping_parameters...]

In the first line of a Device Mapper table, the start parameter must equal 0. The start + length
parameters on one line must equal the start on the next line. Which mapping parameters are specified in a
line of the mapping table depends on which mapping type is specified on the line.

Sizes in the Device Mapper are always specified in sectors (512 bytes).

When a device is specified as a mapping parameter in the Device Mapper, it can be referenced by the device
name in the filesystem (for example, /dev/hda) or by the major and minor numbers in the format
major:minor. The major:minor format is preferred because it avoids pathname lookups.

The following shows a sample mapping table for a device. In this table there are four linear targets:

0 35258368 linear 8:48 65920
35258368 35258368 linear 8:32 65920
70516736 17694720 linear 8:16 17694976
88211456 17694720 linear 8:16 256

The first 2 parameters of each line are the segment starting block and the length of the segment. The next
keyword is the mapping target, which in all of the cases in this example is linear. The rest of the line
consists of the parameters for a linear target.

The following subsections describe the format of the following mappings:

linear

striped

mirror

Appendix A. The Device Mapper

79

snapshot and snapshot-origin

error

zero

multipath

crypt

A.1.1. The linear Mapping Target

A linear mapping target maps a continuous range of blocks onto another block device. The format of a linear
target is as follows:

start length linear device offset

start

starting block in virtual device

length

length of this segment

device

block device, referenced by the device name in the filesystem or by the major and minor numbers
in the format major:minor

offset

starting offset of the mapping on the device

The following example shows a linear target with a starting block in the virtual device of 0, a segment length
of 1638400, a major:minor number pair of 8:2, and a starting offset for the device of 41146992.

0 16384000 linear 8:2 41156992

The following example shows a linear target with the device parameter specified as the device /dev/hda.

0 20971520 linear /dev/hda 384

A.1.2. The striped Mapping Target

The striped mapping target supports striping across physical devices. It takes as arguments the number of
stripes and the striping chunk size followed by a list of pairs of device name and sector. The format of a
striped target is as follows:

start length striped #stripes chunk_size device1 offset1 ... deviceN offsetN

There is one set of device and offset parameters for each stripe.

start

starting block in virtual device

Logical Volume Manager Administration

80

length

length of this segment

#stripes

number of stripes for the virtual device

chunk_size

number of sectors written to each stripe before switching to the next; must be power of 2 at least as
big as the kernel page size

device

block device, referenced by the device name in the filesystem or by the major and minor numbers
in the format major:minor.

offset

starting offset of the mapping on the device

The following example shows a striped target with three stripes and a chunk size of 128:

0 73728 striped 3 128 8:9 384 8:8 384 8:7 9789824

0

starting block in virtual device

73728

length of this segment

striped 3 128

stripe across three devices with chunk size of 128 blocks

8:9

major:minor numbers of first device

384

starting offset of the mapping on the first device

8:8

major:minor numbers of second device

384

starting offset of the mapping on the second device

8:7

major:minor numbers of third device

9789824

starting offset of the mapping on the third device

Appendix A. The Device Mapper

81

The following example shows a striped target for 2 stripes with 256 KiB chunks, with the device parameters
specified by the device names in the file system rather than by the major and minor numbers.

0 65536 striped 2 512 /dev/hda 0 /dev/hdb 0

A.1.3. The mirror Mapping Target

The mirror mapping target supports the mapping of a mirrored logical device. The format of a mirrored target
is as follows:

start length mirror log_type #logargs logarg1 ... logargN #devs device1
offset1 ... deviceN offsetN

start

starting block in virtual device

length

length of this segment

log_type

The possible log types and their arguments are as follows:

core

The mirror is local and the mirror log is kept in core memory. This log type takes 1 - 3
arguments:

regionsize [[no]sync] [block_on_error]

disk

The mirror is local and the mirror log is kept on disk. This log type takes 2 - 4 arguments:

logdevice regionsize [[no]sync] [block_on_error]

clustered_core

The mirror is clustered and the mirror log is kept in core memory. This log type takes 2 -
4 arguments:

regionsize UUID [[no]sync] [block_on_error]

clustered_disk

The mirror is clustered and the mirror log is kept on disk. This log type takes 3 - 5
arguments:

logdevice regionsize UUID [[no]sync] [block_on_error]

LVM maintains a small log which it uses to keep track of which regions are in sync with the mirror
or mirrors. The regionsize argument specifies the size of these regions.

In a clustered environment, the UUID argument is a unique identifier associated with the mirror log
device so that the log state can be maintained throughout the cluster.

Logical Volume Manager Administration

82

The optional [no]sync argument can be used to specify the mirror as "in-sync" or "out-of-sync".
The block_on_error argument is used to tell the mirror to respond to errors rather than ignoring
them.

#log_args

number of log arguments that will be specified in the mapping

logargs

the log arguments for the mirror; the number of log arguments provided is specified by the #log-
args parameter and the valid log arguments are determined by the log_type parameter.

#devs

the number of legs in the mirror; a device and an offset is specified for each leg.

device

block device for each mirror leg, referenced by the device name in the filesystem or by the major
and minor numbers in the format major:minor. A block device and offset is specified for each
mirror leg, as indicated by the #devs parameter.

offset

starting offset of the mapping on the device. A block device and offset is specified for each mirror
leg, as indicated by the #devs parameter.

The following example shows a mirror mapping target for a clustered mirror with a mirror log kept on disk.

0 52428800 mirror clustered_disk 4 253:2 1024 UUID block_on_error 3 253:3 0
253:4 0 253:5 0

0

starting block in virtual device

52428800

length of this segment

mirror clustered_disk

mirror target with a log type specifying that mirror is clustered and the mirror log is maintained on
disk

4

4 mirror log arguments will follow

253:2

major:minor numbers of log device

1024

region size the mirror log uses to keep track of what is in sync

UUID

UUID of mirror log device to maintain log information throughout a cluster

Appendix A. The Device Mapper

83

UUID of mirror log device to maintain log information throughout a cluster

block_on_error

mirror should respond to errors

3

number of legs in mirror

253:3 0 253:4 0 253:5 0

major:minor numbers and offset for devices constituting each leg of mirror

A.1.4. The snapshot and snapshot-origin Mapping Targets

When you create the first LVM snapshot of a volume, four Device Mapper devices are used:

1. A device with a linear mapping containing the original mapping table of the source volume.

2. A device with a linear mapping used as the copy-on-write (COW) device for the source volume; for
each write, the original data is saved in the COW device of each snapshot to keep its visible content
unchanged (until the COW device fills up).

3. A device with a snapshot mapping combining #1 and #2, which is the visible snapshot volume

4. The "original" volume (which uses the device number used by the original source volume), whose
table is replaced by a "snapshot-origin" mapping from device #1.

A fixed naming scheme is used to create these devices, For example, you might use the following
commands to create an LVM volume named base and a snapshot volume named snap based on that
volume.

lvcreate -L 1G -n base volumeGroup
lvcreate -L 100M --snapshot -n snap volumeGroup/base

This yields four devices, which you can view with the following commands:

dmsetup table|grep volumeGroup
volumeGroup-base-real: 0 2097152 linear 8:19 384
volumeGroup-snap-cow: 0 204800 linear 8:19 2097536
volumeGroup-snap: 0 2097152 snapshot 254:11 254:12 P 16
volumeGroup-base: 0 2097152 snapshot-origin 254:11

ls -lL /dev/mapper/volumeGroup-*
brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-
real
brw------- 1 root root 254, 12 29 ago 18:15 /dev/mapper/volumeGroup-snap-
cow
brw------- 1 root root 254, 13 29 ago 18:15 /dev/mapper/volumeGroup-snap
brw------- 1 root root 254, 10 29 ago 18:14 /dev/mapper/volumeGroup-base

The format for the snapshot-origin target is as follows:

start length snapshot-origin origin

start

Logical Volume Manager Administration

84

starting block in virtual device

length

length of this segment

origin

base volume of snapshot

The snapshot-origin will normally have one or more snapshots based on it. Reads will be mapped
directly to the backing device. For each write, the original data will be saved in the COW device of each
snapshot to keep its visible content unchanged until the COW device fills up.

The format for the snapshot target is as follows:

start length snapshot origin COW-device P|N chunksize

start

starting block in virtual device

length

length of this segment

origin

base volume of snapshot

COW-device

Device on which changed chunks of data are stored

P|N

P (Persistent) or N (Not persistent); indicates whether snapshot will survive after reboot. For
transient snapshots (N) less metadata must be saved on disk; they can be kept in memory by the
kernel.

chunksize

Size in sectors of changed chunks of data that will be stored on the COW device

The following example shows a snapshot-origin target with an origin device of 254:11.

0 2097152 snapshot-origin 254:11

The following example shows a snapshot target with an origin device of 254:11 and a COW device of
254:12. This snapshot device is persistent across reboots and the chunk size for the data stored on the COW
device is 16 sectors.

0 2097152 snapshot 254:11 254:12 P 16

A.1.5. The error Mapping Target

With an error mapping target, any I/O operation to the mapped sector fails.

Appendix A. The Device Mapper

85

An error mapping target can be used for testing. To test how a device behaves in failure, you can create a
device mapping with a bad sector in the middle of a device, or you can swap out the leg of a mirror and
replace the leg with an error target.

An error target can be used in place of a failing device, as a way of avoiding timeouts and retries on the
actual device. It can serve as an intermediate target while you rearrange LVM metadata during failures.

The error mapping target takes no additional parameters besides the start and length parameters.

The following example shows an error target.

0 65536 error

A.1.6. The zero Mapping Target

The zero mapping target is a block device equivalent of /dev/zero. A read operation to this mapping
returns blocks of zeros. Data written to this mapping is discarded, but the write succeeds. The zero mapping
target takes no additional parameters besides the start and length parameters.

The following example shows a zero target for a 16Tb Device.

0 65536 zero

A.1.7. The multipath Mapping Target

The multipath mapping target supports the mapping of a multipathed device. The format for the multipath
target is as follows:

start length multipath #features [feature1 ... featureN] #handlerargs
[handlerarg1 ... handlerargN] #pathgroups pathgroup pathgroupargs1 ...
pathgroupargsN

There is one set of pathgroupargs parameters for each path group.

start

starting block in virtual device

length

length of this segment

#features

The number of multipath features, followed by those features. If this parameter is zero, then there
is no feature parameter and the next device mapping parameter is #handlerargs. Currently
there is one supported feature that can be set with the features attribute in the
multipath.conf file, queue_if_no_path. This indicates that this multipathed device is
currently set to queue I/O operations if there is no path available.

In the following example, the no_path_retry attribute in the multipath.conf file has been set
to queue I/O operations only until all paths have been marked as failed after a set number of
attempts have been made to use the paths. In this case, the mapping appears as follows until all
the path checkers have failed the specified number of checks.

Logical Volume Manager Administration

86

0 71014400 multipath 1 queue_if_no_path 0 2 1 round-robin 0 2 1
66:128 \
1000 65:64 1000 round-robin 0 2 1 8:0 1000 67:192 1000

After all the path checkers have failed the specified number of checks, the mapping would appear
as follows.

0 71014400 multipath 0 0 2 1 round-robin 0 2 1 66:128 1000 65:64 1000
\
round-robin 0 2 1 8:0 1000 67:192 1000

#handlerargs

The number of hardware handler arguments, followed by those arguments. A hardware handler
specifies a module that will be used to perform hardware-specific actions when switching path
groups or handling I/O errors. If this is set to 0, then the next parameter is #pathgroups.

#pathgroups

The number of path groups. A path group is the set of paths over which a multipathed device will
load balance. There is one set of pathgroupargs parameters for each path group.

pathgroup

The next path group to try.

pathgroupsargs

Each path group consists of the following arguments:

pathselector #selectorargs #paths #pathargs device1 ioreqs1 ...
deviceN ioreqsN

There is one set of path arguments for each path in the path group.

pathselector

Specifies the algorithm in use to determine what path in this path group to use for the
next I/O operation.

#selectorargs

The number of path selector arguments which follow this argument in the multipath
mapping. Currently, the value of this argument is always 0.

#paths

The number of paths in this path group.

#pathargs

The number of path arguments specified for each path in this group. Currently this
number is always 1, the ioreqs argument.

device

The block device number of the path, referenced by the major and minor numbers in the
format major:minor

Appendix A. The Device Mapper

87

ioreqs

The number of I/O requests to route to this path before switching to the next path in the
current group.

Figure A.1, “Multipath Mapping Target” shows the format of a multipath target with two path groups.

Figure A.1. Multipath Mapping Target

The following example shows a pure failover target definition for the same multipath device. In this target
there are four path groups, with only one open path per path group so that the multipathed device will use
only one path at a time.

0 71014400 multipath 0 0 4 1 round-robin 0 1 1 66:112 1000 \
round-robin 0 1 1 67:176 1000 round-robin 0 1 1 68:240 1000 \
round-robin 0 1 1 65:48 1000

The following example shows a full spread (multibus) target definition for the same multipathed device. In this
target there is only one path group, which includes all of the paths. In this setup, multipath spreads the load
evenly out to all of the paths.

0 71014400 multipath 0 0 1 1 round-robin 0 4 1 66:112 1000 \
 67:176 1000 68:240 1000 65:48 1000

For further information about multipathing, see the Using Device Mapper Multipath document.

A.1.8. The crypt Mapping Target

The crypt target encrypts the data passing through the specified device. It uses the kernel Crypto API.

The format for the crypt target is as follows:

start length crypt cipher key IV-offset device offset

start

starting block in virtual device

Logical Volume Manager Administration

88

length

length of this segment

cipher

Cipher consists of cipher[-chainmode]-ivmode[:iv options].

cipher

Ciphers available are listed in /proc/crypto (for example, aes).

chainmode

Always use cbc. Do not use ebc; it does not use an initial vector (IV).

ivmode[:iv options]

IV is an initial vector used to vary the encryption. The IV mode is plain or
essiv:hash. An ivmode of -plain uses the sector number (plus IV offset) as the IV.
An ivmode of -essiv is an enhancement avoiding a watermark weakness.

key

Encryption key, supplied in hex

IV-offset

Initial Vector (IV) offset

device

block device, referenced by the device name in the filesystem or by the major and minor numbers
in the format major:minor

offset

starting offset of the mapping on the device

The following is an example of a crypt target.

0 2097152 crypt aes-plain 0123456789abcdef0123456789abcdef 0 /dev/hda 0

A.2. The dmsetup Command

The dmsetup command is a command line wrapper for communication with the Device Mapper. For general
system information about LVM devices, you may find the info, ls, status, and deps options of the
dmsetup command to be useful, as described in the following subsections.

For information about additional options and capabilities of the dmsetup command, see the dmsetup(8) man
page.

A.2.1. The dmsetup info Command

The dmsetup info device command provides summary information about Device Mapper devices. If you
do not specify a device name, the output is information about all of the currently configured Device Mapper
devices. If you specify a device, then this command yields information for that device only.

Appendix A. The Device Mapper

89

The dmsetup info command provides information in the following categories:

Name

The name of the device. An LVM device is expressed as the volume group name and the logical
volume name separated by a hyphen. A hyphen in the original name is translated to two hyphens.

State

Possible device states are SUSPENDED, ACTIVE, and READ-ONLY. The dmsetup suspend
command sets a device state to SUSPENDED. When a device is suspended, all I/O operations to
that device stop. The dmsetup resume command restores a device state to ACTIVE.

Read Ahead

The number of data blocks that the system reads ahead for any open file on which read operations
are ongoing. By default, the kernel chooses a suitable value automatically. You can change this
value with the --readahead option of the dmsetup command.

Tables present

Possible states for this category are LIVE and INACTIVE. An INACTIVE state indicates that a
table has been loaded which will be swapped in when a dmsetup resume command restores a
device state to ACTIVE, at which point the table's state becomes LIVE. For information, see the
dmsetup man page.

Open count

The open reference count indicates how many times the device is opened. A mount command
opens a device.

Event number

The current number of events received. Issuing a dmsetup wait n command allows the user to
wait for the n'th event, blocking the call until it is received.

Major, minor

Major and minor device number

Number of targets

The number of fragments that make up a device. For example, a linear device spanning 3 disks
would have 3 targets. A linear device composed of the beginning and end of a disk, but not the
middle would have 2 targets.

UUID

UUID of the device.

The following example shows partial output for the dmsetup info command.

[root@ask-07 ~]# dmsetup info
Name: testgfsvg-testgfslv1
State: ACTIVE
Read Ahead: 256
Tables present: LIVE
Open count: 0
Event number: 0

Logical Volume Manager Administration

90

Major, minor: 253, 2
Number of targets: 2
UUID: LVM-K528WUGQgPadNXYcFrrf9LnPlUMswgkCkpgPIgYzSvigM7SfeWCypddNSWtNzc2N
...
Name: VolGroup00-LogVol00
State: ACTIVE
Read Ahead: 256
Tables present: LIVE
Open count: 1
Event number: 0
Major, minor: 253, 0
Number of targets: 1
UUID: LVM-tOcS1kqFV9drb0X1Vr8sxeYP0tqcrpdegyqj5lZxe45JMGlmvtqLmbLpBcenh2L3

A.2.2. The dmsetup ls Command

You can list the device names of mapped devices with the dmsetup ls command. You can list devices that
have at least one target of a specified type with the dmsetup ls --target target_type command. For
other options of the dmsetup ls, see the dmsetup man page.

The following example shows the command to list the device names of currently configured mapped devices.

dmsetup ls
testgfsvg-testgfslv3 (253, 4)
testgfsvg-testgfslv2 (253, 3)
testgfsvg-testgfslv1 (253, 2)
VolGroup00-LogVol01 (253, 1)
VolGroup00-LogVol00 (253, 0)

The following example shows the command to list the devices names of currently configured mirror
mappings.

dmsetup ls --target mirror
lock_stress-grant--02.1722 (253, 34)
lock_stress-grant--01.1720 (253, 18)
lock_stress-grant--03.1718 (253, 52)
lock_stress-grant--02.1716 (253, 40)
lock_stress-grant--03.1713 (253, 47)
lock_stress-grant--02.1709 (253, 23)
lock_stress-grant--01.1707 (253, 8)
lock_stress-grant--01.1724 (253, 14)
lock_stress-grant--03.1711 (253, 27)

A.2.3. The dmsetup status Command

The dmsetup status device command provides status information for each target in a specified
device. If you do not specify a device name, the output is information about all of the currently configured
Device Mapper devices. You can list the status only of devices that have at least one target of a specified type
with the dmsetup status --target target_type command.

The following example shows the command to list the status of the targets in all currently configured mapped
devices.

dmsetup status

Appendix A. The Device Mapper

91

testgfsvg-testgfslv3: 0 312352768 linear
testgfsvg-testgfslv2: 0 312352768 linear
testgfsvg-testgfslv1: 0 312352768 linear
testgfsvg-testgfslv1: 312352768 50331648 linear
VolGroup00-LogVol01: 0 4063232 linear
VolGroup00-LogVol00: 0 151912448 linear

A.2.4. The dmsetup deps Command

The dmsetup deps device command provides a list of (major, minor) pairs for devices referenced by the
mapping table for the specified device. If you do not specify a device name, the output is information about all
of the currently configured Device Mapper devices.

The following example shows the command to list the dependencies of all currently configured mapped
devices.

dmsetup deps
testgfsvg-testgfslv3: 1 dependencies : (8, 16)
testgfsvg-testgfslv2: 1 dependencies : (8, 16)
testgfsvg-testgfslv1: 1 dependencies : (8, 16)
VolGroup00-LogVol01: 1 dependencies : (8, 2)
VolGroup00-LogVol00: 1 dependencies : (8, 2)

The following example shows the command to list the dependencies only of the device lock_stress-
grant--02.1722:

dmsetup deps lock_stress-grant--02.1722
3 dependencies : (253, 33) (253, 32) (253, 31)

Logical Volume Manager Administration

92

Appendix B. The LVM Configuration Files

LVM supports multiple configuration files. At system startup, the lvm.conf configuration file is loaded from
the directory specified by the environment variable LVM_SYSTEM_DIR, which is set to /etc/lvm by default.

The lvm.conf file can specify additional configuration files to load. Settings in later files override settings
from earlier ones. To display the settings in use after loading all the configuration files, execute the lvm
dumpconfig command.

For information on loading additional configuration files, see Section C.2, “Host Tags”.

B.1. The LVM Configuration Files

The following files are used for LVM configuration:

/etc/lvm/lvm.conf

Central configuration file read by the tools.

etc/lvm/lvm_hosttag.conf

For each host tag, an extra configuration file is read if it exists: lvm_hosttag.conf. If that file
defines new tags, then further configuration files will be appended to the list of files to read in. For
information on host tags, see Section C.2, “Host Tags”.

In addition to the LVM configuration files, a system running LVM includes the following files that affect LVM
system setup:

/etc/lvm/.cache

Device name filter cache file (configurable).

/etc/lvm/backup/

Directory for automatic volume group metadata backups (configurable).

/etc/lvm/archive/

Directory for automatic volume group metadata archives (configurable with regard to directory path
and archive history depth).

/var/lock/lvm/

In single-host configuration, lock files to prevent parallel tool runs from corrupting the metadata; in
a cluster, cluster-wide DLM is used.

B.2. Sample lvm.conf File

The following is a sample lvm.conf configuration file. This configuration file is the default file for the Red Hat
Enterprise Linux 5.9 release. If your system is running a different release of Red Hat Enterprise Linux, some
of the default settings may differ.

This is an example configuration file for the LVM2 system.
It contains the default settings that would be used if there was no
/etc/lvm/lvm.conf file.

Appendix B. The LVM Configuration Files

93

#
Refer to 'man lvm.conf' for further information including the file layout.
#
To put this file in a different directory and override /etc/lvm set
the environment variable LVM_SYSTEM_DIR before running the tools.
#
N.B. Take care that each setting only appears once if uncommenting
example settings in this file.

This section allows you to configure which block devices should
be used by the LVM system.
devices {

 # Where do you want your volume groups to appear ?
 dir = "/dev"

 # An array of directories that contain the device nodes you wish
 # to use with LVM2.
 scan = ["/dev"]

 # If set, the cache of block device nodes with all associated symlinks
 # will be constructed out of the existing udev database content.
 # This avoids using and opening any inapplicable non-block devices or
 # subdirectories found in the device directory. This setting is applied
 # to udev-managed device directory only, other directories will be
scanned
 # fully. LVM2 needs to be compiled with udev support for this setting to
 # take effect. N.B. Any device node or symlink not managed by udev in
 # udev directory will be ignored with this setting on.
 obtain_device_list_from_udev = 1

 # If several entries in the scanned directories correspond to the
 # same block device and the tools need to display a name for device,
 # all the pathnames are matched against each item in the following
 # list of regular expressions in turn and the first match is used.
 # preferred_names = []

 # Try to avoid using undescriptive /dev/dm-N names, if present.
 preferred_names = ["^/dev/mpath/", "^/dev/mapper/mpath", "^/dev/[hs]d"
]

 # A filter that tells LVM2 to only use a restricted set of devices.
 # The filter consists of an array of regular expressions. These
 # expressions can be delimited by a character of your choice, and
 # prefixed with either an 'a' (for accept) or 'r' (for reject).
 # The first expression found to match a device name determines if
 # the device will be accepted or rejected (ignored). Devices that
 # don't match any patterns are accepted.

 # Be careful if there there are symbolic links or multiple filesystem
 # entries for the same device as each name is checked separately against
 # the list of patterns. The effect is that if the first pattern in the
 # list to match a name is an 'a' pattern for any of the names, the
device
 # is accepted; otherwise if the first pattern in the list to match a

Logical Volume Manager Administration

94

name
 # is an 'r' pattern for any of the names it is rejected; otherwise it is
 # accepted.

 # Don't have more than one filter line active at once: only one gets
used.

 # Run vgscan after you change this parameter to ensure that
 # the cache file gets regenerated (see below).
 # If it doesn't do what you expect, check the output of 'vgscan -vvvv'.

 # By default we accept every block device:
 filter = ["a/.*/"]

 # Exclude the cdrom drive
 # filter = ["r|/dev/cdrom|"]

 # When testing I like to work with just loopback devices:
 # filter = ["a/loop/", "r/.*/"]

 # Or maybe all loops and ide drives except hdc:
 # filter =["a|loop|", "r|/dev/hdc|", "a|/dev/ide|", "r|.*|"]

 # Use anchors if you want to be really specific
 # filter = ["a|^/dev/hda8$|", "r/.*/"]

 # The results of the filtering are cached on disk to avoid
 # rescanning dud devices (which can take a very long time).
 # By default this cache is stored in the /etc/lvm/cache directory
 # in a file called '.cache'.
 # It is safe to delete the contents: the tools regenerate it.
 # (The old setting 'cache' is still respected if neither of
 # these new ones is present.)
 cache_dir = "/etc/lvm/cache"
 cache_file_prefix = ""

 # You can turn off writing this cache file by setting this to 0.
 write_cache_state = 1

 # Advanced settings.

 # List of pairs of additional acceptable block device types found
 # in /proc/devices with maximum (non-zero) number of partitions.
 # types = ["fd", 16]

 # If sysfs is mounted (2.6 kernels) restrict device scanning to
 # the block devices it believes are valid.
 # 1 enables; 0 disables.
 sysfs_scan = 1

 # By default, LVM2 will ignore devices used as component paths
 # of device-mapper multipath devices.
 # 1 enables; 0 disables.
 multipath_component_detection = 1

Appendix B. The LVM Configuration Files

95

 # By default, LVM2 will ignore devices used as components of
 # software RAID (md) devices by looking for md superblocks.
 # 1 enables; 0 disables.
 md_component_detection = 1

 # By default, if a PV is placed directly upon an md device, LVM2
 # will align its data blocks with the md device's stripe-width.
 # 1 enables; 0 disables.
 md_chunk_alignment = 1

 # Default alignment of the start of a data area in MB. If set to 0,
 # a value of 64KB will be used. Set to 1 for 1MiB, 2 for 2MiB, etc.
 # default_data_alignment = 1

 # By default, the start of a PV's data area will be a multiple of
 # the 'minimum_io_size' or 'optimal_io_size' exposed in sysfs.
 # - minimum_io_size - the smallest request the device can perform
 # w/o incurring a read-modify-write penalty (e.g. MD's chunk size)
 # - optimal_io_size - the device's preferred unit of receiving I/O
 # (e.g. MD's stripe width)
 # minimum_io_size is used if optimal_io_size is undefined (0).
 # If md_chunk_alignment is enabled, that detects the optimal_io_size.
 # This setting takes precedence over md_chunk_alignment.
 # 1 enables; 0 disables.
 data_alignment_detection = 1

 # Alignment (in KB) of start of data area when creating a new PV.
 # md_chunk_alignment and data_alignment_detection are disabled if set.
 # Set to 0 for the default alignment (see: data_alignment_default)
 # or page size, if larger.
 data_alignment = 0

 # By default, the start of the PV's aligned data area will be shifted by
 # the 'alignment_offset' exposed in sysfs. This offset is often 0 but
 # may be non-zero; e.g.: certain 4KB sector drives that compensate for
 # windows partitioning will have an alignment_offset of 3584 bytes
 # (sector 7 is the lowest aligned logical block, the 4KB sectors start
 # at LBA -1, and consequently sector 63 is aligned on a 4KB boundary).
 # But note that pvcreate --dataalignmentoffset will skip this detection.
 # 1 enables; 0 disables.
 data_alignment_offset_detection = 1

 # If, while scanning the system for PVs, LVM2 encounters a device-mapper
 # device that has its I/O suspended, it waits for it to become
accessible.
 # Set this to 1 to skip such devices. This should only be needed
 # in recovery situations.
 ignore_suspended_devices = 0

 # During each LVM operation errors received from each device are counted.
 # If the counter of a particular device exceeds the limit set here, no
 # further I/O is sent to that device for the remainder of the respective
 # operation. Setting the parameter to 0 disables the counters
altogether.
 disable_after_error_count = 0

Logical Volume Manager Administration

96

 # Allow use of pvcreate --uuid without requiring --restorefile.
 require_restorefile_with_uuid = 1

 # Minimum size (in KB) of block devices which can be used as PVs.
 # In a clustered environment all nodes must use the same value.
 # Any value smaller than 512KB is ignored.

 # Ignore devices smaller than 2MB such as floppy drives.
 pv_min_size = 2048

 # The original built-in setting was 512 up to and including version
2.02.84.
 # pv_min_size = 512

 # Issue discards to a logical volumes's underlying physical volume(s)
when
 # the logical volume is no longer using the physical volumes' space
(e.g.
 # lvremove, lvreduce, etc). Discards inform the storage that a region
is
 # no longer in use. Storage that supports discards advertise the
protocol
 # specific way discards should be issued by the kernel (TRIM, UNMAP, or
 # WRITE SAME with UNMAP bit set). Not all storage will support or
benefit
 # from discards but SSDs and thinly provisioned LUNs generally do. If
set
 # to 1, discards will only be issued if both the storage and kernel
provide
 # support.
 # 1 enables; 0 disables.
 issue_discards = 0
}

This section allows you to configure the way in which LVM selects
free space for its Logical Volumes.
#allocation {
When searching for free space to extend an LV, the "cling"
allocation policy will choose space on the same PVs as the last
segment of the existing LV. If there is insufficient space and a
list of tags is defined here, it will check whether any of them are
attached to the PVs concerned and then seek to match those PV tags
between existing extents and new extents.
Use the special tag "@*" as a wildcard to match any PV tag.

Example: LVs are mirrored between two sites within a single VG.
PVs are tagged with either @site1 or @site2 to indicate where
they are situated.
#
cling_tag_list = ["@site1", "@site2"]
cling_tag_list = ["@*"]
#
Changes made in version 2.02.85 extended the reach of the 'cling'
policies to detect more situations where data can be grouped
onto the same disks. Set this to 0 to revert to the previous
algorithm.

Appendix B. The LVM Configuration Files

97

#
maximise_cling = 1
#
Set to 1 to guarantee that mirror logs will always be placed on
different PVs from the mirror images. This was the default
until version 2.02.85.
#
mirror_logs_require_separate_pvs = 0
#
Set to 1 to guarantee that thin pool metadata will always
be placed on different PVs from the pool data.
#
thin_pool_metadata_require_separate_pvs = 0
#}

This section that allows you to configure the nature of the
information that LVM2 reports.
log {

 # Controls the messages sent to stdout or stderr.
 # There are three levels of verbosity, 3 being the most verbose.
 verbose = 0

 # Should we send log messages through syslog?
 # 1 is yes; 0 is no.
 syslog = 1

 # Should we log error and debug messages to a file?
 # By default there is no log file.
 #file = "/var/log/lvm2.log"

 # Should we overwrite the log file each time the program is run?
 # By default we append.
 overwrite = 0

 # What level of log messages should we send to the log file and/or
syslog?
 # There are 6 syslog-like log levels currently in use - 2 to 7
inclusive.
 # 7 is the most verbose (LOG_DEBUG).
 level = 0

 # Format of output messages
 # Whether or not (1 or 0) to indent messages according to their severity
 indent = 1

 # Whether or not (1 or 0) to display the command name on each line
output
 command_names = 0

 # A prefix to use before the message text (but after the command name,
 # if selected). Default is two spaces, so you can see/grep the severity
 # of each message.
 prefix = " "

 # To make the messages look similar to the original LVM tools use:

Logical Volume Manager Administration

98

 # indent = 0
 # command_names = 1
 # prefix = " -- "

 # Set this if you want log messages during activation.
 # Don't use this in low memory situations (can deadlock).
 # activation = 0
}

Configuration of metadata backups and archiving. In LVM2 when we
talk about a 'backup' we mean making a copy of the metadata for the
current system. The 'archive' contains old metadata configurations.
Backups are stored in a human readeable text format.
backup {

 # Should we maintain a backup of the current metadata configuration ?
 # Use 1 for Yes; 0 for No.
 # Think very hard before turning this off!
 backup = 1

 # Where shall we keep it ?
 # Remember to back up this directory regularly!
 backup_dir = "/etc/lvm/backup"

 # Should we maintain an archive of old metadata configurations.
 # Use 1 for Yes; 0 for No.
 # On by default. Think very hard before turning this off.
 archive = 1

 # Where should archived files go ?
 # Remember to back up this directory regularly!
 archive_dir = "/etc/lvm/archive"

 # What is the minimum number of archive files you wish to keep ?
 retain_min = 10

 # What is the minimum time you wish to keep an archive file for ?
 retain_days = 30
}

Settings for the running LVM2 in shell (readline) mode.
shell {

 # Number of lines of history to store in ~/.lvm_history
 history_size = 100
}

Miscellaneous global LVM2 settings
global {

 # The file creation mask for any files and directories created.
 # Interpreted as octal if the first digit is zero.
 umask = 077

 # Allow other users to read the files

Appendix B. The LVM Configuration Files

99

 #umask = 022

 # Enabling test mode means that no changes to the on disk metadata
 # will be made. Equivalent to having the -t option on every
 # command. Defaults to off.
 test = 0

 # Default value for --units argument
 units = "h"

 # Since version 2.02.54, the tools distinguish between powers of
 # 1024 bytes (e.g. KiB, MiB, GiB) and powers of 1000 bytes (e.g.
 # KB, MB, GB).
 # If you have scripts that depend on the old behaviour, set this to 0
 # temporarily until you update them.
 si_unit_consistency = 1

 # Whether or not to communicate with the kernel device-mapper.
 # Set to 0 if you want to use the tools to manipulate LVM metadata
 # without activating any logical volumes.
 # If the device-mapper kernel driver is not present in your kernel
 # setting this to 0 should suppress the error messages.
 activation = 1

 # If we can't communicate with device-mapper, should we try running
 # the LVM1 tools?
 # This option only applies to 2.4 kernels and is provided to help you
 # switch between device-mapper kernels and LVM1 kernels.
 # The LVM1 tools need to be installed with .lvm1 suffices
 # e.g. vgscan.lvm1 and they will stop working after you start using
 # the new lvm2 on-disk metadata format.
 # The default value is set when the tools are built.
 # fallback_to_lvm1 = 0

 # The default metadata format that commands should use - "lvm1" or
"lvm2".
 # The command line override is -M1 or -M2.
 # Defaults to "lvm2".
 # format = "lvm2"

 # Location of proc filesystem
 proc = "/proc"

 # Type of locking to use. Defaults to local file-based locking (1).
 # Turn locking off by setting to 0 (dangerous: risks metadata corruption
 # if LVM2 commands get run concurrently).
 # Type 2 uses the external shared library locking_library.
 # Type 3 uses built-in clustered locking.
 # Type 4 uses read-only locking which forbids any operations that might
 # change metadata.
 locking_type = 1

 # Set to 0 to fail when a lock request cannot be satisfied immediately.
 wait_for_locks = 1

 # If using external locking (type 2) and initialisation fails,

Logical Volume Manager Administration

100

 # with this set to 1 an attempt will be made to use the built-in
 # clustered locking.
 # If you are using a customised locking_library you should set this to
0.
 fallback_to_clustered_locking = 1

 # If an attempt to initialise type 2 or type 3 locking failed, perhaps
 # because cluster components such as clvmd are not running, with this
set
 # to 1 an attempt will be made to use local file-based locking (type 1).
 # If this succeeds, only commands against local volume groups will
proceed.
 # Volume Groups marked as clustered will be ignored.
 fallback_to_local_locking = 1

 # Local non-LV directory that holds file-based locks while commands are
 # in progress. A directory like /tmp that may get wiped on reboot is
OK.
 locking_dir = "/var/lock/lvm"

 # Whenever there are competing read-only and read-write access requests
for
 # a volume group's metadata, instead of always granting the read-only
 # requests immediately, delay them to allow the read-write requests to
be
 # serviced. Without this setting, write access may be stalled by a high
 # volume of read-only requests.
 # NB. This option only affects locking_type = 1 viz. local file-based
 # locking.
 prioritise_write_locks = 1

 # Other entries can go here to allow you to load shared libraries
 # e.g. if support for LVM1 metadata was compiled as a shared library use
 # format_libraries = "liblvm2format1.so"
 # Full pathnames can be given.

 # Search this directory first for shared libraries.
 # library_dir = "/lib"

 # The external locking library to load if locking_type is set to 2.
 # locking_library = "liblvm2clusterlock.so"

 # Treat any internal errors as fatal errors, aborting the process that
 # encountered the internal error. Please only enable for debugging.
 abort_on_internal_errors = 0

 # Check whether CRC is matching when parsed VG is used multiple times.
 # This is useful to catch unexpected internal cached volume group
 # structure modification. Please only enable for debugging.
 detect_internal_vg_cache_corruption = 0

 # If set to 1, no operations that change on-disk metadata will be
permitted.
 # Additionally, read-only commands that encounter metadata in need of
repair
 # will still be allowed to proceed exactly as if the repair had been

Appendix B. The LVM Configuration Files

101

 # performed (except for the unchanged vg_seqno).
 # Inappropriate use could mess up your system, so seek advice first!
 metadata_read_only = 0

 # 'mirror_segtype_default' defines which segtype will be used when the
 # shorthand '-m' option is used for mirroring. The possible options
are:
 #
 # "mirror" - The original RAID1 implementation provided by LVM2/DM. It
is
 # characterized by a flexible log solution (core, disk,
mirrored)
 # and by the necessity to block I/O while reconfiguring in the
 # event of a failure.
 #
 # There is an inherent race in the dmeventd failure handling
 # logic with snapshots of devices using this type of RAID1 that
 # in the worst case could cause a deadlock.
 # Ref: https://bugzilla.redhat.com/show_bug.cgi?id=817130#c10
 #
 # "raid1" - This implementation leverages MD's RAID1 personality
through
 # device-mapper. It is characterized by a lack of log
options.
 # (A log is always allocated for every device and they are placed
 # on the same device as the image - no separate devices are
 # required.) This mirror implementation does not require I/O
 # to be blocked in the kernel in the event of a failure.
 # This mirror implementation is not cluster-aware and cannot be
 # used in a shared (active/active) fashion in a cluster.
 #
 # Specify the '--type <mirror|raid1>' option to override this default
 # setting.
 mirror_segtype_default = "mirror"

 # The default format for displaying LV names in lvdisplay was changed
 # in version 2.02.89 to show the LV name and path separately.
 # Previously this was always shown as /dev/vgname/lvname even when that
 # was never a valid path in the /dev filesystem.
 # Set to 1 to reinstate the previous format.
 #
 # lvdisplay_shows_full_device_path = 0

 # Whether to use (trust) a running instance of lvmetad. If this is set
to
 # 0, all commands fall back to the usual scanning mechanisms. When set
to 1
 # *and* when lvmetad is running (it is not auto-started), the volume
group
 # metadata and PV state flags are obtained from the lvmetad instance and
no
 # scanning is done by the individual commands. In a setup with lvmetad,
 # lvmetad udev rules *must* be set up for LVM to work correctly. Without
 # proper udev rules, all changes in block device configuration will be
 # *ignored* until a manual 'vgscan' is performed.
 use_lvmetad = 0

Logical Volume Manager Administration

102

}

activation {
 # Set to 1 to perform internal checks on the operations issued to
 # libdevmapper. Useful for debugging problems with activation.
 # Some of the checks may be expensive, so it's best to use this
 # only when there seems to be a problem.
 checks = 0

 # Set to 0 to disable udev synchronisation (if compiled into the
binaries).
 # Processes will not wait for notification from udev.
 # They will continue irrespective of any possible udev processing
 # in the background. You should only use this if udev is not running
 # or has rules that ignore the devices LVM2 creates.
 # The command line argument --nodevsync takes precedence over this
setting.
 # If set to 1 when udev is not running, and there are LVM2 processes
 # waiting for udev, run 'dmsetup udevcomplete_all' manually to wake them
up.
 udev_sync = 1

 # Set to 0 to disable the udev rules installed by LVM2 (if built with
 # --enable-udev_rules). LVM2 will then manage the /dev nodes and
symlinks
 # for active logical volumes directly itself.
 # N.B. Manual intervention may be required if this setting is changed
 # while any logical volumes are active.
 udev_rules = 1

 # Set to 1 for LVM2 to verify operations performed by udev. This turns
on
 # additional checks (and if necessary, repairs) on entries in the device
 # directory after udev has completed processing its events.
 # Useful for diagnosing problems with LVM2/udev interactions.
 verify_udev_operations = 0

 # If set to 1 and if deactivation of an LV fails, perhaps because
 # a process run from a quick udev rule temporarily opened the device,
 # retry the operation for a few seconds before failing.
 retry_deactivation = 1

 # How to fill in missing stripes if activating an incomplete volume.
 # Using "error" will make inaccessible parts of the device return
 # I/O errors on access. You can instead use a device path, in which
 # case, that device will be used to in place of missing stripes.
 # But note that using anything other than "error" with mirrored
 # or snapshotted volumes is likely to result in data corruption.
 missing_stripe_filler = "error"

 # The linear target is an optimised version of the striped target
 # that only handles a single stripe. Set this to 0 to disable this
 # optimisation and always use the striped target.
 use_linear_target = 1

 # How much stack (in KB) to reserve for use while devices suspended

Appendix B. The LVM Configuration Files

103

 # Prior to version 2.02.89 this used to be set to 256KB
 reserved_stack = 64

 # How much memory (in KB) to reserve for use while devices suspended
 reserved_memory = 8192

 # Nice value used while devices suspended
 process_priority = -18

 # If volume_list is defined, each LV is only activated if there is a
 # match against the list.
 # "vgname" and "vgname/lvname" are matched exactly.
 # "@tag" matches any tag set in the LV or VG.
 # "@*" matches if any tag defined on the host is also set in the LV or
VG
 #
 # volume_list = ["vg1", "vg2/lvol1", "@tag1", "@*"]

 # If read_only_volume_list is defined, each LV that is to be activated
 # is checked against the list, and if it matches, it as activated
 # in read-only mode. (This overrides '--permission rw' stored in the
 # metadata.)
 # "vgname" and "vgname/lvname" are matched exactly.
 # "@tag" matches any tag set in the LV or VG.
 # "@*" matches if any tag defined on the host is also set in the LV or
VG
 #
 # read_only_volume_list = ["vg1", "vg2/lvol1", "@tag1", "@*"]

 # Size (in KB) of each copy operation when mirroring
 mirror_region_size = 512

 # Setting to use when there is no readahead value stored in the
metadata.
 #
 # "none" - Disable readahead.
 # "auto" - Use default value chosen by kernel.
 readahead = "auto"

 # 'raid_fault_policy' defines how a device failure in a RAID logical
 # volume is handled. This includes logical volumes that have the
following
 # segment types: raid1, raid4, raid5*, and raid6*.
 #
 # In the event of a failure, the following policies will determine what
 # actions are performed during the automated response to failures (when
 # dmeventd is monitoring the RAID logical volume) and when 'lvconvert'
is
 # called manually with the options '--repair' and '--use-policies'.
 #
 # "warn" - Use the system log to warn the user that a device in the RAID
 # logical volume has failed. It is left to the user to run
 # 'lvconvert --repair' manually to remove or replace the failed
 # device. As long as the number of failed devices does not
 # exceed the redundancy of the logical volume (1 device for
 # raid4/5, 2 for raid6, etc) the logical volume will remain

Logical Volume Manager Administration

104

 # usable.
 #
 # "allocate" - Attempt to use any extra physical volumes in the volume
 # group as spares and replace faulty devices.
 #
 raid_fault_policy = "warn"

 # 'mirror_image_fault_policy' and 'mirror_log_fault_policy' define
 # how a device failure affecting a mirror (of "mirror" segment type) is
 # handled. A mirror is composed of mirror images (copies) and a log.
 # A disk log ensures that a mirror does not need to be re-synced
 # (all copies made the same) every time a machine reboots or crashes.
 #
 # In the event of a failure, the specified policy will be used to
determine
 # what happens. This applies to automatic repairs (when the mirror is
being
 # monitored by dmeventd) and to manual lvconvert --repair when
 # --use-policies is given.
 #
 # "remove" - Simply remove the faulty device and run without it. If
 # the log device fails, the mirror would convert to using
 # an in-memory log. This means the mirror will not
 # remember its sync status across crashes/reboots and
 # the entire mirror will be re-synced. If a
 # mirror image fails, the mirror will convert to a
 # non-mirrored device if there is only one remaining good
 # copy.
 #
 # "allocate" - Remove the faulty device and try to allocate space on
 # a new device to be a replacement for the failed device.
 # Using this policy for the log is fast and maintains the
 # ability to remember sync state through crashes/reboots.
 # Using this policy for a mirror device is slow, as it
 # requires the mirror to resynchronize the devices, but it
 # will preserve the mirror characteristic of the device.
 # This policy acts like "remove" if no suitable device and
 # space can be allocated for the replacement.
 #
 # "allocate_anywhere" - Not yet implemented. Useful to place the log
device
 # temporarily on same physical volume as one of the mirror
 # images. This policy is not recommended for mirror devices
 # since it would break the redundant nature of the mirror.
This
 # policy acts like "remove" if no suitable device and space
can
 # be allocated for the replacement.

 mirror_log_fault_policy = "allocate"
 mirror_image_fault_policy = "remove"

 # 'snapshot_autoextend_threshold' and 'snapshot_autoextend_percent'
define
 # how to handle automatic snapshot extension. The former defines when
the

Appendix B. The LVM Configuration Files

105

 # snapshot should be extended: when its space usage exceeds this many
 # percent. The latter defines how much extra space should be allocated
for
 # the snapshot, in percent of its current size.
 #
 # For example, if you set snapshot_autoextend_threshold to 70 and
 # snapshot_autoextend_percent to 20, whenever a snapshot exceeds 70%
usage,
 # it will be extended by another 20%. For a 1G snapshot, using up 700M
will
 # trigger a resize to 1.2G. When the usage exceeds 840M, the snapshot
will
 # be extended to 1.44G, and so on.
 #
 # Setting snapshot_autoextend_threshold to 100 disables automatic
 # extensions. The minimum value is 50 (A setting below 50 will be
treated
 # as 50).

 snapshot_autoextend_threshold = 100
 snapshot_autoextend_percent = 20

 # 'thin_pool_autoextend_threshold' and 'thin_pool_autoextend_percent'
define
 # how to handle automatic pool extension. The former defines when the
 # pool should be extended: when its space usage exceeds this many
 # percent. The latter defines how much extra space should be allocated
for
 # the pool, in percent of its current size.
 #
 # For example, if you set thin_pool_autoextend_threshold to 70 and
 # thin_pool_autoextend_percent to 20, whenever a pool exceeds 70% usage,
 # it will be extended by another 20%. For a 1G pool, using up 700M will
 # trigger a resize to 1.2G. When the usage exceeds 840M, the pool will
 # be extended to 1.44G, and so on.
 #
 # Setting thin_pool_autoextend_threshold to 100 disables automatic
 # extensions. The minimum value is 50 (A setting below 50 will be
treated
 # as 50).

 thin_pool_autoextend_threshold = 100
 thin_pool_autoextend_percent = 20

 # Full path of the utility called to check that a thin metadata device
 # is in a state that allows it to be used.
 # Each time a thin pool needs to be activated, this utility is executed.
 # The activation will only proceed if the utility has an exit status of
0.
 # Set to "" to skip this check. (Not recommended.)
 # The thin tools are available as part of the device-mapper-persistent-
data
 # package from https://github.com/jthornber/thin-provisioning-tools.
 #
 thin_check_executable = "/usr/sbin/thin_check"

Logical Volume Manager Administration

106

 # String with options passed with thin_check command. By default,
 # option '-q' is for quiet output.
 thin_check_options = ["-q"]

 # While activating devices, I/O to devices being (re)configured is
 # suspended, and as a precaution against deadlocks, LVM2 needs to pin
 # any memory it is using so it is not paged out. Groups of pages that
 # are known not to be accessed during activation need not be pinned
 # into memory. Each string listed in this setting is compared against
 # each line in /proc/self/maps, and the pages corresponding to any
 # lines that match are not pinned. On some systems locale-archive was
 # found to make up over 80% of the memory used by the process.
 # mlock_filter = ["locale/locale-archive", "gconv/gconv-modules.cache"
]

 # Set to 1 to revert to the default behaviour prior to version 2.02.62
 # which used mlockall() to pin the whole process's memory while
activating
 # devices.
 use_mlockall = 0

 # Monitoring is enabled by default when activating logical volumes.
 # Set to 0 to disable monitoring or use the --ignoremonitoring option.
 monitoring = 1

 # When pvmove or lvconvert must wait for the kernel to finish
 # synchronising or merging data, they check and report progress
 # at intervals of this number of seconds. The default is 15 seconds.
 # If this is set to 0 and there is only one thing to wait for, there
 # are no progress reports, but the process is awoken immediately the
 # operation is complete.
 polling_interval = 15
}

####################
Advanced section
####################

Metadata settings
#
metadata {
 # Default number of copies of metadata to hold on each PV. 0, 1 or 2.
 # You might want to override it from the command line with 0
 # when running pvcreate on new PVs which are to be added to large VGs.

 # pvmetadatacopies = 1

 # Default number of copies of metadata to maintain for each VG.
 # If set to a non-zero value, LVM automatically chooses which of
 # the available metadata areas to use to achieve the requested
 # number of copies of the VG metadata. If you set a value larger
 # than the the total number of metadata areas available then
 # metadata is stored in them all.
 # The default value of 0 ("unmanaged") disables this automatic
 # management and allows you to control which metadata areas

Appendix B. The LVM Configuration Files

107

 # are used at the individual PV level using 'pvchange
 # --metadataignore y/n'.

 # vgmetadatacopies = 0

 # Approximate default size of on-disk metadata areas in sectors.
 # You should increase this if you have large volume groups or
 # you want to retain a large on-disk history of your metadata changes.

 # pvmetadatasize = 255

 # List of directories holding live copies of text format metadata.
 # These directories must not be on logical volumes!
 # It's possible to use LVM2 with a couple of directories here,
 # preferably on different (non-LV) filesystems, and with no other
 # on-disk metadata (pvmetadatacopies = 0). Or this can be in
 # addition to on-disk metadata areas.
 # The feature was originally added to simplify testing and is not
 # supported under low memory situations - the machine could lock up.
 #
 # Never edit any files in these directories by hand unless you
 # you are absolutely sure you know what you are doing! Use
 # the supplied toolset to make changes (e.g. vgcfgrestore).

 # dirs = ["/etc/lvm/metadata", "/mnt/disk2/lvm/metadata2"]
#}

Event daemon
#
dmeventd {
 # mirror_library is the library used when monitoring a mirror device.
 #
 # "libdevmapper-event-lvm2mirror.so" attempts to recover from
 # failures. It removes failed devices from a volume group and
 # reconfigures a mirror as necessary. If no mirror library is
 # provided, mirrors are not monitored through dmeventd.

 mirror_library = "libdevmapper-event-lvm2mirror.so"

 # snapshot_library is the library used when monitoring a snapshot
device.
 #
 # "libdevmapper-event-lvm2snapshot.so" monitors the filling of
 # snapshots and emits a warning through syslog when the use of
 # the snapshot exceeds 80%. The warning is repeated when 85%, 90% and
 # 95% of the snapshot is filled.

 snapshot_library = "libdevmapper-event-lvm2snapshot.so"

 # thin_library is the library used when monitoring a thin device.
 #
 # "libdevmapper-event-lvm2thin.so" monitors the filling of
 # pool and emits a warning through syslog when the use of
 # the pool exceeds 80%. The warning is repeated when 85%, 90% and
 # 95% of the pool is filled.

Logical Volume Manager Administration

108

 thin_library = "libdevmapper-event-lvm2thin.so"

 # Full path of the dmeventd binary.
 #
 # executable = "/sbin/dmeventd"
}

Appendix B. The LVM Configuration Files

109

Appendix C. LVM Object Tags

An LVM tag is a word that can be used to group LVM2 objects of the same type together. Tags can be
attached to objects such as physical volumes, volume groups, and logical volumes. Tags can be attached to
hosts in a cluster configuration. Snapshots cannot be tagged.

Tags can be given on the command line in place of PV, VG or LV arguments. Tags should be prefixed with @
to avoid ambiguity. Each tag is expanded by replacing it with all objects possessing that tag which are of the
type expected by its position on the command line.

LVM tags are strings using [A-Za-z0-9_+.-] of up to 128 characters. They cannot start with a hyphen.

Only objects in a volume group can be tagged. Physical volumes lose their tags if they are removed from a
volume group; this is because tags are stored as part of the volume group metadata and that is deleted when
a physical volume is removed. Snapshots cannot be tagged.

The following command lists all the logical volumes with the database tag.

lvs @database

The following command lists the currently active host tags.

lvm tags

C.1. Adding and Removing Object Tags

To add or delete tags from physical volumes, use the --addtag or --deltag option of the pvchange
command.

To add or delete tags from volume groups, use the --addtag or --deltag option of the vgchange or
vgcreate commands.

To add or delete tags from logical volumes, use the --addtag or --deltag option of the lvchange or
lvcreate commands.

C.2. Host Tags

In a cluster configuration, you can define host tags in the configuration files. If you set hosttags = 1 in the
tags section, a host tag is automatically defined using the machine's hostname. This allow you to use a
common configuration file which can be replicated on all your machines so they hold identical copies of the
file, but the behavior can differ between machines according to the hostname.

For information on the configuration files, see Appendix B, The LVM Configuration Files.

For each host tag, an extra configuration file is read if it exists: lvm_hosttag.conf. If that file defines new tags,
then further configuration files will be appended to the list of files to read in.

For example, the following entry in the configuration file always defines tag1, and defines tag2 if the
hostname is host1.

tags { tag1 { } tag2 { host_list = ["host1"] } }

C.3. Controlling Activation with Tags

Logical Volume Manager Administration

110

C.3. Controlling Activation with Tags

You can specify in the configuration file that only certain logical volumes should be activated on that host. For
example, the following entry acts as a filter for activation requests (such as vgchange -ay) and only
activates vg1/lvol0 and any logical volumes or volume groups with the database tag in the metadata on
that host.

activation { volume_list = ["vg1/lvol0", "@database"] }

There is a special match "@*" that causes a match only if any metadata tag matches any host tag on that
machine.

As another example, consider a situation where every machine in the cluster has the following entry in the
configuration file:

tags { hosttags = 1 }

If you want to activate vg1/lvol2 only on host db2, do the following:

1. Run lvchange --addtag @db2 vg1/lvol2 from any host in the cluster.

2. Run lvchange -ay vg1/lvol2.

This solution involves storing hostnames inside the volume group metadata.

Appendix C. LVM Object Tags

111

Appendix D. LVM Volume Group Metadata

The configuration details of a volume group are referred to as the metadata. By default, an identical copy of
the metadata is maintained in every metadata area in every physical volume within the volume group. LVM
volume group metadata is stored as ASCII.

A metadata area is a circular buffer. New metadata is appended to the old metadata and then the pointer to
the start of it is updated.

You can specify the size of the metadata area with the --metadatasize. option of the pvcreate
command. The default size may be too small for volume groups that contain physical volumes and logical
volumes that number in the hundreds.

If a volume group contains many physical volumes, having many redundant copies of the metadata is
inefficient. It is possible to create a physical volume without any metadata copies by using the --
metadatacopies 0 option of the pvcreate command. Once you have selected the number of metadata
copies the physical volume will contain, you cannot change that at a later point. Selecting 0 copies can result
in faster updates on configuration changes. Note, however, that at all times every volume group must contain
at least one physical volume with a metadata area (unless you are using the advanced configuration settings
that allow you to store volume group metadata in a file system). If you intend to split the volume group in the
future, every volume group needs at least one metadata copy.

As of Red Hat Enterprise Linux 5.6, you can also control metadata storage on a physical volume by using the
--metadataignore option of the pvcreate command. If metadata areas on a physical volume are
ignored, LVM will not store metadata in the metadata areas present on this physical volume. Since metadata
areas cannot be created or extended after logical volumes have been allocated on the device, it is
recommended that you allocate a metadata area in case you need it in the future even if you do not want to
store metadata on this device. You can then use this option to instruct LVM to ignore the metadata area.

As of Red Hat Enterprise Linux 5.6, you can determine the number of metadata copies at the volume group
level with the --vgmetadatacopies option of the vgcreate command. For information on setting this
value, see the vgcreate man page. You may find this option useful for volume groups containing large
numbers of physical volumes with metadata, as you can use the option to minimize metadata read and write
overhead.

If you use the vgsplit command to split a volume group, the volume group retains the existing volume
groups value of vgmetadatacopies. You can use the vgchange command to change the value of
vgmetadatacopies.

D.1. The Physical Volume Label

By default, the pvcreate command places the physical volume label in the 2nd 512-byte sector. This label
can optionally be placed in any of the first four sectors, since the LVM tools that scan for a physical volume
label check the first 4 sectors. The physical volume label begins with the string LABELONE.

The physical volume label Contains:

Physical volume UUID

Size of block device in bytes

NULL-terminated list of data area locations

NULL-terminated lists of metadata area locations

Logical Volume Manager Administration

112

Metadata locations are stored as offset and size (in bytes). There is room in the label for about 15 locations,
but the LVM tools currently use 3: a single data area plus up to two metadata areas.

D.2. Metadata Contents

The volume group metadata contains:

Information about how and when it was created

Information about the volume group:

The volume group information contains:

Name and unique id

A version number which is incremented whenever the metadata gets updated

Any properties: Read/Write? Resizeable?

Any administrative limit on the number of physical volumes and logical volumes it may contain

The extent size (in units of sectors which are defined as 512 bytes)

An unordered list of physical volumes making up the volume group, each with:

Its UUID, used to determine the block device containing it

Any properties, such as whether the physical volume is allocatable

The offset to the start of the first extent within the physical volume (in sectors)

The number of extents

An unordered list of logical volumes. each consisting of

An ordered list of logical volume segments. For each segment the metadata includes a mapping
applied to an ordered list of physical volume segments or logical volume segments

D.3. Sample Metadata

The following shows an example of LVM volume group metadata for a volume group called myvg.

Generated by LVM2: Tue Jan 30 16:28:15 2007

contents = "Text Format Volume Group"
version = 1

description = "Created *before* executing 'lvextend -L+5G /dev/myvg/mylv
/dev/sdc'"

creation_host = "tng3-1" # Linux tng3-1 2.6.18-8.el5 #1 SMP Fri Jan
26 14:15:21 EST 2007 i686
creation_time = 1170196095 # Tue Jan 30 16:28:15 2007

myvg {
 id = "0zd3UT-wbYT-lDHq-lMPs-EjoE-0o18-wL28X4"
 seqno = 3

Appendix D. LVM Volume Group Metadata

113

 status = ["RESIZEABLE", "READ", "WRITE"]
 extent_size = 8192 # 4 Megabytes
 max_lv = 0
 max_pv = 0

 physical_volumes {

 pv0 {
 id = "ZBW5qW-dXF2-0bGw-ZCad-2RlV-phwu-1c1RFt"
 device = "/dev/sda" # Hint only

 status = ["ALLOCATABLE"]
 dev_size = 35964301 # 17.1491 Gigabytes
 pe_start = 384
 pe_count = 4390 # 17.1484 Gigabytes
 }

 pv1 {
 id = "ZHEZJW-MR64-D3QM-Rv7V-Hxsa-zU24-wztY19"
 device = "/dev/sdb" # Hint only

 status = ["ALLOCATABLE"]
 dev_size = 35964301 # 17.1491 Gigabytes
 pe_start = 384
 pe_count = 4390 # 17.1484 Gigabytes
 }

 pv2 {
 id = "wCoG4p-55Ui-9tbp-VTEA-jO6s-RAVx-UREW0G"
 device = "/dev/sdc" # Hint only

 status = ["ALLOCATABLE"]
 dev_size = 35964301 # 17.1491 Gigabytes
 pe_start = 384
 pe_count = 4390 # 17.1484 Gigabytes
 }

 pv3 {
 id = "hGlUwi-zsBg-39FF-do88-pHxY-8XA2-9WKIiA"
 device = "/dev/sdd" # Hint only

 status = ["ALLOCATABLE"]
 dev_size = 35964301 # 17.1491 Gigabytes
 pe_start = 384
 pe_count = 4390 # 17.1484 Gigabytes
 }
 }
 logical_volumes {

 mylv {
 id = "GhUYSF-qVM3-rzQo-a6D2-o0aV-LQet-Ur9OF9"
 status = ["READ", "WRITE", "VISIBLE"]
 segment_count = 2

 segment1 {
 start_extent = 0

Logical Volume Manager Administration

114

 extent_count = 1280 # 5 Gigabytes

 type = "striped"
 stripe_count = 1 # linear

 stripes = [
 "pv0", 0
]
 }
 segment2 {
 start_extent = 1280
 extent_count = 1280 # 5 Gigabytes

 type = "striped"
 stripe_count = 1 # linear

 stripes = [
 "pv1", 0
]
 }
 }
 }
}

Appendix D. LVM Volume Group Metadata

115

Appendix E. Revision History

Revision 8.0-8 Mon Sep 8 2014 Steven Levine
Version for 5.11 GA release

Revision 8.0-6 Mon Jun 30 2014 Steven Levine
Beta release of Red Hat Enterprise Linux 5.11

Revision 8.0-4 Tue Jun 10 2014 Steven Levine
Resolves: #1092639
Documents lvm tags command.

Resolves: #1092638
Updates documentation to reflect deprecation of major number.

Revision 8.0-0 Fri May 2 2014 Steven Levine
First draft for Red Hat Enterprise Linux 5.11

Revision 7.0-3 Wed Jul 10 2013 Steven Levine
Beta release of Red Hat Enterprise Linux 5.10

Revision 7.0-2 Tue May 28 2013 Steven Levine
Resolves: #796977
Adds section on LVM allocation policies.

Revision 7.0-1 Thu May 23 2013 Steven Levine
Adding new section on Allocation policies.

Revision 7.0-0 Tue May 14 2013 Steven Levine
Test printing for new Publican

Revision 6.0-7 Fri Jan 4 2013 Steven Levine
Version for Red Hat Enterprise Linux 5.9 GA release

Revision 6.0-6 Mon Nov 19 2012 Steven Levine
Resolves: #878152
Updates sample lvm.conf file in Appendix B to Red Hat Enterprise Linux 5.9 version.

Revision 6.0-5 Wed Nov 7 2012 Steven Levine
Resolves: #874159
Corrects small error in lvchange example.

Revision 6.0-4 Thu Aug 30 2012 Steven Levine
Beta release of Red Hat Enterprise Linux 5.9

Revision 6.0-1 Tue Jul 31 2012 Steven Levine

Logical Volume Manager Administration

116

Resolves: #736548
Notes that clustered log daemon should be installed and running to perform pvmove in a cluster.

Resolves: #801525
Makes prompts consistent in all examples.

Revision 5.0-4 Thu Feb 16 2012 Steven Levine
Release for GA of Red Hat Enterprise Linux 5.8

Revision 5.0-3 Thu Dec 15 2011 Steven Levine
Beta release of Red Hat Enterprise Linux 5.8

Revision 5.0-2 Tue Nov 23 2011 Steven Levine
Resolves: #755739, #755734, #755736
Corrects and clarifies small issues found during QE review.

Revision 5.0-1 Thu Nov 9 2011 Steven Levine
Resolves: #742311
Documents the --nosync option of lvextend command in Red Hat Enterprise Linux 5.8.

Resolves: #736458
Indicates that cluster mirror packages should be installed to relocate a pv in a cluster.

Resolves: #730761
Removes outdated references.

Revision 4.0-1 Thu Jul 21 2011 Steven Levine
Resolves: #705139
Documents new LVM features supported in Red Hat Enterprise Linux release 5.7.

Resolves: #712437
Documents support of mirrored stripes in Red Hat Enterprise Linux release 5.7.

Resolves: #654898
Fixes minor typographical errors.

Revision 3.0-1 Thu Dec 23 2010 Steven Levine
Updates sample lvm.conf file for Red Hat Enterprise Linux 5.6 release.

Resolves: #531637
Adds note clarifying behavior of mirror log management when the device holding the cluster mirror log
becomes unavailable.

Resolves: #659496
Documents new features: splitmirror, mirroring mirror log, and managing metadata, as described in New and
Changed Features section.

Resolves: #637188
Removes outdated information that the pvmove command is not supported in a cluster.

Resolves: #656195
Corrects small typographic errors.

Appendix E. Revision History

117

Revision 2.0-1 Thu Mar 11 2010 Steven Levine
Updates lvm.conf for Red Hat Enterprise Linux 5.5 release.

Resolves: #532588
Clarifies necessity for running vgscan when hardware configuration changes.

Revision 1.0-1 Tue Aug 18 2009 Steven Levine
Replaces Cluster Logical Volume Manager, resolving bugs against that document.

Resolves: #510273
Clarifies lack of snapshot support in clustered volume groups.

Resolves: #515742
Documents necessity for increasing mirror region size from default value for mirrors that are larger than
1.5TB.

Resolves: #491028
Fixes assorted wording and format errors.

Resolves: #491028
Fixes assorted wording and format errors.

Resolves: #504028
Provides new sections and documentation on creating mirrors in a cluster; general technical corrections.

Resolves: #494007
Clarifies description of setting snapshot size.

Resolves: #504028
Adds example showing creation of a mirrored volume in a cluster.

Resolves: #518567
Adds caution about ensuring all nodes in a cluster can access shared storage.

Resolves: #510920
Fixes typo.

Index

A
activating logical volumes

- individual nodes, Activating Logical Volumes on Individual Nodes in a Cluster

activating volume groups, Activating and Deactivating Volume Groups
- individual nodes, Activating and Deactivating Volume Groups
- local node only, Activating and Deactivating Volume Groups

administrative procedures, LVM Administration Overview

allocation, LVM Allocation
- policy, Creating Volume Groups

Logical Volume Manager Administration

118

- preventing, Preventing Allocation on a Physical Volume

archive file, Logical Volume Backup, Backing Up Volume Group Metadata

B
backup

- file, Logical Volume Backup
- metadata, Logical Volume Backup, Backing Up Volume Group Metadata

backup file, Backing Up Volume Group Metadata

block device
- scanning, Scanning for Block Devices

C
cache file

- building, Scanning Disks for Volume Groups to Build the Cache File

cluster environment, The Clustered Logical Volume Manager (CLVM), Creating LVM Volumes in
a Cluster

CLVM
- definition, The Clustered Logical Volume Manager (CLVM)

clvmd daemon, The Clustered Logical Volume Manager (CLVM)

command line units, Using CLI Commands

configuration examples, LVM Configuration Examples

creating
- logical volume, Creating Logical Volumes
- logical volume, example, Creating an LVM Logical Volume on Three Disks
- LVM volumes in a cluster, Creating LVM Volumes in a Cluster
- physical volumes, Creating Physical Volumes
- striped logical volume, example, Creating a Striped Logical Volume
- volume group, clustered, Creating Volume Groups in a Cluster
- volume groups, Creating Volume Groups

creating LVM volumes
- overview, Logical Volume Creation Overview

D
data relocation, online, Online Data Relocation

deactivating volume groups, Activating and Deactivating Volume Groups
- exclusive on one node, Activating and Deactivating Volume Groups
- local node only, Activating and Deactivating Volume Groups

device numbers
- major, Persistent Device Numbers
- minor, Persistent Device Numbers
- persistent, Persistent Device Numbers

device path names, Using CLI Commands

device scan filters, Controlling LVM Device Scans with Filters

device size, maximum, Creating Volume Groups

Index

119

device special file directory, Creating Volume Groups

display
- sorting output, Sorting LVM Reports

displaying
- logical volumes, Displaying Logical Volumes, The lvs Command
- physical volumes, Displaying Physical Volumes, The pvs Command
- volume groups, Displaying Volume Groups, The vgs Command

E
extent

- allocation, Creating Volume Groups, LVM Allocation
- definition, Volume Groups, Creating Volume Groups

F
failed devices

- displaying, Displaying Information on Failed Devices

features, new and changed, New and Changed Features

file system
- growing on a logical volume, Growing a File System on a Logical Volume

filters, Controlling LVM Device Scans with Filters

G
growing file system

- logical volume, Growing a File System on a Logical Volume

H
help display, Using CLI Commands

I
initializing

- partitions, Initializing Physical Volumes
- physical volumes, Initializing Physical Volumes

Insufficient Free Extents message, Insufficient Free Extents for a Logical Volume

L
linear logical volume

- converting to mirrored, Changing Mirrored Volume Configuration
- creation, Creating Linear Volumes
- definition, Linear Volumes

logging, Logging

logical volume
- administration, general, Logical Volume Administration
- changing parameters, Changing the Parameters of a Logical Volume Group
- creation, Creating Logical Volumes
- creation example, Creating an LVM Logical Volume on Three Disks
- definition, Logical Volumes, LVM Logical Volumes
- displaying, Displaying Logical Volumes, Customized Reporting for LVM, The lvs Command

Logical Volume Manager Administration

120

- exclusive access, Activating Logical Volumes on Individual Nodes in a Cluster
- extending, Growing Logical Volumes
- growing, Growing Logical Volumes
- linear, Creating Linear Volumes
- local access, Activating Logical Volumes on Individual Nodes in a Cluster
- lvs display arguments, The lvs Command
- mirrored, Creating Mirrored Volumes
- reducing, Shrinking Logical Volumes
- removing, Removing Logical Volumes
- renaming, Renaming Logical Volumes
- resizing, Resizing Logical Volumes
- shrinking, Shrinking Logical Volumes
- snapshot, Creating Snapshot Volumes
- striped, Creating Striped Volumes

lvchange command, Changing the Parameters of a Logical Volume Group

lvconvert command, Changing Mirrored Volume Configuration

lvcreate command, Creating Logical Volumes

lvdisplay command, Displaying Logical Volumes

lvextend command, Growing Logical Volumes

LVM
- architecture overview, LVM Architecture Overview
- clustered, The Clustered Logical Volume Manager (CLVM)
- components, LVM Architecture Overview, LVM Components
- custom report format, Customized Reporting for LVM
- directory structure, Creating Volume Groups
- help, Using CLI Commands
- history, LVM Architecture Overview
- label, Physical Volumes
- logging, Logging
- logical volume administration, Logical Volume Administration
- physical volume administration, Physical Volume Administration
- physical volume, definition, Physical Volumes
- volume group, definition, Volume Groups

LVM1, LVM Architecture Overview

LVM2, LVM Architecture Overview

lvmdiskscan command, Scanning for Block Devices

lvreduce command, Resizing Logical Volumes, Shrinking Logical Volumes

lvremove command, Removing Logical Volumes

lvrename command, Renaming Logical Volumes

lvs command, Customized Reporting for LVM, The lvs Command
- display arguments, The lvs Command

lvscan command, Displaying Logical Volumes

M
man page display, Using CLI Commands

metadata
- backup, Logical Volume Backup, Backing Up Volume Group Metadata
- recovery, Recovering Physical Volume Metadata

Index

121

mirrored logical volume
- clustered, Creating a Mirrored LVM Logical Volume in a Cluster
- converting to linear, Changing Mirrored Volume Configuration
- creation, Creating Mirrored Volumes
- definition, Mirrored Logical Volumes
- extending, Extending a Mirrored Volume
- failure recovery, Recovering from LVM Mirror Failure
- growing, Extending a Mirrored Volume
- reconfiguration, Changing Mirrored Volume Configuration

O
online data relocation, Online Data Relocation

overview
- features, new and changed, New and Changed Features

P
partition type, setting, Setting the Partition Type

partitions
- multiple, Multiple Partitions on a Disk

path names, Using CLI Commands

persistent device numbers, Persistent Device Numbers

physical extent
- preventing allocation, Preventing Allocation on a Physical Volume

physical volume
- adding to a volume group, Adding Physical Volumes to a Volume Group
- administration, general, Physical Volume Administration
- creating, Creating Physical Volumes
- definition, Physical Volumes
- display, The pvs Command
- displaying, Displaying Physical Volumes, Customized Reporting for LVM
- illustration, LVM Physical Volume Layout
- initializing, Initializing Physical Volumes
- layout, LVM Physical Volume Layout
- pvs display arguments, The pvs Command
- recovery, Replacing a Missing Physical Volume
- removing, Removing Physical Volumes
- removing from volume group, Removing Physical Volumes from a Volume Group
- removing lost volume, Removing Lost Physical Volumes from a Volume Group
- resizing, Resizing a Physical Volume

pvdisplay command, Displaying Physical Volumes

pvmove command, Online Data Relocation

pvremove command, Removing Physical Volumes

pvresize command, Resizing a Physical Volume

pvs command, Customized Reporting for LVM
- display arguments, The pvs Command

pvscan command, Displaying Physical Volumes

R

Logical Volume Manager Administration

122

removing
- disk from a logical volume, Removing a Disk from a Logical Volume
- logical volume, Removing Logical Volumes
- physical volumes, Removing Physical Volumes

renaming
- logical volume, Renaming Logical Volumes
- volume group, Renaming a Volume Group

report format, LVM devices, Customized Reporting for LVM

resizing
- logical volume, Resizing Logical Volumes
- physical volume, Resizing a Physical Volume

S
scanning

- block devices, Scanning for Block Devices

scanning devices, filters, Controlling LVM Device Scans with Filters

snapshot logical volume
- creation, Creating Snapshot Volumes

snapshot volume
- definition, Snapshot Volumes

striped logical volume
- creation, Creating Striped Volumes
- creation example, Creating a Striped Logical Volume
- definition, Striped Logical Volumes
- extending, Extending a Striped Volume
- growing, Extending a Striped Volume

T
troubleshooting, LVM Troubleshooting

U
units, command line, Using CLI Commands

V
verbose output, Using CLI Commands

vgcfbackup command, Backing Up Volume Group Metadata

vgcfrestore command, Backing Up Volume Group Metadata

vgchange command, Changing the Parameters of a Volume Group

vgcreate command, Creating Volume Groups, Creating Volume Groups in a Cluster

vgdisplay command, Displaying Volume Groups

vgexport command, Moving a Volume Group to Another System

vgextend command, Adding Physical Volumes to a Volume Group

vgimport command, Moving a Volume Group to Another System

vgmerge command, Combining Volume Groups

vgmknodes command, Recreating a Volume Group Directory

Index

123

vgreduce command, Removing Physical Volumes from a Volume Group

vgrename command, Renaming a Volume Group

vgs command, Customized Reporting for LVM
- display arguments, The vgs Command

vgscan command, Scanning Disks for Volume Groups to Build the Cache File

vgsplit command, Splitting a Volume Group

volume group
- activating, Activating and Deactivating Volume Groups
- administration, general, Volume Group Administration
- changing parameters, Changing the Parameters of a Volume Group
- combining, Combining Volume Groups
- creating, Creating Volume Groups
- creating in a cluster, Creating Volume Groups in a Cluster
- deactivating, Activating and Deactivating Volume Groups
- definition, Volume Groups
- displaying, Displaying Volume Groups, Customized Reporting for LVM, The vgs Command
- extending, Adding Physical Volumes to a Volume Group
- growing, Adding Physical Volumes to a Volume Group
- merging, Combining Volume Groups
- moving between systems, Moving a Volume Group to Another System
- reducing, Removing Physical Volumes from a Volume Group
- removing, Removing Volume Groups
- renaming, Renaming a Volume Group
- shrinking, Removing Physical Volumes from a Volume Group
- splitting, Splitting a Volume Group

- example procedure, Splitting a Volume Group

- vgs display arguments, The vgs Command

Logical Volume Manager Administration

124

	Table of Contents
	Chapter 1. Introduction
	1.1. About This Guide
	1.2. Audience
	1.3. Software Versions
	1.4. Related Documentation

	Chapter 2. The LVM Logical Volume Manager
	2.1. New and Changed Features
	2.1.1. New and Changed Features for Red Hat Enterprise Linux 5.6
	2.1.2. New and Changed Features for Red Hat Enterprise Linux 5.7
	2.1.3. New and Changed Features for Red Hat Enterprise Linux 5.8
	2.1.4. New and Changed Features for Red Hat Enterprise Linux 5.9 and Red Hat Enterprise LInux 5.10
	2.1.5. New and Changed Features for Red Hat Enterprise Linux 5.11

	2.2. Logical Volumes
	2.3. LVM Architecture Overview
	2.4. The Clustered Logical Volume Manager (CLVM)
	2.5. Document Overview

	Chapter 3. LVM Components
	3.1. Physical Volumes
	3.1.1. LVM Physical Volume Layout
	3.1.2. Multiple Partitions on a Disk

	3.2. Volume Groups
	3.3. LVM Logical Volumes
	3.3.1. Linear Volumes
	3.3.2. Striped Logical Volumes
	3.3.3. Mirrored Logical Volumes
	3.3.4. Snapshot Volumes

	Chapter 4. LVM Administration Overview
	4.1. Creating LVM Volumes in a Cluster
	4.2. Logical Volume Creation Overview
	4.3. Growing a File System on a Logical Volume
	4.4. Logical Volume Backup
	4.5. Logging
	4.6. Online Device Reconfiguration

	Chapter 5. LVM Administration with CLI Commands
	5.1. Using CLI Commands
	5.2. Physical Volume Administration
	5.2.1. Creating Physical Volumes
	5.2.1.1. Setting the Partition Type
	5.2.1.2. Initializing Physical Volumes
	5.2.1.3. Scanning for Block Devices

	5.2.2. Displaying Physical Volumes
	5.2.3. Preventing Allocation on a Physical Volume
	5.2.4. Resizing a Physical Volume
	5.2.5. Removing Physical Volumes

	5.3. Volume Group Administration
	5.3.1. Creating Volume Groups
	5.3.2. LVM Allocation
	5.3.3. Creating Volume Groups in a Cluster
	5.3.4. Adding Physical Volumes to a Volume Group
	5.3.5. Displaying Volume Groups
	5.3.6. Scanning Disks for Volume Groups to Build the Cache File
	5.3.7. Removing Physical Volumes from a Volume Group
	5.3.8. Changing the Parameters of a Volume Group
	5.3.9. Activating and Deactivating Volume Groups
	5.3.10. Removing Volume Groups
	5.3.11. Splitting a Volume Group
	5.3.12. Combining Volume Groups
	5.3.13. Backing Up Volume Group Metadata
	5.3.14. Renaming a Volume Group
	5.3.15. Moving a Volume Group to Another System
	5.3.16. Recreating a Volume Group Directory

	5.4. Logical Volume Administration
	5.4.1. Creating Logical Volumes
	5.4.1.1. Creating Linear Volumes
	5.4.1.2. Creating Striped Volumes
	5.4.1.3. Creating Mirrored Volumes
	5.4.1.4. Changing Mirrored Volume Configuration

	5.4.2. Persistent Device Numbers
	5.4.3. Resizing Logical Volumes
	5.4.4. Changing the Parameters of a Logical Volume Group
	5.4.5. Renaming Logical Volumes
	5.4.6. Removing Logical Volumes
	5.4.7. Displaying Logical Volumes
	5.4.8. Growing Logical Volumes
	5.4.9. Extending a Striped Volume
	5.4.10. Extending a Mirrored Volume
	5.4.11. Extending a Logical Volume with the cling Allocation Policy
	5.4.12. Shrinking Logical Volumes

	5.5. Creating Snapshot Volumes
	5.6. Controlling LVM Device Scans with Filters
	5.7. Online Data Relocation
	5.8. Activating Logical Volumes on Individual Nodes in a Cluster
	5.9. Customized Reporting for LVM
	5.9.1. Format Control
	5.9.2. Object Selection
	The pvs Command
	The vgs Command
	The lvs Command

	5.9.3. Sorting LVM Reports
	5.9.4. Specifying Units

	Chapter 6. LVM Configuration Examples
	6.1. Creating an LVM Logical Volume on Three Disks
	6.1.1. Creating the Physical Volumes
	6.1.2. Creating the Volume Group
	6.1.3. Creating the Logical Volume
	6.1.4. Creating the File System

	6.2. Creating a Striped Logical Volume
	6.2.1. Creating the Physical Volumes
	6.2.2. Creating the Volume Group
	6.2.3. Creating the Logical Volume
	6.2.4. Creating the File System

	6.3. Splitting a Volume Group
	6.3.1. Determining Free Space
	6.3.2. Moving the Data
	6.3.3. Splitting the Volume Group
	6.3.4. Creating the New Logical Volume
	6.3.5. Making a File System and Mounting the New Logical Volume
	6.3.6. Activating and Mounting the Original Logical Volume

	6.4. Removing a Disk from a Logical Volume
	6.4.1. Moving Extents to Existing Physical Volumes
	6.4.2. Moving Extents to a New Disk
	6.4.2.1. Creating the New Physical Volume
	6.4.2.2. Adding the New Physical Volume to the Volume Group
	6.4.2.3. Moving the Data
	6.4.2.4. Removing the Old Physical Volume from the Volume Group

	6.5. Creating a Mirrored LVM Logical Volume in a Cluster

	Chapter 7. LVM Troubleshooting
	7.1. Troubleshooting Diagnostics
	7.2. Displaying Information on Failed Devices
	7.3. Recovering from LVM Mirror Failure
	7.4. Recovering Physical Volume Metadata
	7.5. Replacing a Missing Physical Volume
	7.6. Removing Lost Physical Volumes from a Volume Group
	7.7. Insufficient Free Extents for a Logical Volume

	Chapter 8. LVM Administration with the LVM GUI
	Appendix A. The Device Mapper
	A.1. Device Table Mappings
	A.1.1. The linear Mapping Target
	A.1.2. The striped Mapping Target
	A.1.3. The mirror Mapping Target
	A.1.4. The snapshot and snapshot-origin Mapping Targets
	A.1.5. The error Mapping Target
	A.1.6. The zero Mapping Target
	A.1.7. The multipath Mapping Target
	A.1.8. The crypt Mapping Target

	A.2. The dmsetup Command
	A.2.1. The dmsetup info Command
	A.2.2. The dmsetup ls Command
	A.2.3. The dmsetup status Command
	A.2.4. The dmsetup deps Command

	Appendix B. The LVM Configuration Files
	B.1. The LVM Configuration Files
	B.2. Sample lvm.conf File

	Appendix C. LVM Object Tags
	C.1. Adding and Removing Object Tags
	C.2. Host Tags
	C.3. Controlling Activation with Tags

	Appendix D. LVM Volume Group Metadata
	D.1. The Physical Volume Label
	D.2. Metadata Contents
	D.3. Sample Metadata

	Appendix E. Revision History
	Index

