
Red Hat Developer Tools 2018.4

Using Clang and LLVM Toolset

Installing and Using Clang and LLVM Toolset

Last Updated: 2018-11-29

Red Hat Developer Tools 2018.4 Using Clang and LLVM Toolset

Installing and Using Clang and LLVM Toolset

Robin Owen
kowen@redhat.com

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Clang and LLVM Toolset is a Red Hat offering for developers on the Red Hat Enterprise Linux
platform. The Using Clang and LLVM Toolset provides an overview of this product, explains how to
invoke and use the Clang and LLVM Toolset versions of the tools, and links to resources with more
in-depth information.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. CLANG AND LLVM TOOLSET
1.1. ABOUT CLANG AND LLVM TOOLSET
1.2. COMPATIBILITY
1.3. GETTING ACCESS TO CLANG AND LLVM TOOLSET

Additional Resources
1.4. INSTALLING CLANG AND LLVM TOOLSET
1.5. ADDITIONAL RESOURCES

Online Documentation

CHAPTER 2. CLANG
2.1. INSTALLING CLANG
2.2. USING THE C COMPILER
2.3. RUNNING A C PROGRAM
2.4. USING THE C++ COMPILER
2.5. RUNNING A C++ PROGRAM
2.6. USING THE CLANG INTEGRATED ASSEMBLER
2.7. ADDITIONAL RESOURCES

Installed Documentation
Online Documentation
See Also

CHAPTER 3. LLDB
3.1. INSTALLING LLDB
3.2. PREPARING A PROGRAM FOR DEBUGGING
3.3. RUNNING LLDB
3.4. LISTING SOURCE CODE
3.5. USING BREAKPOINTS

Setting a New Breakpoint
Listing Breakpoints
Deleting Existing Breakpoints

3.6. STARTING EXECUTION
3.7. DISPLAYING CURRENT VALUES
3.8. CONTINUING EXECUTION
3.9. ADDITIONAL RESOURCES

Online Documentation
See Also

CHAPTER 4. CONTAINER IMAGE
4.1. IMAGE CONTENTS
4.2. ACCESS TO THE IMAGE
4.3. ADDITIONAL RESOURCES

CHAPTER 5. CHANGES IN CLANG AND LLVM TOOLSET IN RED HAT DEVELOPER TOOLS 2018.4
5.1. LLVM
5.2. CLANG

3
3
3
4
4
4
5
5

6
6
6
7
7
8
9
9
9
9
9

10
10
10
10
11
11
11
12
12
13
13
14
15
15
15

16
16
16
16

17
17
17

Table of Contents

1

Red Hat Developer Tools 2018.4 Using Clang and LLVM Toolset

2

CHAPTER 1. CLANG AND LLVM TOOLSET

1.1. ABOUT CLANG AND LLVM TOOLSET

Clang and LLVM Toolset is a Red Hat offering for developers on the Red Hat Enterprise Linux platform.
It provides the LLVM compiler infrastructure framework, the Clang compiler for the C and C++
languages, the LLDB debugger, and related tools for code analysis.

Clang and LLVM Toolset is distributed as a part of Red Hat Developer Tools for Red Hat
Enterprise Linux 7.

The following components are available as a part of Clang and LLVM Toolset:

Table 1.1. Clang and LLVM Toolset Components

Name Version Description

clang 6.0.1 A LLVM compiler front-end for C
and C++.

lldb 6.0.1 A debugger using portions of
LLVM.

CMake 3.6.2 A build management system.

compiler-rt 6.0.1 Runtime libraries for LLVM.

llvm 6.0.1 A collection of modular and
reusable compiler and toolchain
technologies.

libomp 6.0.1 A library for utilization of Open MP
API specification for parallel
programming.

python-lit 0.6 A Software testing tool for LLVM-
and Clang-based test suites.

1.2. COMPATIBILITY

Clang and LLVM Toolset is available for Red Hat Enterprise Linux 7 on the following architectures:

The 64-bit Intel and AMD architectures

The 64-bit ARM architecture

The IBM Power Systems architecture

The little-endian variant of IBM Power Systems architecture

The IBM Z Systems architecture

CHAPTER 1. CLANG AND LLVM TOOLSET

3

1.3. GETTING ACCESS TO CLANG AND LLVM TOOLSET

Clang and LLVM Toolset is an offering that is distributed as a part of the Red Hat Developer Tools
content set, which is available to customers with deployments of Red Hat Enterprise Linux 7. To install
Clang and LLVM Toolset, enable the Red Hat Developer Tools and Red Hat Software Collections
repositories by using the Red Hat Subscription Management and add the Red Hat Developer Tools key
to your system.

1. Enable the rhel-7-variant-devtools-rpms repository:

subscription-manager repos --enable rhel-7-variant-devtools-rpms

Replace variant with the Red Hat Enterprise Linux system variant (server or workstation).

NOTE

We recommend developers to use Red Hat Enterprise Linux Server for access to
the widest range of development tools.

2. Enable the rhel-variant-rhscl-8-rpms repository:

subscription-manager repos --enable rhel-variant-rhscl-8-rpms

Replace variant with the Red Hat Enterprise Linux system variant (server or workstation).

3. Add the Red Hat Developer Tools key to your system:

cd /etc/pki/rpm-gpg
wget -O RPM-GPG-KEY-redhat-devel
https://www.redhat.com/security/data/a5787476.txt
rpm --import RPM-GPG-KEY-redhat-devel

Once the subscription is attached to the system and repositories enabled, you can install Red Hat Clang
and LLVM Toolset as described in Section 1.4, “Installing Clang and LLVM Toolset”.

Additional Resources

For more information on how to register your system using Red Hat Subscription Management
and associate it with subscriptions, see the Red Hat Subscription Management collection of
guides.

For detailed instructions on subscription to Red Hat Software Collections, see the Red Hat
Developer Toolset User Guide, Section 1.4. Getting Access to Red Hat Developer Toolset.

1.4. INSTALLING CLANG AND LLVM TOOLSET

Clang and LLVM Toolset is distributed as a collection of RPM packages that can be installed, updated,
uninstalled, and inspected by using the standard package management tools that are included in
Red Hat Enterprise Linux. Note that a valid subscription that provides access to the Red Hat Developer
Tools content set is required in order to install Clang and LLVM Toolset on your system. For detailed
instructions on how to associate your system with an appropriate subscription and get access to Clang
and LLVM Toolset, see Section 1.3, “Getting Access to Clang and LLVM Toolset”.

Red Hat Developer Tools 2018.4 Using Clang and LLVM Toolset

4

https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/8/html/user_guide/chap-red_hat_developer_toolset#sect-Red_Hat_Developer_Toolset-Subscribe

IMPORTANT

Before installing Clang and LLVM Toolset, install all available Red Hat Enterprise Linux
updates.

To install all components that are included in Clang and LLVM Toolset, install the llvm-toolset-6.0
package:

yum install llvm-toolset-6.0

This installs all development and debugging tools, and other dependent packages to the system.

1.5. ADDITIONAL RESOURCES

A detailed description of the Clang and LLVM Toolset and all its features is beyond the scope of this
book. For more information, see the resources listed below.

Online Documentation

LLVM documentation overview — The official LLVM documentation.

CHAPTER 1. CLANG AND LLVM TOOLSET

5

http://llvm.org/docs/

CHAPTER 2. CLANG
clang is a LLVM compiler front end for C-based languages: C, C++, Objective C/C++, OpenCL, and
Cuda.

Clang and LLVM Toolset is distributed with clang 6.0.1.

2.1. INSTALLING CLANG

In Clang and LLVM Toolset, clang is provided by the llvm-toolset-6.0-clang package and is
automatically installed with the llvm-toolset-6.0 package. See Section 1.4, “Installing Clang and LLVM
Toolset”.

2.2. USING THE C COMPILER

To compile a C program on the command line, run the clang compiler as follows:

$ scl enable llvm-toolset-6.0 'clang -o output_file source_file'

This creates a binary file named output_file in the current working directory. If the -o option is
omitted, the compiler creates a file named a.out by default.

When you are working on a project that consists of several source files, it is common to compile an
object file for each of the source files first and then link these object files together. This way, when you
change a single source file, you can recompile only this file without having to compile the entire project.
To compile an object file on the command line:

$ scl enable llvm-toolset-6.0 'clang -o object_file -c source_file'

This creates an object file named object_file. If the -o option is omitted, the compiler creates a file
named after the source file with the .o file extension. To link object files together and create a binary file:

$ scl enable llvm-toolset-6.0 'clang -o output_file object_file ...'

Note that you can execute any command using the scl utility, causing it to be run with the Clang and
LLVM Toolset binaries available. This allows you to run a shell session with Clang and LLVM Toolset
clang directly available:

$ scl enable llvm-toolset-6.0 'bash'

IMPORTANT

Certain more recent library features are statically linked into applications built with Clang
and LLVM Toolset to support execution on multiple versions of Red Hat Enterprise Linux.
This creates an additional minor security risk as standard Red Hat Enterprise Linux errata
do not change this code. If the need arises for developers to rebuild their applications due
to this risk, Red Hat will communicate this using a security erratum.

Because of this additional security risk, developers are strongly advised not to statically
link their entire application for the same reasons.

Red Hat Developer Tools 2018.4 Using Clang and LLVM Toolset

6

Example 2.1. Compiling a C Program on the Command Line

Consider a source file named hello.c with the following contents:

Compile this source code on the command line by using the clang compiler from Clang and LLVM
Toolset:

$ scl enable llvm-toolset-6.0 'clang -o hello hello.c'

This creates a new binary file called hello in the current working directory.

2.3. RUNNING A C PROGRAM

When clang compiles a program, it creates an executable binary file. To run this program on the
command line, change to the directory with the executable file and run the program:

$./file_name

Example 2.2. Running a C Program on the Command Line

Assuming that you have successfully compiled the hello binary file as shown in Example 2.1,
“Compiling a C Program on the Command Line”, you can run it by typing the following at a shell
prompt:

$./hello
Hello, World!

2.4. USING THE C++ COMPILER

To compile a C++ program on the command line, run the clang++ compiler as follows:

$ scl enable llvm-toolset-6.0 'clang++ -o output_file source_file ...'

This creates a binary file named output_file in the current working directory. If the -o option is
omitted, the clang++ compiler creates a file named a.out by default.

When you are working on a project that consists of several source files, it is common to compile an
object file for each of the source files first and then link these object files together. This way, when you
change a single source file, you can recompile only this file without having to compile the entire project.
To compile an object file on the command line:

$ scl enable llvm-toolset-6.0 'clang++ -o object_file -c source_file'

#include <stdio.h>

int main(int argc, char *argv[]) {
 printf("Hello, World!\n");
 return 0;
}

CHAPTER 2. CLANG

7

This creates an object file named object_file. If the -o option is omitted, the clang++ compiler
creates a file named after the source file with the .o file extension. To link object files together and
create a binary file:

$ scl enable llvm-toolset-6.0 'clang++ -o output_file object_file ...'

Note that you can execute any command using the scl utility, causing it to be run with the Clang and
LLVM Toolset binaries available. This allows you to run a shell session with Clang and LLVM Toolset
clang directly available:

$ scl enable llvm-toolset-6.0 'bash'

IMPORTANT

Certain more recent library features are statically linked into applications built with Clang
and LLVM Toolset to support execution on multiple versions of Red Hat Enterprise Linux.
This creates an additional minor security risk as standard Red Hat Enterprise Linux errata
do not change this code. If the need arises for developers to rebuild their applications due
to this risk, Red Hat will communicate this using a security erratum.

Because of this accitional security risk, developers are strongly advised not to statically
link their entire application for the same reasons.

Example 2.3. Compiling a C++ Program on the Command Line

Consider a source file named hello.cpp with the following contents:

Compile this source code on the command line by using the clang++ compiler from Clang and LLVM
Toolset:

$ scl enable llvm-toolset-6.0 'clang++ -o hello hello.cpp'

This creates a new binary file called hello in the current working directory.

2.5. RUNNING A C++ PROGRAM

When clang++ compiles a program, it creates an executable binary file. Change to the directory with
the executable file and run this program:

./file_name

#include <iostream>

using namespace std;

int main(int argc, char *argv[]) {
 cout << "Hello, World!" << endl;
 return 0;
}

Red Hat Developer Tools 2018.4 Using Clang and LLVM Toolset

8

Example 2.4. Running a C++ Program on the Command Line

Assuming that you have successfully compiled the hello binary file as shown in Example 2.3,
“Compiling a C++ Program on the Command Line”, you can run it by typing the following at a shell
prompt:

$./hello
Hello, World!

2.6. USING THE CLANG INTEGRATED ASSEMBLER

To produce an object file from an assembly language program, run the clang tool as follows:

$ scl enable llvm-toolset-6.0 'clang option... -o object_file source_file'

This creates an object file named object_file in the current working directory.

Note that you can execute any command using the scl utility, causing it to be run with the Clang and
LLVM Toolset binaries available. This allows you to run a shell session with Red LLVM
Developer Toolset:

$ scl enable llvm-toolset-6.0 'bash'

2.7. ADDITIONAL RESOURCES

A detailed description of the clang compiler and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentation

clang(1) — The manual page for the clang compiler provides detailed information on its usage;
with few exceptions, clang++ accepts the same command line options as clang. To display
the manual page for the version included in Clang and LLVM Toolset:

$ scl enable llvm-toolset-6.0 'man clang'

Online Documentation

clang — The clang compiler documentation provides detailed information on clang's usage.

See Also

Chapter 1, Clang and LLVM Toolset — An overview of Clang and LLVM Toolset and more
information on how to install it on your system.

CHAPTER 2. CLANG

9

http://releases.llvm.org/5.0.1/tools/clang/index.html

CHAPTER 3. LLDB
lldb is a command line tool you can use to debug programs written in various programming languages. It
allows you to inspect memory within the code being debugged, control the execution state of the code,
detect the execution of particular sections of code, and much more.

Clang and LLVM Toolset is distributed with lldb 6.0.1.

3.1. INSTALLING LLDB

The lldb tool is provided by the llvm-toolset-6.0-lldb package and is automatically installed with the
llvm-toolset-6.0 package. See Section 1.4, “Installing Clang and LLVM Toolset”.

3.2. PREPARING A PROGRAM FOR DEBUGGING

To compile a C or C++ program with debugging information that lldb can read, make sure the compiler
you use is instructed to create debug information.

For instructions on suitably configuring GCC, see TODO link to DTS User Guide.

For instructions on suitably configuring clang, see the section Controlling Debug Information in
Clang Compiler User’s Manual.

3.3. RUNNING LLDB

To run lldb on a program you want to debug:

$ scl enable llvm-toolset-6.0 'lldb program_file_name'

This command starts lldb in an interactive mode and displays the default prompt, (lldb).

To quit the debugging session and return to the shell prompt, run the following command at any time:

(lldb) quit

Note that you can execute any command using the scl utility, causing it to be run with the Clang and
LLVM Toolset binaries available. This allows you to run a shell session with Clang and LLVM Toolset
lldb directly available:

$ scl enable llvm-toolset-6.0 'bash'

Example 3.1. Running the lldb Utility on the fibonacci Binary File

This example assumes that you have successfully compiled the fibonacci binary file as shown in
TODO add example and link it.

Start debugging the program with lldb:

$ scl enable llvm-toolset-6.0 'lldb fibonacci'
(lldb) target create "fibonacci"
Current executable set to 'fibonacci' (x86_64).
(lldb)

Red Hat Developer Tools 2018.4 Using Clang and LLVM Toolset

10

http://releases.llvm.org/5.0.1/tools/clang/UsersManual.html#controlling-debug-information

The output indicates that the program fibonacci is ready for debugging.

3.4. LISTING SOURCE CODE

To view the source code of the program you are debugging:

(lldb) list

As a result, the first ten lines of the source code are displayed.

To display the code surrounding a particular line:

(lldb) list file_name:line_number

Additionally, lldb displays source code listing automatically in the following situations:

Before you start the execution of the program you are debugging, lldb displays the first ten
lines of the source code.

Each time the execution of the program is stopped, lldb displays the lines that surround the line
on which the execution stops.

3.5. USING BREAKPOINTS

Setting a New Breakpoint
To set a new breakpoint at a certain line:

(lldb) breakpoint file_name:line_number

To set a breakpoint on a certain function:

(lldb) breakpoint file_name:function_name

Example 3.2. Setting a New Breakpoint

This example assumes that you have successfully compiled the fibonacci.c file listed in TODO
add example and link it with debugging information.

Set a new breakpoint at line 10 by running either of the following commands:

(lldb) b 10
Breakpoint 1: where = fibonacci`main + 33 at fibonacci.c:10, address =
0x000000000040054e
(lldb) breakpoint set -f fibonacci.c --line 10
Breakpoint 2: where = fibonacci`main + 33 at fibonacci.c:10, address =
0x000000000040054e

CHAPTER 3. LLDB

11

NOTE

In lldb, the command b is not an alias to breakpoint. You can use both commands to
set breakpoints, but b uses a subset of the syntax supported by gdb’s break command,
and breakpoint uses lldb's syntax for setting breakpoints.

Listing Breakpoints
To display a list of currently set breakpoints:

(lldb) breakpoint list

Example 3.3. Listing Breakpoints

This example assumes that you have successfully followed the instructions in Example 3.2, “Setting a
New Breakpoint”.

Display the list of currently set breakpoints:

(lldb) breakpoint list
Current breakpoints:
1: file = 'fibonacci.c', line = 10, exact_match = 0, locations = 1
 1.1: where = fibonacci`main + 33 at fibonacci.c:10, address =
fibonacci[0x000000000040054e], unresolved, hit count = 0

2: file = 'fibonacci.c', line = 10, exact_match = 0, locations = 1
 2.1: where = fibonacci`main + 33 at fibonacci.c:10, address =
fibonacci[0x000000000040054e], unresolved, hit count = 0

Deleting Existing Breakpoints
To delete a breakpoint that is set at a certain line:

(lldb) breakpoint clear -f file_name -l 10

Example 3.4. Deleting an Existing Breakpoint

This example assumes that you have successfully compiled the fibonacci.c file.

Set a new breakpoint at line 7:

(lldb) b 7
Breakpoint 3: where = fibonacci`main + 31 at fibonacci.c:9, address =
0x000000000040054c

Remove this breakpoint:

(lldb) breakpoint clear -l 7 -f fibonacci.c
1 breakpoints cleared:
3: file = 'fibonacci.c', line = 7, exact_match = 0, locations = 1

Red Hat Developer Tools 2018.4 Using Clang and LLVM Toolset

12

3.6. STARTING EXECUTION

To start an execution of the program you are debugging:

(lldb) run

If the program accepts command-line arguments, you can provide them as arguments to the run
command:

(lldb) run argument …

The execution stops when the first breakpoint is reached, when an error occurs, or when the program
terminates.

Example 3.5. Executing the fibonacci Binary File

This example assumes that you have successfully followed the instructions in Example 3.2, “Setting a
New Breakpoint”.

Execute the fibonacci binary file:

Execution of the program stops at the breakpoint set in Example 3.2, “Setting a New Breakpoint”.

3.7. DISPLAYING CURRENT VALUES

The lldb tool enables you to display many values relevant to the program state, including:

Variables of any complexity

Any valid expressions

Function call return values

The most common task is to display the value of a variable. To display the current value of a certain
variable:

(lldb) print variable_name

(lldb) run
Process 21054 launched: 'fibonacci' (x86_64)
Process 21054 stopped
* thread #1, name = 'fibonacci', stop reason = breakpoint 1.1
 frame #0: fibonacci`main(argc=1, argv=0x00007fffffffdeb8) at
fibonacci.c:10
 7 unsigned long int sum;
 8
 9 while (b < LONG_MAX) {
-> 10 printf("%ld ", b);
 11 sum = a + b;
 12 a = b;
 13 b = sum;

CHAPTER 3. LLDB

13

Example 3.6. Displaying the Current Values of Variables

This example assumes that you have successfully followed the instructions in Example 3.5,
“Executing the fibonacci Binary File”. Execution of the fibonacci binary stopped after reaching the
breakpoint at line 10.

Display the current values of variables a and b:

(lldb) print a
$0 = 0
(lldb) print b
$1 = 1

3.8. CONTINUING EXECUTION

To resume the execution of the program you are debugging after it reached a breakpoint:

(lldb) continue

The execution stops again when it reaches another breakpoint.

To skip a certain number of breakpoints, typically when you are debugging a loop, run the continue
command in the following form:

(lldb) continue -i number_of_breakpoints_to_skip

The lldb tool also enables you to stop the execution after executing a single line of code:

(lldb) step

To execute a certain number of lines:

(lldb) step -c number

Example 3.7. Continuing the Execution of the fibonacci Binary File

This example assumes that you have successfully followed the instructions in Example 3.5,
“Executing the fibonacci Binary File”. The execution of the fibonacci binary stopped after reaching
the breakpoint at line 10.

Resume the execution:

(lldb) continue
Process 21580 resuming
Process 21580 stopped
* thread #1, name = 'fibonacci', stop reason = breakpoint 1.1
 frame #0: fibonacci`main(argc=1, argv=0x00007fffffffdeb8) at
fibonacci.c:10
 7 unsigned long int sum;
 8
 9 while (b < LONG_MAX) {

Red Hat Developer Tools 2018.4 Using Clang and LLVM Toolset

14

The execution stops the next time it reaches a breakpoint. (In this case it is the same breakpoint).
Execute the next three lines of code:

Verify the current value of the sum variable before it is assigned to the b variable:

(lldb) print sum
$2 = 2

3.9. ADDITIONAL RESOURCES

A detailed description of the lldb debugger and all its features is beyond the scope of this book. For more
information, see the resources listed below.

Online Documentation

lldb Tutorial — The official lldb tutorial.

gdb to lldb command map — A list of GDB commands and their lldb equivalents.

See Also

Chapter 1, Clang and LLVM Toolset — An overview of Clang and LLVM Toolset and more
information on how to install it.

-> 10 printf("%ld ", b);
 11 sum = a + b;
 12 a = b;
 13 b = sum;

(lldb) step -c 3
Process 21580 stopped
* thread #1, name = 'fibonacci', stop reason = step in
 frame #0: fibonacci`main(argc=1, argv=0x00007fffffffdeb8) at
fibonacci.c:11
 8
 9 while (b < LONG_MAX) {
 10 printf("%ld ", b);
-> 11 sum = a + b;
 12 a = b;
 13 b = sum;
 14 }

CHAPTER 3. LLDB

15

https://lldb.llvm.org/tutorial.html
https://lldb.llvm.org/lldb-gdb.html

CHAPTER 4. CONTAINER IMAGE
The Clang and LLVM Toolset is available as a Docker-formatted container image which can be
downloaded from Red Hat Container Registry.

4.1. IMAGE CONTENTS

The devtools/llvm-toolset-6.0-rhel7 image provides content corresponding to the following packages:

Component Version Package

LLVM 6.0.1 llvm-toolset-8-llvm

Clang 6.0.1 llvm-toolset-8-clang

LLDB 6.0.1 llvm-toolset-8-lldb

Runtime libraries 6.0.1 llvm-toolset-8-compiler-rt

Open MP library 6.0.1 llvm-toolset-8-libomp

CMake 3.6.2 llvm-toolset-8-cmake

python-lit 0.6 llvm-toolset-8-python-lit

4.2. ACCESS TO THE IMAGE

To pull the devtools/llvm-toolset-6.0-rhel7 image, run the following command as root:

docker pull registry.access.redhat.com/devtools/llvm-toolset-6.0-rhel7

4.3. ADDITIONAL RESOURCES

Clang and LLVM Toolset 8 - entry in the Red Hat Container Catalog

Using Red Hat Software Collections Container Images

Red Hat Developer Tools 2018.4 Using Clang and LLVM Toolset

16

https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/devtools/llvm-toolset-8-rhel7
https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/using_red_hat_software_collections_container_images/index

CHAPTER 5. CHANGES IN CLANG AND LLVM TOOLSET IN
RED HAT DEVELOPER TOOLS 2018.4

This chapter lists some notable changes in Clang and LLVM Toolset since its previous release.

5.1. LLVM

LLVM has been updated from version 5.0.1 to 6.0.1.

For more information, see the LLVM 6.0.0 Release Notes.

5.2. CLANG

clang has been updated from version 5.0.1 to 6.0.1.

For more information, see the Clang 6.0.0 Release Notes.

CHAPTER 5. CHANGES IN CLANG AND LLVM TOOLSET IN RED HAT DEVELOPER TOOLS 2018.4

17

https://releases.llvm.org/6.0.0/docs/ReleaseNotes.html
http://releases.llvm.org/6.0.0/tools/clang/docs/ReleaseNotes.html

	Table of Contents
	CHAPTER 1. CLANG AND LLVM TOOLSET
	1.1. ABOUT CLANG AND LLVM TOOLSET
	1.2. COMPATIBILITY
	1.3. GETTING ACCESS TO CLANG AND LLVM TOOLSET
	Additional Resources

	1.4. INSTALLING CLANG AND LLVM TOOLSET
	1.5. ADDITIONAL RESOURCES
	Online Documentation

	CHAPTER 2. CLANG
	2.1. INSTALLING CLANG
	2.2. USING THE C COMPILER
	2.3. RUNNING A C PROGRAM
	2.4. USING THE C++ COMPILER
	2.5. RUNNING A C++ PROGRAM
	2.6. USING THE CLANG INTEGRATED ASSEMBLER
	2.7. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	CHAPTER 3. LLDB
	3.1. INSTALLING LLDB
	3.2. PREPARING A PROGRAM FOR DEBUGGING
	3.3. RUNNING LLDB
	3.4. LISTING SOURCE CODE
	3.5. USING BREAKPOINTS
	Setting a New Breakpoint
	Listing Breakpoints
	Deleting Existing Breakpoints

	3.6. STARTING EXECUTION
	3.7. DISPLAYING CURRENT VALUES
	3.8. CONTINUING EXECUTION
	3.9. ADDITIONAL RESOURCES
	Online Documentation
	See Also

	CHAPTER 4. CONTAINER IMAGE
	4.1. IMAGE CONTENTS
	4.2. ACCESS TO THE IMAGE
	4.3. ADDITIONAL RESOURCES

	CHAPTER 5. CHANGES IN CLANG AND LLVM TOOLSET IN RED HAT DEVELOPER TOOLS 2018.4
	5.1. LLVM
	5.2. CLANG

