
Red Hat Developer Tools 1

Using Rust 1.75.0 Toolset

Installing and using Rust 1.75.0 Toolset

Last Updated: 2024-04-30

Red Hat Developer Tools 1 Using Rust 1.75.0 Toolset

Installing and using Rust 1.75.0 Toolset

Jacob Valdez
jvaldez@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Rust Toolset is a Red Hat offering for developers on the Red Hat Enterprise Linux (RHEL) operating
system. Use this guide for an overview of Rust Toolset, to learn how to invoke and use different
versions of Rust tools, and to find resources with more in-depth information.

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. RUST TOOLSET
1.1. RUST TOOLSET COMPONENTS
1.2. RUST TOOLSET COMPATIBILITY
1.3. INSTALLING RUST TOOLSET
1.4. INSTALLING RUST DOCUMENTATION
1.5. INSTALLING CARGO DOCUMENTATION
1.6. ADDITIONAL RESOURCES

CHAPTER 2. THE CARGO BUILD TOOL
2.1. THE CARGO DIRECTORY STRUCTURE AND FILE PLACEMENTS
2.2. CREATING A RUST PROJECT
2.3. CREATING A RUST LIBRARY PROJECT
2.4. BUILDING A RUST PROJECT
2.5. BUILDING A RUST PROJECT IN RELEASE MODE
2.6. RUNNING A RUST PROGRAM
2.7. TESTING A RUST PROJECT
2.8. TESTING A RUST PROJECT IN RELEASE MODE
2.9. CONFIGURING RUST PROJECT DEPENDENCIES
2.10. BUILDING DOCUMENTATION FOR A RUST PROJECT
2.11. COMPILING CODE INTO A WEBASSEMBLY BINARY WITH RUST ON RED HAT ENTERPRISE LINUX 8 AND
RED HAT ENTERPRISE LINUX 9 BETA
2.12. VENDORING RUST PROJECT DEPENDENCIES
2.13. ADDITIONAL RESOURCES

CHAPTER 3. THE RUSTFMT FORMATTING TOOL
3.1. INSTALLING RUSTFMT
3.2. USING RUSTFMT AS A STANDALONE TOOL
3.3. USING RUSTFMT WITH THE CARGO BUILD TOOL
3.4. ADDITIONAL RESOURCES

CHAPTER 4. CHANGES IN RUST 1.75.0 TOOLSET

3

4
4
4
4
4
5
5

6
6
6
6
7
7
8
8
9
9

10

11
11

12

13
13
13
13
14

15

Table of Contents

1

Red Hat Developer Tools 1 Using Rust 1.75.0 Toolset

2

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

3

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. RUST TOOLSET
Rust Toolset is a Red Hat offering for developers on Red Hat Enterprise Linux (RHEL). It provides the
rustc compiler for the Rust programming language, the Rust package manager Cargo, the rustfmt
formatting tool, and required libraries.

Rust Toolset is available as packages for Red Hat Enterprise Linux 9.

1.1. RUST TOOLSET COMPONENTS

The following components are available as part of Rust Toolset:

Name Version Description

rust 1.75.0 The Rust compiler front-end for
LLVM.

cargo 1.75.0 A build system and dependency
manager for Rust.

rustfmt 1.75.0 A tool for automatic formatting of
Rust code.

1.2. RUST TOOLSET COMPATIBILITY

Rust Toolset is available for Red Hat Enterprise Linux 9 on the following architectures:

AMD and Intel 64-bit

64-bit ARM

IBM Power Systems, Little Endian

64-bit IBM Z

1.3. INSTALLING RUST TOOLSET

Complete the following steps to install Rust Toolset including all development and debugging tools as
well as dependent packages. Note that Rust Toolset has a dependency on LLVM Toolset.

Prerequisites

All available Red Hat Enterprise Linux updates are installed.

Procedure

On Red Hat Enterprise Linux 9, install the rust-toolset package by running:

dnf install rust-toolset

1.4. INSTALLING RUST DOCUMENTATION

Red Hat Developer Tools 1 Using Rust 1.75.0 Toolset

4

The The Rust Programming Language book is available as installable documentation.

Prerequisites

Rust Toolset is installed.
For more information, see Installing Rust Toolset.

Procedure

To install the rust-doc package, run the following command:

On Red Hat Enterprise Linux 9:

dnf install rust-doc

You can find the The Rust Programming Language book under the following path:
/usr/share/doc/rust/html/index.html.
You can find the API documentation for all Rust code packages under the following path:
/usr/share/doc/rust/html/std/index.html.

1.5. INSTALLING CARGO DOCUMENTATION

The Cargo, Rust’s Package Manager book is available as installable documentation for Cargo.

NOTE

From Rust Toolset 1.66.1, the cargo-doc package is included in the rust-doc package.

Prerequisites

Rust Toolset is installed.
For more information, see Installing Rust Toolset.

Procedure

To install the cargo-doc package, run:

On Red Hat Enterprise Linux 9:

dnf install cargo-doc

You can find the Cargo, Rust’s Package Manager book under the following path:
/usr/share/doc/cargo/html/index.html.

1.6. ADDITIONAL RESOURCES

For more information on the Rust programming language, see the official Rust documentation.

CHAPTER 1. RUST TOOLSET

5

https://doc.rust-lang.org/

CHAPTER 2. THE CARGO BUILD TOOL
Cargo is a build tool and front end for the Rust compiler rustc as well as a package and dependency
manager. It allows Rust projects to declare dependencies with specific version requirements, resolves
the full dependency graph, downloads packages, and builds as well as tests your entire project.

Rust Toolset is distributed with Cargo 1.75.0.

2.1. THE CARGO DIRECTORY STRUCTURE AND FILE PLACEMENTS

The Cargo build tool uses set conventions for defining the directory structure and file placement within
a Cargo package. Running the cargo new command generates the package directory structure and
templates for both a manifest and a project file. By default, it also initializes a new Git repository in the
package root directory.

For a binary program, Cargo creates a directory project_name containing a text file named Cargo.toml
and a subdirectory src containing a text file named main.rs.

Additional resources

For more information on the Cargo directory structure, see The Cargo Book — Package Layout .

For in-depth information about Rust code organization, see The Rust Programming Language —
Managing Growing Projects with Packages, Crates, and Modules.

2.2. CREATING A RUST PROJECT

Create a new Rust project that is set up according to the Cargo conventions. For more information on
Cargo conventions, see Cargo directory structure and file placements .

Procedure

Create a Rust project by running the following command:

On Red Hat Enterprise Linux 9:

$ cargo new --bin <project_name>

Replace <project_name> with your project name.

NOTE

To edit the project code, edit the main executable file main.rs and add new source files
to the src subdirectory.

Additional resources

For information on configuring your project and adding dependencies, see Configuring Rust
project dependencies.

2.3. CREATING A RUST LIBRARY PROJECT

Complete the following steps to create a Rust library project using the Cargo build tool.

Red Hat Developer Tools 1 Using Rust 1.75.0 Toolset

6

https://doc.rust-lang.org/cargo/guide/project-layout.html
https://doc.rust-lang.org/book/ch07-00-managing-growing-projects-with-packages-crates-and-modules.html

Procedure

To create a Rust library project, run the following command:

On Red Hat Enterprise Linux 9:

$ cargo new --lib <project_name>

Replace <project_name> with the name of your Rust project.

NOTE

To edit the project code, edit the source file, lib.rs, in the src subdirectory.

Additional resources

Managing Growing Projects with Packages, Crates, and Modules

2.4. BUILDING A RUST PROJECT

Build your Rust project using the Cargo build tool. Cargo resolves all dependencies of your project,
downloads missing dependencies, and compiles it using the rustc compiler.

By default, projects are built and compiled in debug mode. For information on compiling your project in
release mode, see Building a Rust project in release mode .

Prerequisites

An existing Rust project.
For information on how to create a Rust project, see Creating a Rust project .

Procedure

To build a Rust project managed by Cargo, run in the project directory:

On Red Hat Enterprise Linux 9:

$ cargo build

To verify that your Rust program can be built when you do not need to build an executable file,
run:

$ cargo check

2.5. BUILDING A RUST PROJECT IN RELEASE MODE

Build your Rust project in release mode using the Cargo build tool. Release mode is optimizing your
source code and can therefore increase compilation time while ensuring that the compiled binary will
run faster. Use this mode to produce optimized artifacts suitable for release and production.
Cargo resolves all dependencies of your project, downloads missing dependencies, and compiles it using
the rustc compiler.

For information on compiling your project in debug mode, see Building a Rust project .

CHAPTER 2. THE CARGO BUILD TOOL

7

https://doc.rust-lang.org/book/ch07-00-managing-growing-projects-with-packages-crates-and-modules.html

Prerequisites

An existing Rust project.
For information on how to create a Rust project, see Creating a Rust project .

Procedure

To build the project in release mode, run:

On Red Hat Enterprise Linux 9:

$ cargo build --release

To verify that your Rust program can be build when you do not need to build an executable file,
run:

$ cargo check

2.6. RUNNING A RUST PROGRAM

Run your Rust project using the Cargo build tool. Cargo first rebuilds your project and then runs the
resulting executable file. If used during development, the cargo run command correctly resolves the
output path independently of the build mode.

Prerequisites

A built Rust project.
For information on how to build a Rust project, see Building a Rust project .

Procedure

To run a Rust program managed as a project by Cargo, run in the project directory:

On Red Hat Enterprise Linux 9:

$ cargo run

NOTE

If your program has not been built yet, Cargo builds your program before running it.

2.7. TESTING A RUST PROJECT

Test your Rust program using the Cargo build tool. Cargo first rebuilds your project and then runs the
tests found in the project. Note that you can only test functions that are free, monomorphic, and take no
arguments. The function return type must be either () or Result<(), E> where E: Error.

By default, Rust projects are tested in debug mode. For information on testing your project in release
mode, see Testing a Rust project in release mode .

Prerequisites

A built Rust project.

Red Hat Developer Tools 1 Using Rust 1.75.0 Toolset

8

A built Rust project.
For information on how to build a Rust project, see Building a Rust project .

Procedure

Add the test attribute #[test] in front of your function.

To run tests for a Rust project managed by Cargo, run in the project directory:

On Red Hat Enterprise Linux 9:

$ cargo test

Additional resources

For more information on performing tests in your Rust project, see The Rust Reference —
Testing attributes.

2.8. TESTING A RUST PROJECT IN RELEASE MODE

Test your Rust program in release mode using the Cargo build tool. Release mode is optimizing your
source code and can therefore increase compilation time while ensuring that the compiled binary will
run faster. Use this mode to produce optimized artifacts suitable for release and production.
Cargo first rebuilds your project and then runs the tests found in the project. Note that you can only test
functions that are free, monomorphic, and take no arguments. The function return type must be either ()
or Result<(), E> where E: Error.

For information on testing your project in debug mode, see Testing a Rust project .

Prerequisites

A built Rust project.
For information on how to build a Rust project, see Building a Rust project .

Procedure

Add the test attribute #[test] in front of your function.

To run tests for a Rust project managed by Cargo in release mode, run in the project directory:

On Red Hat Enterprise Linux 9:

$ cargo test --release

Additional resources

For more information on performing tests in your Rust project, see The Rust Reference —
Testing attributes.

2.9. CONFIGURING RUST PROJECT DEPENDENCIES

Configure the dependencies of your Rust project using the Cargo build tool. To specify dependencies
for a project managed by Cargo, edit the file Cargo.toml in the project directory and rebuild your
project. Cargo downloads the Rust code packages and their dependencies, stores them locally, builds all

CHAPTER 2. THE CARGO BUILD TOOL

9

https://doc.rust-lang.org/reference/attributes/testing.html
https://doc.rust-lang.org/reference/attributes/testing.html

of the project source code including the dependency code packages, and runs the resulting executable.

Prerequisites

A built Rust project.
For information on how to build a Rust project, see Building a Rust project .

Procedure

1. In your project directory, open the file Cargo.toml.

2. Move to the section labelled [dependencies].
Each dependency is listed on a new line in the following format:

crate_name = version

Rust code packages are called crates.

3. Edit your dependencies.

4. Rebuild your project by running:

On Red Hat Enterprise Linux 9:

$ cargo build

5. Run your project by using the following command:

On Red Hat Enterprise Linux 9:

$ cargo run

Additional resources

For more information on configuring Rust dependencies, see The Cargo Book — Specifying
Dependencies.

2.10. BUILDING DOCUMENTATION FOR A RUST PROJECT

Use the Cargo tool to generate documentation from comments in your source code that are marked for
extraction. Note that documentation comments are extracted only for public functions, variables, and
members.

Prerequisites

A built Rust project.
For information on how to build a Rust project, see Building a Rust project .

Configured dependencies.
For more information on configuring dependencies, see Configuring Rust project dependencies .

Procedure

To mark comments for extraction, use three slashes /// and place your comment in the beginning

Red Hat Developer Tools 1 Using Rust 1.75.0 Toolset

10

http://doc.crates.io/specifying-dependencies.html

To mark comments for extraction, use three slashes /// and place your comment in the beginning
of the line it is documenting.
Cargo supports the Markdown language for your comments.

To build project documentation using Cargo, run in the project directory:

On Red Hat Enterprise Linux 9:

$ cargo doc --no-deps

The generated documentation is located in the .target/doc directory.

Additional resources

For more information on building documentation using Cargo, see The Rust Programming
Language — Making Useful Documentation Comments.

2.11. COMPILING CODE INTO A WEBASSEMBLY BINARY WITH RUST
ON RED HAT ENTERPRISE LINUX 8 AND RED HAT ENTERPRISE LINUX
9 BETA

Complete the following steps to install the WebAssembly standard library.

Prerequisites

Rust Toolset is installed.
For more information, see Installing Rust Toolset.

Procedure

To install the WebAssembly standard library, run:

On Red Hat Enterprise Linux 9:

dnf install rust-std-static-wasm32-unknown-unknown

To use WebAssembly with Cargo, run:

On Red Hat Enterprise Linux 9:

cargo <command> --target wasm32-unknown-unknown

Replace <command> with the Cargo command you want to run.

Additional resources

For more information on WebAssembly, see the official Rust and WebAssembly documentation
or the Rust and WebAssembly book.

2.12. VENDORING RUST PROJECT DEPENDENCIES

Create a local copy of the dependencies of your Rust project for offline redistribution and reuse using
the Cargo build tool. This procedure is called vendoring project dependencies. The vendored

CHAPTER 2. THE CARGO BUILD TOOL

11

https://doc.rust-lang.org/book/ch14-02-publishing-to-crates-io.html#making-useful-documentation-comments
https://rustwasm.github.io/docs/book/game-of-life/setup.html
https://rustwasm.github.io/docs.html

dependencies including Rust code packages for building your project on a Windows operating system
are located in the vendor directory. Vendored dependencies can be used by Cargo without any
connection to the internet.

Prerequisites

A built Rust project.
For information on how to build a Rust project, see Building a Rust project .

Configured dependencies.
For more information on configuring dependencies, see Configuring Rust project dependencies .

Procedure

To vendor your Rust project with dependencies using Cargo, run in the project directory:

On Red Hat Enterprise Linux 9:

$ cargo vendor

2.13. ADDITIONAL RESOURCES

For more information on Cargo, see the Official Cargo Guide.

To display the manual page included in Rust Toolset, run:

For Red Hat Enterprise Linux 9:

$ man cargo

Red Hat Developer Tools 1 Using Rust 1.75.0 Toolset

12

http://doc.crates.io/guide.html

CHAPTER 3. THE RUSTFMT FORMATTING TOOL
With the rustfmt formatting tool, you can automatically format the source code of your Rust programs.
You can use rusftmt either as a standalone tool or with Cargo.

3.1. INSTALLING RUSTFMT

Complete the following steps to install the rustfmt formatting tool.

Prerequisites

Rust Toolset is installed.
For more information, see Installing Rust Toolset.

Procedure

Run the following command to install rustfmt:

On Red Hat Enterprise Linux 9:

dnf install rustfmt

3.2. USING RUSTFMT AS A STANDALONE TOOL

Use rustfmt as a standalone tool to format a Rust source file and all its dependencies. As an alternative,
use rustfmt with the Cargo build tool. For more information, see Using rustfmt with Cargo .

Prerequisites

An existing Rust project.
For information on how to create a Rust project, see Creating a Rust project .

Procedure

To format a Rust source file using rustfmt as a standalone tool, run the following command:

On Red Hat Enterprise Linux 9:

$ rustfmt <source-file>

Replace <source_file> with the name of your source file.
Alternatively, you can replace <source_file> with standard input. rustfmt then provides its
output in standard output.

NOTE

By default, rustfmt modifies the affected files without displaying details or creating
backups. To display details and create backups, run rustfmt with the --write-mode value.

3.3. USING RUSTFMT WITH THE CARGO BUILD TOOL

Use the rustfmt tool with Cargo to format a Rust source file and all its dependencies.

CHAPTER 3. THE RUSTFMT FORMATTING TOOL

13

Use the rustfmt tool with Cargo to format a Rust source file and all its dependencies.
As an alternative, use rustfmt as a standalone tool. For more information, see Using rustfmt as a
standalone tool.

Prerequisites

An existing Rust project.
For information on how to create a Rust project, see Creating a Rust project .

Procedure

To format all source files in a Cargo code package, run the following command:

On Red Hat Enterprise Linux 9:

$ cargo fmt

NOTE

To change the rustfmt formatting options, create the configuration file rustfmt.toml in
the project directory and add your configurations to the file.

3.4. ADDITIONAL RESOURCES

To display the help pages of rustfmt, run:

On Red Hat Enterprise Linux 9:

$ rustfmt --help

To configure the rustfmt tool, create the rustfmt.toml configuration file in the project directory
and add your configurations to the file. You can find the configuration options in the
Configurations.md file.

On Red Hat Enterprise Linux 9, you can find it under the following path:
/usr/share/doc/rustfmt/Configurations.md

Red Hat Developer Tools 1 Using Rust 1.75.0 Toolset

14

CHAPTER 4. CHANGES IN RUST 1.75.0 TOOLSET
Rust Toolset has been updated from version 1.71.1 to 1.75.0.

Notable changes include:

Constant evaluation time is now unlimited

Cleaner panic messages

Cargo registry authentication

async fn and opaque return types in traits

For detailed information regarding the updates, see the series of upstream release announcements:

Announcing Rust 1.72.0.

Announcing Rust 1.73.0.

Announcing Rust 1.74.0.

Announcing Rust 1.75.0.

CHAPTER 4. CHANGES IN RUST 1.75.0 TOOLSET

15

https://blog.rust-lang.org/2023/08/24/Rust-1.72.0.html
https://blog.rust-lang.org/2023/10/05/Rust-1.73.0.html
https://blog.rust-lang.org/2023/11/16/Rust-1.74.0.html
https://blog.rust-lang.org/2023/12/28/Rust-1.75.0.html

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. RUST TOOLSET
	1.1. RUST TOOLSET COMPONENTS
	1.2. RUST TOOLSET COMPATIBILITY
	1.3. INSTALLING RUST TOOLSET
	1.4. INSTALLING RUST DOCUMENTATION
	1.5. INSTALLING CARGO DOCUMENTATION
	1.6. ADDITIONAL RESOURCES

	CHAPTER 2. THE CARGO BUILD TOOL
	2.1. THE CARGO DIRECTORY STRUCTURE AND FILE PLACEMENTS
	2.2. CREATING A RUST PROJECT
	2.3. CREATING A RUST LIBRARY PROJECT
	2.4. BUILDING A RUST PROJECT
	2.5. BUILDING A RUST PROJECT IN RELEASE MODE
	2.6. RUNNING A RUST PROGRAM
	2.7. TESTING A RUST PROJECT
	2.8. TESTING A RUST PROJECT IN RELEASE MODE
	2.9. CONFIGURING RUST PROJECT DEPENDENCIES
	2.10. BUILDING DOCUMENTATION FOR A RUST PROJECT
	2.11. COMPILING CODE INTO A WEBASSEMBLY BINARY WITH RUST ON RED HAT ENTERPRISE LINUX 8 AND RED HAT ENTERPRISE LINUX 9 BETA
	2.12. VENDORING RUST PROJECT DEPENDENCIES
	2.13. ADDITIONAL RESOURCES

	CHAPTER 3. THE RUSTFMT FORMATTING TOOL
	3.1. INSTALLING RUSTFMT
	3.2. USING RUSTFMT AS A STANDALONE TOOL
	3.3. USING RUSTFMT WITH THE CARGO BUILD TOOL
	3.4. ADDITIONAL RESOURCES

	CHAPTER 4. CHANGES IN RUST 1.75.0 TOOLSET

