& RedHat

Red Hat Developer Tools 1

Using LLVM 17.0.6 Toolset

Installing and using LLVM 17.0.6 Toolset

Last Updated: 2024-04-30

Red Hat Developer Tools 1Using LLVM 17.0.6 Toolset

Installing and using LLVM 17.0.6 Toolset

Jacob Valdez
jvaldez@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

LLVM Toolset is a Red Hat offering for developers on the Red Hat Enterprise Linux (RHEL)
operating system. Use this guide for an overview of LLVM Toolset, to learn how to invoke and use
different versions of LLVM tools, and to find resources with more in-depth information.

Table of Contents

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ... i e i it 3
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ... e 4
CHAPTER LLLLVM TOO L SET ittt i et et i e e et ei i neas 5
11. LLVM TOOLSET COMPONENTS 5
1.2. LLVM TOOLSET COMPATIBILITY 5
1.3. INSTALLING LLVM TOOLSET 6
1.4. INSTALLING THE CMAKE BUILD MANAGER 6
1.5, INSTALLING LLVM TOOLSET DOCUMENTATION 7
1.6. INSTALLING CMAKE DOCUMENTATION 7
1.7. ADDITIONAL RESOURCES 7
CHAPTER 2. THE CLANG COMPILER ... i i i e it 8
2.1. PREREQUISITES 8
2.2. COMPILING A SOURCE FILE 8
2.3. RUNNING A PROGRAM 8
2.4. LINKING OBJECT FILES TOGETHER 8
2.5. ADDITIONAL RESOURCES 9
CHAPTER 3. THELLDB DEBUGGER i i e it 10
3.1. PREREQUISITES 10
3.2.STARTING A DEBUGGING SESSION 10
3.3. EXECUTING YOUR PROGRAM DURING A DEBUGGING SESSION 10
3.4. USING BREAKPOINTS il
3.5.STEPPING THROUGH CODE 12
3.6. LISTING SOURCE CODE 12
3.7. DISPLAYING CURRENT PROGRAM DATA 13
3.8. ADDITIONAL RESOURCES 13
CHAPTER 4. CONTAINER IMAGES WITHLLVM TOOLSETONRHEL 8, 14
4.1. CREATING A CONTAINER IMAGE OF LLVM TOOLSET ON RHEL 8 14
4.2. ADDITIONAL RESOURCES 14
CHAPTERS5. CHANGES IN LLVM TOOLSET ... i i i ittt 15

Red Hat Developer Tools 1Using LLVM 17.0.6 Toolset

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat Developer Tools 1Using LLVM 17.0.6 Toolset

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Login to the Jira website.
2. Click Create in the top navigation bar
3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER1.LLVM TOOLSET

CHAPTER1.LLVM TOOLSET

LLVM Toolset is a Red Hat offering for developers on Red Hat Enterprise Linux (RHEL). It provides the
LLVM compiler infrastructure framework, the Clang compiler for the C and C++ languages, the LLDB
debugger, and related tools for code analysis.

LLVM Toolset is available as packages for Red Hat Enterprise Linux 9.

1.1. LLVM TOOLSET COMPONENTS

The following components are available as a part of LLVM Toolset:

Name Version Description

clang 17.0.6 An LLVM compiler front end for C
and C++.

lidb 17.0.6 A C and C++ debugger using
portions of LLVM.

compiler-rt 17.0.6 Runtime libraries for LLVM and
Clang.

llvm 17.0.6 A collection of modular and

reusable compiler and toolchain
technologies.

libomp 17.0.6 Alibrary for using Open MP API
specification for parallel
programming.

Iid 17.0.6 An LLVM linker.

python-lit 17.0.6 A software testing tool for LLVM-
and Clang-based test suites.

NOTE
The CMake build manager is not part of LLVM Toolset. On Red Hat Enterprise Linux 9,

CMake is available in the system repository. For more information on how to install
CMake, see Installing CMake on Red Hat Enterprise Linux.

1.2. LLVM TOOLSET COMPATIBILITY

LLVM Toolset is available for Red Hat Enterprise Linux 9 on the following architectures:
® AMD and Intel 64-bit
® 64-bit ARM

® |BM Power Systems, Little Endian

Red Hat Developer Tools 1Using LLVM 17.0.6 Toolset
® 64-bitIBMZ

1.3. INSTALLING LLVM TOOLSET

Complete the following steps to install LLVM Toolset including all development and debugging tools as
well as dependent packages.

Prerequisites

® All available Red Hat Enterprise Linux updates are installed.

Procedure

On Red Hat Enterprise Linux 9, install the llvm-toolset package by running:

I # dnf install llvm-toolset

IMPORTANT

This does not install the LLDB debugger or the python3-lit package on Red Hat
Enterprise Linux 9. To install the LLDB debugger and the python3-lit package, run:

I # dnf install lldb python3-lit

1.4.INSTALLING THE CMAKE BUILD MANAGER

The CMake build manager is a tool that manages the build process of your source code independently
from your compiler. CMake can generate a native build environment to compile source code, create
libraries, generate wrappers, and build executable files.

Complete the following steps to install the CMake build manager.

Prerequisites

® || VM Toolsetis installed.
For more information, see Installing LLVM Toolset.

Procedure

To install CMake, run the following command:

® On Red Hat Enterprise Linux 9:

I # dnf install cmake

Additional resources

® For more information on the CMake build manager, see the official CMake documentation
overview About CMake.

® Foranintroduction to using the CMake build manager, see:

o0 The CMake Reference Documentation Introduction.

https://cmake.org/overview/
https://cmake.org/cmake/help/v3.21/

CHAPTER1.LLVM TOOLSET

o The official CMake documentation CMake Tutorial.

1.5.INSTALLING LLVM TOOLSET DOCUMENTATION

You can install documentation for LLVM Toolset on your local system.

Prerequisites

® || VM Toolsetis installed.
For more information, see Installing LLVM Toolset.

Procedure

To install the llvm-doc package, run the following command:

® On Red Hat Enterprise Linux 9:
I # dnf install llvm-doc

You can find the documentation under the following path:
/usr/share/doc/llvm/html/index.html.

1.6. INSTALLING CMAKE DOCUMENTATION

You can install documentation for the CMake build manager on your local system.

Prerequisites

® CMake isinstalled.
For more information, see Installing the CMake build manager.

Procedure

To install the cmake-doc package, run the following command:

® On Red Hat Enterprise Linux 9:
I # dnf install cmake-doc

You can find the documentation under the following path:
/usr/share/doc/cmake/html/index.html.

1.7. ADDITIONAL RESOURCES

® For moreinformation on LLVM Toolset, see the official LLVM documentation.

https://cmake.org/cmake/help/v3.21/guide/tutorial/index.html#guide:CMake Tutorial
http://llvm.org/docs/

Red Hat Developer Tools 1Using LLVM 17.0.6 Toolset

CHAPTER 2. THE CLANG COMPILER

Clangis an LLVM compiler front end for the C-based languages C, C++, Objective C/C++, OpenCL, and
Cuda.

LLVM Toolset is distributed with Clang 17.0.6.

2.1. PREREQUISITES

® || VM Toolsetis installed.
For more information, see Installing LLVM Toolset.

2.2. COMPILING ASOURCE FILE

Use the Clang compiler to compile source files as well as assembly language source files. Clang creates
an executable binary file as a result of compiling. To be able to debug your code, enable debug
information by adding the -g flag to your Clang commands.

NOTE

To compile a C++ program, use clang++ instead of clang.

Procedure

To compile your program, run the following command:

® On Red Hat Enterprise Linux 9:
I $ clang -o -g <binary _file> <source_file>

o Replace <binary_file> with the desired name of your output file and <source_file> with the
name of your source file.

2.3. RUNNING A PROGRAM

The Clang compiler creates an executable binary file as a result of compiling. Complete the following
steps to execute this file and run your program.

Prerequisites

® Your program is compiled.
For more information on how to compile your program, see Compiling a source file.

Procedure

To run your program, run in the directory containing the executable file:

I $./<binary_file>

® Replace <binary_file> with the name of your executable file.

2.4. LINKING OBJECT FILES TOGETHER

CHAPTER 2. THE CLANG COMPILER

By linking object files together, you can compile only source files that contain changes instead of your
entire project.

When you are working on a project that consists of several source files, use the Clang compiler to
compile an object file for each of the source files. As a next step, link those object files together. Clang
automatically generates an executable file containing your linked object files. After compilation, link your
object files together again.

NOTE

To compile a C++ program, use clang++ instead of clang.

Procedure
1. To compile a source file to an object file, run the following command:

® On Red Hat Enterprise Linux 9:
I $ clang -o <object _file> -c <source_file>

o Replace <object _file> with the desired name of your object file and <source_file> with
the name of your source file.

2. To link object files together, run the following command:
® On Red Hat Enterprise Linux 9:
I $ clang -0 <output_file> <object file_0> <object file 1>

o Replace <output_file> with the desired name of your output file and <object _file> with
the names of the object files you want to link.

IMPORTANT

At the moment, certain library features are statically linked into applications built with
LLVM Toolset to support their execution on multiple versions of Red Hat

Enterprise Linux. This creates a small security risk. Red Hat will issue a security erratum in
case you need to rebuild your applications due to this risk.

Red Hat advises to not statically link your entire application.

2.5. ADDITIONAL RESOURCES

® For more information on the Clang compiler, see the official Clang compiler documentation.

® To display the manual page included in LLVM Toolset, run:

NOTE

To compile a C++ program, use clang++ instead of clang.

® On Red Hat Enterprise Linux 9:

I $ man clang

http://releases.llvm.org/17.0.6/tools/clang/docs/index.html

Red Hat Developer Tools 1Using LLVM 17.0.6 Toolset

CHAPTER 3. THE LLDB DEBUGGER

The LLDB debugger is a command-line tool for debugging C and C++ programs. Use LLDB to inspect
memory within the code being debugged, control the execution state of the code, and detect the
execution of particular sections of code.

LLVM Toolset is distributed with LLDB 17.0.6.

3.1. PREREQUISITES

® | LVM Toolset is installed.
For more information, see Installing LLVM Toolset.

® Your compiler is configured to create debug information.

For instructions on configuring the Clang compiler, see Controlling Debug Information in the
Clang Compiler User’s Manual.

For instructions on configuring the GCC compiler, see Preparing a Program for Debugging in
the Red Hat Developer Toolset User Guide.

3.2.STARTING A DEBUGGING SESSION

Use LLDB to start an interactive debugging session.

Procedure
® Torun LLDB on a program you want to debug, use the following command:
o On Red Hat Enterprise Linux 9:

I $ lidb <binary _file>

®m Replace <binary_file> with the name of your compiled program.
You have started your LLDB debugging session in interactive mode. Your command-
line terminal now displays the default prompt (lidb).

® To quit the debugging session and return to the shell prompt, run the following command:

I (Ildb) quit

3.3. EXECUTING YOUR PROGRAM DURING A DEBUGGING SESSION

Use LLDB to execute your program during your debugging session. The execution of your program
stops when the first breakpoint is reached, when an error occurs, or when the program terminates.

Prerequisites

® You have started an interactive debugging session.
For more information, see Starting a debugging session with LLDB .

Procedure

® To execute the program you are debugging, run:

10

http://clang.llvm.org/docs/UsersManual.html#controlling-debug-information
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/9/html/user_guide/chap-gdb#sect-GDB-Prepare

CHAPTER 3. THE LLDB DEBUGGER

I (Ildb) run

® To execute the program you are debugging using a specific argument, run:
I (ldb) run <argument>

o Replace <arguments with the command-line argument you want to use.

3.4. USING BREAKPOINTS

Use breakpoints to pause the execution of your program at a set point in your source code.

Prerequisites

® You have started an interactive debugging session.
For more information, see Starting a debugging session with LLDB .

Procedure
® To set anew breakpoint on a specific line, run the following command:
I (ldb) breakpoint set --file <source_file_name> --line <line_number>

o Replace <source_file_name> with the name of your source file and <line_numbers with
the line number you want to set your breakpoint at.

® To set a breakpoint on a specific function, run the following command:
I (lldb) breakpoint set --name <function_name>

o Replace <function_name> with the name of the function you want to set your breakpoint
at.

® Todisplay a list of currently set breakpoints, run the following command:
I (lldb) breakpoint list

® To delete a breakpoint, run:
I (ldb) breakpoint clear -f <source _file_name> -l <line_number>

o Replace <source_file_name> with the name of your source file and <line_numbers with
line number of the breakpoint you want to delete.

® Toresume the execution of your program after it reached a breakpoint, run:

I (lldb) continue

® To skip a specific number of breakpoints, run the following command:

I (lldb) continue -i <breakpoints_to_skip>

1

Red Hat Developer Tools 1Using LLVM 17.0.6 Toolset

o Replace <breakpoints_to_skip> with the number of breakpoints you want to skip.

NOTE

To skip a loop, set the <breakpoints_to_skip> to match the loop iteration
count.

3.5.STEPPING THROUGH CODE

You can use LLDB to step through the code of your program to execute only one line of code after the
line pointer.

Prerequisites

® You have started an interactive debugging session.
For more information, see Starting a debugging session with LLDB .

Procedure
® To step through one line of code:

1. Set your line pointer to the line you want to execute.

2. Run the following command:

I (lldb) step

® To step through a specific number of lines of code:

1. Set your line pointer to the line you want to execute.

2. Run the following command:
I (lldb) step -c <numbers

o Replace <numbers with the number of lines you want to execute.

3.6. LISTING SOURCE CODE

Before you execute the program you are debugging, the LLDB debugger automatically displays the first
10 lines of source code. Each time the execution of the program is stopped, LLDB displays the line of
source code on which it stopped as well as its surrounding lines. You can use LLDB to manually trigger
the display of source code during your debugging session.

Prerequisites

® You have started an interactive debugging session.
For more information, see Starting a debugging session with LLDB .

Procedure

® Tolist the first 10 lines of the source code of the program you are debugging, run:

12

CHAPTER 3. THE LLDB DEBUGGER

I (Ildb) list
® To display the source code from a specific line, run:
I (lldb) list <source_file_name>:<line_number>

o Replace <source_file_name> with the name of your source file and <line_numbers with
the number of the line you want to display.

3.7. DISPLAYING CURRENT PROGRAM DATA

The LLDB debugger provides data on variables of any complexity, any valid expressions, and function
call return values. You can use LLDB to display data relevant to the program state.

Prerequisites

® You have started an interactive debugging session.
For more information, see Starting a debugging session with LLDB .

Procedure

To display the current value of a certain variable, expression, or return value, run:

I (lldb) print <data_name>

® Replace <data_name> with data you want to display.

3.8. ADDITIONAL RESOURCES

® For more information on the LLDB debugger, see the official LLDB documentation LLDB
Tutorial.

® Foralist of GDB commands and their LLDB equivalents, see the GDB to LLDB Command Map..

13

https://lldb.llvm.org/tutorial.html
https://lldb.llvm.org/lldb-gdb.html

Red Hat Developer Tools 1Using LLVM 17.0.6 Toolset

CHAPTER 4. CONTAINER IMAGES WITH LLVM TOOLSET ON
RHEL 8

On RHEL 8, you can build your own LLVM Toolset container images on top of Red Hat Universal Base
Images (UBI) containers using Containerfiles.

4.1. CREATING A CONTAINER IMAGE OF LLVM TOOLSET ON RHEL 8
On RHEL 8, LLVM Toolset packages are part of the Red Hat Universal Base Images (UBIs) repositories.

To keep the container image size small, install only individual packages instead of the entire LLVM
Toolset.

Prerequisites

® An existing Containerfile.
For information on creating Containerfiles, see the Dockerfile reference page.

Procedure

® Visit the Red Hat Container Catalog.
® Selecta UBI.
® Click Get this image and follow the instructions.

® To create a container image containing LLVM Toolset, add the following lines to your
Containerfile:

FROM registry.access.redhat.com/ubi8/ubi:/atest
RUN yum module install -y llvm-toolset

® To create a container image containing an individual package only, add the following lines to
your Containerfile:

I RUN yum install -y <package-name>

o Replace <package-name> with the name of the package you want to install.

4.2. ADDITIONAL RESOURCES
® For more information on Red Hat UBI images, see Working with Container Images.

® For more information on Red Hat UBI repositories, see Universal Base Images (UBI): Images,
repositories, packages, and source code.

14

https://docs.docker.com/engine/reference/builder
https://access.redhat.com/containers/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index/#assembly_working-with-container-images_building-running-and-managing-containers
https://access.redhat.com/articles/4238681

CHAPTER 5. CHANGES IN LLVM TOOLSET

CHAPTER 5. CHANGES IN LLVM TOOLSET

LLVM Toolset has been updated from version 16.0.1to 17.0.6 on RHEL 8 and RHEL 9. Notable changes
include:

® The opaque pointers migration is now completed.
® Removed support for the legacy pass manager in middle-end optimization.
Clang changes:
® (C++20 coroutines are no longer considered experimental.
® Improved code generation for the std::move function and similar in unoptimized builds.

For detailed information regarding the updates, see LLVM and Clang upstream release notes.

15

https://releases.llvm.org/17.0.1/docs/ReleaseNotes.html
https://releases.llvm.org/17.0.1/tools/clang/docs/ReleaseNotes.html

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. LLVM TOOLSET
	1.1. LLVM TOOLSET COMPONENTS
	1.2. LLVM TOOLSET COMPATIBILITY
	1.3. INSTALLING LLVM TOOLSET
	1.4. INSTALLING THE CMAKE BUILD MANAGER
	1.5. INSTALLING LLVM TOOLSET DOCUMENTATION
	1.6. INSTALLING CMAKE DOCUMENTATION
	1.7. ADDITIONAL RESOURCES

	CHAPTER 2. THE CLANG COMPILER
	2.1. PREREQUISITES
	2.2. COMPILING A SOURCE FILE
	2.3. RUNNING A PROGRAM
	2.4. LINKING OBJECT FILES TOGETHER
	2.5. ADDITIONAL RESOURCES

	CHAPTER 3. THE LLDB DEBUGGER
	3.1. PREREQUISITES
	3.2. STARTING A DEBUGGING SESSION
	3.3. EXECUTING YOUR PROGRAM DURING A DEBUGGING SESSION
	3.4. USING BREAKPOINTS
	3.5. STEPPING THROUGH CODE
	3.6. LISTING SOURCE CODE
	3.7. DISPLAYING CURRENT PROGRAM DATA
	3.8. ADDITIONAL RESOURCES

	CHAPTER 4. CONTAINER IMAGES WITH LLVM TOOLSET ON RHEL 8
	4.1. CREATING A CONTAINER IMAGE OF LLVM TOOLSET ON RHEL 8
	4.2. ADDITIONAL RESOURCES

	CHAPTER 5. CHANGES IN LLVM TOOLSET

