& RedHat

Red Hat Developer Tools 1

Using Clang and LLVM 8.0.1 Toolset

Installing and using the Clang and LLVM 8.0.1 toolset

Last Updated: 2020-03-31

Red Hat Developer Tools 1 Using Clang and LLVM 8.0.1 Toolset

Installing and using the Clang and LLVM 8.0.1 toolset
Zuzana Zoubkova
zzoubkov@redhat.com

Olga Tikhomirova
otikhomi@redhat.com

Supriya Takkhi
Peter Macko
Kevin Owen

Vladimir Slavik

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Clang and LLVM is a Red Hat offering for developers on the Red Hat Enterprise Linux platform. The
Using Clang and LLVM provides an overview of this product, explains how to invoke and use the
Clang and LLVM versions of the tools, and links to resources with more in-depth information.

CHAPTER 1. CLANG AND LLVM

CHAPTER 2. CLANG

CHAPTER3.LLDB

Table of Contents

11. ABOUT THE CLANG AND LLVM TOOLSET
1.2. COMPATIBILITY

1.3. GETTING ACCESS TO THE CLANG AND LLVM TOOLSET ON RED HAT ENTERPRISE LINUX 7

Additional Resources

1.4. INSTALLING THE CLANG AND LLVM TOOLSET

1.4.1. Installing CMake on Red Hat Enterprise Linux
1.5. ADDITIONAL RESOURCES
Online documentation

2.1 INSTALLING CLANG
2.2. USING CLANG
2.2.1. Compiling a C source file to a binary file
2.2.2. Compiling a C source file to an object file
2.2.3. Linking C object files to a binary File
2.2.4. Using the clang Integrated Assembler
2.3. RUNNING A C PROGRAM
2.4. USING CLANG++
2.4.1. Compiling a C++ Source File to a Binary File
2.4.2. Compiling a C++ source file to an object file
2.4.3. Linking C++ object files to a binary file
2.5.RUNNING A C++ PROGRAM
2.6. ADDITIONAL RESOURCES
Installed documentation
Online documentation
See Also

3.1 INSTALLING LLDB
3.2. PREPARING A PROGRAM FOR DEBUGGING
3.3. RUNNING LLDB
3.4. LISTING THE SOURCE CODE
3.5. USING BREAKPOINTS
Setting a New Breakpoint
Listing Breakpoints
Deleting Existing Breakpoints
3.6. STARTING EXECUTION
3.7. DISPLAYING CURRENT PROGRAM DATA

3.8. CONTINUING EXECUTION AFTER A BREAKPOINT

3.9. ADDITIONAL RESOURCES
Online documentation
See also

CHAPTER 4. CONTAINER IMAGES WITH CLANG AND LLVM TOOLSET

4.1.IMAGE CONTENTS
4.2. ACCESSING THE IMAGES
4.3. ADDITIONAL RESOURCES

CHAPTER 5. CHANGES IN THE CLANG AND LLVM 8.0.1 TOOLSET

51 LLVM
5.2. CLANG

Table of Contents

w

(0] g Ul oA N DN W W

O O O 00 00 00 N N O O O

Red Hat Developer Tools 1Using Clang and LLVM 8.0.1 Toolset

CHAPTER 1. CLANG AND LLVM

CHAPTER 1. CLANG AND LLVM

1.1. ABOUT THE CLANG AND LLVM TOOLSET

The Clang and LLVM toolset is a Red Hat offering for developers on the Red Hat Enterprise Linux
platform. It provides the LLVM compiler infrastructure framework, the Clang compiler for the C and
C++ languages, the LLDB debugger, and related tools for code analysis.

The Clang and LLVM toolset is distributed as a part of Red Hat Developer Tools for Red Hat
Enterprise Linux 7 and is available as a module in Red Hat Enterprise Linux 8.

The following components are available as a part of the Clang and LLVM toolset:

Table 1.1. Clang and LLVM Components

Name Version Description

clang 8.0.1 A LLVM compiler front end for C
and C++.

lidb 8.0.1 A C and C++ debugger using
portions of LLVM.

compiler-rt 8.0.1 Runtime libraries for LLVM.

llvm 8.0.1 A collection of modular and

reusable compiler and toolchain
technologies.

libomp 8.0.1 A library for utilization of Open
MP API specification for parallel
programming.

lid 8.0.1 A LLVM linker.
python-lit RHEL 7 - 0.8.0 A Software testing tool for LLVM-
RHEL 8 - 0.9.0 and Clang-based test suites.

IMPORTANT

Clang and LLVM toolset for Red Hat Enterprise Linux 7 also provides CMake as a
separate package. On Red Hat Enterprise Linux 8, CMake is available in the system
repository. For more information on how to install CMake, see Section 1.4, “Installing the
Clang and LLVM toolset”.

1.2. COMPATIBILITY

The Clang and LLVM toolset is available for Red Hat Enterprise Linux 7 and Red Hat Enterprise Linux 8
on the following architectures:

® The 64-bit Intel and AMD architectures

Red Hat Developer Tools 1Using Clang and LLVM 8.0.1 Toolset

® The 64-bit ARM architecture
® The IBM Power Systems architecture
® The little-endian variant of IBM Power Systems architecture

® The IBM Z Systems architecture

1.3. GETTING ACCESS TO THE CLANG AND LLVM TOOLSET ON

RED HAT ENTERPRISE LINUX 7

The Clang and LLVM toolset is an offering that is distributed as a part of the Red Hat Developer Tools
content set, which is available to customers with deployments of Red Hat Enterprise Linux 7. To install
the Clang and LLVM toolset, enable the Red Hat Developer Tools and Red Hat Software Collections
repositories by using the Red Hat Subscription Management and add the Red Hat Developer Tools GPG
key to your system.

1. Enable the rhel-7-varianit-devtools-rpms repository:
I # subscription-manager repos --enable rhel-7-variant-devtools-rpms

Replace variant with the Red Hat Enterprise Linux system variant (server or workstation).

NOTE

We recommend developers to use Red Hat Enterprise Linux Server for access to
the widest range of development tools.

2. Enable the rhel-variant-rhscl-7-rpms repository:
I # subscription-manager repos --enable rhel-variant-rhscl-7-rpms

Replace variant with the Red Hat Enterprise Linux system variant (server or workstation).

3. Add the Red Hat Developer Tools key to your system:

cd /etc/pki/rpm-gpg
wget -O RPM-GPG-KEY-redhat-devel https://www.redhat.com/security/data/a5787476.txt
rpm --import RPM-GPG-KEY-redhat-devel

After the subscription is attached to the system and repositories enabled, install the Clang and LLVM
toolset as described in Section 1.4, “Installing the Clang and LLVM toolset”.

Additional Resources
® For more information on how to register your system using Red Hat Subscription Management
and associate it with subscriptions, see the Red Hat Subscription Management collection of

guides.

® For detailed instructions on subscription to Red Hat Software Collections, see the Red Hat
Developer Toolset User Guide, Section 1.4. Getting Access to Red Hat Developer Toolset .

1.4.INSTALLING THE CLANG AND LLVM TOOLSET

https://access.redhat.com/documentation/en-us/red_hat_subscription_management
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/9/html/user_guide/chap-red_hat_developer_toolset#sect-Red_Hat_Developer_Toolset-Subscribe

CHAPTER 1. CLANG AND LLVM

The Clang and LLVM toolset is distributed as a collection of RPM packages that can be installed,
updated, uninstalled, and inspected by using the standard package management tools that are included
in Red Hat Enterprise Linux. Note that a valid subscription that provides access to the Red Hat
Developer Tools content set is required in order to install the Clang and LLVM toolset on your Red Hat
Enterprise Linux 7 system. For detailed instructions on how to associate your Red Hat Enterprise Linux 7
system with an appropriate subscription and get access to the Clang and LLVM toolset, see Section 1.3,
"Getting access to the Clang and LLVM toolset on Red Hat Enterprise Linux 7".

IMPORTANT

Before installing the Clang and LLVM toolset, install all available Red Hat
Enterprise Linux updates.

1. Install all of the components included in the Clang and LLVM toolset for your operating system:

® On Red Hat Enterprise Linux 7, install the llvm-toolset-8.0.1 package:
I # yum install llvm-toolset-8.0.1

® On Red Hat Enterprise Linux 8, install the llvm-toolset module:
I # yum module install llvm-toolset

This installs all development and debugging tools, and other dependent packages to the
system.

1.4.1. Installing CMake on Red Hat Enterprise Linux

CMake is available as a separate package. To install CMake:
On Red Hat Enterprise Linux 7, install the llvm-toolset-8.0-cmake package:
I # yum install llvm-toolset-8.0-cmake llvm-toolset-8.0-cmake-doc

On Red Hat Enterprise Linux 8, install the cmake package:

I # yum install cmake cmake-doc

1.5. ADDITIONAL RESOURCES

A detailed description of the Clang and LLVM toolset and all its features is beyond the scope of this
document. For more information, see the resources listed below.

Online documentation

® | | VM documentation overview — The official LLVM documentation.

http://llvm.org/docs/

Red Hat Developer Tools 1Using Clang and LLVM 8.0.1 Toolset

CHAPTER 2. CLANG

clang is a LLVM compiler front end for C-based languages: C, C++, Objective C/C++, OpenCL, and
Cuda.

The Clang and LLVM toolset is distributed with clang 8.0.1.

2.1.INSTALLING CLANG

In the Clang and LLVM toolset on Red Hat Enterprise Linux 7, clang is provided by the llvm-toolset-
8.0.1-clang package and is automatically installed with the llvm-toolset-8.0.1package. On Red Hat
Enterprise Linux 8, clang is provided by the llvm-toolset module. See Section 1.4, “Installing the Clang
and LLVM toolset”.

2.2. USING CLANG

NOTE

You can execute any command using the scl utility on Red Hat Enterprise Linux 7,
causing it to be run with the Clang and LLVM binaries available. To use the Clang and
LLVM toolset on Red Hat Enterprise Linux 7 without a need to use scl enable with every
command, run a shell session with:

I $ scl enable llvm-toolset-8.0.1 'bash’

2.2.1. Compiling a C source file to a binary file

To compile a C program to a binary file:

® For Red Hat Enterprise Linux 7:

I $ scl enable llvm-toolset-8.0.1 'clang -o output _file source _file'
® For Red Hat Enterprise Linux 8:

I $ clang -o output file source file

This creates a binary file named output_filein the current working directory. If the -0 option is omitted,
the compiler creates a binary file named a.out by default.

Example 2.1. Compiling a C Program with clang

Consider a source file named hello.c with the following contents:

#include <stdio.h>
int main(int argc, char *argv[]) {
printf("Hello, World\n");
return O;

}

CHAPTER 2. CLANG

Compile this source code on the command line by using the clang compiler from the Clang and
LLVM toolset:

® For Red Hat Enterprise Linux 7:

I $ scl enable llvm-toolset-8.0.1 'clang -o hello hello.c'
® For Red Hat Enterprise Linux 8:

I $ clang -o hello hello.c

This creates a new binary file called hello in the current working directory.

2.2.2. Compiling a C source file to an object file

When you are working on a project that consists of several source files, it is common to compile an
object file for each of the source files first and then link these object files together. This way, when you
change a single source file, you can recompile only this file without having to compile the entire project.

To compile a C source file to an object file:

® For Red Hat Enterprise Linux 7:

I $ scl enable llivm-toolset-8.0.1 'clang -o object file -c source _file'
® For Red Hat Enterprise Linux 8:

I $ clang -o object file -c source _file

This creates an object file named object _file. If the -0 option is omitted, the compiler creates a file
named after the source file with the .0 file extension.

2.2.3. Linking C object files to a binary File
To link object files together and create a binary file:

® For Red Hat Enterprise Linux 7:
I $ scl enable llivm-toolset-8.0.1 'clang -o output file object file ...'
® For Red Hat Enterprise Linux 8:

I $ clang -o output file object file ...

Red Hat Developer Tools 1Using Clang and LLVM 8.0.1 Toolset

IMPORTANT

Certain more recent library features are statically linked into applications built with the
Clang and LLVM toolset to support execution on multiple versions of Red Hat
Enterprise Linux. This creates an additional minor security risk as standard Red Hat
Enterprise Linux errata do not change this code. If the need arises for developers to
rebuild their applications due to this risk, Red Hat will communicate this using a security
erratum.

Because of this additional security risk, developers are strongly advised not to statically
link their entire application for the same reasons.

2.2.4. Using the clang Integrated Assembler

To produce an object file from an assembly language program, run the clang tool as follows:

® For Red Hat Enterprise Linux 7:

I $ scl enable llvm-toolset-8.0.1 'clang option... -0 object file source _file'
® For Red Hat Enterprise Linux 8:

I $ clang option... -0 object _file source_file

This creates an object file named object _filein the current working directory.

2.3. RUNNING A C PROGRAM

When clang compiles a program, it creates an executable binary file. To run this program on the
command line, change to the directory with the executable file and run the program:

I $ /file_name

Example 2.2. Running a C program on the command line

Assuming that you have successfully compiled the hello binary file as shown in Example 2.1,
“Compiling a C Program with clang”, you can run it by typing the following command:

$./hello
Hello, World!

2.4. USING CLANG++

NOTE

You can execute any command using the scl utility on Red Hat Enterprise Linux 7,
causing it to be run with the Clang and LLVM binaries available. To use Clang and LLVM
on Red Hat Enterprise Linux 7 without a need to use scl enable with every command, run
a shell session with:

CHAPTER 2. CLANG
I $ scl enable llvm-toolset-8.0.1 'bash’

2.4.1. Compiling a C++ Source File to a Binary File

To compile a C++ program on the command line, run the clang++ compiler as follows:

® For Red Hat Enterprise Linux 7:

I $ scl enable llvm-toolset-8.0.1 'clang++ -0 output file source file ...'
® For Red Hat Enterprise Linux 8:

I $ clang++ -0 output file source file ...

This creates a binary file named output_filein the current working directory. If the -0 option is omitted,
the clang++ compiler creates a file named a.out by default.

2.4.2. Compiling a C++ source file to an object file

When you are working on a project that consists of several source files, it is common to compile an
object file for each of the source files first and then link these object files together. This way, when you
change a single source file, you can recompile only this file without having to compile the entire project.

To compile an object file on the command line:

® For Red Hat Enterprise Linux 7:

I $ scl enable llvm-toolset-8.0.1 'clang++ -0 object_file -c source_file'
® For Red Hat Enterprise Linux 8:

I $ clang++ -0 object_file -c source_file

This creates an object file named object _file. If the -0 option is omitted, the clang++ compiler creates a
file named after the source file with the .o file extension.

2.4.3. Linking C++ object files to a binary file

To link object files together and create a binary file:

® For Red Hat Enterprise Linux 7:
I $ scl enable llvm-toolset-8.0.1 'clang++ -0 output file object file ...
® For Red Hat Enterprise Linux 8:

I $ clang++ -0 output file object file ...

Red Hat Developer Tools 1Using Clang and LLVM 8.0.1 Toolset

IMPORTANT

Certain more recent library features are statically linked into applications built with the
Clang and LLVM toolset to support execution on multiple versions of Red Hat
Enterprise Linux. This creates an additional minor security risk as standard Red Hat
Enterprise Linux errata do not change this code. If the need arises for developers to
rebuild their applications due to this risk, Red Hat will communicate this using a security
erratum.

Because of this accitional security risk, developers are strongly advised not to statically
link their entire application for the same reasons.

Example 2.3. Compiling a C++ Program on the Command Line
Consider a source file named hello.cpp with the following contents:
#include <iostream>
using namespace std;
int main(int argc, char *argv(]) {

cout << "Hello, World!" << endl;
return O;

}

Compile this source code on the command line by using the clang++ compiler from Clang and LLVM:

® For Red Hat Enterprise Linux 7:

I $ scl enable llvm-toolset-8.0.1 'clang++ -0 hello hello.cpp’
® For Red Hat Enterprise Linux 8:

I $ clang++ -0 hello hello.cpp

This creates a new binary file called hello in the current working directory.

2.5. RUNNING A C++ PROGRAM

When clang++ compiles a program, it creates an executable binary file. Change to the directory with the
executable file and run this program:

I [file_name

Example 2.4. Running a C++ program on the command line

Assuming that you have successfully compiled the hello binary file as shown in Example 2.3,
“Compiling a C++ Program on the Command Line”, you can run it by typing the following at a shell
prompt:

$./hello
Hello, World!

10

CHAPTER 2. CLANG

2.6. ADDITIONAL RESOURCES

A detailed description of the clang compiler and its features is beyond the scope of this document. For
more information, see the resources listed below.

Installed documentation
® clang(1) — The manual page for the clang compiler provides detailed information on its usage;

with few exceptions, clang++ accepts the same command line options as clang. To display the
manual page for the version included in Clang and LLVM:

o For Red Hat Enterprise Linux 7:

I $ scl enable llvm-toolset-8.0.1 'man clang'
o For Red Hat Enterprise Linux 8:

I $ man clang

Online documentation

® clang — The clang compiler documentation provides detailed information about use of clang.

See Also

e Chapter1, Clang and LLVM — An overview of Clang and LLVM and more information on how to
install it on your system.

1

 http://releases.llvm.org/9.0.0/tools/clang/docs/index.html

Red Hat Developer Tools 1Using Clang and LLVM 8.0.1 Toolset

CHAPTER 3. LLDB

lldb is a command line tool you can use to debug programs written in various programming languages. It
allows you to inspect memory within the code being debugged, control the execution state of the code,
detect the execution of particular sections of code, and much more.

The Clang and LLVM toolset is distributed with lldb 8.0.1.

NOTE

You can execute any command using the scl utility on Red Hat Enterprise Linux 7,
causing it to be run with the Clang and LLVM binaries available. To use the Clang and
LLVM toolset on Red Hat Enterprise Linux 7 without a need to use scl enable with every
command, run a shell session with:

I $ scl enable llvm-toolset-8.0.1 'bash’

3.1. INSTALLING LLDB

The lldb tool is provided by the llvm-toolset-8.0.1-lldb package and is automatically installed with the
llvm-toolset-8.0.1 package. See Section 1.4, “Installing the Clang and LLVM toolset”.

3.2. PREPARING A PROGRAM FOR DEBUGGING

To compile a C or C++ program with debugging information that lldb can read, make sure the compiler
you use is instructed to create debug information.

® Forinstructions on suitably configuring clang, see the section Controlling Debug Information in
Clang Compiler User’s Manual.

® Forinstructions on suitably configuring GCC, see Red Hat Developer Toolset User Guide,
Section 7.2. Preparing a Program for Debugging .

3.3. RUNNING LLDB

To runlldb on a program you want to debug:

® For Red Hat Enterprise Linux 7:

I $ scl enable llvm-toolset-8.0.1 'lldb program_file_name'
® For Red Hat Enterprise Linux 8:

I $ lldb program_file_name

This command starts lldb in an interactive mode and displays the default prompt, (lidb).

To quit the debugging session and return to the shell prompt, run the following command at any time:

I (Ildb) quit

12

http://clang.llvm.org/docs/UsersManual.html#controlling-debug-information
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/9/html/user_guide/chap-gdb#sect-GDB-Prepare

CHAPTER3.LLDB

Example 3.1. Running the lidb Utility on the fibonacci Binary File

Consider a C source file named fibonacci.c with the following content:

#include <stdio.h>
#include <limits.h>

int main (int argc, char *argv([]) {
unsigned long int a = 0;
unsigned long intb = 1;
unsigned long int sum;

while (b < LONG_MAX) {
printf("%ld ", b);
sum=a + b;
a=>b;
b =sum;

}

return O;

}

Enable the debug information and compile the fibonacci.c with the following command:

® For Red Hat Enterprise Linux 7:

I $ scl enable llvm-toolset-8.0.1 'clang -g -o fibonacci fibonacci.c'

® For Red Hat Enterprise Linux 8:

I $ clang -g -o fibonacci fibonacci.c

NOTE

L

Refer to Section 3.2, “Preparing a program for debugging” for information about
controlling debug information using GCC or clang.

Start debugging the program with lldb:

® For Red Hat Enterprise Linux 7:

$ scl enable llvm-toolset-8.0.1 'lidb fibonacci'
(lldb) target create "fibonacci”

Current executable set to 'fibonacci' (x86_64).
(Ildb)

® For Red Hat Enterprise Linux 8:
$ lldb fibonacci
(lldb) target create "fibonacci”

Current executable set to 'fibonacci' (x86_64).
(Ildb)

The output indicates that the program fibonacci is ready for debugging.

13

Red Hat Developer Tools 1Using Clang and LLVM 8.0.1 Toolset

3.4.LISTING THE SOURCE CODE

To view the source code of the program you are debugging:

I (lldb) list
As a result, the first ten lines of the source code are displayed.

To display the code from a particular line:

I (Ildb) list source_file_name:line_number

Additionally, lldb displays source code listing automatically in the following situations:

e Before you start the execution of the program you are debugging, lldb displays the first ten
lines of the source code.

® FEach time the execution of the program is stopped, lldb displays the lines that surround the line
on which the execution stops.

3.5. USING BREAKPOINTS

Setting a New Breakpoint
To set a new breakpoint at a certain line:

I (ldb) breakpoint source_file_name:line_number

To set a breakpoint on a certain function:

I (lldb) breakpoint source_file_name:function_name

Example 3.2. Setting a new breakpoint

This example assumes that you have successfully compiled the fibonacci.c file as shown in
Example 3.1, “Running the lldb Utility on the fibonacci Binary File”

Set two breakpoints at line 10 by running the following commands:

(lldb) b 10
I Breakpoint 1: where = fibonacci'main + 33 at fibonacci.c:10, address = 0x000000000040054¢e

(ldb) breakpoint set -f fibonacci.c --line 10
Breakpoint 2: where = fibonacci'main + 33 at fibonacci.c:10, address = 0x000000000040054¢e

NOTE
In lldb, the command b is not an alias to breakpoint. You can use both commands to set

breakpoints, but b uses a subset of the syntax supported by gdb’s break command, and
breakpoint uses lldb syntax for setting breakpoints.

14

CHAPTER3.LLDB

Listing Breakpoints
To display a list of currently set breakpoints:

I (Ildb) breakpoint list

Example 3.3. Listing Breakpoints

This example assumes that you have successfully followed the instructions in Example 3.2, “Setting a
new breakpoint”.

Display the list of currently set breakpoints:

(ldb) breakpoint list
Current breakpoints:
1: file = 'fibonacci.c', line = 10, exact_match = 0, locations = 1
1.1: where = fibonacci'main + 33 at fibonacci.c:10, address = fibonacci[0x000000000040054¢],
unresolved, hit count =0
2: file = 'fibonacci.c', line = 10, exact_match = 0, locations = 1

2.1: where = fibonacci'main + 33 at fibonacci.c:10, address = fibonacci[0x000000000040054¢],
unresolved, hit count =0

Deleting Existing Breakpoints
To delete a breakpoint that is set at a certain line:

I (ldb) breakpoint clear -f source_file_name -l line_number

Example 3.4. Deleting an Existing Breakpoint
This example assumes that you have successfully compiled the fibonacci.c file.

Set a new breakpoint at line 7:

(Ildb) b 7
I Breakpoint 3: where = fibonacci'main + 31 at fibonacci.c:9, address = 0x000000000040054c

Remove this breakpoint:

(lldb) breakpoint clear -l 7 -f fibonacci.c
1 breakpoints cleared:
3: file = 'fibonacci.c', line = 7, exact_match = 0, locations = 1

3.6. STARTING EXECUTION

To start an execution of the program you are debugging:

I (Ildb) run

If the program accepts command-line arguments, you can provide them as arguments to the run
command:

15

Red Hat Developer Tools 1Using Clang and LLVM 8.0.1 Toolset

I (lldb) run argument ...

The execution stops when the first breakpoint is reached, when an error occurs, or when the program
terminates.

Example 3.5. Executing the fibonacci Binary File in lidb

This example assumes that you have successfully followed the instructions in Example 3.2, “Setting a
new breakpoint”.

Execute the fibonacci binary file in lldb:

(lldb) run
Process 21054 launched: 'fibonacci' (x86_64)
Process 21054 stopped
* thread #1, name = 'fibonacci', stop reason = breakpoint 1.1
frame #0: fibonacci" main(argc=1, argv=0x00007fffffffdeb8) at fibonacci.c:10
7 unsigned long int sum;
8
9 while (b < LONG_MAX) {
->10 printf("%Id ", b);
11 sum=a + b;
12 a=>b;
13 b = sum;

"

Execution of the program stops at the breakpoint set in Example 3.2, “Setting a new breakpoint”.

3.7. DISPLAYING CURRENT PROGRAM DATA

The lldb tool enables you to display data relevant to the program state, including:
® Variables of any complexity
® Any valid expressions
® Function call return values

The common usage is to display the value of a variable. To display the current value of a certain variable:

I (lldb) print variable_name

Example 3.6. Displaying the current values of variables

This example assumes that you have successfully followed the instructions in Example 3.5,
"Executing the fibonacci Binary File in lldb”. Execution of the fibonacci binary stopped after reaching
the breakpoint at line 10.

Display the current values of variables a and b:

(Ildb) print a
$0 =0
(Ildb) print b
$1 = 1

16

CHAPTER3.LLDB

3.8. CONTINUING EXECUTION AFTER A BREAKPOINT

To resume the execution of the program you are debugging after it reached a breakpoint:

I (lldb) continue

The execution stops again when it reaches another breakpoint.

To skip a certain number of breakpoints, typically when you are debugging a loop, run the continue
command in the following form:

I (lldb) continue -i number_of breakpoints_to_skip

NOTE

If the breakpoint is set on a loop, in order to skip the whole loop, you will have to set the
number_of_breakpoints_to_skip to match the loop iteration count.

The lldb tool enables you to execute a single line of code from the current line pointer with step:

I (lldb) step

To execute a certain number of lines:

I (lldb) step -c number

Example 3.7. Continuing the execution of the fibonacci binary file after a breakpoint

This example assumes that you have successfully followed the instructions in Example 3.5,
"Executing the fibonacci Binary File in lldb”. The execution of the fibonacci binary stopped after
reaching the breakpoint at line 10.

Resume the execution:

(lldb) continue
Process 21580 resuming
Process 21580 stopped
* thread #1, name = 'fibonacci', stop reason = breakpoint 1.1
frame #0: fibonacci" main(argc=1, argv=0x00007fffffffdeb8) at fibonacci.c:10
7 unsigned long int sum;
8
9 while (b < LONG_MAX) {
->10 printf("%Id ", b);
11 sum=a+b;
12 a=>b;
13 b = sum;

The execution stops the next time it reaches a breakpoint. (In this case it is the same breakpoint.)
Execute the next three lines of code:

17

Red Hat Developer Tools 1Using Clang and LLVM 8.0.1 Toolset

(lldb) step -¢c 3
Process 21580 stopped
* thread #1, name = 'fibonacci', stop reason = step in
frame #0: fibonacci'main(argc=1, argv=0x00007fffffffdeb8) at fibonacci.c:11

8
9 while (b < LONG_MAX) {
10 printf("%Id ", b);
-> 11 sum=a+ b;
12 a=b;
13 b = sum;
14}

Verify the current value of the sum variable:

(ldb) print sum
$2=2

3.9. ADDITIONAL RESOURCES

A detailed description of the lldb debugger and all its features is beyond the scope of this document.
For more information, see the resources listed below.

Online documentation

® ||ldb Tutorial — The official lldb tutorial.
® gdb tolldb command map — A list of GDB commands and their lldb equivalents.

See also

e Chapter1, Clang and LLVM — An overview of Clang and LLVM and more information on how to
install it.

18

https://lldb.llvm.org/tutorial.html
https://lldb.llvm.org/lldb-gdb.html

CHAPTER 4. CONTAINER IMAGES WITH CLANG AND LLVM TOOLSET1

CHAPTER 4. CONTAINER IMAGES WITH CLANG AND LLVM
TOOLSET

Clang and LLVM toolset is available as container images for RHEL 7 and RHEL 8. They can be
downloaded from the Red Hat Container Registry.

4.1. IMAGE CONTENTS

The RHEL 7 and RHEL 8 container images provide content corresponding to the following packages:

Component Version Package

llvm 8.0.1 llvm-toolset-8.0.1-llvm

clang 8.0.1 [lvm-toolset-8.0.1-clang

lidb 8.0.1 llvm-toolset-8.0.1-lldb

Runtime libraries 8.0.1 llvm-toolset-8.0.1-compiler-rt

OpenMP library 8.0.1 llvm-toolset-8.0.1-libomp

lid 8.0.1 [lvm-toolset-8.0.1-Ild

python-lit RHEL 7 - 0.8.0 llvm-toolset-8.0.1-python-lit
RHEL 8 — 0.9.0

4.2. ACCESSING THE IMAGES
To pull the required image, run the following command as root:

For the RHEL 7 container image:

I # podman pull registry.redhat.io/devtools/llvm-toolset-rhel7

For the RHEL 8 container image:

I # podman pull registry.redhat.io/rhel8/llvm-toolset

4.3. ADDITIONAL RESOURCES
® Clangand LLVM container images — entries in the Red Hat Container Catalog

® Using Red Hat Software Collections Container Images

19

https://catalog.redhat.com/software/containers/search?q=llvm&p=1
https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/using_red_hat_software_collections_container_images/index

Red Hat Developer Tools 1Using Clang and LLVM 8.0.1 Toolset

CHAPTER 5. CHANGES IN THE CLANG AND LLVM 8.0.1
TOOLSET

This chapter lists some notable changes in the Clang and LLVM 8.0.1toolset since its previous release.

5.1.LLVM
LLVM has been updated from version 7.0.1to 8.0.1.

For more information, see the LLVM 8.0.0 Release Notes.

5.2. CLANG
clang has been updated from version 7.0.1to 8.0.1.

For more information, see the Clang 8.0.0 Release Notes.

20

https://releases.llvm.org/8.0.0/docs/ReleaseNotes.html
http://releases.llvm.org/8.0.0/tools/clang/docs/ReleaseNotes.html

	Table of Contents
	CHAPTER 1. CLANG AND LLVM
	1.1. ABOUT THE CLANG AND LLVM TOOLSET
	1.2. COMPATIBILITY
	1.3. GETTING ACCESS TO THE CLANG AND LLVM TOOLSET ON RED HAT ENTERPRISE LINUX 7
	Additional Resources

	1.4. INSTALLING THE CLANG AND LLVM TOOLSET
	1.4.1. Installing CMake on Red Hat Enterprise Linux

	1.5. ADDITIONAL RESOURCES
	Online documentation

	CHAPTER 2. CLANG
	2.1. INSTALLING CLANG
	2.2. USING CLANG
	2.2.1. Compiling a C source file to a binary file
	2.2.2. Compiling a C source file to an object file
	2.2.3. Linking C object files to a binary File
	2.2.4. Using the clang Integrated Assembler

	2.3. RUNNING A C PROGRAM
	2.4. USING CLANG++
	2.4.1. Compiling a C++ Source File to a Binary File
	2.4.2. Compiling a C++ source file to an object file
	2.4.3. Linking C++ object files to a binary file

	2.5. RUNNING A C++ PROGRAM
	2.6. ADDITIONAL RESOURCES
	Installed documentation
	Online documentation
	See Also

	CHAPTER 3. LLDB
	3.1. INSTALLING LLDB
	3.2. PREPARING A PROGRAM FOR DEBUGGING
	3.3. RUNNING LLDB
	3.4. LISTING THE SOURCE CODE
	3.5. USING BREAKPOINTS
	Setting a New Breakpoint
	Listing Breakpoints
	Deleting Existing Breakpoints

	3.6. STARTING EXECUTION
	3.7. DISPLAYING CURRENT PROGRAM DATA
	3.8. CONTINUING EXECUTION AFTER A BREAKPOINT
	3.9. ADDITIONAL RESOURCES
	Online documentation
	See also

	CHAPTER 4. CONTAINER IMAGES WITH CLANG AND LLVM TOOLSET
	4.1. IMAGE CONTENTS
	4.2. ACCESSING THE IMAGES
	4.3. ADDITIONAL RESOURCES

	CHAPTER 5. CHANGES IN THE CLANG AND LLVM 8.0.1 TOOLSET
	5.1. LLVM
	5.2. CLANG

