& RedHat

Red Hat Decision Manager 7.7

Packaging and deploying a Red Hat Decision
Manager project

Last Updated: 2020-05-19

Red Hat Decision Manager 7.7 Packaging and deploying a Red Hat
Decision Manager project

Red Hat Customer Content Services
brms-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to package and deploy a project in Red Hat Decision Manager 7.7.

Table of Contents

Table of Contents

[3 Y O AP 3
CHAPTER 1. RED HAT DECISION MANAGER PROJECT PACKAGINGiiiiiiiiiiiiiiiiinnennnn, 4
CHAPTER 2. PROJECT DEPLOYMENT INBUSINESS CENTRAL ...ttt i eieenneennneanns 5
2.1. CONFIGURING A KIE SERVER TO CONNECT TO BUSINESS CENTRAL 5
2.2. CONFIGURING THE ENVIRONMENT MODE IN KIE SERVER AND BUSINESS CENTRAL 6
2.3. CONFIGURING AN EXTERNAL MAVEN REPOSITORY FOR BUSINESS CENTRAL AND KIE SERVER 7
2.4. EXPORTING A BUSINESS CENTRAL PROJECT TO AN EXTERNAL MAVEN REPOSITORY 8
2.5. BUILDING AND DEPLOYING A PROJECT IN BUSINESS CENTRAL 8
2.6. DEPLOYMENT UNITS IN BUSINESS CENTRAL 10
2.6.1. Creating a deployment unit in Business Central 10
2.6.2. Starting, stopping, and removing deployment units in Business Central 10
2.6.3. KIE container aliases 1
2.7. EDITING THE GAV VALUES FOR A PROJECT IN BUSINESS CENTRAL 12
2.8. DUPLICATE GAV DETECTION IN BUSINESS CENTRAL 13
2.8.1. Managing duplicate GAV detection settings in Business Central 13
CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRALiiiittiiiiiiiiinieneenns 15
3.1. CONFIGURING A KIE MODULE DESCRIPTOR FILE 15
3.1.1. KIE module configuration properties 18
3.1.2. KIE base attributes supported in KIE modules 19
3.1.3. KIE session attributes supported in KIE modules 21
3.2. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER PROJECT IN MAVEN 23
3.3. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER PROJECT IN A JAVA APPLICATION
26
3.4. EXECUTABLE RULE MODELS 29
3.4.1. Modifying or disabling executable rule models in a Red Hat Decision Manager project 30
3.5. USING A KIE SCANNER TO MONITOR AND UPDATE KIE CONTAINERS 31
3.6. STARTING A SERVICE IN KIE SERVER 33
3.7.STOPPING AND REMOVING A SERVICE IN KIE SERVER 33
CHAPTER 4. ADDITIONAL RESOURCES ...ttt eite ittt eieeaneeeaneennneennnenaneenn 35
APPENDIX A. VERSIONING INFORMATION ..ttt ittt ettt et eeaeennneeaneennneennnes 36

Red Hat Decision Manager 7.7 Packaging and deploying a Red Hat Decision Manager project

PREFACE

PREFACE

As a business rules developer, you must build and deploy a developed Red Hat Decision Manager project
to a KIE Server in order to begin using the services you have created in Red Hat Decision Manager. You
can develop and deploy a project from Business Central, from an independent Maven project, from a
Java application, or using a combination of various platforms. For example, you can develop a project in
Business Central and deploy it using the KIE Server REST API, or develop a project in Maven configured
with Business Central and deploy it using Business Central.

Prerequisites

® The project to be deployed has been developed and tested. For projects in Business Central,
consider using test scenarios to test the assets in your project. For example, see Testing a
decision service using test scenarios.

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.7/html-single/testing_a_decision_service_using_test_scenarios

Red Hat Decision Manager 7.7 Packaging and deploying a Red Hat Decision Manager project

CHAPTER 1. RED HAT DECISION MANAGER PROJECT
PACKAGING

Red Hat Decision Manager projects contain the business assets that you develop in Red Hat Decision
Manager. Each project in Red Hat Decision Manager is packaged as a Knowledge JAR (KJAR) file with
configuration files such as a Maven project object model file (pom.xml), which contains build,
environment, and other information about the project, and a KIE module descriptor file (kmodule.xml),
which contains the KIE base and KIE session configurations for the assets in the project. You deploy the
packaged KJAR file to a KIE Server that runs the decision services and other deployable assets
(collectively referred to as services) from that KJAR file. These services are consumed at run time
through an instantiated KIE container, or deployment unit. Project KJAR files are stored in a Maven
repository and identified by three values: Groupld, Artifactld, and Version (GAV). The Version value
must be unique for every new version that might need to be deployed. To identify an artifact (including a
KJAR file), you need all three GAV values.

Projects in Business Central are packaged automatically when you build and deploy the projects. For
projects outside of Business Central, such as independent Maven projects or projects within a Java
application, you must configure the KIE module descriptor settings in an appended kmodule.xml file or
directly in your Java application in order to build and deploy the projects.

CHAPTER 2. PROJECT DEPLOYMENT IN BUSINESS CENTRAL

CHAPTER 2. PROJECT DEPLOYMENT IN BUSINESS CENTRAL

You can use Business Central to develop your business assets and services and to manage KIE Servers
configured for project deployment. When your project is developed, you can build the project in
Business Central and deploy it automatically to the KIE Server. To enable automatic deployment,
Business Central includes a built-in Maven repository. From Business Central, you can start, stop, or
remove the deployment units (KIE containers) that contain the services and their project versions that
you have built and deployed.

You can also connect several KIE Servers to the same Business Central instance and group them into
different server configurations (in Menu — Deploy = Execution Servers). Servers belonging to the
same server configuration run the same services, but you can deploy different projects or different
versions of projects on different configurations.

For example, you could have test servers in the Test configuration and production serversin a
Production configuration. As you develop business assets and services in a project, you deploy the
project on the Test server configuration and then, when a version of the project is sufficiently tested,
you can deploy it on the Production server configuration. In this case, to keep developing the project,
change the version in the project settings. Then the new version and the old version are seen as
different artifacts in the built-in Maven repository. You can deploy the new version on the Test server
configuration and keep running the old version on the Production server configuration. This
deployment process is simple but has significant limitations. Notably, there is not enough access control:
a developer can deploy a project directly into a production environment.

IMPORTANT

You cannot move a KIE Server into a different server configuration using Business
Central. You must change the configuration file of the server to change the server
configuration name for it.

2.1. CONFIGURING A KIE SERVER TO CONNECT TO BUSINESS
CENTRAL

If a KIE Server is not already configured in your Red Hat Decision Manager environment, or if you require
additional KIE Servers in your Red Hat Decision Manager environment, you must configure a KIE Server
to connect to Business Central.

NOTE

If you are deploying KIE Server on Red Hat OpenShift Container Platform, see Deploying
a Red Hat Decision Manager authoring or managed server environment on Red Hat
OpenShift Container Platform for instructions about configuring it to connect to Business
Central.

Prerequisites

® KIE Server is installed. For installation options, see Planning a Red Hat Decision Manager
installation.

Procedure

1. In your Red Hat Decision Manager installation directory, navigate to the standalone-full.xml
file. For example, if you use a Red Hat JBoss EAP installation for Red Hat Decision Manager, go
to SEAP_HOME/standalone/configuration/standalone-full.xml.

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.7/html-single/deploying_a_red_hat_decision_manager_authoring_or_managed_server_environment_on_red_hat_openshift_container_platform
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.7/html-single/planning_a_red_hat_decision_manager_installation

Red Hat Decision Manager 7.7 Packaging and deploying a Red Hat Decision Manager project

2. Open standalone-full.xml and under the <system-properties> tag, set the following
properties:

® org.kie.server.controller.user: The user name of a user who can log in to the Business
Central.

® org.kie.server.controller.pwd: The password of the user who can log in to the Business
Central.

® org.kie.server.controller: The URL for connecting to the API of Business Central. Normally,
the URL is http://<centralhost>:<centralport>/decision-central/rest/controller, where
<centralhost> and <centralport> are the host name and port for Business Central. If
Business Central is deployed on OpenShift, remove decision-central/ from the URL.

® org.kie.server.location: The URL for connecting to the API of KIE Server. Normally, the
URL is http://<serverhost>:<serverport>/kie-server/services/rest/server, where
<serverhost> and <serverport> are the host name and port for KIE Server.

® org.kie.server.id: The name of a server configuration. If this server configuration does not
exist in Business Central, it is created automatically when KIE Server connects to Business
Central.

Example:

<property name="org.kie.server.controller.user" value="central_user"/>

<property name="org.kie.server.controller.owd" value="central_password"/>

<property name="org.kie.server.controller" value="http://central.example.com:8080/decision-
central/rest/controller"/>

<property name="org.kie.server.location" value="http://kieserver.example.com:8080/kie-
server/services/rest/server"/>

<property name="org.kie.server.id" value="production-servers"/>

3. Start or restart the KIE Server.

2.2. CONFIGURING THE ENVIRONMENT MODE IN KIE SERVER AND
BUSINESS CENTRAL

You can set KIE Server to run in production mode or in development mode. Development mode
provides a flexible deployment policy that enables you to update existing deployment units (KIE
containers) while maintaining active process instances for small changes. It also enables you to reset the
deployment unit state before updating active process instances for larger changes. Production mode is
optimal for production environments, where each deployment creates a new deployment unit.

In a development environment, you can click Deploy in Business Central to deploy the built KJAR file to
a KIE Server without stopping any running instances (if applicable), or click Redeploy to deploy the built
KJAR file and replace all instances. The next time you deploy or redeploy the built KJAR, the previous
deployment unit (KIE container) is automatically updated in the same target KIE Server.

In a production environment, the Redeploy option in Business Central is disabled and you can click only
Deploy to deploy the built KJAR file to a new deployment unit (KIE container) on a KIE Server.

Procedure

1. To configure the KIE Server environment mode, set the org.kie.server.mode system property
to org.kie.server.mode=development or org.kie.server.mode=production.

CHAPTER 2. PROJECT DEPLOYMENT IN BUSINESS CENTRAL

2. To configure the deployment behavior for a project in Business Central, go to project Settings
- General Settings = Version and toggle the Development Mode option.

NOTE

By default, KIE Server and all new projects in Business Central are in

" development mode.

You cannot deploy a project with Development Mode turned on or with a manually added
SNAPSHOT version suffix to a KIE Server that is in production mode.

2.3. CONFIGURING AN EXTERNAL MAVEN REPOSITORY FOR
BUSINESS CENTRAL AND KIE SERVER

You can configure Business Central and KIE Server to use an external Maven repository, such as Nexus
or Artifactory, instead of the built-in repository. This enables Business Central and KIE Server to access
and download artifacts that are maintained in the external Maven repository.

NOTE

For information about configuring an external Maven repository for an authoring
environment on Red Hat OpenShift Container Platform, see the following documents:

® Deploying a Red Hat Decision Manager authoring or managed server environment
on Red Hat OpenShift Container Platform

® Deploying a Red Hat Decision Manager environment on Red Hat OpenShift
Container Platform using Operators

Prerequisites

® Business Central and KIE Server are installed. For installation options, see Planning a Red Hat
Decision Manager installation.

Procedure

1. Create a Maven settings.xml file with connection and access details for your external
repository. For details about the settings.xml file, see the Maven Settings Reference.

2. Save the file in a known location, for example, /opt/custom-config/settings.xml.
3. Inyour Red Hat Decision Manager installation directory, navigate to the standalone-full.xml
file. For example, if you use a Red Hat JBoss EAP installation for Red Hat Decision Manager, go

to SEAP_HOME/standalone/configuration/standalone-full.xml.

4. Open standalone-full.xml and under the <system-properties> tag, set the
kie.maven.settings.custom property to the full path name of the settings.xml file.
For example:

I <property name="kie.maven.settings.custom" value="/opt/custom-config/settings.xml"/>

5. Start or restart Business Central and KIE Server.

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.7/html-single/deploying_a_red_hat_decision_manager_authoring_or_managed_server_environment_on_red_hat_openshift_container_platform#template-deploy-optionalmaven-authoring-proc
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.7/html-single/deploying_a_red_hat_decision_manager_environment_on_red_hat_openshift_container_platform_using_operators#operator-deploy-central-proc
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.7/html-single/planning_a_red_hat_decision_manager_installation
https://maven.apache.org/settings.html

Red Hat Decision Manager 7.7 Packaging and deploying a Red Hat Decision Manager project

Next steps

For each Business Central project that you want to export or push as a KJAR artifact to the external
Maven repository, you must add the repository information in the project pom.xml file. For instructions,
see Section 2.4, "Exporting a Business Central project to an external Maven repository” .

2.4. EXPORTING A BUSINESS CENTRAL PROJECT TO AN EXTERNAL
MAVEN REPOSITORY

If you configured an external Maven repository for Business Central and KIE Server, you must add the
repository information in the pom.xml file for each Business Central project that you want to export or
push as a KJAR artifact to that external repository. You can then progress the project KJAR files
through the repository as necessary to implement your integration process, and deploy the KJAR files
using Business Central or the KIE Server REST API.

Prerequisites

® You configured Business Central and KIE Server to use an external Maven repository. If you
deployed Business Central on-premise, for more information about configuring an external
Maven repository, see Section 2.3, “Configuring an external Maven repository for Business
Central and KIE Server”. If you deployed your authoring environment on Red Hat OpenShift
Container Platform, for more information, see the following documents:

o Deploying a Red Hat Decision Manager authoring or managed server environment on Red Hat
OpenShift Container Platform

o Deploying a Red Hat Decision Manager environment on Red Hat OpenShift Container
Platform using Operators

Procedure

1. In Business Central, go to Menu - Design = Projects, click the project name, and select any
asset in the project.

2. In the Project Explorer menu on the left side of the screen, click the Customize View gear icon
and select Repository View = pom.xml.

3. Add the following settings at the end of the project pom.xml file (before the </projects closing
tag). The values must correspond to the settings that you defined in your settings.xml file.

<distributionManagement>
<repository>
<id>${maven-repo-id}</id>
<url>${maven-repo-url}</url>
<layout>default</layout>
</repository>
</distributionManagement>

4. Click Save to save the pom.xml file changes.

Repeat this procedure for each Business Central project that you want to export or push as a KJAR
artifact to the external Maven repository.

2.5. BUILDING AND DEPLOYING A PROJECT IN BUSINESS CENTRAL

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.7/html-single/deploying_a_red_hat_decision_manager_authoring_or_managed_server_environment_on_red_hat_openshift_container_platform#template-deploy-optionalmaven-authoring-proc
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.7/html-single/deploying_a_red_hat_decision_manager_environment_on_red_hat_openshift_container_platform_using_operators#operator-deploy-kieserver-proc

CHAPTER 2. PROJECT DEPLOYMENT IN BUSINESS CENTRAL

After your project is developed, you can build the project in Business Central and deploy it to the
configured KIE Server. Projects in Business Central are packaged automatically as KJARs with all
necessary components when you build and deploy the projects.

Procedure

1. In Business Central, go to Menu - Design = Projects and click the project name.

2. In the upper-right corner, click Deploy to build the project and deploy it to a KIE Server. To
compile the project without deploying it to KIE Server, click Build.

NOTE

You can also select the Build & Installoption to build the project and publish the
KJAR file to the configured Maven repository without deploying to a KIE Server.
In a development environment, you can click Deploy to deploy the built KJAR file
to a KIE Server without stopping any running instances (if applicable), or click
Redeploy to deploy the built KJAR file and replace all instances. The next time
you deploy or redeploy the built KJAR, the previous deployment unit (KIE
container) is automatically updated in the same target KIE Server. In a production
environment, the Redeploy option is disabled and you can click Deploy only to
deploy the built KJAR file to a new deployment unit (KIE container) on a KIE
Server.

To configure the KIE Server environment mode, set the org.kie.server.mode
system property to org.kie.server.mode=development or
org.kie.server.mode=production. To configure the deployment behavior for a
corresponding project in Business Central, go to project Settings = General
Settings = Version and toggle the Development Mode option. By default, KIE
Server and all new projects in Business Central are in development mode. You
cannot deploy a project with Development Mode turned on or with a manually
added SNAPSHOT version suffix to a KIE Server that is in production mode.

If only one KIE Server is connected to Business Central, or if all connected KIE Servers are in the
same server configuration, the services in the project are started automatically in a deployment
unit (KIE container).

If multiple server configurations are available, a deployment dialog is displayed in Business
Central, prompting you to specify server and deployment details.

3. If the deployment dialog appears, verify or set the following values:

® Deployment Unit Id / Deployment Unit Alias:Verify the name and alias of the deployment
unit (KIE container) running the service within the KIE Server. You normally do not need to
change these settings. For more information about KIE container aliases, see Section 2.6.3,
“KIE container aliases”.

e Server Configuration: Select the server configuration for deploying this project. You can
later deploy it to other configured servers without rebuilding the project.

e Start Deployment Unit?:Verify that this box is selected to start the deployment unit (KIE
container). If you clear this box, the service is deployed onto the server but not started.

To review project deployment details, click View deployment details in the deployment banner
at the top of the screen orin the Deploy drop-down menu. This option directs you to the Menu
- Deploy = Execution Servers page.

Red Hat Decision Manager 7.7 Packaging and deploying a Red Hat Decision Manager project

2.6. DEPLOYMENT UNITS IN BUSINESS CENTRAL

The services in a project are consumed at run time through an instantiated KIE container, or deployment
unit, on a configured KIE Server. When you build and deploy a project in Business Central, the
deployment unit is created automatically in the configured server. You can start, stop, or remove
deployment units in Business Central as needed. You can also create additional deployment units from
previously built projects and start them on existing or new KIE Servers configured in Business Central.

2.6.1. Creating a deployment unit in Business Central

One or more deployment units should already exist as part of your Red Hat Decision Manager
configuration, but if not, you can create a deployment unit from a project that was previously built in
Business Central.

Prerequisites

® The project for which you are creating the new deployment unit has been built in Business
Central.

Procedure

1. In Business Central, go to Menu - Deploy — Execution servers.

2. Under Server Configurations, select an existing configuration or click New Server
Configuration to create a configuration.

3. Under Deployment Units, click Add Deployment Unit
4. Add an alias in the Alias field if required.

5. In the table within the window, select a GAV and click Select next to the GAV to populate the
deployment unit data fields.

6. Select the Start Deployment Unit?box to start the service immediately, or clear the box to
start it later.

7. Click Finish.
The new deployment unit for the service is created and placed on the KIE Servers that are
configured for this server configuration. If you have selected Start Deployment Unit?, the
service is started.

2.6.2. Starting, stopping, and removing deployment units in Business Central

When a deployment unit is started, the services in the deployment unit are available for use. If only one
KIE Server is connected to Business Central, or if all connected KIE Servers are in the same server
configuration, services are started in a deployment unit automatically when a project is deployed. If
multiple server configurations are available, you are prompted upon deployment to specify server and
deployment details and to start the deployment unit. However, at any time you can manually start, stop,
or remove deployment units in Business Central to manage your deployed services as needed.

Procedure

1. In Business Central, go to Menu - Deploy — Execution servers.

2. Under Server Configurations, select a configuration.

10

CHAPTER 2. PROJECT DEPLOYMENT IN BUSINESS CENTRAL

3. Under Deployment Units, select a deployment unit.

4. Click Start, Stop, or Remove in the upper-right corner. To remove a running deployment unit,
stop it and then remove it.

2.6.3. KIE container aliases

An alias for a KIE container (deployment unit) is a proxy in the KIE Server instance that helps in handling
different versions of the same container deployment. You can link a single alias to different versions of a
container. When a container is upgraded, the linked alias automatically points to the new version of the
container. For information about creating a KIE container alias, see Section 2.6.1, “Creating a
deployment unit in Business Central”
For example, if a client application is changing every time a new version of a container is deployed, then
the client application can point to the container alias. When a new container version is deployed, the
associated alias is updated and all the requests are routed automatically to the new container without
changing the client application.
Consider an example project that contains a single process and uses the following properties:

e Groupld: org.jbpm

e Artifactld: my-project

e Version: 1.0

e containerlD: my-project

When you update, build, and deploy the above project, the associated project is updated in the KIE
Server with the latest version and contains the following properties:

e Groupld: org.jbpm
e Artifactld: my-project
e Version: 2.0

If you want to deploy the latest version of the project, you need to update the containerlD as my-
project2 because the my-project container points to the old version.

NOTE

Every project version contains a different containerlD name. The associated client
applications need to be aware of all versions of the projects they interact with.

Container aliases also help you manage KIE containers. You can set the container aliases explicitly when
creating a container, or implicitly based on the associated Artifactld name. You can add a single alias to
multiple containers if required. If you do not specify a container alias, then the Artifactld of a project is
set as the container alias by default.

When you set an alias for multiple containers that contain different Groupld and Artifactld names, then
you can use the same alias every time to interact with the KIE Server.

You typically use container aliases in the following use cases:

e Starting a new process instanceon the client application with the latest version of the process

1

Red Hat Decision Manager 7.7 Packaging and deploying a Red Hat Decision Manager project

® |Interacting with an existing processof a specific version
® |nteracting with an existing taskin a process
® |Interacting with a process definitionimage and form

For example, after you deploy the 1.0 version of a project, you send a POST request to the following KIE
Server REST API endpoint to start the process in the project:

/http://localhost:8230/kie-server/services/rest/server/containers/my-
project/processes/evaluation/instances

The sent request starts a new process instance from org.jbpm:my-project:1.0 in which my-project is
defined as the container alias. Later, when you deploy the 2.0 version of the project and send the same
request, a new instance starts from org.jbpm:my-project:2.0. You can deploy the latest version of the
process without adding the containerlD name.

2.7. EDITING THE GAV VALUES FOR A PROJECT IN BUSINESS
CENTRAL

The Groupld, Artifactld, and Version (GAV) values identify a project in a Maven repository. When
Business Central and KIE Server are on the same file system and use the same Maven repository, the
project is automatically updated in the repository each time you build a new version of your project.
However, if Business Central and KIE Server are on separate file systems and use separate local Maven
repositories, you must update a project GAV value, usually the version, for any new versions of the
project to ensure that the project is seen as a different artifact alongside the old version.

NOTE

For development purposes only, you can toggle the Development Mode option in
project Settings —» General Settings = Version to add the SNAPSHOT suffix in the
project version. This suffix instructs Maven to get a new snapshot update according to
the Maven policy. Do not use Development Mode or manually add the SNAPSHOT
version suffix for a production environment.

You can set the GAV values in the project Settings screen.

Procedure

1. In Business Central, go to Menu - Design = Projects and click the project name.
2. Click the project Settings tab.

3. In General Settings, modify the Group ID, Artifact ID, or Version fields as necessary. If you
have deployed the project and are developing a new version, usually you need to increase the
version number.

NOTE

For development purposes only, you can toggle the Development Mode option
in project Settings - General Settings — Version to add the SNAPSHOT suffix
in the project version. This suffix instructs Maven to get a new snapshot update
according to the Maven policy. Do not use Development Mode or manually add
the SNAPSHOT version suffix for a production environment.

12

CHAPTER 2. PROJECT DEPLOYMENT IN BUSINESS CENTR

4. Click Save to finish.

2.8. DUPLICATE GAV DETECTION IN BUSINESS CENTRAL

In Business Central, all Maven repositories are checked for any duplicated Groupld, Artifactld, and
Version (GAV) values in a project. If a GAV duplicate exists, the performed operation is canceled.

NOTE

Duplicate GAV detection is disabled for projects in Development Mode. To enable
duplicate GAV detection in Business Central, go to project Settings —» General Settings
- Version and toggle the Development Mode option to OFF (if applicable).

Duplicate GAV detection is executed every time you perform the following operations:
® Save a project definition for the project.
® Save the pom.xml file.
® |[nstall, build, or deploy a project.

The following Maven repositories are checked for duplicate GAVs:

® Repositories specified in the <repositories> and <distributionManagement> elements of the
pom.xml file.

® Repositories specified in the Maven settings.xml configuration file.

2.8.1. Managing duplicate GAV detection settings in Business Central

Business Central users with the admin role can modify the list of repositories that are checked for
duplicate Groupld, Artifactld, and Version (GAV) values for a project.

NOTE

Duplicate GAV detection is disabled for projects in Development Mode. To enable
duplicate GAV detection in Business Central, go to project Settings —» General Settings
- Version and toggle the Development Mode option to OFF (if applicable).

Procedure
1. In Business Central, go to Menu - Design = Projects and click the project name.
2. Click the project Settings tab and then click Validation to open the list of repositories.

3. Select or clear any of the listed repository options to enable or disable duplicate GAV detection.
In the future, duplicate GAVs will be reported for only the repositories you have enabled for
validation.

AL

13

Red Hat Decision Manager 7.7 Packaging and deploying a Red Hat Decision Manager project

NOTE

To disable this feature, set the org.guvnor.project.gav.check.disabled system
property to true for Business Central at system startup:

$ ~/EAP_HOME/bin/standalone.sh -¢ standalone-full.xml
-Dorg.guvnor.project.gav.check.disabled=true

14

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS
CENTRAL

As an alternative to developing and deploying projects in the Business Central interface, you can use
independent Maven projects or your own Java applications to develop Red Hat Decision Manager
projects and deploy them in KIE containers (deployment units) to a configured KIE Server. You can then
use the KIE Server REST API to start, stop, or remove the KIE containers that contain the services and
their project versions that you have built and deployed. This flexibility enables you to continue to use
your existing application workflow to develop business assets using Red Hat Decision Manager features.

Projects in Business Central are packaged automatically when you build and deploy the projects. For
projects outside of Business Central, such as independent Maven projects or projects within a Java
application, you must configure the KIE module descriptor settings in an appended kmodule.xml file or
directly in your Java application in order to build and deploy the projects.

3.1. CONFIGURING A KIE MODULE DESCRIPTOR FILE

A KIE module is a Maven project or module with an additional metadata file META-INF/kmodule.xml. All
Red Hat Decision Manager projects require a kmodule.xml file in order to be properly packaged and
deployed. This kmodule.xml file is a KIE module descriptor that defines the KIE base and KIE session
configurations for the assets in a project. A KIE base is a repository that contains all rules and other
business assets in Red Hat Decision Manager but does not contain any runtime data. A KIE session
stores and executes runtime data and is created from a KIE base or directly from a KIE container if you
have defined the KIE session in the kmodule.xml file.

If you create projects outside of Business Central, such as independent Maven projects or projects
within a Java application, you must configure the KIE module descriptor settings in an appended
kmodule.xml file or directly in your Java application in order to build and deploy the projects.

Procedure

1. In the ~/resources/META-INF directory of your project, create a kmodule.xml metadata file
with at least the following content:

<?xml version="1.0" encoding="UTF-8"7>
<kmodule xmins="http://www.drools.org/xsd/kmodule">
</kmodule>

This empty kmodule.xml file is sufficient to produce a single default KIE base that includes all
files found under your project resources path. The default KIE base also includes a single
default KIE session that is triggered when you create a KIE container in your application at build
time.

The following example is a more advanced kmodule.xml file:

<?xml version="1.0" encoding="UTF-8"7>
<kmodule xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlins="http://www.drools.org/xsd/kmodule">

<configuration>

<property key="drools.evaluator.supersetOf"

value="org.mycompany.SupersetOfEvaluatorDefinition"/>

</configuration>

<kbase name="KBase1" default="true" eventProcessingMode="cloud"
equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg1">

15

Red Hat Decision Manager 7.7 Packaging and deploying a Red Hat Decision Manager project

16

<ksession name="KSession1_1" type="stateful" default="true" />
<ksession name="KSession1_2" type="stateful" default="true" beliefSystem="jtms" />
</kbase>
<kbase name="KBase2" default="false" eventProcessingMode="stream"
equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg2,
org.domain.pkg3" includes="KBase1">
<ksession name="KSession2_1" type="stateless" default="true" clockType="realtime">
<fileLogger file="debuglnfo" threaded="true" interval="10" />
<workltemHandlers>
<workltemHandler name="name" type="new org.domain.WorkltemHandler()" />
</workltemHandlers>
<listeners>
<ruleRuntimeEventListener type="org.domain.RuleRuntimeListener" />
<agendaEventListener type="org.domain.FirstAgendaListener" />
<agendaEventListener type="org.domain.SecondAgendaListener" />
<processEventListener type="org.domain.ProcessListener" />
</listeners>
</ksession>
</kbase>
</kmodule>

This example defines two KIE bases. Specific packages of rule assets are included with both KIE
bases. When you specify packages in this way, you must organize your rule files in a folder
structure that reflects the specified packages. Two KIE sessions are instantiated from the
KBase1 KIE base, and one KIE session from KBase2. The KIE session from KBase2is a
stateless KIE session, which means that data from a previous invocation of the KIE session (the
previous session state) is discarded between session invocations. That KIE session also specifies
a file (or a console) logger, a WorkltemHandler, and listeners of the three supported types
shown: ruleRuntimeEventListener, agendaEventListener and processEventListener. The
<configuration> element defines optional properties that you can use to further customize
your kmodule.xml file.

As an alternative to manually appending a kmodule.xml file to your project, you can use a
KieModuleModel instance within your Java application to programmatically create a
kmodule.xml file that defines the KIE base and a KIE session, and then add all resources in your
project to the KIE virtual file system KieFileSystem.

Creating kmodule.xml programmatically and adding it to KieFileSystem

import org.kie.api.KieServices;

import org.kie.api.builder.model.KieModuleModel;
import org.kie.api.builder.model.KieBaseModel;
import org.kie.api.builder.model.KieSessionModel;
import org.kie.api.builder.KieFileSystem;

KieServices kieServices = KieServices.Factory.get();
KieModuleModel kieModuleModel = kieServices.newKieModuleModel();

KieBaseModel kieBaseModel1 = kieModuleModel.newKieBaseModel("KBase1")
.setDefault(true)
.setEqualsBehavior(EqualityBehaviorOption.EQUALITY)
.setEventProcessingMode(EventProcessingOption.STREAM);

KieSessionModel ksessionModel1 = kieBaseModel1.newKieSessionModel("KSession1_1")
.setDefault(true)
.setType(KieSessionModel.KieSessionType.STATEFUL)

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

.setClockType(ClockTypeOption.get("realtime"));

KieFileSystem kfs = kieServices.newKieFileSystem();
kfs.writetKModuleXML (kieModuleModel.toXML());

2. After you configure the kmodule.xml file either manually or programmatically in your project,
retrieve the KIE bases and KIE sessions from the KIE container to verify the configurations:

KieServices kieServices = KieServices.Factory.get();
KieContainer kContainer = kieServices.getKieClasspathContainer();

KieBase kBase1 = kContainer.getKieBase("KBase1");
KieSession kieSession1 = kContainer.newKieSession("KSession1_1"),
kieSession2 = kContainer.newKieSession("KSession1_2");

KieBase kBase2 = kContainer.getKieBase("KBase2");
StatelessKieSession kieSession3 = kContainer.newStatelessKieSession("KSession2_1");

If KieBase or KieSession have been configured as default="true" in the kmodule.xml file, as
in the previous kmodule.xml example, you can retrieve them from the KIE container without
passing any names:

KieContainer kContainer = ...

KieBase kBase1 = kContainer.getKieBase();
KieSession kieSession1 = kContainer.newKieSession(),
kieSession2 = kContainer.newKieSession();

KieBase kBase2 = kContainer.getKieBase();
StatelessKieSession kieSession3 = kContainer.newStatelessKieSession();

To increase or decrease the maximum number of KIE modules or artifact versions that are
cached in the decision engine, you can modify the values of the following system properties in
your Red Hat Decision Manager distribution:

e kie.repository.project.cache.size: Maximum number of KIE modules that are cached in the
decision engine. Default value: 100

e kie.repository.project.versions.cache.size: Maximum number of versions of the same
artifact that are cached in the decision engine. Default value: 10

For the full list of KIE repository configurations, download the Red Hat Decision Manager 7.7.0
Source Distribution ZIP file from the Red Hat Customer Portal and navigate to ~/rhdm-7.7.0-
sources/src/drools-$VERSION/drools-
compiler/src/main/java/org/drools/compiler/kie/builder/impl/KieRepositorylmpl.java.

For more information about the kmodule.xml file, download the Red Hat Decision Manager 7.7.0
Source Distribution ZIP file from the Red Hat Customer Portal (if not downloaded already) and see the
kmodule.xsd XML schema located at $FILE_HOME/rhdm-$VERSION-sources/kie-api-parent-
$VERSION/kie-api/src/main/resources/org/kie/api/.

17

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

Red Hat Decision Manager 7.7 Packaging and deploying a Red Hat Decision Manager project

NOTE
KieBase or KiePackage serialization is not supported in Red Hat Decision Manager 7.7.

For more information, see Is serialization of kbase/package supported in BRMS 6/BPM
Suite 6/RHDM 77.

3.1.1. KIE module configuration properties

The optional <configuration> element in the KIE module descriptor file (kmodule.xml) of your project
defines property key and value pairs that you can use to further customize your kmodule.xml file.

Example configuration property in a kmodule.xml file

<kmodule>

<configuration>
<property key="drools.dialect.default" value="java"/>

</configuration>

</kmodule>

The following are the <configurations> property keys and values supported in the KIE module descriptor
file (kmodule.xml) for your project:
drools.dialect.default

Sets the default Drools dialect.
Supported values: java, mvel

<property key="drools.dialect.default"
value="java"/>

drools.accumulate.function.$FUNCTION

Links a class that implements an accumulate function to a specified function name, which allows you
to add custom accumulate functions into the decision engine.

<property key="drools.accumulate.function.hyperMax"
value="org.drools.custom.HyperMaxAccumulate"/>

drools.evaluator.$EVALUATION

Links a class that implements an evaluator definition to a specified evaluator name so that you can
add custom evaluators into the decision engine. An evaluator is similar to a custom operator.

<property key="drools.evaluator.soundslike"
value="org.drools.core.base.evaluators.SoundslikeEvaluatorsDefinition"/>

drools.dump.dir

Sets a path to the Red Hat Decision Manager dump/log directory.

<property key="drools.dump.dir"
value="$DIR_PATH/dump/log"/>

18

https://access.redhat.com/solutions/3216951

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

drools.defaultPackageName

Sets a default package for the business assets in your project.

<property key="drools.defaultPackageName"
value="org.domain.pkg1"/>

drools.parser.processStringEscapes

Sets the String escape function. If this property is set to false, the \n character will not be interpreted
as the newline character.

Supported values: true (default), false

<property key="drools.parser.processStringEscapes"
value="true"/>

drools.kbuilder.severity. $DUPLICATE

Sets a severity for instances of duplicate rules, processes, or functions reported when a KIE base is
built. For example, if you set duplicateRule to ERROR, then an error is generated for any duplicated
rules detected when the KIE base is built.

Supported key suffixes: duplicateRule, duplicateProcess, duplicateFunction

Supported values: INFO, WARNING, ERROR

<property key="drools.kbuilder.severity.duplicateRule"
value="ERROR'"/>

drools.propertySpecific

Sets the property reactivity of the decision engine.
Supported values: DISABLED, ALLOWED, ALWAYS

<property key="drools.propertySpecific"
value="ALLOWED"/>

drools.lang.level

Sets the DRL language level.
Supported values: DRL5, DRL6, DRL6_STRICT (default)

<property key="drools.lang.level"
value="DRL_STRICT"/>

3.1.2. KIE base attributes supported in KIE modules

AKIE base is a repository that you define in the KIE module descriptor file (kmodule.xml) for your
project and contains all rules and other business assets in Red Hat Decision Manager. When you define
KIE bases in the kmodule.xml file, you can specify certain attributes and values to further customize
your KIE base configuration.

Example KIE base configuration in a kmodule.xml file

I <kmodule>

19

Red Hat Decision Manager 7.7 Packaging and deploying a Red Hat Decision Manager project

<kbase name="KBase2" default="false" eventProcessingMode="stream" equalsBehavior="equality"
declarativeAgenda="enabled" packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1"

sequential="false">
</kbase>

</kmodule>

The following are the kbase attributes and values supported in the KIE module descriptor file

(kmodule.xml) for your project:

Table 3.1. KIE base attributes supported in KIE modules

Attribute Supported values

hame Any name

includes Comma-separated list of
other KIE base objects in the
KIE module

packages Comma-separated list of
packages to include in the KIE
base
Default: all

default true, false

Default: false

20

Description

Defines the name that retrieves KieBase
from KieContainer. This attribute is
mandatory.

Defines other KIE base objects and
artifacts to be included in this KIE base. A
KIE base can be contained in multiple KIE
modules if you declare it as a dependency
in the pom.xml file of the modules.

Defines packages of artifacts (such as
rules and processes) to be included in this
KIE base. By default, all artifacts in the
~/resources directory are included into
a KIE base. This attribute enables you to
limit the number of compiled artifacts.
Only the packages belonging to the list
specified in this attribute are compiled.

Determines whether a KIE base is the
default KIE base for a module so that it
can be created from the KIE container
without passing any name. Each module
can have only one default KIE base.

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

Attribute Supported values Description
equalsBehavior identity, equality Defines the behavior of Red Hat Decision
Manager when a new fact is inserted into
Default: identity the working memory. If set to identity, a

new FactHandle is always created
unless the same object is already present
in the working memory. If set to equality,
anew FactHandle is created only if the
newly inserted object is not equal to an
existing fact, according to the equals()
method of the inserted fact. Use
equality mode when you want objects to
be assessed based on feature equality
instead of explicit identity.

eventProcessingMode cloud, stream Determines how events are processed in
the KIE base. If this property is set to
Default: cloud cloud, the KIE base treats events as

normal facts. If this property is set to
stream, temporal reasoning on events is
allowed.

declarativeAgenda disabled, enabled Determines whether the declarative

agenda is enabled or not.
Default: disabled

sequential true, false Determines whether sequential mode is
enabled or not. In sequential mode, the
Default: false decision engine evaluates rules one time

in the order that they are listed in the
decision engine agenda without regard to
changes in the working memory. Enable
this property if you use stateless KIE
sessions and you do not want the
execution of rules to influence
subsequent rules in the agenda.

3.1.3. KIE session attributes supported in KIE modules

A KIE session stores and executes runtime data and is created from a KIE base or directly from a KIE
container if you have defined the KIE session in the KIE module descriptor file (kmodule.xml) for your
project. When you define KIE bases and KIE sessions in the kmodule.xml file, you can specify certain
attributes and values to further customize your KIE session configuration.

Example KIE session configuration in a kmodule.xml file

<kmodule>
<kbase>

<ksession name="KSession2_1" type="stateless" default="true" clockType="realtime">

21

Red Hat Decision Manager 7.7 Packaging and deploying a Red Hat Decision Manager project

</kbase>

</kmodule>

The following are the ksession attributes and values supported in the KIE module descriptor file

(kmodule.xml) for your project:

Table 3.2. KIE session attributes supported in KIE modules

Attribute

name

type

default

clockType

beliefSystem

22

Supported values

Any name

stateful, stateless

Default: stateful

true, false

Default: false

realtime, pseudo

Default: realtime

simple, jtms, defeasible

Default: simple

Description

Defines the name that retrieves
KieSession from KieContainer. This
attribute is mandatory.

Determines whether data is retained
(stateful) or discarded (stateless)
between invocations of the KIE session. A
session set to stateful enables you to
iteratively work with the working memory,
while a session set to stateless is
typically used for one-off execution of
assets. A stateless session stores a
knowledge state that is changed every
time a new fact is added, updated, or
deleted, and every time a rule is executed.
An execution in a stateless session has
no information about previous actions,
such rule executions.

Determines whether a KIE session is the
default session for a module so that it can
be created from the KIE container
without passing any name. Each module
can have only one default KIE session.

Determines whether event time stamps
are assigned by the system clock or by a
pseudo clock controlled by the
application. This clock is especially useful
for unit testing on temporal rules.

Defines the type of belief system used by
the KIE session. A belief system deduces
the truth from knowledge (facts). For
example, if a new fact is inserted based
on another fact which is later removed
from the decision engine, the system can
determine that the newly inserted fact
should be removed as well.

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

3.2. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER
PROJECT IN MAVEN

If you want to deploy a Maven project outside of Business Central to a configured KIE Server, you can
edit the project pom.xml file to package your project as a KJAR file and add a kmodule.xml file with
the KIE base and KIE session configurations for the assets in your project.

Prerequisites

® You have a Maven project that contains Red Hat Decision Manager business assets.

e KIE Server is installed and kie-server user access is configured. For installation options, see
Planning a Red Hat Decision Manager installation .

Procedure

1. In the pom.xml file of your Maven project, set the packaging type to kjar and add the kie-
maven-plugin build component:

<packaging>kjar</packaging>

<build>
<plugins>
<plugin>
<groupld>org.kie</groupld>
<artifactld>kie-maven-plugin</artifactid>
<version>${rhdm.version}</version>
<extensions>true</extensions>
</plugin>
</plugins>
</build>

The kjar packaging type activates the kie-maven-plugin component to validate and pre-
compile artifact resources. The <versions is the Maven artifact version for Red Hat Decision
Manager currently used in your project (for example, 7.33.0.Final-redhat-00002). These
settings are required to properly package the Maven project for deployment.

23

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.7/html-single/planning_a_red_hat_decision_manager_installation

Red Hat Decision Manager 7.7 Packaging and deploying a Red Hat Decision Manager project

24

NOTE

Instead of specifying a Red Hat Decision Manager <versions for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

<dependency>
<groupld>com.redhat.ba</groupld>
<artifactld>ba-platform-bom</artifactid>
<version>7.7.0.redhat-00002</version>
<scope>import</scope>
<type>pom</type>

</dependency>

For more information about the Red Hat Business Automation BOM, see What is
the mapping between Red Hat Decision Manager and the Maven library version?.

. (Optional) If your project contains Decision Model and Notation (DMN) assets, also add the

following dependency in the pom.xml file to enable DMN executable models. DMN executable
models enable DMN decision table logic in DMN projects to be evaluated more efficiently.

<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-dmn-core</artifactld>
<scope>provided</scope>
<version>${rhdm.version}</version>
</dependency>

. In the ~/resources directory of your Maven project, create a META-INF/kmodule.xml

metadata file with at least the following content:

<?xml version="1.0" encoding="UTF-8"?7>
<kmodule xmins="http://www.drools.org/xsd/kmodule">
</kmodule>

This kmodule.xml file is a KIE module descriptor that is required for all Red Hat Decision
Manager projects. You can use the KIE module to define one or more KIE bases and one or more
KIE sessions from each KIE base.

For more information about kmodule.xml configuration, see Section 3.1, “Configuring a KIE
module descriptor file”.

. In the relevant resource in your Maven project, configure a .java class to create a KIE container

and a KIE session to load the KIE base:

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

https://access.redhat.com/solutions/3363991

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

public void testApp() {

// Load the KIE base:

KieServices ks = KieServices.Factory.get();

KieContainer kContainer = ks.getKieClasspathContainer();
KieSession kSession = kContainer.newKieSession();

}

In this example, the KIE container reads the files to be built from the class path for a testApp
project. The KieServices APl enables you to access all KIE building and runtime configurations.

You can also create the KIE container by passing the project Releaseld to the KieServices API.
The Releaseld is generated from the Groupld, Artifactld, and Version (GAV) values in the
project pom.xml file.

import org.kie.api.KieServices;

import org.kie.api.builder.Releaseld;

import org.kie.api.runtime.KieContainer;

import org.kie.api.runtime.KieSession;

import org.drools.compiler.kproject.Releaseldimpl;

public void testApp() {

// Identify the project in the local repository:
Releaseld rid = new Releaseldlmpl("com.sample”, "my-app", "1.0.0");

// Load the KIE base:

KieServices ks = KieServices.Factory.get();
KieContainer kContainer = ks.newKieContainer(rid);
KieSession kSession = kContainer.newKieSession();

. Ina command terminal, navigate to your Maven project directory and run the following
command to build the project:

I mvn clean install
For DMN executable models, run the following command:
I mvn clean install -DgenerateDMNModel=YES

If the build fails, address any problems described in the command line error messages and try
again to validate the files until the build is successful.

25

Red Hat Decision Manager 7.7 Packaging and deploying a Red Hat Decision Manager project

NOTE

If the rule assets in your Maven project are not built from an executable rule
model by default, verify that the following dependency is in the pom.xml file of
your project and rebuild the project:

<dependency>
<groupld>org.drools</groupld>
<artifactld>drools-model-compiler</artifactld>
<version>${rhdm.version}</version>
</dependency>

This dependency is required for rule assets in Red Hat Decision Manager to be
built from executable rule models by default. This dependency is included as part
of the Red Hat Decision Manager core packaging, but depending on your Red
Hat Decision Manager upgrade history, you may need to manually add this
dependency to enable the executable rule model behavior.

For more information about executable rule models, see Section 3.4, "Executable
rule models”.

6. After you successfully build and test the project locally, deploy the project to the remote Maven

repository:

I mvn deploy

3.3. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER
PROJECT IN A JAVA APPLICATION

If you want to deploy a project from within your own Java application to a configured KIE Server, you can
use a KieModuleModel instance to programmatically create a kmodule.xml file that defines the KIE
base and a KIE session, and then add all resources in your project to the KIE virtual file system

KieFileSystem.

Prerequisites

® You have a Java application that contains Red Hat Decision Manager business assets.

e KIE Server is installed and kie-server user access is configured. For installation options, see
Planning a Red Hat Decision Manager installation .

Procedure

1. (Optional) If your project contains Decision Model and Notation (DMN) assets, add the
following dependency to the relevant class path of your Java project to enable DMN executable
models. DMN executable models enable DMN decision table logic in DMN projects to be
evaluated more efficiently.

<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-dmn-core</artifactld>
<scope>provided</scope>
<version>${rhdm.version}</version>
</dependency>

26

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.7/html-single/planning_a_red_hat_decision_manager_installation

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

The <versions is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.33.0.Final-redhat-00002).

NOTE

Instead of specifying a Red Hat Decision Manager <versions for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

<dependency>
<groupld>com.redhat.ba</groupld>
<artifactld>ba-platform-bom</artifactid>
<version>7.7.0.redhat-00002</version>
<scope>import</scope>
<type>pom</type>

</dependency>

For more information about the Red Hat Business Automation BOM, see What is
the mapping between Red Hat Decision Manager and the Maven library version?.

. Use the KieServices API to create a KieModuleModel instance with the desired KIE base and
KIE session. The KieServices API enables you to access all KIE building and runtime
configurations. The KieModuleModel instance generates the kmodule.xml file for your project.
For more information about kmodule.xml configuration, see Section 3.1, “Configuring a KIE
module descriptor file”.

. Convert your KieModuleModel instance into XML and add the XML to KieFileSystem.

Creating kmodule.xml programmatically and adding it to KieFileSystem

import org.kie.api.KieServices;

import org.kie.api.builder.model.KieModuleModel;
import org.kie.api.builder.model.KieBaseModel;
import org.kie.api.builder.model.KieSessionModel;
import org.kie.api.builder.KieFileSystem;

KieServices kieServices = KieServices.Factory.get();
KieModuleModel kieModuleModel = kieServices.newKieModuleModel();

KieBaseModel kieBaseModel1 = kieModuleModel.newKieBaseModel("KBase1")
.setDefault(true)
.setEqualsBehavior(EqualityBehaviorOption.EQUALITY)
.setEventProcessingMode(EventProcessingOption.STREAM);

KieSessionModel ksessionModel1 = kieBaseModel1.newKieSessionModel("KSession1")
.setDefault(true)
.setType(KieSessionModel.KieSessionType.STATEFUL)
.setClockType(ClockTypeOption.get("realtime"));

27

https://access.redhat.com/solutions/3363991

Red Hat Decision Manager 7.7 Packaging and deploying a Red Hat Decision Manager project

KieFileSystem kfs = kieServices.newKieFileSystem();
kfs.writetKModuleXML (kieModuleModel.toXML());

4. Add any remaining Red Hat Decision Manager assets that you use in your project to your
KieFileSystem instance. The artifacts must be in a Maven project file structure.

import org.kie.api.builder.KieFileSystem;

KieFileSystem kfs = ...
kfs.write("src/main/resources/KBase1/ruleSet1.drl", stringContainingAValidDRL)
.write("src/main/resources/dtable.xIs",
kieServices.getResources().newlnputStreamResource(dtableFileStream));

In this example, the project assets are added both as a String variable and as a Resource
instance. You can create the Resource instance using the KieResources factory, also provided
by the KieServices instance. The KieResources class provides factory methods to convert
InputStream, URL, and File objects, or a String representing a path of your file system to a
Resource instance that the KieFileSystem can manage.

You can also explicitly assign a ResourceType property to a Resource object when you add
project artifacts to KieFileSystem:

import org.kie.api.builder.KieFileSystem;

KieFileSystem kfs = ...
kfs.write("src/main/resources/myDrl.txt",
kieServices.getResources().newlnputStreamResource(drlStream)
.setResourceType(ResourceType.DRL));

5. Use KieBuilder with the buildAll() method to build the content of KieFileSystem, and create a
KIE container to deploy it:

import org.kie.api.KieServices;

import org.kie.api.KieServices.Factory;
import org.kie.api.builder.KieFileSystem;
import org.kie.api.builder.KieBuilder;
import org.kie.api.runtime.KieContainer;

KieServices kieServices = KieServices.Factory.get();
KieFileSystem kfs = ...

KieBuilder kieBuilder = ks.newKieBuilder(kfs);
kieBuilder.buildAll()
assertEquals(0, kieBuilder.getResults().getMessages(Message.Level. ERROR).size());

KieContainer kieContainer = kieServices
.newKieContainer(kieServices.getRepository().getDefaultReleaseld());

A build ERROR indicates that the project compilation failed, no KieModule was produced, and
nothing was added to the KieRepository singleton. A WARNING or an INFO result indicates
that the compilation of the project was successful, with information about the build process.

28

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

NOTE

To build the rule assets in your Java application project from an executable rule
model, verify that the following dependency is in the pom.xml file of your
project:

<dependency>
<groupld>org.drools</groupld>
<artifactld>drools-model-compiler</artifactld>
<version>${rhdm.version}</version>
</dependency>

This dependency is required for rule assets in Red Hat Decision Manager to be
built from executable rule models. This dependency is included as part of the Red
Hat Decision Manager core packaging, but depending on your Red Hat Decision
Manager upgrade history, you may need to manually add this dependency to
enable the executable rule model behavior.

After you verify the dependency, use the following modified buildAll() option to
enable the executable model:

I kieBuilder.buildAll(ExecutableModelProject.class)

For more information about executable rule models, see Section 3.4, "Executable
rule models”.

3.4. EXECUTABLE RULE MODELS

Rule assets in Red Hat Decision Manager are built from executable rule models by default with the
standard kie-maven-plugin plugin. Executable rule models are embedded models that provide a Java-
based representation of a rule set for execution at build time. The executable model is a more efficient
alternative to the standard asset packaging in previous versions of Red Hat Decision Manager and
enables KIE containers and KIE bases to be created more quickly, especially when you have large lists of
DRL (Drools Rule Language) files and other Red Hat Decision Manager assets.

If you do not use the kie-maven-plugin plugin or if the required drools-model-compiler dependency is
missing from your project, then rule assets are built without executable models.

Executable rule models provide the following specific advantages for your projects:

® Compile time: Traditionally, a packaged Red Hat Decision Manager project (KJAR) contains a
list of DRL files and other Red Hat Decision Manager artifacts that define the rule base
together with some pre-generated classes implementing the constraints and the consequences.
Those DRL files must be parsed and compiled when the KJAR is downloaded from the Maven
repository and installed in a KIE container. This process can be slow, especially for large rule sets.
With an executable model, you can package within the project KJAR the Java classes that
implement the executable model of the project rule base and re-create the KIE container and
its KIE bases out of it in a much faster way. In Maven projects, you use the kie-maven-plugin
plugin to automatically generate the executable model sources from the DRL files during the
compilation process.

® Run time: In an executable model, all constraints are defined as Java lambda expressions. The
same lambda expressions are also used for constraints evaluation, so you no longer need to use
mvel expressions for interpreted evaluation nor the just-in-time (JIT) process to transform the
mvel-based constraints into bytecode. This creates a quicker and more efficient run time.

29

Red Hat Decision Manager 7.7 Packaging and deploying a Red Hat Decision Manager project

® Development time: An executable model enables you to develop and experiment with new
features of the decision engine without needing to encode elements directly in the DRL format
or modify the DRL parser to support them.

NOTE
For query definitions in executable rule models, you can use up to 10 arguments only.

For variables within rule consequences in executable rule models, you can use up to 24
bound variables only (including the built-in drools variable). For example, the following
rule consequence uses more than 24 bound variables and creates a compilation error:

then

$input.setNo25Count(functions.sumOf(new Object[]{$no1Count_1, $no2Count_1,
$no3Count_1, ..., $no25Count_1}).intValue());

$input.getFirings().add("fired");

update($input);

3.4.1. Modifying or disabling executable rule models in a Red Hat Decision Manager
project

Rule assets in Red Hat Decision Manager are built from executable rule models by default with the
standard kie-maven-plugin plugin. The executable model is a more efficient alternative to the standard
asset packaging in previous versions of Red Hat Decision Manager. However, if needed, you can modify
or disable executable rule models to build a Red Hat Decision Manager project as a DRL-based KJAR
instead of the default model-based KJAR.

Procedure

Build your Red Hat Decision Manager project in the usual way, but provide an alternate build option,
depending on the type of project:

® ForaMaven project, navigate to your Maven project directory in a command terminal and run
the following command:

I mvn clean install -DgenerateModel=<VALUE>

Replace <VALUE> with one of three values:
o YES_WITHDRL: (Default) Generates the executable model corresponding to the DRL files
in the original project and also adds the DRL files to the generated KJAR for documentation

purposes (the KIE base is built from the executable model regardless).

o YES: Generates the executable model corresponding to the DRL files in the original project
and excludes the DRL files from the generated KJAR.

o NO: Does not generate the executable model.

Example build command to disable the default executable model behavior:

I mvn clean install -DgenerateModel=NO

30

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

® ForaJava application configured programmatically, the executable model is disabled by
default. Add rule assets to the KIE virtual file system KieFileSystem and use KieBuilder with
one of the following buildAll() methods:

o buildAll() (Default) or buildAll(DrIProject.class): Does not generate the executable
model.

o buildAll(ExecutableModelProject.class): Generates the executable model corresponding
to the DRL files in the original project.

Example code to enable executable model behavior:

import org.kie.api.KieServices;
import org.kie.api.builder.KieFileSystem;
import org.kie.api.builder.KieBuilder;

KieServices ks = KieServices.Factory.get();

KieFileSystem kfs = ks.newKieFileSystem()

kfs.write("src/main/resources/KBase1/ruleSet1.drl", stringContainingAValidDRL)

.write("src/main/resources/dtable.xIs",
kieServices.getResources().newlnputStreamResource(dtableFileStream));

KieBuilder kieBuilder = ks.newKieBuilder(kfs);

// Enable executable model

kieBuilder.buildAll(ExecutableModelProject.class)

assertEquals(0, kieBuilder.getResults().getMessages(Message.Level. ERROR).size());

3.5. USING A KIE SCANNER TO MONITOR AND UPDATE KIE
CONTAINERS

The KIE scanner in Red Hat Decision Manager monitors your Maven repository for new SNAPSHOT
versions of your Red Hat Decision Manager project and then deploys the latest version of the project to
a specified KIE container. You can use a KIE scanner in a development environment to maintain your Red
Hat Decision Manager project deployments more efficiently as new versions become available.

IMPORTANT

For production environments, do not use a KIE scanner with SNAPSHOT project versions
to avoid accidental or unexpected project updates. The KIE scanner is intended for
development environments that use SNAPSHOT project versions.

Prerequisites

e The kie-ci.jar file is available on the class path of your Red Hat Decision Manager project.

Procedure

1. In the relevant .java class in your project, register and start the KIE scanner as shown in the
following example code:

Registering and starting a KIE scanner for a KIE container

import org.kie.api.KieServices;
import org.kie.api.builder.Releaseld;

31

Red Hat Decision Manager 7.7 Packaging and deploying a Red Hat Decision Manager project

import org.kie.api.runtime.KieContainer;
import org.kie.api.builder.KieScanner;

KieServices kieServices = KieServices.Factory.get();
Releaseld releaseld = kieServices

.newReleaseld("com.sample", "my-app", "1.0-SNAPSHOT");
KieContainer kContainer = kieServices.newKieContainer(releaseld);
KieScanner kScanner = kieServices.newKieScanner(kContainer);

// Start KIE scanner for polling the Maven repository every 10 seconds (10000 ms)
kScanner.start(10000L);

In this example, the KIE scanner is configured to run with a fixed time interval. The minimum KIE
scanner polling interval is 1 millisecond (ms) and the maximum polling interval is the maximum
value of the data type long. A polling interval of O or less results in a
java.lang.lllegalArgumentException: pollinginterval must be positive error. You can also
configure the KIE scanner to run on demand by invoking the scanNow() method.

The project group ID, artifact ID, and version (GAV) settings in the example are defined as
com.sample:my-app:1.0-SNAPSHOT. The project version must contain the -SNAPSHOT
suffix to enable the KIE scanner to retrieve the latest build of the specified artifact version. If
you change the snapshot project version number, such as increasing to 1.0.1-SNAPSHOT, then
you must also update the version in the GAV definition in your KIE scanner configuration. The
KIE scanner does not retrieve updates for projects with static versions, such as
com.sample:my-app:1.0.

2. In the settings.xml file of your Maven repository, set the updatePolicy configuration to always
to enable the KIE scanner to function properly:

<profile>
<id>guvnor-m2-repo</id>
<repositories>
<repository>
<id>guvnor-m2-repo</id>
<name>BA Repository</name>
<url>http://localhost:8080/decision-central/maven2/</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>always</updatePolicy>
</releases>
<snapshots>
<enabled>true</enabled>
<updatePolicy>always</updatePolicy>
</snapshots>
</repository>
</repositories>
</profile>

After the KIE scanner starts polling, if the KIE scanner detects an updated version of the
SNAPSHOT project in the specified KIE container, the KIE scanner automatically downloads the
new project version and triggers an incremental build of the new project. From that moment, all
of the new KieBase and KieSession objects that were created from the KIE container use the
new project version.

32

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL

For information about starting or stopping a KIE scanner using KIE Server APls, see Interacting
with Red Hat Decision Manager using KIE APIs.

3.6. STARTING A SERVICE IN KIE SERVER

If you have deployed Red Hat Decision Manager assets from a Maven or Java project outside of
Business Central, you use a KIE Server REST API call to start the KIE container (deployment unit) and
the services in it. You can use the KIE Server REST API to start services regardless of your deployment
type, including deployment from Business Central, but projects deployed from Business Central either
are started automatically or can be started within the Business Central interface.

Prerequisites

e KIE Server is installed and kie-server user access is configured. For installation options, see
Planning a Red Hat Decision Manager installation .

Procedure

In your command terminal, run the following API request to load a service into a KIE container in the KIE
Server and to start it:

$ curl --user "<username>:<password>" -H "Content-Type: application/json" -X PUT -d '{"container-
id" : "<containerID>","release-id" : {"group-id" : "<grouplD>","artifact-id" : "<artifactID>","version" : "
<version>"}}' http://<serverhost>:<serverport>/kie-
server/services/rest/server/containers/<container|D>

Replace the following values:
® <username>, <password>: The user name and password of a user with the kie-server role.

® <containerID>: The identifier for the KIE container (deployment unit). You can use any random
identifier but it must be the same in both places in the command (the URL and the data).

e <grouplD>, <artifactID>, <version>: The project GAV values.

e <serverhost>: The host name for the KIE Server, or localhost if you are running the command
on the same host as the KIE Server.

® <serverport>: The port number for the KIE Server.

Example:

curl --user "rhdmAdmin:password@1" -H "Content-Type: application/json" -X PUT -d '{"container-id" :
"kie1","release-id" : {"group-id" : "org.kie.server.testing","artifact-id" : "container-crud-tests1","version" :
"2.1.0.GA"}}' http://localhost:39043/kie-server/services/rest/server/containers/kie1

3.7.STOPPING AND REMOVING A SERVICE IN KIE SERVER

If you have started Red Hat Decision Manager services from a Maven or Java project outside of
Business Central, you use a KIE Server REST API call to stop and remove the KIE container (deployment
unit) containing the services. You can use the KIE Server REST API to stop services regardless of your
deployment type, including deployment from Business Central, but services from Business Central can
also be stopped within the Business Central interface.

33

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.7/html-single/interacting_with_red_hat_decision_manager_using_kie_apis#kie-server-commands-con_kie-apis
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.7/html-single/planning_a_red_hat_decision_manager_installation

Red Hat Decision Manager 7.7 Packaging and deploying a Red Hat Decision Manager project

Prerequisites

e KIE Server is installed and kie-server user access is configured. For installation options, see
Planning a Red Hat Decision Manager installation .

Procedure

In your command terminal, run the following API request to stop and remove a KIE container with
services on KIE Server:

$ curl --user "<username>:<password>" -X DELETE http://<serverhost>:<serverport>/kie-
server/services/rest/server/containers/<container|D>

Replace the following values:
® <username>, <password>: The user name and password of a user with the kie-server role.

® <containerID>: The identifier for the KIE container (deployment unit). You can use any random
identifier but it must be the same in both places in the command (the URL and the data).

e <serverhost>: The host name for the KIE Server, or localhost if you are running the command
on the same host as the KIE Server.

® <serverport>: The port number for the KIE Server.

Example:

curl --user "rhdmAdmin:password@1" -X DELETE http://localhost:39043/kie-
server/services/rest/server/containers/kie1

34

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.7/html-single/planning_a_red_hat_decision_manager_installation

CHAPTER 4. ADDITIONAL RESOURCES

CHAPTER 4. ADDITIONAL RESOURCES

"Executing rules” in Designing a decision service using DRL rules
Interacting with Red Hat Decision Manager using KIE APIs

Deploying a Red Hat Decision Manager immutable server environment on Red Hat OpenShift
Container Platform

Deploying a Red Hat Decision Manager authoring or managed server environment on Red Hat
OpenShift Container Platform

Deploying a Red Hat Decision Manager environment on Red Hat OpenShift Container Platform
using Operators

Deploying a Red Hat Decision Manager trial environment on Red Hat OpenShift Container
Platform

35

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.7/html-single/designing_a_decision_service_using_drl_rules#assets-executing-proc_drl-rules
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.7/html-single/interacting_with_red_hat_decision_manager_using_kie_apis
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.7/html-single/deploying_a_red_hat_decision_manager_immutable_server_environment_on_red_hat_openshift_container_platform
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.7/html-single/deploying_a_red_hat_decision_manager_authoring_or_managed_server_environment_on_red_hat_openshift_container_platform
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.7/html-single/deploying_a_red_hat_decision_manager_environment_on_red_hat_openshift_container_platform_using_operators
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.7/html-single/deploying_a_red_hat_decision_manager_trial_environment_on_red_hat_openshift_container_platform

Red Hat Decision Manager 7.7 Packaging and deploying a Red Hat Decision Manager project

APPENDIX A. VERSIONING INFORMATION

Documentation last updated on Thursday, April 23, 2020.

36

	Table of Contents
	PREFACE
	CHAPTER 1. RED HAT DECISION MANAGER PROJECT PACKAGING
	CHAPTER 2. PROJECT DEPLOYMENT IN BUSINESS CENTRAL
	2.1. CONFIGURING A KIE SERVER TO CONNECT TO BUSINESS CENTRAL
	2.2. CONFIGURING THE ENVIRONMENT MODE IN KIE SERVER AND BUSINESS CENTRAL
	2.3. CONFIGURING AN EXTERNAL MAVEN REPOSITORY FOR BUSINESS CENTRAL AND KIE SERVER
	2.4. EXPORTING A BUSINESS CENTRAL PROJECT TO AN EXTERNAL MAVEN REPOSITORY
	2.5. BUILDING AND DEPLOYING A PROJECT IN BUSINESS CENTRAL
	2.6. DEPLOYMENT UNITS IN BUSINESS CENTRAL
	2.6.1. Creating a deployment unit in Business Central
	2.6.2. Starting, stopping, and removing deployment units in Business Central
	2.6.3. KIE container aliases

	2.7. EDITING THE GAV VALUES FOR A PROJECT IN BUSINESS CENTRAL
	2.8. DUPLICATE GAV DETECTION IN BUSINESS CENTRAL
	2.8.1. Managing duplicate GAV detection settings in Business Central

	CHAPTER 3. PROJECT DEPLOYMENT WITHOUT BUSINESS CENTRAL
	3.1. CONFIGURING A KIE MODULE DESCRIPTOR FILE
	3.1.1. KIE module configuration properties
	3.1.2. KIE base attributes supported in KIE modules
	3.1.3. KIE session attributes supported in KIE modules

	3.2. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER PROJECT IN MAVEN
	3.3. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER PROJECT IN A JAVA APPLICATION
	3.4. EXECUTABLE RULE MODELS
	3.4.1. Modifying or disabling executable rule models in a Red Hat Decision Manager project

	3.5. USING A KIE SCANNER TO MONITOR AND UPDATE KIE CONTAINERS
	3.6. STARTING A SERVICE IN KIE SERVER
	3.7. STOPPING AND REMOVING A SERVICE IN KIE SERVER

	CHAPTER 4. ADDITIONAL RESOURCES
	APPENDIX A. VERSIONING INFORMATION

