& RedHat

Red Hat Data Grid 8.4

Using Data Grid with Spring

Add Data Grid to Spring applications

Last Updated: 2024-03-26

Red Hat Data Grid 8.4 Using Data Grid with Spring

Add Data Grid to Spring applications

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Add Data Grid caching capabilities to Spring-based applications.

Table of Contents
REDHATDATAGRID ointiniintiei et
DATA GRID DOCUMENTATION oviueiniiniieiianeeniennnn,
DATA GRID DOWNLOADS \vivttieineineeeaeaeeeaeanenn,
MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. USING DATA GRID AS A SPRING CACHE PROVIDER .
11.SETTING UP SPRING CACHING WITH DATA GRID
Spring Cache dependencies
1.2. USING DATA GRID AS A SPRING CACHE PROVIDER
1.3. SPRING CACHE ANNOTATIONS
@Cacheable
@CachekEvict
1.4. CONFIGURING TIMEOUTS FOR CACHE OPERATIONS

CHAPTER 2. EXTERNALIZING SESSIONS WITH SPRING SESSION
2.1. EXTERNALIZING SESSIONS WITH SPRING SESSION

Table of Contents

Red Hat Data Grid 8.4 Using Data Grid with Spring

RED HAT DATA GRID

RED HAT DATA GRID

Data Grid is a high-performance, distributed in-memory data store.

Schemaless data structure
Flexibility to store different objects as key-value pairs.
Grid-based data storage
Designed to distribute and replicate data across clusters.
Elastic scaling
Dynamically adjust the number of nodes to meet demand without service disruption.
Data interoperability

Store, retrieve, and query data in the grid from different endpoints.

Red Hat Data Grid 8.4 Using Data Grid with Spring

DATA GRID DOCUMENTATION

Documentation for Data Grid is available on the Red Hat customer portal.

Data Grid 8.4 Documentation

Data Grid 8.4 Component Details
Supported Configurations for Data Grid 8.4
Data Grid 8 Feature Support

Data Grid Deprecated Features and Functionality

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4
https://access.redhat.com/articles/4933371
https://access.redhat.com/articles/4933551
https://access.redhat.com/articles/5637681
https://access.redhat.com/articles/5643591

DATA GRID DOWNLOADS
DATA GRID DOWNLOADS
Access the Data Grid Software Downloads on the Red Hat customer portal.

NOTE

You must have a Red Hat account to access and download Data Grid software.

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=data.grid&downloadType=distributions

Red Hat Data Grid 8.4 Using Data Grid with Spring

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. USING DATA GRID AS A SPRING CACHE PROVIDEF

CHAPTER 1. USING DATA GRID AS A SPRING CACHE
PROVIDER

Add Data Grid dependencies to your application and use Spring Cache annotations to store data in
embedded or remote caches.

1.1. SETTING UP SPRING CACHING WITH DATA GRID

Add the Data Grid dependencies to your Spring application project. If you use remote caches in a Data
Grid Server deployment, you should also configure your Hot Rod client properties.

IMPORTANT

Data Grid supports Spring version 5 and version 6. Be aware that Spring 6 requires Java
17.

The examples in this document include artifacts for the latest version of Spring. If you
want to use Spring 5 use:

® Remote caches: infinispan-spring5-remote

® Embedded caches: infinispan-spring5-embedded

Procedure
1. Add Data Grid and the Spring integration module to your pom.xml.

® Remote caches: infinispan-spring6-remote

® Embedded caches: infinispan-spring6-embedded

TIP

Spring Boot users can add the following artifacts instead of the infinispan-spring6-
embedded:

o For Spring Boot 3 add infinispan-spring-boot3-starter-embedded

o For Spring Boot 2.x add infinispan-spring-boot-starter-embedded

2. Configure your Hot Rod client to connect to your Data Grid Server deployment in the hotrod-
client.properties file.

infinispan.client.hotrod.server_list = 127.0.0.1:11222
infinispan.client.hotrod.auth_username=admin
infinispan.client.hotrod.auth_password=changeme

Spring Cache dependencies
Remote caches

<dependencies>
<dependency>

Red Hat Data Grid 8.4 Using Data Grid with Spring

<groupld>org.infinispan</groupld>
<artifactld>infinispan-spring6-remote</artifactld>

</dependency>

<dependency>
<groupld>org.springframework</groupld>
<artifactld>spring-context</artifactld>
<version>${version.spring}</version>

</dependency>

</dependencies>

Embedded caches

<dependencies>
<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-spring6-embedded</artifactld>
</dependency>
<dependency>
<groupld>org.springframework</groupld>
<artifactld>spring-context</artifactld>
<version>${version.spring}</version>
</dependency>
</dependencies>

Additional resources

® Configuring Hot Rod Client connections

1.2. USING DATA GRID AS A SPRING CACHE PROVIDER

Add the @EnableCaching annotation to one of your configuration classes and then add the
@Cacheable and @CacheEvict annotations to use remote or embedded caches.

Prerequisites

® Add the Data Grid dependencies to your application project.

® Create the required remote caches and configure Hot Rod client properties if you use a Data
Grid Server deployment.

Procedure

1. Enable cache annotations in your application context in one of the following ways:
Declarative

<beans xmlns="http://www.springframework.org/schema/beans"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlins:cache="http://www.springframework.org/schema/cache"
xmins:p="http://www.springframework.org/schema/p"
xsi:schemal.ocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/hot_rod_java_client_guide/#configuring-hotrod-java-clients_hotrod-client-configuration

CHAPTER 1. USING DATA GRID AS A SPRING CACHE PROVIDEF

http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache/spring-cache.xsd">

<cache:annotation-driven />

</beans>

Programmatic

@EnableCaching @Configuration
public class Config {

}

2. Annotate methods with @Cacheable to cache return values.

TIP

To reference entries in the cache directly, you must include the key attribute.

3. Annotate methods with @CacheEvict to remove old entries from the cache.

Additional resources

® Spring Framework - Default Key Generation

1.3. SPRING CACHE ANNOTATIONS

The @Cacheable and @CacheEvict annotations add cache capabilities to methods.

@Cacheable
Stores return values in a cache.
@CacheEvict

Controls cache size by removing old entries.

@Cacheable

Taking Book objects as an example, if you want to cache each instance after loading it from a database
with a method such as BookDao#findBook(Integer bookld), you could add the @Cacheable
annotation as follows:

@Transactional
@Cacheable(value = "books", key = "#bookld")
public Book findBook(Integer bookld) {...}

With the preceding example, when findBook(Integer bookld) returns a Book instance it gets stored in
the cache named books.

@CacheEvict
With the @CacheEvict annotation, you can specify if you want to evict the entire books cache or only
the entries that match a specific #bookld.

Entire cache eviction

https://docs.spring.io/spring-framework/docs/current/reference/html/integration.html#cache-annotations-cacheable-default-key

Red Hat Data Grid 8.4 Using Data Grid with Spring

Annotate the deleteAliIBookEntries() method with @CacheEvict and add the allEntries parameter as
follows:

@Transactional
@CacheEvict (value="books", key = "#bookld", allEntries = true)
public void deleteAllBookEntries() {...}

Entry based eviction

Annotate the deleteBook(Integer bookld) method with @CacheEvict and specify the key associated
to the entry as follows:

@Transactional
@CachekEvict (value="books", key = "#bookld")
public void deleteBook(Integer bookld) {...}

1.4. CONFIGURING TIMEOUTS FOR CACHE OPERATIONS

The Data Grid Spring Cache provider defaults to blocking behaviour when performing read and write
operations. Cache operations are synchronous and do not time out.

If necessary you can configure a maximum time to wait for operations to complete before they time out.

Procedure

® Configure the following timeout properties in the context XML for your application on either
SpringEmbeddedCacheManagerFactoryBean or
SpringRemoteCacheManagerFactoryBean.
For remote caches, you can also add these properties to the hotrod-client.properties file.

Property Description

infinispan.spring.operation.read.timeout Specifies the time, in milliseconds, to wait for read
operations to complete. The default is 0 which
means unlimited wait time.

infinispan.spring.operation.write.timeout Specifies the time, in milliseconds, to wait for write
operations to complete. The default is 0 which
means unlimited wait time.

The following example shows the timeout properties in the context XML for
SpringRemoteCacheManagerFactoryBean:

<bean id="springRemoteCacheManagerConfiguredUsingConfigurationProperties"
class="org.infinispan.spring.remote.provider.SpringRemoteCacheManagerFactoryBean">
<property name="configurationProperties">
<props>
<prop key="infinispan.spring.operation.read.timeout">500</prop>
<prop key="infinispan.spring.operation.write.timeout">700</prop>
</props>
</property>
</bean>

10

CHAPTER 2. EXTERNALIZING SESSIONS WITH SPRING SESSION

CHAPTER 2. EXTERNALIZING SESSIONS WITH SPRING
SESSION

Store session data for Spring applications in Data Grid caches and independently of the container.

2.1. EXTERNALIZING SESSIONS WITH SPRING SESSION

Use the Spring Session API to externalize session data to Data Grid.

Procedure
1. Add dependencies to your pom.xml.

® Embedded caches: infinispan-spring6-embedded

® Remote caches: infinispan-spring6-remote
The following example is for remote caches:

<dependencies>
<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-core</artifactld>
</dependency>
<dependency>
<groupld>org.infinispan</groupld>
<artifactld>infinispan-spring6-remote</artifactld>
</dependency>
<dependency>
<groupld>org.springframework</groupld>
<artifactld>spring-context</artifactld>
<version>${version.spring}</version>
</dependency>
<dependency>
<groupld>org.springframework.session</groupld>
<artifactld>spring-session-core</artifactld>
<version>${version.spring}</version>
</dependency>
<dependency>
<groupld>org.springframework</groupld>
<artifactld>spring-web</artifactld>
<version>${version.spring}</version>
</dependency>
</dependencies>

2. Specify the appropriate FactoryBean to expose a CacheManager instance.

® Embedded caches: SpringEmbeddedCacheManagerFactoryBean
® Remote caches: SpringRemoteCacheManagerFactoryBean

3. Enable Spring Session with the appropriate annotation.

® Embedded caches: @EnablelnfinispanEmbeddedHttpSession

® Remote caches: @EnablelnfinispanRemoteHttpSession

1

Red Hat Data Grid 8.4 Using Data Grid with Spring

These annotations have optional parameters:

o maxlnactivelntervallnSeconds sets session expiration time in seconds. The default is
1800.

o cacheName specifies the name of the cache that stores sessions. The default is
sessions.

The following example shows a complete, annotation-based configuration:

@EnablelnfinispanEmbeddedHttpSession
@Configuration
public class Config {

@Bean
public SpringEmbeddedCacheManagerFactoryBean springCacheManager() {
return new SpringEmbeddedCacheManagerFactoryBean();

}

//An optional configuration bean responsible for replacing the default
//cookie that obtains configuration.
//For more information refer to the Spring Session documentation.
@Bean
public HitpSessionldResolver httpSessionldResolver() {

return HeaderHttpSessionldResolver.xAuthToken();

}
}

12

	Table of Contents
	RED HAT DATA GRID
	DATA GRID DOCUMENTATION
	DATA GRID DOWNLOADS
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. USING DATA GRID AS A SPRING CACHE PROVIDER
	1.1. SETTING UP SPRING CACHING WITH DATA GRID
	Spring Cache dependencies

	1.2. USING DATA GRID AS A SPRING CACHE PROVIDER
	1.3. SPRING CACHE ANNOTATIONS
	@Cacheable
	@CacheEvict

	1.4. CONFIGURING TIMEOUTS FOR CACHE OPERATIONS

	CHAPTER 2. EXTERNALIZING SESSIONS WITH SPRING SESSION
	2.1. EXTERNALIZING SESSIONS WITH SPRING SESSION

