Data Grid Server Guide

Red Hat Data Grid 8.0

Data Grid Documentation

Red Hat Customer Content Services

Abstract

Configure, run, and monitor Data Grid servers and access your data from remote client applications.

Chapter 1. Red Hat Data Grid

Data Grid is a high-performance, distributed in-memory data store.

Schemaless data structure
Flexibility to store different objects as key-value pairs.
Grid-based data storage
Designed to distribute and replicate data across clusters.
Elastic scaling
Dynamically adjust the number of nodes to meet demand without service disruption.
Data interoperability
Store, retrieve, and query data in the grid from different endpoints.

1.1. Data Grid Documentation

Documentation for Data Grid is available on the Red Hat customer portal.

1.2. Data Grid Downloads

Access the Data Grid Software Downloads on the Red Hat customer portal.

Note

You must have a Red Hat account to access and download Data Grid software.

Chapter 2. Getting Started with Data Grid Server

Quickly set up Data Grid server and learn the basics.

2.1. Data Grid Server Requirements

Check host system requirements for the Data Grid server.

See the Red Hat Data Grid Supported Configurations.

2.2. Downloading Server Distributions

The Data Grid server distribution is an archive of Java libraries (JAR files), configuration files, and a data directory.

Procedure

  1. Access the Red Hat customer portal.
  2. Download the Red Hat Data Grid 8.0 server from the software downloads section.

Verification

Use the checksum to verify the integrity of your download.

  1. Run the md5sum or sha256sum command with the server download archive as the argument, for example:

    $ sha256sum jboss-datagrid-${version}-server.zip
  2. Compare with the MD5 or SHA-256 checksum value on the Data Grid Software Details page.

Reference

Data Grid Server README describes the contents of the server distribution.

2.3. Installing Data Grid Server

Extract the Data Grid server archive to any directory on your host.

Procedure

Use any extraction tool with the server archive, for example:

$ unzip infinispan-server-${version}.zip

The resulting directory is your $RHDG_HOME.

2.4. Running Data Grid Servers

Spin up Data Grid server instances that automatically form clusters. Learn how to create cache definitions to store your data.

2.4.1. Starting Data Grid Servers

Launch Data Grid server with the startup script.

Procedure

  1. Open a terminal in $RHDG_HOME.
  2. Run the server script.

    Linux
    $ bin/server.sh
    Microsoft Windows
    bin\server.bat

    Server logs display the following messages:

    ISPN080004: Protocol SINGLE_PORT listening on 127.0.0.1:11222
    
    ISPN080001: Data Grid Server <$version> started in <mm>ms

Hello Data Grid!

  • Open 127.0.0.1:11222 in any browser to access the Data Grid console.

Reference

Data Grid Server README describes command line arguments for the server script.

2.4.2. Verifying Data Grid Cluster Discovery

By default Data Grid servers running on the same network discover each other with the MPING protocol.

This procedure shows you how to start two Data Grid servers on the same host and verify that the cluster view.

Prerequisites

Start a Data Grid server instance on your host.

Procedure

  1. Install and run a new Data Grid server instance.

    1. Open a terminal in $RHDG_HOME.
    2. Copy the root directory to server2.

      $ cp -r server server2
  2. Specify a port offset and the location of the server2 root directory.

    $ bin/server.sh -o 100 -s server2

Verification

Check the server logs for the following messages:

INFO  [org.infinispan.CLUSTER] (jgroups-11,<server_hostname>)
ISPN000094: Received new cluster view for channel cluster:
[<server_hostname>|3] (2) [<server_hostname>, <server2_hostname>]

INFO  [org.infinispan.CLUSTER] (jgroups-11,<server_hostname>)
ISPN100000: Node <server2_hostname> joined the cluster

2.5. Performing Operations with the Data Grid CLI

Connect to servers with the Data Grid command line interface (CLI) to access data and perform administrative functions.

2.5.1. Starting the Data Grid CLI

Start the Data Grid CLI as follows:

  1. Open a terminal in $ISPN_HOME.
  2. Run the CLI.

    $ bin/cli.sh
    [disconnected]>

2.5.2. Connecting to Data Grid Servers

Do one of the following:

  • Run the connect command to connect to a Data Grid server on the default port of 11222:

    [disconnected]> connect
    [hostname1@cluster//containers/default]>
  • Specify the location of a Data Grid server. For example, connect to a local server that has a port offset of 100:

    [disconnected]> connect 127.0.0.1:11322
    [hostname2@cluster//containers/default]>
Tip

Press the tab key to display available commands and options. Use the -h option to display help text.

2.5.3. Creating Caches from Templates

Use Data Grid cache templates to add caches with recommended default settings.

Procedure

  1. Create a distributed, synchronous cache from a template and name it "mycache".

    [//containers/default]> create cache --template=org.infinispan.DIST_SYNC mycache
    Tip

    Press the tab key after the --template= argument to list available cache templates.

  2. Retrieve the cache configuration.

    [//containers/default]> describe caches/mycache
    {
      "distributed-cache" : {
        "mode" : "SYNC",
        "remote-timeout" : 17500,
        "state-transfer" : {
          "timeout" : 60000
        },
        "transaction" : {
          "mode" : "NONE"
        },
        "locking" : {
          "concurrency-level" : 1000,
          "acquire-timeout" : 15000,
          "striping" : false
        },
        "statistics" : true
      }
    }

2.5.4. Adding Cache Entries

Add data to caches with the Data Grid CLI.

Prerequisites

  • Create a cache named "mycache" and cd into it.

    [//containers/default]> cd caches/mycache

Procedure

  1. Put an entry into "mycache".

    [//containers/default/caches/mycache]> put hello world
    Tip

    If not in the context of a cache, use the --cache= parameter. For example:

    [//containers/default]> put --cache=mycache hello world
  2. Get the entry to verify it.

    [//containers/default/caches/mycache]> get hello
    world

2.5.5. Shutting Down Data Grid Servers

Use the CLI to gracefully shutdown running servers. This ensures that Data Grid passivates all entries to disk and persists state.

  • Use the shutdown server command to stop individual servers.

    [//containers/default]> shutdown server $hostname
  • Use the shutdown cluster command to stop all servers joined to the cluster.

    [//containers/default]> shutdown cluster

Verification

Check the server logs for the following messages:

ISPN080002: Data Grid Server stopping
ISPN000080: Disconnecting JGroups channel cluster
ISPN000390: Persisted state, version=<$version> timestamp=YYYY-MM-DDTHH:MM:SS
ISPN080003: Data Grid Server stopped

Chapter 3. Configuring Data Grid Server Networking

Data Grid servers let you configure interfaces and ports to make endpoints available across your network.

By default, Data Grid servers multiplex endpoints to a single TCP/IP port and automatically detect protocols of inbound client requests.

3.1. Server Interfaces

Data Grid servers can use different strategies for binding to IP addresses.

3.1.1. Address Strategy

Uses an inet-address strategy that maps a single public interface to the IPv4 loopback address (127.0.0.1).

<interfaces>
  <interface name="public">
    <inet-address value="${infinispan.bind.address:127.0.0.1}"/>
  </interface>
</interfaces>
Tip

You can use the CLI -b argument or the infinispan.bind.address property to select a specific address from the command-line. See Changing the Default Bind Address.

3.1.2. Loopback Strategy

Selects a loopback address.

  • IPv4 the address block 127.0.0.0/8 is reserved for loopback addresses.
  • IPv6 the address block ::1 is the only loopback address.
<interfaces>
    <interface name="public">
        <loopback/>
    </interface>
</interfaces>

3.1.3. Non-Loopback Strategy

Selects a non-loopback address.

<interfaces>
    <interface name="public">
        <non-loopback/>
    </interface>
</interfaces>

3.1.4. Network Address Strategy

Selects networks based on IP address.

<interfaces>
    <interface name="public">
        <inet-address value="10.1.2.3"/>
    </interface>
</interfaces>

3.1.5. Any Address Strategy

Selects the INADDR_ANY wildcard address. As a result Data Grid servers listen on all interfaces.

<interfaces>
    <interface name="public">
        <any-address/>
    </interface>
</interfaces>

3.1.7. Site Local Strategy

Selects a site-local (private) IP address.

  • IPv4 the address blocks 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16 are reserved for site-local addressing.
  • IPv6 the address block fc00::/7 is reserved for site-local unicast addressing.
<interfaces>
    <interface name="public">
        <inet-address value="10.1.2.3"/>
    </interface>
</interfaces>

3.1.8. Match Host Strategy

Resolves the host name and selects one of the IP addresses that is assigned to any network interface.

Data Grid servers enumerate all available operating system interfaces to locate IP addresses resolved from the host name in your configuration.

<interfaces>
    <interface name="public">
        <match-host value="my_host_name"/>
    </interface>
</interfaces>

3.1.9. Match Interface Strategy

Selects an IP address assigned to a network interface that matches a regular expression.

Data Grid servers enumerate all available operating system interfaces to locate the interface name in your configuration.

Tip

Use regular expressions with this strategy for additional flexibility.

<interfaces>
    <interface name="public">
        <match-interface value="eth0"/>
    </interface>
</interfaces>

3.1.10. Match Address Strategy

Similar to inet-address but selects an IP address using a regular expression.

Data Grid servers enumerate all available operating system interfaces to locate the IP address in your configuration.

Tip

Use regular expressions with this strategy for additional flexibility.

<interfaces>
    <interface name="public">
        <match-address value="132\..*"/>
    </interface>
</interfaces>

3.1.11. Fallback Strategy

Interface configurations can include multiple strategies. Data Grid servers try each strategy in the declared order.

For example, with the following configuration, Data Grid servers first attempt to match a host, then an IP address, and then fall back to the INADDR_ANY wildcard address:

<interfaces>
    <interface name="public">
        <match-host value="my_host_name"/>
        <match-address value="132\..*"/>
        <any-address/>
    </interface>
</interfaces>

3.1.12. Changing the Default Bind Address for Data Grid Servers

You can use the server -b switch or the infinispan.bind.address system property to bind to a different address.

For example, bind the public interface to 127.0.0.2 as follows:

Linux
$ bin/server.sh -b 127.0.0.2
Windows
bin\server.bat -b 127.0.0.2

3.2. Socket Bindings

Socket bindings map endpoint connectors to server interfaces and ports.

By default, Data Grid servers provide the following socket bindings:

<socket-bindings default-interface="public" port-offset="${infinispan.socket.binding.port-offset:0}">
    <socket-binding name="default" port="${infinispan.bind.port:11222}"/>
    <socket-binding name="memcached" port="11221"/>
</socket-bindings>
  • socket-bindings declares the default interface and port offset.
  • default binds to hotrod and rest connectors to the default port 11222.
  • memcached binds the memcached connector to port 11221.

    Note

    The memcached endpoint is disabled by default.

To override the default interface for socket-binding declarations, specify the interface attribute.

For example, you add an interface declaration named "private":

<interfaces>
  ...
  <interface name="private">
    <inet-address value="10.1.2.3"/>
  </interface>
</interfaces>

You can then specify interface="private" in a socket-binding declaration to bind to the private IP address, as follows:

<socket-bindings default-interface="public" port-offset="${infinispan.socket.binding.port-offset:0}">
  ...
  <socket-binding name="private_binding" interface="private" port="1234"/>
</socket-bindings>

3.2.1. Specifying Port Offsets

Configure port offsets with Data Grid servers when running multiple instances on the same host. The default port offset is 0.

Use the -o switch with the Data Grid CLI or the infinispan.socket.binding.port-offset system property to set port offsets.

For example, start a server instance with an offset of 100 as follows. With the default configuration, this results in the Data Grid server listening on port 11322.

Linux
$ bin/server.sh -o 100
Windows
bin\server.bat -o 100

3.3. Data Grid Protocol Handling

Data Grid servers use a router connector to expose multiple protocols over the same TCP port, 11222. Using a single port for multiple protocols simplifies configuration and management and increases security by reducing the attack surface for unauthorized users.

Data Grid servers handle HTTP/1.1, HTTP/2, and Hot Rod protocol requests via port 11222 as follows:

HTTP/1.1 upgrade headers
Client requests can include the HTTP/1.1 upgrade header field to initiate HTTP/1.1 connections with Data Grid servers. Client applications can then send the Upgrade: protocol header field, where protocol is a Data Grid server endpoint.
Application-Layer Protocol Negotiation (ALPN)/Transport Layer Security (TLS)
Client applications specify Server Name Indication (SNI) mappings for Data Grid server endpoints to negotiate protocols in a secure manner.
Automatic Hot Rod detection
Client requests that include Hot Rod headers automatically route to Hot Rod endpoints if the single port router configuration includes Hot Rod.

3.3.1. Configuring Clients for ALPN

Configure clients to provide ALPN messages for protocol negotiation during TLS handshakes with Data Grid servers.

Prerequisites

  • Enable Data Grid server endpoints with encryption.

Procedure

  1. Provide your client application with the appropriate libraries to handle ALPN/TLS exchanges with Data Grid servers.

    Note

    Data Grid uses Wildfly OpenSSL bindings for Java.

  2. Configure clients with trust stores as appropriate.

Programmatically

ConfigurationBuilder builder = new ConfigurationBuilder()
      .addServers("127.0.0.1:11222");

builder.security().ssl().enable()
      .trustStoreFileName("truststore.pkcs12")
      .trustStorePassword(DEFAULT_TRUSTSTORE_PASSWORD.toCharArray());

RemoteCacheManager remoteCacheManager = new RemoteCacheManager(builder.build());
RemoteCache<String, String> cache = remoteCacheManager.getCache("default"");

Hot Rod client properties

infinispan.client.hotrod.server_list = 127.0.0.1:11222
infinispan.client.hotrod.use_ssl = true
infinispan.client.hotrod.trust_store_file_name = truststore.pkcs12
infinispan.client.hotrod.trust_store_password = trust_store_password

Chapter 4. Configuring Data Grid Server Endpoints

Data Grid servers provide listener endpoints that handle requests from remote client applications.

4.1. Data Grid Endpoints

Data Grid endpoints expose the CacheManager interface over different connector protocols so you can remotely access data and perform operations to manage and maintain Data Grid clusters.

You can define multiple endpoint connectors on different socket bindings.

4.1.1. Hot Rod

Hot Rod is a binary TCP client-server protocol designed to provide faster data access and improved performance in comparison to text-based protocols.

Data Grid provides Hot Rod client libraries in Java, C++, C#, Node.js and other programming languages.

Topology state transfer

Data Grid uses topology caches to provide clients with cluster views. Topology caches contain entries that map internal JGroups transport addresses to exposed Hot Rod endpoints.

When client send requests, Data Grid servers compare the topology ID in request headers with the topology ID from the cache. Data Grid servers send new topology views if client have older topology IDs.

Cluster topology views allow Hot Rod clients to immediately detect when nodes join and leave, which enables dynamic load balancing and failover.

In distributed cache modes, the consistent hashing algorithm also makes it possible to route Hot Rod client requests directly to primary owners.

4.1.2. REST

Reference

Data Grid exposes a RESTful interface that allows HTTP clients to access data, monitor and maintain clusters, and perform administrative operations.

You can use standard HTTP load balancers to provide clients with load balancing and failover capabilities. However, HTTP load balancers maintain static cluster views and require manual updates when cluster topology changes occur.

4.1.3. Protocol Comparison

Table 4.1. Reference

 Hot RodHTTP / REST

Topology-aware

Y

N

Hash-aware

Y

N

Encryption

Y

Y

Authentication

Y

Y

Conditional ops

Y

Y

Bulk ops

Y

N

Transactions

Y

N

Listeners

Y

N

Query

Y

Y

Execution

Y

N

Cross-site failover

Y

N

4.2. Endpoint Connectors

You configure Data Grid server endpoints with connector declarations that specify socket bindings, authentication mechanisms, and encryption configuration.

The default endpoint connector configuration is as follows:

<endpoints socket-binding="default">
   <hotrod-connector name="hotrod"/>
   <rest-connector name="rest"/>
   <memcached-connector socket-binding="memcached"/>
</endpoints>
  • endpoints contains endpoint connector declarations and defines global configuration for endpoints such as default socket bindings, security realms, and whether clients must present valid TLS certificates.
  • <hotrod-connector name="hotrod"/> declares a Hot Rod connector.
  • <rest-connector name="rest"/> declares a Hot Rod connector.
  • <memcached-connector socket-binding="memcached"/> declares a Memcached connector that uses the memcached socket binding.

Reference

urn:infinispan:server schema provides all available endpoint configuration.

4.2.1. Hot Rod Connectors

Hot Rod connector declarations enable Hot Rod servers.

<hotrod-connector name="hotrod">
  <topology-state-transfer />
  <authentication>
    ...
  </authentication>
  <encryption>
    ...
  </encryption>
</hotrod-connector>
  • name="hotrod" logically names the Hot Rod connector.
  • topology-state-transfer tunes the state transfer operations that provide Hot Rod clients with cluster topology.
  • authentication configures SASL authentication mechanisms.
  • encryption configures TLS settings for client connections.

Reference

urn:infinispan:server schema provides all available Hot Rod connector configuration.

4.2.2. REST Connectors

REST connector declarations enable REST servers.

<rest-connector name="rest">
  <authentication>
    ...
  </authentication>
  <cors-rules>
    ...
  </cors-rules>
  <encryption>
    ...
  </encryption>
</rest-connector>
  • name="rest" logically names the REST connector.
  • authentication configures authentication mechanisms.
  • cors-rules specifies CORS (Cross Origin Resource Sharing) rules for cross-domain requests.
  • encryption configures TLS settings for client connections.

Reference

urn:infinispan:server schema provides all available REST connector configuration.

Chapter 5. Monitoring Data Grid Servers

5.1. Working with Data Grid Server Logs

Data Grid uses Apache Log4j 2 to provide configurable logging mechanisms that capture details about the environment and record cache operations for troubleshooting purposes and root cause analysis.

5.1.1. Data Grid Log Files

Data Grid writes log messages to the following directory:
$RHDG_HOME/${infinispan.server.root}/log

server.log
Messages in human readable format, including boot logs that relate to the server startup.
Data Grid creates this file by default when you launch servers.
server.log.json
Messages in JSON format that let you parse and analyze Data Grid logs.
Data Grid creates this file when you enable the JSON-FILE appender.

5.1.2. Configuring Data Grid Log Properties

You configure Data Grid logs with log4j2.xml, which is described in the Log4j 2 manual.

Procedure

  1. Open $RHDG_HOME/${infinispan.server.root}/conf/log4j2.xml with any text editor.
  2. Change logging configuration as appropriate.
  3. Save and close log4j2.xml.

5.1.2.1. Log Levels

Log levels indicate the nature and severity of messages.

Log levelDescription

TRACE

Fine-grained debug messages, capturing the flow of individual requests through the application.

DEBUG

Messages for general debugging, not related to an individual request.

INFO

Messages about the overall progress of applications, including lifecycle events.

WARN

Events that can lead to error or degrade performance.

ERROR

Error conditions that might prevent operations or activites from being successful but do not prevent applications from running.

FATAL

Events that could cause critical service failure and application shutdown.

In addition to the levels of individual messages presented above, the configuration allows two more values: ALL to include all messages, and OFF to exclude all messages.

5.1.2.2. Data Grid Log Categories

Data Grid provides categories for INFO, WARN, ERROR, FATAL level messages that organize logs by functional area.

org.infinispan.CLUSTER
Messages specific to Data Grid clustering that include state transfer operations, rebalancing events, partitioning, and so on.
org.infinispan.CONFIG
Messages specific to Data Grid configuration.
org.infinispan.CONTAINER
Messages specific to the data container that include expiration and eviction operations, cache listener notifications, transactions, and so on.
org.infinispan.PERSISTENCE
Messages specific to cache loaders and stores.
org.infinispan.SECURITY
Messages specific to Data Grid security.
org.infinispan.SERVER
Messages specific to Data Grid servers.
org.infinispan.XSITE
Messages specific to cross-site replication operations.

5.1.2.3. Log Appenders

Log appenders define how Data Grid records log messages.

CONSOLE
Write log messages to the host standard out (stdout) or standard error (stderr) stream.
Uses the org.apache.logging.log4j.core.appender.ConsoleAppender class by default.
FILE
Write log messages to a file.
Uses the org.apache.logging.log4j.core.appender.RollingFileAppender class by default.
JSON-FILE
Write log messages to a file in JSON format.
Uses the org.apache.logging.log4j.core.appender.RollingFileAppender class by default.

5.1.2.4. Log Patterns

The CONSOLE and FILE appenders use a PatternLayout to format the log messages according to a pattern.

An example is the default pattern in the FILE appender:
%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p (%t) [%c{1}] %m%throwable%n

  • %d{yyyy-MM-dd HH:mm:ss,SSS} adds the current time and date.
  • %-5p specifies the log level, aligned to the right.
  • %t adds the name of the current thread.
  • %c{1} adds the short name of the logging category.
  • %m adds the log message.
  • %throwable adds the exception stack trace.
  • %n adds a new line.

Patterns are fully described in the PatternLayout documentation .

5.1.2.5. Enabling and Configuring the JSON Log Handler

Data Grid provides a JSON log handler to write messages in JSON format.

Prerequisites

Ensure that Data Grid is not running. You cannot dynamically enable log handlers.

Procedure

  1. Open $RHDG_HOME/${infinispan.server.root}/conf/log4j2.xml with any text editor.
  2. Uncomment the JSON-FILE appender and comment out the FILE appender:

          <!--<AppenderRef ref="FILE"/>-->
          <AppenderRef ref="JSON-FILE"/>
  3. Optionally configure the JSON appender and layout.
  4. Save and close logging.properties.

When you start Data Grid, it writes each log message as a JSON map in the following file:
$RHDG_HOME/${infinispan.server.root}/log/server.log.json

5.1.3. Access Logs

Hot Rod and REST endpoints can record all inbound client requests as log entries with the following categories:

  • org.infinispan.HOTROD_ACCESS_LOG logging category for the Hot Rod endpoint.
  • org.infinispan.REST_ACCESS_LOG logging category for the REST endpoint.

5.1.3.1. Enabling Access Logs

Access logs for Hot Rod and REST endpoints are disabled by default. To enable either logging category, set the level to TRACE in the Data Grid logging configuration, as in the following example:

<Logger name="org.infinispan.HOTROD_ACCESS_LOG" additivity="false" level="INFO">
   <AppenderRef ref="HR-ACCESS-FILE"/>
</Logger>

5.1.3.2. Access Log Properties

The default format for access logs is as follows:

`%X{address} %X{user} [%d{dd/MMM/yyyy:HH:mm:ss Z}] &quot;%X{method} %m %X{protocol}&quot; %X{status} %X{requestSize} %X{responseSize} %X{duration}%n`

The preceding format creates log entries such as the following:

127.0.0.1 - [DD/MM/YYYY:HH:MM:SS +0000] "PUT /rest/v2/caches/default/key HTTP/1.1" 404 5 77 10

Logging properties use the %X{name} notation and let you modify the format of access logs. The following are the default logging properties:

PropertyDescription

address

Either the X-Forwarded-For header or the client IP address.

user

Principal name, if using authentication.

method

Method used. PUT, GET, and so on.

protocol

Protocol used. HTTP/1.1, HTTP/2, HOTROD/2.9, and so on.

status

An HTTP status code for the REST endpoint. OK or an exception for the Hot Rod endpoint.

requestSize

Size, in bytes, of the request.

responseSize

Size, in bytes, of the response.

duration

Number of milliseconds that the server took to handle the request.

Tip

Use the header name prefixed with h: to log headers that were included in requests; for example, %X{h:User-Agent}.

5.2. Configuring Statistics, Metrics, and JMX

Enable statistics that Data Grid exports to a MicroProfile Metrics endpoint or via JMX MBeans. You can also register JMX MBeans to perform management operations.

5.2.1. Enabling Data Grid Statistics

Data Grid lets you enable statistics for Cache Managers and specific cache instances.

Note

Data Grid servers provide default infinispan.xml configuration files that enable statistics for Cache Managers. If you use the default Data Grid server configuration, you only need to enable statistics when you configure caches.

Procedure

  • Enable statistics declaratively or programmatically.

Declaratively

<cache-container statistics="true"> 1
  <local-cache name="mycache" statistics="true"/> 2
</cache-container>

1
collects statistics about the Cache Manager.
2
collects statistics about the named cache.

Programmatically

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
  .cacheContainer().statistics(true) 1
  .build();

 ...

Configuration config = new ConfigurationBuilder()
  .statistics().enable() 2
  .build();

1
collects statistics about the Cache Manager.
2
collects statistics about the named cache.
Note

Enabling statistics for Cache Managers does not globally enable statistics for caches. This configuration only collects statistics for the Cache Manager.

5.2.2. Enabling Data Grid Metrics

Data Grid is compatible with the Eclipse MicroProfile Metrics API and can generate gauge and histogram metrics.

  • Data Grid metrics are provided at the vendor scope. Metrics related to the JVM are provided in the base scope for Data Grid server.
  • Gauges provide values such as the average number of nanoseconds for write operations or JVM uptime. Gauges are enabled by default. If you enable statistics, Data Grid automatically generates gauges.
  • Histograms provide details about operation execution times such as read, write, and remove times. Data Grid does not enable histograms by default because they require additional computation.

Procedure

  • Configure metrics declaratively or programmatically.

Declaratively

<cache-container statistics="true"> 1
  <metrics gauges="true" histograms="true" /> 2
</cache-container>

Programmatically

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
  .statistics().enable() 1
  .metrics().gauges(true).histograms(true) 2
  .build();

1 1
computes and collects statistics about the Cache Manager.
2 2
exports collected statistics as gauge and histogram metrics.

5.2.3. Collecting Data Grid Metrics

Collect Data Grid metrics with monitoring tools such as Prometheus.

Prerequisites

  • Enable statistics. If you do not enable statistics, Data Grid provides 0 and -1 values for metrics.
  • Optionally enable histograms. By default Data Grid generates gauges but not histograms.

Procedure

  • Get metrics in Prometheus (OpenMetrics) format:

    $ curl -v http://localhost:11222/metrics
  • Get metrics in MicroProfile JSON format:

    $ curl --header "Accept: application/json" http://localhost:11222/metrics

Next steps

Configure monitoring applications to collect Data Grid metrics. For example, add the following to prometheus.yml:

static_configs:
    - targets: ['localhost:11222']

5.2.4. Enabling and Configuring JMX

You can enable JMX with Data Grid servers to collect statistics and perform administrative operations.

Note

You can enable JMX without enabling statistics if you want to use management operations only. In this case, Data Grid provides 0 values for all statistics.

Procedure

  • Enable JMX declaratively or programmatically.

Declaratively

<cache-container>
  <jmx enabled="true" /> 1
</cache-container>

Programmatically

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
  .jmx().enable() 1
  .build();

1 1
registers Data Grid JMX MBeans.

5.2.4.1. Naming Multiple Cache Managers

In cases where multiple Data Grid Cache Managers run on the same JVM, you should uniquely identify each Cache Manager to prevent conflicts.

Procedure

  • Uniquely identify each cache manager in your environment.

For example, the following examples specify "Hibernate2LC" as the cache manager name, which results in a JMX MBean named org.infinispan:type=CacheManager,name="Hibernate2LC".

Declaratively

<cache-container name="Hibernate2LC">
  <jmx enabled="true" />
  ...
</cache-container>

Programmatically

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
  .cacheManagerName("Hibernate2LC")
  .jmx().enable()
  .build();

5.2.4.2. Registering MBeans In Custom MBean Servers

Data Grid includes an MBeanServerLookup interface that you can use to register MBeans in custom MBeanServer instances.

Procedure

  1. Create an implementation of MBeanServerLookup so that the getMBeanServer() method returns the custom MBeanServer instance.
  2. Configure Data Grid with the fully qualified name of your class, as in the following example:

Declaratively

<cache-container>
   <jmx enabled="true" mbean-server-lookup="com.acme.MyMBeanServerLookup" />
</cache-container>

Programmatically

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
  .jmx().enable().mBeanServerLookup(new com.acme.MyMBeanServerLookup())
  .build();

5.2.4.3. Data Grid MBeans

Data Grid exposes JMX MBeans that represent manageable resources.

org.infinispan:type=Cache
Attributes and operations available for cache instances.
org.infinispan:type=CacheManager
Attributes and operations available for cache managers, including Data Grid cache and cluster health statistics.

For a complete list of available JMX MBeans along with descriptions and available operations and attributes, see the Data Grid JMX Components documentation.

5.3. Retrieving Server Health Statistics

Monitor the health of your Data Grid clusters in the following ways:

  • Programmatically with embeddedCacheManager.getHealth() method calls.
  • JMX MBeans
  • Data Grid REST Server

5.3.1. Accessing the Health API via JMX

Retrieve Data Grid cluster health statistics via JMX.

Procedure

  1. Connect to Data Grid server using any JMX capable tool such as JConsole and navigate to the following object:

    org.infinispan:type=CacheManager,name="default",component=CacheContainerHealth
  2. Select available MBeans to retrieve cluster health statistics.

5.3.2. Accessing the Health API via REST

Get Data Grid cluster health via the REST API.

Procedure

  • Invoke a GET request to retrieve cluster health.

    GET /rest/v2/cache-managers/{cacheManagerName}/health

Data Grid responds with a JSON document such as the following:

{
    "cluster_health":{
        "cluster_name":"ISPN",
        "health_status":"HEALTHY",
        "number_of_nodes":2,
        "node_names":[
            "NodeA-36229",
            "NodeB-28703"
        ]
    },
    "cache_health":[
        {
            "status":"HEALTHY",
            "cache_name":"___protobuf_metadata"
        },
        {
            "status":"HEALTHY",
            "cache_name":"cache2"
        },
        {
            "status":"HEALTHY",
            "cache_name":"mycache"
        },
        {
            "status":"HEALTHY",
            "cache_name":"cache1"
        }
    ]

}
Tip

Get cache manager status as follows:

GET /rest/v2/cache-managers/{cacheManagerName}/health/status

Reference

See the REST v2 (version 2) API documentation for more information.

Chapter 6. Securing Data Grid Servers

Protect Data Grid servers against network attacks and unauthorized access.

6.1. Cache Authorization

Data Grid can restrict access to data by authorizing requests to perform cache operations.

Data Grid maps identities, or Principals of type java.security.Principal, to security roles in your configuration. For example, a Principal named reader maps to a security role named reader.

Data Grid lets you assign permissions to the various roles to authorize cache operations. For example, Cache.get() requires read permission while Cache.put() requires write permission.

In this case, iff a client with the reader role attempts to write an entry, Data Grid denies the request and throws a security exception. However, if a client with the writer role sends a write request, Data Grid validates authorization and issues the client with a token for subsequent operations.

6.1.1. Cache Authorization Configuration

Data Grid configuration for cache authorization is as follows:

<infinispan>
   <cache-container default-cache="secured" name="secured">
      <security>
         <authorization> 1
            <identity-role-mapper /> 2
            <role name="admin" permissions="ALL" /> 3
            <role name="reader" permissions="READ" />
            <role name="writer" permissions="WRITE" />
            <role name="supervisor" permissions="READ WRITE EXEC"/>
         </authorization>
      </security>
      <local-cache name="secured">
         <security>
            <authorization roles="admin reader writer supervisor" /> 4
         </security>
      </local-cache>
   </cache-container>

</infinispan>
1
configures cache authorization for the cache container.
2
specifies an implementation of PrincipalRoleMapper that converts Principal names to roles.
3
names roles and assigns permissions that control access to data.
4
defines the authorized roles for the cache.

6.2. Defining Data Grid Server Security Realms

Security realms provide identity, encryption, authentication, and authorization information to Data Grid server endpoints.

6.2.1. Property Realms

Property realms use property files to define users and groups.

users.properties maps usernames to passwords in plain-text format. Passwords can also be pre-digested if you use the DIGEST-MD5 SASL mechanism or Digest HTTP mechanism.

myuser=a_password
user2=another_password

groups.properties maps users to roles.

supervisor=myuser,user2
reader=myuser
writer=myuser

Property realm configuration

<security xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
          xsi:schemaLocation="urn:infinispan:server:10.1 https://infinispan.org/schemas/infinispan-server-10.1.xsd"
          xmlns="urn:infinispan:server:10.1">
   <security-realms>
      <security-realm name="default">
         <properties-realm groups-attribute="Roles"> 1
            <user-properties path="users.properties" 2
                             relative-to="infinispan.server.config.path" 3
                             plain-text="true"/> 4
            <group-properties path="groups.properties" 5
                              relative-to="infinispan.server.config.path"/>
         </properties-realm>
      </security-realm>
   </security-realms>
</security>

1
Defines groups as roles for Data Grid server authorization.
2
Specifies the users.properties file.
3
Specifies that the file is relative to the $ISPN_HOME/server/conf directory.
4
Specifies that the passwords in users.properties are in plain-text format.
5
Specifies the groups.properties file.

Supported authentication mechanisms

Property realms support the following authentication mechanisms:

  • SASL: PLAIN, DIGEST-*, and SCRAM-*
  • HTTP (REST): Basic and Digest

6.2.1.1. Adding Users to Property Realms

Data Grid server provides a user-tool script that lets you easily add new user/role mappings to properties files.

Procedure

  1. Navigate to your $ISPN_HOME directory.
  2. Run the user-tool script in the bin folder.

For example, create a new user named "myuser" with a password of "qwer1234!" that belongs to the "supervisor", "reader", and "writer" groups:

Linux
$ bin/user-tool.sh -u myuser -p "qwer1234!" -g supervisor,reader,writer
Microsoft Windows
$ bin\user-tool.bat -u myuser -p "qwer1234!" -g supervisor,reader,writer

6.2.2. LDAP Realms

LDAP realms connect to LDAP servers, such as OpenLDAP, Red Hat Directory Server, Apache Directory Server, or Microsoft Active Directory, to authenticate users and obtain membership information.

Note

LDAP servers can have different entry layouts, depending on the type of server and deployment. For this reason, LDAP realm configuration is complex. It is beyond the scope of this document to provide examples for all possibile configurations.

LDAP realm configuration

<security xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
          xsi:schemaLocation="urn:infinispan:server:10.1 https://infinispan.org/schemas/infinispan-server-10.1.xsd"
          xmlns="urn:infinispan:server:10.1">
   <security-realms>
      <security-realm name="default">
        <ldap-realm name="ldap" 1
                    url="ldap://my-ldap-server:10389" 2
                    principal="uid=admin,ou=People,dc=infinispan,dc=org" 3
                    credential="strongPassword"
                    connection-timeout="3000" read-timeout="30000" 4
                    connection-pooling="true" referral-mode="ignore"
                    page-size="30"
                    direct-verification="true"> 5
            <identity-mapping rdn-identifier="uid" 6
                              search-dn="ou=People,dc=infinispan,dc=org"> 7
               <attribute-mapping> 8
                  <attribute from="cn"
                             to="Roles"
                             filter="(&amp;(objectClass=groupOfNames)(member={1}))"
                             filter-dn="ou=Roles,dc=infinispan,dc=org"/>
               </attribute-mapping>
            </identity-mapping>
         </ldap-realm>
      </security-realm>
   </security-realms>
</security>

1
Names the LDAP realm.
2
Specifies the LDAP server connection URL.
3
Specifies a principal and credentials to connect to the LDAP server.
Important

The principal for LDAP connections must have necessary privileges to perform LDAP queries and access specific attributes.

4
Optionally tunes LDAP server connections by specifying connection timeouts and so on.
5
Verifies user credentials. Data Grid attempts to connect to the LDAP server using the configured credentials. Alternatively, you can use the user-password-mapper element that specifies a password.
6
Maps LDAP entries to identities. The rdn-identifier specifies an LDAP attribute that finds the user entry based on a provided identifier, which is typically a username; for example, the uid or sAMAccountName attribute.
7
Defines a starting context that limits searches to the LDAP subtree that contains the user entries.
8
Retrieves all the groups of which the user is a member. There are typically two ways in which membership information is stored:
  • Under group entries that usually have class groupOfNames in the member attribute. In this case, you can use an attribute filter as in the preceding example configuration. This filter searches for entries that match the supplied filter, which locates groups with a member attribute equal to the user’s DN. The filter then extracts the group entry’s CN as specified by from, and adds it to the user’s Roles.
  • In the user entry in the memberOf attribute. In this case you should use an attribute reference such as the following:

    <attribute-reference reference="memberOf" from="cn" to="Roles" />

    This reference gets all memberOf attributes from the user’s entry, extracts the CN as specified by from, and adds them to the user’s Roles.

Supported authentication mechanisms

LDAP realms support the following authentication mechanisms directly:

  • SASL: PLAIN, DIGEST-*, and SCRAM-*
  • HTTP (REST): Basic and Digest

6.2.2.1. LDAP Realm Principal Rewriting

Some SASL authentication mechanisms, such as GSSAPI, GS2-KRB5 and Negotiate, supply a username that needs to be cleaned up before you can use it to search LDAP servers.

<security xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
          xsi:schemaLocation="urn:infinispan:server:10.1 https://infinispan.org/schemas/infinispan-server-10.1.xsd"
          xmlns="urn:infinispan:server:10.1">
   <security-realms>
      <security-realm name="default">
         <ldap-realm name="ldap"
                     url="ldap://${org.infinispan.test.host.address}:10389"
                     principal="uid=admin,ou=People,dc=infinispan,dc=org"
                     credential="strongPassword">
            <name-rewriter> 1
               <regex-principal-transformer name="domain-remover"
                                            pattern="(.*)@INFINISPAN\.ORG"
                                            replacement="$1"/>
            </name-rewriter>
            <identity-mapping rdn-identifier="uid"
                              search-dn="ou=People,dc=infinispan,dc=org">
               <attribute-mapping>
                  <attribute from="cn" to="Roles"
                             filter="(&amp;(objectClass=groupOfNames)(member={1}))"
                             filter-dn="ou=Roles,dc=infinispan,dc=org" />
               </attribute-mapping>
               <user-password-mapper from="userPassword" />
            </identity-mapping>
         </ldap-realm>
      </security-realm>
   </security-realms>
</security>
1
Defines a rewriter that extracts the username from the principal using a regular expression.

6.2.3. Trust Store Realms

Trust store realms use keystores that contain the public certificates of all clients that are allowed to connect to Data Grid server.

<security xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
          xsi:schemaLocation="urn:infinispan:server:10.1 https://infinispan.org/schemas/infinispan-server-10.1.xsd"
          xmlns="urn:infinispan:server:10.1">
   <security-realms>
      <security-realm name="default">
         <server-identities>
            <ssl>
               <keystore path="server.p12" 1
                         relative-to="infinispan.server.config.path" 2
                         keystore-password="secret" 3
                         alias="server"/> 4
            </ssl>
         </server-identities>
         <truststore-realm path="trust.p12" 5
                           relative-to="infinispan.server.config.path"
                           keystore-password="secret"/>
      </security-realm>
   </security-realms>
</security>
1
Provides an SSL server identity with a keystore that contains server certificates.
2
Specifies that the file is relative to the $ISPN_HOME/server/conf directory.
3
Specifies a keystore password.
4
Specifies a keystore alias.
5
Provides a keystore that contains public certificates of all clients.

Supported authentication mechanisms

Trust store realms work with client-certificate authentication mechanisms:

  • SASL: EXTERNAL
  • HTTP (REST): CLIENT_CERT

6.2.4. Token Realms

Token realms use external services to validate tokens and require providers that are compatible with RFC-7662 (OAuth2 Token Introspection), such as Red Hat SSO.

<security xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
          xsi:schemaLocation="urn:infinispan:server:10.1 https://infinispan.org/schemas/infinispan-server-10.1.xsd"
          xmlns="urn:infinispan:server:10.1">
   <security-realms>
      <security-realm name="default">
         <token-realm name="token"
                      auth-server-url="https://oauth-server/auth/"> 1
            <oauth2-introspection
                    introspection-url="https://oauth-server/auth/realms/infinispan/protocol/openid-connect/token/introspect" 2
                    client-id="infinispan-server" 3
                    client-secret="1fdca4ec-c416-47e0-867a-3d471af7050f"/> 4
         </token-realm>
      </security-realm>
   </security-realms>
</security>
1
Specifies the URL of the authentication server.
2
Specifies the URL of the token introspection endpoint.
3
Names the client identifier for Data Grid server.
4
Specifies the client secret for Data Grid server.

Supported authentication mechanisms

Token realms support the following authentication mechanisms:

  • SASL: OAUTHBEARER
  • HTTP (REST): Bearer

6.3. Creating Data Grid Server Identities

Server identities are defined within security realms and enable Data Grid servers to prove their identity to clients.

6.3.1. Setting Up SSL Identities

SSL identities use keystores that contain either a certificate or chain of certificates.

Note

If security realms contain SSL identities, Data Grid servers automatically enable encryption for the endpoints that use those security realms.

Procedure

  1. Create a keystore for Data Grid server.

    Important

    Data Grid server supports the following keystore formats: JKS, JCEKS, PKCS12, BKS, BCFKS and UBER.

    In production environments, server certificates should be signed by a trusted Certificate Authority, either Root or Intermediate CA.

  2. Add the keystore to the $ISPN_HOME/server/conf directory.
  3. Add a server-identities definition to the Data Grid server security realm.
  4. Specify the name of the keystore along with the password and alias.

6.3.1.1. SSL Identity Configuration

The following example configures an SSL identity for Data Grid server:

<security xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
          xsi:schemaLocation="urn:infinispan:server:10.1 https://infinispan.org/schemas/infinispan-server-10.1.xsd"
          xmlns="urn:infinispan:server:10.1">
   <security-realms>
      <security-realm name="default">
         <server-identities> 1
            <ssl> 2
               <keystore path="server.p12" 3
                         relative-to="infinispan.server.config.path" 4
                         keystore-password="secret" 5
                         alias="server"/> 6
            </ssl>
         </server-identities>
      </security-realm>
   </security-realms>
</security>
1
Defines identities for Data Grid server.
2
Configures an SSL identity for Data Grid server.
3
Names a keystore that contains Data Grid server SSL certificates.
4
Specifies that the keystore is relative to the server/conf directory in $ISPN_HOME.
5
Specifies a keystore password.
6
Specifies a keystore alias.

6.3.1.2. Automatically Generating Keystores

Configure Data Grid servers to automatically generate keystores at startup.

Important

Automatically generated keystores:

  • Should not be used in production environments.
  • Are generated whenever necessary; for example, while obtaining the first connection from a client.
  • Contain certificates that you can use directly in Hot Rod clients.

Procedure

  1. Include the generate-self-signed-certificate-host attribute for the keystore element in the server configuration.
  2. Specify a hostname for the server certificate as the value.

SSL server identity with a generated keystore

<security xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
          xsi:schemaLocation="urn:infinispan:server:10.1 https://infinispan.org/schemas/infinispan-server-10.1.xsd"
          xmlns="urn:infinispan:server:10.1">
   <security-realms>
      <security-realm name="default">
         <server-identities>
            <ssl>
               <keystore path="server.p12"
                         relative-to="infinispan.server.config.path"
                         keystore-password="secret"
                         alias="server"
                         generate-self-signed-certificate-host="localhost"/> 1
            </ssl>
         </server-identities>
      </security-realm>
   </security-realms>
</security>

1
generates a keystore using localhost

6.3.1.3. Tuning SSL Protocols and Cipher Suites

You can configure the SSL engine, via the Data Grid server SSL identity, to use specific protocols and ciphers.

Important

You must ensure that you set the correct ciphers for the protocol features you want to use; for example HTTP/2 ALPN.

Procedure

  1. Add the engine element to your Data Grid server SSL identity.
  2. Configure the SSL engine with the enabled-protocols and enabled-ciphersuites attributes.

SSL engine configuration

<security xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
          xsi:schemaLocation="urn:infinispan:server:10.1
          https://infinispan.org/schemas/infinispan-server-10.1.xsd"
          xmlns="urn:infinispan:server:10.1">
   <security-realms>
      <security-realm name="default">
         <server-identities>
            <ssl>
               <keystore path="server.p12"
                         relative-to="infinispan.server.config.path"
                         keystore-password="secret" alias="server"/>
               <engine enabled-protocols="TLSv1.2 TLSv1.1" 1
                       enabled-ciphersuites="SSL_RSA_WITH_AES_128_GCM_SHA256 2
                       SSL_RSA_WITH_AES_128_CBC_SHA256"/>
            </ssl>
         </server-identities>
      </security-realm>
   </security-realms>
</security>

1
Configures the SSL engine to use TLS v1 and v2 protocols.
2
Configures the SSL engine to use the specified cipher suites.

6.3.2. Setting Up Kerberos Identities

Kerberos identities use keytab files that contain service principal names and encrypted keys, derived from Kerberos passwords.

Note

keytab files can contain both user and service account principals. However, Data Grid servers use service account principals only. As a result, Data Grid servers can provide identity to clients and allow clients to authenticate with Kerberos servers.

In most cases, you create unique principals for the Hot Rod and REST connectors. For example, you have a "datagrid" server in the "INFINISPAN.ORG" domain. In this case you should create the following service principals:

  • hotrod/datagrid@INFINISPAN.ORG identifies the Hot Rod service.
  • HTTP/datagrid@INFINISPAN.ORG identifies the REST service.

Procedure

  1. Create keytab files for the Hot Rod and REST services.

    Linux
    $ ktutil
    ktutil:  addent -password -p datagrid@INFINISPAN.ORG -k 1 -e aes256-cts
    Password for datagrid@INFINISPAN.ORG: [enter your password]
    ktutil:  wkt http.keytab
    ktutil:  quit
    Microsoft Windows
    $ ktpass -princ HTTP/datagrid@INFINISPAN.ORG -pass * -mapuser INFINISPAN\USER_NAME
    $ ktab -k http.keytab -a HTTP/datagrid@INFINISPAN.ORG
  2. Copy the keytab files to the $ISPN_HOME/server/conf directory.
  3. Add a server-identities definition to the Data Grid server security realm.
  4. Specify the location of keytab files that provide service principals to Hot Rod and REST connectors.
  5. Name the Kerberos service principals.

6.3.2.1. Kerberos Identity Configuration

The following example configures Kerberos identities for Data Grid server:

<security xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
          xsi:schemaLocation="urn:infinispan:server:10.1 https://infinispan.org/schemas/infinispan-server-10.1.xsd"
          xmlns="urn:infinispan:server:10.1">
   <security-realms>
      <security-realm name="default">
         <server-identities> 1
            <kerberos keytab-path="hotrod.keytab" 2
                      principal="hotrod/datagrid@INFINISPAN.ORG" 3
                      required="true"/> 4
            <kerberos keytab-path="http.keytab" 5
                      principal="HTTP/localhost@INFINISPAN.ORG" 6
                      required="true"/>
         </server-identities>
      </security-realm>
   </security-realms>
</security>
1
Defines identities for Data Grid server.
2
Specifies a keytab file that provides a Kerberos identity for the Hot Rod connector.
3
Names the Kerberos service principal for the Hot Rod connector.
4
Specifies that the keytab file must exist when Data Grid server starts.
5
Specifies a keytab file that provides a Kerberos identity for the REST connector.
6
Names the Kerberos service principal for the REST connector.

6.4. Configuring Endpoint Authentication Mechanisms

Configure Hot Rod and REST connectors with SASL authentication mechanisms to authenticate with clients.

6.4.1. Setting Up Hot Rod Authentication

Configure Hot Rod connectors to authenticate with clients to Data Grid server security realms using specific SASL authentication mechanisms .

Procedure

  1. Add an authentication definition to the Hot Rod connector configuration.
  2. Specify which Data Grid security realm the Hot Rod connector uses for authentication.
  3. Specify the SASL authentication mechanisms for the Hot Rod endpoint to use.
  4. Configure SASL authentication properties as appropriate.

6.4.1.1. Hot Rod Authentication Configuration

Hot Rod connector with SCRAM, DIGEST, and PLAIN authentication

<endpoints xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
           xsi:schemaLocation="urn:infinispan:server:10.1
           https://infinispan.org/schemas/infinispan-server-10.1.xsd"
           xmlns="urn:infinispan:server:10.1"
           socket-binding="default" security-realm="default"> 1
   <hotrod-connector name="hotrod">
      <authentication>
         <sasl mechanisms="SCRAM-SHA-512 SCRAM-SHA-384 SCRAM-SHA-256 2
                           SCRAM-SHA-1 DIGEST-SHA-512 DIGEST-SHA-384
                           DIGEST-SHA-256 DIGEST-SHA DIGEST-MD5 PLAIN"
               server-name="infinispan" 3
               qop="auth"/> 4
      </authentication>
   </hotrod-connector>
</endpoints>

1
enables authentication against the security realm named "default".
2
specifies SASL mechanisms to use for authentication.
3
defines the name that Data Grid servers declare to clients. The server name should match the client configuration.
4
enables auth QoP.

Hot Rod connector with Kerberos authentication

<endpoints xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
           xsi:schemaLocation="urn:infinispan:server:10.1 https://infinispan.org/schemas/infinispan-server-10.1.xsd"
           xmlns="urn:infinispan:server:10.1"
           socket-binding="default" security-realm="default">
   <hotrod-connector name="hotrod">
      <authentication>
         <sasl mechanisms="GSSAPI GS2-KRB5" 1
               server-name="datagrid" 2
               server-principal="hotrod/datagrid@INFINISPAN.ORG"/> 3
      </authentication>
   </hotrod-connector>
</endpoints>

1
Enables the GSSAPI and GS2-KRB5 mechanisms for Kerberos authentication.
2
Defines the Data Grid server name, which is equivalent to the Kerberos service name.
3
Specifies the Kerberos identity for the server.

6.4.1.2. Hot Rod Endpoint Authentication Mechanisms

Data Grid supports the following SASL authentications mechanisms with the Hot Rod connector:

Authentication mechanismDescriptionRelated details

PLAIN

Uses credentials in plain-text format. You should use PLAIN authentication with encrypted connections only.

Similar to the Basic HTTP mechanism.

DIGEST-*

Uses hashing algorithms and nonce values. Hot Rod connectors support DIGEST-MD5, DIGEST-SHA, DIGEST-SHA-256, DIGEST-SHA-384, and DIGEST-SHA-512 hashing algorithms, in order of strength.

Similar to the Digest HTTP mechanism.

SCRAM-*

Uses salt values in addition to hashing algorithms and nonce values. Hot Rod connectors support SCRAM-SHA, SCRAM-SHA-256, SCRAM-SHA-384, and SCRAM-SHA-512 hashing algorithms, in order of strength.

Similar to the Digest HTTP mechanism.

GSSAPI

Uses Kerberos tickets and requires a Kerberos Domain Controller. You must add a corresponding kerberos server identity in the realm configuration. In most cases, you also specify an ldap-realm to provide user membership information.

Similar to the SPNEGO HTTP mechanism.

GS2-KRB5

Uses Kerberos tickets and requires a Kerberos Domain Controller. You must add a corresponding kerberos server identity in the realm configuration. In most cases, you also specify an ldap-realm to provide user membership information.

Similar to the SPNEGO HTTP mechanism.

EXTERNAL

Uses client certificates.

Similar to the CLIENT_CERT HTTP mechanism.

OAUTHBEARER

Uses OAuth tokens and requires a token-realm configuration.

Similar to the BEARER_TOKEN HTTP mechanism.

6.4.1.3. SASL Quality of Protection (QoP)

If SASL mechanisms support integrity and privacy protection settings, you can add them to your Hot Rod connector configuration with the qop attribute.

QoP settingDescription

auth

Authentication only.

auth-int

Authentication with integrity protection.

auth-conf

Authentication with integrity and privacy protection.

6.4.1.4. SASL Policies

SASL policies let you control which authentication mechanisms Hot Rod connectors can use.

PolicyDescriptionDefault value

forward-secrecy

Use only SASL mechanisms that support forward secrecy between sessions. This means that breaking into one session does not automatically provide information for breaking into future sessions.

false

pass-credentials

Use only SASL mechanisms that require client credentials.

false

no-plain-text

Do not use SASL mechanisms that are susceptible to simple plain passive attacks.

false

no-active

Do not use SASL mechanisms that are susceptible to active, non-dictionary, attacks.

false

no-dictionary

Do not use SASL mechanisms that are susceptible to passive dictionary attacks.

false

no-anonymous

Do not use SASL mechanisms that accept anonymous logins.

true

Tip

Data Grid cache authorization restricts access to caches based on roles and permissions. If you configure cache authorization, you can then set <no-anonymous value=false /> to allow anonymous login and delegate access logic to cache authorization.

Hot Rod connector with SASL policy configuration

<hotrod-connector socket-binding="hotrod" cache-container="default">
   <authentication security-realm="ApplicationRealm">
      <sasl server-name="myhotrodserver"
            mechanisms="PLAIN DIGEST-MD5 GSSAPI EXTERNAL" 1
            qop="auth">
         <policy> 2
            <no-active value="true" />
            <no-anonymous value="true" />
            <no-plain-text value="true" />
         </policy>
      </sasl>
   </authentication>
</hotrod-connector>

1
Specifies multiple SASL authentication mechanisms for the Hot Rod connector.
2
Defines policies for SASL mechanisms.

As a result of the preceding configuration, the Hot Rod connector uses the GSSAPI mechanism because it is the only mechanism that complies with all policies.

6.4.2. Setting Up REST Authentication

Configure REST connectors to authenticate with clients to Data Grid server security realms using specific SASL authentication mechanisms .

Procedure

  1. Add an authentication definition to the REST connector configuration.
  2. Specify which Data Grid security realm the REST connector uses for authentication.
  3. Specify the SASL authentication mechanisms for the REST endpoint to use.
  4. Configure SASL authentication properties as appropriate.

6.4.2.1. REST Authentication Configuration

REST connector with BASIC and DIGEST authentication

<endpoints xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
           xsi:schemaLocation="urn:infinispan:server:10.1 https://infinispan.org/schemas/infinispan-server-10.1.xsd"
           xmlns="urn:infinispan:server:10.1"
           socket-binding="default" security-realm="default"> 1
   <rest-connector name="rest">
      <authentication mechanisms="DIGEST BASIC"/> 2
   </rest-connector>
</endpoints>

1
Enables authentication against the security realm named "default".
2
Specifies SASL mechanisms to use for authentication

REST connector with Kerberos authentication

<endpoints xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
           xsi:schemaLocation="urn:infinispan:server:10.1 https://infinispan.org/schemas/infinispan-server-10.1.xsd"
           xmlns="urn:infinispan:server:10.1"
           socket-binding="default" security-realm="default">
   <rest-connector name="rest">
      <authentication mechanisms="SPNEGO" 1
                      server-principal="HTTP/localhost@INFINISPAN.ORG"/> 2
   </rest-connector>
</endpoints>

1
Enables the SPENGO mechanism for Kerberos authentication.
2
Specifies the Kerberos identity for the server.

6.4.2.2. REST Endpoint Authentication Mechanisms

Data Grid supports the following authentications mechanisms with the REST connector:

Authentication mechanismDescriptionRelated details

BASIC

Uses credentials in plain-text format. You should use BASIC authentication with encrypted connections only.

Corresponds to the Basic HTTP authentication scheme and is similar to the PLAIN SASL mechanism.

DIGEST

Uses hashing algorithms and nonce values. REST connectors support SHA-512, SHA-256 and MD5 hashing algorithms.

Corresponds to the Digest HTTP authentication scheme and is similar to DIGEST-* SASL mechanisms.

SPNEGO

Uses Kerberos tickets and requires a Kerberos Domain Controller. You must add a corresponding kerberos server identity in the realm configuration. In most cases, you also specify an ldap-realm to provide user membership information.

Corresponds to the Negotiate HTTP authentication scheme and is similar to the GSSAPI and GS2-KRB5 SASL mechanisms.

BEARER_TOKEN

Uses OAuth tokens and requires a token-realm configuration.

Corresponds to the Bearer HTTP authentication scheme and is similar to OAUTHBEARER SASL mechanism.

CLIENT_CERT

Uses client certificates.

Similar to the EXTERNAL SASL mechanism.

Chapter 7. Remotely Executing Server-Side Tasks

Define and add tasks to Data Grid servers that you can invoke from the Data Grid command line interface, REST API, or from Hot Rod clients.

You can implement tasks as custom Java classes or define scripts in languages such as JavaScript.

7.1. Creating Server Tasks

Create custom task implementations and add them to Data Grid servers.

7.1.1. Server Tasks

Data Grid server tasks are classes that extend the org.infinispan.tasks.ServerTask interface and generally include the following method calls:

setTaskContext()
Allows access to execution context information including task parameters, cache references on which tasks are executed, and so on. In most cases, implementations store this information locally and use it when tasks are actually executed.
getName()
Returns unique names for tasks. Clients invoke tasks with these names.
getExecutionMode()

Returns the execution mode for tasks.

  • TaskExecutionMode.ONE_NODE only the node that handles the request executes the script. Although scripts can still invoke clustered operations.
  • TaskExecutionMode.ALL_NODES Data Grid uses clustered executors to run scripts across nodes. For example, server tasks that invoke stream processing need to be executed on a single node because stream processing is distributed to all nodes.
call()
Computes a result. This method is defined in the java.util.concurrent.Callable interface and is invoked with server tasks.
Important

Server task implementations must adhere to service loader pattern requirements. For example, implementations must have a zero-argument constructors.

The following HelloTask class implementation provides an example task that has one parameter:

package example;

import org.infinispan.tasks.ServerTask;
import org.infinispan.tasks.TaskContext;

public class HelloTask implements ServerTask<String> {

   private TaskContext ctx;

   @Override
   public void setTaskContext(TaskContext ctx) {
      this.ctx = ctx;
   }

   @Override
   public String call() throws Exception {
      String name = (String) ctx.getParameters().get().get("name");
      return "Hello " + name;
   }

   @Override
   public String getName() {
      return "hello-task";
   }

}

7.1.2. Deploying Server Tasks to Data Grid Servers

Add your custom server task classes to Data Grid servers.

Prerequisites

Stop any running Data Grid servers. Data Grid does not support runtime deployment of custom classes.

Procedure

  1. Package your server task implementation in a JAR file.
  2. Add a META-INF/services/org.infinispan.tasks.ServerTask file that contains the fully qualified names of server tasks, for example:

    example.HelloTask
  3. Copy the JAR file to the $RHDG_HOME/server/lib directory of your Data Grid server.
  4. Add your classes to the deserialization whitelist in your Data Grid configuration. Alternatively set the whitelist using system properties.

7.2. Creating Server Scripts

Create custom scripts and add them to Data Grid servers.

7.2.1. Server Scripts

Data Grid server scripting is based on the javax.script API and is compatible with any JVM-based ScriptEngine implementation.

Hello World Script Example

The following is a simple example that runs on a single Data Grid server, has one parameter, and uses JavaScript:

// mode=local,language=javascript,parameters=[greetee]
"Hello " + greetee

When you run the preceding script, you pass a value for the greetee parameter and Data Grid returns "Hello ${value}".

7.2.1.1. Script Metadata

Metadata provides additional information about scripts that Data Grid servers use when running scripts.

Script metadata are property=value pairs that you add to comments in the first lines of scripts, such as the following example:

// name=test, language=javascript
// mode=local, parameters=[a,b,c]
  • Use comment styles that match the scripting language (//, ;;, #).
  • Separate property=value pairs with commas.
  • Separate values with single (') or double (") quote characters.

Table 7.1. Metadata Properties

PropertyDescription

mode

Defines the exection mode and has the following values:

local only the node that handles the request executes the script. Although scripts can still invoke clustered operations.

distributed Data Grid uses clustered executors to run scripts across nodes.

language

Specifies the ScriptEngine that executes the script.

extension

Specifies filename extensions as an alternative method to set the ScriptEngine.

role

Specifies roles that users must have to execute scripts.

parameters

Specifies an array of valid parameter names for this script. Invocations which specify parameters not included in this list cause exceptions.

datatype

Optionally sets the MediaType (MIME type) for storing data as well as parameter and return values. This property is useful for remote clients that support particular data formats only.

Currently you can set only text/plain; charset=utf-8 to use the String UTF-8 format for data.

7.2.1.2. Script Bindings

Data Grid exposes internal objects as bindings for script execution.

BindingDescription

cache

Specifies the cache against which the script is run.

marshaller

Specifies the marshaller to use for serializing data to the cache.

cacheManager

Specifies the cacheManager for the cache.

scriptingManager

Specifies the instance of the script manager that runs the script. You can use this binding to run other scripts from a script.

7.2.1.3. Script Parameters

Data Grid lets you pass named parameters as bindings for running scripts.

Parameters are name,value pairs, where name is a string and value is any value that the marshaller can interpret.

The following example script has two parameters, multiplicand and multiplier. The script takes the value of multiplicand and multiplies it with the value of multiplier.

// mode=local,language=javascript
multiplicand * multiplier

When you run the preceding script, Data Grid responds with the result of the expression evaluation.

7.2.2. Adding Scripts to Data Grid Servers

Use the command line interface to add scripts to Data Grid servers.

Prerequisites

Data Grid servers store scripts in the ___script_cache cache. If you enable cache authorization, users must have the ___script_manager role to access ___script_cache.

Procedure

  1. Define scripts as required.

    For example, create a file named multiplication.js that runs on a single Data Grid server, has two parameters, and uses JavaScript to multiply a given value:

    // mode=local,language=javascript
    multiplicand * multiplier
  2. Open a CLI connection to Data Grid and use the task command to upload your scripts as in the following example:

    [//containers/default]> task upload --file=multiplication.js multiplication
  3. Verify that your scripts are available.

    [//containers/default]> ls tasks
    multiplication

7.2.3. Programmatically Creating Scripts

Add scripts with the Hot Rod RemoteCache interface as in the following example:

RemoteCache<String, String> scriptCache = cacheManager.getCache("___script_cache");
scriptCache.put("multiplication.js",
  "// mode=local,language=javascript\n" +
  "multiplicand * multiplier\n");

7.3. Running Server-Side Tasks and Scripts

Execute tasks and custom scripts on Data Grid servers.

7.3.1. Running Tasks and Scripts

Use the command line interface to run tasks and scripts on Data Grid servers.

Prerequisites

  • Open a CLI connection to Data Grid.

Procedure

Use the task command to run tasks and scripts on Data Grid servers, as in the following examples:

  • Execute a script named multipler.js and specify two parameters:

    [//containers/default]> task exec multipler.js -Pmultiplicand=10 -Pmultiplier=20
    200.0
  • Execute a task named @@cache@names to retrieve a list of all available caches:

    //containers/default]> task exec @@cache@names
    ["___protobuf_metadata","mycache","___script_cache"]

7.3.2. Programmatically Running Scripts

Call the execute() method to run scripts with the Hot Rod RemoteCache interface, as in the following example:

RemoteCache<String, Integer> cache = cacheManager.getCache();
// Create parameters for script execution.
Map<String, Object> params = new HashMap<>();
params.put("multiplicand", 10);
params.put("multiplier", 20);
// Run the script with the parameters.
Object result = cache.execute("multiplication.js", params);

7.3.3. Programmatically Running Tasks

Call the execute() method to run tasks with the Hot Rod RemoteCache interface, as in the following example:

// Add configuration for a locally running server.
ConfigurationBuilder builder = new ConfigurationBuilder();
builder.addServer().host("127.0.0.1").port(11222);

// Connect to the server.
RemoteCacheManager cacheManager = new RemoteCacheManager(builder.build());

// Retrieve the remote cache.
RemoteCache<String, String> cache = cacheManager.getCache();

// Create task parameters.
Map<String, String> parameters = new HashMap<>();
parameters.put("name", "developer");

// Run the server task.
String greet = cache.execute("hello-task", parameters);
System.out.println(greet);

Chapter 8. Performing Rolling Upgrades for Data Grid Servers

Perform rolling upgrades of your Data Grid clusters to change between versions without downtime or data loss. Rolling upgrades migrate both your Data Grid servers and your data to the target version over Hot Rod.

8.1. Setting Up Target Clusters

Create a cluster that runs the target Data Grid version and uses a remote cache store to load data from the source cluster.

Prerequisites

  • Install a Data Grid cluster with the target upgrade version.
Important

Ensure the network properties for the target cluster do not overlap with those for the source cluster. You should specify unique names for the target and source clusters in the JGroups transport configuration. Depending on your environment you can also use different network interfaces and specify port offsets to keep the target and source clusters separate.

Procedure

  1. Add a RemoteCacheStore on the target cluster for each cache you want to migrate from the source cluster.

    Remote cache stores use the Hot Rod protocol to retrieve data from remote Data Grid clusters. When you add the remote cache store to the target cluster, it can lazily load data from the source cluster to handle client requests.

  2. Switch clients over to the target cluster so it starts handling all requests.

    1. Update client configuration with the location of the target cluster.
    2. Restart clients.

8.1.1. Remote Cache Stores for Rolling Upgrades

You must use specific remote cache store configuration to perform rolling upgrades, as follows:

<persistence passivation="false"> 1
   <remote-store xmlns="urn:infinispan:config:store:remote:10.1"
                 cache="myDistCache" 2
                 protocol-version="2.5" 3
                 hotrod-wrapping="true" 4
                 raw-values="true"> 5
      <remote-server host="127.0.0.1" port="11222"/> 6
   </remote-store>
</persistence>
1
Disables passivation. Remote cache stores for rolling upgrades must disable passivation.
2
Matches the name of a cache in the source cluster. Target clusters load data from this cache using the remote cache store.
3
Matches the Hot Rod protocol version of the source cluster. 2.5 is the minimum version and is suitable for any upgrade paths. You do not need to set another Hot Rod version.
4
Ensures that entries are wrapped in a suitable format for the Hot Rod protocol.
5
Stores data in the remote cache store in raw format. This ensures that clients can use data directly from the remote cache store.
6
Points to the location of the source cluster.

8.2. Synchronizing Data to Target Clusters

When your target cluster is running and handling client requests using a remote cache store to load data on demand, you can synchronize data from the source cluster to the target cluster.

This operation reads data from the source cluster and writes it to the target cluster. Data migrates to all nodes in the target cluster in parallel, with each node receiving a subset of the data. You must perform the synchronization for each cache in your Data Grid configuration.

Procedure

  1. Start the synchronization operation for each cache in your Data Grid configuration that you want to migrate to the target cluster.

    Use the Data Grid REST API and invoke GET requests with the ?action=sync- data parameter. For example, to synchronize data in a cache named "myCache" from a source cluster to a target cluster, do the following:

    GET /v2/caches/myCache?action=sync-data

    When the operation completes, Data Grid responds with the total number of entries copied to the target cluster.

    Alternatively, you can use JMX by invoking synchronizeData(migratorName=hotrod) on the RollingUpgradeManager MBean.

  2. Disconnect each node in the target cluster from the source cluster.

    For example, to disconnect the "myCache" cache from the source cluster, invoke the following GET request:

    GET /v2/caches/myCache?action=disconnect-source

    To use JMX, invoke disconnectSource(migratorName=hotrod) on the RollingUpgradeManager MBean.

Next steps

After you synchronize all data from the source cluster, the rolling upgrade process is complete. You can now decommission the source cluster.

Chapter 9. Patching Data Grid Server Installations

Install and manage patches for Data Grid server installations.

You can apply patches to multiple Data Grid servers with different versions to upgrade to a desired target version. However, patches do not take effect if Data Grid servers are running. For this reason you install patches while servers are offline. If you want to upgrade Data Grid clusters without downtime, create a new cluster with the target version and perform a rolling upgrade to that version instead of patching.

9.1. Data Grid Server Patches

Data Grid server patches are .zip archives that contain artifacts that you can apply to your $RHDG_HOME directory to fix issues and add new features.

Patches also provide a set of rules for Data Grid to modify your server installation. When you apply patches, Data Grid overwrites some files and removes others, depending on if they are required for the target version.

However, Data Grid does not make any changes to configuration files that you have created or modified when applying a patch. Server patches do not modify or replace any custom configuration or data.

9.2. Downloading Server Patches

Download patches that you can apply to Data Grid servers.

Procedure

  1. Access the Red Hat customer portal.
  2. Download the appropriate Data Grid server patch from the software downloads section.
  3. Open a terminal window and navigate to $RHDG_HOME.
  4. Start the CLI.

    $ bin/cli.sh
    [disconnected]>
  5. Describe the patch file you downloaded.

    [disconnected]> patch describe /path/to/redhat-datagrid-$version-server-patch.zip
    Red Hat Data Grid patch target=$target_version source=$source_version created=$timestamp
    • $target_version is the Data Grid version that applies when you install the patch on a server.
    • $source_version is one or more Data Grid server versions where you can install the patch.

Verification

Use the checksum to verify the integrity of your download.

  1. Run the md5sum or sha256sum command with the downloaded patch as the argument, for example:

    $ sha256sum redhat-datagrid-$version-server-patch.zip
  2. Compare with the MD5 or SHA-256 checksum value on the Data Grid Software Details page.

9.3. Creating Server Patches

You can create patches for Data Grid servers from an existing server installation.

You can create patches for Data Grid servers starting from 8.0.1. You can patch 8.0 GA servers with 8.0.1. However you cannot patch 7.3.x or earlier servers with 8.0.1 or later.

You can also create patches that either upgrade or downgrade the Data Grid server version. For example, you can create a patch from version 8.0.1 and use it to upgrade version 8.0 GA or downgrade a later version.

Important

Red Hat supports patched server deployments only with patches that you download from the Red Hat customer portal. Red Hat does not support server patches that you create yourself.

Procedure

  1. Navigate to $RHDG_HOME for a Data Grid server installation that has the target version for the patch you want to create.
  2. Start the CLI.

    $ bin/cli.sh
    [disconnected]>
  3. Use the patch create command to generate a patch archive and include the -q option with a meaningful qualifier to describe the patch.

    [disconnected]> patch create -q "this is my test patch" path/to/mypatch.zip \
    path/to/target/server/home path/to/source/server/home

    The preceding command generates a .zip archive in the specified directory. Paths are relative to $RHDG_HOME for the target server.

    Tip

    Create single patches for multiple different Data Grid versions, for example:

    [disconnected]> patch create -q "this is my test patch" path/to/mypatch.zip \
    path/to/target/server/home \
    path/to/source/server1/home path/to/source/server2/home

    Where server1 and server2 are different Data Grid versions where you can install "mypatch.zip".

  4. Describe the generated patch archive.

    [disconnected]> patch describe path/to/mypatch.zip
    
    Red Hat Data Grid patch target=$target_version(my test patch)  source=$source_version created=$timestamp
    • $target_version is the Data Grid server version from which the patch was created.
    • $source_version is one or more Data Grid server versions to which you can apply the patch.

      You can apply patches to Data Grid servers that match the $source_version only. Attempting to apply patches to other versions results in the following exception:

      java.lang.IllegalStateException: The supplied patch cannot be applied to `$source_version`

9.4. Installing Server Patches

Apply patches to Data Grid servers to upgrade or downgrade an existing version.

Prerequisites

  • Download a server patch for the target version.

Procedure

  1. Navigate to $RHDG_HOME for the Data Grid server you want to patch.
  2. Stop the server if it is running.

    Note

    If you patch a server while it is running, the version changes take effect after restart. If you do not want to stop the server, create a new cluster with the target version and perform a rolling upgrade to that version instead of patching.

  3. Start the CLI.

    $ bin/cli.sh
    [disconnected]>
  4. Install the patch.

    [disconnected]> patch install path/to/patch.zip
    
    Red Hat Data Grid patch target=$target_version source=$source_version \
    created=$timestamp installed=$timestamp
    • $target_version displays the Data Grid version that the patch installed.
    • $source_version displays the Data Grid version before you installed the patch.
  5. Start the server to verify the patch is installed.

    $ bin/server.sh
    ...
    ISPN080001: Red Hat Data Grid Server $version

    If the patch is installed successfully $version matches $target_version.

Tip

Use the --server option to install patches in a different $RHDG_HOME directory, for example:

[disconnected]> patch install path/to/patch.zip --server=path/to/server/home

9.5. Rolling Back Server Patches

Remove patches from Data Grid servers by rolling them back and restoring the previous Data Grid version.

Important

If a server has multiple patches installed, you can roll back the last installed patch only.

Rolling back patches does not revert configuration changes you make to Data Grid server. Before you roll back patches, you should ensure that your configuration is compatible with the version to which you are rolling back.

Procedure

  1. Navigate to $RHDG_HOME for the Data Grid server installation you want to roll back.
  2. Stop the server if it is running.
  3. Start the CLI.

    $ bin/cli.sh
    [disconnected]>
  4. List the installed patches.

    [disconnected]> patch ls
    
    Red Hat Data Grid patch target=$target_version source=$source_version
    created=$timestamp installed=$timestamp
    • $target_version is the Data Grid server version after the patch was applied.
    • $source_version is the version for Data Grid server before the patch was applied. Rolling back the patch restores the server to this version.
  5. Roll back the last installed patch.

    [disconnected]> patch rollback
  6. Quit the CLI.

    [disconnected]> quit
  7. Start the server to verify the patch is rolled back to the previous version.

    $ bin/server.sh
    ...
    ISPN080001: Data Grid Server $version

    If the patch is rolled back successfully $version matches $source_version.

Tip

Use the --server option to rollback patches in a different $RHDG_HOME directory, for example:

[disconnected]> patch rollback --server=path/to/server/home

Chapter 10. Data Grid Server Reference

10.1. Data Grid Server

Data Grid server provides fast, reliable, and secure access to your data. This release of the server improves on previous versions and offers:

  • Small code-base with minimal duplication of existing functionality (e.g. configuration).
  • Embeddable: the server should allow for easy testability in both single and clustered configurations.
  • RESTful administration capabilities.
  • Logging with Apache Log4j 2.
  • Security with WildFly Elytron SPIs.

10.1.1. Directory Structure

Server distributions have the following directory structure:

  • /bin: scripts to start the server and create/modify users.
  • /boot: JAR files to boot the server.
  • /docs: examples and component licenses.
  • /lib: server JAR files.
  • /server: default server instance folder.

    • /server/conf: configuration files.
    • /server/data: data files organized by container name.
    • /server/lib: extension JAR files for custom filters, listeners, and so on.
    • /server/log: server log files.

10.1.2. Server Paths

Servers use the following paths:

  • infinispan.server.home defaults to the directory that contains the server distribution.
  • infinispan.server.root contains configuration and data for Data Grid servers and defaults to the server directory under infinispan.server.home.
    Multiple roots can exist in the same or different directories. To start multiple server instances you can specify the path to infinispan.server.root with a command line argument.

    Note

    When the server starts it locks infinispan.server.root to avoid concurrent use by multiple server instances.

  • infinispan.server.configuration defaults to infinispan.xml, which resides in the conf folder under infinispan.server.root.

10.1.3. Command Arguments

The server.sh|bat startup script includes arguments that you can use to get information and configure the server runtime environment.

To view the available command arguments, include the --help or -h option as follows:

$ bin/server.sh -h

10.1.4. Logging Configuration

You configure logging with log4j2.xml in the server/conf directory.

10.1.5. Configuration

The server configuration extends the standard Data Grid configuration with the following server-specific elements:

  • security configures the available security realms for the endpoints.
  • cache-container multiple containers may be configured, distinguished by name.
  • endpoints lists the enabled endpoint connectors (hotrod, rest, and so on).
  • socket-bindings lists the socket bindings.

The following is an example server configuration:

<infinispan
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="urn:infinispan:config:10.1 https://infinispan.org/schemas/infinispan-config-10.1.xsd
                            urn:infinispan:server:10.1 https://infinispan.org/schemas/infinispan-server-10.1.xsd"
        xmlns="urn:infinispan:config:10.1"
        xmlns:server="urn:infinispan:server:10.1">

   <cache-container default-cache="default" statistics="false">
      <transport cluster="${infinispan.cluster.name}" stack="udp"/>
      <global-state/>
      <distributed-cache name="default"/>
   </cache-container>

   <server xmlns="urn:infinispan:server:10.1">
      <interfaces>
         <interface name="public">
            <loopback/>
         </interface>
         <interface name="admin">
            <loopback/>
         </interface>
      </interfaces>

      <socket-bindings default-interface="public" port-offset="${infinispan.socket.binding.port-offset:0}">
         <socket-binding name="hotrod" port="11222"/>
         <socket-binding name="rest" port="8080"/>
         <socket-binding name="memcached" port="11221"/>
         <socket-binding name="admin" port="9990" interface="admin"/>
      </socket-bindings>

      <security>
         <security-realms>
            <security-realm name="ManagementRealm">
               <properties-realm groups-attribute="Roles">
                  <user-properties path="mgmt-users.properties" relative-to="infinispan.server.config.dir" plain-text="true"/>
                  <group-properties path="mgmt-groups.properties" relative-to="infinispan.server.config.dir" />
               </properties-realm>
            </security-realm>
            <security-realm name="PublicRealm">
               <properties-realm groups-attribute="Roles">
                  <user-properties path="public-users.properties" relative-to="infinispan.server.config.dir" plain-text="true"/>
                  <group-properties path="public-groups.properties" relative-to="infinispan.server.config.dir" />
               </properties-realm>
               <server-identities>
                  <ssl>
                     <keystore path="application.keystore" relative-to="infinispan.server.config.dir"
                               keystore-password="password" alias="server" key-password="password"
                               generate-self-signed-certificate-host="localhost"/>
                  </ssl>
               </server-identities>
            </security-realm>
         </security-realms>
      </security>

      <endpoints>
         <hotrod-connector socket-binding="hotrod"/>
         <memcached-connector socket-binding="memcached"/>
         <rest-connector socket-binding="rest"/>
      </endpoints>
   </server>
</infinispan>

10.1.6. Additional Details

The following is a list of additional details about the server, in no particular order:

  • All containers handled by the same server share the same thread pools and transport.

Legal Notice

Copyright © 2020 Red Hat, Inc.
The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.
XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
All other trademarks are the property of their respective owners.