& RedHat

Red Hat Data Grid 7.3

Red Hat Data Grid Performance Guide

For use with Red Hat Data Grid 7.3

Last Updated: 2019-05-23

Red Hat Data Grid 7.3 Red Hat Data Grid Performance Guide

For use with Red Hat Data Grid 7.3

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes performance tuning for Red Hat Data Grid 7.3.

Table of Contents

PREF ACE . e e e e

CHAPTER1.CAPACITY PLANNING ... i

CHAPTER 2. JAVAVIRTUAL MACHINE SETTINGS ...t

2.1. MEMORY SETTINGS

2.2. GARBAGE COLLECTION
2.3.OTHERSETTINGS

2.4. EXAMPLE CONFIGURATION

CHAPTER 3. NETWORK CONFIGURATION
CHAPTER4.NUMBEROF THREADS i
CHAPTER 5. NUMBER OF THREADS (SERVERMODEONLY)
CHAPTER 6. CACHESTORE PERFORMANCEt

CHAPTER 7. HINTS FORPROGRAM DEVELOPERSt

7.1.IGNORE RETURN VALUES

7.2. USE EXTERNALIZER FOR MARSHALLING
7.3.STORING STRINGS EFFICIENTLY

7.4. USE SIMPLE CACHE FOR LOCAL CACHES

Table of Contents

o U1 U1 Ul

Red Hat Data Grid 7.3 Red Hat Data Grid Performance Guide

PREFACE

PREFACE

This guide will give you information and tweaks about tuning Red Hat Data Grid performance (both
server and library mode).

Red Hat Data Grid 7.3 Red Hat Data Grid Performance Guide

CHAPTER 1. CAPACITY PLANNING

Data in Red Hat Data Grid is either stored as plain Java objects or in a serialized form, depending on
operating mode (embedded or server) or on specific configuration options such as store-as-binary. Data
size can be estimated using sophisticated tools like Java Object Layout and the total amount of
required memory can be roughly estimated using the following formulas:

Equation 1.1. Total Data Set in library mode

Total Data Set = Number Of Entries * (Key Size + Value Size + 200 b (Overhead))

Equation 1.2. Total Data Set in server mode

Total Data Set = Number Of Entries * (Serialized Key Size + Serialized Value Size + 200 b (Overhead))

Term overhead is used here as an average amount of additional memory (e.g. expiration or eviction
data) needed for storing an Entry in a Cache.

In case of Local or Replicated mode, all data needs to fit in memory, so calculating the amount of
required memory is trivial.

Calculating memory requirements for Distributed mode is slightly more complicated and requires using
the following:

Equation 1.3. Required memory in Distributed mode

Required Memo ry = Total Data Set*(Node Failures + 2)/(Nodes - Node Failures)
Where:

e Total Data Set - Estimated size of all data

® Nodes - The number of nodes in the cluster

e Node Failures - Number of possible failures (also number of owners - 1)
Calculated amount of memory should be used for setting Xmx and Xms parameters.
JVM as well as Red Hat Data Grid require additional memory for other tasks like searches, allocating
network buffers etc. It is advised to allocate no more than 50% of memory with living data when using
Red Hat Data Grid solely as a caching data store, and no more than 33% of memory with living data
when using Red Hat Data Grid to store and analyze the data using querying, distributed execution or

distributed streams.

When considering large heaps, make sure there's enough CPU to perform garbage collection efficiently.

http://openjdk.java.net/projects/code-tools/jol/

CHAPTER 2. JAVA VIRTUAL MACHINE SETTINGS

CHAPTER 2. JAVA VIRTUAL MACHINE SETTINGS

Java Virtual Machine tuning might be divided into sections like memory or GC. Below is a list of helpful
configuration parameters and a guide how to adjust them.

2.1. MEMORY SETTINGS

Adjusting memory size is one of the most crucial step in Red Hat Data Grid tuning. The most commonly
used JVM flags are:

® -Xms - Defines the minimum heap size allowed.
® -Xmx - Defines the maximum heap size allowed.
® -Xmn - Defines the minimum and maximum value for the young generation.

e -XX:NewRatio - Define the ratio between young and old generations. Should not be used if -
Xmn is enabled.

Using Xms equal to Xmx will prevent JVM from dynamically sizing memory and might decrease GC

pauses caused by resizing. It is a good practice to specify Xmn parameter. This guaranteed proper
behavior during load peak (in such case Red Hat Data Grid generates lots of small, short living objects).

2.2. GARBAGE COLLECTION

The main goal is to minimize the amount of time when JVM is paused. Having said that, CMS is a
suggested GC for Red Hat Data Grid applications.

The most frequently used JVM flags are:

e -XX:MaxGCPauseMillis - Sets a target for the maximum GC pause time. Should be tuned to
meet the SLA.

e -XX:+UseConcMarkSweepGC - Enables usage of the CMS collector.

o -XX:+CMSClassUnloadingEnabled - Allows class unloading when the CMS collector is
enabled.

e -XX:+UseParNewGC - Utilize a parallel collector for the young generation. This parameter
minimizes pausing by using multiple collection threads in parallel.

o -XX:+DisableExplicitGC - Prevent explicit garbage collections.

o -XX:+UseG1GC - Turn on G1 Garbage Collector.

2.3.OTHER SETTINGS
There are two additional parameters which are suggested to be used:
® -server - Enables server mode for the JVM.

o -XX:+ UselLargePages - Instructs the JVM to allocate memory in Large Pages. These pages
must be configured at the OS level for this parameter to function successfully.

Red Hat Data Grid 7.3 Red Hat Data Grid Performance Guide

2.4. EXAMPLE CONFIGURATION

In most of the cases we suggest using CMS. However when using the latest JVM, G1 might perform
slightly better.

32GB JVM

-server
-Xmx32G

-Xms32G

-Xmn8G
-XX:+UselLargePages
-XX:+UseConcMarkSweepGC
-XX:+UseParNewGC
-XX:+DisableExplicitGC

32GB JVM with G1 Garbage Collector

-server
-Xmx32G
-Xms32G
-Xmn8G
-XX:+UseG1GC

CHAPTER 3. NETWORK CONFIGURATION

CHAPTER 3. NETWORK CONFIGURATION

Red Hat Data Grid uses TCP/IP for sending packets over the network (for both cluster communication
when using TCP stack or when communication with Hot Rod clients)

In order to achieve the best results, it is recommended to increase TCP send and receive window size
(refer to you OS manual for instructions). The recommended values are:

® send window size - 640 KB

® receive window size - 25 MB

Red Hat Data Grid 7.3 Red Hat Data Grid Performance Guide

CHAPTER 4. NUMBER OF THREADS

Red Hat Data Grid tunes its thread pools according to the available CPU cores. Under Linux this will also
take into consideration taskset / CGroup quotas. It is possible to override the detected value by
specifying the system property infinispan.activeprocessorcount.

NOTE

Java 10 and later can limit the number of active processor using the VM flag -
XX:ActiveProcessorCount=xx.

CHAPTER 5. NUMBER OF THREADS (SERVER MODE ONLY)

CHAPTER 5. NUMBER OF THREADS (SERVER MODE ONLY)

Hot Rod Server uses worker threads which are activated by a client’s requests. It's important to match
the number of worker threads to the number of concurrent client requests:

Hot Rod Server worker thread pool size

<hotrod-connector socket-binding="hotrod" cache-container="local" worker-threads="200">
<!-- Additional configuration here -->
</hotrod-connector>

Red Hat Data Grid 7.3 Red Hat Data Grid Performance Guide

CHAPTER 6. CACHE STORE PERFORMANCE

In order to achieve the best performance, please follow the recommendations below when using Cache
Stores:

® Use async mode (write-behind) if possible
® Prevent cache misses by preloading data

e For JDBC Cache Store:

o Use indexes on id column to prevent table scans
o Use PRIMARY_KEY on id column

o Configure batch-size, fetch-size, etc

10

CHAPTER 7. HINTS FOR PROGRAM DEVELOPERS

CHAPTER 7. HINTS FOR PROGRAM DEVELOPERS

There are also several hints for developers which can be easily applied to the client application and will
boost up the performance.

7.1. IGNORE RETURN VALUES

When you're not interested in returning value of the #put(k, v) or #remove(k) method, use
Flag.IGNORE_RETURN_VALUES flag as shown below:

Using Flag.IGNORE_RETURN_VALUES

Cache noPreviousValueCache =
cache.getAdvancedCache().withFlags(Flag.IGNORE_RETURN_VALUES);
noPreviousValueCache.put(k, v);

Itis also possible to set this flag using ConfigurationBuilder

Using ConfigurationBuilder settings

ConfigurationBuilder cb = new ConfigurationBuilder();
cb.unsafe().unreliableReturnValues(irue);

7.2. USE exTERNALIZER FOR MARSHALLING

Red Hat Data Grid uses JBoss Marshalling to transfer objects over the wire. The most efficient way to
marshall user data is to provide an AdvancedExternalizer. This solutions prevents JBoss Marshalling
from sending class name over the network and allows to save some bandwidth:

User entity with Externalizer

import org.infinispan.marshall. AdvancedExternalizer;
public class Book {

final String name;
final String author;

public Book(String name, String author) {
this.name = name;
this.author = author;

}

public static class BookExternalizer
implements AdvancedExternalizer<Book> {

@Override
public void writeObject(ObjectOutput output, Book book)
throws IOException {
output.writeObject(book.name);
output.writeObject(book.author);

}

1

Red Hat Data Grid 7.3 Red Hat Data Grid Performance Guide

@Override
public Person readObject(Objectinput input)
throws IOException, ClassNotFoundException {
return new Person((String) input.readObject(), (String) input.readObject());

}

@Override
public Set<Class<? extends Book>> getTypeClasses() {
return Util.<Class<? extends Book>>asSet(Book.class);

}
@Override

public Integer getld() {
return 2345;

}
}
}

The Externalizer must be registered in cache configuration. See configuration examples below:

Adding Externalizer using XML

<cache-container>
<serialization>
<advanced-externalizer class="Book$BookExternalizer"/>
</serialization>
</cache-container>

Adding Externalizer using Java

GlobalConfigurationBuilder builder = ...
builder.serialization().addAdvancedExternalizer(new Book.BookExternalizer());

7.3.STORING STRINGS EFFICIENTLY
If your strings are mostly ASCII, convert them to UTF-8 and store them as byte[]:
e Using String#getBytes("UTF-8") allows to decrease size of the object

e Consider using G1 GC with additional JVM flag -XX:+UseStringDeduplication. This allows to
decrease memory footprint (see JEP 192 for details).

7.4. USE SIMPLE CACHE FOR LOCAL CACHES

When you don't need the full feature set of caches, you can set local cache to "simple" mode and
achieve non-trivial speedup while still using Red Hat Data Grid APL.

This is an example comparison of the difference, randomly reading/writing into cache with 2048 entries
as executed on 2x8-core Intel® Xeon® CPU E5-2640 v3 @ 2.60GHz:

Table 7.1. Number of operations per second (* std. dev.)

12

http://openjdk.java.net/jeps/192

Cache type

single-threaded
cache.get(...)

CHAPTER 7. HINTS FOR PROGRAM DEVELOPERS

32 threads
cache.get(...)

single-threaded
cache.put(...)

32 threads
cache.put(...)

Local cache 14,321,510 +
260,807

Simple cache 38,144,468 +
575,420

CHM 60,592,770 +
924,368

1141168 + 6,079 236,644,227 +
2,657,918
11,706,053 836,510,727
92,515 3,176,794
23,533,141+ 1,369,521,754 +
98,632 4,919,753

2,287,708 +
100,236

47,971,836
1,125,298

75,839,121 ¢
3,319,835

The CHM shows comparison for ConcurrentHashMap from JSR-166 with pluggable equality/hashCode
function, which is used as the underlying storage in Red Hat Data Grid.

Even though we use JMH to prevent some common pitfals of microbenchmarking, consider these
results only aproximative. Your mileage may vary.

13

http://openjdk.java.net/projects/code-tools/jmh/

	Table of Contents
	PREFACE
	CHAPTER 1. CAPACITY PLANNING
	CHAPTER 2. JAVA VIRTUAL MACHINE SETTINGS
	2.1. MEMORY SETTINGS
	2.2. GARBAGE COLLECTION
	2.3. OTHER SETTINGS
	2.4. EXAMPLE CONFIGURATION

	CHAPTER 3. NETWORK CONFIGURATION
	CHAPTER 4. NUMBER OF THREADS
	CHAPTER 5. NUMBER OF THREADS (SERVER MODE ONLY)
	CHAPTER 6. CACHE STORE PERFORMANCE
	CHAPTER 7. HINTS FOR PROGRAM DEVELOPERS
	7.1. IGNORE RETURN VALUES
	7.2. USE EXTERNALIZER FOR MARSHALLING
	7.3. STORING STRINGS EFFICIENTLY
	7.4. USE SIMPLE CACHE FOR LOCAL CACHES

