
Red Hat Container Development Kit 3.15

Getting Started Guide

Quick-start guide to using and developing with Red Hat Container Development Kit

Last Updated: 2021-01-27

Red Hat Container Development Kit 3.15 Getting Started Guide

Quick-start guide to using and developing with Red Hat Container Development Kit

Yana Hontyk
yhontyk@redhat.com

Kevin Owen
kowen@redhat.com

Chris Negus

Robert Krátký

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide shows how to get up to speed using Red Hat Container Development Kit. Included
instructions and examples guide through first steps developing containerized applications using
Docker, Kubernetes, and OpenShift Container Platform, both from your host workstation
(Microsoft Windows, macOS, or Red Hat Enterprise Linux) and from within the Container
Development Environment provided by Red Hat Container Development Kit.

. .

. .

Table of Contents

CHAPTER 1. GETTING STARTED WITH CONTAINER DEVELOPMENT KIT
1.1. INTRODUCING RED HAT CONTAINER DEVELOPMENT KIT

1.1.1. Understanding Container Development Kit documentation
1.2. PREPARING TO INSTALL CDK

1.2.1. Overview
1.2.2. Prerequisites

1.3. SETTING UP THE VIRTUALIZATION ENVIRONMENT
1.3.1. Overview
1.3.2. Red Hat Enterprise Linux

1.3.2.1. Setting Up the KVM Driver
1.3.2.2. Start libvirtd service

1.3.2.2.1. Next Steps
1.3.3. macOS

1.3.3.1. Setting Up the hyperkit Driver
1.3.3.1.1. Installing hyperkit
1.3.3.1.2. Installing docker-machine-driver-hyperkit
1.3.3.1.3. Next Steps

1.3.4. Windows
1.3.4.1. Setting Up the Hyper-V Hypervisor

1.3.4.1.1. Next Steps
1.3.5. Setting Up CDK to Use VirtualBox

1.3.5.1. Use VirtualBox Temporarily
1.3.5.2. Use VirtualBox Permanently
1.3.5.3. Next Steps

1.4. INSTALLING CDK
1.5. CDK QUICKSTART

1.5.1. Overview
1.5.2. Setting up CDK
1.5.3. Starting CDK
1.5.4. Deploying a Sample Application

1.6. UNINSTALLING CDK
1.6.1. Overview
1.6.2. Uninstalling CDK

CHAPTER 2. USING CDK
2.1. BASIC USAGE

2.1.1. Overview
2.1.2. CDK Life-cycle

2.1.2.1. The minishift setup-cdk Command
2.1.2.2. The minishift start Command
2.1.2.3. The minishift stop Command
2.1.2.4. The minishift delete Command

2.1.3. Runtime Options
2.1.3.1. Flags
2.1.3.2. Environment Variables
2.1.3.3. Persistent Configuration

2.1.3.3.1. Setting Persistent Configuration Values
2.1.3.3.2. Unsetting Persistent Configuration Values

2.1.4. Persistent Volumes
2.1.5. HTTP/HTTPS Proxies
2.1.6. Networking

6
6
6
6
6
7
8
8
8
8
9
9
9
9
9
9

10
10
10
11
11
11
11
11
11

12
12
13
13
15
16
16
16

17
17
17
18
18
18
18
18
19
19
19

20
20
21
21
21
22

Table of Contents

1

2.1.7. Connecting to the CDK VM with SSH
2.2. CDK PROFILES

2.2.1. Overview
2.2.2. Creating Profiles

2.2.2.1. Using the --profile Flag
2.2.2.2. Using the profile set Command

2.2.3. Listing Profiles
2.2.4. Switching Profiles
2.2.5. Deleting Profiles
2.2.6. Example Workflow for Profile Configuration

2.3. IMAGE CACHING
2.3.1. Overview
2.3.2. Explicit Image Caching

2.3.2.1. Importing and Exporting Single Images
2.3.2.2. Listing Cached Images
2.3.2.3. Persisting Cached Image Names
2.3.2.4. Exporting and Importing All Images

2.3.3. Implicit Image Caching
2.3.4. Delete Image from Local Cache

2.4. ADD-ONS
2.4.1. Overview
2.4.2. OpenShift-Version Semantics
2.4.3. Minishift-Version Semantics
2.4.4. Defining Add-on Dependencies
2.4.5. Add-on Commands
2.4.6. Variable Interpolation

2.4.6.1. Built-in Variables
2.4.6.2. Dynamic Variables
2.4.6.3. Internal Variables

2.4.7. Default Add-ons
2.4.7.1. Add-ons by the Community

2.4.8. Installing Add-ons
2.4.9. Enabling and Disabling Add-ons

2.4.9.1. Add-on Priorities
2.4.10. Applying Add-ons
2.4.11. Removing Add-ons
2.4.12. Uninstalling Add-ons
2.4.13. Writing Custom Add-ons

2.5. HOST FOLDERS
2.5.1. Overview
2.5.2. The minishift hostfolder Command

2.5.2.1. Prerequisites
2.5.2.1.1. SSHFS
2.5.2.1.2. CIFS

2.5.2.2. Displaying Host Folders
2.5.2.3. Adding Host Folders

2.5.2.3.1. CIFS
2.5.2.3.2. SSHFS
2.5.2.3.3. Instance-Specific Host Folders

2.5.2.4. Mounting Host Folders
2.5.2.4.1. Auto-Mounting Host Folders

2.5.2.5. Unmounting Host Folders
2.5.2.6. Deleting Host Folders

22
22
23
23
23
24
24
24
25
25
25
25
26
26
26
27
27
27
28
28
28
29
30
30
31
31
32
32
33
33
34
34
35
35
35
36
36
36
37
37
37
38
38
38
38
38
38
39
39
39
40
40
40

Red Hat Container Development Kit 3.15 Getting Started Guide

2

. .

2.6. ASSIGN STATIC IP ADDRESS
2.6.1. Overview
2.6.2. Assign IP Address to Hyper-V
2.6.3. Set Fixed IP Address

2.7. CDK DOCKER DAEMON
2.7.1. Overview
2.7.2. Console Configuration

2.8. EXPERIMENTAL FEATURES
2.8.1. Overview
2.8.2. Enabling Experimental oc cluster up Flags
2.8.3. Local Proxy Server
2.8.4. Local DNS Server

2.8.4.1. Local DNS Setup for macOS
2.8.4.1.1. Enable tap devices
2.8.4.1.2. Use a tap device to create a network service
2.8.4.1.3. Adding the Network Service to ServiceOrder array
2.8.4.1.4. Adding the Network Service to Service dictionary
2.8.4.1.5. Adding resolver config

2.8.5. CDK System Tray
2.8.6. Timezone Setup

2.9. RUN AGAINST AN EXISTING MACHINE
2.9.1. Overview
2.9.2. Configuring an Existing Remote Machine
2.9.3. Running Against an Existing Remote Machine

2.10. CONVERTING AN EXISTING DOCKER COMPOSE PROJECT
2.10.1. Installing Kompose

2.10.1.1. Manually
2.10.1.2. With Chocolatey
2.10.1.3. With Homebrew
2.10.1.4. On Red Hat Enterprise Linux

2.10.2. Using Kompose

CHAPTER 3. INTERACTING WITH OPENSHIFT USING CONTAINER DEVELOPMENT KIT
3.1. USING THE OPENSHIFT CLIENT BINARY (OC)

3.1.1. Overview
3.1.2. CDK CLI Profile
3.1.3. Logging Into the Cluster
3.1.4. Accessing the Web Console
3.1.5. Accessing OpenShift Services
3.1.6. Viewing OpenShift Logs
3.1.7. Updating OpenShift Configuration

3.1.7.1. Example: Configuring cross-origin resource sharing
3.1.7.2. Example: Changing the OpenShift Routing Suffix

3.1.8. Add Component to OpenShift Cluster
3.1.8.1. Example: Add service-catalog component

3.1.9. List Valid Components to Add to OpenShift Cluster
3.2. EXPOSING SERVICES

3.2.1. Overview
3.2.2. Routes
3.2.3. NodePort Services
3.2.4. Port Forwarding

3.2.4.1. Using oc port-forward
3.2.4.2. Using VirtualBox tools

40
40
41
41

42
42
42
43
43
43
43
44
44
44
45
46
46
47
47
48
48
48
48
49
49
50
50
50
50
50
50

52
52
52
52
52
53
53
53
53
54
54
54
55
55
55
55
55
55
56
56
56

Table of Contents

3

. .

3.3. ACCESSING THE OPENSHIFT DOCKER REGISTRY
3.3.1. Overview
3.3.2. Logging Into the Registry
3.3.3. Deploying Applications

CHAPTER 4. TROUBLESHOOTING CDK
4.1. TROUBLESHOOTING GETTING STARTED

4.1.1. Overview
4.1.2. CDK startup check failed

4.1.2.1. Driver plug-in configuration
4.1.2.2. Persistent storage volume configuration and usage
4.1.2.3. External network connectivity

4.1.3. OpenShift web console does not work with older versions of Safari
4.2. TROUBLESHOOTING DRIVER PLUG-INS

4.2.1. Overview
4.2.2. KVM/libvirt

4.2.2.1. Undefining virsh snapshots fail
4.2.2.2. Error creating new host: dial tcp: missing address
4.2.2.3. Failed to connect socket to '/var/run/libvirt/virtlogd-sock'
4.2.2.4. Domain 'minishift' already exists…

4.2.3. VirtualBox
4.2.3.1. Error machine does not exist

4.2.4. Hyper-V
4.2.4.1. Hyper-V commands must be run as an Administrator
4.2.4.2. CDK running with Hyper-V fails when connected to OpenVPN

4.3. TROUBLESHOOTING MISCELLANEOUS
4.3.1. Overview
4.3.2. The root filesystem of the CDK VM exceeds overlay size
4.3.3. Special characters cause passwords to fail
4.3.4. Cannot access web console with Microsoft Edge
4.3.5. X.509 certificate is valid for 10.0.2.15, 127.0.0.1, 172.17.0.1, 172.30.0.1, 192.168.99.100, not 192.168.99.101
4.3.6. Removing the subscription password from an OS-native keychain

4.3.6.1. Windows
4.3.6.2. Red Hat Enterprise Linux
4.3.6.3. macOS

56
56
56
57

58
58
58
58
58
58
59
59
59
59
59
59
60
60
61
61
61
61
61

62
62
62
62
63
63
63
63
64
64
64

Red Hat Container Development Kit 3.15 Getting Started Guide

4

Table of Contents

5

CHAPTER 1. GETTING STARTED WITH
CONTAINER DEVELOPMENT KIT

This section contains information about setting up, installing, and uninstalling
Container Development Kit.

1.1. INTRODUCING RED HAT CONTAINER DEVELOPMENT KIT

Red Hat Container Development Kit provides a platform for developing containerized applications. It is a
set of tools that enables developers to quickly and easily set up an environment for developing and
testing containerized applications on the Red Hat Enterprise Linux platform.

Container Development Kit provides a personal Container Development Environment you can
install on your own laptop, desktop, or server system. The Container Development Environment
is provided in the form of a Red Hat Enterprise Linux virtual machine.

Container Development Kit is available for the Microsoft Windows, macOS, and Linux operating
systems, thus allowing developers to use their preferred platform while producing applications
ready to be deployed in the Red Hat Enterprise Linux ecosystem.

Container Development Kit is a part of the Red Hat Developers program, which provides tools,
resources, and support for developers who wish to utilize Red Hat solutions and products to create
applications, both locally and in the cloud. For additional information and to register to become a part of
the program, visit developers.redhat.com.

1.1.1. Understanding Container Development Kit documentation

The Red Hat Container Development Kit 3.15 Release Notes and Known Issues contains
information about the current release of the product as well as a list of known problems that
users may encounter when using it.

The Container Development Kit Getting Started Guide contains instructions on how to install
and start using the Container Development Environment to develop Red Hat Enterprise Linux-
based containers using tools and services such as OpenShift Container Platform, Docker,
Eclipse, and various command line tools.

Report issues with Red Hat Container Development Kit or request new features using the CDK
project at https://issues.jboss.org/projects/CDK.

Report issues with the Red Hat Container Development Kit 3.15 Release Notes and Known
Issues and Container Development Kit Getting Started Guide using the RHDEVDOCS project
at https://issues.jboss.org/projects/RHDEVDOCS.

1.2. PREPARING TO INSTALL CDK

1.2.1. Overview

The following section describes how to install CDK and the required dependencies.

These are the basic steps for setting up CDK on your personal system:

1. Set up your virtualization environment

2. Download CDK software for your operating system from the Red Hat Container Development

Red Hat Container Development Kit 3.15 Getting Started Guide

6

http://developers.redhat.com
http://developers.redhat.com
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.15/html-single/release_notes_and_known_issues/
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.15/html-single/getting_started_guide/
https://issues.jboss.org/projects/CDK
https://issues.jboss.org/projects/RHDEVDOCS

2. Download CDK software for your operating system from the Red Hat Container Development
Kit Download page

3. Install CDK

4. Set up and start CDK

5. Configure CDK so you can use it efficiently

The setup procedure should be run as a regular user with permission to launch virtual machines. In the
procedure, you will see how to assign that permission, along with ways to configure your hypervisor and
command shell to start and effectively interact with CDK.

1.2.2. Prerequisites

CDK requires a hypervisor to start the virtual machine on which the OpenShift cluster is provisioned.
Verify that the hypervisor of your choice is installed and enabled on your system before you set up CDK.
Once the hypervisor is up and running, additional setup is required for CDK to work with that hypervisor.

Depending on your host operating system, you have the choice of the following recommended native
hypervisors:

macOS

hyperkit

Linux

KVM

Windows

Hyper-V

NOTE

To use CDK with Hyper-V ensure that, after you install Hyper-V, you also add
a Virtual Switch using the Hyper-V Manager and set the configuration option
hyperv-virtual-switch to this virtual switch. For specific configuration steps
see the Setting Up the Hyper-V Hypervisor section.

All Platforms

VirtualBox

NOTE

VirtualBox 5.1.12 or later is recommended on Windows to avoid the issue Error:
machine does not exist. If you encounter issues related to the hypervisor, see
the Troubleshooting Driver Plug-ins section.

Refer to the documentation for each hypervisor to determine the hardware and operating system
versions needed to run that hypervisor.

CHAPTER 1. GETTING STARTED WITH CONTAINER DEVELOPMENT KIT

7

https://developers.redhat.com/products/cdk/download/
https://github.com/moby/hyperkit
https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/connect-to-network
https://www.virtualbox.org/wiki/Downloads

1.3. SETTING UP THE VIRTUALIZATION ENVIRONMENT

1.3.1. Overview

Follow the appropriate procedure to set up the hypervisor for your particular operating system. CDK
uses libmachine and its driver plug-in architecture to provide a consistent way to manage the CDK VM.

Some hypervisors require manual installation of the driver plug-in. CDK embeds the VirtualBox driver
plug-in, so no additional steps are required to configure it. However, VirtualBox will need to be identified
to CDK via the --vm-driver virtualbox flag or persistant configuration settings. See Setting Up CDK to
Use VirtualBox for more information.

See the appropriate section for your hypervisor and operating system:

For Red Hat Enterprise Linux, set up the KVM driver

For macOS, set up the hyperkit driver

For Windows, set up the Hyper-V hypervisor

For VirtualBox, set up CDK to use VirtualBox

1.3.2. Red Hat Enterprise Linux

1.3.2.1. Setting Up the KVM Driver

CDK is currently tested against docker-machine-driver-kvm version 0.10.0.

1. As root, install the KVM binary and make it executable as follows:

curl -L https://github.com/dhiltgen/docker-machine-kvm/releases/download/v0.10.0/docker-
machine-driver-kvm-centos7 -o /usr/local/bin/docker-machine-driver-kvm
chmod +x /usr/local/bin/docker-machine-driver-kvm

For more information, see the GitHub documentation of the Docker Machine KVM driver.

2. As root, install libvirt and qemu-kvm on your system:

yum install libvirt qemu-kvm

3. As root, add yourself to the libvirt group:

usermod -a -G libvirt username

4. Update your current session to apply the group change:

$ newgrp libvirt

5. Start the libvirtd service as root:

systemctl start libvirtd
systemctl enable libvirtd

Red Hat Container Development Kit 3.15 Getting Started Guide

8

https://github.com/docker/machine/tree/master/libmachine
https://github.com/dhiltgen/docker-machine-kvm#quick-start-instructions

1.3.2.2. Start libvirtd service

1. Check the status of libvirtd:

$ systemctl is-active libvirtd

1. If libvirtd is not active, start the libvirtd service as root:

systemctl start libvirtd

1.3.2.2.1. Next Steps

Proceed to Installing CDK once your hypervisor has been installed and configured.

1.3.3. macOS

1.3.3.1. Setting Up the hyperkit Driver

CDK is currently tested against docker-machine-driver-hyperkit version 1.0.0.

Using hyperkit requires having both hyperkit and docker-machine-driver-hyperkit installed.

1.3.3.1.1. Installing hyperkit

If you have Docker Desktop for macOS installed, hyperkit is already installed.

If you use Homebrew you can install the latest version of hyperkit:

$ brew install hyperkit

1.3.3.1.2. Installing docker-machine-driver-hyperkit

If you use Homebrew you can install the latest version of docker-machine-driver-hyperkit:

$ brew install docker-machine-driver-hyperkit

Alternatively, you can download and install the docker-machine-driver-hyperkit binary and
place it in a directory which is on your PATH environment variable. The directory /usr/local/bin
is a good choice, since it is the default installation directory for Docker Machine binaries.

The following steps explain the installation of the docker-machine-driver-hyperkit binary to the
/usr/local/bin/ directory:

1. Download the docker-machine-driver-hyperkit binary using:

$ sudo curl -L https://github.com/machine-drivers/docker-machine-driver-
hyperkit/releases/download/v1.0.0/docker-machine-driver-hyperkit -o /usr/local/bin/docker-
machine-driver-hyperkit

2. Enable root access for the docker-machine-driver-hyperkit binary and add it to the default
wheel group:

CHAPTER 1. GETTING STARTED WITH CONTAINER DEVELOPMENT KIT

9

https://docs.docker.com/docker-for-mac/
https://brew.sh
https://brew.sh

$ sudo chown root:wheel /usr/local/bin/docker-machine-driver-hyperkit

3. Set owner User ID (SUID) for the binary as follows:

$ sudo chmod u+s,+x /usr/local/bin/docker-machine-driver-hyperkit

NOTE

The downloaded docker-machine-driver-hyperkit binary is compiled against a specific
version of macOS. It is possible that the driver will fail to work after a macOS version
upgrade. In this case you can try to compile the driver from source:

$ go get -u -d github.com/machine-drivers/docker-machine-driver-hyperkit
$ cd $GOPATH/src/github.com/machine-drivers/docker-machine-driver-hyperkit

Install docker-machine-driver-hyperkit binary into /usr/local/bin
$ make build

For more information, see the hyperkit driver documentation on GitHub.

1.3.3.1.3. Next Steps

Proceed to Installing CDK once your hypervisor has been installed and configured.

1.3.4. Windows

1.3.4.1. Setting Up the Hyper-V Hypervisor

To use CDK with Hyper-V:

1. Install Hyper-V.

2. Add the user to the local Hyper-V Administrators group.

NOTE

This is required to allow the user to create and delete virtual machines with the
Hyper-V Management API. For more information, see Hyper-V commands must
be run as an Administrator.

3. Add an External Virtual Switch .

4. Verify that you pair the virtual switch with a network card (wired or wireless) that is connected to
the network.

5. Use the configuration option hyperv-virtual-switch or startup flag --hyperv-virtual-switch to
set the name of the external virtual switch you want to use for CDK.
For example, on PowerShell use

PS> minishift config set hyperv-virtual-switch "External (Wireless)"

or

Red Hat Container Development Kit 3.15 Getting Started Guide

10

https://github.com/machine-drivers/docker-machine-driver-hyperkit/blob/master/README.md
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/connect-to-network

PS> minishift start --hyperv-virtual-switch "External (Wireless)"

NOTE

The name of the virtual switch is case sensitive.

The use of the environment variable HYPERV_VIRTUAL_SWITCH has been
deprecated. Instead MINISHIFT_HYPERV_VIRTUAL_SWITCH can be used
as a configuration option, although this is not recommended as environment
variables on Windows do not support non-ASCII characters.

1.3.4.1.1. Next Steps

Proceed to Installing CDK once your hypervisor has been installed and configured.

1.3.5. Setting Up CDK to Use VirtualBox

VirtualBox must be manually installed in order to use the embedded VirtualBox drivers. VirtualBox
version 5.1.12 or later is required. Ensure that you download and install VirtualBox before using the
embedded drivers.

VirtualBox must be identified to CDK through either the --vm-driver virtualbox flag or persistant
configuration options.

1.3.5.1. Use VirtualBox Temporarily

The --vm-driver virtualbox flag will need to be given on the command line each time the minishift
start command is run. For example:

$ minishift start --vm-driver virtualbox

1.3.5.2. Use VirtualBox Permanently

Setting the vm-driver option as a persistent configuration option allows you to run minishift start
without explicitly passing the --vm-driver virtualbox flag each time. You may set the vm-driver
persistent configuration option as follows:

$ minishift config set vm-driver virtualbox

NOTE

The vm-driver persistent configuration option must be supplied before minishift start
has been run. If you have already run minishift start, ensure that you run minishift
delete, set the configuration with minishift config set vm-driver virtualbox, then run
minishift start in order to make use of the VirtualBox driver.

1.3.5.3. Next Steps

Proceed to Installing CDK once your hypervisor has been installed and configured.

1.4. INSTALLING CDK

CHAPTER 1. GETTING STARTED WITH CONTAINER DEVELOPMENT KIT

11

https://www.virtualbox.org/wiki/Downloads

NOTE

Before you can download CDK software, you need to either register with the Red Hat
Developer Program site or login to the Red Hat customer portal with Red Hat
subscription credentials.

1. Download CDK for your operating system from the Red Hat Container Development Kit
Download page.

2. Copy the downloaded minishift file to a directory in your PATH and make it executable. The
downloaded executable is named cdk-3.15.0-1-minishift-darwin-amd64 (for macOS), cdk-
3.15.0-1-minishift-linux-amd64 (for Red Hat Enterprise Linux) or cdk-3.15.0-1-minishift-
windows-amd64.exe (for Windows). Assuming the executable is in the ~/Downloads directory,
follow the procedure for your operating system:
For Red Hat Enterprise Linux:

$ mkdir -p ~/bin
$ cp ~/Downloads/cdk-3.15.0-1-minishift* ~/bin/minishift
$ chmod +x ~/bin/minishift
$ export PATH=$PATH:$HOME/bin
$ echo 'export PATH=$PATH:$HOME/bin' >> ~/.bashrc

For macOS:

$ mkdir -p ~/bin
$ cp ~/Downloads/cdk-3.15.0-2-minishift* ~/bin/minishift
$ chmod +x ~/bin/minishift
$ export PATH=$PATH:$HOME/bin
$ echo export PATH=$PATH:$HOME/bin >> ~/.bash_profile

For Windows:

Create the desired directory and copy the downloaded CDK binary to the directory, renaming
the binary to minishift.exe. Add the directory path to the Windows PATH variable.

If it’s difficult to get minishift.exe in your PATH, you can simply run it from the current directory
as ./minishift.exe (or .\minishift.exe in Command Prompt).

NOTE

On the Windows operating system, due to issue #236, you need to execute the
CDK binary from your local C:\ drive. You cannot run CDK from a network drive.

1.5. CDK QUICKSTART

1.5.1. Overview

This section contains a brief demo of CDK and of the provisioned OpenShift cluster. For details on the
usage of CDK, see the Basic Usage section.

The interaction with OpenShift is with the command line tool oc which is copied to your host. For more
information on how CDK can assist you in interacting with and configuring your local OpenShift instance,
see the OpenShift Client Binary section.

Red Hat Container Development Kit 3.15 Getting Started Guide

12

https://developers.redhat.com/
https://developers.redhat.com/products/cdk/download/
https://github.com/minishift/minishift/issues/236

For more information about the OpenShift cluster architecture, see Architecture Overview in the
OpenShift documentation.

The following steps describe how to get started with CDK on a Linux operating system with the KVM
hypervisor driver.

1.5.2. Setting up CDK

The minishift setup-cdk command gets and configures the components needed to run CDK on your
system. By default, minishift setup-cdk places CDK content in your ~/.minishift directory
(%USERPROFILE%/.minishift on Windows).

IMPORTANT

To use a directory other than ~/.minishift, you must set the --minishift-home flag or
MINISHIFT_HOME environment variable, as described in Environment Variables.

Run the following command to set up CDK for Red Hat Enterprise Linux:

$ minishift setup-cdk
Setting up CDK 3 on host using '/home/user/.minishift' as Minishift's home directory
Copying minishift-rhel7.iso to '/home/user/.minishift/cache/iso/minishift-rhel7.iso'
Copying oc to '/home/user/.minishift/cache/oc/v3.10.45/linux/oc'
Creating configuration file '/home/user/.minishift/config/config.json'
Creating marker file '/home/user/.minishift/cdk'
Default add-ons anyuid, admin-user, xpaas, registry-route, che, eap-cd installed
Default add-ons anyuid, admin-user, xpaas enabled
CDK 3 setup complete.

For Windows or macOS: Running the minishift setup-cdk command on Windows and macOS results in
slightly different output, based on some different components and pathnames.

1.5.3. Starting CDK

1. By default, minishift start prompts you for your Red Hat Subscription Manager account
username and password. You can enter that information or choose instead to:

Skip registration: Add the --skip-registration option to minishift start to not register the
CDK VM.

Register permanently: You can export registration information to environment variables so
that minishift picks it up automatically each time it starts.

IMPORTANT

Storing unencrypted registration information in environment variables is not
secure. Entering your credentials through the minishift start prompt is
recommended for security.

Export your registration information as follows:

For Red Hat Enterprise Linux:

$ export MINISHIFT_USERNAME='<RED_HAT_USERNAME>'

CHAPTER 1. GETTING STARTED WITH CONTAINER DEVELOPMENT KIT

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/architecture/architecture-index

$ export MINISHIFT_PASSWORD='<RED_HAT_PASSWORD>'
$ echo export MINISHIFT_USERNAME=$MINISHIFT_USERNAME >> ~/.bashrc
$ echo export MINISHIFT_PASSWORD=$MINISHIFT_PASSWORD >> ~/.bashrc

For macOS:

$ export MINISHIFT_USERNAME='<RED_HAT_USERNAME>'
$ export MINISHIFT_PASSWORD='<RED_HAT_PASSWORD>'
$ echo export MINISHIFT_USERNAME=$MINISHIFT_USERNAME >> ~/.bash_profile
$ echo export MINISHIFT_PASSWORD=$MINISHIFT_PASSWORD >> ~/.bash_profile

For Windows:

Using Command Prompt:

C:\> set MINISHIFT_USERNAME='<RED_HAT_USERNAME>'
C:\> set MINISHIFT_PASSWORD='<RED_HAT_PASSWORD>'
C:\> setx MINISHIFT_USERNAME %MINISHIFT_USERNAME%
C:\> setx MINISHIFT_PASSWORD %MINISHIFT_PASSWORD%

Using PowerShell:

PS> $env:MINISHIFT_USERNAME = '<RED_HAT_USERNAME>'
PS> $env:MINISHIFT_PASSWORD = '<RED_HAT_PASSWORD>'
PS> setx MINISHIFT_USERNAME $env:MINISHIFT_USERNAME
PS> setx MINISHIFT_PASSWORD $env:MINISHIFT_PASSWORD

2. Run the minishift start command:

$ minishift start
-- Starting profile 'minishift'
...
-- Minishift VM will be configured with ...
 Memory: 4 GB
 vCPUs : 2
 Disk size: 20 GB
-- Starting Minishift VM OK
-- Registering machine using subscription-manager
 Registration in progress OK [42s]
...
 OpenShift server started.

 The server is accessible via web console at:
 https://192.168.42.60:8443/console

 You are logged in as:
 User: developer
 Password: <any value>

 To login as administrator:
 oc login -u system:admin
...

NOTE

Red Hat Container Development Kit 3.15 Getting Started Guide

14

NOTE

The IP is dynamically generated for each OpenShift cluster. To check the IP,
run the minishift ip command.

By default, CDK uses the driver most relevant to the host OS. To use a
different driver, set the --vm-driver flag in minishift start. For example, to
use VirtualBox instead of KVM on Linux operating systems, run minishift
start --vm-driver=virtualbox.

While CDK starts it runs several checks to make sure that the CDK VM and
the OpenShift cluster are able to start correctly. If any startup checks fail, see
the Troubleshooting Getting Started topic for information about possible
causes and solutions.

For more information about minishift start options, see the minishift start
command reference.

3. Use minishift oc-env to display the command you need to type into your shell in order to add
the oc binary to your PATH environment variable. The output of oc-env will differ depending
on OS and shell type.

$ minishift oc-env
export PATH="/home/user/.minishift/cache/oc/v3.11.346/linux:$PATH"
Run this command to configure your shell:
eval $(minishift oc-env)

For more information about interacting with OpenShift with the command line interface and the Web
console, see the OpenShift Client Binary section.

1.5.4. Deploying a Sample Application

OpenShift provides various sample applications, such as templates, builder applications, and quickstarts.
The following steps describe how to deploy a sample Node.js application from the command line.

1. Create a Node.js example application:

$ oc new-app https://github.com/openshift/nodejs-ex -l name=myapp

2. Track the build log until the application is built and deployed:

$ oc logs -f bc/nodejs-ex

3. Expose a route to the service:

$ oc expose svc/nodejs-ex

4. Access the application:

$ minishift openshift service nodejs-ex --in-browser

5. To stop CDK, use the following command:

CHAPTER 1. GETTING STARTED WITH CONTAINER DEVELOPMENT KIT

15

https://docs.okd.io/latest/minishift/command-ref/minishift_start.html

$ minishift stop
Stopping local OpenShift cluster...
Unregistering machine
Cluster stopped.

For more information about creating applications in OpenShift, see Creating New Applications in the
OpenShift documentation.

1.6. UNINSTALLING CDK

1.6.1. Overview

This section describes how you can uninstall the minishift binary and delete associated files.

1.6.2. Uninstalling CDK

1. Delete the CDK VM and any VM-specific files:

$ minishift delete

This command deletes everything in the MINISHIFT_HOME/.minishift/machines/minishift
directory. Other cached data and the persistent configuration are not removed.

2. To completely uninstall CDK, delete everything in the MINISHIFT_HOME directory (default
~/.minishift):
For Red Hat Enterprise Linux and macOS:

$ rm -rf ~/.minishift

For Windows PowerShell:

Replace <MINISHIFT_HOME> with the location of your home directory.

PS C:\> Remove-Item -Recurse -Force C:\<MINISHIFT_HOME>\.minishift\

For Windows command prompt:

Replace <MINISHIFT_HOME> with the location of your home directory. (You may need to use
the del /s command instead.)

c:\> rm -r c:\<MINISHIFT_HOME>\.minishift

3. With your hypervisor management tool, confirm that there are no remaining artifacts related to
the CDK VM. For example, if you use KVM, you need to run the virsh command.

Red Hat Container Development Kit 3.15 Getting Started Guide

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/developer_guide/application-life-cycle-management#dev-guide-new-app

CHAPTER 2. USING CDK
This section describes how to use the minishift command-line interface (CLI). It covers the basic
commands as well as advanced features like profiles, image caching, add-ons and host folders.

For details about using the minishift and oc commands to manage your local OpenShift cluster, see
Chapter 3, Interacting with OpenShift using Container Development Kit .

2.1. BASIC USAGE

2.1.1. Overview

When you use CDK, you interact with the following components:

the CDK virtual machine (VM)

the Docker daemon running on the VM

the OpenShift cluster running on the Docker daemon

The CDK architecture diagram outlines these components. The minishift binary, placed on the PATH
for easy execution, is used to start, stop, and delete the CDK VM. The VM itself is bootstrapped off of a
Red Hat Enterprise Linux Live ISO.

Some CDK commands, for example docker-env, interact with the Docker daemon, whilst others
communicate with the OpenShift cluster, for example the openshift command.

Once the OpenShift cluster is up and running, you interact with it using the oc binary. CDK caches this
binary under $MINISHIFT_HOME (per default ~/.minishift). minishift oc-env is an easy way to add the
oc binary to your PATH.

For more details about using CDK to manage your local OpenShift cluster, see Chapter 3, Interacting
with OpenShift using Container Development Kit.

Figure 2.1. : CDK architecture

CHAPTER 2. USING CDK

17

Figure 2.1. : CDK architecture

2.1.2. CDK Life-cycle

2.1.2.1. The minishift setup-cdk Command

The minishift setup-cdk command copies a Red Hat Enterprise Linux ISO image to the CDK cache,
creates a default configuration file, installs and enables default add-ons, and creates a marker file to
confirm that the command has been run.

The command also copies the oc binary to your host so that you can interact with OpenShift through
the oc command line tool or through the Web console, which can be accessed through the URL
provided in the output of the minishift start command.

2.1.2.2. The minishift start Command

The minishift start command creates and configures the CDK VM and provisions a local, single-node
OpenShift cluster within the CDK VM.

2.1.2.3. The minishift stop Command

The minishift stop command stops your OpenShift cluster and shuts down the CDK VM, but preserves
the OpenShift cluster state.

Starting CDK again will restore the OpenShift cluster, allowing you to continue working from the last
session. However, you must enter the same parameters that you used in the original start command.

See the Persistent Configuration section for more information on how to persist CDK settings.

2.1.2.4. The minishift delete Command

The minishift delete command deletes the OpenShift cluster, and also shuts down and deletes the CDK

Red Hat Container Development Kit 3.15 Getting Started Guide

18

The minishift delete command deletes the OpenShift cluster, and also shuts down and deletes the CDK
VM. No data or state are preserved.

2.1.3. Runtime Options

The runtime behavior of CDK can be controlled through flags, environment variables, and persistent
configuration options.

The following precedence order is applied to control the behavior of CDK. Each action in the following
list takes precedence over the action below it:

1. Use command line flags as specified in the Flags section.

2. Set environment variables as described in the Environment Variables section.

3. Use persistent configuration options as described in the Persistent Configuration section.

4. Accept the default value as defined by CDK.

2.1.3.1. Flags

You can use command line flags with CDK to specify options and direct its behavior. This has the highest
precedence. Almost all commands have flags, although different commands might have different flags.
Some of the commonly-used command line flags of the minishift start command are cpus, memory or
vm-driver.

2.1.3.2. Environment Variables

CDK allows you to specify command line flags you commonly use through environment variables. To do
so, apply the following rules to the flag you want to set as an environment variable.

1. Apply MINISHIFT_ as a prefix to the flag you want to set as an environment variable. For
example, the vm-driver flag of the minishift start command becomes MINISHIFT_vm-driver.

2. Use uppercase characters for the flag, so MINISHIFT_vm-driver in the above example
becomes MINISHIFT_VM-DRIVER.

3. Replace - with _, so MINISHIFT_VM-DRIVER becomes MINISHIFT_VM_DRIVER.

Environment variables can be used to replace any option of any CDK command. A common example is
the URL of the ISO to be used. Usually, you specify it with the iso-url flag of the minishift start
command. Applying the above rules, you can also specify this URL by setting the environment variable as
MINISHIFT_ISO_URL.

NOTE

CHAPTER 2. USING CDK

19

NOTE

You can also use the MINISHIFT_HOME environment variable, to choose a different
home directory for CDK. By default, the minishift command places all runtime state into
~/.minishift. This environment variable is currently experimental and semantics might
change in future releases.

To use MINISHIFT_HOME, you should set the new home directory when you first set up
CDK. For example, this sets the minishift home directory to ~/.mynewdir on a Linux
system:

$ minishift setup-cdk --minishift-home ~/.mynewdir
$ export MINISHIFT_HOME=~/.mynewdir
$ echo 'export MINISHIFT_HOME=~/.mynewdir' >> ~/.bashrc

2.1.3.3. Persistent Configuration

Using persistent configuration allows you to control CDK behavior without specifying actual command
line flags, similar to the way you use environment variables. You can also define global configuration
using the --global flag. Global configuration is applicable to all profiles.

CDK maintains a configuration file in $MINISHIFT_HOME/config/config.json. This file can be used to
set commonly-used command line flags persistently for individual profiles. The global configuration file
is maintained at MINISHIFT_HOME/config/global.json.

NOTE

Persistent configuration can only be applied to the set of supported
configuration options that are listed in the synopsis of the minishift config sub-
command. This is different from environment variables, which can be used to
replace any option of any command.

By default, minishift persists start flags to persistent configuration. Use
minishift config set save-start-flags false to disable this behavior.

2.1.3.3.1. Setting Persistent Configuration Values

The easiest way to change a persistent configuration option is with the minishift config set sub-
command. For example:

Set default memory 4096 MB
$ minishift config set memory 4096

The easiest way to set a persistent configuration option across all profiles is with the minishift config
set --global sub-command.

For example, you can set the default memory to 8192 MB for every profile as follows:

$ minishift config set --global memory 8192

Flags which can be used multiple times per command invocation, like docker-env or insecure-registry,
need to be comma-separated when used with the config set command. For example, from the CLI, you
can use insecure-registry like this:

Red Hat Container Development Kit 3.15 Getting Started Guide

20

$ minishift start --insecure-registry hub.foo.com --insecure-registry hub.bar.com

To configure the same registries in the persistent configuration, run the following command:

$ minishift config set insecure-registry hub.foo.com,hub.bar.com

To view all persistent configuration values, you can use the minishift config view sub-command:

$ minishift config view
- memory: 4096

To view all persistent configuration values in the global configuration file, you can use the minishift
config view --global sub-command:

$ minishift config view --global
- memory: 8192

Alternatively, you can display a single value with the minishift config get sub-command:

$ minishift config get memory
4096

2.1.3.3.2. Unsetting Persistent Configuration Values

To remove a persistent configuration option, you can use the minishift config unset sub-command.
For example:

$ minishift config unset memory

NOTE

The precedence for user-defined values is as follows:

1. Command line flags.

2. Environment variables.

3. Instance-specific configuration.

4. Global configuration.

2.1.4. Persistent Volumes

As part of the OpenShift cluster provisioning, 100 persistent volumes are created for your OpenShift
cluster. This allows applications to make persistent volumes claims . The location of the persistent data is
determined in the host-pv-dir flag of the minishift start command and defaults to
/var/lib/minishift/openshift.local.pv on the CDK VM.

2.1.5. HTTP/HTTPS Proxies

If you are behind an HTTP/HTTPS proxy, you need to supply proxy options to allow Docker and
OpenShift to work properly. To do this, pass the required flags during minishift start.

CHAPTER 2. USING CDK

21

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/developer_guide/dev-guide-persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/developer_guide/dev-guide-persistent-volumes#persistent-volumes-claims-as-volumes-in-pods

For example:

$ minishift start --http-proxy http://YOURPROXY:PORT --https-proxy https://YOURPROXY:PORT

In an authenticated proxy environment, the proxy_user and proxy_password must be a part of proxy
URI.

 $ minishift start --http-proxy http://<proxy_username>:<proxy_password>@YOURPROXY:PORT \
 --https-proxy https://<proxy_username>:<proxy_password>@YOURPROXY:PORT

You can also use the --no-proxy flag to specify a comma-separated list of hosts that should not be
proxied.

Using the proxy options will transparently configure the Docker daemon as well as OpenShift to use the
specified proxies.

NOTE

minishift start honors the environment variables HTTP_PROXY,
HTTPS_PROXY and NO_PROXY. The environment variables can be specified in
lower case or upper case. The lower case variables take higher precedence over
upper case variables. If these variables are set, they are implicitly used during
minishift start unless explicitly overridden by the corresponding command line
flags.

CDK does not escape the special characters in environment variables for proxies.
Special characters must be manually escaped.

Use the minishift start --openshift-version flag to request a specific version of
OpenShift Container Platform. You can list all CDK-compatible OpenShift
Container Platform versions with the minishift openshift version list command.

2.1.6. Networking

The CDK VM is exposed to the host system with a host-only IP address that can be obtained with the
minishift ip command.

2.1.7. Connecting to the CDK VM with SSH

You can use the minishift ssh command to interact with the CDK VM.

You can run minishift ssh without a sub-command to open an interactive shell and run commands on
the CDK VM in the same way that you run commands interactively on any remote machine using SSH.

You can also run minishift ssh with a sub-command to send the sub-command directly to the CDK VM
and return the result to your local shell. For example:

$ minishift ssh -- docker ps
CONTAINER IMAGE COMMAND CREATED STATUS NAMES
71fe8ff16548 openshift3/ose:v3.11.346 "/usr/bin/openshift s" 4 minutes ago Up 4 minutes origin

2.2. CDK PROFILES

Red Hat Container Development Kit 3.15 Getting Started Guide

22

2.2.1. Overview

IMPORTANT

You must run minishift setup-cdk before using profiles.

A profile is an instance of the Minishift VM along with all of its configuration and state. The profile
feature allows you to create and manage these isolated instances of Minishift.

Each CDK profile is created with its own configuration (memory, CPU, disk size, add-ons, and so on) and
is independent of other profiles. Refer to the use of environment variables if you want to make sure that
certain configuration settings, for example cpus or memory, get applied to all profiles.

The active profile is the profile against which all commands are executed, unless the global --profile flag
is used. You can determine the active profile by using the minishift profile list command. You can
execute single commands against a non-active profile by using the --profile flag, for example minishift
--profile profile-demo console to open the OpenShift console for the specified profile-demo profile.

On top of the --profile flag, there are commands for listing, deleting and setting the active profile.
These commands are described in the following sections.

WARNING

Even though profiles are independent of each other, they share the same cache for
ISOs, oc binaries and container images. minishift delete --clear-cache will affect
all profiles for this reason. We recommend using --clear-cache with caution.

2.2.2. Creating Profiles

There are two ways to create a new profile.

NOTE

Profile names can only consist of alphanumeric characters. Underscores (_) and
hyphens (-) are allowed as separators.

2.2.2.1. Using the --profile Flag

When you run the minishift start command with the --profile flag the profile is created if it does not
already exist. For example:

$ minishift --profile profile-demo start
-- Starting profile 'profile-demo'
-- Check if deprecated options are used ... OK
-- Checking if https://github.com is reachable ... OK
-- Checking if requested OpenShift version 'v3.11.0' is valid ... OK
-- Checking if requested OpenShift version 'v3.11.0' is supported ... OK
-- Checking if requested hypervisor 'hyperkit' is supported on this platform ... OK
-- Checking if hyperkit driver is installed ...

CHAPTER 2. USING CDK

23

 Driver is available at /usr/local/bin/docker-machine-driver-hyperkit
 Checking for setuid bit ... OK
-- Checking the ISO URL ... OK
-- Checking if provided oc flags are supported ... OK
-- Starting the OpenShift cluster using 'hyperkit' hypervisor ...
-- Minishift VM will be configured with ...
 Memory: 4 GB
 vCPUs : 2
 Disk size: 20 GB
-- Starting Minishift VM

See also Example Workflow for Profile Configuration .

NOTE

A profile automatically becomes the active profile when a CDK instance is started
successfully via minishift start.

2.2.2.2. Using the profile set Command

The other option to create a profile is to use the profile set command. If the specified profile does not
exist, it is implicitly created:

$ minishift profile set demo
Profile 'demo' set as active profile

NOTE

The default profile is minishift. It will be present by default and it does not need to be
created.

2.2.3. Listing Profiles

You can list all existing profiles with the minishift profile list command. You can also see the active
profile highlighted in the output.

$ minishift profile list
- minishift Running (Active)
- profile-demo Does Not Exist

2.2.4. Switching Profiles

To switch between profiles use the minishift profile set command:

$ minishift profile set profile-demo
Profile 'profile-demo' set as active profile

NOTE

Only one profile can be active at any time.

Red Hat Container Development Kit 3.15 Getting Started Guide

24

2.2.5. Deleting Profiles

To delete a profile, run:

$ minishift profile delete profile-demo
You are deleting the active profile. It will remove the VM and all related artifacts. Do you want to
continue [y/N]?: y
Deleted: /Users/user/.minishift/profiles/profile-demo
Profile 'profile-demo' deleted successfully
Switching to default profile 'minishift' as the active profile.

NOTE

The default profile minishift cannot be deleted.

2.2.6. Example Workflow for Profile Configuration

You have two options to create a new profile and configure its persistent configuration. The first option
is to implicitly create the new profile by making it the active profile using the profile set command. Once
the profile is active you can run any minishift config command. Lastly, start the instance:

$ minishift profile set profile-demo
$ minishift config set memory 8GB
$ minishift config set cpus 4
$ minishift addon enable anyuid
$ minishift start

The alternative is to execute a series of commands each specifying the targeted profile explicitly using
the --profile flag:

$ minishift --profile profile-demo config set memory 8GB
$ minishift --profile profile-demo config set cpus 4
$ minishift --profile profile-demo addon enable anyuid
$ minishift --profile profile-demo start

2.3. IMAGE CACHING

2.3.1. Overview

To speed up the provisioning of the OpenShift cluster and to minimize network traffic, container images
can be cached on the host. These images can then be imported into the running Docker daemon, either
explicitly on request or implicitly during minishift start. The following sections describe image caching
and its configuration in more detail.

NOTE

CHAPTER 2. USING CDK

25

NOTE

The format in which images are cached has changed with CDK version 3.3.0. Prior to
3.3.0, the images were stored as tar files. As of 3.3.0, images are stored in the OCI image
format.

If you used image caching prior to CDK 3.3.0, your cache will need to be recreated. If you
want to remove the obsolete pre-3.3.0 images, you can clear your cache via:

$ minishift delete --clear-cache

2.3.2. Explicit Image Caching

CDK provides the image command together with its sub-commands to control the behavior of image
caching. To export and import images from the Docker daemon of the CDK VM, use minishift image
export and minishift image import.

2.3.2.1. Importing and Exporting Single Images

Once the CDK VM is running, images can be explicitly exported from the Docker daemon:

$ minishift image export <image-name-0> <image-name-1> ...
Pulling image <image-name-0> .. OK
Exporting <image-name-0>. OK
Pulling image <image-name-1> .. OK
Exporting <image-name-2>. OK

NOTE

Images which are not available in the Docker daemon will be pulled prior to being
exported to the host.

To import previously cached images, use the minishift image import command:

$ minishift image import <image-name-0> <image-name-1> ...
Importing <image-name-0> . OK

2.3.2.2. Listing Cached Images

The minishift image list command lists either the currently cached images or the images available in
the CDK Docker daemon.

To view currently cached images on the host:

$ minishift image list
registry.access.redhat.com/openshift3/ose-docker-registry:v3.11.346
registry.access.redhat.com/openshift3/ose-haproxy-router:v3.11.346
registry.access.redhat.com/openshift3/ose:v3.11.346

To view images available in the Docker daemon:

$ minishift image list --vm

Red Hat Container Development Kit 3.15 Getting Started Guide

26

https://github.com/opencontainers/image-spec/blob/master/spec.md

registry.access.redhat.com/openshift3/ose-deployer:v3.11.346
registry.access.redhat.com/openshift3/ose-docker-registry:v3.11.346
registry.access.redhat.com/openshift3/ose-haproxy-router:v3.11.346
registry.access.redhat.com/openshift3/ose-pod:v3.11.346
registry.access.redhat.com/openshift3/ose-web-console:v3.11.346
registry.access.redhat.com/openshift3/ose:v3.11.346

2.3.2.3. Persisting Cached Image Names

In order to avoid having to type the image names explicitly as part of the image export or image
import command, you can store a list of image names for import and export in the persistent
configuration.

Use minishift image cache-config view to view the list of currently configured images and minishift
image cache-config add to add images to the list:

$ minishift image cache-config view
$ minishift image cache-config add alpine:latest busybox:latest
$ minishift image cache-config view
alpine:latest
busybox:latest

To remove images from the list use minishift image cache-config remove:

$ minishift image cache-config remove alpine:latest
$ minishift image cache-config view
busybox:latest

Once the image names are stored in the persistent configuration, you can run minishift image export
and minishift image import without any arguments.

2.3.2.4. Exporting and Importing All Images

You can export and import all images using the --all flag. For the export command, this means that all
images currently available on the Docker daemon will be exported to the host. For the import command,
it means that all images available in the local CDK cache will be imported into the Docker daemon of the
CDK VM.

WARNING

Exporting and importing all images can take a long time and locally cached images
can take up a considerable amount of disk space. We recommend using this feature
with caution.

2.3.3. Implicit Image Caching

Image caching is enabled by default for CDK. It occurs in a background process after the minishift start
command is completed for the first time. Once the images are cached under
$MINISHIFT_HOME/cache/image, successive CDK VM creations will use these cached images.

CHAPTER 2. USING CDK

27

To disable this feature you need to disable the image-caching property in the persistent configuration
using the minishift config set command:

$ minishift config set image-caching false

NOTE

Implicit image caching will transparently add the required OpenShift images to the list of
cached images as specified per cache-images configuration option. See Persisting
Cached Image Names.

NOTE

Each time an image exporting background process runs, a log file is generated under
$MINISHIFT_HOME/logs which can be used to verify the progress of the export.

You can re-enable the caching of the OpenShift images by setting image-caching to true or removing
the setting altogether using minishift config unset:

$ minishift config unset image-caching

2.3.4. Delete Image from Local Cache

Images are cached under $MINISHIFT_HOME/cache/images and stored as an SHA256 blob along with
an index which contains details about matching the SHA with an image name.

To delete an image from the local cache, use the minishift image delete command:

$ minishift image delete <image-name-0> <image-name-1> ...
Deleting <image-name-0> from the local cache OK
Deleting <image-name-1> from the local cache OK

2.4. ADD-ONS

2.4.1. Overview

CDK allows you to extend the vanilla OpenShift setup provided by cluster up with an add-on
mechanism.

Add-ons are directories that contain a text file with the .addon extension. The directory can also contain
other resource files such as JSON template files. However, only one .addon file is allowed per add-on.

The following example shows the contents of an add-on file, including the name and description of the
add-on, additional metadata, and the actual add-on commands to apply.

Example: anyuid add-on definition file

Name: anyuid 1
Description: Allows authenticated users to run images under a non pre-allocated UID 2
Required-Vars: ACME_TOKEN 3
OpenShift-Version: >3.6.0 4

Red Hat Container Development Kit 3.15 Getting Started Guide

28

1

2

3

4

5

6

7

8

Minishift-Version: >1.22.0 5

mytoken := oc sa get-token oauth-client 6

oc new-app -p OPENSHIFT_OAUTH_CLIENT_SECRET=#{mytoken} 7
oc adm policy add-scc-to-group anyuid system:authenticated 8

(Required) Name of the add-on.

(Required) Description of the add-on.

(Optional) Comma separated list of required interpolation variables. See Variable Interpolation.

(Optional) OpenShift version required to run a specific add-on. See OpenShift Version Semantics.

(Optional) CDK version required to run a specific add-on. See Minishift Version Semantics.

Run an actual add-on command and store its output in a variable. See Internal Variables.

Actual add-on command. In this case, the command executes the oc binary using the mytoken
variable value.

Actual add-on command. In this case, the command executes the oc binary.

NOTE

Comment lines, starting with the '#' character, can be inserted anywhere in the
file.

Commands starting with the ! character ignore execution failure. With the help of
this, add-on will be idempotent i.e. a command can be executed multiple times
without changing the final behavior of the add-on.

Enabled add-ons are applied during minishift start, immediately after the initial cluster provisioning is
successfully completed.

2.4.2. OpenShift-Version Semantics

As part of the add-on metadata you can specify the OpenShift version which needs to be running in
order to apply the add-on. To do so, you can specify the optional OpenShift-Version metadata field.
The semantics are as follows:

>3.6.0 OpenShift version higher than 3.6.0 needs to be running in order to apply the add-
on.

>=3.6.0 OpenShift version 3.6.0 or higher needs to be running in order to apply the add-
on.

3.6.0 OpenShift version 3.6.0 needs to be running in order to apply the add-on.

>=3.5.0, <3.8.0 OpenShift version should higher or equal to 3.5.0 but lower than 3.8.0.

CHAPTER 2. USING CDK

29

>=3.5.0, <=3.8.0 OpenShift version should higher or equal to 3.5.0 but lower or equal to 3.8.0.

NOTE

If the metadata field OpenShift-Version is not specified in the add-on header,
the add-on can be applied against any version of OpenShift.

OpenShift-Version only supports versions in the form of <major>.<minor>.
<patch>.

2.4.3. Minishift-Version Semantics

As part of the add-on metadata you can specify the Minishift version which needs to be running in order
to apply the add-on. To do so, you can specify the optional Minishift-Version metadata field. The
semantics are as follows:

>1.22.0 Minishift version greater than 1.22.0 needs to be running in order to apply the add-
on.

>=1.22.0 Minishift version greater than or equal to 1.22.0 needs to be running in order to
apply the add-on.

1.22.0 Minishift version 1.22.0 needs to be running in order to apply the add-on.

>=1.21.0, <1.25.0 Minishift version must be greater than or equal to 1.21.0, but less than 1.25.0.

>=1.22.0, <=1.25.0 Minishift version must be greater than or equal to 1.22.0, but less than or equal to
1.25.0.

NOTE

If the metadata field Minishift-Version is not specified in the add-on header, the
add-on can be applied against any version of CDK.

Minishift-Version only supports versions in the form of <major>.<minor>.<patch>.

2.4.4. Defining Add-on Dependencies

Add-on dependencies can be defined using the Depends-On metadata field. Multiple dependencies may
be defined using a comma-separated list of add-on names.

Example: Defining add-on dependency in add-on definition file

Name: example
Description: Shows the use of the Depends-On metadata field
Depends-On: anyuid, admin-user

echo Depends on the anyuid and admin-user add-ons, requiring them to be installed.

Red Hat Container Development Kit 3.15 Getting Started Guide

30

2.4.5. Add-on Commands

This section describes the commands that an add-on file can contain. They form a small domain-specific
language for CDK add-ons:

ssh

If the add-on command starts with ssh, you can run any command within the CDK-managed VM. This
is similar to running minishift ssh and then executing any command on the VM. For more
information about minishift ssh command usage, see Connecting to the CDK VM with SSH .

oc

If the add-on command starts with oc, it uses the oc binary that is cached on your host to execute
the specified oc command. This is similar to running oc --as system:admin … from the command
line.

NOTE

The oc command is executed as system:admin.

openshift

If the add-on command starts with openshift, it uses the oc binary present in the OpenShift
container to execute the command. This means that any file parameters or other system-specific
parameters must match the environment of the container instead of your host.

docker

If the add-on command starts with docker, it executes a docker command against the Docker
daemon within the CDK VM. This is the same daemon on which the single-node OpenShift cluster is
running as well. This is similar to running eval $(minishift docker-env) on your host and then
executing any docker command. See also minishift docker-env.

echo

If the add-on command starts with echo, the arguments following the echo command are printed to
the console. This can be used to provide additional feedback during add-on execution.

sleep

If the add-on command starts with sleep, it waits for the specified number of seconds. This can be
useful in cases where you know that a command such as oc might take a few seconds before a
certain resource can be queried.

cat

If the add-on command starts with cat, the arguments following the cat command must be a valid file
path. This will print the contents of a valid file to the console or display an error message if the file
path is invalid. This can be useful to use file contents with another command.

NOTE

Trying to use an undefined command will cause an error when the add-on gets parsed.

2.4.6. Variable Interpolation

CDK allows the use of variables within the add-on commands. Variables have the format #{<variable-
name>}. The following example shows how the OpenShift routing suffix can be interpolated into an
openshift command to create a new certificate as part of securing the OpenShift registry. The used
variable #{routing-suffix} is part of the built-in add-on variables.

CHAPTER 2. USING CDK

31

Example: Usage of the routing-suffix variable

$ openshift admin ca create-server-cert \
 --signer-cert=/var/lib/origin/openshift.local.config/master/ca.crt \
 --signer-key=/var/lib/origin/openshift.local.config/master/ca.key \
 --signer-serial=/var/lib/origin/openshift.local.config/master/ca.serial.txt \
 --hostnames='docker-registry-default.#{routing-suffix},docker-
registry.default.svc.cluster.local,172.30.1.1' \
 --cert=/etc/secrets/registry.crt \
 --key=/etc/secrets/registry.key

2.4.6.1. Built-in Variables

There exist several built-in variables which are available for interpolation at all times. The following table
shows these variables.

Table 2.1. Supported built-in add-on variables

Variable Description

ip IP of the CDK VM.

routing-suffix OpenShift routing suffix for the application.

addon-name Name of the current add-on.

user User used by CDK for execution of commands
through SSH.

2.4.6.2. Dynamic Variables

The commands minishift start as well as minishift addons apply also provide an --addon-env flag
which allows to dynamically pass variables for interpolation, for example:

$ minishift addons apply --addon-env PROJECT_USER=user acme

The --addon-env flag can be specified multiple times to define more than one variables for
interpolation.

Specifying dynamic variables also works in conjunction with setting persistent configuration values .

$ minishift config set addon-env PROJECT_USER=user
$ minishift addons apply acme

NOTE

Multiple variables must be comma separated when the minishift config set command is
used.

There is also the possibility to dynamically interpolate a variable with the value of an environment
variable at the time the add-on gets applied. For this the variable value needs to be prefixed with env.

Red Hat Container Development Kit 3.15 Getting Started Guide

32

1

2

$ minishift config set addon-env PROJECT_USER=env.USER 1
$ minishift addons apply acme 2

Using the env prefix ensures that instead of literally replacing '#{PROJECT_USER}' with
'env.USER', the value of the environment variable USER is used. If the environment variable is not
set, interpolation does not occur.

When the add-on is applied, each occurrence of #{PROJECT_USER} within an add-on command
gets replaced with the value of the environment variable USER.

As an add-on developer, you can enforce that a variable value is provided when the add-on gets applied
by adding the variable name to the Required-Vars metadata header. Multiple variables need to be
comma separated.

Name: acme
Description: ACME add-on
Required-Vars: PROJECT_USER

You can also provide default values for variables using the Var-Defaults metadata header. Var-Defaults
needs to be specified in the format of <key>=<value>. Multiple default key/value pairs need to be
comma separated.

Name: acme
Description: ACME add-on
Required-Vars: PROJECT_USER
Var-Defaults: PROJECT_USER=user

NOTE

= and , are metacharacters and cannot be used as part of keys or values.

An empty value will be set if "NULL", "Null", or "null" is specified as the value for a
Var-Defaults key. For example:

Var-Defaults: PROJECT_USER=null

Variable values specified via the command line using the --addon-env or set via
minishift config set addon-env have precedence over Var-Defaults.

2.4.6.3. Internal Variables

Add-ons allow the definition of variables. These variables can be used to store the output of an add-on
command.

For example, you can save oc command output in a mytoken variable and use it in subsequent add-on
commands like so:

mytoken := oc sa get-token oauth-client
oc new-app -p OPENSHIFT_OAUTH_CLIENT_SECRET=#{mytoken}

2.4.7. Default Add-ons

CHAPTER 2. USING CDK

33

CDK provides a set of built-in add-ons that offer some common OpenShift customization to assist with
development. During minishift setup-cdk, Minishift automatically installs and enables the xpaas,
anyuid, and admin-user add-ons. To install the default add-ons, run:

$ minishift addons install --defaults

This command extracts the default add-ons to the add-on installation directory
$MINISHIFT_HOME/addons. To view the list of installed add-ons, you can then run:

$ minishift addons list --verbose=true

This command prints a list of installed add-ons. You should at least see the anyuid add-on listed. This is
an important add-on that allows you to run images that do not use a pre-allocated UID. By default, this is
not allowed in OpenShift.

Table 2.2. Default add-ons

Add-on Name Description

anyuid Changes the default security context constraints to allow pods to run with
arbitrary UID.

admin-user Creates a user named 'admin' and assigns the cluster-admin role to it.

che Runs an instance of the Eclipse Che integrated development environment.

eap-cd Imports JBoss EAP CD templates.

htpasswd-identity-
provider

User can change and add default login username and password for the OpenShift
instance.

registry-route Creates an edge terminated route for the OpenShift registry.

xpaas Imports xPaaS templates.

NOTE

The eap-cd add-on provides templates for JBoss EAP CD 19. To use a more recent
version of JBoss EAP CD, use the upstream eap-cd add-on. See Add-ons by the
Community for more information on how to install the upstream add-on.

2.4.7.1. Add-ons by the Community

Apart from the several default add-ons, there are a number of community developed add-ons for CDK.
Community add-ons can be found in the minishift-addons repository. You can get all the information
about these add-ons in the repository. The instructions for installing them can be found in the README.

2.4.8. Installing Add-ons

Add-ons are installed with the minishift addons install command.

Red Hat Container Development Kit 3.15 Getting Started Guide

34

https://www.eclipse.org/che/
https://github.com/minishift/minishift-addons/tree/master/add-ons
https://github.com/minishift/minishift-addons
https://github.com/minishift/minishift-addons/blob/master/README.adoc

The following example shows how to install an add-on.

Example: Installing an add-on

$ minishift addons install <path_to_addon_directory>

2.4.9. Enabling and Disabling Add-ons

Add-ons are enabled with the minishift addons enable command and disabled with the minishift
addons disable command. Enabled add-ons automatically get executed during minishift start.

The following examples show how to enable and disable the anyuid add-on.

Example: Enabling the anyuid add-on

$ minishift addons enable anyuid

Example: Disabling the anyuid add-on

$ minishift addons disable anyuid

2.4.9.1. Add-on Priorities

When you enable an add-on, you can also specify a priority, which determines the order that the add-ons
are applied.

The following example shows how to enable the registry add-on with a higher priority value.

Example: Enabling the registry add-on with priority

$ minishift addons enable registry --priority=5

The add-on priority attribute determines the order in which add-ons are applied. By default, an add-on
has the priority 0. Add-ons with a lower priority value are applied first.

In the following example, the anyuid, registry, and eap add-ons are enabled with the respective
priorities of 0, 5 and 10. This means that anyuid is applied first, followed by registry, and lastly the eap
add-on.

Example: List command output with explicit priorities

$ minishift addons list
- anyuid : enabled P(0)
- registry : enabled P(5)
- eap : enabled P(10)

NOTE

If two add-ons have the same priority the order in which they are getting applied is not
determined.

2.4.10. Applying Add-ons

CHAPTER 2. USING CDK

35

Add-ons can be explicitly executed with the minishift addons apply command. You can use the apply
command for both enabled and disabled add-ons. To apply multiple add-ons with a single command,
specify add-on names separated by space.

The following example shows how to explicitly apply the anyuid and the admin-user add-ons.

Example: Applying anyuid and admin-user add-ons

$ minishift addons apply anyuid admin-user

2.4.11. Removing Add-ons

Add-ons can be removed with the minishift addons remove command. It is the mirror command to
minishift addons apply and similarly can be used regardless of whether the add-on is enabled or not.
Provided the specified add-on is installed and has a <addon_name>.addon.remove file, minishift
addons remove will execute the commands specified in this file.

To remove multiple add-ons with a single command, specify the add-on names separated by a space.
The following example shows how to explicitly remove the admin-user add-on.

Example: Removing admin-user add-on

$ minishift addons remove admin-user
-- Removing addon 'admin-user':.
admin user deleted

2.4.12. Uninstalling Add-ons

Add-ons can be uninstalled with the minishift addons uninstall command. It is the mirror command to
minishift addons install and can be used regardless of whether the add-on is enabled or not. Provided
the specified add-on is installed, minishift addons uninstall will delete the corresponding add-on
directory from $MINISHIFT_HOME/addons.

The following example shows how to explicitly uninstall the admin-user add-on:

Example: Uninstalling admin-user add-on

$ minishift addons uninstall admin-user
Add-on 'admin-user' uninstalled

2.4.13. Writing Custom Add-ons

To write a custom add-on, you should create a directory and in it create at least one text file with the
extension .addon, for example admin-role.addon.

This file needs to contain the Name and Description metadata fields, as well as the commands that you
want to execute as a part of the add-on.

The following example shows the definition of an add-on that gives the developer user cluster-admin
privileges.

Example: Add-on definition for admin-role

Red Hat Container Development Kit 3.15 Getting Started Guide

36

Name: admin-role
Description: Gives the developer user cluster-admin privileges

oc adm policy add-role-to-user cluster-admin developer

After you define the add-on, you can install it by running:

$ minishift addons install <ADDON_DIR_PATH>

NOTE

You can also write metadata with multiple lines.

Example: Add-on definition which contain multiline description

Name: prometheus
Description: This template creates a Prometheus instance preconfigured to gather
OpenShift and
Kubernetes platform and node metrics and report them to admins. It is protected by
an
OAuth proxy that only allows access for users who have view access to the
prometheus
namespace. You may customize where the images (built from openshift/prometheus
and openshift/oauth-proxy) are pulled from via template parameters.
Url: https://prometheus.io/

You can also edit your add-on directly in the CDK add-on install directory $MINISHIFT_HOME/addons.
Be aware that if there is an error in the add-on, it will not show when you run any addons commands,
and it will not be applied during the minishift start process.

To provide add-on removal instructions, you can create text file with the extension .addon.remove, for
example admin-user.addon.remove. Similar to the .addon file, it needs the Name and Description
metadata fields. If a .addon.remove file exists, it can be applied via the remove command.

2.5. HOST FOLDERS

2.5.1. Overview

Host folders are directories on the host which are shared between the host and the CDK VM. This allows
for two way file synchronization between the host and the VM. The following sections discuss usage of
the minishift hostfolder command.

2.5.2. The minishift hostfolder Command

CDK provides the minishift hostfolder command to list, add, mount, unmount and remove host folders.
You can use the hostfolder command to mount multiple shared folders onto custom specified mount
points.

NOTE

Currently CIFS and SSHFS based host folders are supported.

CHAPTER 2. USING CDK

37

https://en.wikipedia.org/wiki/Server_Message_Block
https://en.wikipedia.org/wiki/SSHFS

2.5.2.1. Prerequisites

2.5.2.1.1. SSHFS

SSHFS is the default technology for sharing host folders. It works without prerequisites.

2.5.2.1.2. CIFS

Host folders can be shared using CIFS. It is possible to use CIFS on Windows, macOS, and Linux.

On macOS, you can enable CIFS-based shares under System Preferences > Sharing. See How to
connect with File Sharing on your Mac for detailed setup instructions.

On Linux, follow your distribution-specific instructions to install Samba. Refer to Samba File and Print
Server in RHEL to learn how to configure the Samba implementation of CIFS in Red Hat
Enterprise Linux.

2.5.2.2. Displaying Host Folders

The minishift hostfolder list command gives you an overview of the defined host folders, their names,
mount points, remote paths and whether they are currently mounted.

An example output could look like:

$ minishift hostfolder list
Name Type Source Mountpoint Mounted
test sshfs /Users/user/test /mnt/sda1/test N

In this example, there is an SSHFS based host folder with the name test which mounts /Users/user/test
onto /mnt/sda1/test in the CDK VM. The share is currently not mounted.

2.5.2.3. Adding Host Folders

The minishift hostfolder add command allows you to define a new host folder.

The exact syntax to use depends on the host folder type. Independent of the type you can choose
between non-interactive and interactive configuration. The default is non-interactive. By specifying the
--interactive flag you can select the interactive configuration mode.

The following sections give examples for configuring CIFS and SSHFS host folders.

2.5.2.3.1. CIFS

Adding a CIFS based hostfolder

$ minishift hostfolder add -t cifs --source //192.168.99.1/MYSHARE --target /mnt/sda1/myshare --
options username=user,password=mysecret,domain=MYDOMAIN myshare

The above command will create a new host folder with the name of myshare. The source of the host
folder is the UNC path //192.168.99.1/MYSHARE which is required. The target or mount point is
/mnt/sda1/myshare within the CDK VM. Using the --options flag host folder type specific options can
be specified using a list of comma separated key/value pairs. In the case of a CIFS host folder the
required options are the user name for the CIFS share as well as the password. Via the --options flag the

Red Hat Container Development Kit 3.15 Getting Started Guide

38

https://support.apple.com/en-us/HT204445
https://www.samba.org
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/System_Administrators_Guide/index.html#sect-Samba

domain of the share can be specified as well. Often this can be left out, but for example on Windows,
when your account is linked to a Microsoft account, you must use the Microsoft account email address
as user name as well as your machine name as displayed by $env:COMPUTERNAME as a domain.

NOTE

On Windows hosts, the minishift hostfolder add command also provides a users-share
option. When this option is specified, no UNC path needs to be specified and C:\Users is
assumed.

2.5.2.3.2. SSHFS

Adding an SSHFS based hostfolder

$ minishift hostfolder add -t sshfs --source /Users/user/myshare --target /mnt/sda1/myshare myshare

For the case of an SSHFS based host folder only the source and target of the host folder need to be
specified.

NOTE

When adding host folders, one can give type-specific options to be used while mounting
by using the --options flag. For example:

$ minishift hostfolder add -t sshfs --source ~/myshare/ --target /mnt/sda1/myshare --
options "-o compression=no" myshare

2.5.2.3.3. Instance-Specific Host Folders

By default, host folder definitions are persistent, similar to other persistent configuration options. This
means that these host folder definitions will survive the deletion and subsequent re-creation of a CDK
VM.

In some cases you might want to define a host folder just for a specific CDK instance. To do so, you can
use the --instance-only flag of the minishift hostfolder add command. Host folder definitions that are
created with the --instance-only flag will be removed together with any other instance-specific state
during minishift delete.

2.5.2.4. Mounting Host Folders

After you have added host folders, you use the minishift hostfolder mount command to mount a host
folder by its name:

$ minishift hostfolder mount myshare

You can verify that the host folder is mounted by running:

$ minishift hostfolder list
Name Mountpoint Remote path Mounted
myshare /mnt/sda1/myshare //192.168.99.1/MYSHARE Y

Alternatively, you can list the actual content of the mounted host folder:

CHAPTER 2. USING CDK

39

$ minishift ssh "ls -al /mnt/sda1/myshare"

NOTE

When mounting SSHFS based host folders an SFTP server process is started on port
2022 of the host. Make sure that your network and firewall settings allow this port to be
opened. If you need to configure this port you can make use of CDK’s persistent
configuration using the key hostfolders-sftp-port, for example:

$ minishift config set hostfolders-sftp-port 2222

2.5.2.4.1. Auto-Mounting Host Folders

Host folders can also be mounted automatically each time you run minishift start. To set auto-
mounting, you need to set the hostfolders-automount option in the CDK configuration file.

$ minishift config set hostfolders-automount true

After the hostfolders-automount option is set, CDK will attempt to mount all defined host folders
during minishift start.

2.5.2.5. Unmounting Host Folders

You use the minishift hostfolder umount command to unmount a host folder.

$ minishift hostfolder umount myshare

$ minishift hostfolder list
Name Mountpoint Remote path Mounted
myshare /mnt/sda1/myshare //192.168.99.1/MYSHARE N

2.5.2.6. Deleting Host Folders

You use the minishift hostfolder remove command to remove a host folder definition.

$ minishift hostfolder list
Name Mountpoint Remote path Mounted
myshare /mnt/sda1/myshare //192.168.1.82/MYSHARE N

$ minishift hostfolder remove myshare

$ minishift hostfolder list
No host folders defined

2.6. ASSIGN STATIC IP ADDRESS

2.6.1. Overview

Most hypervisors do not support extending the lease time when the IP is assigned using DHCP. This
might lead to a new IP being assigned to the VM after a restart as it will conflict with the security
certificates generated for the old IP. This will make CDK completely unusable until a new instance is set

Red Hat Container Development Kit 3.15 Getting Started Guide

40

up by running minishift delete followed by minishift start.

To prevent this, CDK includes the functionality to set a static IP address to the VM. This will prevent the
IP address from changing between restarts. However, it will not work on all of the driver plug-ins at the
moment due to the way the IP address is resolved.

NOTE

Assigning a static IP address to the CDK VM is only officially supported for
Hyper-V.

The CDK VM cannot be assigned a static IP address when using the KVM driver
plug-in.

2.6.2. Assign IP Address to Hyper-V

Since the Internal Virtual Switch for Hyper-V does not provide a DHCP offer option, an IP address needs
to be provided in a different way. Functionality is provided to assign an IP address on startup using the
Data Exchange Service for Hyper-V.

To make this work, you need to create a Virtual Switch using NAT .

NOTE

WinNAT is limited to one NAT network per host. For more details about capabilities and
limitations, please see the WinNAT capabilities and limitations blog .

The following command will attempt to assign an IP address for use on the Internal Virtual Switch
'MyInternal':

PS> minishift.exe config set hyperv-virtual-switch "MyInternal"
PS> minishift.exe start `
 --network-ipaddress 192.168.1.10 `
 --network-gateway 192.168.1.1 `
 --network-nameserver 8.8.8.8

If you want to use the 'DockerNAT' network, the following commands are needed to setup the correct
NAT networking and assign an IP in the range expected:

PS> New-NetNat -Name SharedNAT -InternalIPInterfaceAddressPrefix 10.0.75.1/24
PS> minishift.exe config set hyperv-virtual-switch "DockerNAT"
PS> minishift.exe start `
 --network-ipaddress 10.0.75.128 `
 --network-gateway 10.0.75.1 `
 --network-nameserver 8.8.8.8

NOTE

Be sure to specify a valid gateway and nameserver. Failing to do so will result in
connectivity issues.

2.6.3. Set Fixed IP Address

IMPORTANT

CHAPTER 2. USING CDK

41

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/setup-nat-network
https://blogs.technet.microsoft.com/virtualization/2016/05/25/windows-nat-winnat-capabilities-and-limitations/

IMPORTANT

This feature is not supported on KVM as the driver plug-in relies on the DHCP offer to
determine the IP address.

The following command will set the IP address that was assigned as fixed:

$ minishift ip --set-static

If you prefer to use dynamic assignment, you can use:

$ minishift ip --set-dhcp

NOTE

Use minishift config set static-ip false to stop automatically assigning a static IP
address for supported hypervisors.

2.7. CDK DOCKER DAEMON

2.7.1. Overview

When running OpenShift in a single VM, you can reuse the Docker daemon managed by CDK for other
Docker use-cases as well. By using the same Docker daemon as CDK, you can speed up your local
development.

2.7.2. Console Configuration

In order to configure your console to reuse the CDK Docker daemon, follow these steps:

1. Make sure that you have the Docker client binary installed on your machine. For information
about specific binary installations for your operating system, see the Docker installation site.

2. Start CDK with the minishift start command.

3. Run the minishift docker-env command to display the command you need to type into your
shell in order to configure your Docker client. The command output will differ depending on OS
and shell type.

$ minishift docker-env
export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://192.168.99.101:2376"
export DOCKER_CERT_PATH="/Users/user/.minishift/certs"
export DOCKER_API_VERSION="1.24"
Run this command to configure your shell:
eval $(minishift docker-env)

4. Test the connection by running the following command:

$ docker ps

If successful, the shell will print a list of running containers.

Red Hat Container Development Kit 3.15 Getting Started Guide

42

https://docs.docker.com/engine/installation/

2.8. EXPERIMENTAL FEATURES

2.8.1. Overview

If you want to get early access to some upcoming features and experiment, you can set the environment
variable MINISHIFT_ENABLE_EXPERIMENTAL, which makes additional feature flags available:

$ export MINISHIFT_ENABLE_EXPERIMENTAL=y

IMPORTANT

Experimental features are not officially supported, and might break or result in
unexpected behavior. To share your feedback on these features, you are welcome to
contact the Minishift community .

2.8.2. Enabling Experimental oc cluster up Flags

By default, CDK does not expose all oc cluster up flags in the CDK CLI.

You can set the MINISHIFT_ENABLE_EXPERIMENTAL environment variable to enable the following
options for the minishift start command:

extra-clusterup-flags

Enables passing flags directly to oc cluster up that are not directly exposed in the CDK CLI.

For example, the following command will provision the OpenShift service catalog:

$ MINISHIFT_ENABLE_EXPERIMENTAL=y minishift start --extra-clusterup-flags "--
enable='*,service-catalog'"

NOTE

The recommended way to enable service catalog is by using the minishift openshift
component add command.

2.8.3. Local Proxy Server

To help in the situation when security certificates are used in an organization, but cannot be easily
shared with the instance, CDK can run a local proxy server on the host, which the CDK instance can use
to access external resources.

Enabling the proxy server is done using the following command:

$ minishift config set local-proxy true

This will start a proxy server on the host which will be automatically assigned to the CDK instance.

When the corporate or upstream proxy is known, you can specify this with the following configuration
option:

$ minishift config set local-proxy-upstream http(s)://[username:password@]host:port

CHAPTER 2. USING CDK

43

https://github.com/minishift/minishift#community
https://github.com/openshift/origin/blob/release-3.11/docs/cluster_up_down.md
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/architecture/service-catalog-components

When this option is used, all traffic will be re-encrypted with a CDK-specific certificate. For this reason,
this proxy should only be used for development and use with CDK.

IMPORTANT

To allow external traffic to your local host you might have to enable port 3128/tcp in your
host firewall.

2.8.4. Local DNS Server

CDK provides a DNS server for offline usage or the possibility of overriding DNS records while testing.
This will allow you to access the OpenShift routes without Internet.

NOTE

The DNS server is specific to a profile.

Starting the DNS server can be done as follows:

$ minishift dns start

After starting the DNS server you need to configure your device settings to use this nameserver. The
start command will show you a temporary option that can be used when you entered offline usage.

NOTE

In the current implementation you need to start the server and do required changes in the
host settings manually. The DNS configuration is not permanent and might reset when
the network state of the device changes.

Stopping the DNS server can be done as follows:

$ minishift dns stop

To get the status of the DNS server:

$ minishift dns status

2.8.4.1. Local DNS Setup for macOS

Recent versions of macOS do not send out DNS queries in offline mode, and the process for using a
local DNS server from CDK is more involved than other operating systems.

2.8.4.1.1. Enable tap devices

Check for the presence of tap devices in /dev:

$ ls /dev | grep tap

If no tap devices are present, install the tuntap package:

Red Hat Container Development Kit 3.15 Getting Started Guide

44

$ brew install tuntap

2.8.4.1.2. Use a tap device to create a network service

As root, open the /Library/Preferences/SystemConfiguration/preferences.plist file and add the
following XML under the <key>NetworkServices</key> element:

<key>D16F22CE-6DDE-4E63-837C-E16538EA5CCB</key> 1
<dict>
 <key>DNS</key>
 <dict />
 <key>IPv4</key>
 <dict>
 <key>Addresses</key>
 <array>
 <string>10.10.90.1</string> 2
 </array>
 <key>ConfigMethod</key>
 <string>Manual</string>
 <key>SubnetMasks</key>
 <array>
 <string>255.255.0.0</string>
 </array>
 </dict>
 <key>IPv6</key>
 <dict>
 <key>ConfigMethod</key>
 <string>Automatic</string>
 </dict>
 <key>Interface</key>
 <dict>
 <key>DeviceName</key>
 <string>tap0</string> 3
 <key>Hardware</key>
 <string>Ethernet</string>
 <key>Type</key>
 <string>Ethernet</string>
 <key>UserDefinedName</key>
 <string>MiniTap</string> 4
 </dict>
 <key>Proxies</key>
 <dict>
 <key>ExceptionsList</key>
 <array>
 <string>*.local</string>
 <string>169.254/16</string>
 </array>
 <key>FTPPassive</key>
 <integer>1</integer>
 </dict>
 <key>SMB</key>
 <dict />

CHAPTER 2. USING CDK

45

1

2

3

4 5

1

This is the UUID for the network service. Replace this value with the output of uuidgen.

The IP address for the network service.

The /dev/tap device to use.

Name for the network service (This will appear in the Network Preferences GUI).

2.8.4.1.3. Adding the Network Service to ServiceOrder array

In the /Library/Preferences/SystemConfiguration/preferences.plist file, look for the
<key>ServiceOrder</key> element. As root, append the UUID for our MiniTap network service to this
array.

The UUID for MiniTap network service.

2.8.4.1.4. Adding the Network Service to Service dictionary

In the /Library/Preferences/SystemConfiguration/preferences.plist file, look for the
<key>Service</key> element. As root, append the following XML to its dictionary:

 <key>UserDefinedName</key>
 <string>MiniTap</string> 5
</dict>

<key>ServiceOrder</key>
 <array>
 <string>06BFF3C7-13DA-420F-AE9C-B036401184D7</string>
 <string>58231F56-CA25-4D41-930F-46D83CA07BFE</string>
 <string>304203B0-AC87-459F-9761-C2799EEBB2E3</string>
 <string>8655D244-C6E7-4CC0-BF06-BB18F9C3BB85</string>
 <string>3C26FB9D-D918-4B79-9C7B-ADECD8EFE00F</string>
 <string>D16F22CE-6DDE-4E63-837C-E16538EA5CCB</string> 1
 </array>

<key>Service</key>
 <dict>
 <key>06BFF3C7-13DA-420F-AE9C-B036401184D7</key>
 <dict>
 <key>__LINK__</key>
 <string>/NetworkServices/06BFF3C7-13DA-420F-AE9C-B036401184D7</string>
 </dict>
 <key>304203B0-AC87-459F-9761-C2799EEBB2E3</key>
 <dict>
 <key>__LINK__</key>
 <string>/NetworkServices/304203B0-AC87-459F-9761-C2799EEBB2E3</string>
 </dict>
 <key>3C26FB9D-D918-4B79-9C7B-ADECD8EFE00F</key>
 <dict>
 <key>__LINK__</key>
 <string>/NetworkServices/3C26FB9D-D918-4B79-9C7B-ADECD8EFE00F</string>
 </dict>
 <key>58231F56-CA25-4D41-930F-46D83CA07BFE</key>

Red Hat Container Development Kit 3.15 Getting Started Guide

46

1

2

1 2 4

3

The UUID of the MiniTap service.

Replace this UUID with the UUID of your MiniTap service.

Reboot macOS and you should see a MiniTap service in the Network Preferences GUI. This service will
be disconnected. To turn it on, issue the following commands:

$ exec 4<>/dev/tap0 1
$ ifconfig tap0 10.10.90.1 255.255.0.0 2 3
$ ifconfig tap0 up 4

Replace it with the /dev/tap device used by MiniTap Service.

IP address should be same as the one in the MiniTap Service definition.

2.8.4.1.5. Adding resolver config

Create the file /etc/resolver/nip.io with the following content:

nameserver <ip_address_of_the_minishfit_vm>
search_order 1

2.8.5. CDK System Tray

To help the users of CDK on macOS and Windows perform simple tasks like starting and stopping a
profile from the GUI, the binaries for these platforms have been compiled to include an experimental
system tray.

By default, the system tray is automatically started on running minishift start. To disable this behavior,
use the following command:

$ minishift config set auto-start-tray false

To start the system tray:

$ minishift service start systemtray

 <dict>
 <key>__LINK__</key>
 <string>/NetworkServices/58231F56-CA25-4D41-930F-46D83CA07BFE</string>
 </dict>
 <key>8655D244-C6E7-4CC0-BF06-BB18F9C3BB85</key>
 <dict>
 <key>__LINK__</key>
 <string>/NetworkServices/8655D244-C6E7-4CC0-BF06-BB18F9C3BB85</string>
 </dict>
 <key>D16F22CE-6DDE-4E63-837C-E16538EA5CCB</key> 1
 <dict>
 <key>__LINK__</key>
 <string>/NetworkServices/D16F22CE-6DDE-4E63-837C-E16538EA5CCB</string> 2
 </dict>
 </dict>

CHAPTER 2. USING CDK

47

2.8.6. Timezone Setup

If you want to set a different timezone from the default, use the following command:

$ minishift timezone --set <Valid_Timezone>

To see the available timezones, use the following command:

$ minishift timezone --list

To check the current timezone of the CDK instance, use the following command:

$ minishift timezone

2.9. RUN AGAINST AN EXISTING MACHINE

2.9.1. Overview

CDK can be run against an existing remote machine using vm-driver as generic.

NOTE

CentOS 7, Red Hat Enterprise Linux 7, and Fedora > 26 are the suggested Linux
distributions for this feature.

2.9.2. Configuring an Existing Remote Machine

To use an existing machine with CDK, it needs to be configured as follows:

1. Establish password-less SSH from the host to the existing remote machine:

Host$ ssh-copy-id <user>@<remote_IP_address> # Ensure that the user has sudo access
without a password or use root
Host$ ssh <user>@<remote_IP_address> # Ensure that this login works without a
password

NOTE

Skip the following steps if you are using CentOS 7, Red Hat Enterprise Linux 7 or Fedora
(version > 26).

1. Configure the existing remote machine:

Remote_Machine$ yum install -y docker net-tools firewalld
Remote_Machine$ systemctl start docker
Remote_Machine$ systemctl enable docker
Remote_Machine$ systemctl start firewalld
Remote_Machine$ systemctl enable firewalld

2. Allow the 2376, 8443, and 80 TCP ports through the firewall on the remote machine to have

Red Hat Container Development Kit 3.15 Getting Started Guide

48

2. Allow the 2376, 8443, and 80 TCP ports through the firewall on the remote machine to have
communication from the host:

Remote_Machine$ firewall-cmd --permanent --add-port 2376/tcp --add-port 8443/tcp --add-
port 80/tcp

3. Determine the Docker bridge network container subnet:

Remote_Machine$ docker network inspect -f "{{range .IPAM.Config }}{{ .Subnet }}{{end}}"
bridge

This command displays a subnet, such as 172.17.0.0/16.

4. Using the Docker bridge network container subnet, create a minishift zone for the firewall with
the subnet as its source:

Remote_Machine$ firewall-cmd --permanent --new-zone minishift
Remote_Machine$ firewall-cmd --permanent --zone minishift --add-source <subnet>

5. Allow the 53 and 8053 UDP ports through the firewall on the remote machine to allow
containers to access the OpenShift master API and DNS endpoints:

Remote_Machine$ firewall-cmd --permanent --zone minishift --add-port 53/udp --add-port
8053/udp

6. Reload the firewall on the remote machine:

Remote_Machine$ firewall-cmd --reload

2.9.3. Running Against an Existing Remote Machine

Use the following command on the host to run CDK against a remote machine:

$ minishift start --vm-driver generic --remote-ipaddress <remote_IP_address> --remote-ssh-user
<username> --remote-ssh-key <private_ssh_key>
$ minishift addon apply htpasswd-identity-provider --addon-env USER_PASSWORD=
<NEW_PASSWORD>

NOTE

The value of the --remote-ssh-key flag must be the location of a private SSH key on the
host machine.

NOTE

To change the default username and password, you must apply the htpasswd-identity-
provider add-on with the desired username and password after running the minishift
start command. By default, CDK uses the Allow All identity provider. The Allow All
identity provider allows any non-empty username and password to log in.

2.10. CONVERTING AN EXISTING DOCKER COMPOSE PROJECT

CHAPTER 2. USING CDK

49

2.10.1. Installing Kompose

Kompose is a tool for converting Docker Compose to container orchestrators such as OpenShift and
Kubernetes. Kompose may be installed manually or via a package manager (Chocolatey on Microsoft
Windows, Homebrew on macOS, or Yum on Red Hat Enterprise Linux).

2.10.1.1. Manually

1. Download the binary for your operating system from the Kompose GitHub Releases page.

2. Add the binary to a location in your PATH.

2.10.1.2. With Chocolatey

On Microsoft Windows, you can install Kompose via Chocolatey:

PS> choco.exe install kubernetes-kompose

2.10.1.3. With Homebrew

On macOS, you can install Kompose via Homebrew:

$ brew install kompose

2.10.1.4. On Red Hat Enterprise Linux

Kompose can be installed from the command line by enabling the Red Hat Developer Tools and Red Hat
Software Collections repositories:

$ subscription-manager repos --enable rhel-7-server-devtools-rpms
$ subscription-manager repos --enable rhel-server-rhscl-7-rpms
$ yum install kompose -y

2.10.2. Using Kompose

To convert your Docker Compose project using Kompose, follow these steps:

1. Start CDK so you have an OpenShift cluster to communicate with.

$ minishift start
Starting local OpenShift cluster using 'kvm' hypervisor...
-- Checking OpenShift client ... OK
-- Checking Docker client ... OK
-- Checking Docker version ... OK
-- Checking for existing OpenShift container ... OK
...

2. Download an example Docker Compose file , or use your own.

wget https://raw.githubusercontent.com/kubernetes/kompose/master/examples/docker-
compose.yaml

3. Convert your Docker Compose file to OpenShift. Run kompose convert --provider=openshift

Red Hat Container Development Kit 3.15 Getting Started Guide

50

https://github.com/kubernetes/kompose/releases
https://chocolatey.org/packages/kubernetes-kompose
https://formulae.brew.sh/formula/kompose
https://raw.githubusercontent.com/kubernetes/kompose/master/examples/docker-compose.yaml

3. Convert your Docker Compose file to OpenShift. Run kompose convert --provider=openshift
in the same directory as your docker-compose.yaml file.

$ kompose convert --provider=openshift
INFO OpenShift file "frontend-service.yaml" created
INFO OpenShift file "redis-master-service.yaml" created
INFO OpenShift file "redis-slave-service.yaml" created
INFO OpenShift file "frontend-deploymentconfig.yaml" created
INFO OpenShift file "frontend-imagestream.yaml" created
INFO OpenShift file "redis-master-deploymentconfig.yaml" created
INFO OpenShift file "redis-master-imagestream.yaml" created
INFO OpenShift file "redis-slave-deploymentconfig.yaml" created
INFO OpenShift file "redis-slave-imagestream.yaml" created

Alternatively, you can convert and deploy directly to OpenShift with kompose up --
provider=openshift.

$ kompose up --provider=openshift
INFO We are going to create OpenShift DeploymentConfigs, Services and
PersistentVolumeClaims for your Dockerized application.
If you need different kind of resources, use the 'kompose convert' and 'oc create -f'
commands instead.

INFO Deploying application in "myproject" namespace
INFO Successfully created Service: frontend
INFO Successfully created Service: redis-master
INFO Successfully created Service: redis-slave
INFO Successfully created DeploymentConfig: frontend
INFO Successfully created ImageStream: frontend
INFO Successfully created DeploymentConfig: redis-master
INFO Successfully created ImageStream: redis-master
INFO Successfully created DeploymentConfig: redis-slave
INFO Successfully created ImageStream: redis-slave

Your application has been deployed to OpenShift. You can run 'oc get dc,svc,is,pvc' for
details.

4. Access the newly deployed application with CDK.
After deployment, you must create an OpenShift route in order to access the service.

Create a route for the frontend service using oc.

$ oc expose service/frontend
route "frontend" exposed

Access the frontend service with minishift.

$ minishift openshift service frontend --namespace=myproject --in-browser
Opening the service myproject/frontend in the default browser...

You can also access the GUI of OpenShift for an overview of the deployed containers.

$ minishift console
Opening the OpenShift Web console in the default browser...

CHAPTER 2. USING CDK

51

CHAPTER 3. INTERACTING WITH OPENSHIFT USING
CONTAINER DEVELOPMENT KIT

CDK creates a virtual machine and provisions a local, single-node OpenShift cluster in this VM. The
following sections describe how CDK can assist you in interacting and configuring your local OpenShift
cluster.

For details about managing the CDK VM, see the Basic Usage section.

3.1. USING THE OPENSHIFT CLIENT BINARY (OC)

3.1.1. Overview

The minishift start command creates an OpenShift cluster using the cluster up approach. For this
purpose it copies the oc binary onto your host.

The oc binary is located in the $MINISHIFT_HOME/cache/oc/v3.11.346 directory, assuming that you
use the default OpenShift version for CDK. You can add this binary to your PATH using minishift oc-
env, which displays the command you need to type into your shell.

The output of minishift oc-env differs depending on the operating system and the shell type.

$ minishift oc-env
export PATH="/home/user/.minishift/cache/oc/v3.11.346:$PATH"
Run this command to configure your shell:
eval $(minishift oc-env)

3.1.2. CDK CLI Profile

As part of the minishift start command, a CLI profile named minishift is also created. This profile, also
known as a context, contains the configuration to communicate with your OpenShift cluster.

CDK activates this context automatically, but if you need to switch back to it after, for example, logging
into another OpenShift instance, you can run:

$ oc config use-context minishift

For an introduction to oc usage, see the Get Started with the CLI topic in the OpenShift
documentation.

3.1.3. Logging Into the Cluster

By default, cluster up uses AllowAllPasswordIdentityProvider to authenticate against the local cluster.
This means any non-empty user name and password can be used to login to the local cluster.

The recommended user name and password is developer and developer, respectively. This is because
they are already assigned to the default project myproject and also can impersonate the administrator.
This allows you to run administrator commands using the --as system:admin parameter.

To login as administrator, use the system account:

$ oc login -u system:admin

Red Hat Container Development Kit 3.15 Getting Started Guide

52

https://github.com/openshift/origin/blob/release-3.11/docs/cluster_up_down.md
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/cli_reference/cli-reference-manage-cli-profiles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/cli_reference/cli-reference-get-started-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/configuring_clusters/install-config-configuring-authentication#AllowAllPasswordIdentityProvider
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/architecture/additional-concepts#authentication-impersonation

In this case, client certificates are used. The certificates are stored in ~/.kube/config. The cluster up
command installs the appropriate certificates as a part of the bootstrap.

NOTE

If you run the command oc login -u system -p admin, you will log in but not as an
administrator. Instead, you will be logged in as an unprivileged user with no particular
rights.

To view the available login contexts, run:

$ oc config view

3.1.4. Accessing the Web Console

To access the OpenShift Web console, you can run this command in a shell after starting CDK to get the
URL of the Web console:

$ minishift console --url

Alternatively, after starting CDK, you can use the following command to directly open the console in a
browser:

$ minishift console

3.1.5. Accessing OpenShift Services

To access a service that is exposed with a route, run this command in a shell:

$ minishift openshift service [-n NAMESPACE] [--url] NAME

For more information refer also to Exposing Services.

3.1.6. Viewing OpenShift Logs

To access OpenShift logs, run the following command after starting CDK:

$ minishift logs

3.1.7. Updating OpenShift Configuration

While OpenShift is running, you can view and change the master or the node configuration of your
cluster.

To view the OpenShift master configuration file master-config.yaml, run the following command:

$ minishift openshift config view

To show the node or kubeapi-server configuration instead of the master configuration, specify the
target flag.

CHAPTER 3. INTERACTING WITH OPENSHIFT USING CONTAINER DEVELOPMENT KIT

53

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/architecture/additional-concepts#api-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/architecture/infrastructure-components#architecture-infrastructure-components-web-console

For details about the view sub-command, see the minishift openshift config view synopsis.

NOTE

After you update the OpenShift configuration, OpenShift will transparently restart.

3.1.7.1. Example: Configuring cross-origin resource sharing

In this example, you configure cross-origin resource sharing (CORS) by updating the OpenShift master
configuration to allow additional IP addresses to request resources.

By default, OpenShift only allows cross-origin resource requests from the IP address of the cluster or
from localhost. This setting is stored in the corsAllowedOrigins property of the master configuration
file master-config.yaml.

To change the property value and allow cross-origin requests from all domains, run the following
command:

$ minishift openshift config set --patch '{"corsAllowedOrigins": [".*"]}'

NOTE

If you get the error The specified patch need to be a valid JSON. when you run the above
command, you need to modify the above command depending on your operating system,
your shell environment and its interpolation behavior.

For example, if you use PowerShell on Windows 7 or 10, modify the above command to:

PS> minishift.exe openshift config set --patch '{\"corsAllowedOrigins\": [\".*\"]}'

If you use Command Prompt, use the following:

C:\> minishift.exe openshift config set --patch "{\"corsAllowedOrigins\": [\".*\"]}"

3.1.7.2. Example: Changing the OpenShift Routing Suffix

In this example, you change the OpenShift routing suffix in the master configuration.

If you use a static routing suffix, you can set the routing-suffix flag as part of the minishift start
command. By default, CDK uses a dynamic routing prefix based on nip.io, in which the IP address of the
VM is a part of the routing suffix, for example 192.168.99.103.nip.io.

If you experience issues with nip.io, you can use xip.io, which is based on the same principles.

To set the routing suffix to xip.io, run the following command:

$ minishift openshift config set --patch '{"routingConfig": {"subdomain": "<IP-ADDRESS>.xip.io"}}'

Make sure to replace IP-ADDRESS in the above example with the IP address of your CDK VM. You can
retrieve the IP address by running the minishift ip command.

3.1.8. Add Component to OpenShift Cluster

Red Hat Container Development Kit 3.15 Getting Started Guide

54

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/configuring_clusters/install-config-master-node-configuration#master-configuration-files
http://nip.io/
http://xip.io/

To add a component to a running OpenShift cluster, use the following:

$ minishift openshift component add <component-name>

3.1.8.1. Example: Add service-catalog component

In this example, the service-catalog component can be added as follows:

$ minishift openshift component add service-catalog

3.1.9. List Valid Components to Add to OpenShift Cluster

To list valid components which can be added to the running OpenShift cluster, use the following:

$ minishift openshift component list

3.2. EXPOSING SERVICES

3.2.1. Overview

There are several ways you can expose your service after you deploy it on OpenShift. The following
sections describe the various methods and when to use them.

3.2.2. Routes

If you are deploying a Web application, the most common way to expose it is by a route. A route exposes
the service as a host name. You can create a route using the Web console or the CLI:

$ oc expose svc/frontend --hostname=www.example.com

To see a full example of creating an application and exposing it with a route, see the Deploying a Sample
Application section.

3.2.3. NodePort Services

In case the service you want to expose is not HTTP based, you can create a NodePort service. In this
case, each OpenShift node will proxy that port into your service. To access this port on your CDK VM,
you need to configure an Ingress IP using oc expose with the parameter type=LoadBalancer.

A common use-case for Ingress IP Self-Service is the ability to expose a database service. The following
example shows the complete workflow to create and expose a MariaDB instance using CDK:

$ minishift start
$ eval $(minishift oc-env)
$ oc new-app -e MYSQL_ROOT_PASSWORD=admin
https://raw.githubusercontent.com/openshift/origin/master/examples/db-templates/mariadb-persistent-
template.json
$ oc rollout status -w dc/mariadb
$ oc expose dc mariadb --type=LoadBalancer --name=mariadb-ingress
$ oc export svc mariadb-ingress

CHAPTER 3. INTERACTING WITH OPENSHIFT USING CONTAINER DEVELOPMENT KIT

55

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/developer_guide/dev-guide-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/architecture/core-concepts#service-nodeport
https://mariadb.org

ports:
 - nodePort: 30907

After the service is exposed, you can access MariaDB with the mysql CLI using the CDK VM IP and the
exposed NodePort service.

$ mysql --user=root --password=admin --host=$(minishift ip) --port=30907

3.2.4. Port Forwarding

3.2.4.1. Using oc port-forward

If you want to quickly access a port of a specific pod of your cluster, you can also use the oc port-
forward command of the OpenShift CLI.

$ oc port-forward POD [LOCAL_PORT:]REMOTE_PORT

3.2.4.2. Using VirtualBox tools

In case you’re using the VirtualBox driver plug-in there is another method you can use for port
forwarding. This method will allow for permanent port forwarding as well as for forwarding multiple ports
at the same time. This method requires you to set up a nodePort as outlined above.

If we go by the example above, we can do the following:

$ VBoxManage controlvm minishift natpf1 "mariadb,tcp,,3306,,30907"

This will allow us to communicate with the mariadb service on localhost:3306 which might be
convenient if you don’t want to change default ports. Additionally, an important advantage of this way of
forwarding ports is that we can talk to a service as opposed to just a single pod.

3.3. ACCESSING THE OPENSHIFT DOCKER REGISTRY

3.3.1. Overview

OpenShift provides an integrated Docker registry which can be used for development as well. Images
present in the registry can directly be used for applications, speeding up the local development
workflow.

3.3.2. Logging Into the Registry

1. Start CDK and add the oc binary to the PATH. For a detailed example, see the CDK Quickstart
section.

2. Make sure your shell is configured to reuse the CDK Docker daemon.

3. Log into the OpenShift Docker registry.

 $ docker login -u developer -p $(oc whoami -t) $(minishift openshift registry)

Red Hat Container Development Kit 3.15 Getting Started Guide

56

3.3.3. Deploying Applications

The following example shows how to deploy an OpenShift application directly from a locally-built
Docker image. This example uses the OpenShift project myproject. This project is automatically
created by minishift start.

1. Make sure your shell is configured to reuse the CDK Docker daemon.

2. Build the Docker image as usual.

3. Tag the image against the OpenShift registry:

 $ docker tag my-app $(minishift openshift registry)/myproject/my-app

4. Push the image to the registry to create an image stream with the same name as the
application:

 $ docker push $(minishift openshift registry)/myproject/my-app

5. Create an application from the image stream and expose the service:

 $ oc new-app --image-stream=my-app --name=my-app
 $ oc expose service my-app

NOTE

If you want to deploy an application using oc run --image […] then exposed internal
registry route doesn’t work. You should use internal registry IP along with your project
and app to deploy, as following:

$ oc run myapp --image 172.30.1.1:5000/myproject/myapp

CHAPTER 3. INTERACTING WITH OPENSHIFT USING CONTAINER DEVELOPMENT KIT

57

CHAPTER 4. TROUBLESHOOTING CDK
This section contains solutions to common problems that you might encounter while setting up and
using CDK.

4.1. TROUBLESHOOTING GETTING STARTED

4.1.1. Overview

This section contains solutions to common problems that you might encounter while installing and
configuring CDK.

4.1.2. CDK startup check failed

While CDK starts, it runs several startup checks to make sure that the CDK VM and the OpenShift
Cluster are able to start without any issues. If any configuration is incorrect or missing, the startup
checks fail and CDK does not start.

You can skip the startup checks by executing the following command:

$ minishift config set skip-startup-checks true

The following sections describe the different startup checks.

4.1.2.1. Driver plug-in configuration

One of the startup checks verifies that the relevant driver plug-in is configured correctly. If this startup
check fails, review the Setting Up the Virtualization Environment topic and configure the appropriate
driver.

If you want to force CDK to start despite a failing driver plug-in check, you can instruct CDK to treat
these errors as warnings:

For KVM/libvirt on Linux, run the following command:

$ minishift config set warn-check-kvm-driver true

For hyperkit on macOS, run the following command:

$ minishift config set warn-check-hyperkit-driver true

For Hyper-V on Windows, run the following command:

C:\> minishift.exe config set warn-check-hyperv-driver true

4.1.2.2. Persistent storage volume configuration and usage

CDK checks whether the persistent storage volume is mounted and that enough disk space is available.
If the persistent storage volume, for example, uses more than 95% of the available disk space, CDK will
not start.

If you want to recover the data, you can skip this test and start CDK to access the persistent volume:

Red Hat Container Development Kit 3.15 Getting Started Guide

58

$ minishift config set skip-check-storage-usage true

4.1.2.3. External network connectivity

After the CDK VM starts, it runs several network checks to verify whether external connectivity is
possible from within the CDK VM.

By default, network checks are configured to treat any errors as warnings, because of the diversity of
the development environments. You can configure the network checks to optimize them for your
environment.

For example, one of the network checks pings an external host. You can change the host by running the
following command:

$ minishift config set check-network-ping-host <host-IP-address>

Replace <host-IP-address> with the address of your internal DNS server, proxy host, or an external host
that you can reach from your machine.

Because proxy connectivity might be problematic, you can run a check that tries to retrieve an external
URL. You can configure the URL by running:

$ minishift config set check-network-http-host <URL>

4.1.3. OpenShift web console does not work with older versions of Safari

minishift console does not work on older versions of Safari web browser such as version 10.1.2
(12603.3.8). Attempting to access the web console results in the following error:

Error unable to load details about the server

Retry after updating it to the latest version or use Firefox or Chrome browser for this. Version 11.0.3
(13604.5.6) has been tested and works with OpenShift web console. You can use minishift console --
url to get the web console URL.

4.2. TROUBLESHOOTING DRIVER PLUG-INS

4.2.1. Overview

This section contains solutions to common problems that you might encounter while configuring the
driver plug-ins for CDK.

4.2.2. KVM/libvirt

4.2.2.1. Undefining virsh snapshots fail

If you use virsh on KVM/libvirt to create snapshots in your development workflow then use minishift
delete to delete the snapshots along with the VM, you might encounter the following error:

$ minishift delete
Deleting the Minishift VM...

CHAPTER 4. TROUBLESHOOTING CDK

59

Error deleting the VM: [Code-55] [Domain-10] Requested operation is not valid: cannot delete
inactive domain with 4 snapshots

Cause: The snapshots are stored in ~/.minishift/machines, but the definitions are stored in
/var/lib/libvirt/qemu/snapshot/minishift.

Workaround: To delete the snapshots, you need to perform the following steps as root.

1. Delete the definitions:

virsh snapshot-delete --metadata minishift <snapshot-name>

2. Undefine the CDK domain:

virsh undefine minishift

You can now run minishift delete to delete the VM and restart CDK.

NOTE

If these steps do not resolve the issue, you can also use the following command to delete
the snapshots:

$ rm -rf ~/.minishift/machines

It is recommended to avoid using metadata when you create snapshots. To ensure this, you can specify
the --no-metadata flag. For example:

virsh snapshot-create-as --domain vm1 overlay1 --diskspec vda,file=/export/overlay1.qcow2 --disk-
only --atomic --no-metadata

4.2.2.2. Error creating new host: dial tcp: missing address

The problem is likely that the libvirtd service is not running. You can check this with the following
command:

$ systemctl status libvirtd

If libvirtd is not running, start it and enable it to start on boot:

$ systemctl start libvirtd
$ systemctl enable libvirtd

4.2.2.3. Failed to connect socket to '/var/run/libvirt/virtlogd-sock'

The problem is likely that the virtlogd service is not running. You can check this with the following
command:

$ systemctl status virtlogd

If virtlogd is not running, start it and enable it to start on boot:

Red Hat Container Development Kit 3.15 Getting Started Guide

60

$ systemctl start virtlogd
$ systemctl enable virtlogd

4.2.2.4. Domain 'minishift' already exists…

If you try minishift start and this error appears, ensure that you use minishift delete to delete the VMs
that you created earlier. However, if this fails and you want to completely clean up CDK and start fresh,
do the following:

1. As root, check if any existing CDK VMs are running:

virsh list --all

2. If any CDK VM is running, stop it:

virsh destroy minishift

3. Delete the VM:

virsh undefine minishift

4. As your regular user, delete the ~/.minishift/machines directory:

$ rm -rf ~/.minishift/machines

In case all of this fails, you might want to uninstall CDK and do a fresh install of CDK.

4.2.3. VirtualBox

4.2.3.1. Error machine does not exist

If you use Windows, ensure that you set the --vm-driver virtualbox flag in the minishift start
command. Alternatively, the problem might be an outdated version of VirtualBox.

To avoid this issue, it is recommended to use VirtualBox 5.1.12 or later.

4.2.4. Hyper-V

4.2.4.1. Hyper-V commands must be run as an Administrator

If you run CDK with Hyper-V on Windows as a normal user or as a user with Administrator privileges, you
might encounter the following error:

Error starting the VM: Error creating the VM. Error with pre-create check: "Hyper-V commands must
be run as an Administrator".

Workaround: You can either add yourself to the Hyper-V Administrators group, which is recommended,
or run the shell in an elevated mode.

If you are using PowerShell, you can add yourself to the Hyper-V Administrators group as follows:

1. As an administrator, run the following command:

CHAPTER 4. TROUBLESHOOTING CDK

61

PS> ([adsi]"WinNT://./Hyper-V
Administrators,group").Add("WinNT://$env:UserDomain/$env:Username,user")

2. Log out and log back in for the change to take effect.

You can also use the GUI to add yourself to the Hyper-V Administrators group as follows:

1. Click the Start button and select Computer Management.

2. In the Computer Management window, select Local Users And Groups, then double-click
Groups.

3. Double-click the Hyper-V Administrators group, the Hyper-V Administrators Properties
dialog box is displayed.

4. Add your account to the Hyper-V Administrators group, log off, then log in for the change to
take effect.

Now you can run the Hyper-V commands as a normal user.

For more options for Hyper-V see creating Hyper-V administrators local group .

4.2.4.2. CDK running with Hyper-V fails when connected to OpenVPN

If you try to use CDK with Hyper-V using an external virtual switch while you are connected to a VPN such
as OpenVPN, CDK might fail to provision the VM.

Cause: Hyper-V networking might not route the network traffic in both directions properly when
connected to a VPN.

Workaround: Disconnect from the VPN and try again after stopping the VM from the Hyper-V manager.

4.3. TROUBLESHOOTING MISCELLANEOUS

4.3.1. Overview

This section contains solutions to common problems that you might encounter while using various
components of CDK.

4.3.2. The root filesystem of the CDK VM exceeds overlay size

Installing additional packages or copying large files to the root filesystem of the CDK VM might exceed
the allocated overlay size and lock the CDK VM.

Cause: The CDK VM root filesystem contains core packages that are configured to optimize running the
CDK VM and containers. The available storage on the root filesystem is determined by the overlay size,
which is smaller than the total available storage.

Workaround: Avoid installing packages or storing large files in the root filesystem of the CDK VM.
Instead, you can create a sub-directory in the /mnt/sda1/ persistent storage volume or define and
mount host folders that can share storage space between the host and the CDK VM.

If you want to perform development tasks inside the CDK VM, it is recommended that you use
containers, which are stored in persistent storage volumes, and reuse the CDK Docker daemon.

Red Hat Container Development Kit 3.15 Getting Started Guide

62

https://blogs.msdn.microsoft.com/virtual_pc_guy/2010/09/28/creating-a-hyper-v-administrators-local-group-through-powershell

4.3.3. Special characters cause passwords to fail

Depending on your operating system and shell environment, certain special characters can trigger
variable interpolation and therefore cause passwords to fail.

Workaround: When creating and entering passwords, wrap the string with single quotes in the following
format: '<password>'

4.3.4. Cannot access web console with Microsoft Edge

Attempting to access the OpenShift web console using Microsoft Edge can result in the following error:

Site not reachable.

Alternatively, the OpenShift web console may be rendered as a blank page.

Cause: This is an inconsistent error caused by Microsoft Edge.

Workaround: Use an alternative web browser to access the OpenShift web console. Mozilla Firefox and
Google Chrome both work as expected.

4.3.5. X.509 certificate is valid for 10.0.2.15, 127.0.0.1, 172.17.0.1, 172.30.0.1,
192.168.99.100, not 192.168.99.101

Starting a stopped CDK VM can produce the following X.509 certificate error:

$ minishift start
-- Checking if requested hypervisor 'kvm' is supported on this platform ... OK
-- Checking the ISO URL ... OK
-- Starting local OpenShift cluster using 'kvm' hypervisor ...
-- Starting Minishift VM OK
[...]
FAIL
 Error: cannot access master readiness URL https://192.168.99.101:8443/healthz/ready
 Details:
 No log available from "origin" container

 Caused By:
 Error: Get https://192.168.99.101:8443/healthz/ready: x509: certificate is valid for 10.0.2.15,
127.0.0.1, 172.17.0.1, 172.30.0.1, 192.168.99.100, not 192.168.99.101
Error during 'cluster up' execution: Error starting the cluster.

The reason for the above error is that OpenShift cluster certificates contain the IP of the CDK VM. The
certificates are generated only when the CDK VM is freshly started. After restart, the CDK VM might be
assigned a new IP address. If this happens, the certificate becomes invalid.

Workaround: Delete the existing CDK VM and start again.

$ minishift delete --force
$ minishift start

4.3.6. Removing the subscription password from an OS-native keychain

CHAPTER 4. TROUBLESHOOTING CDK

63

https://www.mozilla.org/en-US/firefox/new/
https://www.google.com/chrome/

4.3.6.1. Windows

On Windows, the password is stored using Credential Manager. Run the following command in
Command Prompt to delete the stored password:

C:\> cmdkey /delete:minishift:<username>

4.3.6.2. Red Hat Enterprise Linux

On Red Hat Enterprise Linux, the password is stored using the D-Bus Secret Service API provided by
libsecret. Run the following command to delete the stored password:

$ secret-tool clear service minishift username <username>

4.3.6.3. macOS

On macOS, the password is stored using Keychain Access. Run the following command to delete the
stored password:

$ security delete-generic-password -s minishift

Red Hat Container Development Kit 3.15 Getting Started Guide

64

	Table of Contents
	CHAPTER 1. GETTING STARTED WITH CONTAINER DEVELOPMENT KIT
	1.1. INTRODUCING RED HAT CONTAINER DEVELOPMENT KIT
	1.1.1. Understanding Container Development Kit documentation

	1.2. PREPARING TO INSTALL CDK
	1.2.1. Overview
	1.2.2. Prerequisites

	1.3. SETTING UP THE VIRTUALIZATION ENVIRONMENT
	1.3.1. Overview
	1.3.2. Red Hat Enterprise Linux
	1.3.2.1. Setting Up the KVM Driver
	1.3.2.2. Start libvirtd service

	1.3.3. macOS
	1.3.3.1. Setting Up the hyperkit Driver

	1.3.4. Windows
	1.3.4.1. Setting Up the Hyper-V Hypervisor

	1.3.5. Setting Up CDK to Use VirtualBox
	1.3.5.1. Use VirtualBox Temporarily
	1.3.5.2. Use VirtualBox Permanently
	1.3.5.3. Next Steps

	1.4. INSTALLING CDK
	1.5. CDK QUICKSTART
	1.5.1. Overview
	1.5.2. Setting up CDK
	1.5.3. Starting CDK
	1.5.4. Deploying a Sample Application

	1.6. UNINSTALLING CDK
	1.6.1. Overview
	1.6.2. Uninstalling CDK

	CHAPTER 2. USING CDK
	2.1. BASIC USAGE
	2.1.1. Overview
	2.1.2. CDK Life-cycle
	2.1.2.1. The minishift setup-cdk Command
	2.1.2.2. The minishift start Command
	2.1.2.3. The minishift stop Command
	2.1.2.4. The minishift delete Command

	2.1.3. Runtime Options
	2.1.3.1. Flags
	2.1.3.2. Environment Variables
	2.1.3.3. Persistent Configuration

	2.1.4. Persistent Volumes
	2.1.5. HTTP/HTTPS Proxies
	2.1.6. Networking
	2.1.7. Connecting to the CDK VM with SSH

	2.2. CDK PROFILES
	2.2.1. Overview
	2.2.2. Creating Profiles
	2.2.2.1. Using the --profile Flag
	2.2.2.2. Using the profile set Command

	2.2.3. Listing Profiles
	2.2.4. Switching Profiles
	2.2.5. Deleting Profiles
	2.2.6. Example Workflow for Profile Configuration

	2.3. IMAGE CACHING
	2.3.1. Overview
	2.3.2. Explicit Image Caching
	2.3.2.1. Importing and Exporting Single Images
	2.3.2.2. Listing Cached Images
	2.3.2.3. Persisting Cached Image Names
	2.3.2.4. Exporting and Importing All Images

	2.3.3. Implicit Image Caching
	2.3.4. Delete Image from Local Cache

	2.4. ADD-ONS
	2.4.1. Overview
	2.4.2. OpenShift-Version Semantics
	2.4.3. Minishift-Version Semantics
	2.4.4. Defining Add-on Dependencies
	2.4.5. Add-on Commands
	2.4.6. Variable Interpolation
	2.4.6.1. Built-in Variables
	2.4.6.2. Dynamic Variables
	2.4.6.3. Internal Variables

	2.4.7. Default Add-ons
	2.4.7.1. Add-ons by the Community

	2.4.8. Installing Add-ons
	2.4.9. Enabling and Disabling Add-ons
	2.4.9.1. Add-on Priorities

	2.4.10. Applying Add-ons
	2.4.11. Removing Add-ons
	2.4.12. Uninstalling Add-ons
	2.4.13. Writing Custom Add-ons

	2.5. HOST FOLDERS
	2.5.1. Overview
	2.5.2. The minishift hostfolder Command
	2.5.2.1. Prerequisites
	2.5.2.2. Displaying Host Folders
	2.5.2.3. Adding Host Folders
	2.5.2.4. Mounting Host Folders
	2.5.2.5. Unmounting Host Folders
	2.5.2.6. Deleting Host Folders

	2.6. ASSIGN STATIC IP ADDRESS
	2.6.1. Overview
	2.6.2. Assign IP Address to Hyper-V
	2.6.3. Set Fixed IP Address

	2.7. CDK DOCKER DAEMON
	2.7.1. Overview
	2.7.2. Console Configuration

	2.8. EXPERIMENTAL FEATURES
	2.8.1. Overview
	2.8.2. Enabling Experimental oc cluster up Flags
	2.8.3. Local Proxy Server
	2.8.4. Local DNS Server
	2.8.4.1. Local DNS Setup for macOS

	2.8.5. CDK System Tray
	2.8.6. Timezone Setup

	2.9. RUN AGAINST AN EXISTING MACHINE
	2.9.1. Overview
	2.9.2. Configuring an Existing Remote Machine
	2.9.3. Running Against an Existing Remote Machine

	2.10. CONVERTING AN EXISTING DOCKER COMPOSE PROJECT
	2.10.1. Installing Kompose
	2.10.1.1. Manually
	2.10.1.2. With Chocolatey
	2.10.1.3. With Homebrew
	2.10.1.4. On Red Hat Enterprise Linux

	2.10.2. Using Kompose

	CHAPTER 3. INTERACTING WITH OPENSHIFT USING CONTAINER DEVELOPMENT KIT
	3.1. USING THE OPENSHIFT CLIENT BINARY (OC)
	3.1.1. Overview
	3.1.2. CDK CLI Profile
	3.1.3. Logging Into the Cluster
	3.1.4. Accessing the Web Console
	3.1.5. Accessing OpenShift Services
	3.1.6. Viewing OpenShift Logs
	3.1.7. Updating OpenShift Configuration
	3.1.7.1. Example: Configuring cross-origin resource sharing
	3.1.7.2. Example: Changing the OpenShift Routing Suffix

	3.1.8. Add Component to OpenShift Cluster
	3.1.8.1. Example: Add service-catalog component

	3.1.9. List Valid Components to Add to OpenShift Cluster

	3.2. EXPOSING SERVICES
	3.2.1. Overview
	3.2.2. Routes
	3.2.3. NodePort Services
	3.2.4. Port Forwarding
	3.2.4.1. Using oc port-forward
	3.2.4.2. Using VirtualBox tools

	3.3. ACCESSING THE OPENSHIFT DOCKER REGISTRY
	3.3.1. Overview
	3.3.2. Logging Into the Registry
	3.3.3. Deploying Applications

	CHAPTER 4. TROUBLESHOOTING CDK
	4.1. TROUBLESHOOTING GETTING STARTED
	4.1.1. Overview
	4.1.2. CDK startup check failed
	4.1.2.1. Driver plug-in configuration
	4.1.2.2. Persistent storage volume configuration and usage
	4.1.2.3. External network connectivity

	4.1.3. OpenShift web console does not work with older versions of Safari

	4.2. TROUBLESHOOTING DRIVER PLUG-INS
	4.2.1. Overview
	4.2.2. KVM/libvirt
	4.2.2.1. Undefining virsh snapshots fail
	4.2.2.2. Error creating new host: dial tcp: missing address
	4.2.2.3. Failed to connect socket to '/var/run/libvirt/virtlogd-sock'
	4.2.2.4. Domain 'minishift' already exists…

	4.2.3. VirtualBox
	4.2.3.1. Error machine does not exist

	4.2.4. Hyper-V
	4.2.4.1. Hyper-V commands must be run as an Administrator
	4.2.4.2. CDK running with Hyper-V fails when connected to OpenVPN

	4.3. TROUBLESHOOTING MISCELLANEOUS
	4.3.1. Overview
	4.3.2. The root filesystem of the CDK VM exceeds overlay size
	4.3.3. Special characters cause passwords to fail
	4.3.4. Cannot access web console with Microsoft Edge
	4.3.5. X.509 certificate is valid for 10.0.2.15, 127.0.0.1, 172.17.0.1, 172.30.0.1, 192.168.99.100, not 192.168.99.101
	4.3.6. Removing the subscription password from an OS-native keychain
	4.3.6.1. Windows
	4.3.6.2. Red Hat Enterprise Linux
	4.3.6.3. macOS

