
Red Hat Container Development Kit 3.0

Getting Started Guide

Quick-start guide to using and developing with Red Hat Container Development Kit

Last Updated: 2018-01-09

Red Hat Container Development Kit 3.0 Getting Started Guide

Quick-start guide to using and developing with Red Hat Container Development Kit

Brian Brock
bbrock@redhat.com

Robert Krátký
rkratky@redhat.com

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide shows how to get up to speed using Red Hat Container Development Kit. Included
instructions and examples guide through first steps developing containerized applications using
Docker, Kubernetes, and OpenShift Container Platform, both from your host workstation
(Microsoft Windows, macOS, or Red Hat Enterprise Linux) and from within the Container
Development Environment provided by Red Hat Container Development Kit.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. STARTUP
2.1. REGISTER THE CONTAINER DEVELOPMENT KIT RED HAT ENTERPRISE LINUX VIRTUAL MACHINE
2.2. STARTING CONTAINER DEVELOPMENT KIT

CHAPTER 3. MINISHIFT
3.1. MINISHIFT COMMANDS

3.1.1. minishift start
3.1.2. minishift stop
3.1.3. minishift delete

3.2. RUNTIME OPTIONS
3.2.1. Flags
3.2.2. Environment Variables
3.2.3. Persistent Configuration

3.2.3.1. Setting Persistent Configuration Values
3.2.3.2. Unsetting persistent configuration values

3.2.4. Driver Specific Environment Variables
3.3. PERSISTENT VOLUMES
3.4. HTTP/HTTPS PROXIES
3.5. NETWORKING

CHAPTER 4. DEPLOYING AN APPLICATION
4.1. PREREQUISITES TO DEPLOYING AN APPLICATION
4.2. SIMPLIFIED EXPLANATION OF APPLICATION DEPLOYMENT
4.3. WILDFLY APPLICATION DEPLOYMENT

CHAPTER 5. ADD-ONS
5.1. ADD-ONS OVERVIEW

5.1.1. Add-on Commands
5.1.2. Variable Interpolation
5.1.3. Default Add-ons

5.2. ENABLING AND DISABLING ADD-ONS
5.2.1. Add-on Priorities
5.2.2. Writing Custom Add-ons

CHAPTER 6. HOST FOLDERS
6.1. HOST FOLDERS OVERVIEW
6.2. DRIVER PROVIDED HOST FOLDERS
6.3. MINISHIFT HOSTFOLDER COMMAND
6.4. PREREQUISITE
6.5. DISPLAYING HOST FOLDERS
6.6. ADDING HOST FOLDERS

6.6.1. Instance Specific Host Folders
6.7. MOUNTING HOST FOLDERS

6.7.1. Auto-mounting Host Folders
6.8. UNMOUNTING HOST FOLDERS
6.9. DELETING HOST FOLDERS
6.10. SSHFS HOST FOLDERS

CHAPTER 7. INTERACTING WITH OPENSHIFT
7.1. OPENSHIFT INTERACTION OVERVIEW
7.2. USING THE OPENSHIFT CLIENT BINARY (OC)

4

5
5
5

7
7
7
7
7
7
8
8
8
8
9
9
9
9

10

11
11
11
11

16
16
16
17
18
18
18
19

20
20
20
20
20
21
21
22
22
23
23
23
23

25
25
25

Table of Contents

1

. .

. .

. .

7.3. LOGGING INTO THE CLUSTER
7.4. ACCESSING THE WEB CONSOLE
7.5. ACCESSING OPENSHIFT SERVICES
7.6. VIEWING OPENSHIFT LOGS
7.7. UPDATING OPENSHIFT CONFIGURATION
7.8. EXAMPLE: CONFIGURING CROSS-ORIGIN RESOURCE SHARING

7.8.1. Example: Changing the OpenShift routing suffix

CHAPTER 8. REUSING THE MINISHIFT DOCKER DAEMON

CHAPTER 9. ACCESSING THE OPENSHIFT DOCKER REGISTRY
9.1. DOCKER REGISTRY OVERVIEW
9.2. REGISTRY LOGIN
9.3. DEPLOYING AN APPLICATION WITH DOCKER

CHAPTER 10. TROUBLESHOOTING MINISHIFT
10.1. TROUBLESHOOTING OVERVIEW
10.2. SPECIAL CHARACTERS CAUSE PASSWORDS TO FAIL
10.3. UNDEFINING VIRSH SNAPSHOTS FAIL
10.4. KVM: ERROR CREATING NEW HOST: DIAL TCP: MISSING ADDRESS
10.5. KVM: FAILED TO CONNECT SOCKET TO '/VAR/RUN/LIBVIRT/VIRTLOGD-SOCK'
10.6. KVM: DOMAIN 'MINISHIFT' ALREADY EXISTS…
10.7. XHYVE: COULD NOT CREATE VMNET INTERFACE
10.8. VIRTUALBOX: ERROR MACHINE DOES NOT EXIST
10.9. HYPER-V: HYPER-V COMMANDS MUST BE RUN AS AN ADMINISTRATOR

25
26
26
26
26
27
27

29

30
30
30
30

31
31
31
31
32
32
32
33
33
33

Red Hat Container Development Kit 3.0 Getting Started Guide

2

Table of Contents

3

CHAPTER 1. OVERVIEW
This guide contains contains information about how the get started with Container Development Kit,
explanations of Container Development Kit functionality, and examples of command usage.

Examples are taken from a Red Hat Enterprise Linux 7 desktop running the KVM hypervisor.

NOTE

Starting minishift requires a Red Hat Enterprise Linux license.

This guide follows the Red Hat Container Development Kit 3.0 Installation Guide .

Red Hat Container Development Kit is one of several components that comprise Development Suite.

Red Hat Container Development Kit 3.0 Getting Started Guide

4

https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.0/html-single/installation_guide/

CHAPTER 2. STARTUP
Red Hat Container Development Kit for Red Hat Enterprise Linux includes a KVM virtual machine
image running Red Hat Enterprise Linux, that is running an OpenShift cluster for local use.
Container Development Kit primarily uses minishift and oc commands to manage the OpenShift
cluster. Users can deploy applications to the local OpenShift cluster, like they would for any other
OpenShift cluster. This simplifies application development on the desktop and deployment to
production systems.

Before we can do anything else with the OpenShift cluster, we need to start it. Then we can work with
Container Development Kit and the other examples.

Container Development Kit has several prequisites, that must be met at startup:

A computer system with virtualization turned on in the hardware.

A Red Hat Enterprise Linux, Microsoft Windows, or macOS desktop system installed on that
hardware. The command line examples are all taken from a Red Hat Enterprise Linux desktop.

A Red Hat Enterprise Linux license for the virtual machine running Red Hat Enterprise Linux.
This is in addition to the Red Hat Enterprise Linux license for your desktop.

Container Development Kit installed on the desktop, with minishift and oc commands
available.

NOTE

Container Development Kit registers a Red Hat Enterprise Linux virtual machine by
default during startup, on all operating systems.

2.1. REGISTER THE CONTAINER DEVELOPMENT KIT RED HAT
ENTERPRISE LINUX VIRTUAL MACHINE

Starting Container Development Kit requires a valid Red Hat Enterprise Linux license, because
Container Development Kit includes an KVM virtual machine image with Red Hat Enterprise Linux
installed.

At startup, minishift registers the Red Hat Enterprise Linux license, and holds it until it is released
at shutdown. The login information for that Red Hat Enterprise Linux license can be provided either on
the command line or as environment variables.

To start Container Development Kit using environment variables, first set MINISHIFT_USERNAME and
MINISHIFT_PASSWORD:

~]$ export MINISHIFT_USERNAME=<Red_Hat_username>
~]$ export MINISHIFT_PASSWORD=<Red_Hat_password>

Instead of the environment variables MINISHIFT_USERNAME and MINISHIFT_PASSWORD, you may
also specify the username and password on the command line:

~]$ minishift --username=<Red_Hat_username> --password=<Red_Hat_password>

2.2. STARTING CONTAINER DEVELOPMENT KIT

CHAPTER 2. STARTUP

5

The minishift start command downloads any required OpenShift functionality, starts OpenShift
services, and prints some helpful information about the command line and web interfaces.

At this point, you should be able to use the tools minishift and oc to manage your
Container Development Kit cluster. Start by running the minishift start command.

~]$ minishift start
Starting local OpenShift cluster using 'kvm' hypervisor...
...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.99.128:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

NOTE

The IP is dynamically generated for each OpenShift cluster. To check the IP, run
the minishift ip command.

By default, Minishift uses the driver most relevant to the host OS. To use a
different driver, set the --vm-driver flag in minishift start. For example,
to use VirtualBox instead of KVM on GNU/Linux operating systems, run
minishift start --vm-driver=virtualbox.

Use minishift oc-env to display the command you need to type into your shell in order to add the
oc binary to your PATH. The output of oc-env may differ, depending on OS and shell type.

~]$ minishift oc-env
export PATH="/home/<username>/.minishift/cache/oc/v1.5.0:$PATH"
Run this command to configure your shell:
eval $(minishift oc-env)

For more information about interacting with OpenShift with the command-line interface and the web
console, see the Chapter 7, Interacting with OpenShift section.

Red Hat Container Development Kit 3.0 Getting Started Guide

6

CHAPTER 3. MINISHIFT
When you use Minishift, you interact with two components:

a virtual machine (VM) created by Minishift

the OpenShift cluster provisioned by Minishift within the VM

3.1. MINISHIFT COMMANDS

The following sections contain information about managing the Minishift VM. For details about using
Minishift to manage your local OpenShift cluster, see the Chapter 7, Interacting with OpenShift section.

3.1.1. minishift start

The minishift start command creates and configures the Minishift VM and provisions a local,
single-node OpenShift instance within the VM.

The command also copies the oc binary to your host so that you can interact with through the oc
command line tool or through the Web console, which can be accessed through the URL provided in the
output of the minishift start command.

3.1.2. minishift stop

The minishift stop command stops your OpenShift cluster and shuts down the Minishift VM, but
preserves the OpenShift cluster state.

Starting Minishift again will restore the OpenShift cluster, allowing you to continue working from the
last session. However, you must enter the same parameters that you used in the original start
command.

3.1.3. minishift delete

The minishift delete command deletes the OpenShift cluster, and also shuts down and deletes
the {mshift VM}. No data or state are preserved.

3.2. RUNTIME OPTIONS

The runtime behavior of Minishift can be controlled through flags, environment variables, and
persistent configuration options.

The following precedence order is applied to control the behavior of Minishift. Each action in the
following list takes precedence over the action below it:

1. Use command-line flags as specified in the Section 3.2.1, “Flags” section.

2. Set environment variables as described in the Section 3.2.2, “Environment Variables” section.

3. Use persistent configuration options as described in the Section 3.2.3, “Persistent
Configuration” section.

4. Accept the default value as defined by Minishift.

CHAPTER 3. MINISHIFT

7

3.2.1. Flags

You can use command line flags with Minishift to specify options and direct its behavior. This has the
highest precedence. Almost all commands have flags, although different commands might have
different flags. Some of the commonly used command line flags of the minishift start command
are cpus, memory or vm-driver.

3.2.2. Environment Variables

Minishift allows you to specify command-line flags you commonly use through environment variables.
To do so, apply the following rules to the flag you want to set as an environment variable.

1. Apply MINISHIFT_ as a prefix to the flag you want to set as an environment variable. For
example, the vm-driver flag of the minishift start command becomes MINISHIFT_vm-
driver.

2. Use uppercase characters for the flag, so MINISHIFT_vm-driver in the above example
becomes MINISHIFT_VM-DRIVER.

3. Replace - with _, so MINISHIFT_VM-DRIVER becomes MINISHIFT_VM_DRIVER.

Environment variables can be used to replace any option of any Minishift command. A common
example is the URL of the ISO to be used. Usually, you specify it with the iso-url flag of the
minishift start command. Applying the above rules, you can also specify this URL by setting the
environment variable as MINISHIFT_ISO_URL.

NOTE

By default, Minishift places all runtime state into ~/.minishift. You can also use the
MINISHIFT_HOME environment variable, to choose a different home directory for
Minishift. This environment variable is currently experimental and semantics might
change in future releases.

3.2.3. Persistent Configuration

Using persistent configuration allows you to control the Minishift behavior without specifying actual
command line flags, similar to the way you use Section 3.2.2, “Environment Variables”.

Minishift maintains a configuration file in $MINISHIFT_HOME/config/config.json. This file can be
used to set commonly-used command-line flags persistently.

NOTE

Persistent configuration can only be applied to the set of supported configuration
options that are listed in the synopsis of the minishift config sub-command, unlike
environment variables that can be used to replace any option of any command.

3.2.3.1. Setting Persistent Configuration Values

The easiest way to change a persistent configuration option is with the config set sub-command.
For example:

Set default memory 4096 MB
~]$ minishift config set memory 4096

Red Hat Container Development Kit 3.0 Getting Started Guide

8

To view all persistent configuration values, you can use the view sub-command:

~]$ minishift config view
- memory: 4096

Alternatively, you can display a single value with the get sub-command:

~]$ minishift config get memory
4096

3.2.3.2. Unsetting persistent configuration values

To remove a persistent configuration option, you can use the unset sub-command. For example:

~]$ minishift config unset memory

3.2.4. Driver Specific Environment Variables

You can also specify driver specific environment variables. Each docker-machine driver supports its
own set of options and variables. A good starting point is the official docker-machine driver
documentation. xhyve and KVM documentation is available under their respective GitHub repository
docker-machine-driver-xhyve and docker-machine-kvm.

To use driver specific options make sure to export the variable as defined in its driver documentation
prior to running minishift start. For example, xhyve’s experimental NFS sharing can be enabled
by executing:

~]$ export XHYVE_EXPERIMENTAL_NFS_SHARE=true
~]$ minishift start --vm-driver xhyve

CAUTION

Driver specific options might overlap with values specified using Minishift specific flags and
environment variables. Examples are boot2docker URL, memory size, cpu count, etc. In this case driver
specific environment variables will override Minishift specific settings.

3.3. PERSISTENT VOLUMES

As part of provisioning with cluster up, the Section 7.2, “Using the OpenShift Client Binary (oc)”
creates persistent volumes for your OpenShift cluster. This allows applications to make persistent
volumes claims. The location of the persistent data is determined via the host-pv-dir flag of the start
command and defaults to /var/lib/minishift/openshift.local.pv on the Minishift VM.

3.4. HTTP/HTTPS PROXIES

If you are behind a HTTP/HTTPS proxy, you need to supply proxy options to allow Docker and
OpenShift to work properly. To do this, pass the required flags during minishift start.

For example:

CHAPTER 3. MINISHIFT

9

https://docs.docker.com/machine/drivers/
https://github.com/zchee/docker-machine-driver-xhyve
https://github.com/dhiltgen/docker-machine-kvm
https://docs.openshift.org/latest/dev_guide/persistent_volumes.html
https://docs.openshift.org/latest/dev_guide/persistent_volumes.html#persistent-volumes-claims-as-volumes-in-pods

~]$ minishift start --http-proxy http://<YOURPROXY>:<PORT> --https-proxy
https://<YOURPROXY>:<PORT>

In an authenticated proxy environment, the proxy_user and proxy_password must be a part of
proxy URI.

~]$ minishift start --http-proxy
http://<proxy_username>:<proxy_password>@<YOURPROXY>:<PORT> \ --https-
proxy https://<proxy_username>:<proxy_password>@<YOURPROXY>:<PORT>

You can also use the --no-proxy flag to specify a comma-separated list of hosts that should not be
proxied. For a list of all available options, see the synopsis of the start command.

Using the proxy options will transparently configure the Docker daemon and OpenShift to use the
specified proxies.

NOTE

Use the minishift start --ocp-tag flag to request a specific version of OpenShift
Container Platform. You can list all Minishift-compatible OpenShift Container Platform
versions with the minishift openshift version list command. By default,
Red Hat Container Development Kit 3.0 uses OpenShift Container Platform v3.5.5.8.

3.5. NETWORKING

The Minishift VM is exposed to the host system with a host-only IP address that can be obtained with
the minishift ip command.

Red Hat Container Development Kit 3.0 Getting Started Guide

10

CHAPTER 4. DEPLOYING AN APPLICATION
Deploying an application through minishift requires a few steps. Those steps are covered here first as a
simplified version of the process using a Node.js example, then a sample WildFly deployment. The
section Section 9.3, “Deploying an Application with Docker” explains application deployment with
Docker.

4.1. PREREQUISITES TO DEPLOYING AN APPLICATION

Your code needs to already be on the Internet, so upload it and make any pull requests so that
it is available in a reachable repository. These examples use sample applications hosted on
github.

You have already installed minishift, and have run minishift start.

4.2. SIMPLIFIED EXPLANATION OF APPLICATION DEPLOYMENT

OpenShift provides various sample applications, such as templates, builder applications, and
quickstarts. The following steps describe how to deploy a sample Node.js application from the
command-line.

1. Create a Node.js example app.

~]$ oc new-app https://github.com/openshift/nodejs-ex -l name=myapp

2. Track the build log until the app is built and deployed.

~]$ oc logs -f bc/nodejs-ex

3. Expose a route to the service.

~]$ oc expose svc/nodejs-ex

4. Access the application.

~]$ minishift openshift service nodejs-ex -n myproject

5. To stop Minishift, use the following command:

~]$ minishift stop
Stopping local OpenShift cluster...
Stopping "minishift"...

For more information about creating applications in OpenShift, see Creating New Applications in the
OpenShift documentation.

4.3. WILDFLY APPLICATION DEPLOYMENT

CHAPTER 4. DEPLOYING AN APPLICATION

11

https://docs.openshift.org/latest/dev_guide/application_lifecycle/new_app.html

NOTE

This step may not be needed if you just ran minishift start. Starting minishift
automatically logs you in as the developer user.

Deploying a WildFly application requires a few steps, so here’s an example of deploying a new app:

1. If you haven’t already, login to your OpenShift account. This example uses the developer
account in the OpenShift cluster, but you can login as any other valid user.

~]$ oc login https://192.168.42.189:8443 --username="developer" --
password="developer"
Login successful.

You have access to the following projects and can switch between
them with 'oc project <projectname>':

 * myproject

Using project "myproject".

2. You can use reuse an existing OpenShift project, or you can create a new project. You create a
project with oc new-app <project_name>.

~]$ oc new-app proj-00 --display-name="Project 00 - initial"
Now using project "project-00" on server
"https://192.168.42.189:8443".

You can add applications to this project with the 'new-app' command.
For example, try:

 oc new-app centos/ruby-22-
centos7~https://github.com/openshift/ruby-ex.git

to build a new example application in Ruby.

To verify that the correct project name was selected:

~]$ oc projects
You have access to the following projects and can switch between
them with 'oc project <projectname>':

 myproject - My Project
 * project-00 - Project 00 - initial

Using project "project-00" on server "https://192.168.42.189:8443".

3. Download a copy of the .json file for the WildFly app. This should create a file
wildfly.json:

~]$ curl -o wildfly.json
https://raw.githubusercontent.com/projectatomic/adb-
utils/master/services/openshift/templates/adb/image-streams-
centos7.json

Red Hat Container Development Kit 3.0 Getting Started Guide

12

 % Total % Received % Xferd Average Speed Time Time
Time Current
 Dload Upload Total Spent
Left Speed
100 35657 100 35657 0 0 79033 0 --:--:-- --:--:-- --
:--:-- 78887

4. Create an image stream for the WildFly application. An image stream is simply a set of docker
container images, condensed into an image stream to assist deployment. An image stream for
wildfly will help us in this example:

~]$ oc create -f wildfly.json -n openshift
imagestream "wildfly" created

5. Check the available image streams and verify that the WildFly image stream was created
successfully. In this example, it’s the last image stream in the list:

~]$ oc get is -n openshift
NAME DOCKER REPO TAGS
UPDATED
jenkins 172.30.1.1:5000/openshift/jenkins latest,1,2
36 hours ago
mariadb 172.30.1.1:5000/openshift/mariadb latest,10.1
36 hours ago
mongodb 172.30.1.1:5000/openshift/mongodb latest,3.2,2.6 +
1 more... 36 hours ago
mysql 172.30.1.1:5000/openshift/mysql 5.5,latest,5.7
+ 1 more... 36 hours ago
nodejs 172.30.1.1:5000/openshift/nodejs 0.10,4,latest
36 hours ago
perl 172.30.1.1:5000/openshift/perl
5.20,5.16,latest + 1 more... 36 hours ago
php 172.30.1.1:5000/openshift/php 5.6,5.5,latest
+ 1 more... 36 hours ago
postgresql 172.30.1.1:5000/openshift/postgresql latest,9.5,9.4 +
1 more... 36 hours ago
python 172.30.1.1:5000/openshift/python 3.3,2.7,latest
+ 2 more... 36 hours ago
redis 172.30.1.1:5000/openshift/redis latest,3.2
36 hours ago
ruby 172.30.1.1:5000/openshift/ruby 2.0,latest,2.3
+ 1 more... 36 hours ago
wildfly 172.30.1.1:5000/openshift/wildfly latest,10.1,10.0
+ 2 more... 2 hours ago

6. Create the application in OpenShift

~]$ oc new-app --name=myapp
wildfly:latest~https://github.com/Preeticp/os-sample-java-web
--> Found image 24b6639 (2 weeks old) in image stream
"openshift/wildfly" under tag "latest" for "wildfly:latest"

 WildFly 10.1.0.Final

 Platform for building and running JEE applications on WildFly

CHAPTER 4. DEPLOYING AN APPLICATION

13

10.1.0.Final

 Tags: builder, wildfly, wildfly10

 * A source build using source code from
https://github.com/Preeticp/os-sample-java-web will be created
 * The resulting image will be pushed to image stream
"myapp:latest"
 * Use 'start-build' to trigger a new build
 * This image will be deployed in deployment config "myapp"
 * Port 8080/tcp will be load balanced by service "myapp"
 * Other containers can access this service through the
hostname "myapp"

--> Creating resources ...
 imagestream "myapp" created
 buildconfig "myapp" created
 deploymentconfig "myapp" created
 service "myapp" created
--> Success
 Build scheduled, use 'oc logs -f bc/myapp' to track its
progress.
 Run 'oc status' to view your app.

7. Monitor the application deployment by checking the output of oc status:

~]$ oc status -v
In project Project 00 - initial (project-00) on server
https://192.168.42.189:8443

svc/myapp - 172.30.38.38:8080
 dc/myapp deploys istag/myapp:latest <-
 bc/myapp source builds https://github.com/Preeticp/os-sample-
java-web on openshift/wildfly:latest
 deployment #1 deployed about a minute ago - 1 pod

Info:
 * pod/myapp-1-build has no liveness probe to verify pods are still
running.
 try: oc set probe pod/myapp-1-build --liveness ...
 * dc/myapp has no readiness probe to verify pods are ready to
accept traffic or ensure deployment is successful.
 try: oc set probe dc/myapp --readiness ...
 * dc/myapp has no liveness probe to verify pods are still running.
 try: oc set probe dc/myapp --liveness ...
View details with 'oc describe <resource>/<name>' or list everything
with 'oc get all'.

8. You can examine a detailed very of the application being deployed:

~]$ oc describe svc/myapp
Name: myapp
Namespace: project-00
Labels: app=myapp
Selector: app=myapp,deploymentconfig=myapp

Red Hat Container Development Kit 3.0 Getting Started Guide

14

Type: ClusterIP
IP: 172.30.38.38
Port: 8080-tcp 8080/TCP
Endpoints: 172.17.0.3:8080
Session Affinity: None
No events.

9. Route service to the application. OpenShift starts a new internal service for each application
was created with oc newapp, as shown above in the section Section 4.3, “WildFly Application
Deployment”. Communication with the applications happens with a map to an external domain
name with a feature called routes. Routes are setup by exposing an application:

$ oc expose svc myapp
route "myapp" exposed

10. Run the oc status command again to verify that the application is correctly deployed:

~]$ oc status
In project Project 00 - initial (project-00) on server
https://192.168.42.189:8443

http://myapp-project-00.192.168.42.189.nip.io to pod port 8080-tcp
(svc/myapp)
 dc/myapp deploys istag/myapp:latest <-
 bc/myapp source builds https://github.com/Preeticp/os-sample-
java-web on openshift/wildfly:latest
 deployment #1 deployed 8 hours ago - 1 pod

View details with 'oc describe <resource>/<name>' or list everything
with 'oc get all'.

11. Finally, check out the running application. The information on the third line of oc status
output states the URI where users will access the running application, in this instance
http://myapp-project-00.192.168.42.189.nip.io Your address may vary from this,
because OpenShift uses a different IP address for each exposed service.

CHAPTER 4. DEPLOYING AN APPLICATION

15

http://myapp-project-00.192.168.42.189.nip.io

1

2

3

CHAPTER 5. ADD-ONS

5.1. ADD-ONS OVERVIEW

NOTE

This feature is still considered experimental and might change in future releases.

Minishift allows to configure the vanilla OpenShift setup provided by cluster up with an add-on
mechanism.

Add-ons are directories that contain one or more text files with the addon extension. The directory can
also have other resource files such as JSON template files. However, only one addon file is allowed.

Example: anyuid add-on definition file

This example shows the contents of the add-on text file, including the name and description of the add-
on, additional metadata, and the actual commands to run.

Name: anyuid

1
Description: Allows authenticated users to run images under a non pre-

allocated UID 2

oc adm policy add-scc-to-group anyuid system:authenticated

3

(Required) Name of the add-on.

(Required) Description of the add-on.

Actual add-on command. In this case, the command executes the oc binary. For the full list of the
supported add-on commands, see the Section 5.1.1, “Add-on Commands” section.

NOTE

Comment lines can be inserted at anywhere in the file. Comment lines must start with
the '#' character.

Enabled add-ons are applied during minishift start, immediately after the initial cluster
provisioning successfully completes.

5.1.1. Add-on Commands

This section describes the command types that an add-on file can contain and what the commands do.
The following command types are available forming a sort of mini-DSL for add-ons:

ssh

If the add-on command starts with ssh, you can run any command within the Minishift-managed VM.
This is similar to running minishift ssh and then executing any command on the VM.

oc

Red Hat Container Development Kit 3.0 Getting Started Guide

16

If the add-on command starts with oc, it uses the oc binary that is cached on your host to execute
the specified oc command. This is similar to running oc --as system:admin … from the
command-line.

NOTE

The oc command is executed as system:admin

openshift

If the add-on command starts with openshift, you can run the openshift binary within the
container that runs OpenShift. This means that any file parameters or other system-specific
parameters must match the environment of the container instead of your host.

docker

If the add-on command starts with docker, it executes a docker command against the Docker
daemon within the Minishift VM. This is the same daemon on which the single-node OpenShift
cluster is running as well. This is similar to running eval $(minishift docker-env) on your
host and then executing any docker command.

echo

If the add-on command starts with echo, the arguments following the echo command are printed to
the console. This can be used to provide additional feedback during add-on execution.

sleep

If the add-on command starts with sleep, it waits for the specified number of seconds. This can be
useful in cases where you know that a command such as oc might take a few seconds before a
certain resource can be queried.

NOTE

Trying to add a command that is not listed will cause an error when the add-on gets
parsed.

5.1.2. Variable Interpolation

Minishift also allows the use of variables as part of the supported commands. Variables have the form #
{<variable-name>}. Example: Usage of the routing suffix variable shows how the routing suffix can be
interpolated into a openshift command to create a new certificate as part of securing the OpenShift
registry.

Example: Usage of the routing suffix variable

~]$ openshift admin ca create-server-cert \ --signer-
cert=/var/lib/origin/openshift.local.config/master/ca.crt \ --signer-
key=/var/lib/origin/openshift.local.config/master/ca.key \ --signer-
serial=/var/lib/origin/openshift.local.config/master/ca.serial.txt \ --
hostnames='docker-registry-default.#{routing-suffix},docker-
registry.default.svc.cluster.local,172.30.1.1' \ --
cert=/etc/secrets/registry.crt \ --key=/etc/secrets/registry.key

Table 5.1, “Supported add-on variables” shows the currently supported variables which are available for
interpolation.

Table 5.1. Supported add-on variables

CHAPTER 5. ADD-ONS

17

Variable Description

ip The IP of the Minishift VM

routing-suffix The OpenShift routing suffix for application

addon-name The name of the current add-on

5.1.3. Default Add-ons

Minishift provides a set of built-in add-ons that offer some common OpenShift customization to assist
with development. To install the default add-ons, run:

~]$ minishift addons install --defaults

This command extracts the default add-ons to the add-on installation directory
($MINISHIFT_HOME/addons). To view the list of installed add-ons, you can then run:

~]$ minishift addons list --verbose=true

This command prints a list of installed add-ons. You should at least see the anyuid add-on listed. This is
an important add-on that allows you to run images that do not use a pre-allocated UID. By default, this
is not allowed in OpenShift.

5.2. ENABLING AND DISABLING ADD-ONS

Add-ons are enabled with the minishift addons enable command and disabled with the
minishift addons disable command.

The following examples show how to enable and disable the anyuid add-on.

Example: Enabling the anyuid add-on

~]$ minishift addons enable anyuid

Example: Disabling the anyuid add-on

~]$ minishift addons disable anyuid

5.2.1. Add-on Priorities

When you enable an add-on, you can also specify a priority as seen in Example: Enabling the registry
add-on with priority.

Example: Enabling the registry add-on with priority

~]$ minishift addons enable registry --priority=5

The add-on priority attribute determines the order in which add-ons are applied. By default, an add-on
has the priority 0. Add-ons with a lower priority value are applied first.

Red Hat Container Development Kit 3.0 Getting Started Guide

18

Example: List command output with explicit priorities

~]$ minishift addons list
- anyuid : enabled P(0)
- registry : enabled P(5)
- eap : enabled P(10)

In Example: List command output with explicit priorities , the anyuid, registry, and eap add-ons are
enabled with the respective priorities of 0, 5 and 10. This means that anyuid gets applied first, followed
by registry, and lastly the eap add-on.

NOTE

If two add-ons have the same priority the order in which they are getting applied is not
determined.

5.2.2. Writing Custom Add-ons

To write a custom add-on, you should create a directory and in it create at least one text file with the
extension .addon, for example admin-role.addon.

This file needs to contain the Name and Description metadata as well as the commands that you want
to execute as a part of the add-on. Example: Add-on definition for admin-role shows the the definition
of an add-on that gives the developer user cluster-admin privileges.

Example: Add-on definition for admin-role

Name: admin-role
Description: Gives the developer user cluster-admin privileges

oc adm policy add-role-to-user cluster-admin developer

After you define the add-on, you can install it by running:

$ minishift addons install <ADDON_DIR_PATH>

NOTE

You can also edit your add-on directly in the Minishift add-on install directory
$MINISHIFT_HOME/addons. Be aware that if there is an error in the add-on, it will not
show when you run any addons commands and it will not be applied during the
minishift start process.

CHAPTER 5. ADD-ONS

19

CHAPTER 6. HOST FOLDERS

6.1. HOST FOLDERS OVERVIEW

Host folders are directories on the host which are shared between the host and the Minishift VM. They
allow for a two way file synchronization between host and VM. The following sections discuss the
various types of host folders, driver provided host folders, as well as the Minishift hostfolder
command.

6.2. DRIVER PROVIDED HOST FOLDERS

Some drivers mount a default host folder into the VM in order to share files between the VM and the
host. These folders are currently not configurable and differ for each driver and OS.

Table 6.1. Driver provided host folders

Driver OS HostFolder VM

Virtualbox Linux /home /hosthome

Virtualbox OSX /Users /Users

Virtualbox Windows C://Users /c/Users

VMWare Fusion OSX /Users /Users

Xhyve OSX /Users /Users

NOTE

Host folder sharing is not implemented in the KVM and Hyper-V drivers. If you use one of
these drivers, you need to use Minishift specific host folder options .

6.3. MINISHIFT HOSTFOLDER COMMAND

Minishift provides the hostfolder command to list, add, mount, unmount and remove host folders. In
contrast to the driver provided host folders, the hostfolder command allows you to mount multiple
shared folders onto custom specified mount points.

At the moment only CIFS is supported as host folder type. Support for SSHFS based host folders is in
progress (see GitHub issue #317).

If you want to use SSHFS now, refer to Section 6.10, “SSHFS Host Folders” for manual instructions.

The following sections describe the prerequisite for using the hostfolder command, as well as the
various sub-commands it provides.

6.4. PREREQUISITE

Red Hat Container Development Kit 3.0 Getting Started Guide

20

https://en.wikipedia.org/wiki/Server_Message_Block
https://en.wikipedia.org/wiki/SSHFS
https://github.com/minishift/minishift/issues/317

1

2

3

To use the hostfolder command, you need to be able to share directories using CIFS. On Windows CIFS
is the default technology for sharing directories. For example, on Microsoft Windows 10 the C:\Users
folder is shared by default and can be accessed by locally-authenticated users.

It is also possible to use CIFS on OS X and Linux. On the former you can enable CIFS based shares
under System Preferences > Sharing. Refer to How to connect with File Sharing on your Mac for detailed
setup instructions.

On Red Hat Enterprise Linux, install samba with yum:

~]$ yum install "samba-*"

6.5. DISPLAYING HOST FOLDERS

The hostfolder list command gives you an overview of the defined host folders, their name,
mount point, remote path and whether they are currently mounted. An example output could look like:

~]$ minishift hostfolder list
Name Mountpoint Remote path Mounted
myshare /mnt/sda1/myshare //192.168.1.82/MYSHARE N

In this example, there is a host folder with the name myshare which mounts
//192.168.1.82/MYSHARE onto /mnt/sda1/myshare in the Minishift VM. The share is currently
not mounted.

NOTE

The remote path must be reachable from within the VM. In the example above
192.168.1.82 is the IP of host within the LAN which is one options one can use. You can
use ifconfig (or Get-NetIPAddress | Format-Table on Windows) to determine a
routable IP address.

6.6. ADDING HOST FOLDERS

The hostfolder add command allows you to define a new host folder. This in an interactive process
which queries the relevant details for a host folder based on CIFS.

Adding a CIFS based hostfolder

~]$ minishift hostfolder add myshare 1

UNC path: //192.168.99.1/MYSHARE 2

Mountpoint [/mnt/sda1/myshare]: 3

Username: john 4

Password: [HIDDEN] 5

Domain: 6
Added: myshare

(Required) Actual hostfolder add command, specifying a hostfolder with a name of myshare.

(Required) The UNC path for the share.

The mount point within the VM. The default is /mnt/sda1/<host folder name>.

CHAPTER 6. HOST FOLDERS

21

https://support.apple.com/en-us/HT204445

4

5

6

(Required) The username for the CIFS share.

(Required) The password for the CIFS share.

The domain of the share. Often this can be left blank, but for example on Windows, when your
account is linked to a Microsoft account, you must use the Microsoft account email address as
username as well as your machine name as displayed by $env:COMPUTERNAME as domain.

TIP

On Windows hosts the hostfolder add command also provides a users-share option. When specified
no UNC path needs to be specified and the C:\Users is assumed.

WARNING

When you use the Boot2Docker ISO along with the VirtualBox driver, VirtualBox
guest additions are automatically enabled and occupy the /Users mountpoint.

6.6.1. Instance Specific Host Folders

Per default, host folder definitions are persistent, similar to options specified using the minishift
config command explained in the the section Section 3.2.3, “Persistent Configuration”. This means
that these host folder definitions will survive the deletion and subsequent re-creation of a Minishift VM.

In some cases you might want to define a host folder just for a specific Minishift instance. To do so you
can use the instance-only flag of the hostfolder add command. Host folder definition created with
the instance-only flag will be removed together with any other instance specific state during
minishift delete.

6.7. MOUNTING HOST FOLDERS

Once you have added your host folder definitions, the hostfolder mount command allows you to
mount a host folder by its name:

~]$ minishift hostfolder mount myshare
Mounting 'myshare': '//192.168.99.1/MYSHARE' as '/mnt/sda1/myshare' ... OK

You can verify that the host folder is mounted by running:

~]$ minishift hostfolder list
Name Mountpoint Remote path Mounted
myshare /mnt/sda1/myshare //192.168.99.1/MYSHARE Y

Alternatively, you can list the actual content of the mounted host folder:

~]$ minishift ssh "ls -al /mnt/sda1/myshare"

Red Hat Container Development Kit 3.0 Getting Started Guide

22

6.7.1. Auto-mounting Host Folders

Host folders can also be mounted automatically on each minishift start. To achieve this you need
to set the persistent configuration option hostfolders-automount:

~]$ minishift config set hostfolders-automount true

Once hostfolders-automount is set, Minishift will attempt to mount all defined host folders during
minishift start.

6.8. UNMOUNTING HOST FOLDERS

In contrast to the hostfolder add command, hostfolder umount can be used to unmount a host
folder:

~]$ minishift hostfolder umount myshare
Unmounting 'myshare' ... OK

~]$ minishift hostfolder list
Name Mountpoint Remote path Mounted
myshare /mnt/sda1/myshare //192.168.99.1/MYSHARE N

6.9. DELETING HOST FOLDERS

The hostfolder remove command finally enabled you to remove a host folder definition:

~]$ minishift hostfolder list
Name Mountpoint Remote path Mounted
myshare /mnt/sda1/myshare //192.168.1.82/MYSHARE N

~]$ minishift hostfolder remove myshare
Removed: myshare

~]$ minishift hostfolder list
No host folders defined

6.10. SSHFS HOST FOLDERS

NOTE

This host folder type is not supported by the hostfolder command for now. You need
to manually configure it.

You can also use SSHFS-based host folders provided you have an SSH daemon running on your host.
Normally, this prerequisite is met by default on Red Hat Enterprise Linux and macOS.

To use the SSH server on macOS, make sure that Remote Login is enabled in System Preferences >
Sharing.

On Microsoft Windows you can install OpenSSH for Windows.

The following steps demonstrate how to mount host folders with SSHFS.

CHAPTER 6. HOST FOLDERS

23

https://winscp.net/eng/docs/guide_windows_openssh_server

1. Run ip address show on Red Hat Enterprise Linux, ifconfig on macOS,(or Get-
NetIPAddress on Microsoft Windows) to determine the local IP address from the same
network segment as your Minishift instance.

2. Create a mountpoint and mount the shared folder.

~]$ minishift ssh "sudo mkdir -p /Users/<username>"
~]$ minishift ssh "sudo chown -R docker /Users"
~]$ minishift ssh
~]$ sshfs <username>@<IP>:/Users/<username>/ /Users

3. Verify the share mount.

~]$ minishift ssh "ls -al /Users/<username>"

Red Hat Container Development Kit 3.0 Getting Started Guide

24

CHAPTER 7. INTERACTING WITH OPENSHIFT

7.1. OPENSHIFT INTERACTION OVERVIEW

Minishift creates a virtual machine (VM) and provisions a local, single-node OpenShift cluster in this
VM. The following sections describe how Minishift can assist you in interacting with and configuring
your local OpenShift instance.

For details about managing the Minishift VM, see the Managing Minishift section.

7.2. USING THE OPENSHIFT CLIENT BINARY (OC)

The minishift start command creates an OpenShift instance using the cluster up approach.

For this purpose it copies the oc binary onto your host. You will find it under
~/.minishift/cache/oc/3.5/oc, provided you use Minishift’s default version of OpenShift.

You can add this binary to your PATH using minishift oc-env which displays the command you
need to type into your shell. The output of oc-env will differ depending on OS and shell type.

~]$ minishift oc-env
export PATH="/Users/john/.minishift/cache/oc/v1.5.0:$PATH"
Run this command to configure your shell:
eval $(minishift oc-env)

NOTE

Users who have already installed the executables minishift or oc need to ensure that
the new executables that minishift provides do not conflict with those already installed.
This is handled by default with oc-env, by putting the new Minishift executables in
PATH first. To access the previous version, run which oc or which minishift and
use the output to specify the absolute filename including directory.

As part of the minishift start command there is also a minishift oc context created. This
context contains the configuration to communicate with your OpenShift cluster.

Minishift activates this context automatically, but if you need to switch back to it after for example,
logging into another OpenShift instance, you can run:

~]$ oc config use-context minishift

For an introduction to oc usage, refer to the Get Started with the CLI topic in the OpenShift
documentation.

7.3. LOGGING INTO THE CLUSTER

By default, cluster up uses AllowAllPasswordIdentityProvider to authenticate against the local cluster.
This means any non-empty user name and password can be used to login to the local cluster. The
recommended user name and password combination is developer/developer, because it already has a
default project myproject and also can impersonate the administrator user. This allows to run
administrator commands using the --as system:admin parameter.

CHAPTER 7. INTERACTING WITH OPENSHIFT

25

module-managing-minishift.xml
https://github.com/openshift/origin/blob/master/docs/cluster_up_down.md
https://docs.openshift.org/latest/cli_reference/manage_cli_profiles.html
https://docs.openshift.com/enterprise/3.2/cli_reference/get_started_cli.html
https://docs.openshift.org/latest/install_config/configuring_authentication.html#AllowAllPasswordIdentityProvider
https://docs.openshift.org/latest/architecture/additional_concepts/authentication.html#authentication-impersonation

To login as administrator, use the system account:

~]$ oc login -u system:admin

In this case, client certificates are used. The certificates are stored in ~/.kube/config. The cluster
up command installs the appropriate certificates as a part of the bootstrap.

NOTE

If you run the command oc login -u system -p admin, you will log in but not as
an administrator. Instead, you will be logged in as an unprivileged user with no particular
rights.

To view the currently available login contexts, run:

~]$ oc config view

7.4. ACCESSING THE WEB CONSOLE

To access the OpenShift console, you can run this command in a shell after starting Minishift to get the
URL of the Web console:

~]$ minishift console --url

Alternatively, after starting Minishift, you can use the following command to directly open the console
in a browser:

~]$ minishift console

7.5. ACCESSING OPENSHIFT SERVICES

To access a service exposed with a node port, run this command in a shell after starting Minishift to get
the address:

~]$ minishift openshift service [-n <NAMESPACE>] [--url] <NAME>

7.6. VIEWING OPENSHIFT LOGS

To access OpenShift logs, run the logs command after starting Minishift:

~]$ minishift logs

7.7. UPDATING OPENSHIFT CONFIGURATION

While OpenShift is running, you can view and change the master or the node configuration of your
cluster.

To view the current OpenShift master configuration master-config.yaml, run the following
command:

Red Hat Container Development Kit 3.0 Getting Started Guide

26

https://docs.openshift.com/enterprise/3.2/architecture/additional_concepts/authentication.html#api-authentication
https://docs.openshift.org/latest/architecture/infrastructure_components/web_console.html

~]$ minishift openshift config view

To show the node configuration instead of the master configuration, specify the target flag.

NOTE

After you update the OpenShift configuration, OpenShift will transparently restart.

7.8. EXAMPLE: CONFIGURING CROSS-ORIGIN RESOURCE SHARING

In this example, you configure cross-origin resource sharing (CORS) by updating the OpenShift master
configuration to allow additional IP addresses to request resources.

By default, OpenShift only allows cross-origin resource requests from the IP address of the cluster or
from localhost. This setting is stored in the corsAllowedOrigins property of the master configuration file
master-config.yaml.

To change the property value and allow cross-origin requests from all domains, run the following
command:

~]$ minishift openshift config set --patch '{"corsAllowedOrigins":
["."]}'*

NOTE

If you get the error The specified patch need to be a valid JSON. when
you run the above command, you need to modify the above command depending on
your Operating System, your shell environment and its interpolation behavior.

For example, if you use PowerShell on Microsoft Windows 10 modify the above
command to:

$.\minishift.exe --% openshift config set --patch "
{\"routingConfig\": {\"subdomain\":
\"192.168.99.101.nip.io\"}}"

If you use Command Prompt you may need to use:

$.\minishift.exe openshift config set --patch "
{\"routingConfig\": {\"subdomain\":
\"192.168.99.101.nip.io\"}}"

7.8.1. Example: Changing the OpenShift routing suffix

In this example, you change the OpenShift routing suffix in the master configuration.

If you use a static routing suffix, you can set the routing-suffix flag as part of the start
command. By default, Minishift uses a dynamic routing prefix based on nip.io, in which the IP address of
the VM is a part of the routing suffix, for example 192.168.99.103.nip.io.

If you experience issues with nip.io, you can use xip.io, which is based on the same principles.

CHAPTER 7. INTERACTING WITH OPENSHIFT

27

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://docs.openshift.com/enterprise/3.0/admin_guide/master_node_configuration.html#master-configuration-files
http://nip.io/
http://xip.io/

To set the routing suffix to xip.io, run the following command:

~]$ minishift openshift config set --patch '{"routingConfig":
{"subdomain": "<IP-ADDRESS>.xip.io"}}'

Make sure to replace <IP-ADDRESS> in the above example with the IP address of your Minishift VM.
You can retrieve the IP address by running the ip command.

Red Hat Container Development Kit 3.0 Getting Started Guide

28

CHAPTER 8. REUSING THE MINISHIFT DOCKER DAEMON
When running OpenShift in a single VM, you can reuse the Docker daemon managed by Minishift for
other Docker use-cases as well. By using the same docker daemon as Minishift, you can speed up your
local development.

In order to configure your console to reuse the Minishift Docker dameon, follow these steps:

1. Make sure that you have the Docker client binary installed on your machine. For information
about specific binary installations for your operating system, see the Docker installation site.

2. Start Minishift with the minishift start command.

3. Use minishift docker-env to display the command you need to type into your shell in
order to configure your Docker client. The command output will differ depending on OS and
shell type.

~]$ minishift docker-env
export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://192.168.99.101:2376"
export DOCKER_CERT_PATH="/Users/john/.minishift/certs"
export DOCKER_API_VERSION="1.24"
Run this command to configure your shell:
eval $(minishift docker-env)

4. Test the connection, running the following command:

~]$ docker ps

If successful, the shell will print a list of running containers.

CHAPTER 8. REUSING THE MINISHIFT DOCKER DAEMON

29

https://docs.docker.com/engine/installation/

CHAPTER 9. ACCESSING THE OPENSHIFT DOCKER REGISTRY

9.1. DOCKER REGISTRY OVERVIEW

OpenShift provides an integrated Docker registry which can be used for development as well. Images
present in the registry can directly be used for applications, speeding up the local development work-
flow. Refer to Section 9.3, “Deploying an Application with Docker” to know more.

9.2. REGISTRY LOGIN

1. Start Minishift and add the oc binary to the PATH. Refer to the section Chapter 1, Overview for
details.

2. Make sure your shell is configured to reuse the docker daemon .

3. Login to the docker registry

~]$ docker login -u developer -p $(oc whoami -t) $(minishift openshift
registry)

9.3. DEPLOYING AN APPLICATION WITH DOCKER

The following example shows how to deploy an OpenShift application directly from a locally built
docker image. In this example, the OpenShift project myproject is used, as it is automatically created
by minishift start.

1. Make sure your shell is configured to reuse the Minishift docker daemon .

2. Build the docker image as usual.

3. Tag the image against the OpenShift registry.

~]$ docker tag my-app $(minishift openshift registry)/myproject/my-
app

4. Push the image to the registry to create an image stream with the same name as the
application.

~]$ docker push $(minishift openshift registry)/myproject/my-app

5. Create an application from the image stream and expose the service.

~]$ oc new-app --image-stream=my-app --name=my-app
~]$ oc expose service my-app

Red Hat Container Development Kit 3.0 Getting Started Guide

30

CHAPTER 10. TROUBLESHOOTING MINISHIFT

10.1. TROUBLESHOOTING OVERVIEW

This section contains solutions to common problems that you might encounter while using Minishift.

10.2. SPECIAL CHARACTERS CAUSE PASSWORDS TO FAIL

Depending on your operating system and shell environment, certain special characters can trigger
variable interpolation and therefore cause passwords to fail.

Workaround: When creating and entering passwords, wrap the string with single quotes in the
following format: '<password>'

10.3. UNDEFINING VIRSH SNAPSHOTS FAIL

If you use virsh on KVM/libvirt to create snapshots in your development workflow, and then use
minishift delete to delete the snapshots along with the VM, you might encounter the following
error:

~]$ minishift delete
Deleting the Minishift VM...
Error deleting the VM: [Code-55] [Domain-10] Requested operation is not
valid: cannot delete inactive domain with 4 snapshots

Cause: The snapshots are stored in ~/.minishift/machines, but the definitions are stored in
var/lib/libvirt/qemu/snapshot/minishift.

Workaround: To delete the snapshots you need to perform the following steps.

1. Delete the definitions.

~]$ sudo virsh snapshot-delete --metadata minishift <snapshot-name>

2. Undefine the Minishift domain.

~]$ sudo virsh undefine minishift

3. Delete the VM and restart Minishift.

~]$ minishift delete

NOTE

In case the above steps do not resolve the issue, you can also use the following
command to delete the snapshots:

~]$ rm -rf ~/.minishift/machines

It is recommended to avoid using metadata when you create snapshots. To make sure of this, you can
specify the --no-metadata flag. For example:

CHAPTER 10. TROUBLESHOOTING MINISHIFT

31

~]$ sudo virsh snapshot-create-as --domain vm1 overlay1 \
--diskspec vda,file=/export/overlay1.qcow2 \
--disk-only --atomic --no-metadata

10.4. KVM: ERROR CREATING NEW HOST: DIAL TCP: MISSING
ADDRESS

The problem is likely that the libvirtd service is not running. You can check this with the following
command:

~]$ systemctl status libvirtd

If libvirtd is not running, start it and enable it to start on boot:

~]$ systemctl start libvirtd
~]$ systemctl enable libvirtd

10.5. KVM: FAILED TO CONNECT SOCKET TO
'/VAR/RUN/LIBVIRT/VIRTLOGD-SOCK'

The problem is likely that the virtlogd service is not running. You can check this with the following
command:

~]$ systemctl status virtlogd

If virtlogd is not running, start it and enable it to start on boot:

~]$ systemctl start virtlogd
~]$ systemctl enable virtlogd

10.6. KVM: DOMAIN 'MINISHIFT' ALREADY EXISTS…

If you try minishift start and hit the above error, ensure that you use minishift delete to
delete the VMs created earlier by you. However if this fails and you wish to completely clean up
Minishift and start fresh do the following:

1. Check if any existing Minishift VM are running:

~]$ sudo virsh list --all

2. If any Minishift VM is running, stop it:

~]$ sudo virsh destroy minishift

3. Delete the VM:

~]$ sudo virsh undefine minishift

4. Delete the .minishift/machines directory using:

Red Hat Container Development Kit 3.0 Getting Started Guide

32

~]$ rm -rf ~/.minishift/machines

In case all of this fails, you may want to uninstall Minishift and do a fresh install of Minishift.

10.7. XHYVE: COULD NOT CREATE VMNET INTERFACE

The problem is likely that the xhyve driver is not able to clean up vmnet when a VM is removed.
vmnet.framework determines the IP address based on the following files:

/var/db/dhcpd_leases

/Library/Preferences/SystemConfiguration/com.apple.vmnet.plist

Reset the minishift IP database, make sure to remove the minishift entry section from the
dhcpd_leases file, and reboot your system.

/var/db/dhcpd_leases section for minishift. The highlighted line identifies the section.

{
 ip_address=192.168.64.2
 hw_address=1,2:51:8:22:87:a6
 identifier=1,2:51:8:22:87:a6
 lease=0x585e6e70
 name=minishift
}

NOTE

You can completely reset the IP database by removing the files manually but this is very
risky.

10.8. VIRTUALBOX: ERROR MACHINE DOES NOT EXIST

If you use Microsoft Windows, make sure that you set the --vm-driver virtualbox flag in the
minishift start command. Alternatively, the problem might be an outdated version of VirtualBox.

To avoid this issue, it is recommended to use VirtualBox 5.1.12 or later.

10.9. HYPER-V: HYPER-V COMMANDS MUST BE RUN AS AN
ADMINISTRATOR

If you run Minishift with Hyper-V on Microsoft Windows as a normal user or as a user with
Administrator privileges, you will encounter the following error:

Error starting the VM: Error creating the VM. Error with pre-create check:
"Hyper-V commands must be run as an Administrator".

Workaround: To overcome this error you can either add yourself to the Hyper-V Administrators group,
which is recommended, or run the shell in an elevated mode.

If use PowerShell, you can add yourself to the Hyper-V Administrators group as follows:

CHAPTER 10. TROUBLESHOOTING MINISHIFT

33

https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.0/html-single/installation_guide//module-uninstalling.xml

1. As an administrator run the following command:

([adsi]”WinNT://./Hyper-V
Administrators,group”).Add(“WinNT://$env:UserDomain/$env:Username,us
er”)

2. Log off and log in for the change to take effect.

You can also use the GUI to add yourself to the Hyper-V Administrators group as follows:

1. Click the Start button and choose Computer Management.

2. In the Computer Management window, select Local Users And Groups and then double click
on Groups.

3. Double click on the Hyper-V Administrators group, the Hyper-V Administrators Properties
dialog box is displayed.

4. Add your account to the Hyper-V Administrators group and log off and log in for the change to
take effect.

Now you can run the Hyper-V commands as a normal user.

For more options for Hyper-V see creating Hyper-V administrators local group .

Red Hat Container Development Kit 3.0 Getting Started Guide

34

https://blogs.msdn.microsoft.com/virtual_pc_guy/2010/09/28/creating-a-hyper-v-administrators-local-group-through-powershell

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. STARTUP
	2.1. REGISTER THE CONTAINER DEVELOPMENT KIT RED HAT ENTERPRISE LINUX VIRTUAL MACHINE
	2.2. STARTING CONTAINER DEVELOPMENT KIT

	CHAPTER 3. MINISHIFT
	3.1. MINISHIFT COMMANDS
	3.1.1. minishift start
	3.1.2. minishift stop
	3.1.3. minishift delete

	3.2. RUNTIME OPTIONS
	3.2.1. Flags
	3.2.2. Environment Variables
	3.2.3. Persistent Configuration
	3.2.3.1. Setting Persistent Configuration Values
	3.2.3.2. Unsetting persistent configuration values

	3.2.4. Driver Specific Environment Variables

	3.3. PERSISTENT VOLUMES
	3.4. HTTP/HTTPS PROXIES
	3.5. NETWORKING

	CHAPTER 4. DEPLOYING AN APPLICATION
	4.1. PREREQUISITES TO DEPLOYING AN APPLICATION
	4.2. SIMPLIFIED EXPLANATION OF APPLICATION DEPLOYMENT
	4.3. WILDFLY APPLICATION DEPLOYMENT

	CHAPTER 5. ADD-ONS
	5.1. ADD-ONS OVERVIEW
	5.1.1. Add-on Commands
	5.1.2. Variable Interpolation
	5.1.3. Default Add-ons

	5.2. ENABLING AND DISABLING ADD-ONS
	5.2.1. Add-on Priorities
	5.2.2. Writing Custom Add-ons

	CHAPTER 6. HOST FOLDERS
	6.1. HOST FOLDERS OVERVIEW
	6.2. DRIVER PROVIDED HOST FOLDERS
	6.3. MINISHIFT HOSTFOLDER COMMAND
	6.4. PREREQUISITE
	6.5. DISPLAYING HOST FOLDERS
	6.6. ADDING HOST FOLDERS
	6.6.1. Instance Specific Host Folders

	6.7. MOUNTING HOST FOLDERS
	6.7.1. Auto-mounting Host Folders

	6.8. UNMOUNTING HOST FOLDERS
	6.9. DELETING HOST FOLDERS
	6.10. SSHFS HOST FOLDERS

	CHAPTER 7. INTERACTING WITH OPENSHIFT
	7.1. OPENSHIFT INTERACTION OVERVIEW
	7.2. USING THE OPENSHIFT CLIENT BINARY (OC)
	7.3. LOGGING INTO THE CLUSTER
	7.4. ACCESSING THE WEB CONSOLE
	7.5. ACCESSING OPENSHIFT SERVICES
	7.6. VIEWING OPENSHIFT LOGS
	7.7. UPDATING OPENSHIFT CONFIGURATION
	7.8. EXAMPLE: CONFIGURING CROSS-ORIGIN RESOURCE SHARING
	7.8.1. Example: Changing the OpenShift routing suffix

	CHAPTER 8. REUSING THE MINISHIFT DOCKER DAEMON
	CHAPTER 9. ACCESSING THE OPENSHIFT DOCKER REGISTRY
	9.1. DOCKER REGISTRY OVERVIEW
	9.2. REGISTRY LOGIN
	9.3. DEPLOYING AN APPLICATION WITH DOCKER

	CHAPTER 10. TROUBLESHOOTING MINISHIFT
	10.1. TROUBLESHOOTING OVERVIEW
	10.2. SPECIAL CHARACTERS CAUSE PASSWORDS TO FAIL
	10.3. UNDEFINING VIRSH SNAPSHOTS FAIL
	10.4. KVM: ERROR CREATING NEW HOST: DIAL TCP: MISSING ADDRESS
	10.5. KVM: FAILED TO CONNECT SOCKET TO '/VAR/RUN/LIBVIRT/VIRTLOGD-SOCK'
	10.6. KVM: DOMAIN 'MINISHIFT' ALREADY EXISTS…
	10.7. XHYVE: COULD NOT CREATE VMNET INTERFACE
	10.8. VIRTUALBOX: ERROR MACHINE DOES NOT EXIST
	10.9. HYPER-V: HYPER-V COMMANDS MUST BE RUN AS AN ADMINISTRATOR

