Quick-start guide to using and developing with CodeReady Containers
Quick-start guide to using and developing with CodeReady Containers

Kevin Owen
kowen@redhat.com
Abstract

This guide shows how to get up to speed using CodeReady Containers. Included instructions and examples guide through first steps developing containerized applications using Red Hat OpenShift Container Platform 4 from a host workstation (Microsoft Windows, macOS, or Red Hat Enterprise Linux).
# Table of Contents

**CHAPTER 1. INTRODUCING RED HAT CODEREADY CONTAINERS** ........................................... 3  
1.1. ABOUT CODEREADY CONTAINERS .................................................. 3  
1.2. DIFFERENCES FROM A PRODUCTION OCP INSTALLATION .................. 3  

**CHAPTER 2. INSTALLATION** ................................................................. 4  
2.1. MINIMUM SYSTEM REQUIREMENTS .............................................. 4  
2.1.1. Hardware requirements ......................................................... 4  
2.1.2. Operating system requirements ............................................. 4  
2.1.2.1. Microsoft Windows ......................................................... 4  
2.1.2.2. macOS ................................................................. 4  
2.1.2.3. Linux ................................................................. 4  
2.2. REQUIRED SOFTWARE PACKAGES ............................................ 4  
2.3. INSTALLING CODEREADY CONTAINERS ..................................... 5  
2.4. UPGRADING CODEREADY CONTAINERS ...................................... 5  

**CHAPTER 3. USING CODEREADY CONTAINERS** .......................................... 7  
3.1. SETTING UP CODEREADY CONTAINERS ....................................... 7  
3.2. STARTING THE VIRTUAL MACHINE ............................................. 7  
3.3. ACCESSING THE OCP CLUSTER ................................................ 8  
3.3.1. Accessing the OCP web console ........................................... 8  
3.3.2. Accessing the OCP cluster with oc ....................................... 8  
3.4. DEPLOYING A SAMPLE APPLICATION WITH ODO ....................... 9  
3.5. STOPPING THE VIRTUAL MACHINE ........................................... 10  
3.6. DELETING THE VIRTUAL MACHINE ........................................... 11  

**CHAPTER 4. CONFIGURING CODEREADY CONTAINERS** ............................ 12  
4.1. ABOUT CODEREADY CONTAINERS CONFIGURATION ....................... 12  
4.2. VIEWING CODEREADY CONTAINERS CONFIGURATION .................... 12  
4.3. CONFIGURING THE VIRTUAL MACHINE ...................................... 12  

**CHAPTER 5. NETWORKING** ............................................................... 14  
5.1. DNS CONFIGURATION DETAILS .............................................. 14  
5.1.1. General DNS setup .......................................................... 14  
5.1.2. Linux ................................................................. 14  
5.1.3. macOS ................................................................. 14  
5.2. STARTING CODEREADY CONTAINERS BEHIND A PROXY ............... 14  

**CHAPTER 6. ADMINISTRATIVE TASKS** ............................................... 16  
6.1. STARTING MONITORING, ALERTING, AND TELEMETRY .................. 16  

**CHAPTER 7. TROUBLESHOOTING CODEREADY CONTAINERS** ..................... 17  
7.1. GETTING SHELL ACCESS TO THE OCP CLUSTER ......................... 17  
7.2. TROUBLESHOOTING EXPIRED CERTIFICATES .............................. 17  
7.3. TROUBLESHOOTING BUNDLE VERSION MISMATCH ....................... 18  
7.4. TROUBLESHOOTING UNKNOWN ISSUES .................................... 19
CHAPTER 1. INTRODUCING RED HAT CODEREADY CONTAINERS

1.1. ABOUT CODEREADY CONTAINERS

Red Hat CodeReady Containers brings a minimal OpenShift 4 cluster to your local computer. This cluster provides a minimal environment for development and testing purposes. CodeReady Containers is mainly targeted at running on developers’ desktops. For other use cases, such as headless or multi-developer setups, use the full OpenShift installer.

Refer to the OpenShift documentation for a full introduction to OpenShift.

CodeReady Containers includes the crc command-line interface (CLI) to interact with the CodeReady Containers virtual machine running the OpenShift cluster.

1.2. DIFFERENCES FROM A PRODUCTION OPENSHIFT INSTALLATION

Red Hat CodeReady Containers is a regular OpenShift installation with the following notable differences:

- The CodeReady Containers OpenShift cluster is ephemeral and is not intended for production use.
- It uses a single node which behaves as both a master and worker node.
- It disables the machine-config and monitoring Operators by default.
  - These disabled Operators cause the corresponding parts of the web console to be non-functional.
  - For the same reason, there is no upgrade path to newer OpenShift versions.
- The OpenShift instance runs in a virtual machine. This may cause other differences, particularly with external networking.
CHAPTER 2. INSTALLATION

2.1. MINIMUM SYSTEM REQUIREMENTS

CodeReady Containers requires the following minimum hardware and operating system requirements.

2.1.1. Hardware requirements

CodeReady Containers requires the following system resources:

- 4 virtual CPUs (vCPUs)
- 9 GB of free memory
- 35 GB of storage space

**NOTE**

The OpenShift cluster requires these minimum resources to run in the CodeReady Containers virtual machine. Some workloads may require more resources. To assign more resources to the CodeReady Containers virtual machine, see Section 4.3, “Configuring the virtual machine”.

2.1.2. Operating system requirements

CodeReady Containers requires the following minimum version of a supported operating system:

2.1.2.1. Microsoft Windows

- On Microsoft Windows, CodeReady Containers requires the Windows 10 Pro Fall Creators Update (version 1709) or newer. CodeReady Containers does not work on earlier versions or editions of Microsoft Windows.

2.1.2.2. macOS

- On macOS, CodeReady Containers requires macOS 10.12 Sierra or newer. CodeReady Containers does not work on earlier versions of macOS.

2.1.2.3. Linux

- On Linux, CodeReady Containers is only supported on Red Hat Enterprise Linux/CentOS 7.5 or newer (including 8.x versions) and on the latest two stable Fedora releases.
  
  - When using Red Hat Enterprise Linux, the machine running CodeReady Containers must be registered with the Red Hat Customer Portal.

- Ubuntu 18.04 LTS or newer and Debian 10 or newer are not officially supported and may require manual setup of the host machine.

- See Section 2.2, “Required software packages” to install the required packages for your Linux distribution.

2.2. REQUIRED SOFTWARE PACKAGES
CodeReady Containers requires the `libvirt` and `NetworkManager` packages. Consult the following table to find the command used to install these packages for your Linux distribution:

<table>
<thead>
<tr>
<th>Linux Distribution</th>
<th>Installation command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fedora</td>
<td><code>sudo dnf install NetworkManager</code></td>
</tr>
<tr>
<td>Red Hat Enterprise Linux/CentOS</td>
<td><code>su -c 'yum install NetworkManager'</code></td>
</tr>
<tr>
<td>Debian/Ubuntu</td>
<td><code>sudo apt install qemu-kvm libvirt-daemon libvirt-daemon-system network-manager</code></td>
</tr>
</tbody>
</table>

### 2.3. INSTALLING CODEREADY CONTAINERS

#### Prerequisites

- Your host machine must meet the minimum system requirements. For more information, see Section 2.1, “Minimum system requirements”.

#### Procedure

1. Download the latest release of CodeReady Containers for your platform and extract the contents of the archive to a location in your `PATH`.

### 2.4. UPGRADING CODEREADY CONTAINERS

Newer versions of the CodeReady Containers binary require manual set up to prevent potential incompatibilities with earlier versions.

#### Procedure

1. Download the latest release of CodeReady Containers.

2. Delete the existing CodeReady Containers virtual machine:

   $ crc delete

#### WARNING

The `crc delete` command results in the loss of data stored in the CodeReady Containers virtual machine. Save any desired information stored in the virtual machine before running this command.
3. Replace the earlier `crc` binary with the binary of the latest release. Verify that the new `crc` binary is in use by checking its version:

   $ crc version

4. Set up the new CodeReady Containers release:

   $ crc setup

5. Start the new CodeReady Containers virtual machine:

   $ crc start
CHAPTER 3. USING CODEREADY CONTAINERS

3.1. SETTING UP CODEREADY CONTAINERS

The **crc setup** command performs operations to set up the environment of your host machine for the CodeReady Containers virtual machine.

This procedure will create the `~/.crc` directory if it does not already exist.

**Prerequisites**

- Your user account has permission to use the **sudo** command.

**NOTE**

- Do not run the **crc** binary as **root** (or Administrator). Always run the **crc** binary with your user account.

- If you are setting up a new version, capture any changes made to the virtual machine before setting up a new CodeReady Containers release.

**Procedure**

1. Set up your host machine for CodeReady Containers:

   ```
   $ crc setup
   ```

3.2. STARTING THE VIRTUAL MACHINE

The **crc start** command starts the CodeReady Containers virtual machine and OpenShift cluster.

**Prerequisites**

- You set up the host machine through the **crc setup** command. For more information, see Section 3.1, "Setting up CodeReady Containers".

- You have a valid OpenShift user pull secret. Copy or download the pull secret from the Pull Secret section of the Install on Laptop: Red Hat CodeReady Containers page on cloud.redhat.com.

**NOTE**

Accessing the user pull secret requires a Red Hat account.

**Procedure**

1. Start the CodeReady Containers virtual machine:

   ```
   $ crc start
   ```

2. When prompted, supply your user pull secret.
NOTE

- The cluster takes a minimum of four minutes to start the necessary containers and Operators before serving a request.

- If you see errors during `crc start`, check the Chapter 7, Troubleshooting Red Hat CodeReady Containers section for potential solutions.

### 3.3. ACCESSING THE OPENSHIFT CLUSTER

Access the OpenShift cluster running in the CodeReady Containers virtual machine through the OpenShift web console or client binary (`oc`).

#### 3.3.1. Accessing the OpenShift web console

**Prerequisites**

- A running CodeReady Containers virtual machine. For more information, see Section 3.2, “Starting the virtual machine”.

**Procedure**

To access the OpenShift web console, follow these steps:

1. Run `crc console`. This will open your web browser and direct it to the web console.
2. Log in to the OpenShift web console as the `developer` user with the password printed in the output of the `crc start` command.

**NOTE**

- You can also view the password for the `developer` and `kubeadmin` users by running `crc console --credentials`.

- You can initially access the cluster through either the `kubeadmin` or `developer` user. Use the `developer` user for creating projects or OpenShift applications and for application deployment. Only use the `kubeadmin` user for administrative tasks such as creating new users, setting roles, and so on.

See Chapter 7, Troubleshooting Red Hat CodeReady Containers if you cannot access the CodeReady Containers OpenShift cluster.

**Additional resources**

- The OpenShift documentation covers the creation of projects and applications.

#### 3.3.2. Accessing the OpenShift cluster with `oc`

**Prerequisites**

- A running CodeReady Containers virtual machine. For more information, see Section 3.2, “Starting the virtual machine”.

**Procedure**
To access the OpenShift cluster through the `oc` command, follow these steps:

1. Run the `crc oc-env` command to print the command needed to add the cached `oc` binary to your `PATH`:
   ```
   $ crc oc-env
   ```
   2. Run the printed command.
   3. Log in as the `developer` user:
      ```
      $ oc login -u developer https://api.crc.testing:6443
      ```
      **NOTE**
      The `crc start` command prints the password for the `developer` user. You can also view it by running the `crc console --credentials` command.
   4. You can now use `oc` to interact with your OpenShift cluster. For example, to verify that the OpenShift cluster Operators are available:
      ```
      $ oc get co
      ```
      **NOTE**
      - CodeReady Containers disables the `machine-config` and `monitoring` Operators by default.


Additional resources

- The [OpenShift documentation](https://www.openshift.com) covers the creation of projects and applications.

### 3.4. DEPLOYING A SAMPLE APPLICATION WITH `odo`

You can use OpenShift Do (`odo`) to create OpenShift projects and applications from the command line. This procedure deploys a sample application to the OpenShift cluster running in the CodeReady Containers virtual machine.

**Prerequisites**

- You have installed `odo`. For more information, see *Installing odo* in the `odo` documentation.
- The CodeReady Containers virtual machine is running. For more information, see Section 3.2, “Starting the virtual machine”.

**Procedure**

To deploy a sample application through `odo`, follow these steps:

1. Log in to the running CodeReady Containers OpenShift cluster as the `developer` user:
2. Create a project for your application:

$ odo project create sample-app

3. Create a directory for your components:

$ mkdir sample-app
$ cd sample-app

4. Create a component from a sample application on GitHub:

$ odo create nodejs --git https://github.com/openshift/nodejs-ex

**NOTE**

Creating a component from a remote Git repository will rebuild the application each time you run the `odo push` command. To create a component from a local Git repository, see Creating a single-component application with `odo` in the `odo` documentation.

5. Create a URL and add an entry to the local configuration file:

$ odo url create --port 8080

6. Push the changes:

$ odo push

Your component is now deployed to the cluster with an accessible URL.

7. List the URLs and check the desired URL for the component:

$ odo url list

8. View the deployed application using the generated URL.

**Additional resources**

- For more information about using `odo`, see the `odo` documentation.

### 3.5. STOPPING THE VIRTUAL MACHINE

The `crc stop` command stops the running CodeReady Containers virtual machine and OpenShift cluster. The stopping process will take a few minutes while the cluster shuts down.

**Procedure**

- Stop the CodeReady Containers virtual machine and OpenShift cluster:
3.6. DELETING THE VIRTUAL MACHINE

The `crc delete` command deletes an existing CodeReady Containers virtual machine.

Procedure

- Delete the CodeReady Containers virtual machine:

```bash
$ crc delete
```

**WARNING**

The `crc delete` command results in the loss of data stored in the CodeReady Containers virtual machine. Save any desired information stored in the virtual machine before running this command.
CHAPTER 4. CONFIGURING CODEREADY CONTAINERS

4.1. ABOUT CODEREADY CONTAINERS CONFIGURATION

Use the `crc config` command to configure both the `crc` binary and the CodeReady Containers virtual machine. The `crc config` command requires a subcommand to act on the configuration. The available subcommands are `get`, `set`, `unset`, and `view`. The `get`, `set`, and `unset` subcommands operate on named configurable properties. Run the `crc config --help` command to list the available properties.

You can also use the `crc config` command to configure the behavior of the startup checks for the `crc start` and `crc setup` commands. By default, startup checks report an error and stop execution when their conditions are not met. Set the value of a property starting with `skip-check` or `warn-check` to `true` to skip the check or report a warning rather than an error, respectively.

4.2. VIEWING CODEREADY CONTAINERS CONFIGURATION

The CodeReady Containers binary provides commands to view configurable properties and the current CodeReady Containers configuration.

Procedure

- To view the available configurable properties:
  
  $ crc config --help

- To view the values for a configurable property:
  
  $ crc config get <property>

- To view the complete current configuration:
  
  $ crc config view

**NOTE**

The `crc config view` command does not return any information if the configuration consists of default values.

4.3. CONFIGURING THE VIRTUAL MACHINE

Use the `cpus` and `memory` properties to configure the default number of vCPUs and amount of memory available to the CodeReady Containers virtual machine, respectively.
IMPORTANT

You cannot change the configuration of an existing CodeReady Containers virtual machine. To enable configuration changes, you must delete the existing virtual machine and create a new one.

To create the new virtual machine, first delete the existing CodeReady Containers virtual machine, then start a new virtual machine with the configuration changes:

```bash
$ crc delete
$ crc start
```

WARNING

The ```crc delete``` command results in the loss of data stored in the CodeReady Containers virtual machine. Save any desired information stored in the virtual machine before running this command.

Procedure

- To increase the number of vCPUs available to the virtual machine:

  ```bash
  $ crc config set cpus <number>
  ```

  The default value for the `cpus` property is **4**. The number of vCPUs to assign must be greater than or equal to the default.

- To increase the memory available to the virtual machine:

  ```bash
  $ crc config set memory <number-in-mib>
  ```

  **NOTE**

  Values for available memory are set in mebibytes (MiB). One gibibyte (GiB) of memory is equal to 1024 MiB.

  The default value for the `memory` property is **9216**. The amount of memory to assign must be greater than or equal to the default.
CHAPTER 5. NETWORKING

5.1. DNS CONFIGURATION DETAILS

5.1.1. General DNS setup

The OpenShift cluster managed by CodeReady Containers uses 2 DNS domain names, **crc.testing** and **apps-crc.testing**. The **crc.testing** domain is for core OpenShift services. The **apps-crc.testing** domain is for accessing OpenShift applications deployed on the cluster.

For example, the OpenShift API server will be exposed as **api.crc.testing** while the OpenShift console is accessed through **console-openshift-console.apps-crc.testing**. These DNS domains are served by a **dnsmasq** DNS container running inside the CodeReady Containers virtual machine.

Running **crc setup** will adjust your system DNS configuration so that it can resolve these domains. Additional checks are done to verify DNS is properly configured when running **crc start**.

5.1.2. Linux

On Linux, CodeReady Containers expects the following DNS configuration:

- CodeReady Containers expects NetworkManager to manage networking.

- NetworkManager uses **dnsmasq** through the **/etc/NetworkManager/conf.d/crc-nm-dnsmasq.conf** configuration file.

- The configuration file for this **dnsmasq** instance is **/etc/NetworkManager/dnsmasq.d/crc.conf**:

```
server=/crc.testing/192.168.130.11
server=/apps-crc.testing/192.168.130.11
```

- The NetworkManager **dnsmasq** instance forwards requests for the **crc.testing** and **apps-crc.testing** domains to the **192.168.130.11** DNS server.

5.1.3. macOS

On macOS, CodeReady Containers expects the following DNS configuration:

- CodeReady Containers creates a **/etc/resolver/testing** file which instructs macOS to forward all DNS requests for the **testing** domain to the CodeReady Containers virtual machine.

- CodeReady Containers also adds an **api.crc.testing** entry to **/etc/hosts** pointing at the VM IP address. The **oc** binary requires this entry. See **OpenShift issue #23266** for more information.

5.2. STARTING CODEREADY CONTAINERS BEHIND A PROXY

Prerequisites

- To use an existing **oc** binary on your host machine, export the **.testing** domain as part of the **no_proxy** environment variable.

- The embedded **oc** binary does not require manual settings. For more information about using the embedded **oc** binary, see **Section 3.3.2, “Accessing the OpenShift cluster with **oc**”**.
Procedure

- To start CodeReady Containers behind a proxy:

  1. Define a proxy using the `http_proxy` and `https_proxy` environment variables or using the `crc config set` command as follows:

```bash
$ crc config set http-proxy http://example.proxy.com:<port>
$ crc config set https-proxy http://example.proxy.com:<port>
$ crc config set no-proxy <comma-separated-no-proxy-entries>
```

The `crc` binary will be able to use the defined proxy once set through environment variables or CodeReady Containers configuration.

**NOTE**

- Proxy-related values set in the configuration for CodeReady Containers have priority over values set through environment variables.

- SOCKS proxies are not supported by OpenShift Container Platform.
6.1. STARTING MONITORING, ALERTING, AND TELEMETRY

To make sure CodeReady Containers can run on a typical laptop, some resource-heavy services get disabled by default. One of these is Prometheus and the related monitoring, alerting, and telemetry functionality. Telemetry functionality is responsible for listing your cluster in the Red Hat OpenShift Cluster Manager.

Prerequisites

- A running CodeReady Containers virtual machine and a working `oc` command. For more information, see Section 3.3.2, “Accessing the OpenShift cluster with oc”.
- You must log in through `oc` as the `kubeadmin` user.
- You must assign additional memory to the CodeReady Containers virtual machine. At least 12 GiB of memory (a value of 12288) is recommended. For more information, see Section 4.3, “Configuring the virtual machine”.

Procedure

1. List unmanaged Operators and note the numeric index for `cluster-monitoring-operator`:

   - On Linux or macOS:
     
     ```
     $ oc get clusterversion version -ojsonpath='{range .spec.overrides[*]}.name"n"[end]}' | nl -v 0
     ```

   - On Microsoft Windows using PowerShell:
     
     ```
     PS> oc get clusterversion version -ojsonpath='{range .spec.overrides[*]}.name"n"[end]}' | % {$nl++;"`t$($nl-1) `t$_"};$nl=0
     ```

2. Start monitoring, alerting, and telemetry services using the identified numeric index:

   ```
   $ oc patch clusterversion/version --type='json' -p '[["op":"remove", "path":"/spec/overrides/<unmanaged-operator-index>"]]' -oyaml
   ```
CHAPTER 7. TROUBLESHOOTING RED HAT CODEREADY CONTAINERS

NOTE
The goal of Red Hat CodeReady Containers is to deliver an OpenShift environment for development and testing purposes. Issues occurring during installation or usage of specific OpenShift applications are outside of the scope of CodeReady Containers. Report such issues to the relevant project. For example, OpenShift tracks issues on GitHub.

7.1. GETTING SHELL ACCESS TO THE OPENSHIFT CLUSTER

Direct access to the OpenShift cluster is not needed for regular use and is strongly discouraged. To access the cluster for troubleshooting or debugging purposes, follow this procedure.

Prerequisites
- Enable oc access to the cluster and log in as the kubeadmin user. For detailed steps, see Section 3.3.2, “Accessing the OpenShift cluster with oc”.

Procedure
1. Run oc get nodes. The output will be similar to this:

```
NAME                 STATUS   ROLES           AGE    VERSION
crc-shdl4-master-0   Ready    master,worker   7d7h   v1.14.6+7e13ab9a7
```

2. Run oc debug nodes/<node> where <node> is the name of the node printed in the previous step.

7.2. TROUBLESHOOTING EXPIRED CERTIFICATES

NOTE
As of the CodeReady Containers 1.10.0 release, the certificate renewal process is not working as intended. Follow this procedure to avoid potential errors due to certificate expiration.

The system bundle in each released crc binary expires 30 days after the release. This expiration is due to certificates embedded in the OpenShift cluster. As a result, using an older crc binary or system bundle can result in an expired certificates error.

Starting from CodeReady Containers 1.2.0, the embedded certificates can be automatically renewed by crc. The crc start command triggers the certificate renewal process when needed. Certificate renewal can add up to five minutes to the start time of the cluster.

Procedure
To resolve expired certificate errors that cannot be automatically renewed:
1. Download the latest CodeReady Containers release and place the \texttt{crc} binary in your \texttt{SPATH}.

2. Remove the cluster with certificate errors using the \texttt{crc delete} command:

   $ \texttt{crc delete}

\begin{frame}
\centering
\warning
\textbf{WARNING} \hfill
The \texttt{crc delete} command results in the loss of data stored in the CodeReady Containers virtual machine. Save any desired information stored in the virtual machine before running this command.
\end{frame}

3. Set up the new release:

   $ \texttt{crc setup}

4. Start the new virtual machine:

   $ \texttt{crc start}

\section*{7.3. TROUBLESHOOTING BUNDLE VERSION MISMATCH}

Created CodeReady Containers virtual machines contain bundle information and instance data. Bundle information and instance data is not updated when setting up a new CodeReady Containers release. This information is not updated due to customization in the earlier instance data. This will lead to errors when running the \texttt{crc start} command:

\begin{verbatim}
$ crc start
...
FATA Bundle 'crc_hyperkit_4.2.8.crcbundle' was requested, but the existing VM is using 'crc_hyperkit_4.2.2.crcbundle'
\end{verbatim}

\textbf{Procedure}

1. Issue the \texttt{crc delete} command before attempting to start the instance:

   $ \texttt{crc delete}

\begin{frame}
\centering
\warning
\textbf{WARNING} \hfill
The \texttt{crc delete} command results in the loss of data stored in the CodeReady Containers virtual machine. Save any desired information stored in the virtual machine before running this command.
\end{frame}
7.4. TROUBLESHOOTING UNKNOWN ISSUES

Resolve most issues by restarting CodeReady Containers with a clean state. This involves stopping the virtual machine, deleting it, reverting changes made by the `crc setup` command, reapplying those changes, and restarting the virtual machine.

Prerequisites

- You set up the host machine through the `crc setup` command. For more information, see Section 3.1, “Setting up CodeReady Containers”.
- You started CodeReady Containers through the `crc start` command. For more information, see Section 3.2, “Starting the virtual machine”.
- You are using the latest CodeReady Containers release. Using a version earlier than CodeReady Containers 1.2.0 may result in errors related to expired x509 certificates. For more information, see Section 7.2, “Troubleshooting expired certificates”.

Procedure

To troubleshoot CodeReady Containers, perform the following steps:

1. Stop the CodeReady Containers virtual machine:

   ```
   $ crc stop
   ```

2. Delete the CodeReady Containers virtual machine:

   ```
   $ crc delete
   ```

   **WARNING**

   The `crc delete` command results in the loss of data stored in the CodeReady Containers virtual machine. Save any desired information stored in the virtual machine before running this command.

3. Clean up remaining changes from the `crc setup` command:

   ```
   $ crc cleanup
   ```

   **NOTE**

   The `crc cleanup` command removes an existing CodeReady Containers virtual machine and reverts changes to DNS entries created by the `crc setup` command. On macOS, the `crc cleanup` command also removes the system tray.

4. Set up your host machine to reapply the changes:

   ```
   $ crc setup
   ```
5. Start the CodeReady Containers virtual machine:

```
$ crc start
```

**NOTE**

The cluster takes a minimum of four minutes to start the necessary containers and Operators before serving a request.

If your issue is not resolved by this procedure, perform the following steps:

1. **Search open issues** for the issue that you are encountering.

2. If no existing issue addresses the encountered issue, **create an issue** and attach the `~/.crc/crc.log` file to the created issue. The `~/.crc/crc.log` file has detailed debugging and troubleshooting information which can help diagnose the problem that you are experiencing.