Red Hat Certified Cloud and Service Provider Certification 8.42

Red Hat Certified Cloud and Service Provider Certification for Red Hat Enterprise Linux for SAP Images Policy Guide

For Red Hat Enterprise Linux for SAP with HA and Update Services Cloud Images

Last Updated: 2022-03-10
Red Hat Certified Cloud and Service Provider Certification 8.42 Red Hat Certified Cloud and Service Provider Certification for Red Hat Enterprise Linux for SAP Images Policy Guide

For Red Hat Enterprise Linux for SAP with HA and Update Services Cloud Images
Abstract

This document describes the technical and operational certification requirements for CCSP Partners who want to offer RHEL for SAP with HA and Update Services. Last updated: June 28, 2021.
Table of Contents

PART I. MAKING OPEN SOURCE MORE INCLUSIVE .. 3

CHAPTER 1. INTRODUCTION TO RED HAT CERTIFIED CLOUD AND SERVICE PROVIDER CERTIFICATION FOR RED HAT ENTERPRISE LINUX FOR SAP IMAGES POLICIES .. 4
 1.1. AUDIENCE .. 4
 1.2. CREATE VALUE FOR OUR JOINT CUSTOMERS ... 4
 1.3. ADDITIONAL RESOURCES .. 4

CHAPTER 2. TEST SUITE VERSIONS .. 5

CHAPTER 3. RED HAT CERTIFICATION SELF CHECK (RHCERT/SELFCHECK) 6

CHAPTER 4. OVERVIEW OF RED HAT CERTIFICATION TESTS 7
 4.1. SYSTEM REPORT .. 7
 4.2. SUPPORTABILITY TESTS .. 8
 4.2.1. Log versions subtest .. 8
 4.2.2. Kernel subtest .. 8
 4.2.3. Kernel modules subtest .. 8
 4.2.4. Hardware Health subtest .. 8
 4.2.5. Hypervisor/Partitioning subtest ... 9
 4.2.6. Filesystem Layout .. 10
 4.2.7. Installed RPMs subtest .. 10
 4.2.8. Software repositories ... 11
 4.2.9. Package groups ... 12
 4.2.10. Software containers ... 12
 4.2.11. Software modules ... 12
 4.3. OVERVIEW OF IMAGE CONFIGURATION TEST ... 12
 4.3.1. Default system logging .. 13
 4.3.2. Network configuration subtest ... 13
 4.3.3. Default OS Runlevel .. 14
 4.3.4. System Services .. 14
 4.3.5. Subscription services .. 14
 4.3.6. Linux kernel parameters .. 15
 4.3.7. Process resource limits ... 15
 4.3.8. systemd-tmpfiles ... 15
 4.3.9. SAP RPM Dependencies .. 16
 4.4. OVERVIEW OF SECURITY PRACTICES ... 16
 4.4.1. Password configuration test .. 17
 4.4.2. RPM freshness ... 17
 4.4.3. SELinux .. 17
PART I. MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code and documentation. We are beginning with these four terms: master, slave, blacklist, and whitelist. Due to the enormity of this endeavor, these changes will be gradually implemented over upcoming releases. For more details on making our language more inclusive, see our CTO Chris Wright’s message.
CHAPTER 1. INTRODUCTION TO RED HAT CERTIFIED CLOUD AND SERVICE PROVIDER CERTIFICATION FOR RED HAT ENTERPRISE LINUX FOR SAP IMAGES POLICIES

1.1. AUDIENCE

Use this guide to understand the technical and operational certification requirements for CCSP Partners who want to offer Red Hat Enterprise Linux (RHEL) for SAP with High Availability and Update Services in Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), or a managed service offerings.

1.2. CREATE VALUE FOR OUR JOINT CUSTOMERS

As a Certified Cloud and Service Provider (CCSP), you are required to certify images that you publish in a catalog. The RHEL for SAP with High Availability and Update Services image certification process includes a series of tests that provide your Red Hat customers an assurance that they will have a consistent experience across cloud providers.

You are expected to have entered into certifications in good faith and for the interest of our joint customers. Customers will also have the confidence that their deployments are jointly supported by Red Hat and your organization ensuring the customer’s experience comes with the highest level of support and good security practices.

1.3. ADDITIONAL RESOURCES

- Red Hat Connect for Business Partners
- Red Hat Certified Cloud and Service Provider Certification Policy Guide
CHAPTER 2. TEST SUITE VERSIONS

You must install the latest version of the certification tooling and use the latest workflow for the certification process. After a new version of the certification tooling is released, Red Hat supports the previous tooling and workflow for a period of 90 days post the release.

At the end of the 90 days period, test logs/results generated using the previous versions are automatically rejected and you are expected to regenerate the test logs/results using the latest tooling and workflow.

The latest version of the certification tooling and workflow is available (by default) via Red Hat Subscription Management and documented in the CCSP Workflow Guide.

The certifications are supported on the following RHEL version and architecture.

Table 2.1. Supported RHEL version and architecture

<table>
<thead>
<tr>
<th>RHEL version</th>
<th>Architecture</th>
<th>Hypervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHEL 8</td>
<td>x86_64</td>
<td>KVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VMWare</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HyperV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RHEV</td>
</tr>
<tr>
<td></td>
<td>ppc64le</td>
<td></td>
</tr>
<tr>
<td></td>
<td>s390x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aarch64</td>
<td></td>
</tr>
<tr>
<td>RHEL 7</td>
<td>x86_64</td>
<td>KVM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VMWare</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HyperV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RHEV</td>
</tr>
<tr>
<td></td>
<td>ppc64le</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 3. RED HAT CERTIFICATION SELF CHECK
(RHCERT/SELCHECK)

The Red Hat Certification self check test also known as `rhcert/selfcheck` confirms that all the software packages required in the certification process are installed and that they have not been altered. This ensures that the test environment is ready for the certification process and that all the certification software packages are supportable.

Success criteria

- The test environment includes the required certification packages process and their dependencies.
- The required certification packages have not been modified.
CHAPTER 4. OVERVIEW OF RED HAT CERTIFICATION TESTS

The cloud certification test suite `redhat-certification-cloud-sap` includes four image tests:

- sosreport
- supportable
- configuration, and
- security

Each image tests consists of a series of subtests and checks. For more information on running the tests, see `CCSP Certification Workflow Guide`.

Logs from a singular run with all four of the image tests and the `rhcert/selfcheck` must be submitted to Red Hat for credit in all new certifications as well as recertifications.

A certification may exit with one of the following statuses:

- **Pass**: All the subtests have passed and no further action is required.
- **Fail**: A critical subtest or check has not succeeded and requires a change before a certification can be achieved.
- **Review**: Additional detailed review is required by Red Hat to determine the status.
- **Warn**: One or more subtests did not follow best practices and require further action. However, the certification will succeed.

You are recommended to review the output of all tests, perform appropriate actions, and re-run the test as appropriate.

4.1. SYSTEM REPORT

The System report (sosreport) test, also known as `cloud-sap/sosreport`, captures the basic sosreport.

Red Hat provides and utilizes an essential tool called `sos` to collect the configuration and diagnostic information from a RHEL environment to assist customers. SOS is pivotal in troubleshooting and verifying recommended practices. The system report subtest ensures that the sos tool functions as expected and necessary on the image. During this test a basic sosreport is created and captured.

Success criteria

A basic sosreport can be captured on the image.

NOTE

This SOSReport archives can also assist with debugging issues during the certification process.

Additional resources

- For more information about sos reports, see [What is an sosreport and how to create one in Red Hat Enterprise Linux?](#)
4.2. SUPPORTABILITY TESTS

The Supportability tests, also known as cloud-sap/supportable, ensure that the image is supportable by Red Hat. The test confirms that the image consists of Red Hat kernel and user space software, is run in a Red Hat supportable environment, and includes access to Red Hat updates and fixes.

The cloud-sap/supportable tests include the following subtests.

4.2.1. Log versions subtest

The Log versions subtest verifies the version of Red Hat Enterprise Linux (RHEL) installed on the image.

4.2.2. Kernel subtest

The Kernel subtest confirms the kernel that the image is running is from Red Hat, is appropriate and supported for the version of RHEL undergoing certification, and has not been modified. The kernel version may be the original General Availability (GA) version or any subsequent kernel errata released for the RHEL major and minor release.

The kernel subtest also ensures that the kernel is not tainted when running in the environment.

Success criteria

- The running kernel is a Red Hat kernel.
- The running kernel is released by Red Hat for use with the RHEL version.
- The running kernel is not tainted.

Additional resources

- For more information on Red Hat Enterprise Linux Life Cycle and Kernel Versions, see Red Hat Enterprise Linux Life Cycle.
- Red Hat Enterprise Linux Release Dates.
- For more information about kernel tainting, see link: Why is the kernel "tainted" and how are the taint values deciphered?.

4.2.3. Kernel modules subtest

The Kernel Modules subtest confirms the loaded kernel modules are from Red Hat, either from the running kernel’s package or a Red Hat Driver Update. The kernel module subtest also ensures the kernel modules do not identify as Technology Preview when running in the environment.

Success criteria

The kernel modules are from Red Hat and supported.

Additional resources

- For more information about Technology Preview, see What does a "Technology Preview" feature mean?.

4.2.4. Hardware Health subtest
The Hardware Health subtest checks the system’s health by testing if the hardware is supported, meets the requirements, and has any known hardware vulnerabilities. The subtest does the following:

- Checks that the Red Hat Enterprise Linux (RHEL) kernel does not identify hardware as unsupported. When the kernel identifies unsupported hardware, it will display an unsupported hardware message in the system logs and/or trigger an unsupported kernel taint. This subtest prevents customers from possible production risks which may arise from running Red Hat products on unsupported configurations and environments. In hypervisor, partitioning, cloud instances, and other virtual machine situations, the kernel may trigger an unsupported hardware message or taint based on the hardware data presented to RHEL by the virtual machine (VM).

- Checks that the system under test (SUT) meets the minimum hardware requirements.
 - RHEL 8: Minimum system RAM should be 1.5GB, per CPU logical core count.
 - RHEL 7: Minimum system RAM should be 1GB, per CPU logical core count.

- Checks if the kernel has reported any known hardware vulnerabilities, if those vulnerabilities have mitigations and if those mitigations have resolved the vulnerability. Many mitigations are automatic to ensure that customers do not need to take active steps to resolve vulnerabilities. In some cases this is not possible; where most of these remaining cases require changes to the configuration of the system BIOS/firmware which may not be modifiable by customers in all situations.

- Confirms the system does not have any offline CPUs.

- Confirms if Simultaneous Multithreading (SMT) is available, enabled, and active in the system.

Failing any of these tests will result in a WARN from the test suite and should be verified by the partner to have correct and intended behavior.

Success criteria

- The kernel does not have the UNSUPPORTEDHARDWARE taint bit set.
- The kernel does not report an unsupported hardware system message.
- The kernel should not report any vulnerabilities with mitigations as vulnerable.
- The kernel does not report the logic core to installed memory ratio as out of range.
- The kernel does not report CPUs in an offline state.

Additional resources

- Minimum required memory
- For more information about hardware support available in RHEL 7 but removed from RHEL 8, see Hardware Enablement.
- For more information about hardware support available in RHEL 6 but removed from RHEL 7, see Changes to Packages, Functionality, and Support.

4.2.5. Hypervisor/Partitioning subtest
The Hypervisor/Partitioning subtest confirms that the host architecture and hardware partitioning in the RHEL image is supported by RHEL, the CCSP program, and the kernel. Currently, the CCSP image certification is supported for the following existing and upcoming RHEL versions and corresponding architectures:

Success criteria

- For RHEL 7:
 - Architecture is one of x86_64, ppc, ppc64, ppc64le, and s390x
 - Partitioning is one of Baremetal, RHEL KVM, VMware, HyperV, and PowerVM
- RHEL 8:
 - Architecture is one of x86_64, ppc64le, and s390x
 - Partitioning is one of Baremetal, RHEL KVM, VMware, HyperV, and PowerVM

4.2.6. Filesystem Layout

The Filesystem Layout confirms that the filesystem type and the minimum partition size of the image follow the guidelines for each RHEL release. This ensures that the image has a reasonable amount of space required to operate effectively, run applications, and install upgrades for customer use.

Success criteria

- For RHEL 7: The root file system is 10GB or greater and xfs or ext4 formatted.
- RHEL 8: The root file system is 10GB or greater, the boot file system is 1GB or greater and both are xfs formatted.

4.2.7. Installed RPMs subtest

Confirms that RPM packages installed on the system are from Red Hat and not modified, potentially enabling customers to avoid the significant risks arising from unexpected software/packages, further ensuring that customers are starting with a supportable environment.

Non-Red Hat packages may be installed if they are necessary to enable the cloud environment, but they are acceptable where they are documented and if they DO NOT modify or conflict with Red Hat packages/software. This subtest will require detailed review at Red Hat to confirm success or failure if non Red Hat packages are installed.

Success criteria

- The installed Red Hat provided RPM packages are from Red Hat products available in the offering.
- The installed Red Hat RPM packages are not modified.
- The installed Non-Red Hat RPM packages are necessary to enable the cloud environment and are documented.
The installed Non Red Hat RPM packages do not conflict with Red Hat provided packages/software available in Red Hat products included in the offering.

Additional resources

- For more information on Red Hat support policies on third-party software, see Production Support Scope of Coverage.

4.2.8. Software repositories

Software repositories confirm that relevant Red Hat repositories are configured, and GPG keys are already imported to avoid potentially significant risks from unsupported content.

Red Hat provides core software packages and content in Red Hat official software repositories (included with attached subscriptions) which, are signed with GPG keys to ensure authenticity of the distributed files. Software provided as part of these repositories is fully supported and reliable for use in customer production environments.

Repositories published but not supported by Red Hat, such as EPEL or the RHEL Supplementary and Optional, and non-Red Hat repositories may be configured if they are necessary to enable the cloud environment and are properly documented and approved by Red Hat.

Success criteria

- Supported Red Hat repositories are configured.
- GPG keys for Red Hat repositories are imported in the image.
- The valid repositories are Red Hat Update Infrastructure and Red Hat Satellite.
- RHEL 8 and AppStream repos must be enabled.
 - **RHEL 7 Repos**
 - rhel-7-server--e4s-rpms
 - rhel-7-server--eus-rpms
 - rhel-sap-hana-for-rhel-7-server--eus-rpms (7.5 only has eus)
 - rhel-sap-hana-for-rhel-7-server--e4s-rpms (7.4, 7.6, 7.7)
 - rhel-sap-for-rhel-7-server--eus-rpms (7.5)
 - rhel-sap-for-rhel-7-server--e4s-rpms (7.4, 7.6, 7.7)
 - rhel-ha-for-rhel-7-server--e4s-rpms
 - rhel-ha-for-rhel-7-server--eus-rpms
 - **RHEL 8 Repos** (currently 8.0, 8.1 are both on e4s):
 - rhel-8-for-x86_64-baseos-e4s-rpms
 - rhel-8-for-x86_64-appstream-e4s-rpms
 - rhel-8-for-x86_64-sap-solutions-e4s-debug-rpms
- rhel-8-for-x86_64-sap-netweaver-e4s-rpms
- rhel-8-for-x86_64-highavailability-e4s-rpms

- Red Hat repositories configured on the image match the image content.
- Non-Red Hat repositories, if required, for proper operation of the cloud are configured and described.

NOTE

To verify Red Hat repositories, Partners must configure their base URL with either one of these keywords: satellite, redhat.com, or rhui.

Additional resources

- For more information, see Production Support Scope of Coverage.

4.2.9. Package groups

The Package groups test verifies that the base package groups of the RHEL cloud image are provided by Red Hat and that the correct minimum package groups are configured properly.

Success criteria

All package groups are recognized as RHEL package groups

4.2.10. Software containers

The Software Containers test verifies that containers on the RHEL cloud image are provided by Red Hat or Partners. It is expected from Partners to provide a reason if any non-RHT container exists.

Success criteria

- All the containers should be supplied by Red Hat.
- For RHEL 8 the container tool **podman** is a required package.
- Enable the required container registry **registry.redhat.io**.

4.2.11. Software modules

The RHEL 8 modularity feature is a collection of packages available on the system. The software modules test validates modules available on the RHEL 8 system.

Success criteria

- The test fails if there are non-Red Hat software modules.

4.3. OVERVIEW OF IMAGE CONFIGURATION TEST

The Image Configuration tests, also known as cloud-sap/configuration, confirm that the image is configured in accordance with Red Hat standards so that customers have a uniform and consistent experience across multiple cloud providers and images in an integrated environment.
The **cloud-sap/configuration** test includes the following subtests.

4.3.1. Default system logging

Confirms the default system logging service (syslog) is configured to store the logs in the `/var/log/` directory of the image to allow quick issue resolution when needed.

Success criteria

Basic system logging is stored in `/var/log/` directory on the image.

4.3.2. Network configuration subtest

Network configuration confirms that the default firewall service (iptables) is running, port 22 is open with SSHD running, ports 80 and 443 are open or closed, and that all other ports are closed. This ensures that the image is protected from unauthorized access by default, with a known access configuration.

This also ensures that customers have SSH access to the image and are able to quickly deploy HTTP applications without additional configuration. The image may have other ports open if they are necessary for proper operation of the cloud infrastructure but such ports must be documented.

This test displays status (Pass) at runtime only if ports 22, 80 (optional), 443 (optional) are open on the image. If other ports are open, this test requests a description of the open ports for review at Red Hat to confirm success or failure.

NOTE

As part of the certification process, the Red Hat Certification application by default runs on port 8009. The Red Hat Certification application may also run on another open port during certification testing but it is recommended to open this port only during the testing and not as default in the configuration of an image.

Success criteria

- Ensure for the following RHEL versions subsequent services are enabled and running:
 - For RHEL 7, iptables and firewalld respectively
 - For RHEL 8.0-8.2, firewalld with nftables or iptables
 - For RHEL 8.3 and above, either firewalld or nftables
- sshd is enabled and running on port 22 and is accessible
- Any other ports open are required for proper operation of the cloud infrastructure and are documented
- Red Hat Certification application is running on port 8009 (or another port as configured)
- All other ports are closed

NOTE

The httpd service is allowed but not required to be running on port 80 and/or port 443.
4.3.3. Default OS Runlevel

Confirms that the current system runlevel is 3, 4, or 5. This subtest ensures that the image is operating in the desired mode/state with all the required system services (for example networking) running.

Success criteria

The current runlevel is 3, 4, or 5.

Additional resources

*For more information about runlevels in RHEL 7, and 8 versions see:

- RHEL 7 Systems Administrator’s Guide: Working with systemd Targets
- RHEL 8 Configuring basic system settings: Working with systemd targets

4.3.4. System Services

The system services confirms the root user can start and stop services on the system. This ensures that your customers who have system administration privileges can access/work with applications and services on the system and perform all the tasks which require administrative access in a seamless manner. The system services also ensures that there is no gap between the configured and actual state of the installed system services.

Success criteria

- The root user can start and stop system services provided by the Red Hat product.
- The chronyd service is started and enabled and functional
- The uuidd service is started and enabled
- For all the installed system services, the service status should match to the configured status. For instance, if the service is enabled then it should be in running state.

Additional resources

- For more information on gaining the required privileges, see:
 - RHEL 7 Deployment Guide
 - RHEL 8 Configuring Basic System Settings

4.3.5. Subscription services

Confirms that the required Red Hat subscriptions are configured, available and working on the image and that the update mechanism is Red Hat Satellite or RHUI. This ensures that customers are able to obtain access to the packages and updates they need to support their applications through standard Red Hat package update or delivery mechanisms.

Success criteria

The image is configured and able to download, install, and upgrade a package from Red Hat Satellite or the RHUI subscription management services.
4.3.6. Linux kernel parameters

Confirms that the Linux kernel parameters are updated to appropriate configurations.

Success criteria

- Config file /etc/sysctl.d/sap.conf exists with the following:
 - RHEL 7:
 - vm.max_map_count = 2000000
 - kernel.sem = 1250 256000 100 1024
 - RHEL 8:
 - vm.max_map_count = 2147483647
 - kernel.pid_max = 4194304

NOTE

The `vm.max_map_count` value for RHEL 7 is the minimum, higher values are also acceptable.

4.3.7. Process resource limits

Confirms that the system resource limiting is updated to appropriate configurations.

Success criteria

- Config file /etc/security/limits.d/99-sap.conf exists with the following:
 - @sapsys hard nofile 65536
 - @sapsys soft nofile 65536
 - @dba hard nofile 65536
 - @dba soft nofile 65536
 - @sapsys hard nproc unlimited
 - @sapsys soft nproc unlimited
 - @dba hard nproc unlimited
 - @dba soft nproc unlimited

4.3.8. systemd-tmpfiles

Confirms that the systemd-tmpfiles is updated to appropriate configurations.

Success criteria

- Config file /etc/tmpfiles.d/sap.conf exists with the following:
systemd.tmpfiles exclude file for SAP

- # systemd.tmpfiles exclude file for SAP
- # SAP software stores some important files in /tmp which should not be deleted automatically.
- # This file has been created using role sap-preconfigure in RHEL System Roles for SAP.
- # Do not change this file as it might be overwritten when running role sap-preconfigure again.
- # Exclude SAP socket and lock files
 - x /tmp/.sap*
- # Exclude HANA lock file
 - x /tmp/.hdb*lock
- # Exclude TREX lock file
 - x /tmp/.trex*lock

4.3.9. SAP RPM Dependencies

Success criteria

- The following packages are installed
 - uuidd
 - libnsl
 - tcsh
 - psmisc
 - psmisc
 - nfs-utils
 - Bind-utils
- RHEL 8.0:
 - setup-2.12.2-2.el8_0.1 (or later)
- RHEL 8.1:
 - setup-2.12.2-2.el8_1.1 (or later)

4.4. OVERVIEW OF SECURITY PRACTICES

The Security Practices tests also known as cloud-sap/security confirm that the image follows a minimum set of standard security practices. They also confirm (but do not require at this time) that the latest Red Hat security updates are installed.

The cloud-sap/security test includes the following subtests:
4.4.1. Password configuration test

This test checks the hashing algorithm that depends on certificates or SHA-512 algorithm for RHEL 7, and 8 versions. For RHEL 7 versions the profile uses `authconfig` utility whereas for the RHEL 8 versions it uses `authselect` utility. The test ensures that the image follows standard encryption/decryption mechanisms for optimal security.

Success criteria

- Successful user authentication support certificates or SHA-512 algorithm for RHEL 7, and 8 versions
- The test fails for RHEL 8 if either of the services NIS, SSSD, or winbind are not configured

4.4.2. RPM freshness

Confirms that all important and critical security errata released against Red Hat packages that are included in the image are installed. Red Hat encourages you to update and recertify their images whenever an errata is released. This test displays status (REVIEW) at runtime as it requires review at Red Hat to confirm success or failure.

Success criteria

All important and critical security errata released for installed Red Hat packages are current.

Additional resources

- For more information on Red Hat security ratings, refer to Understanding Red Hat security ratings.

4.4.3. SELinux

Security-Enhanced Linux (SELinux) subtest confirms that SELinux is enabled and running in permissive or enforcing mode on the image.

SELinux adds Mandatory Access Control (MAC) to the Linux kernel, and is enabled by default in Red Hat Enterprise Linux. SELinux policy is administratively-defined, enforced system-wide, and is not set at user discretion. It reduces vulnerability to privilege escalation attacks and limits the damage made during the configuration. If a process becomes compromised, the attacker only has access to the normal functions of that process, and to files the process has been configured to have access to.

Success criteria

- SELinux is configured and running in permissive or enforcing mode on the image.

Additional resources

- For more information on SELinux in RHEL, see:
 - RHEL 7 SELinux Users and Administrators Guide
 - RHEL 8 Using SELinux