Red Hat Certificate System 9
Administration Guide (Common Criteria Edition)

Updated for Red Hat Certificate System 9.4 Common Criteria Certification

Edition 9.4-1
Red Hat
Customer Content Services



Legal Notice

		Copyright © 2021 Red Hat, Inc.
	

		This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported License. If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be removed.
	

		Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
	

		Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
	

		Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
	

		Java® is a registered trademark of Oracle and/or its affiliates.
	

		XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
	

		MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
	

		Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
	

		The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
	

		All other trademarks are the property of their respective owners.
	


February 2021

Abstract

			This guide covers all aspects of installing, configuring, and managing Certificate System 9.4 in a Common Criteria environment. It also covers management tasks such as adding users; requesting, renewing, and revoking certificates; publishing CRLs; and managing smart cards. This guide is intended for Certificate System administrators.
		






      ⁠Chapter 1. Overview of Red Hat Certificate System Subsystems



Note


			This chapter is an overview of Red Hat Certificate System and the various subsystems. For details on evaluated product features, please see the NIAP Product Compliant List at https://www.niap-ccevs.org/Product/PCL.cfm.
		


Note


			Network security services (NSS) and Federal Information Processing Standard (FIPS) hardware security modules (HSM) were the only evaluated cryptographic providers.
		



		Every common PKI operation — issuing, renewing and revoking certificates; archiving and recovering keys; publishing CRLs and verifying certificate status — is carried out by interoperating subsystems within Red Hat Certificate System. The functions of each individual subsystem and the way that they work together to establish a robust and local PKI are described in this chapter.
	

      ⁠1.1. Uses for Certificates




			The purpose of certificates is to establish trust. Their usage varies depending on the kind of trust they are used to ensure. Some kinds of certificates are used to verify the identity of the presenter; others are used to verify that an object or item has not been tampered with.
		

			For information on how certificates are used, the types of certificates, or how certificates establish identities and relationships, see the Certificates and Authentication section in the Red Hat Certificate System Planning, Installation, and Deployment Guide (Common Criteria Edition).
		


      ⁠1.2. A Review of Certificate System Subsystems




			Red Hat Certificate System provides five different subsystems, each focusing on different aspects of a PKI deployment. These subsystems work together to create a public key infrastructure (PKI). Depending on what subsystems are installed, a PKI can function as a token management system (TMS) or a non token management system. For descriptions of the subsystems and TMS and non-TMS environments, see the A Review of Certificate System Subsystems in the Red Hat Certificate System Planning, Installation, and Deployment Guide (Common Criteria Edition).
		


      ⁠1.3. A Look at Managing Certificates (Non-TMS)




			A conventional PKI environment provides the basic framework to manage certificates stored in software databases. This is a non-TMS environment, since it does not manage certificates on smart cards. At a minimum, a non-TMS requires only a CA, but a non-TMS environment can use OCSP responders and KRA instances as well. 
		

			For information on this topic, see the following sections in Red Hat Certificate System Planning, Installation, and Deployment Guide (Common Criteria Edition):
		
	
					Managing Certificates
				

	
					Using a Single Certificate Manager
				

	
					Planning for Lost Keys: Key Archival and Recovery
				

	
					Balancing Certificate Request Processing
				

	
					Balancing Client OCSP Requests
				





      ⁠1.4. A Look at the Token Management System (TMS)



Note


				Features in this section on TMS are not tested in the evaluation. This section is for reference only.
			



			Certificate System creates, manages, renews, and revokes certificates, and it also archives and recovers keys. For organizations that use smart cards, the Certificate System has a token management system — a collection of subsystems with established relationships — to generate keys and requests and receive certificates to be used for smart cards. 
		

			For information on this topic, see the following sections in Red Hat Certificate System Planning, Installation, and Deployment Guide (Common Criteria Edition):
		
	
					Working with Smart Cards (TMS)
				

	
					Using Smart Cards
				





      ⁠1.5. Red Hat Certificate System services




			There are various different interfaces for managing certificates and subsystems, depending on the user's role: administrators, agents, auditors, and end users. For an overview of the different functions that are performed through each interface, see Red Hat Certificate System User Interfaces section in the Red Hat Certificate System 9 Planning, Installation, and Deployment Guide (Common Criteria Edition).
		



      ⁠Part I. Red Hat Certificate System User Interfaces





      ⁠Chapter 2. User Interfaces




			There are different interfaces for managing certificates and subsystems, depending on the user's role: administrators, agents, auditors, and end users.
		

      ⁠2.1. User Interfaces Overview




				Administrators can use the following interfaces to securely interact with a completed Certificate System installation:
			
	
						The PKI command-line interface and other command-line utilities
					

	
						The PKI Console graphical interface
					

	
						The Certificate System web interface.
					




				These interfaces require configuration prior to use for secure communication with the Certificate System server over TLS. Using these clients without proper configuration is not allowed. Some of these tools use TLS client authentication. When required, their required initialization procedure includes configuring this. Which interface is used depends on the administrator's preferences and functionality available. Common actions using these interfaces are described in the remainder of the guide after this chapter.
			

				By default, the PKI command-line interface uses the NSS database in the user's ~/.dogtag/nssdb/ directory. Section 2.5.1.1, “pki CLI Initialization” provides detailed steps for initializing the NSS database with the administrator's certificate and key. Some examples of using the PKI command-line utility are described in Section 2.5.1.2, “Using "pki" CLI”. Additional examples are shown through the rest of the guide.
			

				Interfacing with Certificate System (as an administrator in other user roles) can be done using various command-line utilities to submit CMC requests, manage generated certificates, and so on. These are described briefly in Section 2.5, “Command Line Interfaces”, such as Section 2.5.2, “AtoB”. These utilities are utilized in later sections such as Section 5.2.2, “Creating a CSR Using PKCS10Client”.
			

				Certificate System's PKI Console interface is a graphical interface. Section 2.3.1, “pkiconsole Initialization” describes how to initialize it. Section 2.3.2, “Using pkiconsole for CA, OCSP, KRA, and TKS Subsystems” gives an overview of using the console interface. Later sections, such as Section 3.2.2, “Managing Certificate Enrollment Profiles Using the Java-based Administration Console” go into greater detail for specific operations.
			

				The Certificate System web interface allows administrative access through the Firefox web browser. Section 2.4.1, “Browser Initialization” describes instructions about configuring the client authentication. Other sections in Section 2.4, “Web Interface” describe using the web interface of Certificate System. More information about using the browser for specific tasks are included in the rest of the documentation, such as Section 6.2.2.2, “Searching for Certificates (Advanced)”.
			
Note


					To terminate a PKI Console session, click the Exit button. To terminate a web browser session, close the browser. A command-line utility terminates itself as soon as it performs the action and returns to the prompt, so no action is needed on the administrator's part to terminate the session.
				




      ⁠2.2. Client NSS Database Initialization




				On Red Hat Certificate System, certain interfaces may need to access the server using TLS client certificate authentication (mutual authentication). Before performing server-side admin tasks, you need to:
			
	
						Prepare an NSS database for the client. This can be a new database or an existing one.
					

	
						Import the CA certificate chain and trust them.
					

	
						Have a certificate and corresponding key. They can be generated in the NSS database or imported from somewhere else, such as from a PKCS #12 file.
					




				Based on the utility, you need to initialize the NSS database accordingly. See:
			
	
						Section 2.5.1.1, “pki CLI Initialization”
					

	
						Section 2.3.1, “pkiconsole Initialization”
					

	
						Section 2.4.1, “Browser Initialization”
					





      ⁠2.3. Graphical Interface




				pkiconsole is a graphical interface that is designed for users with the Administrator role privilege to manage the subsystem itself. This includes adding users, configuring logs, managing profiles and plug-ins, and the internal database, among many other functions. This utility communicates with the Certificate System server via TLS using client-authentication and can be used to manage the server remotely.
			

      ⁠2.3.1. pkiconsole Initialization




					To use the pkiconsole interface for the first time, specify a new password and use the following command:
				
$ pki -c password -d ~/.redhat-idm-console client-init

					This command creates a new client NSS database in the ~/.redhat-idm-console/ directory.
				

					To import the CA certificate into the PKI client NSS database, see Section 11.2, “Importing a Root Certificate”. 

				

					To request a new client certificate, see Chapter 5, Requesting, Enrolling, and Managing Certificates.
				

					Execute the following command to extract the admin client certificate from the .p12 file:
				
$ openssl pkcs12 -in file -clcerts -nodes -nokeys -out file.crt

					Validate and import the admin client certificate as described in Chapter 11, Managing Certificate/Key Crypto Token:
				
$ PKICertImport -d ~/.redhat-idm-console -n "nickname" -t ",," -a -i file.crt -u C
Important


						Make sure all intermediate certificates and the root CA certificate have been imported before importing the CA admin client certificate.
					



					To import an existing client certificate and its key into the client NSS database:
				
$ pki -c password -d ~/.redhat-idm-console pkcs12-import --pkcs12-file file --pkcs12-password pkcs12-password

					Verify the client certificate with the following command:
				
$ certutil -V -u C -n "nickname" -d ~/.redhat-idm-console


      ⁠2.3.2. Using pkiconsole for CA, OCSP, KRA, and TKS Subsystems




					The Java console is used by four subsystems: the CA, OCSP, KRA, and TKS. The console is accessed using a locally-installed pkiconsole utility. It can access any subsystem because the command requires the host name, the subsystem's administrative TLS port, and the specific subsystem type.
				
pkiconsole https://server.example.com:admin_port/subsystem_type

					If DNS is not configured, you can use an IPv4 or IPv6 address to connect to the console. For example:
				
https://192.0.2.1:8443/ca
https://[2001:DB8::1111]:8443/ca

					This opens a console, as in Figure 2.1, “Certificate System Console”.
				

      ⁠[image: Certificate System Console]

Figure 2.1. Certificate System Console


					The Configuration tab controls all of the setup for the subsystem, as the name implies. The choices available in this tab are different depending on which subsystem type the instance is; the CA has the most options since it has additional configuration for jobs, notifications, and certificate enrollment authentication.
				

					All subsystems have four basic options:  
				
	
							Users and groups
						

	
							Access control lists
						

	
							Log configuration
						

	
							Subsystem certificates (meaning the certificates issued to the subsystem for use, for example, in the security domain or audit signing)
						




					The Status tab shows the logs maintained by the subsystem.  
				



      ⁠2.4. Web Interface




      ⁠2.4.1. Browser Initialization




					This section explains browser initialization for Firefox to access PKI services.
				

      ⁠Importing a CA Certificate
	
							Click Menu → Preferences → Privacy & Security → View certificates.
						
[image: Browser Initialization]


	
							Select the Authorities tab and click the Import button.
						
[image: Browser Initialization]


	
							Select the ca.crt file and click Import.
						




      ⁠Importing a Client Certificate
	
							Click Options → Preferences → Privacy & Security → View certificates.
						

	
							Select the Your Certificates tab.
						
[image: Browser Initialization]


	
							Click on Import and select the client p12 file, such as ca_admin_cert.p12.
						

	
							Enter the password for the client certificate on the prompt.
						
[image: Browser Initialization]


	
							Click OK.
						

	
							Verify that an entry is added under Your Certificates.
						
[image: Browser Initialization]





      ⁠Accessing the Web Console

					You can access the PKI services by opening https://host_name:port in your browser.
				


      ⁠2.4.2. The Administrative Interfaces




					The all subsystems use HTML-based administrative interface. It is accessed by entering the host name and secure port as the URL, authenticating with the administrator's certificate, and clicking the appropriate Administrators link.
				
Note


						There is a single TLS port for all subsystems which is used for both administrator and agent services. Access to those services is restricted by certificate-based authentication.
					



					The HTML admin interface is much more limited than the Java console; the primary administrative function is managing the subsystem users.
				

					The TPS only allows operations to manage users for the TPS subsystem. However, the TPS admin page can also list tokens and display all activities (including normally-hidden administrative actions) performed on the TPS.
				

      ⁠[image: TPS Admin Page]

Figure 2.2. TPS Admin Page



      ⁠2.4.3. Agent Interfaces




					The agent services pages are where almost all of the certificate and token management tasks are performed. These services are HTML-based, and agents authenticate to the site using a special agent certificate.
				

      ⁠[image: Certificate Manager's Agent Services Page]

Figure 2.3. Certificate Manager's Agent Services Page


					The operations vary depending on the subsystem:
				
	
							The Certificate Manager agent services include approving certificate requests (which issues the certificates), revoking certificates, and publishing certificates and CRLs. All certificates issued by the CA can be managed through its agent services page.
						

	
							The TPS agent services, like the CA agent services, manages all of the tokens which have been formatted and have had certificates issued to them through the TPS. Tokens can be enrolled, suspended, and deleted by agents. Two other roles (operator and admin) can view tokens in web services pages, but cannot perform any actions on the tokens.
						

	
							KRA agent services pages process key recovery requests, which set whether to allow a certificate to be issued reusing an existing key pair if the certificate is lost.
						

	
							The OCSP agent services page allows agents to configure CAs which publish CRLs to the OCSP, to load CRLs to the OCSP manually, and to view the state of client OCSP requests.
						




					The TKS is the only subsystem without an agent services page.
				


      ⁠2.4.4. End User Pages




					The CA and TPS both process direct user requests in some way. That means that end users have to have a way to connect with those subsystems. The CA has end-user, or end-entities, HTML services. The TPS uses the Enterprise Security Client.
				

					The end-user services are accessed over standard HTTP using the server's host name and the standard port number; they can also be accessed over HTTPS using the server's host name and the specific end-entities TLS port.
				

					For CAs, each type of TLS certificate is processed through a specific online submission form, called a profile. There are about two dozen certificate profiles for the CA, covering all sorts of certificates — user TLS certificates, server TLS certificates, log and file signing certificates, email certificates, and every kind of subsystem certificate. There can also be custom profiles.
				

      ⁠[image: Certificate Manager's End-Entities Page]

Figure 2.4. Certificate Manager's End-Entities Page


					End users retrieve their certificates through the CA pages when the certificates are issued. They can also download CA chains and CRLs and can revoke or renew their certificates through those pages.
				



      ⁠2.5. Command Line Interfaces




				This section discusses command-line utilities.
			

      ⁠2.5.1. "pki" CLI




					The pki command-line interface (CLI) provides access to various services on the server using the REST interface (see the REST Interface section in the Red Hat Certificate System Planning, Installation, and Deployment Guide (Common Criteria Edition)). The CLI can be invoked as follows:
				
$ pki [CLI options] <command> [command parameters]

					Note that the CLI options must be placed before the command, and the command parameters after the command.
				

      ⁠2.5.1.1. pki CLI Initialization




						To use the command line interface for the first time, specify a new password and use the following command:
					
$ pki -c <password> client-init

						This will create a new client NSS database in the ~/.dogtag/nssdb directory. The password must be specified in all CLI operations that uses the client NSS database. Alternatively, if the password is stored in a file, you can specify the file using the -C option. For example:
					
$ pki -C password_file client-init

						To import the CA certificate into the client NSS database refer to Section 11.2, “Importing a Root Certificate”.
					

						Some commands may require client certificate authentication. To import an existing client certificate and its key into the client NSS database, specify the PKCS #12 file and the password, and execute the following command:
					

						Execute the following command to extract the admin client certificate from the .p12 file:
					
$ openssl pkcs12 -in file -clcerts -nodes -nokeys -out file.crt

						Validate and import the admin client certificate as described in Chapter 11, Managing Certificate/Key Crypto Token:
					
$ PKICertImport -d ~/.dogtag/nssdb -n "nickname" -t ",," -a -i file.crt -u C
Important


							Make sure all intermediate certificates and the root CA certificate have been imported before importing the CA admin client certificate.
						



						To import an existing client certificate and its key into the client NSS database, specify the PKCS #12 file and the password, and execute the following command:
					
$ pki -c <password> pkcs12-import --pkcs12-file <file> --pkcs12-password <password>

						Verify the client certificate with the following command:
					
certutil -V -u C -n "nickname" -d ~/.dogtag/nssdb


      ⁠2.5.1.2. Using "pki" CLI




						The command line interface supports a number of commands organized in a hierarchical structure. To list the top-level commands, execute the pki command without any additional commands or parameters:
					
$ pki

						Some commands have subcommands. To list them, execute pki with the command name and no additional options. For example:
					
$ pki ca
$ pki ca-cert

						To view command usage information, use the --help option:
					
$ pki --help
$ pki ca-cert-find --help

						To view manual pages, specify the command line help command:
					
$ pki help
$ pki help ca-cert-find

						To execute a command that does not require authentication, specify the command and its parameters (if required), for example:
					
$ pki ca-cert-find

						To execute a command that requires client certificate authentication, specify the certificate nickname, the client NSS database password, and optionally the server URL:
					
$ pki -U <server URL> -n <nickname> -c <password> <command> [command parameters]

						For example:
					
$ pki -n jsmith -c password ca-user-find ...

						By default, the CLI communicates with the server at http://local_host_name:8080. To communicate with a server at a different location, specify the URL with the -U option, for example: 
$ pki -U https://server.example.com:8443 -n jsmith -c password ca-user-find


					



      ⁠2.5.2. AtoB




					The AtoB utility decodes the Base64-encoded certificates to their binary equivalents. For example: 
$ AtoB input.ascii output.bin


				

					For further details, more options, and additional examples, see the AtoB(1) man page.
				


      ⁠2.5.3. AuditVerify




					The AuditVerify utility verifies integrity of the audit logs by validating the signature on log entries.
				

					Example:
				
$ AuditVerify -d ~jsmith/auditVerifyDir -n Log Signing Certificate -a ~jsmith/auditVerifyDir/logListFile -P "" -v

					The example verifies the audit logs using the Log Signing Certificate (-n) in the ~jsmith/auditVerifyDir NSS database (-d). The list of logs to verify (-a) are in the ~jsmith/auditVerifyDir/logListFile file, comma-separated and ordered chronologically. The prefix (-P) to prepend to the certificate and key database file names is empty. The output is verbose (-v).
				

					For further details, more options, and additional examples, see the AuditVerify(1) man page or 14.2.2. Using Signed Audit Logs in the Red Hat Certificate System Administration Guide.
				


      ⁠2.5.4. BtoA




					The BtoA utility encodes binary data in Base64. For example: 
$ BtoA input.bin output.ascii


				

					For further details, more options, and additional examples, see the BtoA(1) man page.
				


      ⁠2.5.5. CMCRequest




					The CMCRequest utility creates a certificate issuance or revocation request. For example: 
$ CMCRequest example.cfg


				
Note


						All options to the CMCRequest utility are specified as part of the configuration filed passed to the utility. See the CMCRequest(1) man page for configuration file options and further information. Also see 4.3. Requesting and Receiving Certificates Using CMC and 6.2.1. Revoking a Certificate Using CMCRequest in Red Hat Certificate System Administration Guide.
					




      ⁠2.5.6. CMCRevoke




					Legacy. Do not use.
				


      ⁠2.5.7. CMCSharedToken




					The CMCSharedToken utility encrypts a user passphrase for shared-secred CMC requests. For example: 
$ CMCSharedToken -d . -p myNSSPassword -s "shared_passphrase" -o cmcSharedTok2.b64 -n "subsystemCert cert-pki-tomcat"


				

					The shared passphrase (-s) is encrypted and stored in the cmcSharedtok2.b64 file (-o) using the certificate named subsystemCert cert-pki-tomcat (-n) found in the NSS database in the current directory (-d). The default security token internal is used (as -h is not specified) and the token password of myNSSPassword is used for accessing the token.
				

					For further details, more options, and additional examples, see the CMCSharedtoken(1) man page and also 8.1.3.1. Creating a Shared Secret Token in Red Hat Certificate System Administration Guide.
				


      ⁠2.5.8. CRMFPopClient




					The CRMFPopClient utility is Certificate Request Message Format (CRMF) client using NSS databases and supplying Proof of Possession.
				

					Example:
				
$ CRMFPopClient -d . -p password -n "cn=subject_name" -q POP_SUCCESS -b kra.transport -w "AES/CBC/PKCS5Padding" -t false -v -o /user_or_entity_database_directory/example.csr

					This example creates a new CSR with the cn=subject_name subject DN (-n), NSS database in the current directory (-d), certificate to use for transport kra.transport (-b), the AES/CBC/PKCS5Padding key wrap algorithm verbose output is specified (-v) and the resulting CSR is written to the /user_or_entity_database_directory/example.csr file (-o).
				

					For further details, more options, and additional examples, see the output of the CRMFPopClient --help command and also 4.2.4. Creating a CSR Using CRMFPopClient in Red Hat Certificate System Administration Guide.
				


      ⁠2.5.9. HttpClient




					The HttpClient utility is an NSS-aware HTTP client for submitting CMC requests.
				

					Example:
				
$ HttpClient request.cfg
Note


						All parameters to the HttpClient utility are stored in the request.cfg file. For further information, see the output of the HttpClient --help command.
					




      ⁠2.5.10. OCSPClient




					An Online Certificate Status Protocol (OCSP) client for checking the certificate revocation status.
				

					Example:
				
$ OCSPClient -h server.example.com -p 8080 -d /etc/pki/pki-tomcat/alias -c "caSigningCert cert-pki-ca" --serial 2

					This example queries the server.example.com OCSP server (-h) on port 8080 (-p) to check whether the certificate signed by caSigningcet cert-pki-ca (-c) with serial number 2 (--serial) is valid. The NSS database in the /etc/pki/pki-tomcat/alias directory is used.
				

					For further details, more options, and additional examples, see the output of the OCSPClient --help command.
				


      ⁠2.5.11. PKCS10Client




					The PKCS10Client utility creates a CSR in PKCS10 format for RSA and EC keys, optionally on an HSM.
				

					Example:
				
$ PKCS10Client -d /etc/dirsrv/slapd-instance_name/ -p password -a rsa -l 2048 -o ~/ds.csr -n "CN=$HOSTNAME"

					This example creates a new RSA (-a) key with 2048 bits (-l) in the /etc/dirsrv/slapd-instance_name/ directory (-d with database password password (-p). The output CSR is stored in the ~/ds.cfg file (-o) and the certificate DN is CN=$HOSTNAME (-n).
				

					For further details, more options, and additional examples, see the PKCS10Client(1) man page.
				


      ⁠2.5.12. PrettyPrintCert




					The PrettyPrintCert utility displays the contents of a certificate in a human-readable format.
				

					Example:
				
$ PrettyPrintCert ascii_data.cert

					This command parses the output of the ascii_data.cert file and displays its contents in human readable format. The output includes information like signature algorithm, exponent, modulus, and certificate extensions.
				

					For further details, more options, and additional examples, see the PrettyPrintCert(1) man page.
				


      ⁠2.5.13. PrettyPrintCrl




					The PrettyPrintCrl utility displays the content of a CRL file in a human readable format.
				

					Example:
				
$ PrettyPrintCrl ascii_data.crl

					This command parses the output of the ascii_data.crl and displays its contents in human readable format. The output includes information, such as revocation signature algorithm, the issuer of the revocation, and a list of revoked certificates and their reason.
				

					For further details, more options, and additional examples, see the PrettyPrintCrl(1) man page.
				


      ⁠2.5.14. TokenInfo




					The TokenInfo utility lists all tokens in an NSS database.
				

					Example:
				
$ TokenInfo ./nssdb/

					This command lists all tokens (HSMs, soft tokens, and so on) registered in the specified database directory.
				

					For further details, more options, and additional examples, see the output of the TokenInfo command
				


      ⁠2.5.15. tkstool




					The tkstool utility is interacting with the token Key Service (TKS) subsystem.
				

					Example:
				
$ tkstool -M -n new_master -d /var/lib/pki/pki-tomcat/alias -h token_name

					This command creates a new master key (-M) named new_master (-n) in the /var/lib/pki/pki-tomcat/alias NSS database on the HSM token_name
				

					For further details, more options, and additional examples, see the output of the tkstool -H command.
				




      ⁠Part II. Setting up Certificate Services




Note


					Modification of CS.cfg, server.xml or any configuration file post-installation is expressly prohibited in a certified environment.
				





      ⁠Chapter 3. Making Rules for Issuing Certificates (Certificate Profiles)




		The Certificate System provides a customizable framework to apply policies for incoming certificate requests and to control the input request types and output certificate types; these are called certificate profiles. Certificate profiles set the required information for certificate enrollment forms in the Certificate Manager end-entities page. This chapter describes how to configure certificate profiles.
	

      ⁠3.1. About Certificate Profiles




			A certificate profile defines everything associated with issuing a particular type of certificate, including the authentication method, the authorization method, the default certificate content, constraints for the values of the content, and the contents of the input and output for the certificate profile. Enrollment and renewal requests are submitted to a certificate profile and are then subject to the defaults and constraints set in that certificate profile. These constraints are in place whether the request is submitted through the input form associated with the certificate profile or through other means. The certificate that is issued from a certificate profile request contains the content required by the defaults with the information required by the default parameters. The constraints provide rules for what content is allowed in the certificate.
		

			For details about using and customizing certificate profiles, see Section 3.2, “Setting up Certificate Profiles”.
		

			The Certificate System contains a set of default profiles. While the default profiles are created to satisfy most deployments, every deployment can add their own new certificate profiles or modify the existing profiles.
		
	
					Authentication. In every certification profile can be specified an authentication method.
				

	
					Authorization. In every certification profile can be specified an authorization method.
				

	
					Profile inputs. Profile inputs are parameters and values that are submitted to the CA when a certificate is requested. Profile inputs include public keys for the certificate request and the certificate subject name requested by the end entity for the certificate.
				

	
					Profile outputs. Profile outputs are parameters and values that specify the format in which to provide the certificate to the end entity. Profile outputs are CMC responses which contain a PKCS#7 certificate chain, when the request was successful.
				

	
					Certificate content. Each certificate defines content information, such as the name of the entity to which it is assigned (the subject name), its signing algorithm, and its validity period. What is included in a certificate is defined in the X.509 standard. With version 3 of the X509 standard, certificates can also contain extensions. For more information about certificate extensions, see Section B.3, “Standard X.509 v3 Certificate Extension Reference”.
				

					All of the information about a certificate profile is defined in the set entry of the profile policy in the profile's configuration file. When multiple certificates are expected to be requested at the same time, multiple set entries can be defined in the profile policy to satisfy needs of each certificate. Each policy set consists of a number of policy rules and each policy rule describes a field in the certificate content. A policy rule can include the following parts:
				
	
							Profile defaults. These are predefined parameters and allowed values for information contained within the certificate. Profile defaults include the validity period of the certificate, and what certificate extensions appear for each type of certificate issued.
						

	
							Profile constraints. Constraints set rules or policies for issuing certificates. Amongst other, profile constraints include rules to require the certificate subject name to have at least one CN component, to set the validity of a certificate to a maximum of 360 days, to define the allowed grace period for renewal, or to require that the subjectaltname extension is always set to true.
						







      ⁠3.1.1. The Enrollment Profile




				 The parameters for each profile defining the inputs, outputs, and policy sets are listed in more detail in Table 11.1. Profile Configuration File Parameters in Red Hat Certificate System Planning, Installation and Deployment Guide.
			

				A profile usually contains inputs, policy sets, and outputs, as illustrated in the caUserCert profile in Example 3.1, “Example caCMCUserCert Profile”.
			

      ⁠Example 3.1. Example caCMCUserCert Profile

					The first part of a certificate profile is the description. This shows the name, long description, whether it is enabled, and who enabled it.
				
desc=This certificate profile is for enrolling user certificates by using the CMC certificate request with CMC Signature authentication.
visible=true
enable=true
enableBy=admin
name=Signed CMC-Authenticated User Certificate Enrollment

					NOTE


							The missing auth.instance_id= entry in this profile means that with this profile, authentication is not needed to submit the enrollment request. However, manual approval by an authorized CA agent will be required to get an issuance.
						




				

					Next, the profile lists all of the required inputs for the profile:
				
input.list=i1
input.i1.class_id=cmcCertReqInputImp

					For the caCMCUserCert profile, this defines the certificate request type, which is CMC.
				

					Next, the profile must define the output, meaning the format of the final certificate. The only one available is certOutputImpl, which results in CMC response to be returned to the requestor in case of success.
				
output.list=o1
output.o1.class_id=certOutputImpl

					The last — largest — block of configuration is the policy set for the profile. Policy sets list all of the settings that are applied to the final certificate, like its validity period, its renewal settings, and the actions the certificate can be used for. The policyset.list parameter identifies the block name of the policies that apply to one certificate; the policyset.userCertSet.list lists the individual policies to apply.
				

					For example, the sixth policy populates the Key Usage Extension automatically in the certificate, according to the configuration in the policy. It sets the defaults and requires the certificate to use those defaults by setting the constraints:
				
policyset.list=userCertSet
policyset.userCertSet.list=1,10,2,3,4,5,6,7,8,9
...
policyset.userCertSet.6.constraint.class_id=keyUsageExtConstraintImpl
policyset.userCertSet.6.constraint.name=Key Usage Extension Constraint
policyset.userCertSet.6.constraint.params.keyUsageCritical=true
policyset.userCertSet.6.constraint.params.keyUsageDigitalSignature=true
policyset.userCertSet.6.constraint.params.keyUsageNonRepudiation=true
policyset.userCertSet.6.constraint.params.keyUsageDataEncipherment=false
policyset.userCertSet.6.constraint.params.keyUsageKeyEncipherment=true
policyset.userCertSet.6.constraint.params.keyUsageKeyAgreement=false
policyset.userCertSet.6.constraint.params.keyUsageKeyCertSign=false
policyset.userCertSet.6.constraint.params.keyUsageCrlSign=false
policyset.userCertSet.6.constraint.params.keyUsageEncipherOnly=false
policyset.userCertSet.6.constraint.params.keyUsageDecipherOnly=false
policyset.userCertSet.6.default.class_id=keyUsageExtDefaultImpl
policyset.userCertSet.6.default.name=Key Usage Default
policyset.userCertSet.6.default.params.keyUsageCritical=true
policyset.userCertSet.6.default.params.keyUsageDigitalSignature=true
policyset.userCertSet.6.default.params.keyUsageNonRepudiation=true
policyset.userCertSet.6.default.params.keyUsageDataEncipherment=false
policyset.userCertSet.6.default.params.keyUsageKeyEncipherment=true
policyset.userCertSet.6.default.params.keyUsageKeyAgreement=false
policyset.userCertSet.6.default.params.keyUsageKeyCertSign=false
policyset.userCertSet.6.default.params.keyUsageCrlSign=false
policyset.userCertSet.6.default.params.keyUsageEncipherOnly=false
policyset.userCertSet.6.default.params.keyUsageDecipherOnly=false
...




      ⁠3.1.2. Certificate Extensions: Defaults and Constraints




				An extension configures additional information to include in a certificate or rules about how the certificate can be used. These extensions can either be specified in the certificate request or taken from the profile default definition and then enforced by the constraints.
			

				A certificate extension is added or identified in a profile by adding the default which corresponds to the extension and sets default values, if the certificate extension is not set in the request. For example, the Basic Constraints Extension identifies whether a certificate is a CA signing certificate, the maximum number of subordinate CAs that can be configured under the CA, and whether the extension is critical (required):
			
policyset.caCertSet.5.default.name=Basic Constraints Extension Default
policyset.caCertSet.5.default.params.basicConstraintsCritical=true
policyset.caCertSet.5.default.params.basicConstraintsIsCA=true
policyset.caCertSet.5.default.params.basicConstraintsPathLen=-1

				The extension can also set required values for the certificate request called constraints. If the contents of a request do not match the set constraints, then the request is rejected. The constraints generally correspond to the extension default, though not always. For example:
			
policyset.caCertSet.5.constraint.class_id=basicConstraintsExtConstraintImpl
policyset.caCertSet.5.constraint.name=Basic Constraint Extension Constraint
policyset.caCertSet.5.constraint.params.basicConstraintsCritical=true
policyset.caCertSet.5.constraint.params.basicConstraintsIsCA=true
policyset.caCertSet.5.constraint.params.basicConstraintsMinPathLen=-1
policyset.caCertSet.5.constraint.params.basicConstraintsMaxPathLen=-1
NOTE


					To allow user supplied extensions to be embedded in the certificate requests and ignore the system-defined default in the profile, the profile needs to contain the User Supplied Extension Default, which is described in Section B.1.33, “User Supplied Extension Default”.
				




      ⁠3.1.3. Inputs and Outputs




				Inputs set information that must be submitted to receive a certificate. In a Common Criteria environment, set the input.i1.class_id parameter in all enabled profiles to cmcCertReqInputImpl:
			
input.i1.class_id=cmcCertReqInputImpl

				The outputs configured in the profile define the format of the certificate that is issued. In a Common Criteria environment, set the output.o1.class_id parameter in all enabled profiles to certOutputImpl:
			
output.o1.class_id=CertOutputImpl

				In a Common Criteria-compliant Certificate System environment, users access profiles through the /ca/ee/ca/profileSubmitUserSignedCMCFull servlet that is accessed through the end-entities interface.
			



      ⁠3.2. Setting up Certificate Profiles




			In Certificate System, you can add, delete, and modify enrollment profiles:
		
	
					Using the PKI command-line interface
				

	
					Using the Java-based administration console
				




			This section provides information on each method.
		

      ⁠3.2.1. Managing Certificate Enrollment Profiles Using the PKI Command-line Interface




				This section describes how to manage certificate profiles using the pki utility. For further details, see the pki-ca-profile(1) man page.
			
Note


					Using the raw format is recommended. For details on each attribute and field of the profile, see the section Creating and Editing Certificate Profiles Directly on the File System in Red Hat Certificate System Planning, Installation and Deployment Guide.
				



      ⁠3.2.1.1. Enabling and Disabling a Certificate Profile




					Before you can edit a certificate profile, you must disable it. After the modification is complete, you can re-enable the profile.
				
Note


						Only CA agents can enable and disable certificate profiles.
					



					For example, to disable the caCMCECserverCert certificate profile:
				
# pki -c password -n caagent ca-profile-disable caCMCECserverCert

					For example, to enable the caCMCECserverCert certificate profile:
				
# pki -c password -n caagent ca-profile-enable caCMCECserverCert


      ⁠3.2.1.2. Creating a Certificate Profile in Raw Format




					To create a new profile in raw format:
				
# pki -c password -n caadmin ca-profile-add profile_name.cfg --raw
Note


						In raw format, specify the new profile ID as follows:
					
profileId=profile_name




      ⁠3.2.1.3. Editing a Certificate Profile in Raw Format




					CA administrators can edit a certificate profile in raw format without manually downloading the configuration file.
				

					For example, to edit the caCMCECserverCert profile:
				
# pki -c password -n caadmin ca-profile-edit caCMCECserverCert

					This command automatically downloads the profile configuration in raw format and opens it in the VI editor. When you close the editor, the profile configuration is updated on the server.
				

					You do not need to restart the CA after editing a profile.
				
Important


						Before you can edit a profile, disable the profile. For details, see Section 3.2.1.1, “Enabling and Disabling a Certificate Profile”.
					



      ⁠Example 3.2. Editing a Certificate Profile in RAW Format

						For example, to edit the caCMCserverCert profile to accept multiple user-supplied extensions:
					
	
								Disable the profile as a CA agent:
							
# pki -c password -n caagemt ca-profile-disable caCMCserverCert

	
								Edit the profile as a CA administrator:
							
	
										Download and open the profile in the VI editor:
									
# pki -c password -n caadmin ca-profile-edit caCMCserverCert

	
										Update the configuration to accept the extensions. For details, see Example B.3, “Multiple User Supplied Extensions in CSR”.
									



	
								Enable the profile as a CA agent:
							
# pki -c password -n caagent ca-profile-enable caCMCserverCert







      ⁠3.2.1.4. Deleting a Certificate Profile




					To delete a certificate profile:
				
# pki -c password -n caadmin ca-profile-del profile_name
Important


						Before you can delete a profile, disable the profile. For details, see Section 3.2.1.1, “Enabling and Disabling a Certificate Profile”.
					





      ⁠3.2.2. Managing Certificate Enrollment Profiles Using the Java-based Administration Console




      ⁠3.2.2.1. Creating Certificate Profiles through the CA Console




					For security reasons, the Certificate Systems enforces separation of roles whereby an existing certificate profile can only be edited by an administrator after it was allowed by an agent. To add a new certificate profile or modify an existing certificate profile, perform the following steps as the administrator:
				
	
							Log in to the Certificate System CA subsystem console.
						
pkiconsole https://server.example.com:8443/ca

	
							In the Configuration tab, select Certificate Manager, and then select Certificate Profiles.
						

							The Certificate Profile Instances Management tab, which lists configured certificate profiles, opens.
						

	
							To create a new certificate profile, click Add.
						

							In the Select Certificate Profile Plugin Implementation window, select the type of certificate for which the profile is being created.
						
[image: Creating Certificate Profiles through the CA Console]


	
							Fill in the profile information in the Certificate Profile Instance Editor.
						
[image: Creating Certificate Profiles through the CA Console]

	
									Certificate Profile Instance ID. This is the ID used by the system to identify the profile.
								

	
									Certificate Profile Name. This is the user-friendly name for the profile.
								

	
									Certificate Profile Description.
								

	
									End User Certificate Profile. This sets whether the request must be made through the input form for the profile. This is usually set to true. Setting this to false allows a signed request to be processed through the Certificate Manager's certificate profile framework, rather than through the input page for the certificate profile.
								

	
									Certificate Profile Authentication. This sets the authentication method. An automated authentication is set by providing the instance ID for the authentication instance. If this field is blank, the authentication method is agent-approved enrollment; the request is submitted to the request queue of the agent services interface.
								

									Unless it is for a TMS subsystem, administrators must select one of the following authentication plug-ins:
								
	
											CMCAuth: Use this plug-in when a CA agent must approve and submit the enrollment request.
										

	
											CMCUserSignedAuth: Use this plug-in to enable non-agent users to enroll own certificates.
										







	
							Click OK. The plug-in editor closes, and the new profile is listed in the profiles tab.
						

	
							Configure the policies, inputs, and outputs for the new profile. Select the new profile from the list, and click Edit/View.
						

	
							Set up policies in the Policies tab of the Certificate Profile Rule Editor window. The Policies tab lists policies that are already set by default for the profile type.
						
	
									To add a policy, click Add.
								
[image: Creating Certificate Profiles through the CA Console]


	
									Choose the default from the Default field, choose the constraints associated with that policy in the Constraints field, and click OK.
								
[image: Creating Certificate Profiles through the CA Console]


	
									Fill in the policy set ID. When issuing dual key pairs, separate policy sets define the policies associated with each certificate. Then fill in the certificate profile policy ID, a name or identifier for the certificate profile policy.
								

	
									Configure any parameters in the Defaults and Constraints tabs.
								
[image: Creating Certificate Profiles through the CA Console]


									Defaults defines attributes that populate the certificate request, which in turn determines the content of the certificate. These can be extensions, validity periods, or other fields contained in the certificates. Constraints defines valid values for the defaults.
								

									See Section B.1, “Defaults Reference” and Section B.2, “Constraints Reference” for complete details for each default or constraint.
								




							To modify an existing policy, select a policy, and click Edit. Then edit the default and constraints for that policy.
						

							To delete a policy, select the policy, and click Delete.
						

	
							Set inputs in the Inputs tab of the Certificate Profile Rule Editor window. There can be more than one input type for a profile.
						
Note


								Unless you configure the profile for a TMS subsystem, select only cmcCertReqInput and delete other profiles by selecting them and clicking the Delete button.
							


	
									To add an input, click Add.
								
[image: Creating Certificate Profiles through the CA Console]


	
									Choose the input from the list, and click OK. See Section A.1, “Input Reference” for complete details of the default inputs.
								

	
									The New Certificate Profile Editor window opens. Set the input ID, and click OK.
								
[image: Creating Certificate Profiles through the CA Console]





							Inputs can be added and deleted. It is possible to select edit for an input, but since inputs have no parameters or other settings, there is nothing to configure.
						

							To delete an input, select the input, and click Delete.
						

	
							Set up outputs in the Outputs tab of the Certificate Profile Rule Editor window.
						

							Outputs must be set for any certificate profile that uses an automated authentication method; no output needs to be set for any certificate profile that uses agent-approved authentication. The Certificate Output type is set by default for all profiles and is added automatically to custom profiles.
						

							Unless you configure the profile for a TMS subsystem, select only certOutput.
						
[image: Creating Certificate Profiles through the CA Console]


							Outputs can be added and deleted. It is possible to select edit for an output, but since outputs have no parameters or other settings, there is nothing to configure.
						
	
									To add an output, click Add.
								

	
									Choose the output from the list, and click OK.
								

	
									Give a name or identifier for the output, and click OK.
								

									This output will be listed in the output tab. You can edit it to provide values to the parameters in this output.
								




							To delete an output, select the output from list, and click Delete.
						

	
							Restart the CA to apply the new profile.
						
systemctl restart pki-tomcatd-nuxwdog@instance_name.service

	
							After creating the profile as an administrator, a CA agent has to approve the profile in the agent services pages to enable the profile.
						
	
									Open the CA's services page.
								
https://server.example.com:8443/ca/services

	
									Click the Manage Certificate Profiles link. This page lists all of the certificate profiles that have been set up by an administrator, both active and inactive.
								

	
									Click the name of the certificate profile to approve.
								

	
									At the bottom of the page, click the Enable button.
								
[image: Creating Certificate Profiles through the CA Console]







Note


						If this profile will be used with a TPS, then the TPS must be configured to recognized the profile type. This is in 11.1.4. Managing Smart Card CA Profiles in Red Hat Certificate System's Planning, Installation, and Deployment Guide.
					



					Authorization methods for the profiles can only be added to the profile using the command line, as described in the section Creating and Editing Certificate Profiles Directly on the File System in Red Hat Certificate System Planning, Installation and Deployment Guide.
				


      ⁠3.2.2.2. Editing Certificate Profiles in the Console




					To modify an existing certificate profile:
				
	
							Log into the agent services pages and disable the profile.
						

							Once a certificate profile is enabled by an agent, that certificate profile is marked enabled in the Certificate Profile Instance Management tab, and the certificate profile cannot be edited in any way through the console.
						

	
							Log in to the Certificate System CA subsystem console.
						
pkiconsole https://server.example.com:8443/ca

	
							In the Configuration tab, select Certificate Manager, and then select Certificate Profiles.
						

	
							Select the certificate profile, and click Edit/View.
						

	
							The Certificate Profile Rule Editor window appears. Many any changes to the defaults, constraints, inputs, or outputs.
						
NOTE


								The profile instance ID cannot be modified.
							



							If necessary, enlarge the window by pulling out one of the corners of the window.
						

	
							Restart the CA to apply the changes.
						

	
							In the agent services page, re-enable the profile.
						



Note


						Delete any certificate profiles that will not be approved by an agent. Any certificate profile that appears in the Certificate Profile Instance Management tab also appears in the agent services interface. If a profile has already been enabled, it must be disabled by the agent before it can be deleted from the profile list.
					





      ⁠3.2.3. Listing Certificate Enrollment Profiles




				The following pre-defined certificate profiles are ready to use and set up in this environment when the Certificate System CA is installed. These certificate profiles have been designed for the most common types of certificates, and they provide common defaults, constraints, authentication methods, inputs, and outputs.
			

				For a list of supported profiles, see Section 8.1.2, “CMC Authentication Plug-ins”.
			

				To list the available profiles on the command line, use the pki utility. For example:
			
# pki -c password -n caadmin ca-profile-find
------------------
59 entries matched
------------------
  Profile ID: caCMCserverCert
  Name: Server Certificate Enrollment using CMC
  Description: This certificate profile is for enrolling server certificates using CMC.

  Profile ID: caCMCECserverCert
  Name: Server Certificate wth ECC keys Enrollment using CMC
  Description: This certificate profile is for enrolling server certificates with ECC keys using CMC.

  Profile ID: caCMCECsubsystemCert
  Name: Subsystem Certificate Enrollment with ECC keys using CMC
  Description: This certificate profile is for enrolling subsystem certificates with ECC keys using CMC.

  Profile ID: caCMCsubsystemCert
  Name: Subsystem Certificate Enrollment using CMC
  Description: This certificate profile is for enrolling subsystem certificates using CMC.

  ...
-----------------------------
Number of entries returned 20


				For further details, see the pki-ca-profile(1) man page.
			


      ⁠3.2.4. Displaying Details of a Certificate Enrollment Profile




				For example, to display a specific certificate profile, such as caECFullCMCUserSignedCert:
			
$ pki -c password -n caadmin ca-profile-show caECFullCMCUserSignedCert
-----------------------------------
Profile "caECFullCMCUserSignedCert"
-----------------------------------
  Profile ID: caECFullCMCUserSignedCert
  Name: User-Signed CMC-Authenticated User Certificate Enrollment
  Description: This certificate profile is for enrolling user certificates with EC keys by using the CMC certificate request with non-agent user CMC authentication.

  Name: Certificate Request Input
  Class: cmcCertReqInputImpl

    Attribute Name: cert_request
    Attribute Description: Certificate Request
    Attribute Syntax: cert_request

  Name: Certificate Output
  Class: certOutputImpl

    Attribute Name: pretty_cert
    Attribute Description: Certificate Pretty Print
    Attribute Syntax: pretty_print

    Attribute Name: b64_cert
    Attribute Description: Certificate Base-64 Encoded
    Attribute Syntax: pretty_print


				For example, to display a specific certificate profile, such as caECFullCMCUserSignedCert, in raw format:
			
$ pki -c password -n caadmin ca-profile-show caECFullCMCUserSignedCert --raw
#Wed Jul 25 14:41:35 PDT 2018
auth.instance_id=CMCUserSignedAuth
policyset.cmcUserCertSet.1.default.params.name=
policyset.cmcUserCertSet.4.default.class_id=authorityKeyIdentifierExtDefaultImpl
policyset.cmcUserCertSet.6.default.params.keyUsageKeyCertSign=false
policyset.cmcUserCertSet.10.default.class_id=noDefaultImpl
policyset.cmcUserCertSet.10.constraint.name=Renewal Grace Period Constraint
output.o1.class_id=certOutputImpl

...

				For further details, see the pki-ca-profile(1) man page.
			



      ⁠3.3. Defining Key Defaults in Profiles




			When creating certificate profiles, the Key Default must be added before the Subject Key Identifier Default. Certificate System processes the key constraints in the Key Default before creating or applying the Subject Key Identifier Default, so if the key has not been processed yet, setting the key in the subject name fails.
		

			For example, an object-signing profile may define both defaults:
		
policyset.set1.p3.constraint.class_id=noConstraintImpl
policyset.set1.p3.constraint.name=No Constraint
policyset.set1.p3.default.class_id=subjectKeyIdentifierExtDefaultImpl
policyset.set1.p3.default.name=Subject Key Identifier Default
...
policyset.set1.p11.constraint.class_id=keyConstraintImpl
policyset.set1.p11.constraint.name=Key Constraint
policyset.set1.p11.constraint.params.keyType=RSA
policyset.set1.p11.constraint.params.keyParameters=1024,2048,3072,4096
policyset.set1.p11.default.class_id=userKeyDefaultImpl
policyset.set1.p11.default.name=Key Default

			In the policyset list, then, the Key Default (p11) must be listed before the Subject Key Identifier Default (p3).
		
policyset.set1.list=p1,p2,p11,p3,p4,p5,p6,p7,p8,p9,p10


      ⁠3.4. Configuring Profiles to Enable Renewal




			Renewing a certificate regenerates the certificate using the same public key as the original certificate. Renewing a certificate can be preferable to simply generating new keys and installing new certificates; for example, if a new CA signing certificate is created, all of the certificates which that CA issued and signed must be reissued. If the CA signing certificate is renewed, than all of the issued certificates are still valid. A renewed certificate is identical to the original, only with an updated validity period and expiration date.
		

			This section discusses how to set up profiles for renewals.
		

      ⁠3.4.1. About Renewal




				A renewed certificate is identical to the original certificate, which makes renewing certificates a much simpler and cleaner option for handling the expiration of many kinds of certificates, especially CA signing certificates.
			

      ⁠3.4.1.1. The Renewal Process




					There are two methods of renewing a certificate. Regenerating the certificate takes the original key, profile, and request of the certificate and recreates a new certificate with a new validity period and expiration date using the identical key. Re-keying a certificate submits a certificate request through the original profile with the same information, so that a new key pair is generated.
				

					A profile that allows renewal is also often accompanied by the renewGracePeriodConstraint entry. For example:
				
policyset.cmcUserCertSet.10.constraint.class_id=renewGracePeriodConstraintImpl
policyset.cmcUserCertSet.10.constraint.name=Renewal Grace Period Constraint
policyset.cmcUserCertSet.10.constraint.params.renewal.graceBefore=30
policyset.cmcUserCertSet.10.constraint.params.renewal.graceAfter=30
policyset.cmcUserCertSet.10.default.class_id=noDefaultImpl
policyset.cmcUserCertSet.10.default.name=No Default

      ⁠3.4.1.1.1. Renewing Using the Same Key




						A profile that allows the same key to be submitted for renewal has the allowSameKeyRenewal parameter set to true in the uniqueKeyConstraint entry. For example:
					
policyset.cmcUserCertSet.9.constraint.class_id=uniqueKeyConstraintImpl
policyset.cmcUserCertSet.9.constraint.name=Unique Key Constraint
policyset.cmcUserCertSet.9.constraint.params.allowSameKeyRenewal=true
policyset.cmcUserCertSet.9.default.class_id=noDefaultImpl
policyset.cmcUserCertSet.9.default.name=No Default


      ⁠3.4.1.1.2. Renewal Using a New Key




						To renew a certificate with a new key, use the same profile with a new key. Certificate System uses the subjectDN from the user signing certificate used to sign the request for the new certificate.
					





      ⁠3.5. Setting the Signing Algorithms for Certificates




			The CA's signing certificate can sign the certificates it issues with any public key algorithm supported by the CA. For example, an ECC signing certificate can sign both ECC and RSA certificate requests as long as both ECC and RSA algorithms are supported by the CA. An RSA signing certificate can can sign a PKCS #10 request with EC keys, but may not be able to sign CRMF certificate requests with EC keys if the ECC module is not available for the CA to verify the CRMF proof of possession (POP).
		

			ECC and RSA are public key encryption and signing algorithms. Both public key algorithms support different cipher suites, algorithms used to encrypt and decrypt data. Part of the function of the CA signing certificate is to issue and sign certificates using one of its supported cipher suites.
		

			Each profile can define which cipher suite the CA should use to sign certificates processed through that profile. If no signing algorithm is set, then the profile uses whatever the default signing algorithm is.
		

      ⁠3.5.1. Setting the CA's Default Signing Algorithm



	
						Open the CA console.
					
pkiconsole https://server.example.com:8443/ca

	
						In the Configuration tab, expand the Certificate Manager tree.
					

	
						In the General Settings tab, set the algorithm to use in the Algorithm drop-down menu.
					
[image: Setting the CA's Default Signing Algorithm]






      ⁠3.5.2. Setting the Signing Algorithm Default in a Profile




				Each profile has a Signing Algorithm Default extension defined. The default has two settings: a default algorithm and a list of allowed algorithms, if the certificate request specifies a different algorithm. If no signing algorithms are specified, then the profile uses whatever is set as the default for the CA.
			

				In the profile's .cfg file, the algorithm is set with two parameters:
			
policyset.cmcUserCertSet.8.constraint.class_id=signingAlgConstraintImpl
policyset.cmcUserCertSet.8.constraint.name=No Constraint
policyset.cmcUserCertSet.8.constraint.params.signingAlgsAllowed=SHA256withRSA,SHA512withRSA,SHA256withEC,SHA384withRSA,SHA384withEC,SHA512withEC
policyset.cmcUserCertSet.8.default.class_id=signingAlgDefaultImpl
policyset.cmcUserCertSet.8.default.name=Signing Alg
policyset.cmcUserCertSet.8.default.params.signingAlg=-

				To configure the Signing Algorithm Default through the console:
			
NOTE


					Before a profile can be edited, it must first be disabled by an agent.
				


	
						Open the CA console.
					
pkiconsole https://server.example.com:8443/ca

	
						In the Configuration tab, expand the Certificate Manager tree.
					

	
						Click the Certificate Profiles item.
					

	
						Click the Policies tab.
					

	
						Select the Signing Alg policy, and click the Edit button.
					

	
						To set the default signing algorithm, set the value in the Defaults tab. If this is set to -, then the profile uses the CA's default.
					
[image: NOTE]


	
						To set a list of allowed signing algorithms which can be accepted in a certificate request, open the Constraints tab, and set the list of algorithms in the Value field for signingAlgsAllowed.
					

						The possible values for the constraint are listed in Section B.2.10, “Signing Algorithm Constraint”.
					






      ⁠3.6. Managing CA-Related Profiles




			Certificate profiles and extensions must be used to set rules on how subordinate CAs can issue certificates. There are two parts to this:
		
	
					Managing the CA signing certificate
				

	
					Defining issuance rules
				




      ⁠3.6.1. Setting Restrictions on CA Certificates 




				When a subordinate CA is created, the root CA can impose limits or restrictions on the subordinate CA. For example, the root CA can dictate the maximum depth of valid certification paths (the number of subordinate CAs allowed to be chained below the new CA) by setting the pathLenConstraint field of the Basic Constraints extension in the CA signing certificate.
			

				A certificate chain generally consists of an entity certificate, zero or more intermediate CA certificates, and a root CA certificate. The root CA certificate is either self-signed or signed by an external trusted CA. Once issued, the root CA certificate is loaded into a certificate database as a trusted CA.
			

				An exchange of certificates takes place when performing a TLS handshake, when sending an S/MIME message, or when sending a signed object. As part of the handshake, the sender is expected to send the subject certificate and any intermediate CA certificates needed to link the subject certificate to the trusted root. For certificate chaining to work properly the certificates should have the following properties:
			
	
						CA certificates must have the Basic Constraints extension.
					

	
						CA certificates must have the keyCertSign bit set in the Key Usage extension.
					

	
						When the CAs generate new keys, they must add the Authority Key Identifier extension to all subject certificates. This extensions helps distinguish the certificates from the older CA certificates. The CA certificates must contain the Subject Key Identifier extension.     
					




				For more information on certificates and their extensions, see Internet X.509 Public Key Infrastructure - Certificate and Certificate Revocation List (CRL) Profile (RFC 5280), available at RFC 5280.
			

				These extensions can be configured through the certificate profile enrollment pages. By default, the CA contains the required and reasonable configuration settings, but it is possible to customize these settings.
			
Note


					This procedure describes editing the CA certificate profile used by a CA to issue CA certificates to its subordinate CAs.
				

					The profile that is used when a CA instance is first configured is /var/lib/pki/instance_name/ca/conf/caCert.profile. This profile cannot be edited in pkiconsole (since it is only available before the instance is configured). It is possible to edit the policies for this profile in the template file before the CA is configured using a text editor.
				



				To modify the default in the CA signing certificate profile used by a CA:
			
	
						If the profile is currently enabled, it must be disabled before it can be edited. Open the agent services page, select Manage Certificate Profiles from the left navigation menu, select the profile, and click Disable profile.
					

	
						Open the CA Console.
					
pkiconsole https://server.example.com:8443/ca

	
						In the left navigation tree of the Configuration tab, select Certificate Manager, then Certificate Profiles.
					

	
						Select caCACert, or the appropriate CA signing certificate profile, from the right window, and click Edit/View.
					

	
						In the Policies tab of the Certificate Profile Rule Editor, select and edit the Key Usage or Extended Key Usage Extension Default if it exists or add it to the profile.
					

	
						Select the Key Usage or Extended Key Usage Extension Constraint, as appropriate, for the default.
					

	
						Set the default values for the CA certificates. For more information, see Section B.1.14, “Key Usage Extension Default” and Section B.1.9, “Extended Key Usage Extension Default”.
					

	
						Set the constraint values for the CA certificates. There are no constraints to be set for a Key Usage extension; for an Extended Key Usage extension, set the appropriate OID constraints for the CA. For more information, see Section B.1.9, “Extended Key Usage Extension Default”.
					

	
						When the changes have been made to the profile, log into the agent services page again, and re-enable the certificate profile.
					




				For more information on modifying certificate profiles, see Section 3.2, “Setting up Certificate Profiles”. 
			


      ⁠3.6.2. Changing the Restrictions for CAs on Issuing Certificates




				The restrictions on the certificates issued are set by default after the subsystem is configured. These include:
			
	
						Whether certificates can be issued with validity periods longer than the CA signing certificate. The default is to disallow this.
					

	
						The signing algorithm used to sign certificates.
					

	
						The serial number range the CA is able to use to issue certificates.
					




				Subordinate CAs have constraints for the validity periods, types of certificates, and the types of extensions which they can issue. It is possible for a subordinate CA to issue certificates that violate these constraints, but a client authenticating a certificate that violates those constraints will not accept that certificate. Check the constraints set on the CA signing certificate before changing the issuing rules for a subordinate CA.
			

				To change the certificate issuance rules:
			
	
						Open the Certificate System Console.
					
pkiconsole https://server.example.com:8443/ca

	
						Select the Certificate Manager item in the left navigation tree of the Configuration tab.
					

      ⁠[image: The General Settings Tab in non-subordinate CAs by default]

Figure 3.1. The General Settings Tab in non-subordinate CAs by default


	
						By default, in non-cloned CAs, the General Settings tab of the Certificate Manager menu item contains these options:
					
	
								Override validity nesting requirement. This checkbox sets whether the Certificate Manager can issue certificates with validity periods longer than the CA signing certificate validity period.
							

								If this checkbox is not selected and the CA receives a request with validity period longer than the CA signing certificate's validity period, it automatically truncates the validity period to end on the day the CA signing certificate expires.
							

	
								Certificate Serial Number. These fields display the serial number range for certificates issued by the Certificate Manager. The server assigns the serial number in the Next serial number field to the next certificate it issues and the number in the Ending serial number to the last certificate it issues. 
							

								The serial number range allows multiple CAs to be deployed and balances the number of certificates each CA issues. The combination of an issuer name and a serial number uniquely identifies a certificate.
							
NOTE


									The serial number ranges with cloned CAs are fluid. All cloned CAs share a common configuration entry which defines the next available range. When one CA starts running low on available numbers, it checks this configuration entry and claims the next range. The entry is automatically updated, so that the next CA gets a new range.
								

									The ranges are defined in begin*Number and end*Number attributes, with separate ranges defined for requests and certificate serial numbers. For example:
								

 dbs.beginRequestNumber=1
 dbs.beginSerialNumber=1
 dbs.enableSerialManagement=true
 dbs.endRequestNumber=9980000
 dbs.endSerialNumber=ffe0000
 dbs.ldap=internaldb
 dbs.newSchemaEntryAdded=true
 dbs.replicaCloneTransferNumber=5

									Serial number management can be enabled for CAs which are not cloned.  However, by default, serial number management is disabled unless a system is cloned, when it is automatically enabled.
								



								The serial number range cannot be updated manually through the console. The serial number ranges are read-only fields.
							

	
								Default Signing Algorithm. Specifies the signing algorithm the Certificate Manager uses to sign certificates. The options are SHA256withRSA, and SHA512withRSA, if the CA's signing key type is RSA.
							

								The signing algorithm specified in the certificate profile configuration overrides the algorithm set here.
							




	
						By default, in cloned CAs, the General Settings tab of the Certificate Manager menu item contains these options:
					
	
								Enable serial number management
							

	
								Enable random certificate serial numbers
							




						Select both check boxes.
					

      ⁠[image: The General Settings Tab in cloned CAs by default]

Figure 3.2. The General Settings Tab in cloned CAs by default


	
						Click Save.
					





      ⁠3.6.3. Using Random Certificate Serial Numbers




				Red Hat Certificate System contains a serial number range management for requests, certificates, and replica IDs. This allows the automation of cloning when installing Identity Management (IdM).
			

				There are these ways to reduce the likelihood of hash-based attacks:
			
	
						making part of the certificate serial number unpredictable to the attacker
					

	
						adding a randomly chosen component to the identity
					

	
						making the validity dates unpredictable to the attacker by skewing each one forwards or backwards
					




				The random certificate serial number assignment method adds a randomly chosen component to the identity. This method:
			
	
						works with cloning
					

	
						allows resolving conflicts
					

	
						is compatible with the current serial number management method
					

	
						is compatible with the current workflows for administrators, agents, and end entities
					

	
						fixes the existing bugs in sequential serial number management
					



Note


					Administrators must enable random certificate serial numbers.
				



      ⁠3.6.3.1. Enabling Random Certificate Serial Numbers




					You can enable automatic serial number range management either from the command line or from the console UI.
				

					To enable automatic serial number management from the console UI:
				
	
							Tick the Enable serial number management option in the General Settings tab.
						

      ⁠[image: The General Settings Tab when Random Serial Number Assignment is enabled]

Figure 3.3. The General Settings Tab when Random Serial Number Assignment is enabled


	
							Tick the Enable random certificate serial numbers option.
						






      ⁠3.6.4. Allowing a CA Certificate to Be Renewed Past the CA's Validity Period




				Normally, a certificate cannot be issued with a validity period that ends after the issuing CA certificate's expiration date. If a CA certificate has an expiration date of December 31, 2015, then all of the certificates it issues must expire by or before December 31, 2015.
			

				This rule applies to other CA signing certificates issued by a CA — and this makes renewing a root CA certificate almost impossible. Renewing a CA signing certificate means it would necessarily have to have a validity period past its own expiration date.
			

				This behavior can be altered using the CA Validity Default. This default allows a setting (bypassCAnotafter) which allows a CA certificate to be issued with a validity period that extends past the issuing CA's expiration (notAfter) date.
			

      ⁠[image: CA Validity Default Configuration]

Figure 3.4. CA Validity Default Configuration


				In real deployments, what this means is that a CA certificate for a root CA can be renewed, when it might otherwise be prevented.
			

				To enable CA certificate renewals past the original CA's validity date:
			
	
						Open the caCACert.cfg file.
					
vim /var/lib/pki/instance_name/conf/ca/caCACert.cfg

	
						The CA Validity Default should be present by default. Set the value to true to allow a CA certificate to be renewed past the issuing CA's validity period.
					
policyset.caCertSet.2.default.name=CA Certificate Validity Default
policyset.caCertSet.2.default.params.range=2922
policyset.caCertSet.2.default.params.startTime=0
policyset.caCertSet.2.default.params.bypassCAnotafter=true

	
						Restart the CA to apply the changes.
					




				When an agent reviews a renewal request, there is an option in the Extensions/Fields area that allows the agent to choose to bypass the normal validity period constraint. If the agent selects false, the constraint is enforced, even if bypassCAnotafter=true is set in the profile. If the agent selects true when the bypassCAnotafter value is not enabled, then the renewal request is rejected by the CA.
			

      ⁠[image: Bypass CA Constraints Option in the Agent Services Page]

Figure 3.5. Bypass CA Constraints Option in the Agent Services Page

NOTE


					The CA Validity Default only applies to CA signing certificate renewals. Other certificates must still be issued and renewed within the CA's validity period.
				

					A separate configuration setting for the CA, ca.enablePastCATime, can be used to allow certificates to be renewed past the CA's validity period. However, this applies to every certificate issued by that CA. Because of the potential security issues, this setting is not recommended for production environments.
				





      ⁠3.7. Managing Subject Names and Subject Alternative Names




			The subject name of a certificate is a distinguished name (DN) that contains identifying information about the entity to which the certificate is issued. This subject name can be built from standard LDAP directory components, such as common names and organizational units. These components are defined in X.500. In addition to — or even in place of — the subject name, the certificate can have a subject alternative name, which is a kind of extension set for the certificate that includes additional information that is not defined in X.500.
		

			The naming components for both subject names and subject alternative names can be customized.
		
IMPORTANT


				If the subject name is empty, then the Subject Alternative Name extension must be present and marked critical.
			



      ⁠3.7.1. Using the Requester CN or UID in the Subject Name




				The cn or uid value from a certificate request can be used to build the subject name of the issued certificate. This section demonstrates a profile that requires the naming attribute (CN or UID) being specified in the Subject Name Constraint to be present in the certificate request. If the naming attribute is missing, the request is rejected.
			

				There are two parts to this configuration:
			
	
						The CN or UID format is set in the pattern configuration in the Subject Name Constraint.
					

	
						The format of the subject DN, including the CN or UID token and the specific suffix for the certificate, is set in the Subject Name Default.
					




				For example, to use the CN in the subject DN:
			
policyset.serverCertSet.1.constraint.class_id=subjectNameConstraintImpl
policyset.serverCertSet.1.constraint.name=Subject Name Constraint
policyset.serverCertSet.1.constraint.params.pattern=CN=[^,]+,.+
policyset.serverCertSet.1.constraint.params.accept=true
policyset.serverCertSet.1.default.class_id=subjectNameDefaultImpl
policyset.serverCertSet.1.default.name=Subject Name Default
policyset.serverCertSet.1.default.params.name=CN=$request.req_subject_name.cn$,DC=example, DC=com

				In this example, if a request comes in with the CN of cn=John Smith, then the certificate will be issued with a subject DN of cn=John Smith,DC=example, DC=com. If the request comes in but it has a UID of uid=jsmith and no CN, then the request is rejected.
			

				The same configuration is used to pull the requester UID into the subject DN:
			
policyset.serverCertSet.1.constraint.class_id=subjectNameConstraintImpl
policyset.serverCertSet.1.constraint.name=Subject Name Constraint
policyset.serverCertSet.1.constraint.params.pattern=UID=[^,]+,.+
policyset.serverCertSet.1.constraint.params.accept=true
policyset.serverCertSet.1.default.class_id=subjectNameDefaultImpl
policyset.serverCertSet.1.default.name=Subject Name Default
policyset.serverCertSet.1.default.params.name=UID=$request.req_subject_name.uid$,DC=example, DC=com

				The format for the pattern parameter is covered in Section B.2.11, “Subject Name Constraint” and Section B.1.28, “Subject Name Default”.
			


      ⁠3.7.2. Inserting LDAP Directory Attribute Values and Other Information into the Subject Alt Name




				Information from an LDAP directory or that was submitted by the requester can be inserted into the subject alternative name of the certificate by using matching variables in the Subject Alt Name Extension Default configuration. This default sets the type (format) of information and then the matching pattern (variable) to use to retrieve the information. For example:
			
policyset.userCertSet.8.default.class_id=subjectAltNameExtDefaultImpl
policyset.userCertSet.8.default.name=Subject Alt Name Constraint
policyset.userCertSet.8.default.params.subjAltNameExtCritical=false
policyset.userCertSet.8.default.params.subjAltExtType_0=RFC822Name
policyset.userCertSet.8.default.params.subjAltExtPattern_0=$request.requestor_email$
policyset.userCertSet.8.default.params.subjAltExtGNEnable_0=true

				This inserts the requester's email as the first CN component in the subject alt name. To use additional components, increment the Type_, Pattern_, and Enable_ values numerically, such as Type_1.
			

				Configuring the subject alt name is detailed in Section B.1.24, “Subject Alternative Name Extension Default”, as well.
			

				To insert LDAP components into the subject alt name of the certificate:
			
	
						Inserting LDAP attribute values requires enabling the user directory authentication plug-in, SharedSecret.
					
	
								Open the CA Console.
							
pkiconsole https://server.example.com:8443/ca

	
								Select Authentication in the left navigation tree.
							

	
								In the Authentication Instance tab, click Add, and add an instance of the SharedSecret authentication plug-in.
							

	
								Enter the following information:
							
Authentication InstanceID=SharedToken
shrTokAttr=shrTok
ldap.ldapconn.host=server.example.com
ldap.ldapconn.port=636
ldap.ldapconn.secureConn=true
ldap.ldapauth.bindDN=cn=Directory Manager
password=password
ldap.ldapauth.authtype=BasicAuth
ldap.basedn=ou=People,dc=example,dc=org

	
								Save the new plug-in instance.
							




						For information on setting a CMC shared token, see Section 8.1.3.2, “Setting a CMC Shared Secret”.
					

	
						The ldapStringAttributes parameter instructs the authentication plug-in to read the value of the mail attribute from the user's LDAP entry and put that value in the certificate request. When the value is in the request, the certificate profile policy can be set to insert that value for an extension value.
					

						The format for the dnpattern parameter is covered in Section B.2.11, “Subject Name Constraint” and Section B.1.28, “Subject Name Default”.
					

	
						To enable the CA to insert the LDAP attribute value in the certificate extension, edit the profile's configuration file, and insert a policy set parameter for an extension. For example, to insert the mail attribute value in the Subject Alternative Name extension in the caFullCMCSharedTokenCert profile, change the following code:
					
policyset.setID.8.default.params.subjAltExtPattern_0=$request.auth_token.mail[0]$

						For more details about editing a profile, see Section 3.2.1.3, “Editing a Certificate Profile in Raw Format”.
					

	
						Restart the CA.
					
systemctl restart pki-tomcatd-nuxwdog@instance_name.service




				For this example, certificates submitted through the caFullCMCSharedTokenCert profile enrollment form will have the Subject Alternative Name extension added with the value of the requester's mail LDAP attribute. For example:
			
Identifier: Subject Alternative Name - 2.5.29.17
    Critical: no
    Value:
    RFC822Name: jsmith@example.com

				There are many attributes which can be automatically inserted into certificates by being set as a token ($X$) in any of the Pattern_ parameters in the policy set. The common tokens are listed in Table 3.1, “Variables Used to Populate Certificates”, and the default profiles contain examples for how these tokens are used.
			

      ⁠Table 3.1. Variables Used to Populate Certificates
	 Policy Set Token 	 Description 
	 $request.auth_token.cn[0]$ 	 The LDAP common name (cn) attribute of the user who requested the certificate. 
	 $request.auth_token.mail[0]$ 	 The value of the LDAP email (mail) attribute of the user who requested the certificate. 
	 $request.auth_token.tokencertsubject$ 	 The certificate subject name. 
	 $request.auth_token.uid$ 	 The LDAP user ID (uid) attribute of the user who requested the certificate. 
	 $request.auth_token.userdn$ 	 The user DN of the user who requested the certificate. 
	 $request.auth_token.userid$ 	 The value of the user ID attribute for the user who requested the certificate. 
	 $request.uid$ 	 The value of the user ID attribute for the user who requested the certificate. 
	 $request.requestor_email$ 	 The email address of the person who submitted the request. 
	 $request.request_name$ 	 The person who submitted the request. 
	 $request.upn$ 	 The Microsoft UPN. This has the format (UTF8String)1.3.6.1.4.1.311.20.2.3,$request.upn$. 
	 $server.source$ 	 Instructs the server to generate a version 4 UUID (random number) component in the subject name. This always has the format (IA5String)1.2.3.4,$server.source$. 
	 $request.auth_token.user$ 	 Used when the request was submitted by TPS. The TPS subsystem trusted manager who requested the certificate. 
	 $request.subject$ 	 Used when the request was submitted by TPS. The subject name DN of the entity to which TPS has resolved and requested for. For example, cn=John.Smith.123456789,o=TMS Org 





      ⁠3.7.3. Using the CN Attribute in the SAN Extension




				Several client applications and libraries no longer support using the Common Name (CN) attribute of the Subject DN for domain name validation, which has been deprecated in RFC 2818. Instead, these applications and libraries use the dNSName Subject Alternative Name (SAN) value in the certificate request.
			

				Certificate System copies the CN only if it matches the preferred name syntax according to RFC 1034 Section 3.5 and has more than one component. Additionally, existing SAN values are preserved. For example, the dNSName value based on the CN is appended to existing SANs.
			

				To configure Certificate System to automatically use the CN attribute in the SAN extension, edit the certificate profile used to issue the certificates. For example:
			
	
						Disable the profile:
					
# pki -c password -p 8080 \
     -n "PKI Administrator for example.com" ca-profile-disable profile_name

	
						Edit the profile:
					
# pki -c password -p 8080 \
     -n "PKI Administrator for example.com" ca-profile-edit profile_name
	
								Add the following configuration with a unique set number for the profile. For example:
							
policyset.serverCertSet.12.constraint.class_id=noConstraintImpl
policyset.serverCertSet.12.constraint.name=No Constraint
policyset.serverCertSet.12.default.class_id=commonNameToSANDefaultImpl
policyset.serverCertSet.12.default.name=Copy Common Name to Subject

								The previous example uses 12 as the set number.
							

	
								Append the new policy set number to the policyset.userCertSet.list parameter. For example:
							
policyset.userCertSet.list=1,10,2,3,4,5,6,7,8,9,12

	
								Save the profile.
							



	
						Enable the profile:
					
# pki -c password -p 8080 \
     -n "PKI Administrator for example.com" ca-profile-enable profile_name



Note


					All default server profiles contain the commonNameToSANDefaultImpl default.
				




      ⁠3.7.4. Accepting SAN Extensions from a CSR




				In certain environments, administrators want to allow specifying Subject Alternative Name (SAN) extensions in Certificate Signing Request (CSR).
			

      ⁠3.7.4.1. Configuring a Profile to Retrieve SANs from a CSR




					To allow retrieving SANs from a CSR, use the User Extension Default. For details, see Section B.1.33, “User Supplied Extension Default”.
				
Note


						A SAN extension can contain one or more SANs.
					



					To accept SANs from a CSR, add the following default and constraint to a profile, such as caCMCECserverCert:
				
prefix.constraint.class_id=noConstraintImpl
prefix.constraint.name=No Constraint

prefix.default.class_id=userExtensionDefaultImpl
prefix.default.name=User supplied extension in CSR
prefix.default.params.userExtOID=2.5.29.17


      ⁠3.7.4.2. Generating a CSR with SANs




					For example, to generate a CSR with two SANs using the certutil utility:
				
# certutil -R -k ec -q nistp256 -d . -s "cn=Example Multiple SANs" --extSAN dns:www.example.com,dns:www.example.org -a -o /root/request.csr.p10

					After generating the CSR, follow the steps described in Section 5.3.1, “The CMC Enrollment Process” to complete the CMC enrollment.
				





      ⁠Chapter 4. Setting up Key Archival and Recovery




		This chapter explains how to use the Key Recovery Authority (KRA), previously known as Data Recovery Manager (DRM), to archive private keys and to recover these archived keys to restore encrypted data.
	
Note


			Server-side key generation is an option provided for smart card enrollments performed through the TPS subsystem. This chapter deals with archiving keys through client-side key generation, not the server-side key generation and archivals initiated through the TPS.
		


Note


			Gemalto SafeNet LunaSA only supports PKI private key extraction in its CKE - Key Export model, and only in non-FIPS mode. The LunaSA Cloning model and the CKE model in FIPS mode do not support PKI private key extraction.
		



		Archiving private keys offers protection for users, and for information, if that key is ever lost. Information is encrypted by the public key when it is stored. The corresponding private key must be available to decrypt the information. If the private key is lost, the data cannot be retrieved. A private key can be lost because of a hardware failure or because the key's owner forgets the password or loses the hardware token in which the key is stored. Similarly, encrypted data cannot be retrieved if the owner of the key is unavailable to supply it. 
	
Note


			In a cloned environment, it is necessary to set up key archival and recovery manually.
		



      ⁠4.1. About Key Archival and Recovery




			From the end user perspective, key archival requires only two things: a client, such as the pki utility, which can generate a key and a certificate profile which is configured to support key archival. For details about the pki utility, see the Command-Line Interface (CLI) section in the Red Hat Certificate System Planning, Installation, and Deployment Guide (Common Criteria Edition).
		

      ⁠4.1.1. Key Archival




				If an end entity loses a private encryption key or is unavailable to use the private key, the key must be recovered before any data that was encrypted with the corresponding public key can be read. Recovery is possible if the private key was archived when the key was generated. 
			

				The KRA stores private encryption keys in a secure key repository in its internal database in form of key records. The Certificate Manager automatically forwards certificate requests issued by a client to the KRA, if the requests contain the key archival option. In such a case, the private key is wrapped by the KRA transport key on the client and sent as an encrypted blob to the KRA. The KRA decrypts the blob and re-encrypts the key using its storage key. The KRA then gives the encrypted blob a unique key identifier and archives it in its key repository as a key record.
			

				The archived copy of the key remains wrapped with the KRA's storage key. It can be decrypted, or unwrapped, only by using the corresponding private key pair of the storage certificate. A combination of one or more key recovery (or KRA) agents' certificates authorizes the KRA to complete the key recovery to retrieve its private storage key and use it to decrypt/recover an archived private key.  The KRA indexes stored keys by key number, owner name, and a hash of the public key, allowing for highly efficient searching.
			

				Figure 4.1, “How the Key Archival Process Works” illustrates how the key archival process occurs when an end entity requests a certificate.
			

      ⁠[image: How the Key Archival Process Works]

Figure 4.1. How the Key Archival Process Works

	
						The client generates and encrypts its private key and submits the request to the CA.
					

	
						After approving the certificate request and issuing the certificate, the Certificate Manager sends it to the KRA for storage, along with the public key. The Certificate Manager waits for verification from the KRA that the private key has been received and stored and that it corresponds to the public encryption key.
					

	
						The KRA decrypts it with the transport private key. After confirming that the private encryption key corresponds to the public encryption key, the KRA encrypts it again with its public key pair of the storage key before storing it in its internal database.
					

	
						Once the private encryption key has been successfully stored, the KRA uses the private key of its transport key pair to sign a token confirming that the key has been successfully stored; the KRA then sends the token to the Certificate Manager. 
					

	
						The Certificate Manager issues the certificate, which is embedded in the CMC response.
					




				Both subsystems subject the request to configured certificate profile constraints at appropriate stages. If the request fails to meet any of the profile constraints, the subsystem rejects the request.
			

				The KRA supports agent-initiated key recovery, when designated recovery agents use the key recovery form on the KRA agent services page to process and approve key recovery requests. With the approval of a specified number of agents, an organization can recover keys when the key's owner is unavailable or when keys have been lost.  
			

				Certificate System 9 uses an m-of-n ACL-based recovery scheme, rather than an older secret-splitting-based recovery scheme. In versions of Certificate System older than 7.1, the password for the storage token was split and protected by individual recovery agent passwords. Now, Certificate System uses its existing access control scheme to ensure recovery agents are appropriately authenticated over TLS and requires that the agent belong to a specific recovery agent group, by default the Key Recovery Authority Agents Group. The recovery request is executed only when m-of-n (a required number of) recovery agents have granted authorization to the request.
			

				The key recovery scheme can be changed by changing the KRA configuration, as described in the Setting up Agent-Approved Key Recovery Schemes section in the Red Hat Certificate System Planning, Installation, and Deployment Guide (Common Criteria Edition).
			

				For the actual key recovery process, one of the key recovery agents informs all required recovery agents about an impending key recovery and initiates the recovery process in the KRA's agent pages. A key recovery process can either be synchronous, meaning that the initial session must remain open as approvals come in, or asynchronous, meaning that snapshots of the recovery process are stored in the internal database and updated as approvals come in.
			

      ⁠[image: Async and Sync Recovery, Side by Side]

Figure 4.2. Async and Sync Recovery, Side by Side

Important


					Synchronous recovery is deprecated in Red Hat Certificate System.
				



				For asynchronous recovery, each step is saved to the internal database. Agents can search for the key to recover and then click the Grant Recovery button to approve the recovery. Asynchronous recoveries will persist even if the KRA is restarted.
			


      ⁠4.1.2. Key Recovery




				To test whether a key can be successfully archived and recovered:
			
	
						Generate a CRMF request and submit it through the CA’s enrollment portal.
					

						For more information, see Section 5.3.2.3.1, “Example on Obtaining an Encryption-only certificate with Key Archival”.
					

	
						Import the certificates into an email client capable of doing SMIME.
					

	
						Confirm that the key has been archived. In the KRA's agent services page, select Show completed requests. If the key has been archived successfully, there will be information about that key. If the key is not shown, check the logs, and correct the problem. If the key has been successfully archived, close the browser window.
					

	
						Verify the key. Send a signed and encrypted email. When the email is received, open it, and check the message to see if it is signed and encrypted. There should be a security icon at the top-right corner of the message window that indicates that the message is signed and encrypted.
					

	
						Delete the certificate. Check the encrypted email again; the mail client should not be able to decrypt the message.
					

	
						Test whether an archived key can be recovered successfully:
					
	
								Open the KRA's agent services page, and click the Recover Keys link. Search for the key by the key owner, serial number, or public key. If the key has been archived successfully, the key information will be shown.
							

	
								Click Recover.
							

	
								In the form that appears, enter the base-64 encoded certificate that corresponds to the private key to recover; use the CA to get this information. If the archived key was searched for by providing the base-64 encoded certificate, then the certificate does not have to be supplied here.
							

	
								Make sure that the Async Recovery checkbox is selected to allow the browser session to be closed while recovery is ongoing.
							

	
								Depending on the agent scheme, a specified number of agents must authorize this key recovery. Have the agents search for the key to recover and then to approve the initiated recovery.
							

	
								Once all the agents have authorized the recovery, the next screen requests a password to encrypt the PKCS #12 file with the certificate.
							

	
								The next screen returns a link to download a PKCS #12 blob containing the recovered key pair. Follow the link, and save the blob to file.
							
Important


									Opening the PKCS #12 file directly from the browser in the gcr-viewer utility can fail in certain situations. To work around the problem, download the file and manually open it in gcr-viewer.
								






	
						Restore the key to the browser's database. Import the .p12 file into the browser and mail client.
					

	
						Open the test email. The message should be shown again.
					







      ⁠Chapter 5. Requesting, Enrolling, and Managing Certificates




		Certificates are requested and used by end users. Although certificate enrollment and renewal are operations that are not limited to administrators, understanding the enrollment and renewal processes can make it easier for administrators to manage and create appropriate certificate profiles, as described in Section 3.2, “Setting up Certificate Profiles”, and to use fitting authentication methods for each certificate type.
	

		This chapter discusses requesting, receiving, and renewing certificates for use outside Certificate System. For information on requesting and renewing Certificate System subsystem certificates, see Chapter 14, Managing Subsystem Certificates.
	

      ⁠5.1. About Enrolling and Renewing Certificates




			Enrollment is the process for requesting and receiving a certificate. The mechanics for the enrollment process are slightly different depending on the type of certificate, the method for generating its key pair, and the method for generating and approving the certificate itself. Whatever the specific method, certificate enrollment, at a high level, has the same basic steps:
		
	
					A user generates a certificate request.
				

	
					The certificate request is submitted to the CA.
				

	
					The request is verified by authenticating the entity which requested it and by confirming that the request meets the certificate profile rules which were used to submit it.
				

	
					The request is approved.
				

	
					The user retrieves the new certificate.
				




			When the certificate reaches the end of its validity period, it can be renewed.
		


      ⁠5.2. Creating Certificate Signing Requests




			As explained in the Enrolling with CMC section in the Red Hat Certificate System Planning, Installation, and Deployment Guide (Common Criteria Edition), the CMCRequest utility accepts Certificate Signing Requests (CSR) in PKCS #10 and CRMF format.
		

			Red Hat Certificate System supports using the following utilities to create CSRs:
		
	
					certutil: Supports creating PKCS #10 requests.
				

	
					PKCS10Client: Supports creating PKCS #10 requests.
				

	
					CRMFPopClient: Supports creating CRMF requests.
				




			The following sections provide some examples on how to use these utilities with the feature-rich enrollment profile framework.
		

      ⁠5.2.1. Creating a CSR Using certutil




				This section describes examples on how to use the certutil utility to create a CSR.
			

				For further details about using certutil, see:
			
	
						The certutil(1) man page
					

	
						The output of the certutil --help command
					




      ⁠5.2.1.1. Using certutil to Create a CSR with EC Keys




					The following procedure demonstrates how to use the certutil utility to create an Elliptic Curve (EC) key pair and CSR:
				
	
							Change to the certificate database directory of the user or entity for which the certificate is being requested, for example:
						
$ cd /user_or_entity_database_directory/

	
							Create the binary CSR and store it in the /user_or_entity_database_directory/request.csr file:
						
$ certutil -d . -R -k ec -q nistp256 -s "CN=subject_name" -o /user_or_entity_database_directory/request-bin.csr

							Enter the required NSS database password when prompted.
						

							For further details about the parameters, see the certutil(1) man page.
						

	
							Convert the created binary format CSR to PEM format:
						
$ BtoA /user_or_entity_database_directory/request-bin.csr /user_or_entity_database_directory/request.csr

	
							Optionally, verify that the CSR file is correct:
						
$ cat /user_or_entity_database_directory/request.csr

MIICbTCCAVUCAQAwKDEQMA4GA1UEChMHRXhhbXBsZTEUMBIGA1UEAxMLZXhhbXBs
...


							This is a PKCS#10 PEM certificate request.
						

	
							For the next steps, see Section 5.3.1, “The CMC Enrollment Process”, but skip the step about creating the certificate request.
						





      ⁠5.2.1.2. Using certutil to Create a CSR With User-defined Extensions




					The following procedure demonstrates how to create a CSR with user-defined extensions using the certutil utility.
				

					Note that the enrollment requests are constrained by the enrollment profiles defined by the CA. See Example B.3, “Multiple User Supplied Extensions in CSR”.
				
	
							Change to the certificate database directory of the user or entity for which the certificate is being requested, for example:
						
$ cd /user_or_entity_database_directory/

	
							Create the CSR with user-defined Key Usage extension as well as user-defined Extended Key Usage extension and store it in the /user_or_entity_database_directory/request.csr file:
						
$ certutil -d . -R -k rsa -g 1024 -s "CN=subject_name" --keyUsage keyEncipherment,dataEncipherment,critical --extKeyUsage timeStamp,msTrustListSign,critical -a -o /user_or_entity_database_directory/request.csr

							Enter the required NSS database password when prompted.
						

							For further details about the parameters, see the certutil(1) man page.
						

	
							Optionally, verify that the CSR file is correct:
						
$ cat /user_or_entity_database_directory/request.csr
Certificate request generated by Netscape certutil
Phone: (not specified)

Common Name: user 4-2-1-2
Email: (not specified)
Organization: (not specified)
State: (not specified)
Country: (not specified)

							This is a PKCS#10 PEM certificate request.
						

	
							For the next steps, see Section 5.3.1, “The CMC Enrollment Process”, but skip the step about creating the certificate request.
						
Note


								Remove the header information from the CSR.
							








      ⁠5.2.2. Creating a CSR Using PKCS10Client




				This section describes examples how to use the PKCS10Client utility to create a CSR.
			

				For further details about using PKCS10Client, see:
			
	
						The PKCS10Client(1) man page
					

	
						The output of the PKCS10Client --help command
					




      ⁠5.2.2.1. Using PKCS10Client to Create a CSR




					The following procedure explains how to use the PKCS10Client utility to create an Elliptic Curve (EC) key pair and CSR:
				
	
							Change to the certificate database directory of the user or entity for which the certificate is being requested, for example:
						
$ cd /user_or_entity_database_directory/

	
							Create the CSR and store it in the /user_or_entity_database_directory/example.csr file:
						
$ PKCS10Client -d . -p NSS_password -a ec -c nistp256 -o /user_or_entity_database_directory/example.csr -n "CN=subject_name"

							For further details about the parameters, see the PKCS10Client(1) man page.
						

	
							Optionally, verify that the CSR is correct:
						
$ cat /user_or_entity_database_directory/example.csr
-----BEGIN CERTIFICATE REQUEST-----
MIICzzCCAbcCAQAwgYkx
...
-----END CERTIFICATE REQUEST-----





      ⁠5.2.2.2. Using PKCS10Client to Create a CSR for SharedSecret-based CMC




					The following procedure explains how to use the PKCS10Client utility to create an RSA key pair and CSR for SharedSecret-based CMC. Use it only with the CMC Shared Secret authentication method which is, by default, handled by the caFullCMCSharedTokenCert and caECFullCMCSharedTokenCert profiles.
				
	
							Change to the certificate database directory of the user or entity for which the certificate is being requested, for example:
						
$ cd /user_or_entity_database_directory/

	
							Create the CSR and store it in the /user_or_entity_database_directory/example.csr file:
						
$ PKCS10Client -d . -p NSS_password -o /user_or_entity_database_directory/example.csr -y true -n "CN=subject_name"

							For further details about the parameters, see the PKCS10Client(1) man page.
						

	
							Optionally, verify that the CSR is correct:
						
$ cat /user_or_entity_database_directory/example.csr
-----BEGIN CERTIFICATE REQUEST-----
MIICzzCCAbcCAQAwgYkx
...
-----END CERTIFICATE REQUEST-----






      ⁠5.2.3. Creating a CSR Using CRMFPopClient




				Certificate Request Message Format (CRMF) is a CSR format accepted in CMC that allows key archival information to be securely embedded in the request.
			

				This section describes examples how to use the CRMFPopClient utility to create a CSR.
			

				For further details about using CRMFPopClient, see the CRMFPopClient(1) man page.
			

      ⁠5.2.3.1. Using CRMFPopClient to Create a CSR with Key Archival




					The following procedure explains how to use the CRMFPopClient utility to create an RSA key pair and a CSR with the key archival option:
				
	
							Change to the certificate database directory of the user or entity for which the certificate is being requested, for example:
						
$ cd /user_or_entity_database_directory/

	
							Retrieve the KRA transport certificate:
						
$ pki ca-cert-find --name "DRM Transport Certificate"
    ---------------
    1 entries found
    ---------------
      Serial Number: 0x7
      Subject DN: CN=DRM Transport Certificate,O=EXAMPLE
      Status: VALID
      Type: X.509 version 3
      Key A    lgorithm: PKCS #1 RSA with 2048-bit key
      Not Valid Before: Thu Oct 22 18:26:11 CEST 2015
      Not Valid After: Wed Oct 11 18:26:11 CEST 2017
      Issued On: Thu Oct 22 18:26:11 CEST 2015
      Issued By: caadmin
    ----------------------------
    Number of entries returned 1

	
							Export the KRA transport certificate:
						
$ pki ca-cert-show 0x7 --output kra.transport

	
							Create the CSR and store it in the /user_or_entity_database_directory/example.csr file:
						
$ CRMFPopClient -d . -p password -n "cn=subject_name" -q POP_SUCCESS -b kra.transport -w "AES/CBC/PKCS5Padding" -v -o /user_or_entity_database_directory/example.csr

							To create an Elliptic Curve (EC) key pair and CSR, pass the -a ec -t false options to the command.
						

							For further details about the parameters, see the CRMFPopClient(1) man page.
						

	
							Optionally, verify that the CSR is correct:
						
$ cat /user_or_entity_database_directory/example.csr
-----BEGIN CERTIFICATE REQUEST-----
MIICzzCCAbcCAQAwgYkx
...
-----END CERTIFICATE REQUEST-----





      ⁠5.2.3.2. Using CRMFPopClient to Create a CSR for SharedSecret-based CMC




					The following procedure explains how to use the CRMFPopClient utility to create an RSA key pair and CSR for SharedSecret-based CMC. Use it only with the CMC Shared Secret authentication method which is, by default, handled by the caFullCMCSharedTokenCert and caECFullCMCSharedTokenCert profiles.
				
	
							Change to the certificate database directory of the user or entity for which the certificate is being requested, for example:
						
$ cd /user_or_entity_database_directory/

	
							Retrieve the KRA transport certificate:
						
$ pki ca-cert-find --name "DRM Transport Certificate"
    ---------------
    1 entries found
    ---------------
      Serial Number: 0x7
      Subject DN: CN=DRM Transport Certificate,O=EXAMPLE
      Status: VALID
      Type: X.509 version 3
      Key A    lgorithm: PKCS #1 RSA with 2048-bit key
      Not Valid Before: Thu Oct 22 18:26:11 CEST 2015
      Not Valid After: Wed Oct 11 18:26:11 CEST 2017
      Issued On: Thu Oct 22 18:26:11 CEST 2015
      Issued By: caadmin
    ----------------------------
    Number of entries returned 1

	
							Export the KRA transport certificate:
						
$ pki ca-cert-show 0x7 --output kra.transport

	
							Create the CSR and store it in the /user_or_entity_database_directory/example.csr file:
						
$ CRMFPopClient -d . -p password -n "cn=subject_name" -q POP_SUCCESS -b kra.transport -w "AES/CBC/PKCS5Padding" -y -v -o /user_or_entity_database_directory/example.csr

							To create an EC key pair and CSR, pass the -a ec -t false options to the command.
						

							For further details about the parameters, see the output of the CRMFPopClient --help command.
						

	
							Optionally, verify that the CSR is correct:
						
$ cat /user_or_entity_database_directory/example.csr
-----BEGIN CERTIFICATE REQUEST-----
MIICzzCCAbcCAQAwgYkx
...
-----END CERTIFICATE REQUEST-----







      ⁠5.3. Requesting and Receiving Certificates Using CMC




			This section describes the procedure to enroll a certificate using Certificate Management over CMS (CMC).
		

			For general information about configuration and the workflow of enrolling certificates using CMC, see:
		
	
					The Configuration for CMC section in the Red Hat Certificate System Planning, Installation, and Deployment Guide (Common Criteria Edition).
				

	
					The Enrolling with CMC section in the Red Hat Certificate System Planning, Installation, and Deployment Guide (Common Criteria Edition).
				

	
					CMCRequest(1) man page
				

	
					CMCResponse(1) man page
				




			CMC enrollment is possible in various ways to meet the requirements for different scenarios. Section 5.3.1, “The CMC Enrollment Process” supplements the Enrolling with CMC section in the Red Hat Certificate System Planning, Installation, and Deployment Guide (Common Criteria Edition) with more details. Additionally, the Section 5.3.2, “Practical CMC Enrollment Scenarios” section enables administrators to decide which mechanisms should be used in which scenario.
		

      ⁠5.3.1. The CMC Enrollment Process




				Use the following general procedure to request and issue a certificate using CMC:
			

      ⁠	
						Create a Certificate Signing Request (CSR) in one of the following formats:
					
	
								PKCS #10 format
							

	
								Certificate Request Message Format (CRMF) format:
							




						For details about creating CSRs in these formats, see Section 5.2, “Creating Certificate Signing Requests”.
					

	
						Import the admin certificate into the client NSS database. For example:
					
	
								Execute the command below to extract the admin client certificate from the .p12 file:
							
$ openssl pkcs12 -in /root/.dogtag/instance/ca_admin_cert.p12 -clcerts -nodes -nokeys -out /root/.dogtag/instance/ca_admin_cert.crt

	
								Validate and import the admin client certificate according to guidance in ⁠Chapter 11, Managing Certificate/Key Crypto Token:
							
$ PKICertImport -d . -n "CA Admin - Client Certificate" -t ",," -a -i /root/.dogtag/instance/ca_admin_cert.crt -u C
Important


									Make sure all intermediate certificates and the root CA certificate have been imported before importing the CA Admin client certificate.
								



	
								Import the private keys associated with the certificates.
							
$ pki -c password pkcs12-import --pkcs12-file /root/.dogtag/instance/ca_admin_cert.p12 --pkcs12-password-file /root/.dogtag/instance/ca/pkcs12_password.conf




	
						Create a configuration file for a CMC request, such as /home/user_name/cmc-request.cfg, with the following content:
					
# NSS database directory where CA agent certificate is stored
dbdir=/home/user_name/.dogtag/nssdb/

# NSS database password
password=password

# Token name (default is internal)
tokenname=internal

# Nickname for signing certificate
nickname=subsystem_admin

# Request format: pkcs10 or crmf
format=pkcs10

# Total number of PKCS10/CRMF requests
numRequests=1

# Path to the PKCS10/CRMF request
# The content must be in Base-64 encoded format.
# Multiple files are supported. They must be separated by space.
input=/home/user_name/file.csr

# Path for the CMC request
output=/home/user_name/cmc-request.bin

						For further details, see the CMCRequest(1) man page.
					

	
						Create the CMC request:
					
$ CMCRequest /home/user_name/cmc-request.cfg

						If the command succeeds, the CMCRequest utility stored the CMC request in the file specified in the output parameter in the request configuration file.
					

	
						Create a configuration file for HttpClient, such as /home/user_name/cmc-submit.cfg, which you use in a later step to submit the CMC request to the CA. Add the following content to the created file:
					
# PKI server host name
host=server.example.com

# PKI server port number
port=8443

# Use secure connection
secure=true

# Use client authentication
clientmode=true

# NSS database directory where the CA agent certificate is stored.
dbdir=/home/user_name/.dogtag/nssdb/

# NSS database password
password=password

# Token name (default: internal)
tokenname=internal

# Nickname of signing certificate
nickname=subsystem_admin

# Path for the CMC request
input=/home/user_name/cmc-request.bin

# Path for the CMC response
output=/home/user_name/cmc-response.bin
Important


							The nickname of the certificate specified in the nickname parameter must match the one previously used for the CMC request.
						



	
						Depending on what type of certificate you request, add the following parameter to the configuration file created in the previous step:
					
servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=profile_name

						For example, for a CA signing certificate:
					
servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caCMCcaCert
Important


							When an agent submits the CMC request in the next step, the profile specified in this parameter must use the CMCAuth authentication plug-in. Whereas in user-initiated enrollments, the profile must use the CMCUserSignedAuth plug-in. For further details, see Section 8.1.2, “CMC Authentication Plug-ins”.
						



	
						Submit the CMC request to the CA:
					
$ HttpClient /home/user_name/cmc-submit.cfg

	
						To convert the CMC response to a PKCS #7 certificate chain, pass the CMC response file to the -i parameter of the CMCResponse utility. For example:
					
$ CMCResponse -i /home/user_name/cmc-response.bin -o /home/user_name/cert_chain.crt





      ⁠5.3.2. Practical CMC Enrollment Scenarios




				This section describes frequent practical usage scenarios and their workflows to enable CA administrators to decide which CMC method to use in which situation.
			

				For a general process of enrolling a certificate using CMC, see Section 5.3.1, “The CMC Enrollment Process”.
			

      ⁠5.3.2.1. Obtaining System and Server Certificates




					If a service, such as LDAP or a web server, requires a TLS server certificate, the administrator of this server creates a CSR based on the documentation of the service and sends it to the CA's agent for approval. Use the procedure described in Section 5.3.1, “The CMC Enrollment Process” for this process. Additionally, consider the following requirements:
				
	Enrollment Profiles
	
								The agent must either use one of the existing CMC profiles listed in Section 8.1.2, “CMC Authentication Plug-ins” or, alternatively, create a custom profile that uses the CMCAuth authentication mechanism.
							

	CMC Signing Certificate
	
								For system certificates, the CA agent must generate and sign the CMC request. For this, set the nickname parameter in the CMCRequest configuration file to the nickname of the CA agent.
							
Note


									The CA agent must have access to its own private key.
								



	HttpClient TLS Client Nickname
	
								Use the same certificate for signing in the CMCRequest utility's configuration file as for TLS client authentication in the configuration file for HttpClient.
							

	HttpClient servlet Parameter
	
								The servlet in the configuration file passed to the HttpClient utility refers to the CMC servlet and the enrollment profile which handles the request.
							

								Depending on what type of certificate you request, add one of the following entries to the configuration file created in the previous step:
							
	
										For a CA signing certificate:
									
servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caCMCcaCert

	
										For a KRA transport certificate:
									
servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caCMCkraTransportCert

	
										For a OCSP signing certificate:
									
servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caCMCocspCert

	
										For a audit signing certificate:
									
servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caCMCauditSigningCert

	
										For a subsystem certificate:
									
	
												For RSA certificates:
											
servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caCMCsubsystemCert

	
												For ECC certificates:
											
servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caCMCECCsubsystemCert




	
										For a TLS server certificate:
									
	
												For RSA certificates:
											
servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caCMCserverCert

	
												For ECC certificates:
											
servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caCMCECCserverCert




	
										For an admin certificate:
									
servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caFullCMCUserCert







					Further details:
				
	
							When an agent pre-signs a CSR, the Proof of Identification is considered established because the agent examines the CSR for identification. No additional CMC-specific identification proof is required.
						

	
							PKCS #10 files already provide Proof of Possession information and no additional Proof of Possession (POP) is required.
						

	
							In agent pre-approved requests, the PopLinkWittnessV2 feature must be disabled because the identification is checked by the agent.
						





      ⁠5.3.2.2. Obtaining the First Signing Certificate for a User




					There are two ways to approve a user's first signing certificate:
				
	
							An agent signs the CMC request. See Section 5.3.2.2.1, “Signing a CMC Request with an Agent Certificate”.
						

	
							Certificate enrollment is authenticated by using a Shared Secret. See Section 5.3.2.2.2, “Authenticating for Certificate Enrollment Using a Shared Secret”.
						




      ⁠5.3.2.2.1. Signing a CMC Request with an Agent Certificate




						The process for signing a CMC request with an agent certificate is the same as for system and server certificates described in Section 5.3.2.1, “Obtaining System and Server Certificates”. The only difference is that the user creates the CSR and sends it to a CA agent for approval.
					


      ⁠5.3.2.2.2. Authenticating for Certificate Enrollment Using a Shared Secret




						When a user wants to obtain the first signing certificate and the agent cannot approve the request as described in Section 5.3.2.2.1, “Signing a CMC Request with an Agent Certificate”, you can use a Shared Token. With this token, the user can obtain the first signing certificate. This certificate can then be used to sign other certificates of the user.
					

						In this scenario, use the Shared Secret mechanism to obtain the first signing certificate of the user. Use the following information together with Section 5.3.1, “The CMC Enrollment Process”:
					
	
								Create a Shared Token either as the user or CA administrator. For details, see Section 8.1.3.1, “Creating a Shared Secret Token”.
							

								Note that:
							
	
										If the user created the token, the user must send the token to the CA administrator.
									

	
										If the CA administrator created the token, the administrator must share the password used to generate the token with the user. Use a secure way to transmit the password.
									




	
								As the CA administrator, add the Shared Token to the user entry in LDAP. For details, see Section 8.1.3.2.1, “Adding a CMC Shared Secret to a User Entry for Certificate Enrollment” and the Enabling the CMC Shared Secret Feature section in the Red Hat Certificate System Planning, Installation, and Deployment Guide (Common Criteria Edition).
							

	
								Use the following parameters in the configuration file passed to the CMCRequest utility:
							
	
										identification.enable
									

	
										witness.sharedSecret
									

	
										identityProofV2.enable
									

	
										identityProofV2.hashAlg
									

	
										identityProofV2.macAlg
									

	
										request.useSharedSecret
									

	
										request.privKeyId
									




	
								If required by the CA, additionally use the following parameters in the configuration file passed to the CMCRequest utility:
							
	
										popLinkWitnessV2.enable
									

	
										popLinkWitnessV2.keyGenAlg
									

	
										popLinkWitnessV2.macAlg
									









      ⁠5.3.2.3. Obtaining an Encryption-only Certificate for a User




					This section describes the workflow for obtaining an encryption-only certificate which is signed with an existing user signing certificate:
				
Note


						If a user owns multiple certificates for different usages, where one is signing, the user must obtain the signing certificate first. Once the user owns a signing certificate, it can be used for Proof Of Origin without requiring to set up and rely on the CMC Shared Secret mechanism.
					

						For details about obtaining a user's first signing certificate, see Section 5.3.2.2, “Obtaining the First Signing Certificate for a User”.
					



					As a user:
				
	
							Use the cryptographic token stored in a Network Security Services (NSS) database or on a smart card that contains the user's signing certificate and keys.
						

	
							Generate the CSR in PKCS #10 or the CRMF format.
						
Note


								Use the CRMF format, if key archival is required.
							



	
							Generate the CMC request.
						

							Since this is an encryption-only certificate, the private key is not able to sign. Therefore, Proof Of Possession (POP) is not included. For this reason, the enrollment requires two steps: If the initial request is successful, results in a CMC status with the EncryptedPOP control. The user then uses the response and generates a CMC request that contains the DecryptedPOP control and submits it in the second step.
						
	
									For the first step, in addition to the default parameters, the user must set the following parameters in the configuration file passed to the CMCRequest utility:
								
	
											identification.enable
										

	
											witness.sharedSecret
										

	
											identityProofV2.enable
										

	
											identityProofV2.hashAlg
										

	
											identityProofV2.macAlg
										

	
											popLinkWitnessV2.enable if required by the CA
										

	
											popLinkWitnessV2.keyGenAlg if required by the CA
										

	
											popLinkWitnessV2.macAlg if required by the CA
										

	
											request.privKeyId
										




									For details, see the CMCRequest(1) man page.
								

									The response contains:
								
	
											A CMC encrypted POP control
										

	
											The CMCStatusInfoV2 control with the POP required error
										

	
											The request ID
										




	
									For the second step, in addition to the default parameters, the user must set the following parameters in the configuration file passed to the CMCRequest utility:
								
	
											decryptedPop.enable
										

	
											encryptedPopResponseFile
										

	
											decryptedPopRequestFile
										

	
											request.privKeyId
										




									For details, see the CMCRequest(1) man page.
								






      ⁠5.3.2.3.1. Example on Obtaining an Encryption-only certificate with Key Archival




						To perform an enrollment with key archival, generate a CMC request that contains the user's encrypted private key in the CRMF request. The following procedure assumes that the user already owns a signing certificate. The nickname of this signing certificate is set in the configuration files in the procedure.
					
Note


							The following procedure describes the two-trip issuance used with encryption-only keys, which cannot be used for signing. If you use a key which can sign certificates, pass the -q POP_SUCCESS option instead of -q POP_NONE to the CRMFPopClient utility for a single-trip issuance.
						

							For instructions about using CRMFPoPClient with POP_SUCCESS, see Section 5.2.3.1, “Using CRMFPopClient to Create a CSR with Key Archival” and Section 5.2.3.2, “Using CRMFPopClient to Create a CSR for SharedSecret-based CMC”.
						


	
								Search for the KRA transport certificate. For example:
							
$ pki cert-find --name KRA_transport_certificate_subject_CN

	
								Use the serial number of the KRA transport certificate, which you retrieved in the previous step, to store the certificate in a file. For example, to store the certificate with the 12345 serial number in the /home/user_name/kra.cert file:
							
$ pki cert-show 12345 --output /home/user_name/kra.cert

	
								Use the CRMFPopClient utility to:
							
	
										Create a CSR with key archival:
									
	
												Change to the certificate database directory of the user or entity for which the certificate is being requested, for example:
											
$ cd /home/user_name/

	
												Use the CRMFPopClient utility to create a CRMF request, where the RSA private key is wrapped by the KRA transport certificate. For example, to store the request in the /home/user_name/crmf.req file:
											
$ CRMFPopClient -d . -p token_password -n subject_DN -q POP_NONE \
     -b /home/user_name/kra.cert -w "AES/CBC/PKCS5Padding" \
     -v -o /home/user_name/crmf.req

												Note the ID of the private key displayed by the command. The ID is required in a later step as value in the request.privKeyId parameter in the configuration file for the second trip.
											







	
								Create a configuration file for the CRMRequest utility, such as /home/user_name/cmc.cfg with the following content:
							
#numRequests: Total number of PKCS10 requests or CRMF requests.
numRequests=1

#input: full path for the PKCS10 request or CRMF request,
#the content must be in Base-64 encoded format
input=/home/user_name/crmf.req

#output: full path for the CMC request in binary format
output=/home/user_name/cmc.req

#tokenname: name of token where agent signing cert can be found
#(default is internal)
tokenname=internal

#nickname: nickname for user certificate which will be used
#to sign the CMC full request.
nickname=signing_certificate

#dbdir: directory for cert8.db, key3.db and secmod.db
dbdir=/home/user_name/.dogtag/nssdb/

#password: password for cert8.db which stores the agent certificate
password=password

#format: request format, either pkcs10 or crmf
format=crmf

	
								Create the CMC request:
							
$ CMCRequest /home/user_name/cmc.cfg

								If the command succeeds, the CMCRequest utility stored the CMC request in the file specified in the output parameter in the request configuration file.
							

	
								Create a configuration file for HttpClient, such as /home/user_name/cmc-submit.cfg, which you use in a later step to submit the CMC request to the CA. Add the following content to the created file:
							
#host: host name for the http server
host=server.example.com

#port: port number
port=8443

#secure: true for secure connection, false for nonsecure connection
secure=true

#input: full path for the enrollment request, the content must be in
#binary format
input=/home/user_name/cmc.req

#output: full path for the response in binary format
output=/home/user_name/cmc-response_round_1.bin

#tokenname: name of token where TLS client authentication cert can be found
#(default is internal)
#This parameter will be ignored if secure=false
tokenname=internal

#dbdir: directory for cert8.db, key3.db and secmod.db
#This parameter will be ignored if secure=false
dbdir=/home/user_name/.dogtag/nssdb/

#clientmode: true for client authentication, false for no client authentication
#This parameter will be ignored if secure=false
clientmode=true

#password: password for cert8.db
#This parameter will be ignored if secure=false and clientauth=false
password=password

#nickname: nickname for client certificate
#This parameter will be ignored if clientmode=false
nickname=signing_certificate

#servlet: servlet name
servlet=/ca/ee/ca/profileSubmitUserSignedCMCFull?profileId=caFullCMCUserSignedCert

	
								Submit the CMC request to the CA:
							
$ HttpClient /home/user_name/cmc-submit.cfg

								If the command succeeds, the HTTPClient utility stored the CMC response in the file specified in the output parameter in the configuration file.
							

	
								Verify the response by passing the response file to the CMCResponse utility. For example:
							
$ CMCResponse -d /home/user_name/.dogtag/nssdb/ -i /home/user_name/cmc-response_round_1.bin

								If the first trip was successful, CMCResponse displays output similar to the following:
							
Certificates:
    Certificate:
        Data:
            Version:  v3
            Serial Number: 0x1
            Signature Algorithm: SHA256withRSA - 1.2.840.113549.1.1.11
            Issuer: CN=CA Signing Certificate,OU=pki-tomcat,O=unknown00262DFC6A5E Security Domain
            Validity:
                Not Before: Wednesday, May 17, 2017 6:06:50 PM PDT America/Los_Angeles
                Not  After: Sunday, May 17, 2037 6:06:50 PM PDT America/Los_Angeles
            Subject: CN=CA Signing Certificate,OU=pki-tomcat,O=unknown00262DFC6A5E Security Domain
...
Number of controls is 3
Control #0: CMC encrypted POP
   OID: {1 3 6 1 5 5 7 7 9}
     encryptedPOP decoded
Control #1: CMCStatusInfoV2
   OID: {1 3 6 1 5 5 7 7 25}
   BodyList: 1
   OtherInfo type: FAIL
     failInfo=POP required
Control #2: CMC ResponseInfo
   requestID: 15

	
								For the second trip, create a configuration file for DecryptedPOP, such as /home/user_name/cmc_DecryptedPOP.cfg, which you use in a later step. Add the following content to the created file:
							
#numRequests: Total number of PKCS10 requests or CRMF requests.
numRequests=1

#input: full path for the PKCS10 request or CRMF request,
#the content must be in Base-64 encoded format
#this field is actually unused in 2nd trip
input=/home/user_name/crmf.req

#output: full path for the CMC request in binary format
#this field is actually unused in 2nd trip
output=/home/user_name/cmc2.req

#tokenname: name of token where agent signing cert can be found
#(default is internal)
tokenname=internal

#nickname: nickname for agent certificate which will be used
#to sign the CMC full request.
nickname=signing_certificate

#dbdir: directory for cert8.db, key3.db and secmod.db
dbdir=/home/user_name/.dogtag/nssdb/

#password: password for cert8.db which stores the agent
#certificate
password=password

#format: request format, either pkcs10 or crmf
format=crmf

decryptedPop.enable=true
encryptedPopResponseFile=/home/user_name/cmc-response_round_1.bin
request.privKeyId=-25aa0a8aad395ebac7e6a19c364f0dcb5350cfef
decryptedPopRequestFile=/home/user_name/cmc.DecryptedPOP.req

	
								Create the DecryptPOP CMC request:
							
$ CMCRequest /home/user_name/cmc.DecryptedPOP.cfg

								If the command succeeds, the CMCRequest utility stored the CMC request in the file specified in the decryptedPopRequestFile parameter in the request configuration file.
							

	
								Create a configuration file for HttpClient, such as /home/user_name/decrypted_POP_cmc-submit.cfg, which you use in a later step to submit the DecryptedPOP CMC request to the CA. Add the following content to the created file:
							
#host: host name for the http server
host=server.example.com

#port: port number
port=8443

#secure: true for secure connection, false for nonsecure connection
secure=true

#input: full path for the enrollment request, the content must be in binary format
input=/home/user_name/cmc.DecryptedPOP.req

#output: full path for the response in binary format
output=/home/user_name/cmc-response_round_2.bin

#tokenname: name of token where TLS client authentication cert can be found (default is internal)
#This parameter will be ignored if secure=false
tokenname=internal

#dbdir: directory for cert8.db, key3.db and secmod.db
#This parameter will be ignored if secure=false
dbdir=/home/user_name/.dogtag/nssdb/

#clientmode: true for client authentication, false for no client authentication
#This parameter will be ignored if secure=false
clientmode=true

#password: password for cert8.db
#This parameter will be ignored if secure=false and clientauth=false
password=password

#nickname: nickname for client certificate
#This parameter will be ignored if clientmode=false
nickname=singing_certificate

#servlet: servlet name
servlet=/ca/ee/ca/profileSubmitUserSignedCMCFull?profileId=caFullCMCUserCert

	
								Submit the DecryptedPOP CMC request to the CA:
							
$ HttpClient /home/user_name/decrypted_POP_cmc-submit.cfg

								If the command succeeds, the HTTPClient utility stored the CMC response in the file specified in the output parameter in the configuration file.
							

	
								To convert the CMC response to a PKCS #7 certificate chain, pass the CMC response file to the -i parameter of the CMCResponse utility. For example:
							
$ CMCResponse -i /home/user_name/cmc-response_round_2.bin -o /home/user_name/certs.p7

								Alternatively, to display the individual certificates in PEM format, pass the -v to the utility.
							

								If the second trip was successful, CMCResponse displays output similar to the following:
							
Certificates:
    Certificate:
        Data:
            Version:  v3
            Serial Number: 0x2D
            Signature Algorithm: SHA256withRSA - 1.2.840.113549.1.1.11
            Issuer: CN=CA Signing Certificate,OU=pki-tomcat,O=unknown00262DFC6A5E Security Domain
            Validity:
                Not Before: Thursday, June 15, 2017 3:43:45 PM PDT America/Los_Angeles
                Not  After: Tuesday, December 12, 2017 3:43:45 PM PST America/Los_Angeles
            Subject: CN=user_name,UID=example,OU=keyArchivalExample
...
Number of controls is 1
Control #0: CMCStatusInfo
   OID: {1 3 6 1 5 5 7 7 1}
   BodyList: 1
   Status: SUCCESS








      ⁠5.4. Renewing Certificates




		This section explains how to use the different types of certificate renewal described in Section 3.4.1, “About Renewal”. You can use the methods described in this section to renew a certificate both with and without agent approval. To renew a certificate as a user without agent approval, use profiles that require the CMCUserSignedAuth authentication plug-in, and to renew with agent approval, use profiles that require the CMCAuth authentication plug-in. For further details about these plug-ins and in which profiles they are enabled by default, see Section 8.1.2, “CMC Authentication Plug-ins”.
	

      ⁠5.4.1. Renewal Using the Same Key




			Section 5.3.1, “The CMC Enrollment Process” describes how to request and issue a certificate using CMC. When a user submits the same CMC request created during this process again with the same enrollment profile, Certificate System renews the certificate with the same key.
		
Note


				For renewing a certificate as the user using the same key, the enrollment profile must contain the uniqueKeyConstraint entry with the params.allowSameKeyRenewal parameter set to True as described in Section 3.4.1, “About Renewal” and Section 3.4.1.1.1, “Renewing Using the Same Key”.
			




      ⁠5.4.2. Renewal Using a New Key




			To renew a certificate using a new key, follow the procedure described in Section 5.3.1, “The CMC Enrollment Process”. The process for renewal is the same as for a new enrollment. When you sign the request with the same signing certificate, the newly issued certificate contains the same subjectDN attribute as the signing certificate.
		



      ⁠5.5. Tracing Issued Certificate to CSR, and CSR to Issued Certificate




			This section details how a CA agent can trace an issued certificate to the original submitted CSR, and from a CSR to an issued certificate.
		

			If a certificate request has been approved successfully, a CA agent can do the following to search for the request and see the CSR matching the certificate:
		
	
					Access the https://host_name:port/ca/agent/ca.
				

	
					Click Search for Requests
				

	
					Select and fill in Request ID Range (for example 12 for Lowest Request ID and 12 for Highest Request ID.
				

	
					Select Request Type and choose enrollment type.
				

	
					Select Request Status and choose completed status
				

	
					Make sure everything else is unselected.
				

	
					Click Submit.
				

	
					Click on the request number. You see the certificate in clear text at this point.
				

	
					To display the CSR and certificate linking, right-click and select This Frame and View Frame Source.
				
	
							Search for inputList.inputName="Certificate Request";. The request is the inputList.inputVal below that.
						

	
							Search for outputList.outputSyntax="pretty_print";. The certificate is the outputList.outputVal below that.
						







			To search from certificate to CSR:
		
	
					Access the https://host_name:port/ca/agent/ca.
				

	
					Click Find.
				

	
					Click Details.
				

	
					You see the certificate in clear text, along with a Request ID link. Click on the link to open the Request page.
				

	
					To display the certificate and CSR linking:
				
	
							Search for inputList.inputName="Certificate Request";. The request is the inputList.inputVal below that.
						

	
							Search for outputList.outputSyntax="pretty_print";. The certificate is the outputList.outputVal below that.
						









      ⁠Chapter 6. Revoking Certificates and Issuing CRLs




		The Certificate System provides methods for revoking certificates and for producing lists of revoked certificates, called certificate revocation lists (CRLs). This chapter describes the methods for revoking a certificate, describes CMC revocation, and provides details about CRLs and setting up CRLs.
	

      ⁠6.1. About Revoking Certificates




			Certificates can be revoked by an end user (the original owner of the certificate) or by a Certificate Manager agent. An end user can revoke only certificates that contain the same subject name as the certificate presented for authentication.
		

			When revocation requests are approved, the Certificate Manager marks the corresponding certificate records in its internal database as revoked, and, if configured to do so, removes the revoked certificates from the publishing directory. These changes are reflected in the next CRL which the CA issues.
		

			Server and client applications that use public-key certificates as ID tokens need access to information about the validity of a certificate. Because one of the factors that determines the validity of a certificate is its revocation status, these applications need to know whether the certificate being validated has been revoked. The CA has a responsibility to do the following:  
		
	
					Revoke the certificate if a revocation request is received by the CA and approved.
				

	
					Make the revoked certificate status available to parties or applications that need to verify its validity status.
				




			Whenever a certificate is revoked, the Certificate Manager automatically updates the status of the certificate in its internal database, it marks the copy of the certificate in its internal database as revoked and removes the revoked certificate from the publishing directory, if the Certificate Manager is configured to remove the certificate from the database. 
		

			One of the standard methods for conveying the revocation status of certificates is by publishing a list of revoked certificates, known a certificate revocation list (CRL). A CRL is a publicly available list of certificates that have been revoked. 
		

			The Certificate Manager can be configured to generate CRLs. These CRLs can be created to conform to X.509 standards by enabling extension-specific modules in the CRL configuration. The server supports standard CRL extensions through its CRL issuing points framework; see Section 6.3.3, “Setting CRL Extensions” for more information on setting up CRL extensions for issuing points. The Certificate Manager can generate a CRL every time a certificate is revoked and at periodic intervals. If publishing is set up, the CRLs can be published to a file, an LDAP directory, or an OCSP responder.  
		

			A CRL is issued and digitally signed by the CA that issued the certificates listed in the CRL or by an entity that has been authorized by that CA to issue CRLs. The CA may use a single key pair to sign both the certificates and CRLs it issues or two separate key pairs, one for signing certificates and another one for signing CRLs. 
		

			By default, the Certificate Manager uses a single key pair for signing the certificates it issues and CRLs it generates. To create another key pair for the Certificate Manager and use it exclusively for signing CRLs, see 9.2.3.11. Setting a CA to Use a Different Certificate to Sign CRLs in Red Hat Certificate System's Planning, Installation, and Deployment Guide.
		

			CRLs are generated when issuing points are defined and configured and when CRL generation is enabled.
		

			When CRLs are enabled, the server collects revocation information as certificates are revoked. The server attempts to match the revoked certificate against all issuing points that are set up. A given certificate can match none of the issuing points, one of the issuing points, several of the issuing points, or all of the issuing points. When a certificate that has been revoked matches an issuing point, the server stores the information about the certificate in the cache for that issuing point.
		

			The cache is copied to the internal directory at the intervals set for copying the cache. When the interval for creating a CRL is reached, a CRL is created from the cache. If a delta CRL has been set up for this issuing point, a delta CRL is also created at this time. The full CRL contains all revoked certificate information since the Certificate Manager began collecting this information. The delta CRL contains all revoked certificate information since the last update of the full CRL.
		

			The full CRLs are numbered sequentially, as are delta CRLs. A full CRL and a delta CRL can have the same number; in that case, the delta CRL has the same number as the next full CRL. For example, if the full CRL is the first CRL, it is CRL 1. The delta CRL is Delta CRL 2. The data combined in CRL 1 and Delta CRL 2 is equivalent to the next full CRL, which is CRL 2.
		
NOTE


				When changes are made to the extensions for an issuing point, no delta CRL is created with the next full CRL for that issuing point. A delta CRL is created with the second full CRL that is created, and then all subsequent full CRLs.
			



			The internal database stores only the latest CRL and delta CRL. As each new CRL is created, the old one is overwritten.
		

			When CRLs are published, each update to the CRL and delta CRL is published to the locations specified in the publishing set up. The method of publishing determines how many CRLs are stored. For file publishing, each CRL that is published to a file using the number for the CRL, so no file is overwritten. For LDAP publishing, each CRL that is published replaces the old CRL in the attribute containing the CRL in the directory entry.
		

			By default, CRLs do not contain information about revoked expired certificates. The server can include revoked expired certificates by enabling that option for the issuing point. If expired certificates are included, information about revoked certificates is not removed from the CRL when the certificate expires. If expired certificates are not included, information about revoked certificates is removed from the CRL when the certificate expires.
		

      ⁠6.1.1. CRL Issuing Points




				Because CRLs can grow very large, there are several methods to minimize the overhead of retrieving and delivering large CRLs. One of these methods partitions the entire certificate space and associates a separate CRL with every partition. This partition is called a CRL issuing point, the location where a subset of all the revoked certificates is maintained. Partitioning can be based on whether the revoked certificate is a CA certificate, whether it was revoked for a specific reason, or whether it was issued using a specific profile. Each issuing point is identified by its name. 
			

				By default, the Certificate Manager generates and publishes a single CRL, the master CRL. An issuing point can generate CRLs for all certificates, for only CA signing certificates, or for all certificates including expired certificates.
			

				Once the issuing points have been defined, they can be included in certificates so that an application that needs to check the revocation status of a certificate can access the CRL issuing points specified in the certificate instead of the master or main CRL. Since the CRL maintained at the issuing point is smaller than the master CRL, checking the revocation status is much faster.
			

				CRL distribution points can be associated with certificates by setting the CRLDistributionPoint extension. 
			


      ⁠6.1.2. Delta CRLs




				Delta CRLs can be issued for any defined issuing point. A delta CRL contains information about any certificates revoked since the last update to the full CRL. Delta CRLs for an issuing point are created by enabling the DeltaCRLIndicator extension.
			


      ⁠6.1.3. Publishing CRLs




				The Certificate Manager can publish the CRL to a file, an LDAP-compliant directory, or to an OCSP responder. Where and how frequently CRLs are published are configured in the Certificate Manager, as described in Chapter 7, Publishing Certificates and CRLs.  
			

				Because CRLs can be very large, publishing CRLs can take a very long time, and it is possible for the process to be interrupted. Special publishers can be configured to publish CRLs to a file over HTTP1.1, and, if the process is interrupted, the CA subsystem's web server can resume publishing at the point it was interrupted, instead of having to begin again. This is described in Section 7.7, “Setting up Resumable CRL Downloads”.
			



      ⁠6.2. Revoking Certificates




      ⁠6.2.1. Performing a CMC Revocation




				Similar to Certificate Management over CMS (CMC) enrollment, CMC revocation enables users to set up a revocation client, and sign the revocation request with either an agent certificate or a user certificate with a matching subjectDN attribute. Then the user can send the signed request to the Certificate Manager.
			

				Alternatively, CMC revocation can also be authenticated using the Shared Secret Token mechanism. For details, see Section 8.1.3, “CMC SharedSecret Authentication”.
			

				Regardless of whether a user or agent signs the request or if a Shared Secret Token is used, the Certificate Manager automatically revokes the certificate when it receives a valid revocation request.
			

				Certificate System provides the following utilities for CMC revocation requests:
			
	
						CMCRequest. For details, see Section 6.2.1.1, “Revoking a Certificate Using CMCRequest”.
					

	
						CMCRevoke. For details, see Section 6.2.1.2, “Revoking a Certificate Using CMCRevoke”.
					



Important


					Red Hat recommends using the CMCRequest utility to generate CMC revocation requests, because it provides more options than CMCRevoke.
				



      ⁠6.2.1.1. Revoking a Certificate Using CMCRequest




					To revoke a certificate using CMCRequest:
				
	
							Create a configuration file for the CMC revocation request, such as /home/user_name/cmc-request.cfg, with the following content:
						
#numRequests: Total number of PKCS10 requests or CRMF requests.
numRequests=1

#output: full path for the CMC request in binary format
output=/home/user_name/cmc.revoke.userSigned.req

#tokenname: name of token where user signing cert can be found
#(default is internal)
tokenname=internal

#nickname: nickname for user signing certificate which will be used
#to sign the CMC full request.
nickname=signer_user_certificate

#dbdir: directory for cert8.db, key3.db and secmod.db
dbdir=/home/user_name/.dogtag/nssdb/

#password: password for cert8.db which stores the user signing
#certificate and keys
password=myPass

#format: request format, either pkcs10 or crmf.
format=pkcs10

## revocation parameters
revRequest.enable=true
revRequest.serial=45
revRequest.reason=unspecified
revRequest.comment=user test revocation
revRequest.issuer=issuer
revRequest.sharedSecret=shared_secret

	
							Create the CMC request:
						
# CMCRequest /home/user_name/cmc-request.cfg

							If the command succeeds, the CMCRequest utility stores the CMC request in the file specified in the output parameter in the request configuration file.
						

	
							Create a configuration file, such as /home/user_name/cmc-submit.cfg, which you use in a later step to submit the CMC revocation request to the CA. Add the following content to the created file:
						
#host: host name for the http server
host=>server.example.com

#port: port number
port=8443

#secure: true for secure connection, false for nonsecure connection
secure=true

#input: full path for the enrollment request, the content must be
#in binary format
input=/home/user_name/cmc.revoke.userSigned.req

#output: full path for the response in binary format
output=/home/user_name/cmc.revoke.userSigned.resp

#tokenname: name of token where TLS client authentication certificate
#can be found (default is internal)
#This parameter will be ignored if secure=false
tokenname=internal

#dbdir: directory for cert8.db, key3.db and secmod.db
#This parameter will be ignored if secure=false
dbdir=/home/user_name/.dogtag/nssdb/

#clientmode: true for client authentication, false for no client
#authentication. This parameter will be ignored if secure=false
clientmode=true

#password: password for cert8.db
#This parameter will be ignored if secure=false and clientauth=false
password=password

#nickname: nickname for client certificate
#This parameter will be ignored if clientmode=false
nickname=signer_user_certificate
Important


								If the CMC revocation request is signed, set the secure and clientmode parameters to true and, additionally, fill the nickname parameter.
							



	
							Depending on who signed the request, the servlet parameter in the configuration file for HttpClient must be set accordingly:
						
	
									If an agent signed the request, set:
								
servlet=/ca/ee/ca/profileSubmitCMCFull

	
									If a user signed the request, set:
								
servlet=/ca/ee/ca/profileSubmitUserSignedCMCFull




	
							Submit the CMC request:
						
# HttpClient /home/user_name/cmc-submit.cfg




					For further details about revoking a certificate using CMCRequest, see the CMCRequest(1) man page.
				


      ⁠6.2.1.2. Revoking a Certificate Using CMCRevoke




					The CMC revocation utility, CMCRevoke, is used to sign a revocation request with an agent's certificate. This utility simply passes the required information — certificate serial number, issuer name, and revocation reason — to identify the certificate to revoke, and then the require information to identify the CA agent performing the revocation (certificate nickname and the database with the certificate).
				
Important


						Using CMCRevoke requires that the CA administrator followed the instructions specified in the Enabling CMCRevoke for the Web User Interface section in the Red Hat Certificate System 9 Planning, Installation and Deployment Guide (Common Criteria Edition) during the installation.
					



					The reason the certificate is being revoked can be any of the following (with the number being the value passed to the CMCRevoke utility):
				
	
							0 — unspecified
						

	
							1 — the key was compromised
						

	
							2 — the CA key was compromised
						

	
							3 — the employee's affiliation changed
						

	
							4 — the certificate has been superseded
						

	
							5 — cessation of operation
						

	
							6 — the certificate is on hold
						




					The available tool arguments are described in detail in the Command-Line Tools Guide.
				

      ⁠6.2.1.2.1. Testing CMCRevoke



	
								Create a CMC revocation request for an existing certificate.
							
CMCRevoke -d/path/to/agent-cert-db -nnickname -iissuerName -sserialName -mreason -ccomment

								For example, if the directory containing the agent certificate is ~jsmith/.mozilla/firefox/, the nickname of the certificate is AgentCert, and the serial number of the certificate is 22, the command is as shown:
							
CMCRevoke -d"~jsmith/.mozilla/firefox/" -n"ManagerAgentCert" -i"cn=agentAuthMgr" -s22 -m0 -c"test comment"
NOTE


									Surround values that include spaces in quotation marks.
								


IMPORTANT


									Do not have a space between the argument and its value. For example, giving a serial number of 26 is -s26, not -s 26.
								



	
								Open the end-entities page.
							
https://server.example.com:8443/ca/ee/ca

	
								Select the Revocation tab.
							

	
								Select the CMC Revoke link on the menu.
							

	
								Paste the output from the CMCRevoke into the text area.
							

	
								Remove -----BEGIN NEW CERTIFICATE REQUEST----- and ----END NEW CERTIFICATE REQUEST----- from the pasted content.
							

	
								Click Submit.
							

	
								The returned page should confirm that correct certificate has been revoked.
							







      ⁠6.2.2. Performing Revocation as an Agent from the Web UI




				A Certificate Manager agent can use the agent services page to find a specific certificate issued by the Certificate System or to retrieve a list of certificates that match specified criteria. The certificates which are retrieved can be examined or revoked by the agent. The Certificate Manager agent can also manage the certificate revocation list (CRL).
			

      ⁠6.2.2.1. Listing Certificates




					It is possible to list certificates within a range of serial numbers. All certificates within the range may be displayed or, if the agent selects, only those that are currently valid.
				

					To find a specific certificate or to list certificates by serial number:
				
	
							Open the Certificate Manager agent services page.
						

	
							Click List Certificates.
						

							
      ⁠[image: List Certificates]

Figure 6.1. List Certificates



						
	
									To find a certificate with a specific serial number, enter the serial number in both the upper limit and lower limit fields of the List Certificates form, in either decimal or hexadecimal form. Use 0x to indicate the beginning of a hexadecimal number; for example, 0x00000006. Serial numbers are displayed in hexadecimal form in the Search Results and Details pages.
								

	
									To find all certificates within a range of serial numbers, enter the upper and lower limits of the serial number range in decimal or hexadecimal form.
								




							Leaving either the lower limit or upper limit field blank displays the certificate with the specified number, plus all certificates before or after it in sequence.
						

	
							To limit the returned list to valid certificates, select the check boxes labeled with filtering methods. It is possible to include revoked certificates, to include expired certificates or certificates that are not yet valid, or to display only valid certificates.
						

	
							Enter the maximum number of certificates matching the criteria that should be returned in the results page.
						

							When any number is entered, the first certificates up to that number matching the criteria are displayed.
						

	
							Click Find.
						

							The Certificate System displays a list of the certificates that match the search criteria. Select a certificate in the list to examine it in more detail or perform various operations on it. For more information, refer to Section 6.2.2.3, “Examining Certificate Details”.
						





      ⁠6.2.2.2. Searching for Certificates (Advanced)




					Search for certificates by more complex criteria than serial number using the advanced search form. To perform an advanced search for certificates:
				
	
							Open the Certificate Manager agent services page. The agent must submit the proper client certificate to access this page.
						

	
							Click Search for Certificates to display the Search for Certificates form to specify search criteria.
						
[image: Searching for Certificates (Advanced)]


	
							To search by particular criteria, use one or more of the sections of the Search for Certificates form. To use a section, select the check box, then fill in any necessary information.
						
	
									Serial Number Range. Finds a certificate with a specific serial number or lists all certificates within a range of serial numbers.
								
	
											To find a certificate with a specific serial number, enter the serial number in both the upper limit and lower limit fields in either decimal or hexadecimal. Use 0x to indicate the beginning of a hexadecimal number, such as 0x2A. Serial numbers are displayed in hexadecimal form in the Search Results and Details pages.
										

	
											To find all certificates within a range of serial numbers, enter the upper and lower limits of the serial number range in decimal or hexadecimal. Leaving either the lower limit or upper limit field blank returns all certificates before or after the number specified.
										




	
									Status. Selects certificates by their status. A certificate has one of the following status codes:
								
	
											Valid. A valid certificate has been issued, its validity period has begun but not ended, and it has not been revoked.
										

	
											Invalid. An invalid certificate has been issued, but its validity period has not yet begun.
										

	
											Revoked. The certificate has been revoked.
										

	
											Expired. An expired certificate has passed the end of its validity period.
										

	
											Revoked and Expired. The certificate has passed its validity period and been revoked.
										




	
									Subject Name. Lists certificates belonging to a particular owner; it is possible to use wildcards in this field.
								
NOTE


										Certificate System certificate request forms support all UTF-8 characters for the common name, organizational unit, and requester name fields. The common name and organization unit fields are included in the subject name of the certificate. This means that the searches for subject names support UTF-8 characters.
									

										This support does not include supporting internationalized domain names.
									



	
									Revocation Information. Lists certificates that have been revoked during a particular period, by a particular agent, or for a particular reason. For example, an agent can list all certificates revoked between July 2005 and April 2006 or all certificates revoked by the agent with the username admin.
								
	
											To list certificates revoked within a time period, select the day, month, and year from the drop-down lists to identify the beginning and end of the period.
										

	
											To list certificates revoked by a particular agent, enter the name of the agent; it is possible to use wildcards in this field.
										

	
											To list certificates revoked for a specific reason, select the revocation reasons from the list.
										




	
									Issuing Information. Lists certificates that have been issued during a particular period or by a particular agent. For example, an agent can list all certificates issued between July 2005 and April 2006 or all certificates issued by the agent with the username jsmith.
								
	
											To list certificates issued within a time period, select the day, month, and year from the drop-down lists to identify the beginning and end of the period.
										

	
											To list certificates issued by a particular agent, enter the name of the agent; it is possible to use wildcards in this field.
										

	
											To list certificates enrolled through a specific profile, enter the name of the profile.
										




	
									Dates of Validity. List certificates that become effective or expire during a particular period. For example, an agent can list all certificates that became valid on June 1, 2003, or that expired between January 1, 2006, and June 1, 2006.
								

									It is also possible to list certificates that have a validity period of a certain length of time, such as all certificates that are valid for less than one month.
								
	
											To list certificates that become effective or expire within a time period, select the day, month, and year from the drop-down lists to identify the beginning and end of the period.
										

	
											To list certificates that have a validity period of a certain length in time, select Not greater than or Not less than from the drop-down list, enter a number, and select a time unit from the drop-down list: days, weeks, months, or years.
										




	
									Basic Constraints. Shows CA certificates that are based on the Basic Constraints extension.
								

	
									Type. Lists certain types of certificates, such as all certificates for subordinate CAs. This search works only for certificates containing the Netscape Certificate Type extension, which stores type information. For each type, choose from the drop-down list to find certificates where that type is On, Off, or Do Not Care.
								




	
							To find a certificate with a specific subject name, use the Subject Name section. Select the check box, then enter the subject name criteria. Enter values for the included search criteria and leave the others blank.
						

							The standard tags or components are as follows:
						
	
									Email address. Narrows the search by email address.
								

	
									Common name. Finds certificates associated with a specific person or server.
								

	
									UserID. Searches certificates by the user ID for the person to whom the certificate belongs.
								

	
									Organization unit. Narrows the search to a specific division, department, or unit within an organization.
								

	
									Organization. Narrows the search by organization.
								

	
									Locality. Narrows the search by locality, such as the city.
								

	
									State. Narrows the search by state or province.
								

	
									Country. Narrows the search by country; use the two-letter country code, such as US.
								



NOTE


								Certificate System certificate request forms support all UTF-8 characters for the common name and organizational unit fields. The common name and organization unit fields are included in the subject name of the certificate. This means that the searches for subject names or those elements in the subject name support UTF-8 characters.
							

								This support does not include supporting internationalized domain names, such as in email addresses.
							



	
							After entering the field values for the server to match, specify the type of search to perform:
						
	
									Exact searches for certificate subject names match the exact components specified and contain none of the components left blank. Wildcards cannot be used in this type of search.
								

	
									Partial searches for certificate subject names match the specified components, but the returned certificates may also contain values in components that were left blank. Wildcard patterns can be used in this type of search by using a question mark (?) to match an arbitrary single character and an asterisk (*) to match an arbitrary string of characters.
								
NOTE


										Placing a single asterisk in a search field means that the component must be in the certificate's subject name but may have any value. Leave the field blank if it does not matter if the field is present.
									






	
							After entering the search criteria, scroll to the bottom of the form, and enter the number of certificates matching the specified criteria that should be returned.
						

							Setting the number of certificates to be returned returns the first certificates found that match the search criteria up to that number. It is also possible to put a time limit on the search in seconds.
						

	
							Click Find.
						

	
							The Search Results form appears, showing a list of the certificates that match the search criteria. Select a certificate in the list to examine it in more detail. For more information, refer to Section 6.2.2.3, “Examining Certificate Details”.
						

							[image: NOTE]


						





      ⁠6.2.2.3. Examining Certificate Details



	
							On the agent services page, click List Certificates or Search for Certificates, specify search criteria, and click Find to display a list of certificates.
						

	
							On the Search Results form, select a certificate to examine.
						

							If the desired certificate is not shown, scroll to the bottom of the list, specify an additional number of certificates to be returned, and click Find. The system displays the next certificates up to that number that match the original search criteria.
						

	
							After selecting a certificate, click the Details button at the left side of its entry.
						

	
							The Certificate page shows the detailed contents of the selected certificate and instructions for installing the certificate in a server or in a web browser.
						

							
      ⁠[image: Certificate Details]

Figure 6.2. Certificate Details



						

	
							The certificate is shown in base-64 encoded form at the bottom of the Certificate page, under the heading Installing this certificate in a server.
						





      ⁠6.2.2.4. Revoking Certificates




					Only Certificate Manager agents can revoke certificates other than their own. A certificate must be revoked if one of the following situations occurs: 
						
								The owner of the certificate has changed status and no longer has the right to use the certificate.
							

	
								The private key of a certificate owner has been compromised.
							




					 These two reasons are not the only ones why a certificate would need revoked; there are six reasons available for revoking a certificate.
				

					To revoke one or more certificates, search for the certificates to revoke using the Revoke Certificates button. While the search is similar to the one through the Search for Certificates form, the Search Results form returned by this search offers the option of revoking one or all of the returned certificates.
				

      ⁠6.2.2.4.1. Revoking Certificates



	
								Open the Certificate Manager agent services page.
							

	
								Click Revoke Certificates.
							
NOTE


									The search form that appears has the same search criteria sections as the Search for Certificates form.
								



	
								Specify the search criteria by selecting the check boxes for the sections and filling in the required information.
							

	
								Scroll to the bottom of the form, and set the number of matching certificates to display.
							

	
								Click Find.
							

	
								The search returns a list of matching certificates. It is possible to revoke one or all certificates in the list.
							
[image: NOTE]

TIP


									If the search criteria are very specific and all of the certificates returned are to be revoked, then click the Revoke ALL # Certificates button at the bottom of the page. The number shown on the button is the total number of certificates returned by the search. This is usually a larger number than the number of certificates displayed on the current page.
								

									Verify that all of the certificates returned by the search should be revoked, not only those displayed on the current page.
								



	
								Click the Revoke button next to the certificate to be revoked.
							
CAUTION


									Whether revoking a single certificate or a list of certificates, be extremely careful that the correct certificate has been selected or that the list contains only certificates which should be revoked. Once a revocation operation has been confirmed, there is no way to undo it.
								



	
								Select an invalidity date. The invalidity date is the date which it is known or suspected that the user's private key was compromised or that the certificate became invalid. A set of drop down lists allows the agent to select the correct invalidity date.
							
[image: CAUTION]


	
								Select a reason for the revocation.
							
	
										Key compromised
									

	
										CA key compromised
									

	
										Affiliation changed
									

	
										Certificate superseded
									

	
										Cessation of operation
									

	
										Certificate is on hold
									




	
								Enter any additional comment. The comment is included in the revocation request.
							




						When the revocation request is submitted, it is automatically approved, and the certificate is revoked. Revocation requests are viewed by listing requests with a status of Completed.
					


      ⁠6.2.2.4.2. Taking Ceritificates Off Hold




						There can be instances when a certificate is inaccessible, and therefore should be treated as revoked, but that certificate can be recovered. For example, a user may have a personal email certificate stored on a flash drive which he accidentally leaves at home. The certificate is not compromised, but it should be temporarily suspended.
					

						That certificate can be temporarily revoked by putting it on hold (one of the options given when revoking a certificate, as in Section 6.2.2.4.1, “Revoking Certificates”). At a later time — such as when the forgotten flash drive is picked up — that certificate can be taken off hold and is again active.
					
	
								Search for the on hold certificate, as in Section 6.2.2.2, “Searching for Certificates (Advanced)”. Scroll to the Revocation Information section, and set the Certificate is on hold revocation reason as the search criterion.
							
[image: Taking Ceritificates Off Hold]


	
								In the results list, click the Off Hold button by the certificate to take off hold.
							
[image: Taking Ceritificates Off Hold]







      ⁠6.2.2.5. Managing the Certificate Revocation List




					Revoking a certificate notifies other users that the certificate is no longer valid. This notification is done by publishing a list of the revoked certificates, called the certificate revocation list (CRL), to an LDAP directory or to a flat file. This list is publicly available and ensures that revoked certificates are not misused.
				

      ⁠6.2.2.5.1. Viewing or Examining CRLs




						It may be necessary to view or examine a CRL, such as before manually updating a directory with the latest CRL. To view or display the CRL:
					
	
								Go to the Certificate Manager agent services page.
							

	
								Click Display Certificate Revocation List to display the form for viewing the CRL.
							

	
								Select the CRL to view. If the administrator has created multiple issuing points, these are listed in the Issuing point drop-down list. Otherwise, only the master CRL is shown.
							

	
								Choose how to display the CRL by selecting one of the options from the Display Type menu. The choices on this menu are as follows:
							
	
										Cached CRL. Views the CRL from the cache rather than from the CRL itself. This option displays results faster than viewing the entire CRL.
									

	
										Entire CRL. Retrieves and displays the entire CRL.
									

	
										CRL header. Retrieves and displays the CRL header only.
									

	
										Base 64 Encoded. Retrieves and displays the CRL in base-64 encoded format.
									

	
										Delta CRL. Retrieves and displays a delta CRL, which is a subset of the CRL showing only new revocations since the last CRL was published. This option is available only if delta CRL generation is enabled.
									




	
								To examine the selected CRL, click Display.
							

								The CRL appears in the browser window. This allows the agent to check whether a particular certificate (by its serial number) appears in the list and to note recent changes such as the total number of certificates revoked since the last update, the total number of certificates taken off hold since the last update, and the total number of certificates that expired since the last update.
							





      ⁠6.2.2.5.2. Updating the CRL




						CRLs can be automatically updated if a schedule for automatic CRL generation is enabled, and the schedule can set the CRL to be generated at set time schedules or whenever there are certificate revocations.
					

						Likewise, CRLs can be also automatically published if CRL publishing is enabled.
					

						In some cases, the CRL may need to be updated manually, such as updating the list after the system has been down or removing expired certificates to reduce the file size. (Expired certificates do not need to be included in the CRL because they are already invalid because of the expiration date.) Only a Certificate Manager agent can manually update the CRL.
					

						To update the CRL manually:
					
	
								Open the Certificate Manager agent services page.
							

	
								Click Update Revocation List to display the form for updating the CRL.
							

								
      ⁠[image: Update Certificate Revocation List]

Figure 6.3. Update Certificate Revocation List



							

	
								Select the CRL issuing point which will update the CRL. There can be multiple issuing points configured for a single CA.
							

	
								Select the algorithm to use to sign the new CRL. Before choosing an algorithm, make sure that any system or network applications that need to read or view this CRL support the algorithm.
							
	
										SHA-256 with RSA.
									

	
										SHA-384 with RSA.
									

	
										SHA-512 with RSA.
									




								Before selecting an algorithm, make sure that the Certificate System has that algorithm enabled. The Certificate System administrator will have that information.
							

	
								Click Update to update the CRL with the latest certificate revocation information.
							







      ⁠6.2.3. Performing Revocation on Own Certificate as a User Using the Web UI




				Revoking a certificate invalidates it before its expiration date. This can be necessary if a certificate is lost, compromised, or no longer needed.
			

      ⁠6.2.3.1. Revoking Your User Certificate



	
							Click the Revocation tab.
						

	
							Click the User Certificate link.
						

	
							Select the reason why the certificate is being revoked, and click Submit.
						
[image: Revoking Your User Certificate]


	
							Select the certificates to revoke from the list.
						





      ⁠6.2.3.2. Checking Whether a Certificate Is Revoked



	
							Click the Retrieval tab.
						

	
							Click the Import Certificate Revocation List link.
						

	
							Select the radio button by Check whether the following certificate is included in CRL cache or Check whether the following certificate is listed by CRL, and enter the serial number of the certificate.
						
[image: Checking Whether a Certificate Is Revoked]


	
							Click the Submit button.
						

							A message is returned either saying that the certificate is not listed in any CRL or giving the information for the CRL which contains the certificate.
						





      ⁠6.2.3.3. Downloading and Importing CRLs




					Certificate revocation lists (CRLs) can be downloaded and installed in a web client, application, or machine. They can also be viewed to see what certificates have been revoked.
				
	
							Click the Retrieval tab.
						

	
							Click the Import Certificate Revocation List link.
						

	
							Select the radio button to view, download, or import the CRL.
						
[image: Downloading and Importing CRLs]

	
									To import the CRL into the browser or download and save it, select the appropriate radio button. There are two options: to download/import the full CRL or the delta CRL. The delta CRL only imports/downloads the list of certificates which have been revoked since the last time the CRL was generated.
								

	
									To view the CRL, select Display the CRL information and select which CRL subset (called an issuing point) to view. This shows the CRL information, including the number of certificates included in it.
								
[image: Downloading and Importing CRLs]





	
							Click the Submit button.
						

	
							Save the file or approve the import operation.
						







      ⁠6.3. Issuing CRLs



	
					The Certificate Manager uses its OCSP signing key to sign CRLs. To use a separate signing key pair for CRLs, set up a CRL signing key and change the Certificate Manager configuration to use this key to sign CRLs. See 9.2.3.11. Setting a CA to Use a Different Certificate to Sign CRLs in Red Hat Certificate System's Planning, Installation, and Deployment Guide for more information.
				

	
					Set up CRL issuing points. An issuing point is already set up and enabled for a master CRL.
				

      ⁠[image: Default CRL Issuing Point]

Figure 6.4. Default CRL Issuing Point


					Additional issuing points for the CRLs can be created. See Section 6.3.1, “Configuring Issuing Points” for details.
				

					There are five types of CRLs the issuing points can create, depending on the options set when configuring the issuing point to define what the CRL will list:
				
	
							Master CRL contains the list of revoked certificates from the entire CA.
						

	
							ARL is an Authority Revocation List containing only revoked CA certificates.
						

	
							CRL with expired certificates includes revoked certificates that have expired in the CRL.
						

	
							CRL from certificate profiles determines the revoked certificates to include based on the profiles used to create the certificates originally.
						

	
							CRLs by reason code determines the revoked certificates to include based on the revocation reason code.
						




	
					Configure the CRLs for each issuing point. See Section 6.3.2, “Configuring CRLs for Each Issuing Point” for details.
				

	
					Set up the CRL extensions which are configured for the issuing point. See Section 6.3.3, “Setting CRL Extensions” for details.
				

	
					Set up the delta CRL for an issuing point by enabling extensions for that issuing point, DeltaCRLIndicator or CRLNumber.
				

	
					Set up the CRLDistributionPoint extension to include information about the issuing point.
				

	
					Set up publishing CRLs to files, an LDAP directory, or an OCSP responder. See Chapter 7, Publishing Certificates and CRLs for details about setting up publishing.
				




      ⁠6.3.1. Configuring Issuing Points




				Issuing points define which certificates are included in a new CRL. A master CRL issuing point is created by default for a master CRL containing a list of all revoked certificates for the Certificate Manager.
			

				To create a new issuing point, do the following:
			
	
						Open the Certificate System Console. 
pkiconsole https://server.example.com:8443/ca


					

	
						In the Configuration tab, expand Certificate Manager from the left navigation menu. Then select CRL Issuing Points.
					

	
						To edit an issuing point, select the issuing point, and click Edit. The only parameters which can be edited are the name of the issuing point and whether the issuing point is enabled or disabled.
					

						To add an issuing point, click Add. The CRL Issuing Point Editor window opens.
					

      ⁠[image: CRL Issuing Point Editor]

Figure 6.5. CRL Issuing Point Editor

NOTE


							If some fields do not appear large enough to read the content, expand the window by dragging one of the corners.
						



						Fill in the following fields:
					
	
								Enable. Enables the issuing point if selected; deselect to disable.
							

	
								CRL Issuing Point name. Gives the name for the issuing point; spaces are not allowed.
							

	
								Description. Describes the issuing point.
							




	
						Click OK.
					




				To view and configure a new issuing point, close the CA Console, then open the Console again. The new issuing point is listed below the CRL Issuing Points entry in the navigation tree.
			

				Configure CRLs for the new issuing point, and set up any CRL extensions that will be used with the CRL. See Section 6.3.2, “Configuring CRLs for Each Issuing Point” for details on configuring an issuing point. See Section 6.3.3, “Setting CRL Extensions” for details on setting up the CRL extensions. All the CRLs created appear on the Update Revocation List page of the agent services pages.
			


      ⁠6.3.2. Configuring CRLs for Each Issuing Point




				Information, such as the generation interval, the CRL version, CRL extensions, and the signing algorithm, can all be configured for the CRLs for the issuing point. The CRLs must be configured for each issuing point.
			
	
						Open the CA console.
					
pkiconsole https://server.example.com:8443/ca

	
						In the navigation tree, select Certificate Manager, and then select CRL Issuing Points.
					

	
						Select the issuing point name below the Issuing Points entry.
					

	
						Configure how and how often the CRLs are updated by supplying information in the Update tab for the issuing point. This tab has two sections, Update Schema and Update Frequency.
					

      ⁠[image: Configuring CRLs for Each Issuing Point]

	
								The Update Schema section has the following options:
							
	
										Enable CRL generation. This checkbox sets whether CRLs are generated for that issuing point.
									

	
										Generate full CRL every # delta(s). This field sets how frequently CRLs are created in relation to the number of changes.
									

	
										Extend next update time in full CRLs. This provides an option to set the nextUpdate field in the generated CRLs. The nextUpdate parameter shows the date when the next CRL is issued, regardless of whether it is a full or delta CRL. When using a combination of full and delta CRLs, enabling Extend next update time in full CRLs will make the nextUpdate parameter in a full CRL show when the next full CRL will be issued. Otherwise, the nextUpdate parameter in the full CRL will show when the next delta CRL will be issued, since the delta will be the next CRL to be issued.
									




	
								The Update Frequency section sets the different intervals when the CRLs are generated and issued to the directory.
							
	
										Every time a certificate is revoked or released from hold. This sets the Certificate Manager to generate the CRL every time it revokes a certificate. The Certificate Manager attempts to issue the CRL to the configured directory whenever it is generated. Generating a CRL can be time consuming if the CRL is large. Configuring the Certificate Manager to generate CRLs every time a certificate is revoked may engage the server for a considerable amount of time; during this time, the server will not be able to update the directory with any changes it receives.
									

										This setting is not recommended for a standard installation. This option should be selected to test revocation immediately, such as testing whether the server issues the CRL to a flat file.
									

	
										Update the CRL at. This field sets a daily time when the CRL should be updated. To specify multiple times, enter a comma-separate list of times, such as 01:50,04:55,06:55. To enter a schedule for multiple days, enter a comma-separated list to set the times within the same day, and then a semicolon separated list to identify times for different days. For example, this sets revocation on Day 1 of the cycle at 1:50am, 4:55am, and 6:55am and then Day 2 at 2am, 5am, and 5pm: 
01:50,04:55,06:55;02:00,05:00,17:00

										 
									

	
										Update the CRL every. This checkbox enables generating CRLs at the interval set in the field. For example, to issue CRLs every day, select the checkbox, and enter 1440 in this field. 
									

	
										Next update grace period. If the Certificate Manager updates the CRL at a specific frequency, the server can be configured to have a grace period to the next update time to allow time to create the CRL and issue it. For example, if the server is configured to update the CRL every 20 minutes with a grace period of 2 minutes, and if the CRL is updated at 16:00, the CRL is updated again at 16:18.
									






IMPORTANT


							Due to a known issue, when currently setting full and delta Certificate Revocation List schedules, the Update CRL every time a certificate is revoked or released from hold option also requires you to fill out the two grace period settings. Thus, in order to select this option you need to first select the Update CRL every option and enter a number for the Next update grace period # minutes box.
						



	
						The Cache tab sets whether caching is enabled and the cache frequency.
					

      ⁠[image: CRL Cache Tab]

Figure 6.6. CRL Cache Tab

	
								Enable CRL cache. This checkbox enables the cache, which is used to create delta CRLs. If the cache is disabled, delta CRLs will not be created. For more information about the cache, see Section 6.1, “About Revoking Certificates”.
							

	
								Update cache every. This field sets how frequently the cache is written to the internal database. Set to 0 to have the cache written to the database every time a certificate is revoked.
							

	
								Enable cache recovery. This checkbox allows the cache to be restored.
							

	
								Enable CRL cache testing. This checkbox enables CRL performance testing for specific CRL issuing points. CRLs generated with this option should not be used in deployed CAs, as CRLs issued for testing purposed contain data generated solely for the purpose of performance testing.
							




	
						The Format tab sets the formatting and contents of the CRLs that are created. There are two sections, CRL Format and CRL Contents.
					

      ⁠[image: CRL Format Tab]

Figure 6.7. CRL Format Tab

	
								The CRL Format section has two options: 
									
											Revocation list signing algorithm is a drop down list of allowed ciphers to encrypt the CRL.
										

	
											Allow extensions for CRL v2 is a checkbox which enabled CRL v2 extensions for the issuing point. If this is enabled, set the required CRL extensions described in Section 6.3.3, “Setting CRL Extensions”.
										




								 NOTE


										Extensions must be turned on to create delta CRLs.
									




							

	
								The CRL Contents section has three checkboxes which set what types of certificates to include in the CRL: 
									
											Include expired certificates. This includes revoked certificates that have expired. If this is enabled, information about revoked certificates remains in the CRL after the certificate expires. If this is not enabled, information about revoked certificates is removed when the certificate expires.
										

	
											CA certificates only. This includes only CA certificates in the CRL. Selecting this option creates an Authority Revocation List (ARL), which lists only revoked CA certificates.
										

	
											Certificates issued according to profiles. This only includes certificates that were issued according to the listed profiles; to specify multiple profiles, enter a comma-separated list.
										





							




	
						Click Save.
					

	
						Extensions are allowed for this issuing point and can be configured. See Section 6.3.3, “Setting CRL Extensions” for details.
					





      ⁠6.3.3. Setting CRL Extensions



NOTE


					Extensions only need configured for an issuing point if the Allow extensions for CRLs v2 checkbox is selected for that issuing point.
				



				When the issuing point is created, three extensions are automatically enabled: CRLReason, InvalidityDate, and CRLNumber. Other extensions are available but are disabled by default. These can be enabled and modified. For more information about the available CRL extensions, see Section B.4.2, “Standard X.509 v3 CRL Extensions Reference”.  
			

				To configure CRL extensions, do the following:
			
	
						Open the CA console.
					
pkiconsole https://server.example.com:8443/ca

	
						In the navigation tree, select Certificate Manager, and then select CRL Issuing Points.
					

	
						Select the issuing point name below the Issuing Points entry, and select the CRL Extension entry below the issuing point.
					

						The right pane shows the CRL Extensions Management tab, which lists configured extensions.
					

      ⁠[image: CRL Extensions]

Figure 6.8. CRL Extensions


	
						To modify a rule, select it, and click Edit/View.
					

	
						Most extensions have two options, enabling them and setting whether they are critical. Some require more information. Supply all required values. See Section B.4.2, “Standard X.509 v3 CRL Extensions Reference” for complete information about each extension and the parameters for those extensions.
					

	
						Click OK.
					

	
						Click Refresh to see the updated status of all the rules.
					





      ⁠6.3.4. Generating CRLs from Cache




				By default, CRLs are generated from the CA's internal database. However, revocation information can be collected as the certificates are revoked and kept in memory. This revocation information can then be used to update CRLs from memory. Bypassing the database searches that are required to generate the CRL from the internal database significantly improves performance.
			
NOTE


					Because of the performance enhancement from generating CRLs from cache, enable the enableCRLCache parameter in most environments. However, the Enable CRL cache testing parameter should not be enabled in a production environment.
				



      ⁠6.3.4.1. Configuring CRL Generation from Cache in the Console



	
							Open the console.
						
pkiconsole https://server.example.com:8443/ca

	
							In the Configuration tab, expand the Certificate Manager folder and the CRL Issuing Points subfolder.
						

	
							Select the MasterCRL node.
						
[image: Configuring CRL Generation from Cache in the Console]


	
							Select Enable CRL cache.
						
[image: Configuring CRL Generation from Cache in the Console]

	
							Save the changes.
						







      ⁠6.4. Setting Full and Delta CRL Schedules




			CRLs are generated periodically. Setting that period is touched on in the configuration in Section 6.3.2, “Configuring CRLs for Each Issuing Point”.
		

			CRLs are issued according to a time-based schedule. CRLs can be issued every single time a certificate is revoked, at a specific time of day, or once every so-many minutes.
		

			Time-based CRL generation schedules apply to every CRL that is generated. There are two kinds of CRLs, full CRLs and delta CRLs. A full CRL has a record of every single revoked certificate, whereas delta CRLs contain only the certificates that have been revoked since the last CRL (delta or full) was generated.
		

			By default, full CRLs are generated at every specified interval in the schedule. It is possible space out the time between generating full CRLs by generating interim delta CRLs. The generation interval is configured in the CRL schema, which sets the scheme for generating delta and full CRLs.
		

			If the interval is set to 3, for example, then the first CRL generated will be both a full and delta CRL, then the next two generation updates are delta CRLs only, and then the fourth interval is both a full and delta CRL again. In other words, every third generation interval has both a full CRL and a delta CRL.
		
Interval   1, 2, 3, 4, 5, 6, 7 ...
Full CRL   1        4        7 ...
Delta CRL  1, 2, 3, 4, 5, 6, 7 ...
NOTE


				For delta CRLs to be generated in addition to full CRLs, the CRL cache must be enabled.
			



      ⁠6.4.1. Configuring CRL Update Intervals in the Console



	
						Open the console.
					
pkiconsole https://server.example.com:8443/ca

	
						In the Configuration tab, expand the Certificate Manager folder and the CRL Issuing Points subfolder.
					

	
						Select the MasterCRL node.
					
[image: Configuring CRL Update Intervals in the Console]


	
						Enter the required interval in the Generate full CRL every # delta(s) field.
					
[image: Configuring CRL Update Intervals in the Console]


	
						Set the update frequency, either by specifying the occasion of a certificate revocation, a cyclical interval or set times for the updates to occur:
					
	
								Select the Update CRL every time a certificate is revoked or released from hold checkbox. The Update CRL every time a certificate is revoked or released from hold option also requires you to fill out the two Grace period settings. This is a known issue, and the bug is being tracked in Red Hat Bugzilla.
							

	
								Select the Update CRL every time a certificate is revoked or released from hold checkbox.
							

	
								Select the Update CRL at checkbox and enter specific times separated by commas, such as 01:50,04:55,06:55.
							

      ⁠[image: Configuring CRL Update Intervals in the Console]


	
								Select Update CRL every checkbox and enter the required interval, such as 240.
							

      ⁠[image: Configuring CRL Update Intervals in the Console]





	
						Save the changes.
					



IMPORTANT


					The Update CRL every time a certificate is revoked or released from hold option also requires you to fill out the two grace period settings. This is a known issue, and the bug is being tracked in Red Hat Bugzilla.
				


NOTE


					Schedule drift can occur when updating CRLs by interval. Typically, drift occurs as a result of manual updates and CA restarts.
				

					To prevent schedule drift, select the Update CRL at checkbox and enter a value. The interval updates will resynchronize with the Update CRL at value every 24 hours.
				

      ⁠[image: NOTE]


					Only one Update CRL at value will be accepted when updating CRLs by interval.
				




      ⁠6.4.2. Configuring CRL Generation Schedules over Multiple Days 




				By default, CRL generaton schedules cover 24 hours. Also, by default, when full and delta CRLs are enabled full CRLs occur at specific intervals in place of one or all delta CRLs, i.e., every third update.
			

				To set CRL generation schedules across multiple days, the list of times uses commas to separate times within the same day and a semicolon to delimit days:
			
ca.crl.MasterCRL.dailyUpdates=01:00,03:00,18:00;02:00,05:00,17:00

				This example updates CRLs on day one of the schedule at 01:00, 03:00, and 18:00, and on day two of the schedule at 02:00, 05:00, and 17:00. On day three the cycle starts again.
			
NOTE


					The semicolon indicates a new day. Starting the list with a semicolon results in an initial day where no CRLs are generated. Likewise, ending the list with a semicolon adds a final day to the schedule where no CRLs are generated. Two semicolons together result in a day with no CRL generation.
				



				To set full CRL updates independent of delta updates, the list of times accepts time values prepended with an asterisk to indicate when full CRL updates should occur:
			
ca.crl.MasterCRL.dailyUpdates=01:00,03:00,18:00,*23:00;02:00,05:00,21:00,*23:30

				This example generates delta CRL updates on day one at 01:00, 03:00, and 18:00, with a full and delta CRL update at 23:00. On day two, delta CRLs are updated at 02:00, 05:00, and 21:00, with a full and delta CRL update at 23:30. On day three, the cycle starts again.
			
NOTE


					Both the semicolon and asterisk syntax works in the console.
				





      ⁠6.5. Using the Online Certificate Status Protocol (OCSP) Responder




      ⁠6.5.1. Setting up the OCSP Responder




			If a CA within the security domain is selected when the Online Certificate Status Manager is configured, there is no extra step required to configure the OCSP service. The CA's CRL publishing is set up automatically, and its signing certificate is automatically added and trusted in the Online Certificate Status Manager's certificate database. However, if a non-security domain CA is selected, then the OCSP service must be manually configured after the Online Certificate Status Manager is configured.
		
NOTE


				Not every CA within the security domain to which the OCSP Manager belongs is automatically trusted by the OCSP Manager when it is configured. Every CA in the certificate chain of the CA configured in the CA panel is trusted automatically by the OCSP Manager. Other CAs within the security domain but not in the certificate chain must be trusted manually.
			



			To set up the Online Certificate Status Manager for a Certificate Manager outside the security domain:
		
	
					Configure the CRLs for every CA that will publish to an OCSP responder.
				

	
					Enable publishing, set up a publisher, and set publishing rules in every CA that the OCSP service will handle (Chapter 7, Publishing Certificates and CRLs). This is not necessary if the Certificate Managers publish to an LDAP directory and the Online Certificated Status Manager is set up to read from that directory.
				

	
					The certificate profiles must be configured to include the Authority Information Access extension, pointing to the location at which the Certificate Manager listens for OCSP service requests (Section 6.5.4, “Enabling the Certificate Manager's Internal OCSP Service”).
				

	
					Configure the OCSP Responder.
				
	
							Configure the Revocation Info store (Section 6.5.2.2, “Configure the Revocation Info Stores: Internal Database” and Section 6.5.2.3, “Configure the Revocation Info Stores: LDAP Directory”).
						

	
							Identify every publishing Certificate Manager to the OCSP responder (Section 6.5.2, “Identifying the CA to the OCSP Responder”).
						

	
							If necessary, configure the trust settings for the CA which signed the OCSP signing certificate (Section 14.5, “Changing the Trust Settings of a CA Certificate”).
						




	
					Restart both subsystems after configuring them.
				

	
					Verify that the CA is properly connected to the OCSP responder (Section 6.5.2.1, “Verify Certificate Manager and Online Certificate Status Manager Connection”).
				





      ⁠6.5.2. Identifying the CA to the OCSP Responder




			Before a CA is configured to publish CRLs to the Online Certificate Status Manager, the CA must be identified to the Online Certificate Status Manager by storing the CA signing certificate in the internal database of the Online Certificate Status Manager. The Certificate Manager signs CRLs with the key pair associated with this certificate; the Online Certificate Status Manager verifies the signature against the stored certificate.
		
NOTE


				If a CA within the security domain is selected when the Online Certificate Status Manager is configured, there is no extra step required to configure the Online Certificate Status Manager to recognize the CA; the CA signing certificate is automatically added and trusted in the Online Certificate Status Manager's certificate database. However, if a non-security domain CA is selected, then the CA signing certificate must be manually added to the certificate database after the Online Certificate Status Manager is configured.
			



			It is not necessary to import the certificate chain for a CA which will publish its CRL to the Online Certificate Status Manager. The only time a certificate chain is needed for the OCSP service is if the CA connects to the Online Certificate Status Manager through TLS authentication when it publishes its CRL. Otherwise, the Online Certificate Status Manager does not need to have the complete certificate chain.
		

			However, the Online Certificate Status Manager must have the certificate which signed the CRL, either a CA signing certificate or a separate CRL signing certificate, in its certificate database. The OCSP service verifies the CRL by comparing the certificate which signed the CRL against the certificates in its database, not against a certificate chain. If both a root CA and one of its subordinate CAs publish CRLs to the Online Certificate Status Manager, the Online Certificate Status Manager needs the CA signing certificate of both CAs.
		

			To import the CA or CRL signing certificate which is used to sign the certificates the CA is publishing to the Online Certificate Status Manager, do the following:
		
	
					Get the Certificate Manager's base-64 CA signing certificate from the end-entities page of the CA.
				

	
					Open the Online Certificate Status Manager agent page. The URL has the format https://hostname:SSLport/ocsp/agent/ocsp.
				

	
					In the left frame, click Add Certificate Authority.
				

	
					In the form, paste the encoded CA signing certificate inside the text area labeled Base 64 encoded certificate (including the header and footer).
				

	
					To verify that the certificate is added successfully, in the left frame, click List Certificate Authorities.
				




			The resulting form should show information about the new CA. The This Update, Next Update, and Requests Served Since Startup fields should show a value of zero (0).
		

      ⁠6.5.2.1. Verify Certificate Manager and Online Certificate Status Manager Connection




				When the Certificate Manager is restarted, it tries to connect to the Online Certificate Status Manager's TLS port. To verify that the Certificate Manager did indeed communicate with the Online Certificate Status Manager, check the This Update and Next Update fields, which should be updated with the appropriate timestamps of the CA's last communication with the Online Certificate Status Manager. The Requests Served Since Startup field should still show a value of zero (0) since no client has tried to query the OCSP service for certificate revocation status.
			


      ⁠6.5.2.2. Configure the Revocation Info Stores: Internal Database




				The Online Certificate Status Manager stores each Certificate Manager's CRL in its internal database and uses it as the CRL store for verifying the revocation status of certificates. To change the configuration that the Online Certificate Status Manager uses for storing the CRLs in its internal database:
			
	
						Open the Online Certificate Status Manager Console. 
pkiconsole https://server.example.com:8443/ocsp


					

	
						In the Configuration tab, select Online Certificate Status Manager, and then select Revocation Info Stores.
					
[image: Configure the Revocation Info Stores: Internal Database]


						The right pane shows the two repositories the Online Certificate Status Manager can use; by default, it uses the CRL in its internal database.
					

	
						Select the defStore, and click Edit/View.
					

	
						Edit the defStore values.
					
[image: Configure the Revocation Info Stores: Internal Database]

	
								notFoundAsGood. Sets the OCSP service to return an OCSP response of GOOD if the certificate in question cannot be found in any of the CRLs. If this is not selected, the response is UNKNOWN, which, when encountered by a client, results in an error message.
							

	
								byName. The OCSP Responder only supports the basic response type, which includes the ID of the OCSP Responder making the response. The ResponderID field within the basic response type is determined by the value of the ocsp.store.defStore.byName parameter. If byName parameter is true or is missing, the OCSP authority signing certificate subject name is used as the ResponderID field of the OCSP response. If byName parameter is false, the OCSP authority signing certificate key hash will be the ResponderID field of the OCSP response.
							

	
								includeNextUpdate. Includes the timestamp of the next CRL update time.
							








      ⁠6.5.2.3. Configure the Revocation Info Stores: LDAP Directory




				Although the OCSP Manager stores the CA CRLs in its internal database by default, it can be configured to use a CRL published to an LDAP directory instead.
			
Important


					If the ldapStore method is enabled, the OCSP user interface does not check the certificate status.
				



				To configure the Online Certificate Status Manager to use an LDAP directory:
			
	
						Open the Online Certificate Status Manager Console. 
pkiconsole https://server.example.com:8443/ocsp


					

	
						In the Configuration tab, select Online Certificate Status Manager, and then select Revocation Info Stores.
					
[image: Configure the Revocation Info Stores: LDAP Directory]


						The right pane shows the two repositories the Online Certificate Status Manager can use; by default, it uses the CRL in its internal database.
					

	
						To use the CRLs in LDAP directories, click Set Default to enable the ldapStore option.
					

	
						Select ldapStore, and click Edit/View.
					

	
						Set the ldapStore parameters.
					
[image: Configure the Revocation Info Stores: LDAP Directory]

	
								numConns. The total number of LDAP directories the OCSP service should check. By default, this is set to 0. Setting this value shows the corresponding number of host, port, baseDN, and refreshInSec fields.
							

	
								host. The fully-qualified DNS hostname of the LDAP directory.
							

	
								port. The non-TLS port of the LDAP directory.
							

	
								baseDN. The DN to start searching for the CRL. For example, O=example.com.
							

	
								refreshInSec. How often the connection is refreshed. The default is 86400 seconds (daily).
							

	
								caCertAttr. Leave the default value, cACertificate;binary, as it is. It is the attribute to which the Certificate Manager publishes its CA signing certificate.
							

	
								crlAttr. Leave the default value, certificateRevocationList;binary, as it is. It is the attribute to which the Certificate Manager publishes CRLs.
							

	
								notFoundAsGood. Sets the OCSP service to return an OCSP response of GOOD if the certificate in question cannot be found in any of the CRLs. If this is not selected, the response is UNKNOWN, which, when encountered by a client, results in an error message.
							

	
								byName. The OCSP Responder only supports the basic response type, which includes the ID of the OCSP Responder making the response. The ResponderID field within the basic response type is determined by the value of the ocsp.store.defStore.byName parameter. If byName parameter is true or is missing, the OCSP authority signing certificate subject name is used as the ResponderID field of the OCSP response. If byName parameter is false, the OCSP authority signing certificate key hash will be the ResponderID field of the OCSP response.
							

	
								includeNextUpdate. The Online Certificate Status Manager can include the timestamp of the next CRL update time.
							








      ⁠6.5.2.4. Testing the OCSP Service Setup




				Test whether the Certificate Manager can service OCSP requests properly by doing the following:
			
	
						Turn on revocation checking in the browser or client.
					

	
						Request a certificate from the CA that has been enabled for OCSP services.
					

	
						Approve the request.
					

	
						Download the certificate to the browser or client.
					

	
						Make sure the CA is trusted by the browser or client.
					

	
						Check the status of Certificate Manager's internal OCSP service.
					

						Open the CA agent services page, and select the OCSP Services link.
					

	
						Test the independent Online Certificate Status Manager subsystem.
					

						Open the Online Certificate Status Manager agent services page, and click the List Certificate Authorities link.
					

						The page should show information about the Certificate Manager configured to publish CRLs to the Online Certificate Status Manager. The page also summarizes the Online Certificate Status Manager's activity since it was last started.
					

	
						Revoke the certificate.
					

	
						Verify the certificate in the browser or client. The server should return that the certificate has been revoked.
					

	
						Check the Certificate Manager's OCSP-service status again to verify that these things happened:
					
	
								The browser sent an OCSP query to the Certificate Manager.
							

	
								The Certificate Manager sent an OCSP response to the browser.
							

	
								The browser used that response to validate the certificate and returned its status, that the certificate could not be verified.
							




	
						Check the independent OCSP service subsystem again to verify that these things happened:
					
	
								The Certificate Manager published the CRL to the Online Certificate Status Manager.
							

	
								The browser sent an OCSP response to the Online Certificate Status Manager.
							

	
								The Online Certificate Status Manager sent an OCSP response to the browser.
							

	
								The browser used that response to validate the certificate and returned its status, that the certificate could not be verified.
							









      ⁠6.5.3. Setting the Response for Bad Serial Numbers




			OCSP responders check the revocation status and expiration date of a certificate before determining whether the certificate is valid; by default, the OCSP does not validate other information on the certificate.
		

			The notFoundAsGood parameter sets how the OCSP handles a certificate with an invalid serial number. This parameter is enabled by default, which means that if a certificate is present with a bad serial number but the certificate is otherwise valid, the OCSP returns a status of GOOD for the certificate.
		

			To have the OCSP check and reject certificates based on bad serial numbers as well as revocation status, change the notFoundAsGood setting. In that case, the OCSP returns a status of UNKNOWN with a certificate with a bad serial number. The client interprets that as an error and can respond accordingly.
		
	
					Open the Online Certificate Status Manager Console. 
pkiconsole https://server.example.com:8443/ocsp


				

	
					In the Configuration tab, select Online Certificate Status Manager, and then select Revocation Info Stores.
				
[image: Setting the Response for Bad Serial Numbers]


	
					Select the defStore, and click Edit/View.
				

	
					Edit the notFoundAsGood value. Selecting the checkbox means that the OCSP returns a value of GOOD even if the serial number on the certificate is bad. Unselecting the checkbox means that the OCSP sends a value of UNKNOWN, which the client can intrepret as an error.
				
[image: Setting the Response for Bad Serial Numbers]


	
					Restart the OCSP Manager.
				
systemctl restart pki-tomcatd-nuxwdog@instance_name.service





      ⁠6.5.4. Enabling the Certificate Manager's Internal OCSP Service




			The Certificate Manager has a built-in OCSP service, which can be used by OCSP-compliant clients to query the Certificate Manager directly about the revocation status of the certificate. When the Certificate Manager is installed, an OCSP signing certificate is issued and the OCSP service is turned on by default. This OCSP signing certificate is used to sign all responses to OCSP service requests. Since the internal OCSP service checks the status of certificates stored in the Certificate Manager's internal database, publishing does not have to be configured to use this service.
		

			Clients can query the OCSP service through the non-TLS end-entity port of the Certificate Manager. When queried for the revocation status of a certificate, the Certificate Manager searches its internal database for the certificate, checks its status, and responds to the client. Since the Certificate Manager has real-time status of all certificates it has issued, this method of revocation checking is the most accurate.
		

			Every CA's built-in OCSP service is turned on at installation. However, to use this service, the CA needs to issue certificates with the Authority Information Access extension.
		
	
					Go to the CA's end-entities page. For example:
				
https://server.example.com:8443/ca/ee/ca

	
					Find the CA signing certificate.
				

	
					Look for the Authority Info Access extension in the certificate, and note the Location URIName value, such as https://server.example.com:8443/ca/ocsp.
				

	
					Update the enrollment profiles to enable the Authority Information Access extension, and set the Location parameter to the Certificate Manager's URI. For information on editing the certificate profiles, see Section 3.2, “Setting up Certificate Profiles”.
				

	
					Restart the CA instance.
				
systemctl restart pki-tomcatd-nuxwdog@instance_name.service





      ⁠6.5.5. Submitting OCSP Requests Using the OCSPClient program




			The OCSPClient program can be used for performing OCSP requests. For example:
		
]# OCSPClient -h server.example.com -p 8080 -d /etc/pki/pki-tomcat/alias -c "caSigningCert cert-pki-ca" --serial 2
CertID.serialNumber=2
CertStatus=Good

			The OCSPClient command can be used with the following command-line options:
		

      ⁠Table 6.1. Available OCSPClient Options
	 Option 	 Description 
	 -d database 	 Security database location (default: current directory) 
	 -h hostname 	 OCSP server hostname (default: example.com) 
	 -p port 	 OCSP server port number (default: 8080) 
	 -t path 	 OCSP service path (default: /ocsp/ee/ocsp) 
	 -c nickname 	 CA certificate nickname (defaut: CA Signing Certificate) 
	 -n times 	 Number of submissions (default: 1) 
	 --serial serial_number 	 Serial number of certificate to be checked 
	 --input input_file 	 Input file containing DER-encoded OCSP request 
	 --output output_file 	 Output file to store DER-encoded OCSP response 
	 -v, --verbose 	 Run in verbose mode 
	 --help 	 Show help message 





      ⁠6.5.6. Submitting OCSP Requests Using the GET Method




			OCSP requests which are smaller than 255 bytes can be submitted to the Online Certificate Status Manager using a GET method, as described in RFC 6960. To submit OCSP requests over GET:
		
	
					Generate an OCSP request for the certificate the status of which is being queried. For example:
				
]# openssl ocsp -CAfile ca.pem -issuer issuer.pem -serial serial_number -reqout - | base64 

MEIwQDA+MDwwOjAJBgUrDgMCGgUABBT4cyABkyiCIhU4JpmIBewdDnn8ZgQUbyBZ44kgy35o7xW5BMzM8FTvyTwCAQE=

	
					Paste the URL in the address bar of a web browser to return the status information. The browser must be able to handle OCSP requests.
				
https://server.example.com:8443/ocsp/ee/ocsp/MEIwQDA+MDwwOjAJBgUrDgMCGgUABBT4cyABkyiCIhU4JpmIBewdDnn8ZgQUbyBZ44kgy35o7xW5BMzM8FTvyTwCAQE=

	
					The OCSP Manager responds with the certificate status which the browser can interpret. The possible statuses are GOOD, REVOKED, and UNKNOWN.
				




			Alternatively, run the OCSP from the command line by using a tool such as curl to send the request and openssl to parse the response. For example:
		
	
					Generate an OCSP request for the certificate the status of which is being queried. For example:
				
]# openssl ocsp -CAfile ca.pem -issuer issuer.pem -serial serial_number -reqout - | base64 

MEIwQDA+MDwwOjAJBgUrDgMCGgUABBT4cyABkyiCIhU4JpmIBewdDnn8ZgQUbyBZ44kgy35o7xW5BMzM8FTvyTwCAQE=

	
					Connect to the OCSP Manager using curl to send the OCSP request.
				
curl https://server.example.com:8443/ocsp/ee/ocsp/MEIwQDA+MDwwOjAJBgUrDgMCGgUABBT4cyABkyiCIhU4JpmIBewdDnn8ZgQUbyBZ44kgy35o7xW5BMzM8FTvyTwCAQE= > ocspresp.der

	
					Parse the response using openssl:
				
openssl ocsp -respin ocspresp.der -resp_text







      ⁠Part III. Additional Configuration to Manage CA Services





      ⁠Chapter 7. Publishing Certificates and CRLs



Note


			Features in this section on TMS are not tested in the evaluation. This section is for reference only.
		



		Red Hat Certificate System includes a customizable publishing framework for the Certificate Manager, enabling certificate authorities to publish certificates, certificate revocation lists (CRLs), and other certificate-related objects to any of the supported repositories: an LDAP-compliant directory, a flat file, and an online validation authority. This chapter explains how to configure a Certificate Manager to publish certificates and CRLs to a file, to a directory, and to the Online Certificate Status Manager.
	

		The general process to configure publishing is as follows:
	
	
				Configure publishing to a file, LDAP directory, or OCSP responder.
			

				There can be a single publisher or multiple publishers, depending on how many locations will be used. The locations can be split by certificates and CRLs or narrower definitions, such as certificate type. Rules determine which type to publish and to what location by being associated with the publisher.
			

	
				Set rules to determine what certificates are published to the locations. Any rule which a certificate or CRL matches is activated, so the same certificate can be published to a file and to an LDAP directory by matching a file-based rule and matching a directory-based rule.
			

				Rules can be set for each object type: CA certificates, CRLs, user certificates, and cross-pair certificates. Disable all rules that will not be used.
			

	
				Configure CRLs. CRLs must be configured before they can be published. See Chapter 6, Revoking Certificates and Issuing CRLs.
			

	
				Enable publishing after setting up publishers, mappers, and rules. Once publishing is enabled, the server starts publishing immediately. If the publishers, mappers, and rules are not completely configured, publishing may not work correctly or at all.
			




      ⁠7.1. About Publishing




			The Certificate System is capable of publishing certificates to a file or an LDAP directory and of publishing CRLs to a file, an LDAP directory, or to an OCSP responder.
		

			For additional flexibility, specific types of certificates or CRLs can be published to a single format or all three. For example, CA certificates can be published only to a directory and not to a file, and user certificates can be published to both a file and a directory.
		
NOTE


				An OCSP responder only provides information about CRLs; certificates are not published to an OCSP responder.
			



			Different publishing locations can be set for certificates files and CRL files, as well as different publishing locations for different types of certificates files or different types of CRL files.
		

			Similarly, different types of certificates and different types of CRLs can be published to different places in a directory. For example, certificates for users from the West Coast division of a company can be published in one branch of the directory, while certificates for users in the East Coast division can be published to another branch in the directory.
		

			When publishing is enabled, every time a certificate or a CRL is issued, updated, or revoked, the publishing system is invoked. The certificate or CRL is evaluated by the rules to see if it matches the type and predicate set in the rule. The type specifies if the object is a CRL, CA certificate, or any other certificate. The predicate sets more criteria for the type of object being evaluated. For example, it can specify user certificates, or it can specify West Coast user certificates. To use predicates, a value needs to be entered in the predicate field of the publishing rule, and a corresponding value (although formatted somewhat differently) needs to be contained in the certificate or certificate request to match. The value in the certificate or certificate request may be derived from information in the certificate, such as the type of certificate, or may be derived from a hidden value that is placed in the request form. If no predicate is set, all certificates of that type are considered to match. For example, all CRLs match the rule if CRL is set as the type.
		

			Every rule that is matched publishes the certificate or CRL according to the method and location specified in that rule. A given certificate or CRL can match no rules, one rule, more than one rule, or all rules. The publishing system attempts to match every certificate and CRL issued against all rules.
		

			When a rule is matched, the certificate or CRL is published according to the method and location specified in the publisher associated with that rule. For example, if a rule matches all certificates issued to users, and the rule has a publisher that publishes to a file in the location /etc/CS/certificates, the certificate is published as a file to that location. If another rule matches all certificates issued to users, and the rule has a publisher that publishes to the LDAP attribute userCertificate;binary attribute, the certificate is published to the directory specified when LDAP publishing was enabled in this attribute in the user's entry.
		

			For rules that specify to publish to a file, a new file is created when either a certificate or a CRL is issued in the stipulated directory.
		

			For rules that specify to publish to an LDAP directory, the certificate or CRL is published to the entry specified in the directory, in the attribute specified. The CA overwrites the values for any published certificate or CRL attribute with any subsequent certificate or CRL. Simply put, any existing certificate or CRL that is already published is replaced by the next certificate or CRL.
		

			For rules that specify to publish to an Online Certificate Status Manager, a CRL is published to this manager. Certificates are not published to an Online Certificate Status Manager.
		

			For LDAP publishing, the location of the user's entry needs to be determined. Mappers are used to determine the entry to which to publish. The mappers can contain an exact DN for the entry, some variable that associates information that can be gotten from the certificate to create the DN, or enough information to search the directory for a unique attribute or set of attributes in the entry to ascertain the correct DN for the entry.
		

			When a certificate is revoked, the server uses the publishing rules to locate and delete the corresponding certificate from the LDAP directory or from the filesystem.
		

			When a certificate expires, the server can remove that certificate from the configured directory. The server does not do this automatically; the server must be configured to run the appropriate job.
		

			Setting up publishing involves configuring publishers, mappers, and rules.
		

      ⁠7.1.1. Publishers




				Publishers specify the location to which certificates and CRLs are published. When publishing to a file, publishers specify the filesystem publishing directory. When publishing to an LDAP directory, publishers specify the attribute in the directory that stores the certificate or CRL; a mapper is used to determine the DN of the entry. For every DN, a different formula is set for deriving that DN. The location of the LDAP directory is specified when LDAP publishing is enabled. When publishing a CRL to an OCSP responder, publishers specify the hostname and URI of the Online Certificate Status Manager.
			


      ⁠7.1.2. Mappers




				Mappers are only used in LDAP publishing. Mappers construct the DN for an entry based on information from the certificate or the certificate request. The server has information from the subject name of the certificate and the certificate request and needs to know how to use this information to create a DN for that entry. The mapper provides a formula for converting the information available either to a DN or to some unique information that can be searched in the directory to obtain a DN for the entry.
			


      ⁠7.1.3. Rules




				Rules for file, LDAP, and OCSP publishing tell the server whether and how a certificate or CRL is to be published. A rule first defines what is to be published, a certificate or CRL matching certain characteristics, by setting a type and predicate for the rule. A rule then specifies the publishing method and location by being associated with a publisher and, for LDAP publishing, with a mapper.
			

				Rules can be as simple or complex as necessary for the PKI deployment and are flexible enough to accommodate different scenarios.
			


      ⁠7.1.4. Publishing to Files




				The server can publish certificates and CRLs to flat files, which can then be imported into any repository, such as a relational database. When the server is configured to publish certificates and CRLs to file, the published files are DER-encoded binary blobs, base-64 encoded text blobs, or both.    
			
	
						For each certificate the server issues, it creates a file that contains the certificate in either DER-encoded or base-64 encoded format. Each file is named either cert-serial_number.der or cert-serial_number.b64. The serial_number is the serial number of the certificate contained in the file. For example, the filename for a DER-encoded certificate with the serial number 1234 is cert-1234.der.
					

	
						Every time the server generates a CRL, it creates a file that contains the new CRL in either DER-encoded or base-64 encoded format. Each file is named either issuing_point_name-this_update.der or issuing_point_name-this_update.b64, depending on the format. The issuing_point_name identifies the CRL issuing point which published the CRL, and this_update specifies the value derived from the time-dependent update value for the CRL contained in the file. For example, the filename for a DER-encoded CRL with the value This Update: Friday January 28 15:36:00 PST 2021, is MasterCRL-20210128-153600.der.
					





      ⁠7.1.5. OCSP Publishing




				There are two forms of Certificate System OCSP services, an internal service for the Certificate Manager and the Online Certificate Status Manager. The internal service checks the internal database of the Certificate Manager to report on the status of a certificate. The internal service is not set for publishing; it uses the certificates stored in its internal database to determine the status of a certificate. The Online Certificate Status Manager checks CRLs sent to it by Certificate Manager. A publisher is set for each location a CRL is sent and one rule for each type of CRL sent.
			

				For detailed information on both OCSP services, see Section 6.5, “Using the Online Certificate Status Protocol (OCSP) Responder”.
			


      ⁠7.1.6. LDAP Publishing




				In LDAP publishing, the server publishes the certificates, CRLs, and other certificate-related objects to a directory using LDAP or LDAPS. The branch of the directory to which it publishes is called the publishing directory.  
			
	
						For each certificate the server issues, it creates a blob that contains the certificate in its DER-encoded format in the specified attribute of the user's entry. The certificate is published as a DER encoded binary blob.
					

	
						Every time the server generates a CRL, it creates a blob that contains the new CRL in its DER-encoded format in the specified attribute of the entry for the CA.
					




				The server can publish certificates and CRLs to an LDAP-compliant directory using the LDAP protocol or LDAP over TLS (LDAPS) protocol, and applications can retrieve the certificates and CRLs over HTTP. Support for retrieving certificates and CRLs over HTTP enables some browsers to import the latest CRL automatically from the directory that receives regular updates from the server. The browser can then use the CRL to check all certificates automatically to ensure that they have not been revoked.  
			

				For LDAP publishing to work, the user entry must be present in the LDAP directory.
			

				If the server and publishing directory become out of sync for some reason, privileged users (administrators and agents) can also manually initiate the publishing process. For instructions, see Section 7.11.2, “Manually Updating the CRL in the Directory”.
			



      ⁠7.2. Configuring Publishing to a File




			The general process to configure publishing involves setting up a publisher to publish the certificates or CRLs to the specific location. There can be a single publisher or multiple publishers, depending on how many locations will be used. The locations can be split by certificates and CRLs or finer definitions, such as certificate type. Rules determine which type to publish and to what location by being associated with the publisher.
		

			Publishing to file simply publishes the CRLs or certificates to text files on a given host.
		

			Publishers must be created and configured for each publishing location; publishers are not automatically created for publishing to a file. To publish all files to a single location, create one publisher. To publish to different locations, create a publisher for each location. A location can either contain an object type, like user certificates, or a subset of an object type, like West Coast user certificates.
		

			To create publishers for publishing to files:
		
	
					Log into the Certificate Manager Console.
				
pkiconsole https://server.example.com:8443/ca

	
					In the Configuration tab, select Certificate Manager from the navigation tree on the left. Select Publishing, and then Publishers.
				

					The Publishers Management tab, which lists configured publisher instances, opens on the right.
				
[image: Configuring Publishing to a File]


	
					Click Add to open the Select Publisher Plug-in Implementation window, which lists registered publisher modules.
				
[image: Configuring Publishing to a File]


	
					Select the FileBasedPublisher module, then open the editor window.
				

					This is the module that enables the Certificate Manager to publish certificates and CRLs to files.
				
[image: Configuring Publishing to a File]


	
					Configure the information for publishing the certificate:
				
	
							The publisher ID, an alphanumeric string with no spaces like PublishCertsToFile
						

	
							The path to the directory in which the Certificate Manager should publish the files. The path can be an absolute path or can be relative to the Certificate System instance directory. For example, /export/CS/certificates.
						

	
							The file type to publish, by selecting the checkboxes for DER-encoded files, base-64 encoded files, or both.
						

	
							For CRLs, the format of the timestamp. Published certificates include serial numbers in their file names, while CRLs use timestamps.
						

	
							For CRLs, whether to generate a link in the file to go to the latest CRL. If enabled, the link assumes that the name of the CRL issuing point to use with the extension will be supplied in the crlLinkExt field.
						

	
							For CRLs, whether to compress (zip) CRLs and the compression level to use.
						







			After configuring the publisher, configure the rules for the published certificates and CRLs, as described in Section 7.5, “Creating Rules”.
		


      ⁠7.3. Configuring Publishing to an OCSP




			The general process to configure publishing involves setting up a publisher to publish the certificates or CRLs to the specific location. There can be a single publisher or multiple publishers, depending on how many locations will be used. The locations can be split by certificates and CRLs or finer definitions, such as certificate type. Rules determine which type to publish and to what location by being associated with the publisher.
		

			Publishing to an OCSP Manager is a way to publish CRLs to a specific location for client verification.
		

			A publisher must be created and configured for each publishing location; publishers are not automatically created for publishing to the OCSP responder. Create a single publisher to publish everything to s single location, or create a publisher for every location to which CRLs will be published. Each location can contain a different kind of CRL.
		

      ⁠7.3.1. Enabling Publishing to an OCSP with Client Authentication



	
						Log into the Certificate Manager Console.
					
pkiconsole https://server.example.com:8443/ca

	
						In the Configuration tab, select Certificate Manager from the navigation tree on the left. Select Publishing, and then Publishers.
					
[image: Enabling Publishing to an OCSP with Client Authentication]


	
						Click Add to open the Select Publisher Plug-in Implementation window, which lists registered publisher modules.
					
[image: Enabling Publishing to an OCSP with Client Authentication]


	
						Select the OCSPPublisher module, then open the editor window. This is the publisher module that enables the Certificate Manager to publish CRLs to the Online Certificate Status Manager.
					
[image: Enabling Publishing to an OCSP with Client Authentication]

	
								The publisher ID must be an alphanumeric string with no spaces, like PublishCertsToOCSP.
							

	
								The host can be the fully-qualified domain name, such as ocspResponder.example.com, or an IPv4 or IPv6 address.
							

	
								The default path is the directory to send the CRL to, like /ocsp/agent/ocsp/addCRL.
							

	
								If client authentication is used (enableClientAuth is checked), then the nickname field gives the nickname of the certificate to use for authentication. This certificate must already exist in the OCSP security database; this will usually be the CA subsystem certificate.
							




	
						Create a user entry for the CA on the OCSP Manager. The user is used to authenticate to the OCSP when sending a new CRL. There are two things required:
					
	
								Name the OCSP user entry after the CA server, like CA-hostname-EEport.
							

	
								Use whatever certificate was specified in the publisher configuration as the user certificate in the OCSP user account. This is usually the CA's subsystem certificate.
							




						Setting up subsystem users is covered in Section 12.3.2.1, “Creating Users”.
					




				After configuring the publisher, configure the rules for the published certificates and CRLs, as described in Section 7.5, “Creating Rules”.
			



      ⁠7.4. Configuring Publishing to an LDAP Directory




			The general process to configure publishing involves setting up a publisher to publish the certificates or CRLs to the specific location. There can be a single publisher or multiple publishers, depending on how many locations will be used. The locations can be split by certificates and CRLs or finer definitions, such as certificate type. Rules determine which type to publish and to what location by being associated with the publisher.
		

			Configuring LDAP publishing is similar to other publishing procedures, with additional steps to configure the directory:
		
	
					Configure the Directory Server to which certificates will be published. Certain attributes have to be added to entries and bind identities and authentication methods have to be configured.
				

	
					Configure a publisher for each type of object published: CA certificates, cross-pair certificates, CRLs, and user certificates. The publisher declares in which attribute to store the object. The attributes set by default are the X.500 standard attributes for storing each object type. This attribute can be changed in the publisher, but generally, it is not necessary to change the LDAP publishers.
				

	
					Set up mappers to enable an entry's DN to be derived from the certificate's subject name. This generally does not need set for CA certificates, CRLs, and user certificates. There can be more than one mapper set for a type of certificate. This can be useful, for example, to publish certificates for two sets of users from different divisions of a company who are located in different parts of the directory tree. A mapper is created for each of the groups to specify a different branch of the tree.
				

					For details about setting up mappers, see Section 7.4.3, “Creating Mappers”.
				

	
					Create rules to connect publishers to mappers, as described in Section 7.5, “Creating Rules”.
				

	
					Enable publishing, as described in Section 7.6, “Enabling Publishing”.
				




      ⁠7.4.1. Configuring the LDAP Directory




				Before certificates and CRLs can be published, the Directory Server must be configured to work with the publishing system. This means that user entries must have attributes that allow them to receive certificate information, and entries must be created to represent the CRLs.
			
	
						Set up the entry for the CA. For the Certificate Manager to publish its CA certificate and CRL, the directory must include an entry for the CA.
					
TIP


							When LDAP publishing is configured, the Certificate Manager automatically creates or converts an entry for the CA in the directory. This option is set in both the CA and CRL mapper instances and enabled by default. If the directory restricts the Certificate Manager from creating entries in the directory, turn off this option in those mapper instances, and add an entry for the CA manually in the directory.
						
[image: TIP]




						When adding the CA's entry to the directory, select the entry type based on the DN of the CA:
					
	
								If the CA's DN begins with the cn component, create a new person entry for the CA. Selecting a different type of entry may not allow the cn component to be specified.
							

	
								If the CA's DN begins with the ou component, create a new organizationalunit entry for the CA.
							




						The entry does not have to be in the pkiCA or certificationAuthority object class. The Certificate Manager will convert this entry to the pkiCA or certificationAuthority object class automatically by publishing its CA's signing certificate.
					
NOTE


							The pkiCA object class is defined in RFC 4523, while the certificationAuthority object class is defined in the (obsolete) RFC 2256. Either object class is acceptable, depending on the schema definitions used by the Directory Server. In some situations, both object classes can be used for the same CA entry.
						



						For more information on creating directory entries, see the Red Hat Directory Server documentation.
					

	
						Add the correct schema elements to the CA and user directory entries.
					

						For a Certificate Manager to publish certificates and CRLs to a directory, it must be configured with specific attributes and object classes.  
					
	 Object Type 	 Schema 	 Reason 
	 End-entity certificate 	 userCertificate;binary (attribute) 	 
										This is the attribute to which the Certificate Manager publishes the certificate.
									

									 
										This is a multi-valued attribute, and each value is a DER-encoded binary X.509 certificate. The LDAP object class named inetOrgPerson allows this attribute. The strongAuthenticationUser object class allows this attribute and can be combined with any other object class to allow certificates to be published to directory entries with other object classes. The Certificate Manager does not automatically add this object class to the schema table of the corresponding Directory Server.
									

									 
										If the directory object that it finds does not allow the userCertificate;binary attribute, adding or removing the certificate fails.
									

									 
	 CA certificate 	 caCertificate;binary (attribute) 	 
										This is the attribute to which the Certificate Manager publishes the certificate.
									

									 
										The Certificate Manager publishes its own CA certificate to its own LDAP directory entry when the server starts. The entry corresponds to the Certificate Manager's issuer name.
									

									 
										This is a required attribute of the pkiCA or certificationAuthority object class. The Certificate Manager adds this object class to the directory entry for the CA if it can find the CA's directory entry.
									

									 
	 CRL 	 certificateRevocationList;binary (attribute) 	 
										This is the attribute to which the Certificate Manager publishes the CRL.
									

									 
										The Certificate Manager publishes the CRL to its own LDAP directory entry. The entry corresponds to the Certificate Manager's issuer name.
									

									 
										This is an attribute of the pkiCA or certificationAuthority object class. The value of the attribute is the DER-encoded binary X.509 CRL. The CA's entry must already contain the pkiCA or certificationAuthority object class for the CRL to be published to the entry.
									

									 
	 Delta CRL 	 deltaRevocationList;binary (attribute) 	 
										This is the attribute to which the Certificate Manager publishes the delta CRL. The Certificate Manager publishes the delta CRL to its own LDAP directory entry, separate from the full CRL. The delta CRL entry corresponds to the Certificate Manager's issuer name.
									

									 
										This attribute belongs to the deltaCRL or certificationAuthority-V2 object class. The value of the attribute is the DER-encoded binary X.509 delta CRL.
									

									 



	
						Set up a bind DN for the Certificate Manager to use to access the Directory Server.
					

						The Certificate Manager user must have read-write permissions to the directory to publish certificates and CRLs to the directory so that the Certificate Manager can modify the user entries with certificate-related information and the CA entry with CA's certificate and CRL related information.
					

						The bind DN entry can be either of the following:
					
	
								An existing DN that has write access, such as the Directory Manager.
							

	
								A new user which is granted write access. The entry can be identified by the Certificate Manager's DN, such as cn=testCA, ou=Research Dept, o=Example Corporation, st=California, c=US.
							
NOTE


									Carefully consider what privileges are given to this user. This user can be restricted in what it can write to the directory by creating ACLs for the account. For instructions on giving write access to the Certificate Manager's entry, see the Directory Server documentation.
								






	
						Set the directory authentication method for how the Certificate Manager authenticates to Directory Server. There are three options: basic authentication (simple username and password); TLS without client authentication (simple username and password); and TLS with client authentication (certificate-based).
					

						See the Red Hat Directory Server documentation for instructions on setting up these methods of communication with the server.
					





      ⁠7.4.2. Configuring LDAP Publishers




				The Certificate Manager creates, configures, and enables a set of publishers that are associated with LDAP publishing. The default publishers (for CA certificates, user certificates, CRLs, and cross-pair certificates) already conform to the X.500 standard attributes for storing certificates and CRLs and do not need to be changed.
			

      ⁠Table 7.1. LDAP Publishers
	 Publisher 	 Description 
	 LdapCaCertPublisher 	 Publishes CA certificates to the LDAP directory. 
	 LdapCrlPublisher 	 Publishes CRLs to the LDAP directory. 
	 LdapDeltaCrlPublisher 	 Publishes delta CRLs to the LDAP directory. 
	 LdapUserCertPublisher 	 Publishes all types of end-entity certificates to the LDAP directory. 
	 LdapCrossCertPairPublisher 	 Publishes cross-signed certificates to the LDAP directory. 





      ⁠7.4.3. Creating Mappers




				Mappers are only used with LDAP publishing. Mappers define a relationship between a certificate's subject name and the DN of the directory entry to which the certificate is published. The Certificate Manager needs to derive the DN of the entry from the certificate or the certificate request so it can determine which entry to use. The mapper defines the relationship between the DN for the user entry and the subject name of the certificate or other input information so that the exact DN of the entry can be determined and found in the directory.
			

				When it is configured, the Certificate Manager automatically creates a set of mappers defining the most common relationships. The default mappers are listed in Table 7.2, “Default Mappers”. 
			

      ⁠Table 7.2. Default Mappers
	 Mapper 	 Description 
	 LdapUserCertMap 	 Locates the correct attribute of user entries in the directory in order to publish user certificates. 
	 LdapCrlMap 	 Locates the correct attribute of the CA's entry in the directory in order to publish the CRL. 
	 LdapCaCertMap 	 Locates the correct attribute of the CA's entry in the directory in order to publish the CA certificate. 




				To use the default mappers, configure each of the macros by specifying the DN pattern and whether to create the CA entry in the directory. To use other mappers, create and configure an instance of the mapper. For more information, see Section C.2, “Mapper Plug-in Modules ”.
			
	
						Log into the Certificate Manager Console.
					
pkiconsole https://server.example.com:8443/ca

	
						In the Configuration tab, select Certificate Manager from the navigation tree on the left. Select Publishing, and then Mappers.
					

						The Mappers Management tab, which lists configured mappers, opens on the right.
					
[image: Default Mappers]


	
						To create a new mapper instance, click Add. The Select Mapper Plugin Implementation window opens, which lists registered mapper modules. Select a module, and edit it. For complete information about these modules, see Section C.2, “Mapper Plug-in Modules ”.
					
[image: Default Mappers]


	
						Edit the mapper instance, and click OK.
					
[image: Default Mappers]


						See Section C.2, “Mapper Plug-in Modules ” for detailed information about each mapper.
					





      ⁠7.4.4. Completing Configuration: Rules and Enabling




				After configuring the mappers for LDAP publishing, configure the rules for the published certificates and CRLs, as described in Section 7.5, “Creating Rules”.
			

				Once the configuration is complete, enable publishing, as described in Section 7.6, “Enabling Publishing”.
			



      ⁠7.5. Creating Rules




			Rules determine what certificate object is published in what location. Rules work independently, not in tandem. A certificate or CRL that is being published is matched against every rule. Any rule which it matches is activated. In this way, the same certificate or CRL can be published to a file, to an Online Certificate Status Manager, and to an LDAP directory by matching a file-based rule, an OCSP rule, and matching a directory-based rule.
		

			Rules can be set for each object type: CA certificates, CRLs, user certificates, and cross-pair certificates. The rules can be more detailed for different kinds of certificates or different kinds of CRLs.
		

			The rule first determines if the object matches by matching the type and predicate set up in the rule with the object. Where matching objects are published is determined by the publisher and mapper associated with the rule.
		

			Rules are created for each type of certificate the Certificate Manager issues.
		

			Modify publishing rules by doing the following:
		
	
					Log into the Certificate Manager Console.
				
pkiconsole https://server.example.com:8443/ca

	
					In the Configuration tab, select Certificate Manager from the navigation tree on the left. Select Publishing, and then Rules.
				

					The Rules Management tab, which lists configured rules, opens on the right.
				
[image: Creating Rules]


	
					To edit an existing rule, select that rule from the list, and click Edit. This opens the Rule Editor window.
				
[image: Creating Rules]


	
					To create a rule, click Add. This opens the Select Rule Plug-in Implementation window.
				
[image: Creating Rules]


					Select the Rule module. This is the only default module. If any custom modules have been been registered, they are also available.
				

	
					Edit the rule.
				
[image: Creating Rules]

	
							type. This is the type of certificate for which the rule applies. For a CA signing certificate, the value is cacert. For a cross-signed certificate, the value is xcert. For all other types of certificates, the value is certs. For CRLs, specify crl.
						

	
							predicate. This sets the predicate value for the type of certificate or CRL issuing point to which this rule applies. The predicate values for CRL issuing points, delta CRLs, and certificates are listed in Table 7.3, “Predicate Expressions”.
						

	
							enable.
						

	
							mapper. Mappers are not necessary when publishing to a file; they are only needed for LDAP publishing. If this rule is associated with a publisher that publishes to an LDAP directory, select an appropriate mapper here. Leave blank for all other forms of publishing.
						

	
							publisher. Sets the publisher to associate with the rule.
						







			Table 7.3, “Predicate Expressions” lists the predicates that can be used to identify CRL issuing points and delta CRLs and certificate profiles.
		

      ⁠Table 7.3. Predicate Expressions
	 Predicate Type 	 Predicate 
	 CRL Issuing Point 	 
							issuingPointId==Issuing_Point_Instance_ID && isDeltaCRl==[true|false]
						

						 
							To publish only the master CRL, set isDeltaCRl==false. To publish only the delta CRL, set isDeltaCRl==true. To publish both, set a rule for the master CRL and another rule for the delta CRL.
						

						 
	 Certificate Profile 	 
							profileId==profile_name
						

						 
							To publish certificates based on the profile used to issue them, set profileId== to a profile name, such as caServerCert.
						

						 





      ⁠7.6. Enabling Publishing




			Publishing can be enabled for only files, only LDAP, or both. Publishing should be enabled after setting up publishers, rules, and mappers. Once enabled, the server attempts to begin publishing. If publishing was not configured correctly before being enabled, publishing may exhibit undesirable behavior or may fail.
		
NOTE


				Configure CRLs. CRLs must be configured before they can be published. See Chapter 6, Revoking Certificates and Issuing CRLs.
			


	
					Log into the Certificate Manager Console.
				
pkiconsole https://server.example.com:8443/ca

	
					In the Configuration tab, select Certificate Manager from the navigation tree on the left. Select Publishing.
				

					The right pane shows the details for publishing to an LDAP-compliant directory.
				

	
					To enable publishing to a file only, select Enable Publishing.
				

	
					To enable LDAP publishing, select both Enable Publishing and Enable Default LDAP Connection.
				
[image: NOTE]


					In the Destination section, set the information for the Directory Server instance.
				
	
							Host name. If the Directory Server is configured for TLS client authenticated communication, the name must match the cn component in the subject DN of the Directory Server's TLS server certificate.
						

							The hostname can be the fully-qualified domain name or an IPv4 or IPv6 address.
						

	
							Port number.
						

	
							Directory Manager DN. This is the distinguished name (DN) of the directory entry that has Directory Manager privileges. The Certificate Manager uses this DN to access the directory tree and to publish to the directory. The access control set up for this DN determines whether the Certificate Manager can perform publishing. It is possible to create another DN that has limited read-write permissions for only those attributes that the publishing system actually needs to write.
						

	
							Password. This is the password which the CA uses to bind to the LDAP directory to which the certificate or CRL is published. The Certificate Manager saves this password in its password.conf file. For example:
						
CA LDAP Publishing:password

	
							Client certificate. This sets the certificate the Certificate Manager uses for TLS client authentication to the publishing directory. By default, the Certificate Manager uses its TLS server certificate.
						

	
							LDAP version. Select LDAP version 3.
						

	
							Authentication. The way the Certificate Manager authenticates to the Directory Server. The choices are Basic authentication and TLS client authentication.
						

							If the Directory Server is configured for basic authentication or for TLS communication without client authentication, select Basic authentication and specify values for the Directory manager DN and password.
						

							If the Directory Server is configured for TLS communication with client authentication, select TLS client authentication and the Use TLS communication option, and identify the certificate that the Certificate Manager must use for TLS client authentication to the directory.
						







			The server attempts to connect to the Directory Server. If the information is incorrect, the server displays an error message.
		


      ⁠7.7. Setting up Resumable CRL Downloads




			Certificate System provides option for interrupted CRL downloads to be resumed smoothly. This is done by publishing the CRLs as a plain file over HTTP. This method of downloading CRLs gives flexibility in retrieving CRLs and lowers overall network congestion.
		

      ⁠7.7.1. Retrieving CRLs Using wget




				Because CRLs can be published as a text file over HTTP, they can be manually retrieved from the CA using a tool such as wget. The wget command can be used to retrieve any published CRL. For example, to retrieve a full CRL which is newer than the previous full CRL:
			
[root@server ~]# wget --no-check-certificate -d https://server.example.com:8443/ca/ee/ca/crl/MasterCRL.bin

				The relevant parameters for wget are summarized in Table 7.4, “wget Options to Use for Retrieving CRLs”.
			

      ⁠Table 7.4. wget Options to Use for Retrieving CRLs
	 Argument 	 Description 
	 no argument 	 Retrieves the full CRL. 
	 -N 	 Retrieves the CRL that is newer than the local copy (delta CRL). 
	 -c 	 Retrieves a partially-downloaded file. 
	 --no-check-certificate 	 Skips TLS for the connection, so it is not necessary to configure TLS between the host and client. 
	 -d 	 Prints debug information. 






      ⁠7.8. Publishing Cross-Pair Certificates




			The cross-pair certificates can be published as a crossCertificatePair entry to an LDAP directory or to a file; this is enabled by default. If this has been disabled, it can be re-enabled through the Certificate Manager Console by doing the following:
		
	
					Open the CA console.
				
pkiconsole https://server.example.com:8443/ca

	
					In the Configuration tab, select the Certificate Manager link in the left pane, then the Publishing link.
				

	
					Click the Rules link under Publishing. This opens the Rules Management pane on the right.
				

	
					If the rule exists and has been disabled, select the enable checkbox. If the rule has been deleted, then click Add and create a new rule.
				
	
							Select xcerts from the type drop-down menu.
						

	
							Make sure the enable checkbox is selected.
						

	
							Select LdapCaCertMap from the mapper drop-down menu.
						

	
							Select LdapCrossCertPairPublisher from the publisher drop-down menu.
						







			The mapper and publisher specified in the publishing rule are both listed under Mapper and Publisher under the Publishing link in the left navigation window of the CA Console. The mapper, LdapCaCertMap, by default designates that the crossCertificatePair be stored to the LdapCaSimpleMap LDAP entry. The publisher, LDAPCrossPairPublisher, by default sets the attribute to store the cross-pair certificate in the CA entry to crossCertificatePair;binary.
		


      ⁠7.9. Testing Publishing to Files




			To verify that the Certificate Manager is publishing certificates and CRLs correctly to file:
		
	
					Open the CA's end-entities page, and request a certificate.
				

	
					Approve the request through the agent services page, if required.
				

	
					Retrieve the certificate from the end-entities page, and download the certificate into the browser.
				

	
					Check whether the server generated the DER-encoded file containing the certificate.
				

					Open the directory to which the binary blob of the certificate is supposed to be published. The certificate file should be named cert-serial_number.der.
				

	
					Convert the DER-encoded certificate to its base 64-encoded format using the Binary to ASCII tool. For more information on this tool, refer to the BtoA(1) man page.
				
BtoA input_file output_file

					input_file sets the path to the file that contains the DER-encoded certificate, and output_file sets the path to the file to write the base-64 encoded certificate.
				

	
					Open the ASCII file; the base-64 encoded certificate is similar to the one shown:
				
-----BEGIN CERTIFICATE-----
MMIIBtgYJYIZIAYb4QgIFoIIBpzCCAZ8wggGbMIIBRaADAgEAAgEBMA0GCSqGSIb3DQEBBAUAMFcxC
AJBgNVBAYTAlVTMSwwKgYDVQQKEyNOZXRzY2FwZSBDb21tdW5pY2F0aWhfyyuougjgjjgmkgjkgmjg
fjfgjjjgfyjfyj9ucyBDb3Jwb3JhdGlvbjpMEaMBgGA1UECxMRSXNzdWluZyhgdfhbfdpffjphotoo
gdhkBBdXRob3JpdHkwHhcNOTYxMTA4MDkwNzM0WhcNOTgxMTA4MDkwNzMM0WjBXMQswCQYDVQQGEwJ
VUzEsMCoGA1UEChMjTmV0c2NhcGUgQ29tbXVuaWNhdGlvbnMgQ29ycG9yY2F0aW9ucyBDb3Jwb3Jhd
GlvbjpMEaMBgGA1UECxMRSXNzdWluZyBBdXRob3JpdHkwHh
-----END CERTIFICATE-----

	
					Convert the base 64-encoded certificate to a readable form using the Pretty Print Certificate tool. For more information on this tool, refer to the PrettyPrintCert(1) man page.
				
PrettyPrintCert input_file [output_file]

					input_file sets the path to the ASCII file that contains the base-64 encoded certificate, and output_file, optionally, sets the path to the file to write the certificate. If an output file is not set, the certificate information is written to the standard output.
				

	
					Compare the output with the certificate issued; check the serial number in the certificate with the one used in the filename.
				

					If everything matches, the Certificate Manager is configured correctly to publish certificates to file.
				

	
					Revoke the certificate.
				

	
					Check whether the server generated the DER-encoded file containing the CRL.
				

					Open the directory to which the server is to publish the CRL as a binary blob. The CRL file should have a name in the form crl-this_update.der. this_update specifies the value derived from the time-dependent This Update variable of the CRL.
				

	
					Convert the DER-encoded CRL to its base 64-encoded format using the Binary to ASCII tool.
				
BtoA input_file output_file

	
					Convert the base 64-encoded CRL to readable form using the Pretty Print CRL tool.
				
PrettyPrintCrl input_file [output_file]

	
					Compare the output.
				





      ⁠7.10. Viewing Certificates and CRLs Published to File




			Certificates and CRLs can be published to two types of files: base-64 encoded or DER-encoded. The content of these files can be viewed by converting the files to pretty-print format using the dumpasn1 tool or the PrettyPrintCert or PrettyPrintCrl tool.
		

			To view the content in a base-64 encoded file:
		
	
					Convert the base-64 file to binary. For example:
				
AtoB /tmp/example.b64 /tmp/example.bin

	
					Use the PrettyPrintCert or PrettyPrintCrl tool to convert the binary file to pretty-print format. For example:
				
PrettyPrintCert example.bin example.cert




			To view the content of a DER-encoded file, simply run the dumpasn1, PrettyPrintCert, or PrettyPrintCrl tool with the DER-encoded file. For example:
		
PrettyPrintCrl example.der example.crl


      ⁠7.11. Updating Certificates and CRLs in a Directory




			The Certificate Manager and the publishing directory can become out of sync if certificates are issued or revoked while the Directory Server is down. Certificates that were issued or revoked need to be published or unpublished manually when the Directory Server comes back up.
		

			To find certificates that are out of sync with the directory ‐ valid certificates that are not in the directory and revoked or expired certificates that are still in the directory ‐ the Certificate Manager keeps a record of whether a certificate in its internal database has been published to the directory. If the Certificate Manager and the publishing directory become out of sync, use the Update Directory option in the Certificate Manager agent services page to synchronize the publishing directory with the internal database.
		

			The following choices are available for synchronizing the directory with the internal database:
		
	
					Search the internal database for certificates that are out of sync and publish or unpublish.
				

	
					Publish certificates that were issued while the Directory Server was down. Similarly, unpublish certificates that were revoked or that expired while Directory Server was down.
				

	
					Publish or unpublish a range of certificates based on serial numbers, from serial number xx to serial number yy.
				




			A Certificate Manager's publishing directory can be manually updated by a Certificate Manager agent only. 
		

      ⁠7.11.1. Manually Updating Certificates in the Directory




				The Update Directory Server form in the Certificate Manager agent services page can be used to update the directory manually with certificate-related information. This form initiates a combination of the following operations: 
			
	
						Update the directory with certificates.
					

	
						Remove expired certificates from the directory.
					

						Removing expired certificates from the publishing directory can be automated by scheduling an automated job.
					

	
						Remove revoked certificates from the directory.
					




				Manually update the directory with changes by doing the following:
			
	
						Open the Certificate Manager agent services page.
					

	
						Select the Update Directory Server link.
					

	
						Select the appropriate options, and click Update Directory.
					

						The Certificate Manager starts updating the directory with the certificate information in its internal database. If the changes are substantial, updating the directory can take considerable time. During this period, any changes made through the Certificate Manager, including any certificates issued or any certificates revoked, may not be included in the update. If any certificates are issued or revoked while the directory is updated, update the directory again to reflect those changes.
					




				When the directory update is complete, the Certificate Manager displays a status report. If the process is interrupted, the server logs an error message.
			

				If the Certificate Manager is installed as a root CA, the CA signing certificate may get published using the publishing rule set up for user certificates when using the agent interface to update the directory with valid certificates. This may return an object class violation error or other errors in the mapper. Selecting the appropriate serial number range to exclude the CA signing certificate can avoid this problem. The CA signing certificate is the first certificate a root CA issues.
			
	
						Modify the default publishing rule for user certificates by changing the value of the predicate parameter to profileId!=caCACert.
					

	
						Use the LdapCaCertPublisher publisher plug-in module to add another rule, with the predicate parameter set to profileId=caCACert, for publishing subordinate CA certificates.
					





      ⁠7.11.2. Manually Updating the CRL in the Directory




				The Certificate Revocation List form in the Certificate Manager agent services page manually updates the directory with CRL-related information.
			

				Manually update the CRL information by doing the following:
			
	
						Open the Certificate Manager agent services page.
					

	
						Select Update Revocation List.
					

	
						Click Update.
					




				The Certificate Manager starts updating the directory with the CRL in its internal database. If the CRL is large, updating the directory takes considerable time. During this period, any changes made to the CRL may not be included in the update.
			

				When the directory is updated, the Certificate Manager displays a status report. If the process is interrupted, the server logs an error message.
			




      ⁠Chapter 8. Authentication for Enrolling Certificates




      ⁠8.1. Automatic Approval by an Authentication Plug-in




			The auth.instance_id parameter in a profile specifies the authentication mechanism. A certificate request can either be automatically approved through an authentication plug-in, or be manually approved by a CA agent.
		
Note


				For instructions on how to edit certificate enrollment profiles, see Section 3.2, “Setting up Certificate Profiles”.
			



      ⁠8.1.1. Setting up Auto-approval of Enrollment Requests




				Configuring that enrollment requests are automatically approved depends on the type of requests:
			
	
						For agent-pre-approved CMC requests, set in the CA profile:
					
auth.instance_id=CMCAuth
authz.acl=group="Certificate Manager Agents"

						The authz.acl parameter defines the group that is allowed to approve requests.
					

	
						For user-initiated requests:
					
	
								When using CMC Shared Token, set in the CA profile:
							
auth.instance_id=CMCUserSignedAuth

								Required default and constraint:
							
policyset.cmcUserCertSet.1.constraint.class_id=cmcSharedTokenSubjectNameConstraintImpl
policyset.cmcUserCertSet.1.constraint.name=CMC Shared Token Subject Name Constraint
policyset.cmcUserCertSet.1.default.class_id=authTokenSubjectNameDefaultImpl
policyset.cmcUserCertSet.1.default.name=Subject Name Default

	
								When using User-signed requests, set in the CA profile:
							
auth.instance_id=CMCUserSignedAuth

								Required default and constraint:
							
policyset.cmcUserCertSet.1.default.params.name=
policyset.cmcUserCertSet.9.constraint.class_id=uniqueKeyConstraintImpl
policyset.cmcUserCertSet.9.constraint.name=Unique Key Constraint
policyset.cmcUserCertSet.9.constraint.params.allowSameKeyRenewal=true
policyset.cmcUserCertSet.9.default.class_id=noDefaultImpl
policyset.cmcUserCertSet.9.default.name=No Default







				For details about editing a profile, see Section 3.2, “Setting up Certificate Profiles”.
			


      ⁠8.1.2. CMC Authentication Plug-ins




				Certificate System provides the following authentication plug-ins:
			
	CMCAuth
	
							Use this plug-in when a CA agent signs CMC requests.
						

							To use the CMCAuth plug-in, set the following in the enrollment profile:
						
auth.instance_id=CMCAuth

							By default, the following enrollment profiles use the CMCAuth plug-in:
						
	
									For system certificates:
								
	
											caCMCauditSigningCert
										

	
											caCMCcaCert
										

	
											caCMCECserverCert
										

	
											caCMCECsubsystemCert
										

	
											caCMCECUserCert
										

	
											caCMCkraStorageCert
										

	
											caCMCkraTransportCert
										

	
											caCMCocspCert
										

	
											caCMCserverCert
										

	
											caCMCsubsystemCert
										




	
									For user certificates:
								
	
											caCMCUserCert
										

	
											caECFullCMCUserCert
										

	
											caFullCMCUserCert
										







	CMCUserSignedAuth
	
							Use this plug-in when users submit signed or SharedSecret-based CMC requests.
						

							To use the CMCUserSignedAuth plug-in, set the following in the enrollment profile:
						
auth.instance_id=CMCUserSignedAuth

							A user-signed CMC request must be signed by the user's certificate which contains the same subjectDN attribute as the requested certificate. You can only use a user-signed CMC request if the user already obtained a signing certificate which can be used to prove the user's identity for other certificates.
						

							A SharedSecret-based CMC request means that the request was signed by the private key of the request itself. In this case, the CMC request must use the Shared Secret mechanism for authentication. A SharedSecret-based CMC request is typically used to obtain the user's first signing certificate, which is later used to obtain other certificates. For further details, see Section 8.1.3, “CMC SharedSecret Authentication”.
						

							By default, the following enrollment profiles use the CMCUserSignedAuth plug-in:
						
	
									caFullCMCUserSignedCert
								

	
									caECFullCMCUserSignedCert
								

	
									caFullCMCSharedTokenCert
								

	
									caECFullCMCSharedTokenCert
								








      ⁠8.1.3. CMC SharedSecret Authentication




				Use the Shared Secret feature to enable users to send unsigned CMC requests to the server. For example, this is necessary if a user wants to obtain the first signing certificate. This signing certificate can later be used to sign other certificates of this user.
			

      ⁠8.1.3.1. Creating a Shared Secret Token




					The The Shared Secret Workflow section in the Red Hat Certificate System Planning, Installation, and Deployment Guide (Common Criteria Edition) describes the workflow when using a Shared Secret Token. Depending on the situation, either an end entity user or an administrator creates the Shared Secret Token.
				
Note


						To use the shared secret token, Certificate System must use an RSA issuance protection certificate. For details, see Enabling the CMC Shared Secret Feature section located in RHCS Planning, Installation, and Deployment Guide.
					



					To create a Shared Secret Token, enter:
				
# CMCSharedToken -d /home/user_name/.dogtag/ -p NSS_password \
     -s "CMC_enrollment_password" -o /home/user_name/CMC_shared_token.b64 \
     -n "issuance_protection_certificate_nickname"

					If you use an HSM, additionally pass the -h token_name option to the command to set the HSM security token name.
				

					For further details about the CMCSharedToken utility, see the CMCSharedToken(8) man page.
				
Note


						The generated token is encrypted and only the user who generated knows the password. If a CA administrator generates the token for a user, the administrator must provide the password to the user using a secure way.
					



					After creating the Shared Token, an administrator must add the token to a user or certificate record. For details, see Section 8.1.3.2, “Setting a CMC Shared Secret”.
				


      ⁠8.1.3.2. Setting a CMC Shared Secret




					Depending on the planned action, an administrator must store a Shared Secret Token after generating it in the LDAP entry of the user or certificate.
				

					For details about the workflow and when to use a Shared Secret, see the The Shared Secret Workflow section in the Red Hat Certificate System Planning, Installation, and Deployment Guide (Common Criteria Edition).
				

      ⁠8.1.3.2.1. Adding a CMC Shared Secret to a User Entry for Certificate Enrollment




						To use the Shared Secret Token for certificate enrollment, store it as an administrator in the LDAP entry of the user:
					
# ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user_name,ou=People,dc=example,dc=com
changetype: modify
replace: shrTok
shrTok: base64-encoded_token


					


      ⁠8.1.3.2.2. Adding a CMC Shared Secret to a Certificate for Certificate Revocations




						To use the Shared Secret Token for certificate revocations, store it as an administrator in the LDAP entry of the certificate to be revoked:
					
 # ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=certificate_id,ou=certificateRepository,ou=ca,o=pki-tomcat-CA
changetype: modify
replace: shrTok
shrTok: base64-encoded_token





      ⁠8.2. Manual Approval by a CA Agent




			If manual approval is configured in a CA profile, users can create CMC requests, but requests must be manually approved by a CA agent.
		

			To configure manual agent approval in a CA profile:
		
	
					Set the auth.instance_id to an empty value:
				
auth.instance_id=

	
					Do not set the authz.acl parameter.
				




			For details about editing a profile, see Section 3.2, “Setting up Certificate Profiles”.
		


      ⁠8.3. Manually Reviewing the Certificate Status Using the Command Line




			To review certificate requests, ensure that you are authenticated as an agent with proper permissions to approve certificate requests. For details about configuring the pki command-line interface, see Section 2.5.1.1, “pki CLI Initialization”.
		

			To review the requests:
		
	
					Display the list of pending certificate requests:
				
$ pki agent_authentication_parameters ca-cert-request-find --status pending

					This command lists all pending certificate requests.
				

	
					Download a particular certificate request:
				
$ pki agent_authentication_parameters ca-cert-request-review id --file request.xml

	
					Open the request.xml file in an editor or a separate terminal, and review the contents of the request to ensure it is legitimate. Then answer the prompt: if the request is valid, answer "approve and press Enter. If the request is invalid, answer reject and press Enter. Organizations can subscribe semantic differences to reject and cancel; both result in no certificate being issued.
				





      ⁠8.4. Manually Reviewing the Certificate Status Using the Web Interface



	
					Open the following URL in a web browser:
				
https://server_host_name:8443/ca/agent/ca

	
					Authenticate as an agent. For information about authenticating as a user and configuring your browser, see Section 2.4.1, “Browser Initialization”.
				

	
					On the sidebar on the left, click the List requests link.
				

	
					Filter the requests be selecting Show all requests for Request type and Show pending requests for Request status.
				

	
					Click Find in the lower right corner.
				
[image: Manually Reviewing the Certificate Status Using the Web Interface]


	
					The results page lists all pending requests waiting for review. Click on the request number to review a request.
				

	
					Review the request information and ensure that it is a legitimate request. If necessary, modify the policy information to correct any mistakes or make any desired changes to the certificate, such as changing the not valid after field. Optionally, leave an additional note.
				
[image: Manually Reviewing the Certificate Status Using the Web Interface]


					The drop down menu includes several review status updates. Select Approve request to approve the request or Reject request to deny it, and click Submit. Organizations can subscribe semantic differences to Reject request and Cancel Request; both result in no certificate being issued.
				






      ⁠Chapter 9. Authorization for Enrolling Certificates (Access Evaluators)




		This chapter describes the authorization mechanism using access evaluators.
	
Note


			For instructions on how to edit certificate enrollment profiles, see Section 3.2, “Setting up Certificate Profiles”.
		



      ⁠9.1. Authorization Mechanism




			In addition to the authentication mechanism, each enrollment profile can be configured to have its own authorization mechanism. The authorization mechanism is executed only after a successful authentication.
		

			The authorization mechanism is provided by the Access Evaluator plug-in framework. Access evaluators are pluggable classes that are used for evaluating access control instructions (ACI) entries. The mechanism provides an evaluate method that takes a predefined list of arguments (that is, type, op, value), evaluates an expression such as group='Certificate Manager Agents' and returns a boolean depending on the result of evaluation.
		


      ⁠9.2. Default Evaluators




			Red Hat Certificate System provides four default evaluators.
		
accessEvaluator.impl.group.class=com.netscape.cms.evaluators.GroupAccessEvaluator
accessEvaluator.impl.ipaddress.class=com.netscape.cms.evaluators.IPAddressAccessEvaluator
accessEvaluator.impl.user.class=com.netscape.cms.evaluators.UserAccessEvaluator
accessEvaluator.impl.user_origreq.class=com.netscape.cms.evaluators.UserOrigReqAccessEvaluator

			The group access evaluator evaluates the group membership properties of a user. For example, in the following enrollment profile entry, only the CA agents are allowed to go through enrollment with that profile:
		
authz.acl=group="Certificate Manager Agents"

			The ipaddress access evaluator evaluates the IP address of the requesting subject. For example, in the following enrollment profile entry, only the host bearing the specified IP address can go through enrollment with that profile:
		
authz.acl=ipaddress="a.b.c.d.e.f"

			The user access evaluator evaluates the user ID for exact match. For example, in the following enrollment profile entry, only the user matching the listed user is allowed to go through enrollment with that profile:
		
authz.acl=user="bob"

			The user_origreq access evaluator evaluates the authenticated user against a previous matching request for equality. This special evaluator is designed specifically for renewal purpose to make sure the user requesting the renewal is the same user that owns the original request. For example, in the following renewal enrollment profile entry, the UID of the authenticated user must match the UID of the user requesting the renewal:
		
authz.acl=user_origreq="auth_token.uid"

			New evaluators can be written in the current framework and can be registered through the CS console. The default evaluators can be used as templates to expand and customize into more targeted plug-ins.
		



      ⁠Part IV. Managing the Subsystem Instances





      ⁠Chapter 10. Self Tests




      ⁠10.1. Running Self-Tests




			The Certificate System has the added functionality to allow self-tests of the server. The self-tests are run at start up and can also be run on demand. The startup self-tests run when the server starts and keep the server from starting if a critical self-test fails. The on-demand self-tests are run by clicking the self-tests button in the subsystem console.
		

      ⁠10.1.1. Running Self-Tests




				The on-demand self-test for the CA, OCSP, KRA, or TKS subsystems are run from the console. The on-demand self-tests for the TPS system are run from the web services page.
			

      ⁠10.1.1.1. Running Self-Tests from the Console



	
							Log into the Console.
						
pkiconsole https://server.example.com:admin_port/subsystem_type

	
							Select the subsystem name at the top of the left pane.
						
[image: Running Self-Tests from the Console]


	
							Select the Self Tests tab.
						

	
							Click Run.
						

							The self-tests that are configured for the subsystem will run. If any critical self-tests fail, the server will stop.
						

	
							The On-Demand Self Tests Results window appears, showing the logged events for this run of the self-tests.
						





      ⁠10.1.1.2. Running TPS Self-Tests




					To run TPS self-tests from the command-line interface (CLI):
				
	
							pki tps-selftest-find
						

	
							pki tps-selftest-run
						

	
							pki tps-selftest-show
						







      ⁠10.2. Debugging Self-Tests Failures




			In the event of self-test failure, the Certificate System instance will stop completely and will not respond to any HTTP or HTTPS requests.
		

			To diagnose a manually run self-test failure, refer to the various logs described in Section 10.2.1, “Self-Test Logging”. Often other logs are useful as well, including debug logs. For more information on subsystem logs, refer to Chapter 13, Configuring Subsystem Logs. For more information on debug logs, refer to the Logs section under the Certificate System Architecture Overview in the Red Hat Certificate System Planning, Installation, and Deployment Guide (Common Criteria Edition).
		

			Common causes of self-test failures are services (such as LDAP) are down or unreachable, certificates are expired, or the system configuration is wrong. A precise cause of self-test failure is given in the logs.
		

			After the cause of the self-test failure is identified and fixed, please restart the Certificate System server to resume normal operations:
		
# systemctl restart pki-tomcatd-nuxwdog@instance_name.service

      ⁠10.2.1. Self-Test Logging




				A separate log, selftests.log, is added to the log directory that contains reports for both the start up self-tests and the on-demand self-tests.
			




      ⁠Chapter 11. Managing Certificate/Key Crypto Token




		This chapter contains instructions on how to manage certificate/key token database on the crypto tokens, specifically on how to import and verify certificates for various scenarios.
	

      ⁠About Crypto Tokens

		For information about NSS soft token, please see 2.3.8.1. NSS Soft Token (internal token) in Red Hat Certificate System's Planning, Installation, and Deployment Guide.
	

      ⁠11.1. About certutil and PKICertImport




			The certutil command is provided by Network Security Services (NSS). certutil is used for validating and importing certificates. A basic overview of how we use certutil is presented below, however, PKICertImport is our wrapper script of choice for safely validating and importing certificates. Using certutil to do so requires multiple command invocations and correct usage is outside the scope of this documentation.
		

      ⁠11.1.1. certutil Basic Usage




				certutil [command] [options]
			

				Each certutil invocation takes a command flag, usually denoted by a capital letter, and a series of options which control what the command does. If an option takes a value, that value is named between "<" and ">" symbols.
			


      ⁠11.1.2. PKICertImport Basic Usage




				PKICertImport [options]
			

				Each PKICertImport invocation accepts a series of options to validate and import a specified certificate. Unlike the broad use cases of certutil, PKICertImport is only focused on safely importing and validating certificates. See Section 11.1.4, “Common certutil and PKICertImport Options” for more information about available options.
			
Note


					PKICertImport prompts for the NSS DB and/or HSM passwords multiple times throughout the course of its execution. This is expected as PKICertImport has to interact with the NSS DB multiple times. To avoid having to input the NSS DB password repetitively, specify a password file via -f <filename>. When done, be sure to delete the password file.
				




      ⁠11.1.3. certutil Common Commands




				The following commands are specific to certutil and provide a brief overview of several common commands. PKICertImport is not compatible with nor require these command flags.
			

      ⁠certutil -A

				The -A command denotes "adding" a certificate. It requires a certificate to import (-i), a nickname (-n) for that certificate, and a series of trust flags (-t) for the certificate.
			

      ⁠certutil -V

				The -V command denotes "verifying" a certificate. It requires a certificate nickname to validate (-n) and a type of verification (-u) to perform.
			

      ⁠certutil -D

				The -D command denotes "deleting" a certificate. It requires a certificate nickname (-n) to remove.
			

				Note that it ONLY removes the PUBLIC KEY portion of the certificate, and WILL NOT remove any private keys, if present.
			

      ⁠certutil -M

				The -M command denotes "modifying" a certificate. It requires a certificate nickname (-n) to modify, and a series of trust flags (-t) to give the certificate.
			

      ⁠certutil -L

				The -L command denotes "listing" a certificate or all certificates. If given the nickname option (-n), it will list detailed information about that certificate, else if omitted, it will list general information about all certificates present.
			

				The result of certutil -L would show each certificate by its nickname along with its trust info. For example:
			

      ⁠Table 11.1. Certificate nickname and trust info
	 
								Certificate Nickname
							

							 	
Trust Attributes

										SSL, S/MIME, JAR/XPI




							 
	 
								caSigningCert pki-ca1
							

							 	 
								CT, C, C
							

							 



Note


					The trust attributes displayed by certutil -L correspond to what is specified with the -t option.
				

					The certutil -L does not modify the database, and can thus be executed safely as many times as desired.
				




      ⁠11.1.4. Common certutil and PKICertImport Options




				When following the steps below, ensure the values are relevant and correct for your specific deployment scenario. Many of these options are available to PKICertImport as well.
			

      ⁠-n <nickname>

				The -n <nickname> option specifies the nickname for a certificate. This can be any text and is only used as a reference to the certificate. It MUST be unique.
			

				Update this value as appropriate for your configuration.
			

      ⁠-d <directory>

				The -d <directory> option specifies the path to the NSS DB directory in use. We usually assume you are already in this directory and use "." to refer to the current directory.
			

				Update this value as appropriate for your configuration.
			

      ⁠-t <trust>

				The -t <trust> option specifies the trust level for the certificate.
			

				There are three main categories of trust:
			
	
						trust for TLS
					

	
						trust for email
					

	
						trust for object signing
					




				Each trust position can have one or more trust letters which specify the desired level of trust. The trust letters we use below are c, C, and T.
			
	
						c states that this certificate should be a Certificate Authority (CA).
					

	
						C states that this is a trusted certificate authority for signing server certificates (C implies lowercase c, hence you do not need to specify both).
					

	
						T states that this certificate is a trusted authority for signing client certificates (T implies lowercase c, hence you do not need to specify both T and c).
					




				To specify the trust flags for each position, join the letters with commas. For example, the option -t CT,C,c means that the certificate is trusted for signing client and server TLS certificates, signing server email certificates (S/MIME), and is a valid CA for object signing (though untrusted).
			
	
						This ensures that, if this certificate signs another certificate, which in turn is used for object signing, it will be deemed invalid.
					




				No trust (or the lack of trust) can be specified by using -t ,,.
			

				To see the trust levels of all certificates in the database, run:
			
	
						certutil -L -d
					

	
						Each certificate's nickname will be listed and the trust flags will be specified at the end of the line.
					




				See the notes about HSMs in the -h option.
			

				Note that more trust levels are specified in the certutil manpage. To reference this documentation, please run the man certutil command on a system with certutil properly installed.
			

      ⁠-h <HSM>

				The -h <HSM> option specifies the name of the HSM to perform operations on.
			

				-h option is incompatible with the -t option, as HSMs cannot store trust. Only an NSS DB can store trust, so using the certutil -A command or the certutil -M command in conjunction with -h <HSM> will fail. Instead, specify the desired trust level on a separate certutil -M command without the -h option.
			

				Update this value as appropriate for your configuration.
			

      ⁠-e

				The -e option specifies that the validity of the signature is checked as well, when used in conjunction with the certutil -V command. PKICertImport always performs the certificate signature validation and does not understand the -e option.
			

      ⁠-a

				The -a option specifies that the key in question is in PEM (ASCII) format.
			

      ⁠-i <certificate>

				The -i <certificate> option specifies the path to the certificate. This is only used in the certutil -A command to specify the path to the certificate to import.
			

				Update this value as appropriate for your configuration.
			

      ⁠-u <usage>

				The -u <usage> option specifies that usage of the certificate to verify when used in conjunction with the certutil -V command.
			

				There are several usage letters referenced in the following sections.
			
	
						-u C stands for verify a client TLS certificate. Note that this mostly accepts any certificate, but will check expiration date and signature.
					

	
						-u V stands for verify a server TLS certificate. Note that this will reject CA certificates and will check expiration date and signature.
					

	
						-u L stands for verify a CA TLS certificate. Note that this will validate trust flags (to see if c is present) and will check key usage to ensure that the key is a CA key. This also checks expiration and signatures.
					

	
						-u O stands for verify a OCSP status responder certificate. Note that this checks expiry and signatures.
					

	
						-u J stands for verify an object signing certificate. Note that this checks expiry and signatures.
					




				If the wrong usage option is specified or the trust flags on the certificate are wrong (such as a missing c flag for an CA TLS certificate), certutil -V will give incorrect results.
			
Note


					More usage options are specified in the certutil manpage. To reference this documentation, run the man certutil command on a system with certutil properly installed.
				





      ⁠11.2. Importing a Root Certificate




			First, change directories into the NSS DB:
		
	
					cd /path/to/nssdb
				




			Ensure that your web service is taken offline (stopped, disabled, etc.) while performing these steps and ensure no concurrent access to the NSS DB by other processes (such as a browser). Doing so may corrupt the NSS DB or result in improper usage of these certificates.
		

			When needing to import a new root certificate, ensure you acquire this certificate in a secure manner as it will be able to sign a number of certificates. We assume you already have it in a file named ca_root.crt. Please substitute the correct name and path to this file as appropriate for your scenario.
		

			For more information about the certutil and PKICertImport options used below, see Section 11.1, “About certutil and PKICertImport”.
		

      ⁠To import the root certificate:
	
					Execute PKICertImport -d . -n "CA Root" -t "CT,C,C" -a -i ca_root.crt -u L command.
				

					This command validates and imports the root certificate into your NSS DB. The validation succeeds when no error message is printed and the return code is 0. To check the return code, execute echo $? immediately after executing the previous command above. In most cases, a visual error message is printed. The certificate usually fails to validate because it is expired or because it is not a CA certificate. Therefore, make sure your certificate file is correct and up-to-date. Contact the issuer and ensure that all intermediate and root certificates are present on your system.
				





      ⁠11.3. Importing an Intermediate Certificate Chain




			Before beginning, please change directories into the NSS DB:
		
	
					cd /path/to/nssdb
				




			Ensure that your web service is offline (stopped, disabled, etc.) while performing these steps and ensure no concurrent access to the NSS DB by other processes (such as a browser). Doing so may corrupt the NSS DB or result in improper usage of these certificates.
		

			If you have not imported and trusted the root certificate, see Section 11.2, “Importing a Root Certificate”.
		

			When given a series of intermediate certificates between your root and end server or client certificates, we need to import and validate the signed certificate chain in order from closest to furthest from the root CA certificate. We assume the Intermediate CAs are in files named ca_sub_<num>.crt (for example ca_sub_1.crt, ca_sub_2.crt, and so on). Substitute names and paths for your certificates as appropriate to your deployment.
		
Note


				In the unlikely scenario that you are instead given a single file named fullchain.crt, fullchain.pem, or similar and it contains multiple certificates, split it into the above format by copying each block (between and including the ----BEGIN CERTIFICATE----- and an -----END CERTIFICATE----- markers) to its own file. The first ones should be named ca_sub_<num>.crt and the last will be your server cert named service.crt. Server certificates are discussed in later sections. 

			



			First, we will import and validate any intermediate CAs in order of closest to furthest from the root CA certificate. If you don't have any, you can skip to the next section.
		

			For more information about the certutil and PKICertImport options used below, see Section 11.1, “About certutil and PKICertImport”.
		

      ⁠For every intermediate certificate in the chain:
	
					Execute PKICertImport -d . -n "CA Sub $num" -t "CT,C,C" -a -i ca_sub_$num.crt -u L
				

					This command validates and imports the Intermediate CA certificate into your NSS DB. The validation succeeds when no error message is printed and the return code is 0. To check the return code, execute echo $? immediately after executing the previous command above. In most cases, a visual error message is printed. If the validation does not succeed, contact the issuer and ensure that all intermediate and root certificates are present on your system.
				





      ⁠11.4. Importing a certificate into an NSS Database




			Ensure that your web service is taken offline (stopped, disabled, etc.) while performing these steps and ensure no concurrent access to the NSS database by other processes (such as a browser). Doing so may corrupt the NSS database or result in improper usage of these certificates.
		

			Note that which set of instructions you follow will depend on the usage for the certificate in question.
		
	
					For any subsystem's auditSigningCert, please follow the steps below for validating an object Signing certificate.
				

	
					For the CA subsystem's caSigningCert, please follow the steps above for importing and validating an intermediate certificate chain, but do so only with the caSigningCert.
				

	
					For the CA subsystem's ocspSigningCert, please follow the steps below for validating an OCSP certificate.
				

	
					For user's client or S/MIME certificate, follow the Client Certificate steps.
				




			For more information about the certutil and PKICertImport options used below, see Section 11.1, “About certutil and PKICertImport”.
		

      ⁠Importing a Client Certificate Into the NSS Database

			To import a client certificate into the NSS database:
		
	
					Change into the NSS database directory. For example:
				
# cd /path/to/nssdb/

	
					Import and trust the root certificate, if it is not already imported and trusted. For details, see Section 11.2, “Importing a Root Certificate”.
				

	
					Import and validate the intermediate certificates, if not already imported and validated. For details, see Section 11.3, “Importing an Intermediate Certificate Chain”.
				

	
					Validate and import the client certificate:
				
# PKICertImport -d . -n "client name" -t ",," -a -i client.crt -u C

					The validation succeeds when no error message is printed and the return code is 0. To check the return code, execute echo $? immediately after executing the previous command above. In most cases, a visual error message is printed. If the validation does not succeed, contact the issuer and ensure that all intermediate and root certificates are present on your system.
				




      ⁠Importing an Object Signing Certificate

			To import an object signing certificate:
		
	
					Change into the NSS database directory. For example:
				
# cd /path/to/nssdb/

	
					Import and trust the root certificate, if it is not already imported and trusted. For details, see Section 11.2, “Importing a Root Certificate”.
				

	
					Import and validate the intermediate certificates, if not already imported and validated. For details, see Section 11.3, “Importing an Intermediate Certificate Chain”.
				

	
					Validate and import the object signing certificate:
				
# PKICertImport -d . -n "certificate name" -t ",,P" -a -i objectsigning.crt -u J

					The validation succeeds when no error message is printed and the return code is 0. To check the return code, execute echo $? immediately after executing the previous command above. In most cases, a visual error message is printed. If the validation does not succeed, contact the issuer and ensure that all intermediate and root certificates are present on your system.
				




      ⁠Importing an OCSP Responder

				To import an OCSP responder:
			
	
					Change into the NSS database directory. For example:
				
# cd /path/to/nssdb/

	
					Import and trust the root certificate, if it is not already imported and trusted. For details, see Section 11.2, “Importing a Root Certificate”.
				

	
					Import and validate the intermediate certificates, if not already imported and validated. For details, see Section 11.3, “Importing an Intermediate Certificate Chain”.
				

	
					Validate and import the OCSP responder certificate:
				
# PKICertImport -d . -n "certificate name" -t ",," -a -i ocsp.crt -u O

					The validation succeeds when no error message is printed and the return code is 0. To check the return code, execute echo $? immediately after executing the previous command above. In most cases, a visual error message is printed. If the validation does not succeed, contact the issuer and ensure that all intermediate and root certificates are present on your system.
				






      ⁠Chapter 12. Managing Certificate System Users and Groups




		This chapter explains how to set up authorization for access to the administrative, agent services, and end-entities pages.
	

      ⁠12.1. About Authorization



Note


				The ACLs associated with each group discussed in this section must not be modified.
			



			Authorization is the process of allowing access to certain tasks associated with the Certificate System. Access can be limited to allow certain tasks to certain areas of the subsystem for certain users or groups and different tasks to different users and groups.
		

			Users are specific to the subsystem in which they are created. Each subsystem has its own set of users independent of any other subsystem installed. The users are placed in groups, which can be predefined or user-created. Privileges are assigned to a group through access control lists (ACLs). There are ACLs associated with areas in the administrative console, agent services interface, and end-entities page that perform an authorization check before allowing an operation to proceed. Access control instructions (ACIs) in each of the ACLs are created that specifically allow or deny possible operations for that ACL to specified users, groups, or IP addresses.
		

			The ACLs contain a default set of ACIs for the default groups that are created.
		

			Authorization goes through the following process:
		
	
					The users authenticate to the interface using a certificate.
				

	
					The server authenticates the user by checking the certificate against one stored in the database. The server also checks that the certificate is valid and finds the group membership of the user by associating the DN of the certificate with a user and checking the user entry.
				

	
					When the user tries to perform an operation, the authorization mechanism compares the user ID of the user, the group in which the user belongs, or the IP address of the user to the ACLs set for that user, group, or IP address. If an ACL exists that allows that operation, then the operation proceeds.
				





      ⁠12.2. Default Groups




			A user's privileges are determined by the group (role) membership of the user. There are three groups (roles) that a user can be assigned to:
		
	
					Administrators. This group is given full access to all of the tasks available in the administrative interface.
				

	
					Agents. This group is given full access to all of the tasks available in the agent services interface.
				

	
					Auditors. This group is given access to view the signed audit logs. This group does not have any other privileges.
				




			There is a fourth role that is exclusively created for communication between subsystems. Administrators should never assign a real user to such a role:
		
	
					Enterprise administrators. Each subsystem instance is automatically assigned a subsystem-specific role as an enterprise administrator when it is joined to a security domain during configuration. These roles automatically provide trusted relationships among subsystems in the security domain, so that each subsystem can efficiently carry out interactions with other subsystems.
				




      ⁠12.2.1. Administrators




				Administrators have permissions to perform all administrative tasks. A user is designated or identified as being an administrator by being added to the Administrators group for the group. Every member of that group has administrative privileges for that instance of Certificate System.
			

				At least one administrator must be defined for each Certificate System instance, but there is no limit to the number of administrators an instance can have. The first administrator entry is created when the instance is configured.
			

				Administrators are authenticated with a simple bind using their Certificate System user ID and password. 
			

      ⁠Table 12.1. Security Domain User Roles
	 Role 	 Description 
	 Security Domain Administrators 	 	
										Add and modify users in the security domain's user and group database.
									

	
										Manage the shared trust policies.
									

	
										Manage the access controls on the domain services.
									




							 
								By default, the CA administrator of the CA hosting the domain is assigned as the security domain administrator.
							

							 
	 Enterprise CA Administrators 	 	
										Automatically approve any sub-CA, server, and subsystem certificate from any CA in the domain.
									

	
										Register and unregister CA subsystem information in the security domain.
									




							 
	 Enterprise KRA Administrators 	 	
										Automatically approve any transport, storage, server, and subsystem certificate from any CA in the domain.
									

	
										Register and unregister KRA subsystem information in the security domain.
									

	
										Push KRA connector information to any CA.
									




							 
	 Enterprise OCSP Administrators 	 	
										Automatically approve any OCSP, server, and subsystem certificate from any CA in the domain.
									

	
										Register and unregister OCSP subsystem information in the security domain.
									

	
										Push CRL publishing information to any CA.
									




							 
	 Enterprise TKS Administrators 	 	
										Automatically approve any server and subsystem certificate from any CA in the domain.
									

	
										Register and unregister TKS subsystem information in the security domain.
									




							 
	 Enterprise TPS Administrators 	 	
										Automatically approve any server and subsystem certificate from any CA in the domain.
									

	
										Register and unregister TPS subsystem information in the security domain.
									




							 




				As necessary, the security domain administrator can manage access controls on the security domain and on the individual subsystems. For example, the security domain administrator can restrict access so that only finance department KRA administrators can set up finance department KRAs.
			

				Enterprise subsystem administrators are given enough privileges to perform operations on the subsystems in the domain. For example, an enterprise CA administrator has the privileges to have sub-CA certificates approved automatically during configuration. Alternatively, a security domain administrator can restrict this right if necessary.
			


      ⁠12.2.2. Auditors




				An auditor can view the signed audit logs and is created to audit the operation of the system. The auditor cannot administer the server in any way.
			

				An auditor is created by adding a user to the Auditors group and storing the auditor's certificate in the user entry. The auditor's certificate is used to encrypt the private key of the key pair used to sign the audit log.
			

				The Auditors group is set when the subsystem is configured. No auditors are assigned to this group during configuration.
			


      ⁠12.2.3. Agents




				Agents are users who have been assigned end-entity certificate and key-management privileges. Agents can access the agent services interface.     
			

				Agents are created by assigning a user to the appropriate subsystem agent group and identifying certificates that the agents must use for TLS client authentication to the subsystem for it to service requests from the agents. Each subsystem has its own agent group:
			
	
						The Certificate Manager Agents group.
					

	
						The Key Recovery Authority Agents group.
					

	
						The Online Certificate Status Manager Agents group.
					

	
						The Token Key Service Agents group.
					

	
						The Token Processing System Agents group.
					




				Each Certificate System subsystem has its own agents with roles defined by the subsystem. Each subsystem must have at least one agent, but there is no limit to the number of agents a subsystem can have.
			

				Certificate System identifies and authenticates a user with agent privileges by checking the user's TLS client certificate in its internal database.
			


      ⁠12.2.4. Enterprise Groups



Note


					No real user should ever be asigned to this group.
				



				During subsystem configuration, every subsystem instance is joined to a security domain. Each subsystem instance is automatically assigned a subsystem-specific role as an enterprise administrator. These roles automatically provide trusted relationships among subsystems in the security domain, so that each subsystem can efficiently carry out interactions with other subsystems. For example, this allows OCSPs to push CRL publishing publishing information to all CAs in the domain, KRAs to push KRA connector information, and CAs to approve certificates generated within the CA automatically.
			

				Enterprise subsystem administrators are given enough privileges to perform operations on the subsystems in the domain. Each subsystem has its own security domain role:
			
	
						Enterprise CA Administrators
					

	
						Enterprise KRA Administrators
					

	
						Enterprise OCSP Administrators
					

	
						Enterprise TKS Administrators
					

	
						Enterprise TPS Administrators
					




				Additionally, there is a Security Domain Administrators group for the CA instance which manages the security domain, access control, users, and trust relationships within the domain.
			

				Each subsystem administrator authenticates to the other subsystems using TLS client authentication with the subsystem certificate issued during configuration by the security domain CA.
			



      ⁠12.3. Managing Users and Groups for a CA, OCSP, KRA, or TKS




			Many of the operations that users can perform are dictated by the groups that they belong to; for instance, agents for the CA manage certificates and profiles, while administrators manage CA server configuration.
		

			Four subsystems — the CA, OCSP, KRA, and TKS — use the Java administrative console to manage groups and users. The TPS has web-based admin services, and users and groups are configured through its web service page.
		

      ⁠12.3.1. Managing Groups




      ⁠12.3.1.1. Creating a New Group



	
							Log into the administrative console.
						
pkiconsole https://server.example.com:8443/subsystem_type

	
							Select Users and Groups from the navigation menu on the left.
						

	
							Select the Groups tab.
						

	
							Click Edit, and fill in the group information.
						
[image: Creating a New Group]


							It is only possible to add users who already exist in the internal database.
						

	
							Edit the ACLs to grant the group privileges. See Section 12.4.3, “Editing ACLs” for more information. If no ACIs are added to the ACLs for the group, the group will have no access permissions to any part of Certificate System.
						





      ⁠12.3.1.2. Changing Members in a Group




					Members can be added or deleted from all groups. The group for administrators must have at least one user entry.      
				
	
							Log into the administrative console.
						

	
							Select Users and Groups from the navigation tree on the left.
						

	
							Click the Groups tab.
						

	
							Select the group from the list of names, and click Edit.
						

	
							Make the appropriate changes.
						
	
									To change the group description, type a new description in the Group description field.
								

	
									To remove a user from the group, select the user, and click Delete.
								

	
									To add users, click Add User. Select the users to add from the dialog box, and click OK.
								









      ⁠12.3.2. Managing Users (Administrators, Agents, and Auditors)




				The users for each subsystem are maintained separately. Just because a person is an administrator in one subsystem does not mean that person has any rights (or even a user entry) for another subsystem. Users can be configured and, with their user certificates, trusted as agents, administrators, or auditors for a subsystem.
			

      ⁠12.3.2.1. Creating Users




					After you installed Certificate System, only the user created during the setup exists. This section describes how to create additional users.
				
Note


						For security reasons and audit trails, create individual accounts for Certificate System users and administrators.
					



      ⁠12.3.2.1.1. Creating Users Using the Command Line




						To create a user using the command line:
					

      ⁠	
								Add a user account. For example, to add the example user to the CA:
							
# pki -c password -n caadmin \
     ca-user-add example --fullName "Example User"
---------------------
Added user "example"
---------------------
  User ID: example
  Full name: Example User

								This command uses the caadmin user to add a new account.
							

	
								Optionally, add a user to a group. For example, to add the example user to the Certificate Manager Agents group:
							
# pki -p password -n "caadmin" \
     user-add-membership example Certificate Manager Agents

	
								Create a certificate request:
							
	
										If a Key Recovery Authority (KRA) exists in your Certificate System environment:
									
# CRMFPopClient -d ~/.dogtag/pki-instance_name/ -p password \
     -n "user_name" -q POP_SUCCESS -b kra.transport -w "AES/CBC/PKCS5Padding" \
     -v -o ~/user_name.req

										This command stores the Certificate Signing Request (CSR) in the CRMF format in the ~/user_name.req file.
									

	
										If no Key Recovery Authority (KRA) exists in your Certificate System environment:
									
# PKCS10Client -d ~/.dogtag/pki-instance_name/ -p password \
     -n "user_name" -o ~/user_name.req

										This command stores the CSR in pkcs10 format in the ~/user_name.req file.
									




	
								Create an enrollment request:
							
	
										Create the ~/cmc.role_crmf.cfg file with the following content:
									
#numRequests: Total number of PKCS10 requests or CRMF requests.
numRequests=1

#input: full path for the PKCS10 request or CRMF request,
#the content must be in Base-64 encoded format
#Multiple files are supported. They must be separated by space.
input=~/user_name.req

#output: full path for the CMC request in binary format
output=~/cmc.role_crmf.req

#tokenname: name of token where agent signing cert can be found (default is internal)
tokenname=internal

#nickname: nickname for agent certificate which will be used
#to sign the CMC full request.
nickname=PKI Administrator for Example.com

#dbdir: directory for cert8.db, key3.db and secmod.db
dbdir=~/.dogtag/pki-instance_name/

#password: password for cert8.db which stores the agent
#certificate
password=password

#format: request format, either pkcs10 or crmf
format=crmf

										Set the parameters based on your environment and the CSR format used in the previous step.
									

	
										Pass the previously created configuration file to the CMCRequest utility to create the CMC request:
									
# CMCRequest ~/cmc.role_crmf.cfg



	
								Submit a Certificate Management over CMS (CMC) request:
							
	
										Create the ~/HttpClient_role_crmf.cfg file with the following content:
									
# #host: host name for the http server
host=server.example.com

#port: port number
port=8443

#secure: true for secure connection, false for nonsecure connection
secure=true

#input: full path for the enrollment request, the content must be in binary format
input=~/cmc.role_crmf.req

#output: full path for the response in binary format
output=~/cmc.role_crmf.resp

#tokenname: name of token where TLS client authentication cert can be found (default is internal)
#This parameter will be ignored if secure=false
tokenname=internal

#dbdir: directory for cert8.db, key3.db and secmod.db
#This parameter will be ignored if secure=false
dbdir=~/.dogtag/pki-instance_name/

#clientmode: true for client authentication, false for no client authentication
#This parameter will be ignored if secure=false
clientmode=true

#password: password for cert8.db
#This parameter will be ignored if secure=false and clientauth=false
password=password

#nickname: nickname for client certificate
#This parameter will be ignored if clientmode=false
nickname=PKI Administrator for Example.com

#servlet: servlet name
servlet=/ca/ee/ca/profileSubmitCMCFull


										Set the parameters based on your environment.
									

	
										Submit the request to the CA:
									
# HttpClient ~/HttpClient_role_crmf.cfg
Total number of bytes read = 3776
after SSLSocket created, thread token is Internal Key Storage Token
client cert is not null
handshake happened
writing to socket
Total number of bytes read = 2523
MIIJ1wYJKoZIhvcNAQcCoIIJyDCCCcQCAQMxDzANBglghkgBZQMEAgEFADAxBggr
...
The response in data format is stored in ~/cmc.role_crmf.resp

	
										Verify the result:
									
# CMCResponse ~/cmc.role_crmf.resp
Certificates:
    Certificate:
        Data:
            Version:  v3
            Serial Number: 0xE
            Signature Algorithm: SHA256withRSA - 1.2.840.113549.1.1.11
            Issuer: CN=CA Signing Certificate,OU=pki-instance_name Security Domain
            Validity:
                Not Before: Friday, July 21, 2017 12:06:50 PM PDT America/Los_Angeles
                Not  After: Wednesday, January 17, 2018 12:06:50 PM PST America/Los_Angeles
            Subject: CN=user_name
...
Number of controls is 1
Control #0: CMCStatusInfoV2
   OID: {1 3 6 1 5 5 7 7 25}
   BodyList: 1
   Status: SUCCESS



	
								Optionally, to import the certificate as the user to its own ~/.dogtag/pki-instance_name/ database:
							
# certutil -d ~/.dogtag/pki-instance_name/ -A -t "u,u,u" -n "user_name certificate" -i ~/cmc.role_crmf.resp

	
								Add the certificate to the user record:
							
	
										List certificates issued for the user to discover the certificate's serial number. For example, to list certificates that contain the example user name in the certificate's subject:
									
pki -c password -n caadmin ca-user-cert-find example
-----------------
1 entries matched
-----------------
  Cert ID: 2;6;CN=CA Signing Certificate,O=EXAMPLE;CN=PKI Administrator,E=example@example.com,O=EXAMPLE
  Version: 2
  Serial Number: 0x6
  Issuer: CN=CA Signing Certificate,O=EXAMPLE
  Subject: CN=PKI Administrator,E=example@example.com,O=EXAMPLE
----------------------------
Number of entries returned 1

										The serial number of the certificate is required in the next step.
									

	
										Add the certificate using its serial number from the certificate repository to the user account in the Certificate System database. For example, for a CA user:
									
pki -c password -n caadmin ca-user-cert-add example --serial 0x6







      ⁠12.3.2.1.2. Creating Users Using the Console




						To create a user using the PKI Console:
					
	
								Log into the administrative console.
							
pkiconsole https://server.example.com:8443/subsystem_type

	
								In the Configuration tab, select Users and Groups. Click Add.
							

	
								Fill in the information in the Edit User Information dialog.
							
[image: Creating Users Using the Console]


								Most of the information is standard user information, such as the user's name, email address, and password. This window also contains a field called User State, which can contain any string, which is used to add additional information about the user; most basically, this field can show whether this is an active user.
							

	
								Select the group to which the user will belong. The user's group membership determines what privileges the user has. Assign agents, administrators, and auditors to the appropriate subsystem group.
							

	
								Store the user's certificate.
							
	
										Request a user certificate through the CA end-entities service page.
									

	
										If auto-enrollment is not configured for the user profile, then approve the certificate request.
									

	
										Retrieve the certificate using the URL provided in the notification email, and copy the base-64 encoded certificate to a local file or to the clipboard.
									

	
										Select the new user entry, and click Certificates.
									

	
										Click Import, and paste in the base-64 encoded certificate.
									









      ⁠12.3.2.2. Changing a Certificate System User's Certificate



	
							Log into the administrative console.
						

	
							Select Users and Groups.
						

	
							Select the user to edit from the list of user IDs, and click Certificates.
						

	
							Click Import to add the new certificate.
						

	
							In the Import Certificate window, paste the new certificate in the text area. Include the -----BEGIN CERTIFICATE----- and -----END CERTIFICATE----- marker lines.
						





      ⁠12.3.2.3. Renewing Administrator, Agent, and Auditor User Certificates




					There are two methods of renewing a certificate. Regenerating the certificate takes its original key and its original profile and request, and recreates an identical key with a new validity period and expiration date. Re-keying a certificate resubmits the initial certificate request to the original profile, but generates a new key pair. Administrator certificates can be renewed by being re-keyed.
				

					Each subsystem has a bootstrap administrator user that was created at the time the subsystem was created. A new certificate can be requested for this user before their original one expires, using one of the default renewal profiles.
				

					Certificates for administrative users can be renewed directly in the end user enrollment forms, using the serial number of the original certificate.
				
	
							Renew the admin user certificate. For details, seeSection 5.4, “Renewing Certificates”.
						

	
							Add the renewed user certificate to the user entry in the internal LDAP database.
						
	
									Open the console for the subsystem. 
pkiconsole https://server.example.com:admin_port/subsystem_type


								

	
									Configuration | Users and Groups | Users | admin | Certificates | Import
								

	
									In the Configuration tab, select Users and Groups.
								

	
									In the Users tab, double-click the user entry with the renewed certificate, and click Certificates.
								

	
									Click Import, and paste in the base-64 encoded certificate.
								




							This can also be done by using ldapmodify to add the renewed certification directly to the user entry in the internal LDAP database, by replacing the userCertificate attribute in the user entry, such as uid=admin,ou=people,dc=subsystem-base-DN.
						





      ⁠12.3.2.4. Deleting a Certificate System User




					Users can be deleted from the internal database. Deleting a user from the internal database deletes that user from all groups to which the user belongs. To remove the user from specific groups, modify the group membership.     
				

					Delete a privileged user from the internal database by doing the following:
				
	
							Log into the administrative console.
						

	
							Select Users and Groups from the navigation menu on the left.
						

	
							Select the user from the list of user IDs, and click Delete.
						

	
							Confirm the delete when prompted.
						







      ⁠12.4. Configuring Access Control for Users




			Authorization is the mechanism that checks whether a user is allowed to perform an operation. Authorization points are defined in certain groups of operations that require an authorization check.
		

      ⁠12.4.1. About Access Control




				Access control lists (ACLs) are the mechanisms that specify the authorization to server operations. An ACL exists for each set of operations where an authorization check occurs. Additional operations can be added to a ACL.
			

				The ACL contains access control instructions (ACIs) which specifically allow or deny operations, such as read or modify. The ACI also contains an evaluator expression. The default implementation of ACLs specifies only users, groups, and IP addresses as possible evaluator types. Each ACI in an ACL specifies whether access is allowed or denied, what the specific operator is being allowed or denied, and which users, groups, or IP addresses are being allowed or denied to perform the operation.
			

				The privileges of Certificate System users are changed by changing the access control lists (ACL) that are associated with the group in which the user is a member, for the users themselves, or for the IP address of the user. New groups are assigned access control by adding that group to the access control lists. For example, a new group for administrators who are only authorized to view logs, LogAdmins, can be added to the ACLs relevant to logs to allow read or modify access to this group. If this group is not added to any other ACLs, members of this group only have access to the logs.
			

				The access for a user, group, or IP address is changed by editing the ACI entries in the ACLs. In the ACL interface, each ACI is shown on a line of its own. In this interface window, the ACI has the following syntax:
			
allow|deny (operation) user|group|IP="name"
Note


					The IP address can be an IPv4 or IPv6 address. An IPv4 address must be in the format n.n.n.n or n.n.n.n,m.m.m.m. For example, 128.21.39.40 or 128.21.39.40,255.255.255.00. An IPv6 address uses a 128-bit namespace, with the IPv6 address separated by colons and the netmask separated by periods. For example, 0:0:0:0:0:0:13.1.68.3, FF01::43, 0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:255.255.255.0, and FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FF00:0000.
				



				For example, the following is an ACI that allows administrators to perform read operations:
			
allow (read) group="Administrators"

				An ACI can have more than one operation or action configured. The operations are separated with a comma with no space on either side. For example:
			
allow (read,modify) group="Administrators"

				An ACI can have more than one group, user, or IP address by separating them with two pipe symbols (||) with a space on either side. For example:
			
allow (read) group="Administrators" || group="Auditors"

				The administrative console can create or modify ACIs. The interface sets whether to allow or deny the operation in the Allow and Deny field, sets which operations are possible in the Operations field, and then lists the groups, users, or IP addresses being granted or denied access in the Syntax field.
			

				An ACI can either allow or deny an operation for the specified group, user ID, or IP address. Generally, ACIs do not need to be created to deny access. If there are no allow ACIs that include a user ID, group, or IP address, then the group, user ID, or IP address is denied access.
			
Note


					If a user is not explicitly allowed access to any of the operations for a resource, then this user is considered denied; he does not specifically need to be denied access.
				



				For example, user JohnB is a member of the Administrators group. If an ACL has only the following ACL, JohnB is denied any access since he does not match any of the allow ACIs:
			

Allow (read,modify) group="Auditors" || user="BrianC"


				There usually is no need to include a deny statement. Some situations can arise, however, when it is useful to specify one. For example, JohnB, a member of the Administrators group, has just been fired. It may be necessary to deny access specifically to JohnB if the user cannot be deleted immediately. Another situation is that a user, BrianC, is an administrator, but he should not have the ability to change some resource. Since the Administrators group must access this resource, BrianC can be specifically denied access by creating an ACI that denies this user access.
			

				The allowed rights are the operations which the ACI controls, either by allowing or denying permission to perform the operation. The actions that can be set for an ACL vary depending on the ACL and subsystem. Two common operations that can be defined are read and modify.
			

				The syntax field of the ACI editor sets the evaluator for the expression. The evaluator can specify group, name, and IP address (both IPv4 and IPv6 addresses). These are specified along with the name of the entity set as equals (=) or does not equal (!=).
			

				The syntax to include a group in the ACL is group="groupname". The syntax to exclude a group is group!="groupname", which allows any group except for the group named. For example:
			
group="Administrators" || group!="Auditors"

				It is also possible to use regular expressions to specify the group, such as using wildcard characters like an asterisk (*). For example:
			
group="* Managers"

				For more information on supported regular expression patterns, see https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html.
			

				The syntax to include a user in the ACL is user="userID". The syntax to exclude the user is user!="userID", which allows any user ID except for the user ID named. For example:
			
user="BobC" || user!="JaneK"

				To specify all users, provide the value anybody. For example:
			
user="anybody"

				It is also possible to use regular expressions to specify the user names, such as using wildcard characters like an asterisk (*). For example:
			
user="*johnson"

				For more information on supported regular expression patterns, see https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html.
			

				The syntax to include an IP address in the ACL is ipaddress="ipaddress". The syntax to exclude an ID address from the ACL is ipaddress!="ipaddress". An IP address is specified using its numeric value; DNS values are not permitted. For example:
			
ipaddress="12.33.45.99"
ipaddress!="23.99.09.88"

				The IP address can be an IPv4 address, as shown above, or IPv6 address. An IPv4 address has the format n.n.n.n or n.n.n.n,m.m.m.m with the netmask. An IPv6 address uses a 128-bit namespace, with the IPv6 address separated by colons and the netmask separated by periods. For example:
			
ipaddress="0:0:0:0:0:0:13.1.68.3"

				It is also possible to use regular expressions to specify the IP address, such as using wildcard characters like an asterisk (*). For example:
			
ipaddress="12.33.45.*"

				For more information on supported regular expression patterns, see https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html.
			

				It is possible to create a string with more than one value by separating each value with two pipe characters (||) with a space on either side. For example:
			
user="BobC" || group="Auditors" || group="Administrators"


      ⁠12.4.2. Adding ACLs




				ACLs are stored in the internal database and can only be modified in the administrative console.
			

				To add a new ACL:
			
	
						Log into the administrative console.
					

	
						Select Access Control List.
					
[image: Adding ACLs]


	
						Click Add to open the Access Control Editor.
					

	
						Fill the Resource name and Available rights fields.
					
[image: Adding ACLs]


	
						To add an access control instruction (ACI), click Add, and supply the ACI information.
					
[image: Adding ACLs]

	
								Select the allow or deny radio button from the Access field to allow or deny the operation to the groups, users, or IP addresses specified. For more information about allowing or denying access, see Section 12.4.1, “About Access Control”.
							

	
								Set the rights. The available options are read and modify. To select both, hold the Ctrl or Shift button while selecting the entries.
							

	
								Specify the user, group, or IP address that will be granted or denied access in the Syntax field. See Section 12.4.1, “About Access Control” for details on syntax.
							



	
						Click OK to return to the Access Control Editor window.
					

	
						Click OK to store the ACI.
					





      ⁠12.4.3. Editing ACLs




				ACLs are stored in the internal database and can only be modified in the administrative console.
			

				To edit the existing ACLs:
			
	
						Log into the administrative console.
					

	
						Select Access Control List in the left navigation menu.
					
[image: Editing ACLs]


	
						Select the ACL to edit from the list, and click Edit. 
					

						The ACL opens in the Access Control Editor window.
					
[image: Editing ACLs]


	
						To add an ACI, click Add, and supply the ACI information.
					

						To edit an ACI, select the ACI from the list in the ACI entries text area of the ACL Editor window. Click Edit.
					
[image: Editing ACLs]

	
								Select the allow or deny radio button from the Access field to allow or deny the operation to the groups, users, or IP addresses specified. For more information about allowing or denying access, see Section 12.4.1, “About Access Control”.
							

	
								Set the rights for the access control. The options are read and modify. To set both, use the Ctrl or Shift buttons.
							

	
								Specify the user, group, or IP address that will be granted or denied access in the Syntax field. See Section 12.4.1, “About Access Control” for details on syntax.
							










      ⁠Chapter 13. Configuring Subsystem Logs




		For an overview on logs, see the Logs section under the Certificate System Architecture Overview section in the Red Hat Certificate System 9 Planning, Installation and Deployment Guide (Common Criteria Edition).
	

		For log configuration during the installation and additional information, see the Configuring Logs section in the Red Hat Certificate System 9 Planning, Installation and Deployment Guide (Common Criteria Edition).
	

      ⁠13.1. Managing Logs




			The Certificate System subsystem log files record events related to operations within that specific subsystem instance. For each subsystem, different logs are kept for issues such as installation, access, and web servers.
		

			All subsystems have similar log configuration, options, and administrative paths.
		

      ⁠13.1.1. Configuring Logs in the Console




				Logs can be configured through the subsystem Console. Specialized logs, such as signed audit logs and custom logs, can also be created through the Console or configuration file.
			
	
						In the navigation tree of the Configuration tab, select Log.
					

	
						The Log Event Listener Management tab lists the currently configured listeners.
					

						To create a new log instance, click Add, and select a module plug-in from the list in the Select Log Event Listener Plug-in Implementation window.
					

	
						Set or modify the fields in the Log Event Listener Editor window. The different parameters are listed in Table 13.1, “Log Event Listener Fields”.
					




      ⁠Table 13.1. Log Event Listener Fields
	 Field 	 Description 
	 Log Event Listener ID 	 Gives the unique name that identifies the listener. The names can have any combination of letters (aA to zZ), digits (0 to 9), an underscore (_), and a hyphen (-), but it cannot contain other characters or spaces. 
	 type 	 Gives the type of log file. system creates error and system logs; transaction records audit logs. 
	 enabled 	 Sets whether the log is active. Only enabled logs actually record events. The value is either true or false. 
	 level 	 Sets the log level in the text field. The level must be manually entered in the field; there is no selection menu. The choices are Debug, Information, Warning, Failure, Misconfiguration, Catastrophe, and Security. 
	 fileName 	 Gives the full path, including the file name, to the log file. The subsystem user should have read/write permission to the file. 
	 bufferSize 	 Sets the buffer size in kilobytes (KB) for the log. Once the buffer reaches this size, the contents of the buffer are flushed out and copied to the log file. The default size is 512 KB. 
	 flushInterval 	 Sets the amount of time before the contents of the buffer are flushed out and added to the log file. The default interval is 5 seconds. 
	 maxFileSize 	 Sets the size, in kilobytes (KB), a log file can become before it is rotated. Once it reaches this size, the file is copied to a rotated file, and the log file is started new. The default size is 2000 KB. 
	 rolloverInterval 	 Sets the frequency for the server to rotate the active log file. The available options are hourly, daily, weekly, monthly, and yearly. The default is monthly. 





      ⁠13.1.2. Managing Audit Logs




				The audit log contains audit records for events that have been set up as recordable events. If you enabled the audit log signing option as described in the Enabling and Configuring Signed Audit Logs section in the Red Hat Certificate System 9 Planning, Installation and Deployment Guide (Common Criteria Edition), the audit log is signed with a log signing certificate belonging to the server. This certificate can be used by auditors to verify that the log has not been tampered with.
			
Note


					Signed audit logs are optional. To enable them, please refer to Section 13.1.2.1, “Configuring a Signed Audit Log in the Console”.
				



				By default, regular audit logs are located in the /var/log/pki/instance_name/subsystem_name/ directory with other types of logs, while signed audit logs are written to /var/log/pki/instance_name/subsystem_name/signedAudit/. The default location for logs can be changed by modifying the configuration.
			

				The signed audit log creates a log recording system events, and the events are selected from a list of potential events. When enabled, signed audit logs record a verbose set of messages about the selected event activity.
			

				It is also possible to edit the configuration or change the signing certificates after configuration, as covered in Section 13.1.2.1, “Configuring a Signed Audit Log in the Console”.
			

      ⁠13.1.2.1. Configuring a Signed Audit Log in the Console




					Signed audit logs are configured by default when the instance is first created, but it is possible to edit the configuration or change the signing certificates after the installation.
				
Note


						Provide enough space in the file system for the signed audit logs, since they can be large.
					



					A log is set to a signed audit log by setting the logSigning parameter to enable and providing the nickname of the certificate used to sign the log. A special log signing certificate is created when the subsystems are first configured.
				

					Only a user with auditor privileges can access and view a signed audit log. Auditors can use the AuditVerify tool to verify that signed audit logs have not been tampered with.
				

					The signed audit log is created and enabled when the subsystem is configured, but it needs additional configuration to begin creating and signing audit logs.
				
	
							Open the Console.
						

	
							In the navigation tree of the Configuration tab, select Log.
						

	
							In the Log Event Listener Management tab, select the SignedAudit entry.
						

	
							Click Edit/View.
						

	
							There are two fields which must be reset in the Log Event Listener Editor window.
						
	
									Set the logSigning field to true to enable signed logging.
								
Note


										For more fine-grained audit event select, set audit event filters during the installation configuration. For details, see the Filtering Audit Events section in the Red Hat Certificate System Planning, Installation, and Deployment Guide (Common Criteria Edition).
									



	
									Set any events which are logged to the audit log. Appendix E, Audit Events lists the loggable events. Log events are separated by commas with no spaces.
								




	
							Save the log configuration.
						




					After enabling signed audit logging, assign auditor users by creating the user and assigning that entry to the auditor group. Members of the auditor group are the only users who can view and verify the signed audit log. See Section 12.3.2.1, “Creating Users” for details about setting up auditors.
				

					Auditors can verify logs by using the AuditVerify tool. See the AuditVerify(1) man page for details about using this tool. For further details, see Section 13.2.2, “Using Signed Audit Logs”.
				


      ⁠13.1.2.2. Handling Audit Logging Failures




					There are events that could cause the audit logging function to fail, so events cannot be written to the log. For example, audit logging can fail when the file system containing the audit log file is full or when the file permissions for the log file are accidentally changed.
				

					If log signing is enabled and audit logging fails, the Certificate System instance shuts down in the following manner.
				
	
							Servlets are disabled and will not process new requests.
						

	
							All pending and new requests are killed.
						

	
							The subsystem is shut down.
						




					When this happens, administrators and auditors should work together with the operating system administrator to resolve the disk space or file permission issues. When the IT problem is resolved, the auditor should make sure that the last audit log entries are signed. When this is completed, the administrators can restart the Certificate System.
				




      ⁠13.2. Using Logs




      ⁠13.2.1. Viewing Logs in the Console




				To troubleshoot the subsystem, check the error or informational messages that the server has logged. Examining the log files can also monitor many aspects of the server's operation. Some log files can be viewed through the Console. However, the audit log is only accessible by users with the Auditor role, using a method detailed in Section 13.2.2, “Using Signed Audit Logs”.   
			

				To view the contents of an active or rotated system log file:
			
	
						Log into the Console.
					

	
						Select the Status tab.
					

	
						Under Logs, select the log to view.
					

	
						Set the viewing preferences in the Display Options section.
					
	
								Entries — The maximum number of entries to be displayed. When this limit is reached, the Certificate System returns any entries that match the search request. Zero (0) means no messages are returned. If the field is blank, the server returns every matching entry, regardless of the number found.
							

	
								Source — Select the Certificate System component or service for which log messages are to be displayed. Choosing All means messages logged by all components that log to this file are displayed.
							

	
								Level — Select a message category that represents the log level for filtering messages.
							

	
								Filename — Select the log file to view. Choose Current to view the currently active system log file.
							




	
						Click Refresh.
					

						The table displays the system log entries. The entries are in reverse chronological order, with the most current entry placed at the top. Use the scroll arrows on the right edge of the panel to scroll through the log entries.
					

						Each entry has the following information shown:
					
	
								Source — The component or resource that logged the message.
							

	
								Level — The severity of the corresponding entry.
							

	
								Date — The date on which the entry was logged.
							

	
								Time — The time at which the entry was logged.
							

	
								Details — A brief description of the log.
							




	
						To view a full entry, double-click it, or select the entry, and click View.
					





      ⁠13.2.2. Using Signed Audit Logs




				This section explains how a user in the Auditor group displays and verifies signed audit logs.
			

      ⁠13.2.2.1. Listing Audit Logs




					As a user with auditor privileges, use the the pki subsystem-audit-file-find command to list existing audit log files on the server.
				

					For example, to list the audit log files on the CA hosted on server.example.com:
				
# pki -h server.example.com -p 8443 -n auditor ca-audit-file-find
-----------------
3 entries matched
-----------------
  File name: ca_audit.20170331225716
  Size: 2883

  File name: ca_audit.20170401001030
  Size: 189

  File name: ca_audit
  Size: 6705
----------------------------
Number of entries returned 3
----------------------------

					The command uses the client certificate with the auditor nickname stored in the ~/.dogtag/nssdb/ directory for authenticating to the CA. For further details about the parameters used in the command and alternative authentication methods, see the pki(1) man page.
				


      ⁠13.2.2.2. Downloading Audit Logs




					As a user with auditor privileges, use the pki subsystem-audit-file-retrieve command to download a specific audit log from the server.
				

					For example, to download an audit log file from the CA hosted on server.example.com:
				
	
							Optionally, list the available log files on the CA. See Section 13.2.2.1, “Listing Audit Logs”.
						

	
							Download the log file. For example, to download the ca_audit file:
						
# pki -U https://server.example.com:8443 -n auditor ca-audit-file-retrieve ca_audit

							The command uses the client certificate with the auditor nickname stored in the ~/.dogtag/nssdb/ directory for authenticating to the CA. For further details about the parameters used in the command and alternative authentication methods, see the pki(1) man page.
						




					After downloading a log file, you can search for specific log entries, for example, using the grep utility:
				
# grep "\[AuditEvent=ACCESS_SESSION_ESTABLISH\]" log_file


      ⁠13.2.2.3. Verifying Signed Audit Logs




					If audit log signing is enabled, users with auditor privileges can verify the logs:
				
	
							Initialize the NSS database and import the CA certificate. For details, see the Command-line Initialization section in the Red Hat Certificate System 9 Planning, Installation and Deployment Guide (Common Criteria Edition).
						

	
							If the audit signing certificate does not exist in the PKI client database, import it:
						
	
									Search the audit signing certificate for the subsystem logs you want to verify. For example:
								
# pki ca-cert-find --name "CA Audit Signing Certificate"
---------------
1 entries found
---------------
  Serial Number: 0x5
  Subject DN: CN=CA Audit Signing Certificate,O=EXAMPLE
  Status: VALID
  Type: X.509 version 3
  Key Algorithm: PKCS #1 RSA with 2048-bit key
  Not Valid Before: Fri Jul 08 03:56:08 CEST 2016
  Not Valid After: Thu Jun 28 03:56:08 CEST 2018
  Issued On: Fri Jul 08 03:56:08 CEST 2016
  Issued By: system
----------------------------
Number of entries returned 1
----------------------------


	
									Import the audit signing certificate into the PKI client:
								
# pki client-cert-import "CA Audit Signing Certificate" --serial 0x5 --trust ",,P"
---------------------------------------------------
Imported certificate "CA Audit Signing Certificate"
---------------------------------------------------



	
							Download the audit logs. See Section 13.2.2.2, “Downloading Audit Logs”.
						

	
							Verify the audit logs.
						
	
									Create a text file that contains a list of the audit log files you want to verify in chronological order. For example:
								
# cat > ~/audit.txt << EOF
ca_audit.20170331225716
ca_audit.20170401001030
ca_audit
EOF

	
									Use the AuditVerify utility to verify the signatures. For example:
								
# AuditVerify -d ~/.dogtag/nssdb/ -n "CA Audit Signing Certificate" \
     -a ~/audit.txt
Verification process complete.
Valid signatures: 10
Invalid signatures: 0

									For further details about using AuditVerify, see the AuditVerify(1) man page.
								








      ⁠13.2.3. Displaying Operating System-level Audit Logs



Note


					To see Operating System-level audit logs using the instructions below, the auditd logging framework must be configured per the Enabling OS-level Audit Logs section in the Red Hat Certificate System 9 Planning, Installation and Deployment Guide (Common Criteria Edition).
				



				To display operating system-level access logs, use the ausearch utility as root or as a privileged user with the sudo utility.
			

      ⁠13.2.3.1. Displaying Audit Log Deletion Events




					Since these events are keyed (with rhcs_audit_deletion), use the -k parameter to find events matching that key:
				
# ausearch -k rhcs_audit_deletion


      ⁠13.2.3.2. Displaying Access to the NSS Database for Secret and Private Keys




					Since these events are keyed (with rhcs_audit_nssdb), use the -k parameter to find events matching that key:
				
# ausearch -k rhcs_audit_nssdb


      ⁠13.2.3.3. Displaying Time Change Events




					Since these events are keyed (with rhcs_audit_time_change), use the -k parameter to find events matching that key:
				
# ausearch -k rhcs_audit_time_change


      ⁠13.2.3.4. Displaying Package Update Events




					Since these events are a typed message (of type SOFTWARE_UPDATE), use the -m parameter to find events matching that type:
				
# ausearch -m SOFTWARE_UPDATE


      ⁠13.2.3.5. Displaying Changes to the PKI Configuration




					Since these events are keyed (with rhcs_audit_config), use the -k parameter to find events matching that key:
				
# ausearch -k rhcs_audit_config





      ⁠Chapter 14. Managing Subsystem Certificates




		This chapter gives an overview of using certificates: what types and formats are available, how to request and create them through the HTML end-entity forms and through the Certificate System Console, and how to install certificates in the Certificate System and on different clients. Additionally, there is information on managing certificates through the Console and configuring the servers to use them.
	

      ⁠14.1. Required Subsystem Certificates




			Each subsystem has a defined set of certificates which must be issued to the subsystem instance for it to perform its operations. There are certain details of the certificate contents that are set during the Certificate Manager configuration, with different considerations for constraints, settings, and attributes depending on the types of certificates; planning the formats of certificates is covered in the Types of Certificates section in the Red Hat Certificate System 9 Planning, Installation, and Deployment Guide (Common Criteria Edition).
		

      ⁠14.1.1. Certificate Manager Certificates




				When a Certificate Manager is installed, the keys and requests for the CA signing certificate, TLS server certificate, and OCSP signing certificate are generated. The certificates are created before the configuration can be completed.
			

				The CA certificate request is either submitted as a self-signing request to the CA, which then issues the certificate and finishes creating the self-signed root CA, or is submitted to a third-party public CA or another Certificate System CA. When the external CA returns the certificate, the certificate is installed, and installation of the subordinate CA is completed.
			
	
						Section 14.1.1.1, “CA Signing Key Pair and Certificate”
					

	
						Section 14.1.1.2, “OCSP Signing Key Pair and Certificate”
					

	
						Section 14.1.1.3, “Subsystem Certificate”
					

	
						Section 14.1.1.4, “TLS Server Key Pair and Certificate”
					

	
						Section 14.1.1.5, “Audit Log Signing Key Pair and Certificate”
					




      ⁠14.1.1.1. CA Signing Key Pair and Certificate




					Every Certificate Manager has a CA signing certificate with a public key corresponding to the private key the Certificate Manager uses to sign the certificates and CRLs it issues. This certificate is created and installed when the Certificate Manager is installed. The default nickname for the certificate is caSigningCert cert-instance_ID CA, where instance_ID identifies the Certificate Manager instance. The default validity period for the certificate is five years.    
				

					The subject name of the CA signing certificate reflects the name of the CA that was set during installation. All certificates signed or issued by the Certificate Manager include this name to identify the issuer of the certificate.
				

					The Certificate Manager's status as a root or subordinate CA is determined by whether its CA signing certificate is self-signed or is signed by another CA, which affects the subject name on the certificates.
				
	
							If the Certificate Manager is a root CA, its CA signing certificate is self-signed, meaning the subject name and issuer name of the certificate are the same.
						

	
							If the Certificate Manager is a subordinate CA, its CA signing certificate is signed by another CA, usually the one that is a level above in the CA hierarchy (which may or may not be a root CA). The root CA's signing certificate must be imported into individual clients and servers before the Certificate Manager can be used to issue certificates to them.
						



Note


						The CA name cannot  be changed or all previously-issued certificates are invalidated. Similarly, reissuing a CA signing certificate with a new key pair invalidates all certificates that were signed by the old key pair.
					




      ⁠14.1.1.2. OCSP Signing Key Pair and Certificate




					The subject name of the OCSP signing certificate is in the form cn=OCSP cert-instance_ID CA, and it contains extensions, such as OCSPSigning and OCSPNoCheck, required for signing OCSP responses.
				

					The default nickname for the OCSP signing certificate is ocspSigningCert cert-instance_ID, where instance_ID CA identifies the Certificate Manager instance.  
				

					The OCSP private key, corresponding to the OCSP signing certificate's public key, is used by the Certificate Manager to sign the OCSP responses to the OCSP-compliant clients when queried about certificate revocation status.
				


      ⁠14.1.1.3. Subsystem Certificate




					Every member of the security domain is issued a server certificate to use for communications among other domain members, which is separate from the server TLS certificate. This certificate is signed by the security domain CA; for the security domain CA itself, its subsystem certificate is signed by itself.
				

					The default nickname for the certificate is subsystemCert cert-instance_ID.
				


      ⁠14.1.1.4. TLS Server Key Pair and Certificate




					Every Certificate Manager has at least one TLS server certificate that was first generated when the Certificate Manager was installed. The default nickname for the certificate is Server-Cert cert-instance_ID, where instance_ID identifies the Certificate Manager instance.    
				

					By default, the Certificate Manager uses a single TLS server certificate for authentication. However, additional server certificates can be requested to use for different operations, such as configuring the Certificate Manager to use separate server certificates for authenticating to the end-entity services interface and agent services interface.
				

					If the Certificate Manager is configured for TLS-enabled communication with a publishing directory, it uses its TLS server certificate for client authentication to the publishing directory by default. The Certificate Manager can also be configured to use a different certificate for TLS client authentication.
				


      ⁠14.1.1.5. Audit Log Signing Key Pair and Certificate




					The CA keeps a secure audit log of all events which occurred on the server. To guarantee that the audit log has not been tampered with, the log file is signed by a special log signing certificate.
				

					The audit log signing certificate is issued when the server is first configured.
				
Note


						While other certificates can use ECC keys, the audit signing certificate must always use an RSA key.
					





      ⁠14.1.2. Online Certificate Status Manager Certificates




				When the Online Certificate Status Manager is first configured, the keys for all required certificates are created, and the certificate requests for the OCSP signing, TLS server, audit log signing, and subsystem certificates are made. These certificate requests are submitted to a CA (either a Certificate System CA or a third-party CA) and must be installed in the Online Certificate Status Manager database to complete the configuration process.
			
	
						Section 14.1.2.2, “TLS Server Key Pair and Certificate”
					

	
						Section 14.1.2.3, “Subsystem Certificate”
					

	
						Section 14.1.2.4, “Audit Log Signing Key Pair and Certificate”
					

	
						Section 14.1.2.5, “Recognizing Online Certificate Status Manager Certificates”
					




      ⁠14.1.2.1. OCSP Signing Key Pair and Certificate




					Every Online Certificate Status Manager has a certificate, the OCSP signing certificate, which has a public key corresponding to the private key the Online Certificate Status Manager uses to sign OCSP responses. The Online Certificate Status Manager's signature provides persistent proof that the Online Certificate Status Manager has processed the request. This certificate is generated when the Online Certificate Status Manager is configured. The default nickname for the certificate is ocspSigningCert cert-instance_ID, where instance_ID OSCP is the Online Certificate Status Manager instance name.    
				


      ⁠14.1.2.2. TLS Server Key Pair and Certificate




					Every Online Certificate Status Manager has at least one TLS server certificate which was generated when the Online Certificate Status Manager was configured. The default nickname for the certificate is Server-Cert cert-instance_ID, where instance_ID identifies the Online Certificate Status Manager instance name.    
				

					The Online Certificate Status Manager uses its server certificate for server-side authentication for the Online Certificate Status Manager agent services page.
				

					The Online Certificate Status Manager uses a single server certificate for authentication purposes. Additional server certificates can be installed and used for different purposes.
				


      ⁠14.1.2.3. Subsystem Certificate




					Every member of the security domain is issued a server certificate to use for communications among other domain members, which is separate from the server TLS certificate. This certificate is signed by the security domain CA.
				

					The default nickname for the certificate is subsystemCert cert-instance_ID.
				


      ⁠14.1.2.4. Audit Log Signing Key Pair and Certificate




					The OCSP keeps a secure audit log of all events which occurred on the server. To guarantee that the audit log has not been tampered with, the log file is signed by a special log signing certificate.
				

					The audit log signing certificate is issued when the server is first configured.
				
Note


						While other certificates can use ECC keys, the audit signing certificate must always use an RSA key.
					




      ⁠14.1.2.5. Recognizing Online Certificate Status Manager Certificates




					Depending on the CA which signed the Online Certificate Status Manager's TLS server certificate, it may be necessary to get the certificate and issuing CA recognized by the Certificate Manager.
				
	
							If the Online Certificate Status Manager's server certificate is signed by the CA that is publishing CRLs, then nothing needs to be done.
						

	
							If the Online Certificate Status Manager's server certificate is signed by the same root CA that signed the subordinate Certificate Manager's certificates, then the root CA must be marked as a trusted CA in the subordinate Certificate Manager's certificate database.
						

	
							If the Online Certificate Status Manager's TLS server certificate is signed by a different root CA, then the root CA certificate must be imported into the subordinate Certificate Manager's certificate database and marked as a trusted CA.
						




					If the Online Certificate Status Manager's server certificate is signed by a CA within the selected security domain, the certificate chain is imported and marked when the Online Certificate Status Manager is configured. No other configuration is required. However, if the server certificate is signed by an external CA, the certificate chain has to be imported for the configuration to be completed.
				
Note


						Not every CA within the security domain is automatically trusted by the OCSP Manager when it is configured. Every CA in the certificate chain of the CA configured in the CA panel is, however, trusted automatically by the OCSP Manager. Other CAs within the security domain but not in the certificate chain must be added manually.
					





      ⁠14.1.3. Key Recovery Authority Certificates




				The KRA uses the following key pairs and certificates: 
			
	
						Section 14.1.3.1, “Transport Key Pair and Certificate”
					

	
						Section 14.1.3.2, “Storage Key Pair”
					

	
						Section 14.1.3.3, “TLS Server Certificate”
					

	
						Section 14.1.3.4, “Subsystem Certificate”
					

	
						Section 14.1.3.5, “Audit Log Signing Key Pair and Certificate”
					




      ⁠14.1.3.1. Transport Key Pair and Certificate




					Every KRA has a transport certificate. The public key of the key pair that is used to generate the transport certificate is used by the client software to encrypt an end entity's private encryption key before it is sent to the KRA for archival; only those clients capable of generating dual-key pairs use the transport certificate.  
				


      ⁠14.1.3.2. Storage Key Pair




					Every KRA has a storage key pair.   The KRA uses the public component of this key pair to encrypt (or wrap) private encryption keys when archiving the keys. It uses the private component to decrypt (or unwrap) the archived key during recovery. For more information on how this key pair is used, see Chapter 4, Setting up Key Archival and Recovery.
				

					Keys encrypted with the storage key can be retrieved only by authorized key recovery agents.
				


      ⁠14.1.3.3. TLS Server Certificate




					Every Certificate System KRA has at least one TLS server certificate. The first TLS server certificate is generated when the KRA is configured. The default nickname for the certificate is Server-Cert cert-instance_ID, where instance_id identifies the KRA instance is installed.
				

					The KRA's TLS server certificate was issued by the CA to which the certificate request was submitted, which can be a Certificate System CA or a third-party CA. To view the issuer name, open the certificate details in the System Keys and Certificates option in the KRA Console.
				

					The KRA uses its TLS server certificate for server-side authentication to the KRA agent services interface. By default, the Key Recovery Authority uses a single TLS server certificate for authentication. However, additional TLS server certificates can be requested and installed for the KRA.
				


      ⁠14.1.3.4. Subsystem Certificate




					Every member of the security domain is issued a server certificate to use for communications among other domain members, which is separate from the server TLS certificate. This certificate is signed by the security domain CA.
				

					The default nickname for the certificate is subsystemCert cert-instance_ID.
				


      ⁠14.1.3.5. Audit Log Signing Key Pair and Certificate




					The KRA keeps a secure audit log of all events which occurred on the server. To guarantee that the audit log has not been tampered with, the log file is signed by a special log signing certificate.
				

					The audit log signing certificate is issued when the server is first configured.
				
Note


						While other certificates can use ECC keys, the audit signing certificate must always use an RSA key.
					





      ⁠14.1.4. TKS Certificates




				The TKS has three certificates. The TLS server and subsystem certificates are used for standard operations. An additional signing certificate is used to protect audit logs.
			
	
						Section 14.1.4.1, “TLS Server Certificate”
					

	
						Section 14.1.4.2, “Subsystem Certificate”
					

	
						Section 14.1.4.3, “Audit Log Signing Key Pair and Certificate”
					




      ⁠14.1.4.1. TLS Server Certificate




					Every Certificate System TKS has at least one TLS server certificate. The first TLS server certificate is generated when the TKS is configured. The default nickname for the certificate is Server-Cert cert-instance_ID.
				


      ⁠14.1.4.2. Subsystem Certificate




					Every member of the security domain is issued a server certificate to use for communications among other domain members, which is separate from the server TLS certificate. This certificate is signed by the security domain CA.
				

					The default nickname for the certificate is subsystemCert cert-instance_ID.
				


      ⁠14.1.4.3. Audit Log Signing Key Pair and Certificate




					The TKS keeps a secure audit log of all events which occurred on the server. To guarantee that the audit log has not been tampered with, the log file is signed by a special log signing certificate.
				

					The audit log signing certificate is issued when the server is first configured.
				
Note


						While other certificates can use ECC keys, the audit signing certificate must always use an RSA key.
					





      ⁠14.1.5. TPS Certificates




				The TPS only uses three certificates: a server certificate, subsystem certificate, and audit log signing certificate.
			
	
						Section 14.1.5.1, “TLS Server Certificate”
					

	
						Section 14.1.5.2, “Subsystem Certificate”
					

	
						Section 14.1.5.3, “Audit Log Signing Key Pair and Certificate”
					




      ⁠14.1.5.1. TLS Server Certificate




					Every Certificate System TPS has at least one TLS server certificate. The first TLS server certificate is generated when the TPS is configured. The default nickname for the certificate is Server-Cert cert-instance_ID.
				


      ⁠14.1.5.2. Subsystem Certificate




					Every member of the security domain is issued a server certificate to use for communications among other domain members, which is separate from the server TLS certificate. This certificate is signed by the security domain CA.
				

					The default nickname for the certificate is subsystemCert cert-instance_ID.
				


      ⁠14.1.5.3. Audit Log Signing Key Pair and Certificate




					The TPS keeps a secure audit log of all events which occurred on the server. To guarantee that the audit log has not been tampered with, the log file is signed by a special log signing certificate.
				

					The audit log signing certificate is issued when the server is first configured.
				



      ⁠14.1.6. About Subsystem Certificate Key Types




				When you create a new instance, you can specify the key type and key size in the configuration file passed to the pkispawn utility.
			

      ⁠Example 14.1. Key Type-related Configuration Parameters for a CA

					The following are key type-related parameters including example values. You can set these parameters in the configuration file which you pass to pkispawn when creating a new CA.
				
pki_ocsp_signing_key_algorithm=SHA256withRSA
pki_ocsp_signing_key_size=2048
pki_ocsp_signing_key_type=rsa

pki_ca_signing_key_algorithm=SHA256withRSA
pki_ca_signing_key_size=2048
pki_ca_signing_key_type=rsa

pki_sslserver_key_algorithm=SHA256withRSA
pki_sslserver_key_size=2048
pki_sslserver_key_type=rsa

pki_subsystem_key_algorithm=SHA256withRSA
pki_subsystem_key_size=2048
pki_subsystem_key_type=rsa

pki_admin_keysize=2048
pki_admin_key_size=2048
pki_admin_key_type=rsa

pki_audit_signing_key_algorithm=SHA256withRSA
pki_audit_signing_key_size=2048
pki_audit_signing_key_type=rsa


Note


					The values in the example are for a CA. Other subsystems require different parameters.
				



				For further details, see:
			
	
						The Understanding the pkispawn Utility section in the Red Hat Certificate System Planning, Installation, and Deployment Guide (Common Criteria Edition).
					

	
						The pki_default.cfg(5) man page for descriptions of the parameters and examples.
					





      ⁠14.1.7. Using an HSM to Store Subsystem Certificates




				By default, keys and certificates are stored in locally-managed databases, key3.db and cert8.db, respectively, in the /var/lib/pki/instance_name/alias/ directory. However, Red Hat Certificate System also supports hardware security modules (HSM), external devices which can store keys and certificates in a centralized place on the network. Using an HSM can make some functions, like cloning, easier because the keys and certificates for the instance are readily accessible.
			

				When an HSM is used to store certificates, then the HSM name is prepended to the certificate nickname, and the full name is used in the subsystem configuration. For example:
			
serverCert="nethsm:Server-Cert cert-instance_ID
Note


					A single HSM can be used to store certificates and keys for mulitple subsystem instances, which may be installed on multiple hosts. When an HSM is used, any certificate nickname for a subsystem must be unique for every subsystem instance managed on the HSM.
				



				Certificate System supports two types of HSM, nCipher netHSM and Chrysalis LunaSA.
			



      ⁠14.2. Renewing Subsystem Certificates




			For details about renewing subsystem certificates, see Section 3.4.1, “About Renewal”.
		

			The process for renewing a subsystem certificate is the same as for renewing a user certificate.
		

			To renew a system certificate submit the request using the corresponding enrollment profile when using the HttpClient utility. For details about the different system certificate profiles, see Section 5.3.2.1, “Obtaining System and Server Certificates”.
		

      ⁠14.2.1. Renewing Certificates Using certutil




				certutil can be used to generate a certificate request using an existing key pair in the certificate database. The new certificate request can then be converted to a CMC request to be submitted to the CA. For details, see Section 5.2.1, “Creating a CSR Using certutil”.
			
Note


					Encryption and signing certificates are created in a single step. However, the renewal process only renews one certificate at a time.
				

					To renew both certificates in a certificate pair, each one has to be renewed individually.
				


	
						Get the password for the token database.
					

cat /var/lib/pki/instance_name/conf/password.conf

internal=263163888660


	
						Open the certificate database directory of the instance whose certificate is being renewed.
					
cd /var/lib/pki/instance_name/alias

	
						List the key and nickname for the certificate being renewed. In order to renew a certificate, the key pairs used to generate and the subject name given to the new certificate must be the same as the one in the old certificate.
					
# certutil -K -d .

certutil: Checking token "NSS Certificate DB" in slot "NSS User Private Key and Certificate Services"
Enter Password or Pin for "NSS Certificate DB":
< 0> rsa      69481646e38a6154dc105960aa24ccf61309d37d   caSigningCert cert-pki-tomcat CA

	
						Copy the alias directory as a backup, then delete the original certificate from the certificate database. For example:
					
certutil -D -n "ServerCert cert-example"  -d .

	
						Run the certutil command with the options set to the values in the existing certificate.
					
certutil -d . -R -k "NSS Certificate DB:cert-pki-tomcat CA" -s "cn=CA Authority,o=Example Domain" -a -o example.req2.txt

						The difference between generating a new certificate and key pair and renewing the certificate is the value of the -k option. To generate an entirely new request and key pair, then -k sets the key type and is used with -g, which sets the bit length. For a renewal request, the -k option uses the certificate nickname to access the existing key pair stored in the security database.
					

						For further details about the parameters, see the certutil(1) man page.
					

	
						Submit the certificate request and then retrieve it and install it.
					





      ⁠14.2.2. Renewing Expired Certificate System Server Certificates




				Certificate System does not automatically renew its server certificates online while the PKI server is running. In general, administrators should renew the system certificates before they expire. However, if a system certificate expires, Certificate System will fail to start.
			

				To renew system certificates after expiration, you can set up a temporary server certificate:
			

      ⁠	
						If the system certificate is expired:
					
	
								Create a temporary certificate:
							
# pki-server cert-create sslserver --temp

	
								Import the temporary certificate into Certificate System's Network Security Services (NSS) database:
							
# pki-server cert-import sslserver

	
								Start Certificate System:
							
# systemctl start pki-tomcatd-nuxwdog@instance_name.service



	
						Display the certificates and note the ID of the expired system certificate:
					
# pki-server cert-find

	
						Create the new permanent certificate:
					
# pki-server cert-create certificate_ID

	
						Stop Certificate System:
					
# systemctl stop pki-tomcatd-nuxwdog@instance_name.service

	
						Import the new certificate to replace the expired certificate:
					
# pki-server cert-import certificate_ID

	
						Start Certificate System:
					
# systemctl start pki-tomcatd-nuxwdog@instance_name.service






      ⁠14.3. Changing the Names of Subsystem Certificates




			One alternative to renewing certificates is replacing them with new certificates, meaning that a new certificate is generated with new keys. Generally, a new certificate can be added to the database and the old one deleted, a simple one-to-one swap. This is possible because the individual subsystem servers identify certificates based on their nickname; as long as the certificate nickname remains the same, the server can find the required certificate even if other factors — like the subject name, serial number, or key — are different.
		

			These tables list all of the configuration parameters for each of the subsystem's certificates:
		
	
					Table 14.1, “CA Certificate Nickname Parameters”
				

	
					Table 14.2, “KRA Certificate Nickname Parameters”
				

	
					Table 14.3, “OCSP Certificate Nickname Parameters”
				

	
					Table 14.4, “TKS Certificate Nickname Parameters”
				

	
					Table 14.5, “TPS Nickname Parameters”
				




      ⁠Table 14.1. CA Certificate Nickname Parameters
	 CA Signing Certificate 	 	
									ca.cert.signing.nickname
								

	
									ca.signing.cacertnickname
								

	
									ca.signing.certnickname
								

	
									ca.signing.nickname
								

	
									cloning.signing.nickname
								




						 
	 OCSP Signing Certificate 	 	
									ca.ocsp_signing.cacertnickname
								

	
									ca.ocsp_signing.certnickname
								

	
									ca.cert.ocsp_signing.nickname
								

	
									ca.ocsp_signing.nickname
								

	
									cloning.ocsp_signing.nickname
								




						 
	 Subsystem Certificate 	 	
									ca.cert.subsystem.nickname
								

	
									ca.subsystem.nickname
								

	
									cloning.subsystem.nickname
								

	
									pkiremove.cert.subsystem.nickname
								




						 
	 Server Certificate 	 	
									ca.sslserver.nickname
								

	
									ca.cert.sslserver.nickname
								




						 
	 Audit Signing Certificate 	 	
									ca.audit_signing.nickname
								

	
									ca.cert.audit_signing.nickname
								

	
									cloning.audit_signing.nickname
								




						 




      ⁠Table 14.2. KRA Certificate Nickname Parameters
	 Transport Certificate 	 	
									cloning.transport.nickname
								

	
									kra.cert.transport.nickname
								

	
									kra.transport.nickname
								

	
									tks.kra_transport_cert_nickname
								

									Note that this parameter is in the TKS configuration file. This needs changed in the TKS configuration if the KRA transport certificate nickname changes, even if the TKS certificates all stay the same.
								




						 
	 Storage Certificate 	 	
									cloning.storage.nickname
								

	
									kra.storage.nickname
								

	
									kra.cert.storage.nickname
								




						 
	 Server Certificate 	 	
									kra.cert.sslserver.nickname
								

	
									kra.sslserver.nickname
								




						 
	 Subsystem Certificate 	 	
									cloning.subsystem.nickname
								

	
									kra.cert.subsystem.nickname
								

	
									kra.subsystem.nickname
								

	
									pkiremove.cert.subsystem.nickname
								




						 
	 Audit Log Signing Certificate 	 	
									cloning.audit_signing.nickname
								

	
									kra.cert.audit_signing.nickname
								

	
									kra.audit_signing.nickname
								




						 




      ⁠Table 14.3. OCSP Certificate Nickname Parameters
	 OCSP Signing Certificate 	 	
									cloning.signing.nickname
								

	
									ocsp.signing.certnickname
								

	
									ocsp.signing.cacertnickname
								

	
									ocsp.signing.nickname
								




						 
	 Server Certificate 	 	
									ocsp.cert.sslserver.nickname
								

	
									ocsp.sslserver.nickname
								




						 
	 Subsystem Certificate 	 	
									cloning.subsystem.nickname
								

	
									ocsp.subsystem.nickname
								

	
									ocsp.cert.subsystem.nickname
								

	
									pkiremove.cert.subsystem
								




						 
	 Audit Log Signing Certificate 	 	
									cloning.audit_signing.nickname
								

	
									ocsp.audit_signing.nickname
								

	
									ocsp.cert.audit_signing.nickname
								




						 




      ⁠Table 14.4. TKS Certificate Nickname Parameters
	 KRA Transport Certificate
      ⁠[a] 	 	
									tks.kra_transport_cert_nickname
								




						 
	 Server Certificate 	 	
									tks.cert.sslserver.nickname
								

	
									tks.sslserver.nickname
								




						 
	 Subsystem Certificate 	 	
									cloning.subsystem.nickname
								

	
									tks.cert.subsystem.nickname
								

	
									tks.subsystem.nickname
								

	
									pkiremove.cert.subsystem.nickname
								




						 
	 Audit Log Signing Certificate 	 	
									cloning.audit_signing.nickname
								

	
									tks.audit_signing.nickname
								

	
									tks.cert.audit_signing.nickname
								




						 
	[a] 
							This needs changed in the TKS configuration if the KRA transport certificate nickname changes, even if the TKS certificates all stay the same.
						






      ⁠Table 14.5. TPS Nickname Parameters
	 Server Certificate 	 	
									tps.cert.sslserver.nickname
								




						 
	 Subsystem Certificate 	 	
									tps.cert.subsystem.nickname
								

	
									selftests.plugin.TPSValidity.nickname
								

	
									selftests.plugin.TPSPresence.nickname
								

	
									pkiremove.cert.subsystem.nickname
								




						 
	 Audit Log Signing Certificate 	 	
									tps.cert.audit_signing.nickname
								




						 





      ⁠14.4. Managing the Certificate Database




			Each Certificate System instance has a certificate database, which is maintained in its internal token. This database contains certificates belonging to the subsystem installed in the Certificate System instance and various CA certificates the subsystems use for validating the certificates they receive.   
		

			Even if an external token is used to generate and store key pairs, Certificate System always maintains its list of trusted and untrusted CA certificates in its internal token. 
		

			This section explains how to view the contents of the certificate database, delete unwanted certificates, and change the trust settings of CA certificates installed in the database using the Certificate System window. For information on adding certificates to the database, see Section 14.4.1, “Installing Certificates in the Certificate System Database”.
		
Note


				The Certificate System command-line utility certutil can be used to manage the certificate database by editing trust settings and adding and deleting certificates. For details about this tool, see http://www.mozilla.org/projects/security/pki/nss/tools/.
			



			Administrators should periodically check the contents of the certificate database to make sure that it does not include any unwanted CA certificates. For example, if the database includes CA certificates that should not ever be trusted within the PKI setup, delete them.
		

      ⁠14.4.1. Installing Certificates in the Certificate System Database




				If new server certificates are issued for a subsystem, they must be installed in that subsystem database. Additionally, user and agent certificates must be installed in the subsystem databases. If the certificates are issued by an external CA, then usually the corresponding CA certificate or certificate chain needs to be installed.
			

				Certificates can be installed in the subsystem certificate database through the Console's Certificate Setup Wizard or using the certutil utility.
			
	
						Section 14.4.1.1, “Installing Certificates through the Console”
					

	
						Section 14.4.1.2, “Installing Certificates Using certutil”
					

	
						Section 14.4.1.3, “About CA Certificate Chains”
					




      ⁠14.4.1.1. Installing Certificates through the Console




					The Certificate Setup Wizard can install or import the following certificates into either an internal or external token used by the Certificate System instance:   
				
	
							Any of the certificates used by a Certificate System subsystem
						

	
							Any trusted CA certificates from external CAs or other Certificate System CAs
						

	
							Certificate chains
						




					A certificate chain includes a collection of certificates: the subject certificate, the trusted root CA certificate, and any intermediate CA certificates needed to link the subject certificate to the trusted root. However, the certificate chain the wizard imports must include only CA certificates; none of the certificates can be a user certificate.
				

					In a certificate chain, each certificate in the chain is encoded as a separate DER-encoded object. When the wizard imports a certificate chain, it imports these objects one after the other, all the way up the chain to the last certificate, which may or may not be the root CA certificate. If any of the certificates in the chain are already installed in the local certificate database, the wizard replaces the existing certificates with the ones in the chain. If the chain includes intermediate CA certificates, the wizard adds them to the certificate database as untrusted CA certificates.
				

					The subsystem console uses the same wizard to install certificates and certificate chains. To install certificates in the local security database, do the following:
				
	
							Open the console. 

pkiconsole https://server.example.com:secure_port/subsystem_type


						

	
							In the Configuration tab, select System Keys and Certificates from the left navigation tree.
						

	
							There are two tabs where certificates can be installed, depending on the subsystem type and the type of certificate.
						
	
									The CA Certificates tab is for installing CA certificates and certificate chains. For Certificate Managers, this tab is used for third-party CA certificates or other Certificate System CA certificates; all of the local CA certificates are installed in the Local Certificates tab. For all other subsystems, all CA certificates and chains are installed through this tab.
								

	
									The Local Certificates tab is where all server certificates, subsystem certificates, and local certificates such as OCSP signing or KRA transport are installed.
								




							Select the appropriate tab.
						

	
							To install a certificate in the Local Certificates tab, click Add/Renew. To install a certificate in the CA Certificates tab, click Add. Both will open the Certificate Setup Wizard.
						
	
									When the wizard opens, select the Install a certificate radio button, and click Next.
								

	
									Select the type of certificate to install. The options for the drop-down menu are the same options available for creating a certificate, depending on the type of subsystem, with the additional option to install a cross-pair certificate.
								

	
									Paste in the certificate body, including the -----BEGIN CERTIFICATE----- and -----END CERTIFICATE-----, into the text area, or specify the absolute file location; this must be a local file.
								

									The certificate will look like the following:
								
-----BEGIN CERTIFICATE-----
MIICKzCCAZSgAwIBAgIBAzANgkqkiG9w0BAQQFADA3MQswCQYDVQQGEw
JVUzERMA8GA1UEChMITmV0c2NhcGUxFTATBgNVBAsTDFN1cHJpeWEncy
BDQTAeFw05NzEwMTgwMTM2MjVaFw05OTEwMTgwMTM2MjVaMEgxCzAJBg
NVBAYTAlVTMREwDwYDVQQKEwhOZXRzY2FwZTENMAsGA1UECxMEUHawcz
EXMBUGA1UEAxMOU3Vwcml5YSBTaGV0dHkwgZ8wDQYJKoZIhdfNAQEBBQ
ADgY0AMIGJAoGBAMr6eZiPGfjX3uRJgEjmKiqG7SdATYzBcABu1AVyd7
chRFOGD3wNktbf6hRo6EAmM5R1Askzf8AW7LiQZBcrXpc0k4du+2j6xJ
u2MPm8WKuMOTuvzpo+SGXelmHVChEqooCwfdiZywyZNmgaMa2MS6pUkf
QVAgMBAAGjNjA0MBEGCWCGSAGG+EIBAQQEAwIAgD
-----END CERTIFICATE-----




	
							The wizard displays the certificate details. Review the fingerprint to make sure this is the correct certificate, or use the Back button to go back and submit a different one. Give a nickname for the certificate.
						

							The wizard installs the certificate.
						

	
							Any CA that signed the certificate must be trusted by the subsystem. Make sure that this CA's certificate exists in the subsystem's certificate database (internal or external) and that it is trusted.
						

							If the CA certificate is not listed, add the certificate to the certificate database as a trusted CA. If the CA's certificate is listed but untrusted, change the trust setting to trusted, as shown in Section 14.5, “Changing the Trust Settings of a CA Certificate”.
						

							When installing a certificate issued by a CA that is not stored in the Certificate System certificate database, add that CA's certificate chain to the database. To add the CA chain to the database, copy the CA chain to a text file, start the wizard again, and install the CA chain.
						





      ⁠14.4.1.2. Installing Certificates Using certutil




					To install subsystem certificates in the Certificate System instance's security databases using certutil, do the following:
				
	
							Open the subsystem's security database directory.
						

cd /var/lib/pki/instance_name/alias


	
							Run the certutil command with the -A to add the certificate and -i pointing to the file containing the certificate issued by the CA.
						
certutil -A -n cert-name -t trustargs
   -d . -a -i certificate_file
Note


								If the Certificate System instance's certificates and keys are stored on an HSM, then specify the token name using the -h option.
							



							For example:
						

certutil -A -n "ServerCert cert-instance_name" -t u,u,u -d . -a -i /tmp/example.cert





					For information about using the certutil command, see http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html.
				


      ⁠14.4.1.3. About CA Certificate Chains




					Any client or server software that supports certificates maintains a collection of trusted CA certificates in its certificate database. These CA certificates determine which other certificates the software can validate. In the simplest case, the software can validate only certificates issued by one of the CAs for which it has a certificate. It is also possible for a trusted CA certificate to be part of a chain of CA certificates, each issued by the CA above it in a certificate hierarchy. 
				

					The first certificate in the chain is processed in a context-specific manner, which varies according to how it is being imported. For Mozilla Firefox, this handling depends upon the MIME content type used on the object being downloaded. For Red Hat servers, it depends upon the options selected in the server administration interface.
				

					Subsequent certificates are all treated the same. If the certificates contain the TLS-CA bit in the Netscape Certificate Type certificate extension and do not already exist in the local certificate database, they are added as untrusted CAs. They can be used for certificate chain validation as long as there is a trusted CA somewhere in the chain.
				



      ⁠14.4.2. Viewing Database Content




				The certificates stored in the subsystem certificates database, cert8.db, can be viewed through the subsystem administrative console. Alternatively, the certificates can be listed using the certutil utility. certutil must be used to view the TPS certificates because the TPS subsystem does not use an administrative console.
			
	
						Section 14.4.2.1, “Viewing Database Content through the Console”
					

	
						Section 14.4.2.2, “Viewing Database Content Using certutil”
					



Note


					The certificates listed in the cert8.db database are the subsystem certificates used for subsystem operations. User certificates are stored with the user entries in the LDAP internal database.
				



      ⁠14.4.2.1. Viewing Database Content through the Console




					To view the contents of the database through the administrative console, do the following:    
				
	
							Open the subsystem console. 

pkiconsole https://server.example.com:secure_port/subsystem_type


						

	
							In the Configuration tab, select System Keys and Certificates from the left navigation tree.
						

	
							There are two tabs, CA Certificates and Local Certificates, which list different kinds of certificates.
						
	
									CA Certificates lists CA certificates for which the corresponding private key material is not available, such as certificates issued by third-party CAs such as Entrust or Verisign or external Certificate System Certificate Managers.
								

	
									Local Certificates lists certificates kept by the Certificate System subsystem instance, such as the KRA transport certificate or OCSP signing certificate.
								




      ⁠[image: Certificate Database Tab]

Figure 14.1. Certificate Database Tab


	
							The Certificate Database Management table lists the all of the certificates installed on the subsystem. The following information is supplied for each certificate:
						
	
									Certificate Name
								

	
									Serial Number
								

	
									Issuer Names, the common name (cn) of the issuer of this certificate.
								

	
									Token Name, the name of the cryptographic token holding the certificate; for certificate stored in the database, this is internal.
								







					To view more detailed information about the certificate, select the certificate, and click View. This opens a window which shows the serial number, validity period, subject name, issuer name, and certificate fingerprint of the certificate.
				


      ⁠14.4.2.2. Viewing Database Content Using certutil




					To view the certificates in the subsystem database using certutil, open the instance's certificate database directory, and run the certutil with the -L option. For example:
				

cd /var/lib/pki/instance_name/alias

certutil -L -d .

Certificate Authority - Example Domain    CT,c,
subsystemCert cert-instance name          u,u,u
Server-Cert cert-instance_name            u,u,u


					To view the keys stored in the subsystem databases using certutil, run the certutil with the -K option. For example:
				

cd /var/lib/pki/instance_name/alias

certutil -K -d .

Enter Password or Pin for "NSS Certificate DB":
<0> subsystemCert cert-instance_name
<1>
<2> Server-Cert cert-instance_name

					For information about using the certutil command, see http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html.
				



      ⁠14.4.3. Deleting Certificates from the Database




				Removing unwanted certificates reduces the size of the certificate database.
			
Note


					When deleting CA certificates from the certificate database, be careful not to delete the intermediate CA certificates, which help a subsystem chain up to the trusted CA certificate. If in doubt, leave the certificates in the database as untrusted CA certificates; see Section 14.5, “Changing the Trust Settings of a CA Certificate”.
				


	
						Section 14.4.3.1, “Deleting Certificates through the Console”
					

	
						Section 14.4.3.2, “Deleting Certificates Using certutil”
					




      ⁠14.4.3.1. Deleting Certificates through the Console




					To delete a certificate through the Console, do the following:
				
	
							Open the subsystem console. 

pkiconsole https://server.example.com:secure_port/subsystem_type


						

	
							In the Configuration tab, select System Keys and Certificates from the left navigation tree.
						

	
							Select the certificate to delete, and click Delete.
						

	
							When prompted, confirm the delete.
						





      ⁠14.4.3.2. Deleting Certificates Using certutil




					To delete a certificate from the database using certutil:
				
	
							Open the instance's certificate databases directory.
						

/var/lib/pki/instance_name/alias


	
							List the certificates in the database by running the certutil with the -L option. For example:
						

certutil -L -d .

Certificate Authority - Example Domain    CT,c,
subsystemCert cert-instance_name          u,u,u
Server-Cert cert-instance_name            u,u,u


	
							Delete the certificate by running the certutil with the -D option.
						
certutil -D -d . -n certificate_nickname

							For example:
						
certutil -D -d . -n "ServerCert cert-instance_name"

	
							List the certificates again to confirm that the certificate was removed.
						
certutil -L -d .

Certificate Authority - Example Domain    CT,c,
subsystemCert cert-instance_name          u,u,u





					For information about using the certutil command, see http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html.
				




      ⁠14.5. Changing the Trust Settings of a CA Certificate




			Certificate System subsystems use the CA certificates in their certificate databases to validate certificates received during a TLS-enabled communication.    
		

			It can be necessary to change the trust settings on a CA stored in the certificate database, temporarily or permanently. For example, if there is a problem with access or compromised certificates, marking the CA certificate as untrusted prevents entities with certificates signed by that CA from authenticating to the Certificate System. When the problem is resolved, the CA can be marked as trusted again.  
		

			To untrust a CA permanently, consider removing its certificate from the trust database. For instructions, see Section 14.4.3, “Deleting Certificates from the Database”.
		

      ⁠14.5.1. Changing Trust Settings through the Console




				To change the trust setting of a CA certificate, do the following:
			
	
						Open the subsystem console. 

pkiconsole https://server.example.com:secure_port/subsystem_type


					

	
						In the Configuration tab, System Keys and Certificates from the left navigation tree.
					

	
						Select the CA certificates tab.
					

	
						Select the CA certificate to modify, and click Edit.
					

	
						A prompt opens which reads The Certificate chain is (un)trusted, are you sure you want to (un)trust it?
					

						Clicking yes changes the trust setting of the certificate chain; pressing no preserves the original trust relationship.
					





      ⁠14.5.2. Changing Trust Settings Using certutil




				To change the trust setting of a certificate using certutil, do the following:
			
	
						Open the instance's certificate databases directory.
					

cd /var/lib/pki/instance_name/alias


	
						List the certificates in the database by running the certutil with the -L option. For example:
					
certutil -L -d .

Certificate Authority - Example Domain    CT,c,
subsystemCert cert-instance_name          u,u,u
Server-Cert cert-instance_name            u,u,u


	
						Change the trust settings for the certificate by running the certutil with the -M option.
					
certutil -M -n cert_nickname -t trust -d .

						For example:
					
certutil -M -n "Certificate Authority - Example Domain" -t TCu,TCu,TCu -d .

	
						List the certificates again to confirm that the certificate trust was changed.
					
certutil -L -d .

Certificate Authority - Example Domain    CTu,CTu,CTu
subsystemCert cert-instance_name          u,u,u
Server-Cert cert-instance_name            u,u,u





				For information about using the certutil command, see http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html.
			



      ⁠14.6. Managing Tokens Used by the Subsystems



Note


				Features in this section on TMS are not tested in the evaluation. This section is for reference only.
			



			Certificate System managers two groups of tokens: tokens used by the subsystems to perform PKI tasks and tokens issued through the subsystem. These management tasks refer specifically to tokens that are used by the subsystems.
		

      ⁠14.6.1. Detecting Tokens




				To see if a token can be detected by Certificate System to be installed or configured, use the TokenInfo utility.
			

TokenInfo /var/lib/pki/instance_name/alias
Database Path: /var/lib/pki/instance_name/alias
Found external module 'NSS Internal PKCS #11 Module'


				This utility will return all tokens which can be detected by the Certificate System, not only tokens which are installed in the Certificate System.
			


      ⁠14.6.2. Viewing Tokens




				To view a list of the tokens currently installed for a Certificate System instance, use the modutil utility. 
			
	
						Open the instance alias directory. For example:
					

cd /var/lib/pki/instance_name/alias


	
						Show the information about the installed PKCS #11 modules installed as well as information on the corresponding tokens using the modutil tool.
					
modutil -dbdir . -nocertdb -list






      ⁠14.6.3. Changing a Token's Password




				The token, internal or external, that stores the key pairs and certificates for the subsystems is protected (encrypted) by a password. To decrypt the key pairs or to gain access to them, enter the token password. This password is set when the token is first accessed, usually during Certificate System installation. 
			

				It is good security practice to change the password that protects the server's keys and certificates periodically. Changing the password minimizes the risk of someone finding out the password. To change a token's password, use the certutil command-line utility.
			

				For information about certutil, see http://www.mozilla.org/projects/security/pki/nss/tools/.
			

				The single sign-on password cache stores token passwords in the password.conf file. This file must be manually updated every time the token password is changed.
			




      ⁠Chapter 15. Setting Time and Date in Red Hat Enterprise Linux 7.6




		The section contains how to set time and date in Red Hat Enterprise Linux 7.6.
	

		The system time is always kept in Coordinated Universal Time (UTC) and converted in applications to local time as needed. Local time is the actual time in your current time zone, taking into account daylight saving time (DST).
	

		The timedatectl utility is distributed as part of the systemd system and service manager and allows you to review and change the configuration of the system clock.
	

      ⁠Changing the Current Time
timedatectl set-time HH:MM:SS

		Replace HH with an hour, MM with a minute, and SS with a second, all typed in two-digit form.
	

      ⁠Changing the Current Date
timedatectl set-time YYYY-MM-DD

		Replace YYYY with a four-digit year, MM with a two-digit month, and DD with a two-digit day of the month.
	

		The time change is audited by the operating system. For more information see 13.2.1.3. Auditing Time Change Events in Red Hat Certificate System's Planning, Installation, and Deployment Guide.
	


      ⁠Chapter 16. Determining Certificate System Product Version




		The Red Hat Certificate System product version is stored in the /usr/share/pki/CS_SERVER_VERSION file. To display the version:
	
# cat /usr/share/pki/CS_SERVER_VERSION
Red Hat Certificate System 9.4 (Batch Update 3)

		To find the product version of a running server, access the following URLs from your browser:
	
	
				http://host_name:port_number/ca/admin/ca/getStatus
			

	
				http://host_name:port_number/kra/admin/kra/getStatus
			

	
				http://host_name:port_number/ocsp/admin/ocsp/getStatus
			

	
				http://host_name:port_number/tks/admin/tks/getStatus
			

	
				http://host_name:port_number/tps/admin/tps/getStatus
			



Note


			Note that each component is a separate package and thus could have a separate version number. The above will show the version number for each currently running component.
		




      ⁠Chapter 17. Updating Red Hat Certificate System




		To update Certificate System the operating system is running on, use the yum update command. This downloads, verifies, and installs updates to Certificate System and operating system packages. For further information on updating Certificate System and validating that the update was successful, see Updating Certificate System Packages section in the Red Hat Certificate System Planning, Installation, and Deployment Guide (Common Criteria Edition).
	


      ⁠Chapter 18. Troubleshooting




		This chapter covers some of the more common usage problems that are encountered when installing Certificate System.
	

      ⁠
      ⁠Q:

					The init script returned an OK status, but my CA instance does not respond. Why?
				


A:

					This should not happen. Usually (but not always), this indicates a listener problem with the CA, but it can have many different causes. Check in the catalina.out, system, and debug log files for the instance to see what errors have occurred. This lists a couple of common errors.
				

					One situation is when there is a PID for the CA, indicating the process is running, but that no listeners have been opened for the server. This would return Java invocation class errors in the catalina.out file:
				
Oct 29, 2010 4:15:44 PM org.apache.coyote.http11.Http11Protocol init
INFO: Initializing Coyote HTTP/1.1 on http-9080
java.lang.reflect.InvocationTargetException
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:64)
        at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:615)
        at org.apache.catalina.startup.Bootstrap.load(Bootstrap.java:243)
        at org.apache.catalina.startup.Bootstrap.main(Bootstrap.java:408)
Caused by: java.lang.UnsatisfiedLinkError: jss4

					This could mean that you have the wrong version of JSS or NSS. The process requires libnss3.so in the path. Check this with this command:
				
ldd /usr/lib64/libjss4.so

					If libnss3.so is not found, try unsetting the LD_LIBRARY_PATH variable and restart the CA.
				
unset LD_LIBRARY_PATH
systemctl restart pki-tomcatd-nuxwdog@instance_name.service




      ⁠Q:

					I can't open the pkiconsole and I'm seeing Java exceptions in stdout.
				


A:

					This probably means that you have the wrong JRE installed or the wrong JRE set as the default. Run alternatives --config java to see what JRE is selected. Red Hat Certificate System requires OpenJDK 1.8.
				




      ⁠Q:

					I tried to run pkiconsole, and I got Socket exceptions in stdout. Why?
				


A:

					This means that there is a port problem and usually means the wrong port was given to access the admin interface.
				

					Port errors will look like the following:
				
NSS Cipher Supported '0xff04'
java.io.IOException: SocketException cannot read on socket
        at org.mozilla.jss.ssl.SSLSocket.read(SSLSocket.java:1006)
        at org.mozilla.jss.ssl.SSLInputStream.read(SSLInputStream.java:70)
        at
com.netscape.admin.certsrv.misc.HttpInputStream.fill(HttpInputStream.java:303)
        at
com.netscape.admin.certsrv.misc.HttpInputStream.readLine(HttpInputStream.java:224)
        at
com.netscape.admin.certsrv.connection.JSSConnection.readHeader(JSSConnection.java:439)
        at
com.netscape.admin.certsrv.connection.JSSConnection.initReadResponse(JSSConnection.java:430)
        at
com.netscape.admin.certsrv.connection.JSSConnection.sendRequest(JSSConnection.java:344)
        at
com.netscape.admin.certsrv.connection.AdminConnection.processRequest(AdminConnection.java:714)
        at
com.netscape.admin.certsrv.connection.AdminConnection.sendRequest(AdminConnection.java:623)
        at
com.netscape.admin.certsrv.connection.AdminConnection.sendRequest(AdminConnection.java:590)
        at
com.netscape.admin.certsrv.connection.AdminConnection.authType(AdminConnection.java:323)
        at
com.netscape.admin.certsrv.CMSServerInfo.getAuthType(CMSServerInfo.java:113)
        at com.netscape.admin.certsrv.CMSAdmin.run(CMSAdmin.java:499)
        at com.netscape.admin.certsrv.CMSAdmin.run(CMSAdmin.java:548)
        at com.netscape.admin.certsrv.Console.main(Console.java:1655)




      ⁠Q:

					I tried to enroll for a certificate, and I got the error "request is not submitted...Subject Name Not Found"?
				


A:

					This most often occurs with a custom LDAP directory authentication profile and it shows that the directory operation failed. Particularly, it failed because it could not construct a working DN. The error will be in the CA's debug log. For example, this profile used a custom attribute (MYATTRIBUTE) that the directory didn't recognize:
				
[14/Feb/2011:15:52:25][http-1244-Processor24]: BasicProfile: populate() policy
setid =userCertSet
[14/Feb/2011:15:52:25][http-1244-Processor24]: AuthTokenSubjectNameDefault:
populate start
[14/Feb/2011:15:52:25][http-1244-Processor24]: AuthTokenSubjectNameDefault:
java.io.IOException: Unknown AVA keyword 'MYATTRIBUTE'.
[14/Feb/2011:15:52:25][http-1244-Processor24]: ProfileSubmitServlet: populate
Subject Name Not Found
[14/Feb/2011:15:52:25][http-1244-Processor24]: CMSServlet: curDate=Mon Feb 14
15:52:25 PST 2011 id=caProfileSubmit time=13

					Any custom components — attributes, object classes, and unregistered OIDs — which are used in the subject DN can cause a failure. For most cases, the X.509 attributes defined in RHC 2253 should be used in subject DNs instead of custom attributes.
				




      ⁠Q:

					Why are my enrolled certificates not being published?
				


A:

					This usually indicates that the CA is misconfigured. The main place to look for errors is the debug log, which can indicate where the misconfiguration is. For example, this has a problem with the mappers:
				
[31/Jul/2010:11:18:29][Thread-29]: LdapSimpleMap: cert subject
dn:UID=me,E=me@example.com,CN=yes
[31/Jul/2010:11:18:29][Thread-29]: Error mapping:
mapper=com.netscape.cms.publish.mappers.LdapSimpleMap@258fdcd0 error=Cannot
find a match in the LDAP server for certificate. netscape.ldap.LDAPException:
error result (32); matchedDN = ou=people,c=test; No such object

					Check the publishing configuration in the Publishing tab of the CA console. In this example, the problem was in the mapping parameter, which must point to an existing LDAP suffix:
				
ca.publish.mapper.instance.LdapUserCertMap.dnPattern=UID=$subj.UID,dc=publish




      ⁠Q:

					How do I open the pkiconsole utility from a remote host?
				


A:

					In certain situations, administrators want to open the pkiconsole on the Certificate System server from a remote host. For that, administrators can use a Virtual Network Computing (VNC) connection:
				
	
							Setup a VNC server, for example, on the Red Hat Certificate System server.
						
Important


								The pkiconsole utility cannot run on a server with Federal Information Processing Standard (FIPS) mode enabled. Use a different host with Red Hat Enterprise Linux to run the VNC server, if FIPS mode is enabled on your Certificate System server.
							



							For details about installing a VNC server, see the VNC Server section in the Red Hat System Administrator's Guide.
						

	
							Use a VNC viewer to connect to the host running the VNC server. For details, see the VNC Viewer section in the Red Hat System Administrator's Guide.
						

	
							Open the pkiconsole utility in the VNC window. For example:
						
# pkiconsole https://server.example.com:8443/ca



Note


						VNC viewers are available for different kind of operating systems. However, Red Hat supports only VNC viewers installed on Red Hat Enterprise Linux from the integrated repositories.
					






      ⁠Q:

					What do I do when the LDAP server is not responding?
				


A:

					If the Red Hat Directory Server instance used for the internal database is not running, a connectivity issue occurred, or a TLS connection failure occurred, then you cannot connect to the subsystem instances which rely on it. The instance debug logs will specifically identify the problem with the LDAP connection. For example, if the LDAP server was not online:
				
[02/Apr/2019:15:55:41][authorityMonitor]: authorityMonitor: failed to get LDAPConnection. Retrying in 1 second.
[02/Apr/2019:15:55:42][authorityMonitor]: In LdapBoundConnFactory::getConn()
[02/Apr/2019:15:55:42][authorityMonitor]: masterConn is null.
[02/Apr/2019:15:55:42][authorityMonitor]: makeConnection: errorIfDown true
[02/Apr/2019:15:55:42][authorityMonitor]: TCP Keep-Alive: true
java.net.ConnectException: Connection refused (Connection refused)
    at java.net.PlainSocketImpl.socketConnect(Native Method)
    at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350)
    at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206)
[02/Apr/2019:15:55:42][authorityMonitor]: Can't create master connection in LdapBoundConnFactory::getConn!
    Could not connect to LDAP server host example911.redhat.com port 389 Error netscape.ldap.LDAPException:
        Unable to create socket: java.net.ConnectException: Connection refused (Connection refused) (-1)

					After fixing the underlying network problem, such as a cable was unplugged, the Red Hat Directory Server was stopped, significant packet loss occurred, or ensuring that the TLS connection can be recreated, stop and then start the Certificate System instance in question:
				
# systemctl stop pki-tomcatd-nuxwdog@instance_name.service
# systemctl start pki-tomcatd-nuxwdog@instance_name.service







      ⁠Chapter 19. Subsystem Control And maintenance




		This chapter provides information on how to control (start, stop, restart, and status check) a Red Hat Certificate System subsystem, as well as general maintenance (health check) recommendation.
	

      ⁠19.1. Starting, Stopping, Restarting, and Obtaining Status




			Red Hat Certificate System subsystem instances can be stopped and started using the systemctl utility on Red Hat Enterprise Linux 7.
		

			To start an instance:
		
# systemctl start unit_file@instance_name.service

			To stop an instance:
		
# systemctl stop unit_file@instance_name.service

			To restart an instance:
		
# systemctl restart unit_file@instance_name.service

			To display the status of an instance:
		
# systemctl status unit_file@instance_name.service

			unit_file has one of the following values:
		
	
					pki-tomcat: With watchdog disabled
				

	
					pki-tomcat-nuxwdog: With watchdog enabled
				





      ⁠19.2. Subsystem Health Check




			It is important for administrators to periodically monitor possible failures, such as the following:
		
	
					Audit failure caused by a full disk
				

	
					Signing failure caused by HSM connection issue
				

	
					LDAP server connection issues
				

	
					And so on
				




			Self-tests can also be run by demand as described in Chapter 10, Self Tests.
		



      ⁠Part V. References





      ⁠Appendix A. Certificate Profile Input and Output Reference




		Profile inputs and outputs define the expected input parameters in the certificate request and the output format of the enrollment result. Like many other components in Red Hat Certificate System, profile inputs and outputs are implemented as JAVA plug-ins to offer customization and flexibility. This appendix provides reference for the default input and output plug-ins.
	
	
				Section A.1, “Input Reference”
			

	
				Section A.2, “Output Reference”
			




      ⁠A.1. Input Reference




			An input puts certain fields on the enrollment page associated with a particular certificate profile. The inputs set for a certificate profile are used to generate the enrollment page dynamically with the appropriate fields; these input fields collect necessary information for the profile to generate the final certificate.
		

      ⁠A.1.1. CMC Certificate Request Input




				The CMC Certificate Request input is used for enrollments using a Certificate Message over CMS (CMC) certificate request is submitted in the request form. The request type must be either PKCS #10 or CRMF, and the only field is the Certificate Request text area in which to paste the request.
			

      ⁠Example A.1. 
caCMCUserCert.cfg:input.i1.class_id=cmcCertReqInputImpl




      ⁠A.1.2. nsHKeyCertRequest (Token Key) Input




				In Token Management Systems (TMS), the Token Key input is used to enroll keys for hardware tokens for agents to use later for certificate-based authentication.
			

				This input puts the following fields into the enrollment form:
			
	
						Token Key CUID. This field gives the CUID (contextually unique user ID) for the token device.
					

	
						Token Key User Public Key. This field must contain the token user's public key.
					




      ⁠Example A.2. 
caTempTokenDeviceKeyEnrollment.cfg:input.i1.class_id=nsHKeyCertReqInputImpl




      ⁠A.1.3. nsNKeyCertRequest (Token User Key) Input




				In TMS, the Token User Key input is used to enroll keys for the user of a hardware token, for agents to use the token later for certificate-based authentication. This input puts the following fields into the enrollment form:
			
	
						Token Key User UID. This field gives the UID for the LDAP entry of the user of the token device.
					

	
						Token Key User Public Key. This field must contain the token user's public key.
					




      ⁠Example A.3. 
caTempTokenUserEncryptionKeyEnrollment.cfg:input.i1.class_id=nsNKeyCertReqInputImpl




      ⁠A.1.4. Subject DN Input




				In TMS, the Subject DN input allows the user to input the specific DN to set as the certificate subject name, and the input inserts a single Subject Name field into the enrollment form.
			

      ⁠Example A.4. 
caAdminCert.cfg:input.i3.class_id=subjectDNInputImpl




      ⁠A.1.5.  Subject Alternative Name Extension Input




				In TMS, the Subject Alternative Name Extension Input is used along with the Subject Alternative Name Extension Default plug-in. It allows admins to enable the numbered parameters in URI with the pattern req_san_pattern_# into the input and therefore the SubjectAltNameExt extension. For example, URI containing:
			
...&req_san_pattern_0=host0.Example.com&req_san_pattern_1=host1.Example.com

				injects host0.Example.com and host1.Example.com into the SubjectAltNameExt extension from the profile below.
			

      ⁠Example A.5. 
input.i3.class_id=
input.i3.name=subjectAltNameExtInputImplsubjectAltNameExtInputImpl
…
policyset.serverCertSet.9.constraint.class_id=noConstraintImpl
policyset.serverCertSet.9.constraint.name=No Constraint
policyset.serverCertSet.9.default.class_id=subjectAltNameExtDefaultImpl
policyset.serverCertSet.9.default.name=Subject Alternative Name Extension Default
policyset.serverCertSet.9.default.params.subjAltExtGNEnable_0=true
policyset.serverCertSet.9.default.params.subjAltExtPattern_0=$request.req_san_pattern_0$
policyset.serverCertSet.9.default.params.subjAltExtType_0=DNSName
policyset.serverCertSet.9.default.params.subjAltExtGNEnable_1=true
policyset.serverCertSet.9.default.params.subjAltExtPattern_1=$request.req_san_pattern_1$
policyset.serverCertSet.9.default.params.subjAltExtType_1=DNSName
policyset.serverCertSet.9.default.params.subjAltExtGNEnable_2=false
policyset.serverCertSet.9.default.params.subjAltExtPattern_2=$request.req_san_pattern_2$
policyset.serverCertSet.9.default.params.subjAltExtType_2=DNSName
policyset.serverCertSet.9.default.params.subjAltNameExtCritical=false
policyset.serverCertSet.9.default.params.subjAltNameNumGNs=2





      ⁠A.2. Output Reference




			An output is the response to the end user of a successful enrollment.
		

      ⁠A.2.1. CMC Certificate Output




				The profile framework enables you to specify output plug-ins. In case of certificate enrollments using CMC requests, the output is implicitly set to CMC output in conformance with RFC 5272. Therefore, the output value specified in the profile is ignored.
			


      ⁠A.2.2. nsNSKeyOutput




				In TMS, this class implements the output plug-in that returns the DER encoded certificates for token keys.
			

      ⁠Example A.6. caTokenUserDelegateAuthKeyEnrollment.cfg
output.list=o1
output.o1.class=nsNKeyOutputImpl







      ⁠Appendix B. Defaults, Constraints, and Extensions for Certificates and CRLs




		This appendix explains both the standard certificate extensions defined by X.509 v3 and the extensions defined by Netscape that were used in versions of products released before X.509 v3 was finalized. It provides recommendations for extensions to use with specific kinds of certificates, including PKIX Part 1 recommendations.
	
IMPORTANT


			This appendix is a reference for defaults, constraints, and certificate and CRL extensions that are used or are configurable in Red Hat Certificate System. For a complete reference and explanation of certificate and CRL extensions, see RFC 5280.
		



		This appendix contains the following sections:
	
	
				Section B.1, “Defaults Reference”
			

	
				Section B.2, “Constraints Reference”
			

	
				Section B.3, “Standard X.509 v3 Certificate Extension Reference”
			

	
				Section B.4, “CRL Extensions”
			




      ⁠B.1. Defaults Reference




			Defaults are used to define the contents of a certificate. This section lists and defines the predefined defaults.
		

      ⁠B.1.1. Authority Info Access Extension Default




				This default attaches the Authority Info Access extension. This extension specifies how an application validating a certificate can access information, such as online validation services and CA policy data, about the CA that has issued the certificate. This extension should not be used to point directly to the CRL location maintained by a CA; the CRL Distribution Points extension, Section B.1.8, “CRL Distribution Points Extension Default”, provides references to CRL locations.
			

				For general information about this extension, see Section B.3.1, “authorityInfoAccess”.
			

				The following constraints can be defined with this default:
			
	
						Extension Constraint; see Section B.2.4, “Extension Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					




				This default can define up to five locations, with parameters for each location. The parameters are marked with an n in the table to show with which location the parameter is associated.
			

      ⁠Table B.1. Authority Info Access Extension Default Configuration Parameters
	 Parameter 	 Description 
	 Critical 	 Select true to mark this extension critical; select false to mark the extension noncritical. 
	 Method_n 	 
								Specifies the access method for retrieving additional information about the CA that has issued the certificate in which the extension appears. This is one of the following values:
							

							 	
										ocsp (1.3.6.1.5.5.7.48.1).
									

	
										caIssuers (1.3.6.1.5.5.7.48.2)
									

	
										renewal (2.16.840.1.113730.16.1)
									




							 
	 LocationType_n 	 Specifies the general name type for the location that contains additional information about the CA that has issued the certificate. This is one of the following types: 
								
										DirectoryName
									

	
										DNSName
									

	
										EDIPartyName
									

	
										IPAddress
									

	
										OID
									

	
										RFC822Name
									

	
										URIName
									




							 
	 Location_n 	 
								Specifies the address or location to get additional information about the CA that has issued the certificate.
							

							 	
										For directoryName, the value must be a string form of X.500 name, similar to the subject name in a certificate. For example, cn=SubCA, ou=Research Dept, o=Example Corporation, c=US.
									

	
										For dNSName, the value must be a valid fully-qualified domain name. For example, testCA.example.com.
									

	
										For EDIPartyName, the value must be an IA5String. For example, Example Corporation.
									

	
										For iPAddress, the value must be a valid IP address. An IPv4 address must be in the format n.n.n.n or n.n.n.n,m.m.m.m. For example, 128.21.39.40 or 128.21.39.40,255.255.255.00. An IPv6 address uses a 128-bit namespace, with the IPv6 address separated by colons and the netmask separated by periods. For example, 0:0:0:0:0:0:13.1.68.3, FF01::43, 0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:255.255.255.0, and FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FF00:0000.
									

	
										For OID, the value must be a unique, valid OID specified in dot-separated numeric component notation. For example, 1.2.3.4.55.6.5.99.
									

	
										For RFC822Name, the value must be a valid Internet mail address.
									

	
										For URIName, the value must be a non-relative universal resource identifier (URI) following the URL syntax and encoding rules. The name must include both a scheme, such as http, and a fully-qualified domain name or IP address of the host. For example, http://ocspResponder.example.com:8000. Certificate System allows both IPv4 and IPv6 IP addresses.
									




							 
	 Enable_n 	 Specifies whether this location is enabled. Select true to mark this as set; select false to disable it. 





      ⁠B.1.2. Authority Key Identifier Extension Default




				This default attaches the Authority Key Identifier extension to the certificate. The extension identifies the public key that corresponds to the private key used by a CA to sign certificates. This default has no parameters. If used, this extension is included in the certificate with the public key information.
			

				This default takes the following constraint:
			
	
						No Constraints; see Section B.2.8, “No Constraint”.
					




				For general information about this extension, see Section B.3.2, “authorityKeyIdentifier”.
			


      ⁠B.1.3. Authentication Token Subject Name Default




				This profile default populates subject names based on the attribute values in the authentication token (AuthToken) object.
			

				This default plug-in works with the directory-based authentication manager, SharedToken.
			

				In addition, the directory-based authentication manager formulates the subject name of the issuing certificate. It forms the subject name by using the user's DN value from AuthToken.
			

				This default is responsible for reading the subject name from the AuthToken and placing it in the certificate request so that the final certificate contains the subject name.
			

				The following constraints can be defined with this default: 
					
							No Constraints; see Section B.2.8, “No Constraint”.
						





			


      ⁠B.1.4. CMC User-signed Subject Name Default




				This profile default populates subject names based on the CMC request signer's subjectDN. The following constraint must be used with this default:
			
	
						CMCUserSignedSubjectNameConstraint: See Section B.2.14, “CMC User-signed Subject Name Constraint”.
					





      ⁠B.1.5. Basic Constraints Extension Default




				This default attaches the Basic Constraint extension to the certificate. The extension identifies whether the Certificate Manager is a CA. The extension is also used during the certificate chain verification process to identify CA certificates and to apply certificate chain-path length constraints.
			

				For general information about this extension, see Section B.3.3, “basicConstraints”.
			

				The following constraints can be defined with this default:
			
	
						Basic Constraints Extension Constraint; see Section B.2.1, “Basic Constraints Extension Constraint”.
					

	
						Extension Constraint; see Section B.2.4, “Extension Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					




      ⁠Table B.2. Basic Constraints Extension Default Configuration Parameters
	 Parameter 	 Description 
	 Critical 	 Select true to mark this extension critical; select false to mark the extension noncritical. 
	 IsCA 	 Specifies whether the certificate subject is a CA. With true, the server checks the PathLen parameter and sets the specified path length in the certificate. With false, the server treats the certificate subject as a non-CA and ignores the value specified for the PathLen parameter. 
	 PathLen 	 
								Specifies the path length, the maximum number of CA certificates that may be chained below (subordinate to) the subordinate CA certificate being issued. The path length affects the number of CA certificates to be used during certificate validation. The chain starts with the end-entity certificate being validated and moves up.
							

							 
								The maxPathLen parameter has no effect if the extension is set in end-entity certificates.
							

							 
								The permissible values are 0 or n. The value should be less than the path length specified in the Basic Constraints extension of the CA signing certificate. 0 specifies that no subordinate CA certificates are allowed below the subordinate CA certificate; only an end-entity certificate may follow in the path. n must be an integer greater than zero. It specifies the maximum number of subordinate CA certificates allowed below the subordinate CA certificate.
							

							 
								If the field is blank, the path length defaults to a value that is determined by the path length set in the Basic Constraints extension in the issuer's certificate. If the issuer's path length is unlimited, the path length in the subordinate CA certificate will also be unlimited. If the issuer's path length is an integer greater than zero, the path length in the subordinate CA certificate will be set to a value that is one less than the issuer's path length; for example, if the issuer's path length is 4, the path length in the subordinate CA certificate will be set to 3.
							

							 





      ⁠B.1.6. CA Validity Default




				This default adds an option to a CA certificate enrollment or renewal profile to bypass the CA's signing certificate's expiration constraint. This means that the issued CA certificate can have an expiration date that is later than the issuing CA signing certificate expiration date.
			

				The following constraints can be defined with this default:
			
	
						Validity Constraint; see Section B.2.15, “Validity Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					




      ⁠Table B.3. CA Validity Default Parameters
	 Parameter 	 Description 
	 bypassCAnotafterrange 	 Sets the default value for whether a requesting CA can request a certificate whose validity period extends past the issuing CA's validity period. 
	 range 	 Specifies the absolute validity period for this certificate, in the number of days. 
	 startTime 	 Sets when the validity period begins, based on the current time. 





      ⁠B.1.7. Certificate Policies Extension Default




				This default attaches the Certificate Policy Mappings extension into the certificate template. This extension defines one or more policies, indicating the policy under which the certificate has been issued and the purposes for which the certificate may be used. This default defines up to five policies, but this can be value can be changed.
			

				For general information about this extension, see Section B.3.4, “certificatePoliciesExt”
			

      ⁠Table B.4. Certificate Policies Extension Default Configuration Parameters
	 Parameter 	 Description 
	 Critical 	 Select true to mark this extension critical; select false to mark the extension noncritical. 
	 numCertPolicies 	 Specifies the number of policies that can be defined. The default is 5. 
	 enable 	 Select true to enable the policy; select false to disable the policy. 
	 policyId 	 Specifies the OID identifier for the policy. 
	 cpsURI.enable 	 The extension can include a URI to the issuer's Certificate Practice Statement. Select true to enable URI; select false to disable URI. 
	 CPSURI.value 	 This value is a pointer to a Certification Practice Statement (CPS) published by the CA. The pointer is in the form of a URI. 
	 usernotice.enable 	 The extension can include a URI to the issuer's Certificate Practice Statement or can embed issuer information, such as a user notice in text form. Select true to enable user notices; select false to disable the user notices. 
	 usernotice.noticeReference.noticeNumbers 	 This optional user notice parameter is a sequence of numbers that points to messages stored elsewhere. 
	 usernotice.noticeReference.organization 	 This optional user notice parameter specifies the name of the company. 
	 usernotice.explicitText.value 	 This optional user notice parameter contains the message within the certificate. 





      ⁠B.1.8. CRL Distribution Points Extension Default




				This default attaches the CRL Distribution Points extension to the certificate. This extension identifies locations from which an application that is validating the certificate can obtain the CRL information to verify the revocation status of the certificate.
			

				For general information about this extension, see Section B.3.5, “CRLDistributionPoints”.
			

				The following constraints can be defined with this default:
			
	
						Extension Constraint; see Section B.2.4, “Extension Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					




				This default defines up to five locations, with parameters for each location. The parameters are marked with an n in the table to show with which location the parameter is associated.
			

      ⁠Table B.5. CRL Distribution Points Extension Configuration Parameters
	 Parameter 	 Description 
	 Critical 	 Select true to mark this extension critical; select false to mark the extension noncritical. 
	 Type_n 	 Specifies the type of CRL distribution point. The permissible values are DirectoryName, URIName, or RelativeToIssuer. The type must correspond to the value in the Name field. 
	 Name_n 	 
								Specifies the name of the CRL distribution point, the name can be in any of the following formats:
							

							 	
										An X.500 directory name in the RFC 2253 syntax. The name looks similar to the subject name in a certificate, like cn=CA Central, ou=Research Dept, o=Example Corporation, c=US.
									

	
										A URIName, such as http://testCA.example.com:80.
									

	
										An RDN which specifies a location relative to the CRL issuer. In this case, the value of the Type attribute must be RelativeToIssuer.
									




							 
	 Reasons_n 	 
								Specifies revocation reasons covered by the CRL maintained at the distribution point. Provide a comma-separated list of the following constants:
							

							 	
										unused
									

	
										keyCompromise
									

	
										cACompromise
									

	
										affiliationChanged
									

	
										superseded
									

	
										cessationOfOperation
									

	
										certificateHold
									




							 
	 IssuerType_n 	 
								Specifies the naming type of the issuer that has signed the CRL maintained at the distribution point. The issuer name can be in any of the following formats:
							

							 	
										RFC822Name
									

	
										DirectoryName
									

	
										DNSName
									

	
										EDIPartyName
									

	
										URIName
									

	
										IPAddress
									

	
										OIDName
									

	
										OtherName
									




							 
	 IssuerName_n 	 
								Specifies the name format of the CRL issuer that signed the CRL. The permissible values are as follows:
							

							 	
										For RFC822Name, the value must be a valid Internet mail address. For example, testCA@example.com.
									

	
										For DirectoryName, the value must be a string form of X.500 name, similar to the subject name in a certificate. For example, cn=SubCA, ou=Research Dept, o=Example Corporation, c=US.
									

	
										For DNSName, the value must be a valid fully-qualified domain name. For example, testCA.example.com.
									

	
										For EDIPartyName, the value must be an IA5String. For example, Example Corporation.
									

	
										For URIName, the value must be a non-relative URI following the URL syntax and encoding rules. The name must include both a scheme, such as http, and a fully qualified domain name or IP address of the host. For example, http://testCA.example.com. Certificate System supports both IPv4 and IPv6 addresses.
									

	
										For IPAddress, the value must be a valid IP address. An IPv4 address must be in the format n.n.n.n or n.n.n.n,m.m.m.m. For example, 128.21.39.40 or 128.21.39.40,255.255.255.00. An IPv6 address uses a 128-bit namespace, with the IPv6 address separated by colons and the netmask separated by periods. For example, 0:0:0:0:0:0:13.1.68.3, FF01::43, 0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:255.255.255.0, and FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FF00:0000.
									

	
										For OIDName, the value must be a unique, valid OID specified in dot-separated numeric component notation. For example, 1.2.3.4.55.6.5.99.
									

	
										OtherName is used for names with any other format; this supports PrintableString, IA5String, UTF8String, BMPString, Any, and KerberosName. KerberosName has the format Realm|NameType|NameStrings, such as realm1|0|userID1,userID2.
									

										OtherName must have the format (type)oid,string. For example, (IA5String)1.2.3.4,MyExample.
									




							 
								The value for this parameter must correspond to the value in the issuerName field.
							

							 





      ⁠B.1.9. Extended Key Usage Extension Default




				This default attaches the Extended Key Usage extension to the certificate.
			

				For general information about this extension, see Section B.3.6, “extKeyUsage”.
			

				The extension identifies the purposes, in addition to the basic purposes indicated in the Key Usage extension, for which the certified public key may be used. For example, if the key usage extension identifies a signing key, the Extended Key Usage extension can narrow the usage of the key for only signing OCSP responses or only Java™ applets.
			

      ⁠Table B.6. PKIX Usage Definitions for the Extended Key Usage Extension
	 Usage 	 OID 
	 Server authentication 	 1.3.6.1.5.5.7.3.1 
	 Client authentication 	 1.3.6.1.5.5.7.3.2 
	 Code signing 	 1.3.6.1.5.5.7.3.3 
	 Email 	 1.3.6.1.5.5.7.3.4 
	 IPsec end system 	 1.3.6.1.5.5.7.3.5 
	 IPsec tunnel 	 1.3.6.1.5.5.7.3.6 
	 IPsec user 	 1.3.6.1.5.5.7.3.7 
	 Timestamping 	 1.3.6.1.5.5.7.3.8 




				Windows 2000 can encrypt files on the hard disk, a feature known as encrypted file system (EFS), using certificates that contain the Extended Key Usage extension with the following two OIDs:  
			

				1.3.6.1.4.1.311.10.3.4 (EFS certificate)
			

				1.3.6.1.4.1.311.10.3.4.1 (EFS recovery certificate)
			

				The EFS recovery certificate is used by a recovery agent when a user loses the private key and the data encrypted with that key needs to be used. Certificate System supports these two OIDs and allows certificates to be issued containing the Extended Key Usage extension with these OIDs.
			

				Normal user certificates should be created with only the EFS OID, not the recovery OID.
			

				The following constraints can be defined with this default:
			
	
						Extended Key Usage Constraint; see Section B.2.3, “Extended Key Usage Extension Constraint”.
					

	
						Extension Constraint; see Section B.2.4, “Extension Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					




      ⁠Table B.7. Extended Key Usage Extension Default Configuration Parameters
	 Parameter 	 Description 
	 Critical 	 Select true to mark this extension critical; select false to mark the extension noncritical. 
	 OIDs 	 Specifies the OID that identifies a key-usage purpose. The permissible values are a unique, valid OID specified in the dot-separated numeric component notation. For example, 2.16.840.1.113730.1.99. Depending on the key-usage purposes, the OIDs can be designated by PKIX (listed in Table B.6, “PKIX Usage Definitions for the Extended Key Usage Extension”) or custom OIDs. Custom OIDs must be in the registered subtree of IDs reserved for the company's use. Although it is possible to use custom OIDs for evaluating and testing the Certificate System, in a production environment, comply with the ISO rules for defining OIDs and for registering subtrees of IDs. 





      ⁠B.1.10. Freshest CRL Extension Default




				This default attaches the Freshest CRL extension to the certificate.  
			

				The following constraints can be defined with this default:
			
	
						Extension Constraint; see Section B.2.4, “Extension Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					




				This default defines five locations with parameters for each location. The parameters are marked with an n in the table to show with which location the parameter is associated.
			

      ⁠Table B.8. Freshest CRL Extension Default Configuration Parameters
	 Parameter 	 Description 
	 Critical 	 Select true to mark this extension critical; select false to mark the extension noncritical. 
	 PointEnable_n 	 Select true to enable this point; select false to disable this point. 
	 PointType_n 	 Specifies the type of issuing point, either DirectoryName or URIName. 
	 PointName_n 	 	
										If pointType is set to directoryName, the value must be an X.500 name, similar to the subject name in a certificate. For example, cn=CACentral,ou=Research Dept,o=Example Corporation,c=US.
									

	
										If pointType is set to URIName, the name must be a URI, an absolute pathname that specifies the host. For example, http://testCA.example.com/get/crls/here/.
									




							 
	 PointIssuerName_n 	 
								Specifies the name of the issuer that has signed the CRL. The name can be in any of the following formats:
							

							 	
										For RFC822Name, the value must be a valid Internet mail address. For example, testCA@example.com.
									

	
										For DirectoryName, the value must be a string form of X.500 name, similar to the subject name in a certificate. For example, cn=SubCA, ou=Research Dept, o=Example Corporation, c=US.
									

	
										For DNSName, the value must be a valid fully-qualified domain name. For example, testCA.example.com.
									

	
										For EDIPartyName, the value must be an IA5String. For example, Example Corporation.
									

	
										For URIName, the value must be a non-relative URI following the URL syntax and encoding rules. The name must include both a scheme, such as http, and a fully qualified domain name or IP address of the host. For example, http://testCA.example.com. Certificate System supports both IPv4 and IPv6 addresses.
									

	
										For IPAddress, the value must be a valid IP address. An IPv4 address must be in the format n.n.n.n or n.n.n.n,m.m.m.m. For example, 128.21.39.40 or 128.21.39.40,255.255.255.00. An IPv6 address uses a 128-bit namespace, with the IPv6 address separated by colons and the netmask separated by periods. For example, 0:0:0:0:0:0:13.1.68.3, FF01::43, 0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:255.255.255.0, and FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FF00:0000.
									

	
										For OIDName, the value must be a unique, valid OID specified in dot-separated numeric component notation. For example, 1.2.3.4.55.6.5.99.
									

	
										OtherName is used for names with any other format; this supports PrintableString, IA5String, UTF8String, BMPString, Any, and KerberosName. KerberosName has the format Realm|NameType|NameStrings, such as realm1|0|userID1,userID2.
									

										OtherName must have the format (type)oid,string. For example, (IA5String)1.2.3.4,MyExample.
									




							 
								The name value must comply with the format specified in PointType_.
							

							 
	 PointType_n 	 Specifies the general name type of the CRL issuer that signed the CRL. The permissible values are as follows: 
								
										RFC822Name
									

	
										DirectoryName
									

	
										DNSName
									

	
										EDIPartyName
									

	
										URIName
									

	
										IPAddress
									

	
										OIDName
									

	
										OtherName
									




							 The value for this parameter must correspond to the value in the PointIssuerName field. 





      ⁠B.1.11. Generic Extension Default




				This extension allows for the creation of a generic extension with user determined data. The default ensures the generic extension is populated correctly.
			

      ⁠Table B.9. Generic Extension Default Configuration Parameters
	 Parameter 	 Description 
	 Critical 	 Select true to mark this extension critical; select false to mark the extension noncritical. 
	 genericExtOID 	 Specifies the extensions OID identifier. 
	 genericExtData 	 The binary data contained within the extension. 





      ⁠B.1.12. Inhibit Any-Policy Extension Default




				The inhibit any-policy extension can be used for certificates issued to CAs. The inhibit any-policy indicates that the special anyPolicy OID, with the value { 2 5 29 32 0 }, is not considered an explicit match for other certificate policies.
			

      ⁠Table B.10. Inhibit Any-Policy Extension Default Configuration Parameters
	 Parameter 	 Description 
	 Critical 	 This policy must be marked as critical. Select true to mark this extension critical; select false to mark the extension noncritical. 
	 SkipCerts 	 This parameter indicate the number of additional certificates that may appear in the path before any-policy is no longer allowed. A value of 1 indicates that any-policy may be processed in certificates issued by the subject of this certificate, but not in additional certificates in the path. 





      ⁠B.1.13. Issuer Alternative Name Extension Default




				This default attaches the Issuer Alternative Name extension to the certificate. The Issuer Alternative Name extension is used to associate Internet-style identities with the certificate issuer.  
			

				The following constraints can be defined with this default:
			
	
						Extension Constraint; see Section B.2.4, “Extension Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					




				This default defines five locations with parameters for each location. The parameters are marked with an n in the table to show with which location the parameter is associated.
			

      ⁠Table B.11. Issuer Alternative Name Extension Default Configuration Parameters
	 Parameter 	 Description 
	 Critical 	 Select true to mark this extension critical; select false to mark the extension noncritical. 
	 issuerAltExtType 	 This sets the type of name extension to be used, which can be one of the following: 
								
										RFC822Name
									

	
										DirectoryName
									

	
										DNSName
									

	
										EDIPartyName
									

	
										URIName
									

	
										IPAddress
									

	
										OIDName
									




							 
	 issuerAltExtPattern 	 
								Specifies the request attribute value to include in the extension. The attribute value must conform to any of the supported general name types. The permissible value is a request attribute included in the certificate request.
							

							 
								If the server finds the attribute in the request, it sets the attribute value in the extension and adds the extension to certificates. If multiple attributes are specified and none of the attributes are present in the request, the server does not add the Issuer Alternative Name extension to certificates. If no suitable attributes can be used from the request to form the issuerAlternativeName, then literal string can be used without any token expression. For example, Certificate Authority.
							

							 





      ⁠B.1.14. Key Usage Extension Default




				This default attaches the Key Usage extension to the certificate. The extension specifies the purposes for which the key contained in a certificate should be used, such as data signing, key encryption, or data encryption, which restricts the usage of a key pair to predetermined purposes.
			

				For general information about this extension, see Section B.3.8, “keyUsage”.
			

				The following constraints can be defined with this default:
			
	
						Key Usage Constraint; see Section B.2.6, “Key Usage Extension Constraint”.
					

	
						Extension Constraint; see Section B.2.4, “Extension Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					




      ⁠Table B.12. Key Usage Extension Default Configuration Parameters
	 Parameter 	 Description 
	 Critical 	 Select true to mark this extension critical; select false to mark the extension noncritical. 
	 digitalSignature 	 Specifies whether to allow signing TLS client certificates and S/MIME signing certificates. Select true to set. 
	 nonRepudiation 	 Specifies whether to use for S/MIME signing certificates. Select true to set. 
							WARNING


									Using this bit is controversial. Carefully consider the legal consequences of its use before setting it for any certificate.
								



							 
	 keyEncipherment 	 Specifies whether the public key in the subject is used to encipher private or secret keys. This is set for TLS server certificates and S/MIME encryption certificates. Select true to set. 
	 dataEncipherment 	 Specifies whether to set the extension when the subject's public key is used to encipher user data as opposed to key material. Select true to set. 
	 keyAgreement 	 Specifies whether to set the extension whenever the subject's public key is used for key agreement. Select true to set. 
	 keyCertsign 	 Specifies whether the public key is used to verify the signature of other certificates. This setting is used for CA certificates. Select true to set the option. 
	 cRLSign 	 Specifies whether to set the extension for CA signing certificates that sign CRLs. Select true to set. 
	 encipherOnly 	 Specifies whether to set the extension if the public key is only for encrypting data while performing key agreement. If this bit is set, keyAgreement should also be set. Select true to set. 
	 decipherOnly 	 Specifies whether to set the extension if the public key is only for decrypting data while performing key agreement. If this bit is set, keyAgreement should also be set. Select true to set. 





      ⁠B.1.15. Name Constraints Extension Default




				This default attaches a Name Constraints extension to the certificate. The extension is used in CA certificates to indicate a name space within which the subject names or subject alternative names in subsequent certificates in a certificate chain should be located.
			

				For general information about this extension, see Section B.3.9, “nameConstraints”.
			

				The following constraints can be defined with this default:
			
	
						Extension Constraint; see Section B.2.4, “Extension Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					




				This default defines up to five locations for both the permitted subtree and the excluded subtree and sets parameters for each location. The parameters are marked with an n in the table to show with which location the parameter is associated.
			

      ⁠Table B.13. Name Constraints Extension Default Configuration Parameters
	 Parameter 	 Description 
	 Critical 	 Select true to mark this extension critical; select false to mark the extension noncritical. 
	 PermittedSubtreesn.min 	 
								Specifies the minimum number of permitted subtrees.
							

							 	
										-1 specifies that the field should not be set in the extension.
									

	
										0 specifies that the minimum number of subtrees is zero.
									

	
										n must be an integer that is greater than zero. It sets the minimum required number of subtrees.
									




							 
	 PermittedSubtreesmax_n 	 
								Specifies the maximum number of permitted subtrees.
							

							 	
										-1 specifies that the field should not be set in the extension.
									

	
										0 specifies that the maximum number of subtrees is zero.
									

	
										n must be an integer that is greater than zero. It sets the maximum number of subtrees allowed.
									




							 
	 PermittedSubtreeNameChoice_n 	 Specifies the general name type for the permitted subtree to include in the extension. The permissible values are as follows: 
								
										RFC822Name
									

	
										DirectoryName
									

	
										DNSName
									

	
										EDIPartyName
									

	
										URIName
									

	
										IPAddress
									

	
										OIDName
									

	
										OtherName
									




							 
	 PermittedSubtreeNameValue_n 	 
								Specifies the general name value for the permitted subtree to include in the extension.
							

							 	
										For RFC822Name, the value must be a valid Internet mail address. For example, testCA@example.com.
									

	
										For DirectoryName, the value must be a string form of X.500 name, similar to the subject name in a certificate. For example, cn=SubCA, ou=Research Dept, o=Example Corporation, c=US.
									

	
										For DNSName, the value must be a valid fully-qualified domain name. For example, testCA.example.com.
									

	
										For EDIPartyName, the value must be an IA5String. For example, Example Corporation.
									

	
										For URIName, the value must be a non-relative URI following the URL syntax and encoding rules. The name must include both a scheme, such as http, and a fully qualified domain name or IP address of the host. For example, http://testCA.example.com. Certificate System supports both IPv4 and IPv6 addresses.
									

	
										For IPAddress, the value must be a valid IP address conforming to Classless Inter-Domain Routing (CIDR) notation. An IPv4 address must be in the n.n.n.n format, or n.n.n.n/m with a netmask - for example, 10.34.3.133 or 110.34.3.133/24. IPv6 addresses must also conform to CIDR notation; examples with netmasks include 2620:52:0:2203:527b:9dff:fe56:4495/64 or 2001:db8::/64.
									

	
										For OIDName, the value must be a unique, valid OID specified in dot-separated numeric component notation. For example, 1.2.3.4.55.6.5.99.
									

	
										OtherName is used for names with any other format; this supports PrintableString, IA5String, UTF8String, BMPString, Any, and KerberosName. KerberosName has the format Realm|NameType|NameStrings, such as realm1|0|userID1,userID2.
									

										OtherName must have the format (type)oid,string. For example, (IA5String)1.2.3.4,MyExample.
									




							 
	 PermittedSubtreeEnable_n 	 Select true to enable this permitted subtree entry. 
	 ExcludedSubtreesn.min 	 
								Specifies the minimum number of excluded subtrees.
							

							 	
										-1 specifies that the field should not be set in the extension.
									

	
										0 specifies that the minimum number of subtrees is zero.
									

	
										n must be an integer that is greater than zero. This sets the minimum number of required subtrees.
									




							 
	 ExcludedSubtreeMax_n 	 
								Specifies the maximum number of excluded subtrees.
							

							 	
										-1 specifies that the field should not be set in the extension.
									

	
										0 specifies that the maximum number of subtrees is zero.
									

	
										n must be an integer that is greater than zero. This sets the maximum number of allowed subtrees.
									




							 
	 ExcludedSubtreeNameChoice_n 	 Specifies the general name type for the excluded subtree to include in the extension. The permissible values are as follows: 
								
										RFC822Name
									

	
										DirectoryName
									

	
										DNSName
									

	
										EDIPartyName
									

	
										URIName
									

	
										IPAddress
									

	
										OIDName
									

	
										OtherName
									




							 
	 ExcludedSubtreeNameValue_n 	 
								Specifies the general name value for the permitted subtree to include in the extension.
							

							 	
										For RFC822Name, the value must be a valid Internet mail address. For example, testCA@example.com.
									

	
										For DirectoryName, the value must be an X.500 name, similar to the subject name in a certificate. For example, cn=SubCA, ou=Research Dept, o=Example Corporation, c=US.
									

	
										For DNSName, the value must be a valid fully-qualified domain name. For example, testCA.example.com.
									

	
										For EDIPartyName, the value must be an IA5String. For example, Example Corporation.
									

	
										For URIName, the value must be a non-relative URI following the URL syntax and encoding rules. The name must include both a scheme, such as http, and a fully qualified domain name or IP address of the host. For example, http://testCA.example.com. Certificate System supports both IPv4 and IPv6 addresses.
									

	
										For IPAddress, the value must be a valid IP address conforming to Classless Inter-Domain Routing (CIDR) notation. An IPv4 address must be in the n.n.n.n format, or n.n.n.n/m with a netmask - for example, 10.34.3.133 or 110.34.3.133/24. IPv6 addresses must also conform to CIDR notation; examples with netmasks include 2620:52:0:2203:527b:9dff:fe56:4495/64 or 2001:db8::/64.
									

	
										For OIDName, the value must be a unique, valid OID specified in dot-separated numeric component notation. For example, 1.2.3.4.55.6.5.99.
									

	
										For OtherName, the values are names with any other format. This supports PrintableString, IA5String, UTF8String, BMPString, Any, and KerberosName. KerberosName has the format Realm|NameType|NameStrings, such as realm1|0|userID1,userID2.
									

										OtherName must have the format (type)oid,string. For example, (IA5String)1.2.3.4,MyExample.
									




							 
	 ExcludedSubtreeEnable_n 	 Select true to enable this excluded subtree entry. 





      ⁠B.1.16. Netscape Certificate Type Extension Default



WARNING


					This extension is obsolete. Use the Key Usage or Extended Key Usage certificate extensions instead.
				



				This default attaches a Netscape Certificate Type extension to the certificate. The extension identifies the certificate type, such as CA certificate, server TLS certificate, client TLS certificate, or S/MIME certificate. This restricts the usage of a certificate to predetermined purposes.
			


      ⁠B.1.17. Netscape Comment Extension Default



WARNING


					This extension is obsolete.
				



				This default attaches a Netscape Comment extension to the certificate. The extension can be used to include textual comments in certificates. Applications that are capable of interpreting the comment display it when the certificate is used or viewed.
			

				For general information about this extension, see Section B.4.3.2, “netscape-comment”.
			

				The following constraints can be defined with this default:
			
	
						Extension Constraint; see Section B.2.4, “Extension Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					




      ⁠Table B.14. Netscape Comment Extension Configuration Parameters
	 Parameter 	 Description 
	 Critical 	 Select true to mark this extension critical; select false to mark the extension noncritical. 
	 CommentContent 	 Specifies the content of the comment to appear in the certificate. 





      ⁠B.1.18. No Default Extension




				This default can be used to set constraints when no defaults are being used. This default has no settings and sets no defaults but does allow all of the constraints available to be set.
			


      ⁠B.1.19. OCSP No Check Extension Default




				This default attaches an OCSP No Check extension to the certificate. The extension, which should be used in OCSP responder certificates only, indicates how OCSP-compliant applications can verify the revocation status of the certificate an authorized OCSP responder uses to sign OCSP responses.
			

				For general information about this extension, see Section B.3.10, “OCSPNocheck”.
			

				The following constraints can be defined with this default:
			
	
						Extension Constraint; see Section B.2.4, “Extension Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					




      ⁠Table B.15. OCSP No Check Extension Default Configuration Parameters
	 Parameter 	 Description 
	 Critical 	 Select true to mark this extension critical; select false to mark the extension noncritical. 





      ⁠B.1.20. Policy Constraints Extension Default




				This default attaches a Policy Constraints extension to the certificate. The extension, which can be used in CA certificates only, constrains path validation in two ways: either to prohibit policy mapping or to require that each certificate in a path contain an acceptable policy identifier. The default can specify both ReqExplicitPolicy and InhibitPolicyMapping. PKIX standard requires that, if present in the certificate, the extension must never consist of a null sequence. At least one of the two specified fields must be present.
			

				For general information about this extension, see Section B.3.11, “policyConstraints”.
			

				The following constraints can be defined with this default:
			
	
						Extension Constraint; see Section B.2.4, “Extension Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					




      ⁠Table B.16. Policy Constraints Extension Default Configuration Parameters
	 Parameter 	 Description 
	 Critical 	 Select true to mark this extension critical; select false to mark the extension noncritical. 
	 reqExplicitPolicy 	 
								Specifies the total number of certificates permitted in the path before an explicit policy is required. This is the number of CA certificates that can be chained below the subordinate CA certificate before an acceptable policy is required.
							

							 	
										-1 specifies that the field should not be set in the extension.
									

	
										0 specifies that no subordinate CA certificates are permitted in the path before an explicit policy is required.
									

	
										n must be an integer that is greater than zero. It specifies the maximum number of subordinate CA certificates allowed in the path before an explicit policy is required.
									




							 
								This number affects the number of CA certificates to be used during certificate validation. The chain starts with the end-entity certificate being validated and moving up the chain. The parameter has no effect if the extension is set in end-entity certificates.
							

							 
	 inhibitPolicyMapping 	 
								Specifies the total number of certificates permitted in the path before policy mapping is no longer permitted.
							

							 	
										-1 specifies that the field should not be set in the extension.
									

	
										0 specifies that no subordinate CA certificates are permitted in the path before policy mapping is no longer permitted.
									

	
										n must be an integer that is greater than zero. It specifies at the maximum number of subordinate CA certificates allowed in the path before policy mapping is no longer permitted. For example, a value of 1 indicates that policy mapping may be processed in certificates issued by the subject of this certificate, but not in additional certificates in the path.
									




							 





      ⁠B.1.21. Policy Mappers Extension Default




				This default attaches a Policy Mappings extension to the certificate. The extension lists pairs of OIDs, each pair identifying two policy statements of two CAs. The pairing indicates that the corresponding policies of one CA are equivalent to policies of another CA. The extension may be useful in the context of cross-certification. If supported, the extension is included in CA certificates only. The default maps policy statements of one CA to that of another by pairing the OIDs assigned to their policy statements
			

				Each pair is defined by two parameters, issuerDomainPolicy and subjectDomainPolicy. The pairing indicates that the issuing CA considers the issuerDomainPolicy equivalent to the subjectDomainPolicy of the subject CA. The issuing CA's users may accept an issuerDomainPolicy for certain applications. The policy mapping tells these users which policies associated with the subject CA are equivalent to the policy they accept.
			

				For general information about this extension, see Section B.3.12, “policyMappings”.
			

				The following constraints can be defined with this default:
			
	
						Extension Constraint; see Section B.2.4, “Extension Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					




      ⁠Table B.17. Policy Mappings Extension Default Configuration Parameters
	 Parameter 	 Description 
	 Critical 	 Select true to mark this extension critical; select false to mark the extension noncritical. 
	 IssuerDomainPolicy_n 	 Specifies the OID assigned to the policy statement of the issuing CA to map with the policy statement of another CA. For example, 1.2.3.4.5. 
	 SubjectDomainPolicy_n 	 Specifies the OID assigned to the policy statement of the subject CA that corresponds to the policy statement of the issuing CA. For example, 6.7.8.9.10. 





      ⁠B.1.22. Private Key Usage Period Extension Default




				The Private Key Usage Period extension allows the certificate issuer to specify a different validity period for the private key than for the certificate itself. This extension is intended for use with digital signature keys.
			

      ⁠Table B.18. Private key Usage Period Configuration Parameters
	 Parameter 	 Description 
	 Critical 	 This extension should always be non-critical. 
	 puStartTime 	 This parameters sets the start time. The default value is 0, which starts the validity period from the time the extension is activated. 
	 puDurationDays 	 This parameters sets the duration of the usage period. The default value is 365, which sets the validity period to 365 days from the time the extension is activated. 





      ⁠B.1.23. Signing Algorithm Default




				This default attaches a signing algorithm in the certificate request. This default presents an agent with the possible algorithms that can be used for signing the certificate.
			

				The following constraints can be defined with this default:
			
	
						Signing Algorithm Constraint; see Section B.2.10, “Signing Algorithm Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					




      ⁠Table B.19. Signing Algorithm Default Configuration Parameters
	 Parameter 	 Description 
	 signingAlg 	 Specify the default signing algorithm to be used to create this certificate. An agent can override this value by specifying one of the values contained in the signingAlgsAllowed parameter. 
	 signingAlgsAllowed 	 Specify the signing algorithms that can be used for signing this certificate. The algorithms can be any or all of the following: 
								
										SHA256withRSA
									

	
										SHA384withRSA
									

	
										SHA512withRSA
									

	
										SHA256withEC
									

	
										SHA384withEC
									

	
										SHA512withEC
									




							 





      ⁠B.1.24. Subject Alternative Name Extension Default




				This default attaches a Subject Alternative Name extension to the certificate. The extension binds additional identities, such as an email address, a DNS name, an IP address (both IPv4 and IPv6), or a URI, to the subject of the certificate. The standard requires that if the certificate subject field contains an empty sequence, then the Subject Alternative name extension must contain the subject's alternative name and that the extension be marked critical.
			

				For any of the directory-based authentication methods, the Certificate System can retrieve values for any string and byte attributes and set them in the certificate request. These attributes are set by entering them in the ldapStringAttributes and ldapByteAttributes fields defined in the automated enrollment modules.
			

				If authenticated attributes — meaning attributes stored in an LDAP database — need to be part of this extension, use values from the $request.X$ token.
			

				There is an additional attribute to insert a universally unique identifier (UUID) into the subject alt name. This option generates a random number for version 4 UUID; the pattern is defined by referencing the server which will generate the number in an additional subjAltExtSource parameter.
			

				A basic Subject Alternative Name Extension default is configured in the example.
			

      ⁠Example B.1. Default Subject Alternative Name Extension Configuration
policyset.serverCertSet.9.constraint.name=No Constraint
policyset.serverCertSet.9.default.class_id=subjectAltNameExtDefaultImpl
policyset.serverCertSet.9.default.name=Subject Alternative Name Extension Default
policyset.serverCertSet.9.default.params.subjAltExtGNEnable_0=true
policyset.serverCertSet.9.default.params.subjAltExtPattern_0=$request.requester_email$
policyset.serverCertSet.9.default.params.subjAltExtType_0=RFC822Name
policyset.serverCertSet.9.default.params.subjAltExtGNEnable_1=true
policyset.serverCertSet.9.default.params.subjAltExtPattern_1=$request.SAN1$
policyset.serverCertSet.9.default.params.subjAltExtType_1=DNSName
policyset.serverCertSet.9.default.params.subjAltExtGNEnable_2=true
policyset.serverCertSet.9.default.params.subjAltExtPattern_2=http://www.server.example.com
policyset.serverCertSet.9.default.params.subjAltExtType_2=URIName
policyset.serverCertSet.9.default.params.subjAltExtType_3=OtherName
policyset.serverCertSet.9.default.params.subjAltExtPattern_3=(IA5String)1.2.3.4,$server.source$
policyset.serverCertSet.9.default.params.subjAltExtSource_3=UUID4
policyset.serverCertSet.9.default.params.subjAltExtGNEnable_3=true
policyset.serverCertSet.9.default.params.subjAltExtType_4=RFC822Name
policyset.serverCertSet.9.default.params.subjAltExtGNEnable_4=false
policyset.serverCertSet.9.default.params.subjAltExtPattern_4=
policyset.serverCertSet.9.default.params.subjAltNameExtCritical=false
policyset.serverCertSet.9.default.params.subjAltNameNumGNs=4



				The Subject Alternative Name extension default checks the certificate request for the profile attributes. If the request contains an attribute, the profile reads its value and sets it in the extension. It is also possible for the Subject Alternative Name extension default to insert attribute values from an LDAP directory, if LDAP-based authentication is configured. The extension added to the certificates contain all the configured attributes.
			

				The variables that can be used with the Subject Alternative Name extension default are listed in Table B.20, “Variables to Insert Values in the Subject Alternative Name”.
			

      ⁠Table B.20. Variables to Insert Values in the Subject Alternative Name
	 Policy Set Token 	 Description 
	 $request.auth_token.cn$ 	 The LDAP common name (cn) attribute of the user who requested the certificate. 
	 $request.auth_token.mail$ 	 The value of the LDAP email (mail) attribute of the user who requested the certificate. 
	 $request.auth_token.tokenCertSubject$ 	 The certificate subject name. 
	 $request.auth_token.uid$ 	 The LDAP user ID (uid) attribute of the user who requested the certificate. 
	 $request.auth_token.user$ 	 
	 $request.auth_token.userDN$ 	 The user DN of the user who requested the certificate. 
	 $request.auth_token.userid$ 	 The value of the user ID attribute for the user who requested the certificate. 
	 $request.uid$ 	 The value of the user ID attribute for the user who requested the certificate. 
	 $request.profileRemoteAddr$ 	 The IP address of the user making the request. This can be an IPv4 or an IPv6 address, depending on the client. An IPv4 address must be in the format n.n.n.n or n.n.n.n,m.m.m.m. For example, 128.21.39.40 or 128.21.39.40,255.255.255.00. An IPv6 address uses a 128-bit namespace, with the IPv6 address separated by colons and the netmask separated by periods. For example, 0:0:0:0:0:0:13.1.68.3, FF01::43, 0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:255.255.255.0, and FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FF00:0000. 
	 $request.profileRemoteHost$ 	 The hostname or IP address of the user's machine. The hostname can be the fully-qualified domain name and the protocol, such as http://server.example.com. An IPv4 address must be in the format n.n.n.n or n.n.n.n,m.m.m.m. For example, 128.21.39.40 or 128.21.39.40,255.255.255.00. An IPv6 address uses a 128-bit namespace, with the IPv6 address separated by colons and the netmask separated by periods. For example, 0:0:0:0:0:0:13.1.68.3, FF01::43, 0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:255.255.255.0, and FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FF00:0000. 
	 $request.requestor_email$ 	 The email address of the person who submitted the request. 
	 $request.requestowner$ 	 The person who submitted the request. 
	 $request.subject$ 	 The subject name DN of the entity to which the certificate is issued. For example, uid=jsmith, e=jsmith@example.com. 
	 $request.tokencuid$ 	 The card unique ID (CUID) of the smart card token used for requesting the enrollment. 
	 $request.upn$ 	 The Microsoft UPN. This has the format (UTF8String)1.3.6.1.4.1.311.20.2.3,$request.upn$. 
	 $server.source$ 	 Instructs the server to generate a version 4 UUID (random number) component in the subject name. This always has the format (IA5String)1.2.3.4,$server.source$. 




				Multiple attributes can be set for a single extension. The subjAltNameNumGNs parameter controls how many of the listed attributes are required to be added to the certificate. This parameter must be added to custom profiles and may need modified in default profiles to include as many attributes as required. In Example B.1, “Default Subject Alternative Name Extension Configuration”, the subjAltNameNumGNs is set to 3 to insert the RFC822Name, DNSName, and URIName names (generic names _0, _1, and _2).
			

				The following constraints can be defined with this default:
			
	
						Extension Constraint; see Section B.2.4, “Extension Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					




      ⁠Table B.21. Subject Alternative Name Extension Default Configuration Parameters
	 Parameter 	 Description 
	 Critical 	 Select true to mark this extension critical; select false to mark the extension noncritical. 
	 Pattern 	 Specifies the request attribute value to include in the extension. The attribute value must conform to any of the supported general name types. If the server finds the attribute in the request, it sets the attribute value in the extension and adds the extension to certificates. If multiple attributes are specified and none of the attributes are present in the request, the server does not add the Subject Alternative Name extension to certificates. The permissible value is a request attribute included in the certificate request. For example, $request.requester_email$. 
	 Type 	 
								Specifies the general name type for the request attribute.
							

							 	
										Select RFC822Name if the request-attribute value is an email address in the local-part@domain format. For example, jdoe@example.com
									

	
										Select DirectoryName if the request-attribute value is an X.500 directory name, similar to the subject name in a certificate. For example, cn=Jane Doe, ou=Sales Dept, o=Example Corporation, c=US.
									

	
										Select DNSName if the request-attribute value is a DNS name. For example, corpDirectory.example.com.
									

	
										Select EDIPartyName if the request-attribute value is an EDI party name. For example, Example Corporation.
									

	
										Select URIName if the request-attribute value is a non-relative URI that includes both a scheme, such as http, and a fully qualified domain name or IP address of the host. For example, http://hr.example.com. Certificate System supports both IPv4 and IPv6 addresses.
									

	
										Select IPAddress if the request-attribute value is a valid IP address specified in dot-separated numeric component notation. For example, 128.21.39.40. An IPv4 address must be in the format n.n.n.n or n.n.n.n,m.m.m.m. For example, 128.21.39.40 or 128.21.39.40,255.255.255.00. An IPv6 address uses a 128-bit namespace, with the IPv6 address separated by colons and the netmask separated by periods. For example, 0:0:0:0:0:0:13.1.68.3, FF01::43, 0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:255.255.255.0, and FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FF00:0000.
									

	
										Select OIDName if the request-attribute value is a unique, valid OID specified in the dot-separated numeric component notation. For example, 1.2.3.4.55.6.5.99.
									

	
										Select OtherName for names with any other format. This supports PrintableString, IA5String, UTF8String, BMPString, Any, and KerberosName. KerberosName has the format Realm|NameType|NameStrings, such as realm1|0|userID1,userID2.
									

										OtherName must have the format (type)oid,string. For example, (IA5String)1.2.3.4,MyExample.
									




							 
	 Source 	 Specifies an identification source or protocol to use to generate an ID. The only supported source is UUID4, which generates a random number to create the UUID. 
	 Number of Components (NumGNs) 	 Specifies the number of name components that must be included in the subject alternative name. 





      ⁠B.1.25. Subject Directory Attributes Extension Default




				This default attaches a Subject Directory Attributes extension to the certificate. The Subject Directory Attributes extension conveys any desired directory attribute values for the subject of the certificate.
			

				The following constraints can be defined with this default:
			
	
						Extension Constraint; see Section B.2.4, “Extension Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					




      ⁠Table B.22. Subject Directory Attributes Extension Default Configuration Parameters
	 Parameter 	 Description 
	 Critical 	 Select true to mark this extension critical; select false to mark the extension noncritical. 
	 Name 	 The attribute name; this can be any LDAP directory attribute, such as cn or mail. 
	 Pattern 	 Specifies the request attribute value to include in the extension. The attribute value must conform to the allowed values of the attribute. If the server finds the attribute, it sets the attribute value in the extension and adds the extension to certificates. If multiple attributes are specified and none of the attributes are present in the request, the server does not add the Subject Directory Attributes extension to certificates. For example, $request.requester_email$. 
	 Enable 	 Sets whether that attribute is able to be added to the certificate. Select true to enable the attribute. 





      ⁠B.1.26. Subject Info Access Extension Default




				Implements an enrollment default policy that populates a Subject Information Access extension in the certificate template. This extension indicates how to access information and services for the subject of the certificate in which the extension appears.
			
	 Parameter 	 Description 
	 Critical 	 This extension is supposed to be non-critical. 
	 subjInfoAccessNumADs 	 The number of information access sections included with the certificate. 
	 subjInfoAccessADMethod_n 	 OID of the access method. 
	 subjInfoAccessADMethod_n 	 Type of access method. 
								
										URIName
									

	
										Directory name
									

	
										DNS Name
									

	
										EID Party Name
									

	
										IP Address
									

	
										OID Name
									

	
										RFC822Name
									




							 
	 subjInfoAccessADLocation_n 	 
								Location based on the type subjInfoAccessADMethod_n
							

							 
								i.e., a URL for URI Name.
							

							 
	 subjInfoAccessADEnable_n 	 Select true to enable this extension; select false to disable this extension. 




      ⁠B.1.27. Subject Key Identifier Extension Default




				This default attaches a Subject Key Identifier extension to the certificate. The extension identifies certificates that contain a particular public key, which identifies a certificate from among several that have the same subject name.
			

				For general information about this extension, see Section B.3.16, “subjectKeyIdentifier”.
			

				If enabled, the profile adds a Subject Key Identifier Extension to an enrollment request if the extension does not already exist. If the extension exists in the request, such as a CRMF request, the default replaces the extension. After an agent approves the manual enrollment request, the profile accepts any Subject Key Identifier Extension that is already there.
			

				This default has no parameters. If used, this extension is included in the certificate with the public key information.
			

				The following constraints can be defined with this default:
			
	
						Extension Constraint; see Section B.2.4, “Extension Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					





      ⁠B.1.28. Subject Name Default




				This default attaches a server-side configurable subject name to the certificate request. A static subject name is used as the subject name in the certificate.
			

				The following constraints can be defined with this default:
			
	
						Subject Name Constraint; see Section B.2.11, “Subject Name Constraint”.
					

	
						Unique Subject Name Constraint; see Section B.2.13, “Unique Subject Name Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					




      ⁠Table B.23. Subject Name Default Configuration Parameters
	 Parameter 	 Description 
	 Name 	 Specify the subject name for this certificate. 




				If you need to get a certificate subject name that uses the DNPATTERN value from the UidPwdDirAuth plugin, then configure the profile to use the Subject Name Default plugin and substitute the Name parameter with the "Subject Name" from the AuthToken as shown below.
			
policyset.userCertSet.1.default.class_id=subjectNameDefaultImpl
policyset.userCertSet.1.default.name=Subject Name Default
policyset.userCertSet.1.default.params.name=$request.auth_token.tokenCertSubject$


      ⁠B.1.29. User Key Default




				This default attaches a user-supplied key into the certificate request. This is a required default. Keys are part of the enrollment request.
			

				The following constraints can be defined with this default:
			
	
						Key Constraint; see Section B.2.5, “Key Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					





      ⁠B.1.30. User Signing Algorithm Default




				This default implements an enrollment default profile that populates a user-supplied signing algorithm in the certificate request. If included in the certificate profile, this allows a user to choose a signing algorithm for the certificate, subject to the constraint set.
			

				No inputs are provided to add signing algorithm choices to the enrollment form, but it is possible to submit a request that contains this information.
			

				The following constraints can be defined with this default:
			
	
						Signing Algorithm Constraint; see Section B.2.10, “Signing Algorithm Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					





      ⁠B.1.31. User Subject Name Default




				This default attaches a user-supplied subject name to the certificate request. If included in the certificate profile, it allows a user to supply a subject name for the certificate, subject to the constraints set. This extension preserves the subject name that is specified in the original certificate request when the certificate is issued.
			

				The following constraints can be defined with this default:
			
	
						Subject Name Constraint; see Section B.2.11, “Subject Name Constraint”.
					

	
						Unique Subject Name Constraint; see Section B.2.13, “Unique Subject Name Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					





      ⁠B.1.32. User Validity Default




				This default attaches a user-supplied validity to the certificate request. If included in the certificate profile, it allows a user to supply the validity period, subject to the constraints set. This default profile preserves that user-defined validity period in the original certificate request when the certificate is issued.
			

				No inputs are provided to add user-supplied validity date to the enrollment form, but it is possible to submit a request that contains this information.
			

				The following constraints can be defined with this default:
			
	
						Validity Constraint; see Section B.2.15, “Validity Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					





      ⁠B.1.33. User Supplied Extension Default




				The User Supplied Extension Default class populates a certificate with any certificate extension defined by the user in the certificate request. This requires users to submit certificate requests which meet certain standards or give certain information because the profile can require specific extensions before enrolling a certificate.
			
WARNING


					Be exceptionally cautious about setting this extension default, since it allows users to specify an extension in the certificate request. If this default is used, then Red Hat strongly recommends using a constraint corresponding to the extension to minimize any possible abuse of the User Supplied Extension Default.
				



				The user-defined extension is validated against whatever constraint is set, so it is possible to restrict the kind of extension (through the Extension Constraint) or to set rules for the key and other basic constraints, such as whether this is a CA certificate.
			

				The CA handles an enrollment with the User Supplied Extension Default in one of three ways:
			
	
						If the OID of the extension is specified in both the certificate request and the default, then the extension is validated by the constraints and applied to the certificate.
					

	
						If an OID of an extension is given in the request but is not specified in the User Supplied Extension Default in the profile, then the user-specified extension is ignored, and the certificate is successfully enrolled without that extension.
					

	
						If this extension is set on a profile with a corresponding OID (Extension Constraint), then any certificate request processed through that profile must carry the specified extension or the request is rejected.
					




				A certificate request that contains the user-defined extensions must be submitted to the profile. The certificate enrollment forms, however, do not have any input fields for users to add user-supplied extensions. Submitting a certificate request without supplying the extension fails.
			

				Example B.2, “User Supplied Extension Default for the Extended Key Usage Extension” adds the User Supplied Extension Default to a profile with the Extended Key Usage Constraint. The OID specified in the userExtOID parameter is for the Extended Key Usage Extension.
			

      ⁠Example B.2. User Supplied Extension Default for the Extended Key Usage Extension
policyset.set1.2.constraint.class_id=extendedKeyUsageExtConstraintImpl
policyset.set1.2.constraint.name=Extended Key Usage Extension
policyset.set1.2.constraint.params.exKeyUsageCritical=false
policyset.set1.2.constraint.params.exKeyUsageOIDs=1.3.6.1.5.5.7.3.2,1.3.6.1.5.5.7.3.4
policyset.set1.2.default.class_id=userExtensionDefaultImpl
policyset.set1.2.default.name=User Supplied Extension Default
policyset.set1.2.default.params.userExtOID=2.5.29.37



				In Example B.2, “User Supplied Extension Default for the Extended Key Usage Extension”, although the User Supplied Extension Default allows a user to specify the Extended Key Usage Extension (2.5.29.37), the constraint limits the user request to only the TLS client authentication (1.3.6.1.5.5.7.3.2) and email protection (1.3.6.1.5.5.7.3.4) uses.
			

				Editing profiles is described in the section called Creating and Editing Certificate Profiles Directly on the File System in Red Hat Certificate System Planning, Installation and Deployment Guide.
			

      ⁠Example B.3. Multiple User Supplied Extensions in CSR

					The RHCS enrollment profile framework allows to define multiple User Supplied Extensions in the same profile. For example, a combination of the following can be specified.
				
	
							For Extended Key Usage Extension:
						
policyset.serverCertSet.2.constraint.class_id=extendedKeyUsageExtConstraintImpl
policyset.serverCertSet.2.constraint.name=Extended Key Usage Extension
policyset.serverCertSet.2.constraint.params.exKeyUsageCritical=false
policyset.serverCertSet.2.constraint.params.exKeyUsageOIDs=1.3.6.1.5.5.7.3.2,1.3.6.1.5.5.7.3.4
policyset.serverCertSet.2.default.class_id=userExtensionDefaultImpl
policyset.serverCertSet.2.default.name=User Supplied Extension Default
policyset.serverCertSet.2.default.params.userExtOID=2.5.29.37

	
							For Key Usage Extension:
						

							By using the following format, you can apply a policy which parameter of the extension:
						
	
									Must exist in the CSR: value = "true"
								

	
									Must not exist in the CSR: value = "false"
								

	
									Is optional: value = "-"
								




							For example:
						
policyset.serverCertSet.13.constraint.class_id=keyUsageExtConstraintImpl
policyset.serverCertSet.13.constraint.name=Key Usage Extension Constraint
policyset.serverCertSet.13.constraint.params.keyUsageCritical=-
policyset.serverCertSet.13.constraint.params.keyUsageCrlSign=false
policyset.serverCertSet.13.constraint.params.keyUsageDataEncipherment=-
policyset.serverCertSet.13.constraint.params.keyUsageDecipherOnly=-
policyset.serverCertSet.13.constraint.params.keyUsageDigitalSignature=-
policyset.serverCertSet.13.constraint.params.keyUsageEncipherOnly=-
policyset.serverCertSet.13.constraint.params.keyUsageKeyAgreement=true
policyset.serverCertSet.13.constraint.params.keyUsageKeyCertSign=-
policyset.serverCertSet.13.constraint.params.keyUsageKeyEncipherment=-
policyset.serverCertSet.13.constraint.params.keyUsageNonRepudiation=-
policyset.serverCertSet.13.default.class_id=userExtensionDefaultImpl
policyset.serverCertSet.13.default.name=User Supplied Key Usage Extension
policyset.serverCertSet.13.default.params.userExtOID=2.5.29.15





Note


					For an example on how to create a CSR with user-defined extensions attributes, see Section 5.2.1.2, “Using certutil to Create a CSR With User-defined Extensions”.
				




      ⁠B.1.34. Validity Default




				This default attaches a server-side configurable validity period into the certificate request.
			

				The following constraints can be defined with this default:
			
	
						Validity Constraint; see Section B.2.15, “Validity Constraint”.
					

	
						No Constraints; see Section B.2.8, “No Constraint”.
					




      ⁠Table B.24. Validity Default Configuration Parameters
	 Parameter 	 Description 
	 range 	 Specifies the validity period for this certificate. 
	 startTime 	 Sets when the validity period begins, based on the current time. 






      ⁠B.2. Constraints Reference




			Constraints are used to define the allowable contents of a certificate and the values associated with that content. This section lists the predefined constraints with complete definitions of each.
		

      ⁠B.2.1. Basic Constraints Extension Constraint




				The Basic Constraints extension constraint checks if the basic constraint in the certificate request satisfies the criteria set in this constraint.
			

      ⁠Table B.25. Basic Constraints Extension Constraint Configuration Parameters
	 Parameter 	 Description 
	 basicConstraintsCritical 	 Specifies whether the extension can be marked critical or noncritical. Select true to mark this extension critical; select false to prevent this extension from being marked critical. Selecting a hyphen -, implies no criticality preference. 
	 basicConstraintsIsCA 	 Specifies whether the certificate subject is a CA. Select true to require a value of true for this parameter (is a CA); select false to disallow a value of true for this parameter; select a hyphen, -, to indicate no constraints are placed for this parameter. 
	 basicConstraintsMinPathLen 	 
								Specifies the minimum allowable path length, the maximum number of CA certificates that may be chained below (subordinate to) the subordinate CA certificate being issued. The path length affects the number of CA certificates used during certificate validation. The chain starts with the end-entity certificate being validated and moves up.
							

							 
								This parameter has no effect if the extension is set in end-entity certificates.
							

							 
								The permissible values are 0 or n. The value must be less than the path length specified in the Basic Constraints extension of the CA signing certificate.
							

							 
								0 specifies that no subordinate CA certificates are allowed below the subordinate CA certificate being issued; only an end-entity certificate may follow in the path.
							

							 
								n must be an integer greater than zero. This is the minimun number of subordinate CA certificates allowed below the subordinate CA certificate being used.
							

							 
	 basicConstraintsMaxPathLen 	 
								Specifies the maximum allowable path length, the maximum number of CA certificates that may be chained below (subordinate to) the subordinate CA certificate being issued. The path length affects the number of CA certificates used during certificate validation. The chain starts with the end-entity certificate being validated and moves up.
							

							 
								This parameter has no effect if the extension is set in end-entity certificates.
							

							 
								The permissible values are 0 or n. The value must be greater than the path length specified in the Basic Constraints extension of the CA signing certificate.
							

							 
								0 specifies that no subordinate CA certificates are allowed below the subordinate CA certificate being issued; only an end-entity certificate may follow in the path.
							

							 
								n must be an integer greater than zero. This is the maximum number of subordinate CA certificates allowed below the subordinate CA certificate being used.
							

							 
								If the field is blank, the path length defaults to a value determined by the path length set on the Basic Constraints extension in the issuer's certificate. If the issuer's path length is unlimited, the path length in the subordinate CA certificate is also unlimited. If the issuer's path length is an integer greater than zero, the path length in the subordinate CA certificate is set to a value one less than the issuer's path length; for example, if the issuer's path length is 4, the path length in the subordinate CA certificate is set to 3.
							

							 





      ⁠B.2.2. CA Validity Constraint




				The CA Validity constraint checks if the validity period in the certificate template is within the CA's validity period. If the validity period of the certificate is out outside the CA certificate's validity period, the constraint is rejected.
			


      ⁠B.2.3. Extended Key Usage Extension Constraint




				The Extended Key Usage extension constraint checks if the Extended Key Usage extension on the certificate satisfies the criteria set in this constraint.
			
IMPORTANT


					Key Usage extension and Extended Key Usage extension consistency has to be maintained. For further details, see the Key Usage and Extended Key Usage Consistency section in the Red Hat Certificate System 9 Planning, Installation and Deployment Guide (Common Criteria Edition).
				



      ⁠Table B.26. Extended Key Usage Extension Constraint Configuration Parameters
	 Parameter 	 Description 
	 exKeyUsageCritical 	 When set to true, the extension can be marked as critical. When set to false, the extension can be marked noncritical. 
	 exKeyUsageOIDs 	 Specifies the allowable OIDs that identifies a key-usage purpose. Multiple OIDs can be added in a comma-separated list. 





      ⁠B.2.4. Extension Constraint




				This constraint implements the general extension constraint. It checks if the extension is present.
			

      ⁠Table B.27. Extension Constraint
	 Parameter 	 Description 
	 extCritical 	 Specifies whether the extension can be marked critical or noncritical. Select true to mark the extension critical; select false to mark it noncritical. Select - to enforce no preference. 
	 extOID 	 The OID of an extension that must be present in the cert to pass the constraint. 





      ⁠B.2.5. Key Constraint




				This constraint checks the size of the key for RSA keys, and the name of the elliptic curve for EC keys. When used with RSA keys the KeyParameters parameter contains a comma-separated list of legal key sizes, and with EC Keys the KeyParameters parameter contains a comma-separated list of available ECC curves.
			

      ⁠Table B.28. Key Constraint Configuration Parameters
	 Parameter 	 Description 
	 keyType 	 Gives a key type; this is set to - by default and uses an RSA key system. The choices are rsa and ec. If the key type is specified and not identified by the system, the constraint will be rejected. 
	 KeyParameters 	 Defines the specific key parameters. The parameters which are set for the key differe, depending on the value of the keyType parameter (meaning, depending on the key type). 
								
										With RSA keys, the KeyParameters parameter contains a comma-separated list of legal key sizes.
									

	
										With ECC keys, the KeyParameters parameter contains a comma-separated list of available ECC curves.
									




							 





      ⁠B.2.6. Key Usage Extension Constraint




				The Key Usage extension constraint checks if the key usage constraint in the certificate request satisfies the criteria set in this constraint.
			
IMPORTANT


					Key Usage extension and Extended Key Usage extension consistency has to be maintained. For further details, see the Key Usage and Extended Key Usage Consistency section in the Red Hat Certificate System 9 Planning, Installation and Deployment Guide (Common Criteria Edition).
				



      ⁠Table B.29. Key Usage Extension Constraint Configuration Parameters
	 Parameter 	 Description 
	 keyUsageCritical 	 Select true to mark this extension critical; select false to mark it noncritical. Select - for no preference. 
	 keyUsageDigitalSignature 	 Specifies whether to sign TLS client certificates and S/MIME signing certificates. Select true to mark this as set; select false to keep this from being set; select a hyphen, -, to indicate no constraints are placed for this parameter. 
	 kleyUsageNonRepudiation 	 Specifies whether to set S/MIME signing certificates. Select true to mark this as set; select false to keep this from being set; select a hyphen, -, to indicate no constraints are placed for this parameter. 
							WARNING


									Using this bit is controversial. Carefully consider the legal consequences of its use before setting it for any certificate.
								



							 
	 keyEncipherment 	 Specifies whether to set the extension for TLS server certificates and S/MIME encryption certificates. Select true to mark this as set; select false to keep this from being set; select a hyphen, -, to indicate no constraints are placed for this parameter. 
	 keyUsageDataEncipherment 	 Specifies whether to set the extension when the subject's public key is used to encrypt user data, instead of key material. Select true to mark this as set; select false to keep this from being set; select a hyphen, -, to indicate no constraints are placed for this parameter. 
	 keyUsageKeyAgreement 	 Specifies whether to set the extension whenever the subject's public key is used for key agreement. Select true to mark this as set; select false to keep this from being set; select a hyphen, -, to indicate no constraints are placed for this parameter. 
	 keyUsageCertsign 	 Specifies whether the extension applies for all CA signing certificates. Select true to mark this as set; select false to keep this from being set; select a hyphen, -, to indicate no constraints are placed for this parameter. 
	 keyUsageCRLSign 	 Specifies whether to set the extension for CA signing certificates that are used to sign CRLs. Select true to mark this as set; select false to keep this from being set; select a hyphen, -, to indicate no constraints are placed for this parameter. 
	 keyUsageEncipherOnly 	 Specifies whether to set the extension if the public key is to be used only for encrypting data. If this bit is set, keyUsageKeyAgreement should also be set. Select true to mark this as set; select false to keep this from being set; select a hyphen, -, to indicate no constraints are placed for this parameter. 
	 keyUsageDecipherOnly 	 Specifies whether to set the extension if the public key is to be used only for deciphering data. If this bit is set, keyUsageKeyAgreement should also be set. Select true to mark this as set; select false to keep this from being set; select a hyphen, -, to indicate no constraints are placed for this parameter. 





      ⁠B.2.7. Netscape Certificate Type Extension Constraint



WARNING


					This constraint is obsolete. Instead of using the Netscape Certificate Type extension constraint, use the Key Usage extension or Extended Key Usage extension.
				



				The Netscape Certificate Type extension constraint checks if the Netscape Certificate Type extension in the certificate request satisfies the criteria set in this constraint.
			


      ⁠B.2.8. No Constraint




				This constraint implements no constraint. When chosen along with a default, there are not constraints placed on that default.
			


      ⁠B.2.9. Renewal Grace Period Constraint




				The Renewal Grace Period Constraint sets rules on when a user can renew a certificate based on its expiration date. For example, users cannot renew a certificate until a certain time before it expires or if it goes past a certain time after its expiration date.
			

				One important thing to remember when using this constraint is that this constraint is set on the original enrollment profile, not the renewal profile. The rules for the renewal grace period are part of the original certificate and are carried over and applied for any subsequent renewals.
			

				This constraint is only available with the No Default extension.
			

      ⁠Table B.30. Renewal Grace Period Constraint Configuration Parameters
	 Parameter 	 Description 
	 renewal.graceAfter 	 Sets the period, in days, after the certificate expires that it can be submitted for renewal. If the certificate has been expired longer that that time, then the renewal request is rejected. If no value is given, there is no limit. 
	 renewal.graceBefore 	 Sets the period, in days, before the certificate expires that it can be submitted for renewal. If the certificate is not that close to its expiration date, then the renewal request is rejected. If no value is given, there is no limit. 





      ⁠B.2.10. Signing Algorithm Constraint




				The Signing Algorithm constraint checks if the signing algorithm in the certificate request satisfies the criteria set in this constraint.
			

      ⁠Table B.31. Signing Algorithms Constraint Configuration Parameters
	 Parameter 	 Description 
	 signingAlgsAllowed 	 Sets the signing algorithms that can be specified to sign the certificate. The algorithms can be any or all of the following: 
								
										SHA256withRSA
									

	
										SHA384withRSA
									

	
										SHA512withRSA
									

	
										SHA256withEC
									

	
										SHA384withEC
									

	
										SHA512withEC
									




							 





      ⁠B.2.11. Subject Name Constraint




				The Subject Name constraint checks if the subject name in the certificate request satisfies the criteria.
			

      ⁠Table B.32. Subject Name Constraint Configuration Parameters
	 Parameter 	 Description 
	 Pattern 	 Specifies a regular expression or other string to build the subject DN. 



Subject Names and Regular Expressions

					The regular expression for the Subject Name Constraint is matched by the Java facility for matching regular expressions. The format for these regular expressions are listed in https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html. This allows wildcards such as asterisks (*) to search for any number of the characters and periods (.) to search for any type character.
				

				For example, if the pattern of the subject name constraint is set to uid=.*, the certificate profile framework checks if the subject name in the certificate request matches the pattern. A subject name like uid=user, o=Example, c=US satisfies the pattern uid=.*. The subject name cn=user, o=example,c=US does not satisfy the pattern. uid=.* means the subject name must begin with the uid attribute; the period-asterisk (.*) wildcards allow any type and number of characters to follow uid.
			

				It is possible to require internal patterns, such as .*ou=Engineering.*, which requires the ou=Engineering attribute with any kind of string before and after it. This matches cn=jdoe,ou=internal,ou=west coast,ou=engineering,o="Example Corp",st=NC as well as uid=bjensen,ou=engineering,dc=example,dc=com.
			

				Lastly, it is also possible to allow requests that are either one string or another by setting a pipe sign (|) between the options. For example, to permit subject names that contain either ou=engineering,ou=people or ou=engineering,o="Example Corp", the pattern is .*ou=engineering,ou=people.* | .*ou=engineering,o="Example Corp".*.
			
NOTE


					For constructing a pattern which uses a special character, such as a period (.), escape the character with a back slash (\). For example, to search for the string o="Example Inc.", set the pattern to o="Example Inc\.".
				


Subject Names and the UID or CN in the Certificate Request

					The pattern that is used to build the subject DN can also be based on the CN or UID of the person requesting the certificate. The Subject Name Constraint sets the patter of the CN (or UID) to recognize in the DN of the certificate request, and then the Subject Name Default builds on that CN to create the subject DN of the certificate, using a predefined directory tree.
				

				For example, to use the CN of the certificate request:
			
policyset.serverCertSet.1.constraint.class_id=subjectNameConstraintImpl
policyset.serverCertSet.1.constraint.name=Subject Name Constraint
policyset.serverCertSet.1.constraint.params.pattern=CN=[^,]+,.+
policyset.serverCertSet.1.constraint.params.accept=true
policyset.serverCertSet.1.default.class_id=subjectNameDefaultImpl
policyset.serverCertSet.1.default.name=Subject Name Default
policyset.serverCertSet.1.default.params.name=CN=$request.req_subject_name.cn$,DC=example, DC=com


      ⁠B.2.12. Unique Key Constraint




				This constraint checks that the public key is unique.
			

      ⁠Table B.33. Unique Key Constraints Parameters
	 Parameter 	 Description 
	 allowSameKeyRenewal 	 
								A request is considered a renewal and is accepted if this parameter is set to true, if a public key is not unique, and if the subject DN matches an existing certificate. However, if the public key is a duplicate and does not match an existing Subject DN, the request is rejected.
							

							 
								When the parameter is set to false, a duplicate public key request will be rejected.
							

							 





      ⁠B.2.13. Unique Subject Name Constraint




				The Unique Subject Name constraint restricts the server from issuing multiple certificates with the same subject names. When a certificate request is submitted, the server automatically checks the nickname against other issued certificate nicknames. This constraint can be applied to certificate enrollment and renewal through the end-entities' page.
			

				Certificates cannot have the same subject name unless one certificate is expired or revoked (and not on hold). So, active certificates cannot share a subject name, with one exception: if certificates have different key usage bits, then they can share the same subject name, because they have different uses.
			

      ⁠Table B.34. Unique Subject Name Constraint Configuration Parameters
	 Parameter 	 Description 
	 enableKeyUsageExtensionChecking 	 Optional setting which allows certificates to have the same subject name as long as their key usage settings are different. This is either true or false. The default is true, which allows duplicate subject names. 





      ⁠B.2.14. CMC User-signed Subject Name Constraint




				The CMC user-signed Subject Name Constraint restricts the certificates being issued to the user that signed the CMC request. Use it with CMCUserSignedSubjectNameDefault.
			


      ⁠B.2.15. Validity Constraint




				The Validity constraint checks if the validity period in the certificate request satisfies the criteria.
			

				The parameters provided must be sensible values. For instance, a notBefore parameter that provides a time which has already passed will not be accepted, and a notAfter parameter that provides a time earlier than the notBefore time will not be accepted.
			

      ⁠Table B.35. Validity Constraint Configuration Parameters
	 Parameter 	 Description 
	 range 	 The range of the validity period. This is an integer which sets the number of days. The difference (in days) between the notBefore time and the notAfter time must be less than the range value, or this constraint will be rejected. 
	 notBeforeCheck 	 Verifies that the range is not within the grace period. When the NotBeforeCheck Boolean parameter is set to true, the system will check the notBefore time is not greater than the current time plus the notBeforeGracePeriod value. If the notBeforeTime is not between the current time and the notBeforeGracePeriod value, this constraint will be rejected. 
	 notBeforeGracePeriod 	 The grace period (in seconds) after the notBefore time. If the notBeforeTime is not between the current time and the notBeforeGracePeriod value, this constraint will be rejected. This constraint is only checked if the notBeforeCheck parameter has been set to true. 
	 notAfterCheck 	 Verfies whether the given time is not after the expiration period. When the notAfterCheck Boolean parameter is set to true, the system will check the notAfter time is not greater than the current time. If the current time exceeds the notAfter time, this constraint will be rejected. 






      ⁠B.3. Standard X.509 v3 Certificate Extension Reference




			An X.509 v3 certificate contains an extension field that permits any number of additional fields to be added to the certificate. Certificate extensions provide a way of adding information such as alternative subject names and usage restrictions to certificates. Older Netscape servers, such as Red Hat Directory Server and Red Hat Certificate System, that were developed before PKIX part 1 standards were defined require Netscape-specific extensions.
		

			The following is an example of the section of a certificate containing X.509 v3 extensions. The Certificate System can display certificates in readable pretty-print format, as shown here. As in this example, certificate extensions appear in sequence and only one instance of a particular extension may appear per certificate; for example, a certificate may contain only one subject key identifier extension. Certificates that support these extensions have the version 0x2 (which corresponds to version 3). 
		

      ⁠Example B.4. Sample Pretty-Print Certificate Extensions
Certificate:
	Data:
    	Version: 3 (0x2)
    	Serial Number: 1 (0x1)
    	Signature Algorithm: PKCS #1 SHA-256 With RSA Encryption
    	Issuer: "CN=CA Signing Certificate,OU=pki-tomcat,O=EXAMPLE"
    	Validity:
        	Not Before: Fri Feb 22 19:06:56 2019
        	Not After : Tue Feb 22 19:06:56 2039
    	Subject: "CN=CA Signing Certificate,OU=pki-tomcat,O=EXAMPLE"
    	Subject Public Key Info:
        	Public Key Algorithm: PKCS #1 RSA Encryption
        	RSA Public Key:
            	Modulus:
                	dd:6d:ad:02:10:43:12:ad:ec:6c:10:82:b3:bc:ec:6d:
                	4b:e9:46:bc:a3:19:63:15:86:cf:6d:62:43:92:6b:a6:
                	3d:72:54:4b:4f:d5:ad:a9:1d:76:8d:1c:e9:15:24:10:
                	a1:03:1e:1b:14:5e:08:0a:0f:5b:02:aa:e9:3f:85:e1:
                	d4:a6:01:1e:58:ab:7b:f2:67:32:f4:95:3d:35:9c:76:
                	3a:cb:3b:ef:e3:7d:32:04:bb:35:46:68:bd:21:0c:16:
                	b6:63:aa:e7:bb:cd:0f:55:66:21:09:e6:a6:f7:4c:fd:
                	af:c8:a6:d1:98:03:aa:89:b8:76:e7:dd:df:2b:23:c5:
                	b3:06:16:1d:4a:13:8b:0b:56:0c:d5:a2:9a:22:5e:7d:
                	08:af:e4:bf:a0:f6:28:ee:ae:0f:2c:b2:4d:2a:09:5b:
                	6f:32:2e:05:3a:3b:92:5d:d6:1d:69:95:09:0d:f4:b8:
                	52:ac:48:0f:a8:4f:0a:22:1b:01:4c:d2:79:89:e0:bc:
                	cd:1c:84:f8:88:e6:92:16:ed:08:ad:6d:9c:17:8d:70:
                	92:bd:18:74:1a:31:5f:9b:f7:eb:f7:6e:f8:9a:e6:37:
                	fe:7a:c6:07:9b:8a:6c:e8:5b:77:7c:37:e0:66:39:72:
                	62:5d:5d:d0:65:a2:d9:b0:7f:d3:ba:ed:4b:42:89:47
            	Exponent: 65537 (0x10001)
    	Signed Extensions:
        	Name: Certificate Authority Key Identifier
        	Key ID:
            	88:fb:c7:45:a8:b8:e9:74:ab:71:a2:ab:ce:4e:26:b9:
            	a5:97:dc:05

        	Name: Certificate Basic Constraints
        	Critical: True
        	Data: Is a CA with no maximum path length.

        	Name: Certificate Key Usage
        	Critical: True
        	Usages: Digital Signature
                	Non-Repudiation
                	Certificate Signing
                	CRL Signing

        	Name: Certificate Subject Key ID
        	Data:
            	88:fb:c7:45:a8:b8:e9:74:ab:71:a2:ab:ce:4e:26:b9:
            	a5:97:dc:05

        	Name: Authority Information Access
        	Method: PKIX Online Certificate Status Protocol
        	Location:
            	URI: "http://localhost.localdomain:8080/ca/ocsp"

	Signature Algorithm: PKCS #1 SHA-256 With RSA Encryption
	Signature:
    	6b:ed:d8:2b:de:40:a4:14:dd:e8:ce:52:2d:40:0a:f1:
    	88:57:36:3b:7f:c4:e8:77:2b:95:e9:60:fd:57:9b:c2:
    	2d:17:a2:67:4e:c0:23:00:7a:2c:ef:5f:12:13:05:cc:
    	9e:d7:4f:70:55:68:88:eb:29:34:94:cd:59:a6:92:31:
    	c6:36:74:dd:e5:a2:1f:b1:9e:6d:f0:41:95:c2:7f:4c:
    	38:46:62:d9:f3:27:f4:a3:a7:f3:a2:ba:1c:e5:77:4a:
    	d3:2d:50:10:47:03:2e:4f:f2:ef:75:92:36:d8:99:6d:
    	f6:ef:f5:ee:17:70:c2:e0:c1:a1:26:fa:00:e2:ec:35:
    	d5:11:4d:df:66:8d:3c:84:fa:72:ff:47:a5:95:08:c2:
    	80:e6:19:60:ab:51:d6:f1:aa:ac:72:77:d0:01:97:1f:
    	13:f0:c9:55:09:4d:d9:62:5b:bc:4a:21:5a:af:77:cb:
    	4e:cf:48:aa:3d:fc:f6:5e:c8:e2:e0:e3:58:58:40:39:
    	2b:9c:15:d3:65:62:d0:96:1b:35:3f:6e:35:96:ae:36:
    	c2:6c:2b:46:e8:a3:d3:52:21:f0:47:5a:73:5e:1a:b0:
    	99:2f:5d:1b:bc:a1:81:65:68:16:08:e8:3e:2f:5e:32:
    	79:ca:8e:25:e5:78:a1:fc:cd:c0:b3:aa:83:02:18:43
	Fingerprint (SHA-256):
    	2B:2F:05:59:12:F7:A4:6D:DE:22:43:82:59:EC:9F:45:AD:6C:1E:0A:63:6B:79:57:B1:34:3E:1B:BA:D2:13:AC
	Fingerprint (SHA1):
    	E1:87:42:85:AF:07:6C:B2:5F:07:CB:50:4D:49:17:AB:43:99:31:F7

	Mozilla-CA-Policy: false (attribute missing)
	Certificate Trust Flags:
    	SSL Flags:
        	Valid CA
        	Trusted CA
        	Trusted Client CA
    	Email Flags:
        	Valid CA
        	Trusted CA
    	Object Signing Flags:



			An object identifier (OID) is a string of numbers identifying a unique object, such as a certificate extension or a company's certificate practice statement. The Certificate System comes with a set of extension-specific profile plug-in modules which enable X.509 certificate extensions to be added to the certificates the server issues. Some of the extensions contain fields for specifying OIDs.
		

			The PKIX standard recommends that all objects, such as extensions and statements, that are used in certificates be included in the form of an OID. This promotes interoperability between organizations on a shared network. If certificates will be issued that will be used on shared networks, register the OID prefixes with the appropriate registration authority.
		

			OIDs are controlled by the International Standards Organization (ISO) registration authority. In some cases, this authority is delegated by ISO to regional registration authorities. In the United States, the American National Standards Institute (ANSI) manages this registration.
		

			Using an OID registered to another organization or failing to register an OID may carry legal consequences, depending the situation. Registration may be subject to fees. For more information, contact the appropriate registration authority.
		

			To define or assign OIDs for custom objects, know the company's arc, an OID for a private enterprise. If the company does not have an arc, it needs to get one. The http://www.alvestrand.no/objectid/ has more information on registering and using OIDs.
		

			For example, the Netscape-defined OID for an extension named Netscape Certificate Comment is 2.16.840.1.113730.1.13. The OID assigned to this extension is hierarchical and includes the former Netscape company arc, 2.16.840.1. The OID definition entry is http://www.alvestrand.no/objectid/2.16.840.1.113730.1.13.html.
		

			If an OID extension exists in a certificate and is marked critical, the application validating the certificate must be able to interpret the extension, including any optional qualifiers, or it must reject the certificate. Since it is unlikely that all applications will be able to interpret a company's custom extensions embedded in the form of OIDs, the PKIX standard recommends that the extension be always marked noncritical.
		

			This section summarizes the extension types defined as part of the Internet X.509 version 3 standard and indicates which types are recommended by the PKIX working group. 
		

			This reference summarizes important information about each certificate. For complete details, see both the X.509 v3 standard, available from the ITU, and Internet X.509 Public Key Infrastructure - Certificate and CRL Profile (RFC 5280), available at RFC 5280. The descriptions of extensions reference the RFC and section number of the standard draft that discusses the extension; the object identifier (OID) for each extension is also provided.
		

			Each extension in a certificate can be designated as critical or noncritical. A certificate-using system, such as a web browser, must reject the certificate if it encounters a critical extension it does not recognize; however, a noncritical extension can be ignored if it is not recognized.
		

      ⁠B.3.1. authorityInfoAccess




				The Authority Information Access extension indicates how and where to access information about the issuer of the certificate. The extension contains an accessMethod and an accessLocation field. accessMethod specifies by OID the type and format of information about the issuer named in accessLocation.
			

				PKIX Part 1 defines one accessMethod (id-ad-caIssuers) to get a list of CAs that have issued certificates higher in the CA chain than the issuer of the certificate using the extension. The accessLocation field then typically contains a URL indicating the location and protocol (LDAP, HTTP, or FTP) used to retrieve the list.
			

				The Online Certificate Status Protocol (RFC 2560), available at RFC 2560, defines an accessMethod (id-ad-ocsp) for using OCSP to verify certificates. The accessLocation field then contains a URL indicating the location and protocol used to access an OCSP responder that can validate the certificate.
			

      ⁠OID

					1.3.6.1.5.5.7.1.1
				

      ⁠Criticality

					This extension must be noncritical.
				


      ⁠B.3.2. authorityKeyIdentifier




				The Authority Key Identifier extension identifies the public key corresponding to the private key used to sign a certificate. This extension is useful when an issuer has multiple signing keys, such as when a CA certificate is renewed.
			

				The extension consists of one or both of the following:
			
	
						An explicit key identifier, set in the keyIdentifier field
					

	
						An issuer, set in the authorityCertIssuer field, and serial number, set in the authorityCertSerialNumber field, identifying a certificate
					




				If the keyIdentifier field exists, it is used to select the certificate with a matching subjectKeyIdentifier extension. If the authorityCertIssuer and authorityCertSerialNumber fields are present, then they are used to identify the correct certificate by issuer and serialNumber.
			

				If this extension is not present, then the issuer name alone is used to identify the issuer certificate.
			

				PKIX Part 1 requires this extension for all certificates except self-signed root CA certificates. Where a key identifier has not been established, PKIX recommends that the authorityCertIssuer and authorityCertSerialNumber fields be specified. These fields permit construction of a complete certificate chain by matching the SubjectName and CertificateSerialNumber fields in the issuer's certificate against the authortiyCertIssuer and authorityCertSerialNumber in the Authority Key Identifier extension of the subject certificate.
			

      ⁠OID

					2.5.29.35
				

      ⁠Criticality

					This extension is always noncritical and is always evaluated.
				


      ⁠B.3.3. basicConstraints




				This extension is used during the certificate chain verification process to identify CA certificates and to apply certificate chain path length constraints. The cA component should be set to true for all CA certificates. PKIX recommends that this extension should not appear in end-entity certificates.
			

				If the pathLenConstraint component is present, its value must be greater than the number of CA certificates that have been processed so far, starting with the end-entity certificate and moving up the chain. If pathLenConstraint is omitted, then all of the higher level CA certificates in the chain must not include this component when the extension is present.
			

      ⁠OID

					2.5.29.19
				

      ⁠Criticality

					PKIX Part 1 requires that this extension be marked critical. This extension is evaluated regardless of its criticality.
				


      ⁠B.3.4. certificatePoliciesExt




				The Certificate Policies extension defines one or more policies, each of which consists of an OID and optional qualifiers. The extension can include a URI to the issuer's Certificate Practice Statement or can embed issuer information, such as a user notice in text form. This information can be used by certificate-enabled applications.
			

				If this extension is present, PKIX Part 1 recommends that policies be identified with an OID only, or, if necessary, only certain recommended qualifiers.
			

      ⁠OID

					2.5.29.32
				

      ⁠Criticality

					This extension may be critical or noncritical.
				


      ⁠B.3.5. CRLDistributionPoints




				This extension defines how CRL information is obtained. It should be used if the system is configured to use CRL issuing points.
			

				If the extension contains a DistributionPointName with a type set to URI, the URI is assumed to be a pointer to the current CRL for the specified revocation reasons and will be issued by the named cRLIssuer. The expected values for the URI are those defined for the Subject Alternative Name extension. If the distributionPoint omits reasons, the CRL must include revocations for all reasons. If the distributionPoint omits cRLIssuer, the CRL must be issued by the CA that issued the certificate.
			

				PKIX recommends that this extension be supported by CAs and applications.
			

      ⁠OID

					2.5.29.31
				

      ⁠Criticality

					PKIX recommends that this extension be marked noncritical and that it be supported for all certificates.
				


      ⁠B.3.6. extKeyUsage




				The Extended Key Usage extension indicates the purposes for which the certified public key may be used. These purposes may be in addition to or in place of the basic purposes indicated in the Key Usage extension.
			
IMPORTANT


					Key Usage extension and Extended Key Usage extension consistency has to be maintained. For further details, see the Key Usage and Extended Key Usage Consistency section in the Red Hat Certificate System 9 Planning, Installation and Deployment Guide (Common Criteria Edition).
				



				The Extended Key Usage extension must include OCSP Signing in an OCSP responder's certificate unless the CA signing key that signed the certificates validated by the responder is also the OCSP signing key. The OCSP responder's certificate must be issued directly by the CA that signs certificates the responder will validate.
			

				The Key Usage, Extended Key Usage, and Basic Constraints extensions act together to define the purposes for which the certificate is intended to be used. Applications can use these extensions to disallow the use of a certificate in inappropriate contexts.
			

				Table B.36, “PKIX Extended Key Usage Extension Uses” lists the uses defined by PKIX for this extension, and Table B.37, “Private Extended Key Usage Extension Uses” lists uses privately defined by Netscape.
			

      ⁠OID

					2.5.29.37
				

      ⁠Criticality

					If this extension is marked critical, the certificate must be used for one of the indicated purposes only. If it is not marked critical, it is treated as an advisory field that may be used to identify keys but does not restrict the use of the certificate to the indicated purposes.
				

      ⁠Table B.36. PKIX Extended Key Usage Extension Uses
	 Use 	 OID 
	 Server authentication 	 1.3.6.1.5.5.7.3.1 
	 Client authentication 	 1.3.6.1.5.5.7.3.2 
	 Code signing 	 1.3.6.1.5.5.7.3.3 
	 Email 	 1.3.6.1.5.5.7.3.4 
	 Timestamping 	 1.3.6.1.5.5.7.3.8 
	 OCSP Signing 	 
								1.3.6.1.5.5.7.3.9
      ⁠[a]
							

							 
	[a] 
									OCSP Signing is not defined in PKIX Part 1, but in RFC 2560, X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP.
								






      ⁠Table B.37. Private Extended Key Usage Extension Uses
	 Use 	 OID 
	 Certificate trust list signing 	 1.3.6.1.4.1.311.10.3.1 
	 Microsoft Server Gated Crypto (SGC) 	 1.3.6.1.4.1.311.10.3.3 
	 Microsoft Encrypted File System 	 1.3.6.1.4.1.311.10.3.4 
	 Netscape SGC 	 2.16.840.1.113730.4.1 





      ⁠B.3.7. issuerAltName Extension




				The Issuer Alternative Name extension is used to associate Internet-style identities with the certificate issuer. Names must use the forms defined for the Subject Alternative Name extension.
			

      ⁠OID

					2.5.29.18
				

      ⁠Criticality

					PKIX Part 1 recommends that this extension be marked noncritical.
				


      ⁠B.3.8. keyUsage




				The Key Usage extension defines the purpose of the key contained in the certificate. The Key Usage, Extended Key Usage, and Basic Constraints extensions act together to specify the purposes for which a certificate can be used.
			
IMPORTANT


					Key Usage extension and Extended Key Usage extension consistency has to be maintained. For further details, see the Key Usage and Extended Key Usage Consistency section in the Red Hat Certificate System 9 Planning, Installation and Deployment Guide (Common Criteria Edition).
				



				If this extension is included at all, set the bits as follows:
			
	
						digitalSignature (0) for TLS client certificates, S/MIME signing certificates, and object-signing certificates.
					

	
						nonRepudiation (1) for some S/MIME signing certificates and object-signing certificates.
					
WARNING


							Use of this bit is controversial. Carefully consider the legal consequences of its use before setting it for any certificate.
						



	
						keyEncipherment (2) for TLS server certificates and S/MIME encryption certificates.
					

	
						dataEncipherment (3) when the subject's public key is used to encrypt user data instead of key material.
					

	
						keyAgreement (4) when the subject's public key is used for key agreement.
					

	
						keyCertSign (5) for all CA signing certificates.
					

	
						cRLSign (6) for CA signing certificates that are used to sign CRLs.
					

	
						encipherOnly (7) if the public key is used only for enciphering data. If this bit is set, keyAgreement should also be set.
					

	
						decipherOnly (8) if the public key is used only for deciphering data. If this bit is set, keyAgreement should also be set.
					




				Table B.38, “Certificate Uses and Corresponding Key Usage Bits” summarizes the guidelines for typical certificate uses.
			

				If the keyUsage extension is present and marked critical, then it is used to enforce the usage of the certificate and key. The extension is used to limit the usage of a key; if the extension is not present or not critical, all types of usage are allowed.
			

				If the keyUsage extension is present, critical or not, it is used to select from multiple certificates for a given operation. For example, it is used to distinguish separate signing and encryption certificates for users who have separate certificates and key pairs for operations.
			

      ⁠OID

					2.5.29.15
				

      ⁠Criticality

					This extension may be critical or noncritical. PKIX Part 1 recommends that it should be marked critical if it is used.
				

      ⁠Table B.38. Certificate Uses and Corresponding Key Usage Bits
	 Purpose of Certificate 	 Required Key Usage Bit 
	 CA Signing 	 	
										keyCertSign
									

	
										cRLSign
									




							 
	 TLS Client 	 digitalSignature 
	 TLS Server 	 keyEncipherment 
	 S/MIME Signing 	 digitalSignature 
	 S/MIME Encryption 	 keyEncipherment 
	 Certificate Signing 	 keyCertSign 
	 Object Signing 	 digitalSignature 





      ⁠B.3.9. nameConstraints




				This extension, which can used in CA certificates only, defines a name space within which all subject names in subsequent certificates in a certification path must be located.
			

      ⁠OID

					2.5.29.30
				

      ⁠Criticality

					PKIX Part 1 requires that this extension be marked critical.
				


      ⁠B.3.10. OCSPNocheck




				The extension is meant to be included in an OCSP signing certificate. The extension tells an OCSP client that the signing certificate can be trusted without querying the OCSP responder (since the reply would again be signed by the OCSP responder, and the client would again request the validity status of the signing certificate). This extension is null-valued; its meaning is determined by its presence or absence.
			

				Since the presence of this extension in a certificate will cause OCSP clients to trust responses signed with that certificate, use of this extension should be managed carefully. If the OCSP signing key is compromised, the entire process of validating certificates in the PKI will be compromised for the duration of the validity period of the certificate. Therefore, certificates using OCSPNocheck should be issued with short lifetimes and be renewed frequently.
			

      ⁠OID

					1.3.6.1.5.5.7.48.4
				

      ⁠Criticality

					This extension should be noncritical.
				


      ⁠B.3.11. policyConstraints




				This extension, which is for CA certificates only, constrains path validation in two ways. It can be used to prohibit policy mapping or to require that each certificate in a path contain an acceptable policy identifier.
			

				PKIX requires that, if present, this extension must never consist of a null sequence. At least one of the two available fields must be present.
			

      ⁠OID

					2.5.29.36
				

      ⁠Criticality

					This extension may be critical or noncritical.
				


      ⁠B.3.12. policyMappings




				The Policy Mappings extension is used in CA certificates only. It lists one or more pairs of OIDs used to indicate that the corresponding policies of one CA are equivalent to policies of another CA. It may be useful in the context of cross-pair certificates.
			

				This extension may be supported by CAs and applications.
			

      ⁠OID

					2.5.29.33
				

      ⁠Criticality

					This extension must be noncritical.
				


      ⁠B.3.13. privateKeyUsagePeriod




				The Private Key Usage Period extension allows the certificate issuer to specify a different validity period for the private key than for the certificate itself. This extension is intended for use with digital signature keys.
			
NOTE


					PKIX Part 1 recommends against the use of this extension. CAs conforming to PKIX Part 1 must not generate certificates with this extension.
				



      ⁠OID

					2.5.29.16
				


      ⁠B.3.14. subjectAltName




				The Subject Alternative Name extension includes one or more alternative (non-X.500) names for the identity bound by the CA to the certified public key. It may be used in addition to the certificate's subject name or as a replacement for it. Defined name forms include Internet electronic mail address (SMTP, as defined in RFC-822), DNS name, IP address (both IPv4 and IPv6), and uniform resource identifier (URI).
			

				PKIX requires this extension for entities identified by name forms other than the X.500 distinguished name (DN) used in the subject field. PKIX Part 1 describes additional rules for the relationship between this extension and the subject field.
			

				Email addresses may be provided in the Subject Alternative Name extension, the certificate subject name field, or both. If the email address is part of the subject name, it must be in the form of the EmailAddress attribute defined by PKCS #9. Software that supports S/MIME must be able to read an email address from either the Subject Alternative Name extension or from the subject name field.
			

      ⁠OID

					2.5.29.17
				

      ⁠Criticality

					If the certificate's subject field is empty, this extension must be marked critical.
				


      ⁠B.3.15. subjectDirectoryAttributes




				The Subject Directory Attributes extension conveys any desired directory attribute values for the subject of the certificate. It is not recommended as an essential part of the proposed PKIX standard but may be used in local environments.
			

      ⁠OID

					2.5.29.9
				

      ⁠Criticality

					PKIX Part 1 requires that this extension be marked noncritical.
				


      ⁠B.3.16. subjectKeyIdentifier




				The Subject Key Identifier extension identifies the public key certified by this certificate. This extension provides a way of distinguishing public keys if more than one is available for a given subject name.
			

				The value of this extension should be calculated by performing a SHA-1 hash of the certificate's DER-encoded subjectPublicKey, as recommended by PKIX. The Subject Key Identifier extension is used in conjunction with the Authority Key Identifier extension for CA certificates. If the CA certificate has a Subject Key Identifier extension, the key identifier in the Authority Key Identifier extension of the certificate being verified should match the key identifier of the CA's Subject Key Identifier extension. It is not necessary for the verifier to recompute the key identifier in this case.
			

				PKIX Part 1 requires this extension for all CA certificates and recommends it for all other certificates.
			

      ⁠OID

					2.5.29.14
				

      ⁠Criticality

					This extension is always noncritical.
				



      ⁠B.4. CRL Extensions




      ⁠B.4.1. About CRL Extensions




				Since its initial publication, the X.509 standard for CRL formats has been amended to include additional information within a CRL. This information is added through CRL extensions. 
			

				The extensions defined by ANSI X9 and ISO/IEC/ITU for X.509 CRLs [X.509] [X9.55] allow additional attributes to be associated with CRLs. The Internet X.509 Public Key Infrastructure Certificate and CRL Profile, available at RFC 5280, recommends a set of extensions to be used in CRLs. These extensions are called standard CRL extensions.
			

				The standard also allows custom extensions to be created and included in CRLs. These extensions are called private, proprietary, or custom CRL extensions and carry information unique to an organization or business. Applications may not able to validate CRLs that contain private critical extensions, so it is not recommended that custom extensions be used in a general context.
			
NOTE


					Abstract Syntax Notation One (ASN.1) and Distinguished Encoding Rules (DER) standards are specified in the CCITT Recommendations X.208 and X.209. For a quick summary of ASN.1 and DER, see A Layman's Guide to a Subset of ASN.1, BER, and DER, which is available at RSA Laboratories' web site, http://www.rsa.com.
				



      ⁠B.4.1.1. Structure of CRL Extensions




					A CRL extension consists of the following parts:
				
	
							The object identifier (OID) for the extension. This identifier uniquely identifies the extension. It also determines the ASN.1 type of value in the value field and how the value is interpreted. When an extension appears in a CRL, the OID appears as the extension ID field (extnID) and the corresponding ASN.1 encoded structure appears as the value of the octet string (extnValue); examples are shown in Example B.4, “Sample Pretty-Print Certificate Extensions”.
						

	
							A flag or Boolean field called critical.
						

							The true or false value assigned to this field indicates whether the extension is critical or noncritical to the CRL.
						
	
									If the extension is critical and the CRL is sent to an application that does not understand the extension based on the extension's ID, the application must reject the CRL.
								

	
									If the extension is not critical and the CRL is sent to an application that does not understand the extension based on the extension's ID, the application can ignore the extension and accept the CRL.
								




	
							An octet string containing the DER encoding of the value of the extension.
						




					The application receiving the CRL checks the extension ID to determine if it can recognize the ID. If it can, it uses the extension ID to determine the type of value used.
				


      ⁠B.4.1.2. Sample CRL and CRL Entry Extensions




					The following is an example of an X.509 CRL version 2 extension. The Certificate System can display CRLs in readable pretty-print format, as shown here. As shown in the example, CRL extensions appear in sequence and only one instance of a particular extension may appear per CRL; for example, a CRL may contain only one Authority Key Identifier extension. However, CRL-entry extensions appear in appropriate entries in the CRL.
				
Certificate Revocation List:
    Data:
        Version:  v2
        Signature Algorithm: SHA1withRSA - 1.2.840.113549.1.1.5
        Issuer: CN=Certificate Authority,O=Example Domain
        This Update: Wednesday, July 29, 2009 8:59:48 AM GMT-08:00
        Next Update: Friday, July 31, 2009 8:59:48 AM GMT-08:00
        Revoked Certificates: 1-3 of 3
            Serial Number: 0x11
            Revocation Date: Thursday, July 23, 2009 10:07:15 AM GMT-08:00
            Extensions:
                Identifier: Revocation Reason - 2.5.29.21
                    Critical: no
                    Reason: Privilege_Withdrawn
            Serial Number: 0x1A
            Revocation Date: Wednesday, July 29, 2009 8:50:11 AM GMT-08:00
            Extensions:
                Identifier: Revocation Reason - 2.5.29.21
                    Critical: no
                    Reason: Certificate_Hold
                Identifier: Invalidity Date - 2.5.29.24
                    Critical: no
                    Invalidity Date: Sun Jul 26 23:00:00 GMT-08:00 2009
            Serial Number: 0x19
            Revocation Date: Wednesday, July 29, 2009 8:50:49 AM GMT-08:00
            Extensions:
                Identifier: Revocation Reason - 2.5.29.21
                    Critical: no
                    Reason: Key_Compromise
                Identifier: Invalidity Date - 2.5.29.24
                    Critical: no
                    Invalidity Date: Fri Jul 24 23:00:00 GMT-08:00 2009
    Extensions:
        Identifier: Authority Info Access: - 1.3.6.1.5.5.7.1.1
            Critical: no
            Access Description:
                Method #0: ocsp
                Location #0: URIName: http://example.com:9180/ca/ocsp
        Identifier: Issuer Alternative Name - 2.5.29.18
            Critical: no
            Issuer Names:
                DNSName: example.com
        Identifier: Authority Key Identifier - 2.5.29.35
            Critical: no
            Key Identifier:
                50:52:0C:AA:22:AC:8A:71:E3:91:0C:C5:77:21:46:9C:
                0F:F8:30:60
        Identifier: Freshest CRL - 2.5.29.46
            Critical: no
            Number of Points: 1
            Point 0
                Distribution Point: [URIName: http://server.example.com:8443/ca/ee/ca/getCRL?op=getDeltaCRL&crlIssuingPoint=MasterCRL]
        Identifier: CRL Number - 2.5.29.20
            Critical: no
            Number: 39
        Identifier: Issuing Distribution Point - 2.5.29.28
            Critical: yes
            Distribution Point:
                Full Name:
                    URIName: http://example.com:9180/ca/ee/ca/getCRL?op=getCRL&crlIssuingPoint=MasterCRL
            Only Contains User Certificates: no
            Only Contains CA Certificates: no
            Indirect CRL: no
    Signature:
        Algorithm: SHA1withRSA - 1.2.840.113549.1.1.5
        Signature:
            47:D2:CD:C9:E5:F5:9D:56:0A:97:31:F5:D5:F2:51:EB:
            1F:CF:FA:9E:63:D4:80:13:85:E5:D8:27:F0:69:67:B5:
            89:4F:59:5E:69:E4:39:93:61:F2:E3:83:51:0B:68:26:
            CD:99:C4:A2:6C:2B:06:43:35:36:38:07:34:E4:93:80:
            99:2F:79:FB:76:E8:3D:4C:15:5A:79:4E:E5:3F:7E:FC:
            D8:78:0D:1D:59:A0:4C:14:42:B7:22:92:89:38:3A:4C:
            4A:3A:06:DE:13:74:0E:E9:63:74:D0:2F:46:A1:03:37:
            92:F0:93:D9:AA:F8:13:C5:06:25:02:B0:FD:3B:41:E7:
            62:6F:67:A3:9F:F5:FA:03:41:DA:8D:FD:EA:2F:E3:2B:
            3E:F8:E9:CC:3B:9F:E4:ED:73:F2:9E:B9:54:14:C1:34:
            68:A7:33:8F:AF:38:85:82:40:A2:06:97:3C:B4:88:43:
            7B:AF:5D:87:C4:47:63:4A:11:65:E3:75:55:4D:98:97:
            C2:2E:62:08:A4:04:35:5A:FE:0A:5A:6E:F1:DE:8E:15:
            27:1E:0F:87:33:14:16:2E:57:F7:DC:77:BE:D2:75:AB:
            A9:7C:42:1F:84:6D:40:EC:E7:ED:84:F8:14:16:28:33:
            FD:11:CD:C5:FC:49:B7:7B:39:57:B3:E6:36:E5:CD:B6

					A delta CRL is a subset of the CRL which contains only the changes since the last CRL was published. Any CRL which contains the delta CRL indicator extension is a delta CRL.
				
ertificate Revocation List:
    Data:
        Version:  v2
        Signature Algorithm: SHA1withRSA - 1.2.840.113549.1.1.5
        Issuer: CN=Certificate Authority,O=SjcRedhat Domain
        This Update: Wednesday, July 29, 2009 9:02:28 AM GMT-08:00
        Next Update: Thursday, July 30, 2009 9:02:28 AM GMT-08:00
        Revoked Certificates:
            Serial Number: 0x1A
            Revocation Date: Wednesday, July 29, 2009 9:00:48 AM GMT-08:00
            Extensions:
                Identifier: Revocation Reason - 2.5.29.21
                    Critical: no
                    Reason: Remove_from_CRL
            Serial Number: 0x17
            Revocation Date: Wednesday, July 29, 2009 9:02:16 AM GMT-08:00
            Extensions:
                Identifier: Revocation Reason - 2.5.29.21
                    Critical: no
                    Reason: Certificate_Hold
                Identifier: Invalidity Date - 2.5.29.24
                    Critical: no
                    Invalidity Date: Mon Jul 27 23:00:00 GMT-08:00 2009
    Extensions:
        Identifier: Authority Info Access: - 1.3.6.1.5.5.7.1.1
            Critical: no
            Access Description:
                Method #0: ocsp
                Location #0: URIName: http://server.example.com:8443/ca/ocsp
        Identifier: Delta CRL Indicator - 2.5.29.27  
            Critical: yes
            Base CRL Number: 39
        Identifier: Issuer Alternative Name - 2.5.29.18
            Critical: no
            Issuer Names:
                DNSName: a-f8.sjc.redhat.com
        Identifier: Authority Key Identifier - 2.5.29.35
            Critical: no
            Key Identifier:
                50:52:0C:AA:22:AC:8A:71:E3:91:0C:C5:77:21:46:9C:
                0F:F8:30:60
        Identifier: CRL Number - 2.5.29.20
            Critical: no
            Number: 41
        Identifier: Issuing Distribution Point - 2.5.29.28
            Critical: yes
            Distribution Point:
                Full Name:
                    URIName: http://server.example.com:8443/ca/ee/ca/getCRL?op=getCRL&crlIssuingPoint=MasterCRL
            Only Contains User Certificates: no
            Only Contains CA Certificates: no
            Indirect CRL: no
    Signature:
        Algorithm: SHA1withRSA - 1.2.840.113549.1.1.5
        Signature:
            68:28:DA:90:D5:39:CB:6D:BE:42:04:77:C9:E4:09:60:
            C1:97:A6:99:AB:A0:5B:A2:F3:8B:5E:4E:D6:05:70:B0:
            87:1F:D7:0E:4B:C6:B2:DE:8B:92:D8:7C:3B:36:1C:79:
            96:2A:64:E6:7A:25:1D:E7:40:62:48:7A:24:C9:9D:11:
            A6:7F:BB:6B:03:A0:9C:1D:BC:1C:EE:9A:4B:A6:48:2C:
            3B:5E:2B:B1:70:3C:C3:42:96:28:26:AB:82:18:F2:E9:
            F2:55:48:A8:7E:7F:FE:D4:3D:0B:EA:A2:2F:4E:E6:C3:
            C3:C1:6A:E5:C6:85:5B:42:B1:70:2A:C6:E1:D9:0C:AF:
            DA:01:22:FF:80:6E:2E:A7:E5:34:DC:AF:E6:C2:B5:B3:
            1B:FC:28:36:8A:91:4A:22:E7:03:A5:ED:4E:62:0C:D9:
            7F:81:BB:80:99:B8:61:2A:02:C6:9C:41:2E:01:82:21:
            80:82:69:52:BD:B2:AA:DB:0F:80:0A:7E:2A:F3:15:32:
            69:D2:40:0D:39:59:93:75:A2:ED:24:70:FB:EE:19:C0:
            BE:A2:14:36:D0:AC:E8:E2:EE:23:83:DD:BC:DF:38:1A:
            9E:37:AF:E3:50:D9:47:9D:22:7C:36:35:BF:13:2C:16:
            A2:79:CF:05:41:88:8E:B6:A2:4E:B3:48:6D:69:C6:38



      ⁠B.4.2. Standard X.509 v3 CRL Extensions Reference




				In addition to certificate extensions, the X.509 proposed standard defines extensions to CRLs, which provide methods for associating additional attributes with Internet CRLs. These are one of two kinds: extensions to the CRL itself and extensions to individual certificate entries in the CRL.  
			
	
						Section B.4.2.1, “Extensions for CRLs”
					

	
						Section B.4.2.2, “CRL Entry Extensions”
					




      ⁠B.4.2.1. Extensions for CRLs




					The following CRL descriptions are defined as part of the Internet X.509 v3 Public Key Infrastructure proposed standard.
				
	
							Section B.4.2.1.1, “authorityInfoAccess”
						

	
							Section B.4.2.1.2, “authorityKeyIdentifier”
						

	
							Section B.4.2.1.3, “CRLNumber”
						

	
							Section B.4.2.1.4, “deltaCRLIndicator”
						

	
							Section B.4.2.1.5, “FreshestCRL”
						

	
							Section B.4.2.1.6, “issuerAltName”
						

	
							Section B.4.2.1.7, “issuingDistributionPoint”
						

	
							Section B.4.2.1.5, “FreshestCRL”
						




      ⁠B.4.2.1.1. authorityInfoAccess




						The Authority Information Access extension identifies how delta CRL information is obtained. The freshestCRL extension is placed in the full CRL to indicate where to find the latest delta CRL.
					

      ⁠OID

							1.3.6.1.5.5.7.1.1
						

      ⁠Criticality

							PKIX requires that this extension must not be critical.
						

      ⁠Parameters

							 
						

      ⁠Table B.39. Authority Infomation Access Configuration Parameters
	 Parameter 	 Description 
	 enable 	 Specifies whether the rule is enabled or disabled. The default is to have this extension disabled. 
	 critical 	 Sets whether the extension is marked as critical; the default is noncritical. 
	 numberOfAccessDescriptions 	 
										Indicates the number of access descriptions, from 0 to any positive integer; the default is 0.
									

									 
										When setting this parameter to an integer other than 0, set the number, and then click OK to close the window. Re-open the edit window for the rule, and the fields to set the points will be present.
									

									 
	 accessMethodn 	 The only accepted value for this parameter is caIssuers. The caIssuers method is used when the information available lists certificates that can be used to verify the signature on the CRL. No other method should be used when the AIA extension is included in a CRL. 
	 accessLocationTypen 	 Specifies the type of access location for the n access description. The options are either DirectoryName or URI. 
	 accessLocationn 	 
										If accessLocationType is set to DirectoryName, the value must be a string in the form of an X.500 name, similar to the subject name in a certificate. For example, CN=CACentral,OU=Research Dept,O=Example Corporation,C=US.
									

									 
										If accessLocationType is set to URI, the name must be a URI; the URI must be an absolute pathname and must specify the host. For example, http://testCA.example.com/get/crls/here/.
									

									 





      ⁠B.4.2.1.2. authorityKeyIdentifier




						The Authority Key Identifier extension for a CRL identifies the public key corresponding to the private key used to sign the CRL. For details, see the discussion under certificate extensions at Section B.3.2, “authorityKeyIdentifier”.
					

						The PKIX standard recommends that the CA must include this extension in all CRLs it issues because a CA's public key can change, for example, when the key gets updated, or the CA may have multiple signing keys because of multiple concurrent key pairs or key changeover. In these cases, the CA ends up with more than one key pair. When verifying a signature on a certificate, other applications need to know which key was used in the signature.
					

      ⁠OID

							2.5.29.35
						

      ⁠Parameters

							 
						

      ⁠Table B.40. AuthorityKeyIdentifierExt Configuration Parameters
	 Parameter 	 Description 
	 enable 	 Specifies whether the rule is enabled or disabled. The default is to have this extension disabled. 
	 critical 	 Sets whether the extension is marked as critical; the default is noncritical. 





      ⁠B.4.2.1.3. CRLNumber




						The CRLNumber extension specifies a sequential number for each CRL issued by a CA. It allows users to easily determine when a particular CRL supersedes another CRL. PKIX requires that all CRLs have this extension.
					

      ⁠OID

							2.5.29.20
						

      ⁠Criticality

							This extension must not be critical.
						

      ⁠Parameters

							 
						

      ⁠Table B.41. CRLNumber Configuration Parameters
	 Parameter 	 Description 
	 enable 	 Specifies whether the rule is enabled, which is the default. 
	 critical 	 Sets whether the extension is marked as critical; the default is noncritical. 





      ⁠B.4.2.1.4. deltaCRLIndicator




						The deltaCRLIndicator extension generates a delta CRL, a list only of certificates that have been revoked since the last CRL; it also includes a reference to the base CRL. This updates the local database while ignoring unchanged information already in the local database. This can significantly improve processing time for applications that store revocation information in a format other than the CRL structure.
					

      ⁠OID

							2.5.29.27
						

      ⁠Criticality

							PKIX requires that this extension be critical if it exists.
						

      ⁠Parameters

							 
						

      ⁠Table B.42. DeltaCRL Configuration Parameters
	 Parameter 	 Description 
	 enable 	 Sets whether the rule is enabled. By default, it is disabled. 
	 critical 	 Sets whether the extension is critical or noncritical. By default, this is critical. 





      ⁠B.4.2.1.5. FreshestCRL




						The freshestCRL extension identifies how delta CRL information is obtained. The freshestCRL extension is placed in the full CRL to indicate where to find the latest delta CRL.
					

      ⁠OID

							2.5.29.46
						

      ⁠Criticality

							PKIX requires that this extension must be noncritical.
						

      ⁠Parameters

							 
						

      ⁠Table B.43. FreshestCRL Configuration Parameters
	 Parameter 	 Description 
	 enable 	 Sets whether the extension rule is enabled. By default, this is disabled. 
	 critical 	 Marks the extension as critical or noncritical. The default is noncritical. 
	 numPoints 	 Indicates the number of issuing points for the delta CRL, from 0 to any positive integer; the default is 0. When setting this to an integer other than 0, set the number, and then click OK to close the window. Re-open the edit window for the rule, and the fields to set these points will be present. 
	 pointTypen 	 Specifies the type of issuing point for the n issuing point. For each number specified in numPoints, there is an equal number of pointType parameters. The options are either DirectoryName or URIName. 
	 pointNamen 	 
										If pointType is set to directoryName, the value must be a string in the form of an X.500 name, similar to the subject name in a certificate. For example, CN=CACentral,OU=Research Dept,O=Example Corporation,C=US.
									

									 
										If pointType is set to URIName, the name must be a URI; the URI must be an absolute pathname and must specify the host. For example, http://testCA.example.com/get/crls/here/.
									

									 





      ⁠B.4.2.1.6. issuerAltName




						The Issuer Alternative Name extension allows additional identities to be associated with the issuer of the CRL, like binding attributes such as a mail address, a DNS name, an IP address (both IPv4 and IPv6), and a uniform resource indicator (URI), with the issuer of the CRL. For details, see the discussion under certificate extensions at Section B.3.7, “issuerAltName Extension”.
					

      ⁠OID

							2.5.29.18
						

      ⁠Parameters

							 
						

      ⁠Table B.44. IssuerAlternativeName Configuration Parameters
	 Parameter 	 Description 
	 enable 	 Sets whether the extension rule is enabled; by default, this is disabled. 
	 critical 	 Sets whether the extension is critical; by default, this is noncritical. 
	 numNames 	 Sets the total number of alternative names or identities permitted in the extension. Each name has a set of configuration parameters, nameType and name, which must have appropriate values or the rule returns an error. Change the total number of identities by changing the value specified in this field; there is no limit on the total number of identities that can be included in the extension. Each set of configuration parameters is distinguished by an integer derived from the value of this field. For example, if the numNames parameter is set to 2, the derived integers are 0 and 1. 
	 nameTypen 	 
										Specifies the general-name type; this can be any of the following:
									

									 	
												rfc822Name if the name is an Internet mail address.
											

	
												directoryName if the name is an X.500 directory name.
											

	
												dNSName if the name is a DNS name.
											

	
												ediPartyName if the name is a EDI party name.
											

	
												URL if the name is a URI (default).
											

	
												iPAddress if the name is an IP address. An IPv4 address must be in the format n.n.n.n or n.n.n.n,m.m.m.m. For example, 128.21.39.40 or 128.21.39.40,255.255.255.00. An IPv6 address uses a 128-bit namespace, with the IPv6 address separated by colons and the netmask separated by periods. For example, 0:0:0:0:0:0:13.1.68.3, FF01::43, 0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:255.255.255.0, and FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FF00:0000.
											

	
												OID if the name is an object identifier.
											

	
												otherName if the name is in any other name form; this supports PrintableString, IA5String, UTF8String, BMPString, Any, and KerberosName.
											




									 
	 namen 	 
										Specifies the general-name value; the allowed values depend on the name type specified in the nameType field.
									

									 	
												For rfc822Name, the value must be a valid Internet mail address in the local-part@domain format.
											

	
												For directoryName, the value must be a string X.500 name, similar to the subject name in a certificate. For example, CN=CACentral,OU=Research Dept,O=Example Corporation,C=US.
											

	
												For dNSName, the value must be a valid domain name in the DNS format. For example, testCA.example.com.
											

	
												For ediPartyName, the name must be an IA5String. For example, Example Corporation.
											

	
												For URL, the value must be a non-relative URI. For example, http://testCA.example.com.
											

	
												For iPAddress, the value must be a valid IP address specified in dot-separated numeric component notation. It can be the IP address or the IP address including the netmask. An IPv4 address must be in the format n.n.n.n or n.n.n.n,m.m.m.m. For example, 128.21.39.40 or 128.21.39.40,255.255.255.00. An IPv6 address uses a 128-bit namespace, with the IPv6 address separated by colons and the netmask separated by periods. For example, 0:0:0:0:0:0:13.1.68.3, FF01::43, 0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:255.255.255.0, and FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FF00:0000.
											

	
												For OID, the value must be a unique, valid OID specified in the dot-separated numeric component notation. For example, 1.2.3.4.55.6.5.99. Although custom OIDs can be used to evaluate and test the server, in a production environment, comply with the ISO rules for defining OIDs and for registering subtrees of IDs.
											

	
												For otherName, the names can be any other format; this supports PrintableString, IA5String, UTF8String, BMPString, Any, and KerberosName. PrintableString, IA5String, UTF8String, BMPString, and Any set a string to a base-64 encoded file specifying the subtree, such as /var/lib/pki/pki-tomcat/ca/othername.txt. KerberosName has the format Realm|NameType|NameStrings, such as realm1|0|userID1,userID2. The name must be the absolute path to the file that contains the general name in its base-64 encoded format. For example, /var/lib/pki/pki-tomcat/ca/extn/ian/othername.txt.
											




									 





      ⁠B.4.2.1.7. issuingDistributionPoint




						The Issuing Distribution Point CRL extension identifies the CRL distribution point for a particular CRL and indicates what kinds of revocation it covers, such as revocation of end-entity certificates only, CA certificates only, or revoked certificates that have a limited set of reason codes.
					

						PKIX Part I does not require this extension.
					

      ⁠OID

							2.5.29.28
						

      ⁠Criticality

							PKIX requires that this extension be critical if it exists.
						

      ⁠Parameters

							 
						

      ⁠Table B.45. IssuingDistributionPoint Configuration Parameters
	 Parameter 	 Description 
	 enable 	 Sets whether the extension is enabled; the default is disabled. 
	 critical 	 Marks the extension as critical, the default, or noncritical. 
	 pointType 	 
										Specifies the type of the issuing distribution point from the following:
									

									 	
												directoryName specifies that the type is an X.500 directory name.
											

	
												URI specifies that the type is a uniform resource indicator.
											

	
												RelativeToIssuer specifies that the type is a relative distinguished name (RDN), which represents a single node of a DN, such as ou=Engineering.
											




									 
	 pointName 	 
										Gives the name of the issuing distribution point. The name of the distribution point depends on the value specified for the pointType parameter.
									

									 	
												For directoryName, the name must be an X.500 name. For example, cn=CRLCentral,ou=Research Dept,o=Example Corporation,c=US.
											

	
												For URIName, the name must be a URI that is an absolute pathname and specifies the host. For example, http://testCA.example.com/get/crls/here/.
											




									 NOTE


											The CRL may be stored in the directory entry corresponding to the CRL issuing point, which may be different than the directory entry of the CA.
										



									 
	 onlySomeReasons 	 
										Specifies the reason codes associated with the distribution point.
									

									 
										Permissible values are a combination of reason codes (unspecified, keyCompromise, cACompromise, affiliationChanged, superseded, cessationOfOperation, certificateHold, and removeFromCRL) separated by commas. Leave the field blank if the distribution point contains revoked certificates with all reason codes (default).
									

									 
	 onlyContainsCACerts 	 Specifies that the distribution point contains user certificates only if set. By default, this is not set, which means the distribution point contains all types of certificates. 
	 indirectCRL 	 Specifies that the distribution point contains an indirect CRL; by default, this is not selected. 






      ⁠B.4.2.2. CRL Entry Extensions




					The sections that follow lists the CRL entry extension types that are defined as part of the Internet X.509 v3 Public Key Infrastructure proposed standard. All of these extensions are noncritical.
				

      ⁠B.4.2.2.1. certificateIssuer




						The Certificate Issuer extension identifies the certificate issuer associated with an entry in an indirect CRL.
					

						This extension is used only with indirect CRLs, which are not supported by the Certificate System.
					

      ⁠OID

							2.5.29.29
						


      ⁠B.4.2.2.2. invalidityDate




						The Invalidity Date extension provides the date on which the private key was compromised or that the certificate otherwise became invalid.
					

      ⁠OID

							2.5.29.24
						

      ⁠Parameters

							 
						

      ⁠Table B.46. InvalidityDate Configuration Parameters
	 Parameter 	 Description 
	 enable 	 Sets whether the extension rule is enabled or disabled. By default, this is enabled. 
	 critical 	 Marks the extension as critical or noncritical; by default, this is noncritical. 





      ⁠B.4.2.2.3. CRLReason




						The Reason Code extension identifies the reason for certificate revocation.
					

      ⁠OID

							2.5.29.21
						

      ⁠Parameters

							 
						

      ⁠Table B.47. CRLReason Configuration Parameters
	 Parameter 	 Description 
	 enable 	 Sets whether the extension rule is enabled or disabled. By default, this is enabled. 
	 critical 	 Marks the extension as critical or noncritical. By default, this is noncritical. 







      ⁠B.4.3. Netscape-Defined Certificate Extensions Reference




				Netscape defined certain certificate extensions for its products. Some of the extensions are now obsolete, and others have been superseded by the extensions defined in the X.509 proposed standard. All Netscape extensions should be tagged as noncritical, so that their presence in a certificate does not make that certificate incompatible with other clients. 
			

      ⁠B.4.3.1. netscape-cert-type




					The Netscape Certificate Type extension can be used to limit the purposes for which a certificate can be used. It has been replaced by the X.509 v3 extensions Section B.3.6, “extKeyUsage” and Section B.3.3, “basicConstraints”.
				

					If the extension exists in a certificate, it limits the certificate to the uses specified in it. If the extension is not present, the certificate can be used for all applications, except for object signing.
				

					The value is a bit-string, where the individual bit positions, when set, certify the certificate for particular uses as follows:
				
	
							bit 0: TLS Client certificate
						

	
							bit 1: TLS Server certificate
						

	
							bit 2: S/MIME certificate
						

	
							bit 3: Object Signing certificate
						

	
							bit 4: reserved
						

	
							bit 5: TLS CA certificate
						

	
							bit 6: S/MIME CA certificate
						

	
							bit 7: Object Signing CA certificate
						




      ⁠OID

						2.16.840.1.113730.1.1
					


      ⁠B.4.3.2. netscape-comment




					The value of this extension is an IA5String. It is a comment that can be displayed to the user when the certificate is viewed.
				

      ⁠OID

						2.16.840.1.113730.13
					





      ⁠Appendix C. Publishing Module Reference




		Several publisher, mapper, and rule modules are configured by default with the Certificate Manager.
	
	
				Section C.1, “Publisher Plug-in Modules”
			

	
				Section C.2, “Mapper Plug-in Modules ”
			

	
				Section C.3, “Rule Instances”
			




      ⁠C.1. Publisher Plug-in Modules




			This section describes the publisher modules provided for the Certificate Manager. The modules are used by the Certificate Manager to enable and configure specific publisher instances.
		
	
					Section C.1.1, “FileBasedPublisher”
				

	
					Section C.1.2, “LdapCaCertPublisher”
				

	
					Section C.1.3, “LdapUserCertPublisher”
				

	
					Section C.1.4, “LdapCrlPublisher”
				

	
					Section C.1.5, “LdapDeltaCrlPublisher”
				

	
					Section C.1.6, “LdapCertificatePairPublisher”
				

	
					Section C.1.7, “OCSPPublisher”
				




      ⁠C.1.1. FileBasedPublisher




				The FileBasedPublisher plug-in module configures a Certificate Manager to publish certificates and CRLs to file. This plug-in can publish base-64 encoded files, DER-encoded files, or both, depending on the checkboxes selected when the publisher is configured. The certificate and CRL content can be viewed by converting the files using the PrettyPrintCert and PrettyPrintCRL tools. For details on viewing the content in base-64 and DER-encoded certificates and CRLs, see Section 7.10, “Viewing Certificates and CRLs Published to File”.   
			

				By default, the Certificate Manager does not create an instance of the FileBasedPublisher module.
			

      ⁠Table C.1. FileBasedPublisher Configuration Parameters
	 Parameter 	 Description 
	 Publisher ID 	 Specifies a name for the publisher, an alphanumeric string with no spaces. For example, PublishCertsToFile. 
	 directory 	 Specifies the complete path to the directory to which the Certificate Manager creates the files; the path can be an absolute path or can be relative to the Certificate System instance directory. For example, /export/CS/certificates. 





      ⁠C.1.2. LdapCaCertPublisher




				The LdapCaCertPublisher plug-in module configures a Certificate Manager to publish or unpublish a CA certificate to the caCertificate;binary attribute of the CA's directory entry.   
			

				The module converts the object class of the CA's entry to pkiCA or certificationAuthority, if it is not used already. Similarly, it also removes the pkiCA or certificationAuthority object class when unpublishing if the CA has no other certificates.
			

				During installation, the Certificate Manager automatically creates an instance of the LdapCaCertPublisher module for publishing the CA certificate to the directory. 
			

      ⁠Table C.2. LdapCaCertPublisher Configuration Parameters
	 Parameter 	 Description 
	 caCertAttr 	 Specifies the LDAP directory attribute to publish the CA certificate. This must be caCertificate;binary. 
	 caObjectClass 	 Specifies the object class for the CA's entry in the directory. This must be pkiCA or certificationAuthority. 





      ⁠C.1.3. LdapUserCertPublisher




				The LdapUserCertPublisher plug-in module configures a Certificate Manager to publish or unpublish a user certificate to the userCertificate;binary attribute of the user's directory entry.   
			

				This module is used to publish any end-entity certificate to an LDAP directory. Types of end-entity certificates include TLS client, S/MIME, TLS server, and OCSP responder.
			

				During installation, the Certificate Manager automatically creates an instance of the LdapUserCertPublisher module for publishing end-entity certificates to the directory. 
			

      ⁠Table C.3. LdapUserCertPublisher Configuration Parameters
	 Parameter 	 Description 
	 certAttr 	 Specifies the directory attribute of the mapped entry to which the Certificate Manager should publish the certificate. This must be userCertificate;binary. 





      ⁠C.1.4. LdapCrlPublisher




				The LdapCrlPublisher plug-in module configures a Certificate Manager to publish or unpublish the CRL to the certificateRevocationList;binary attribute of a directory entry.   
			

				During installation, the Certificate Manager automatically creates an instance of the LdapCrlPublisher module for publishing CRLs to the directory.
			

      ⁠Table C.4. LdapCrlPublisher Configuration Parameters
	 Parameter 	 Description 
	 crlAttr 	 Specifies the directory attribute of the mapped entry to which the Certificate Manager should publish the CRL. This must be certificateRevocationList;binary. 





      ⁠C.1.5. LdapDeltaCrlPublisher




				The LdapDeltaCrlPublisher plug-in module configures a Certificate Manager to publish or unpublish a delta CRL to the deltaRevocationList attribute of a directory entry.
			

				During installation, the Certificate Manager automatically creates an instance of the LdapDeltaCrlPublisher module for publishing CRLs to the directory.
			

      ⁠Table C.5. LdapDeltaCrlPublisher Configuration Parameters
	 Parameter 	 Description 
	 crlAttr 	 Specifies the directory attribute of the mapped entry to which the Certificate Manager should publish the delta CRL. This must be deltaRevocationList;binary. 





      ⁠C.1.6. LdapCertificatePairPublisher




				The LdapCertificatePairPublisher plug-in module configures a Certificate Manager to publish or unpublish a cross-signed certificate to the crossCertPair;binary attribute of the CA's directory entry.   
			

				The module also converts the object class of the CA's entry to a pkiCA or certificationAuthority, if it is not used already. Similarly, it also removes the pkiCA or certificationAuthority object class when unpublishing if the CA has no other certificates.
			

				During installation, the Certificate Manager automatically creates an instance of the LdapCertificatePairPublisher module named LdapCrossCertPairPublisher for publishing the cross-signed certificates to the directory. 
			

      ⁠Table C.6. LdapCertificatePairPublisher Parameters
	 Parameter 	 Description 
	 crossCertPairAttr 	 Specifies the LDAP directory attribute to publish the CA certificate. This must be crossCertificatePair;binary. 
	 caObjectClass 	 Specifies the object class for the CA's entry in the directory. This must be pkiCA or certificationAuthority. 





      ⁠C.1.7. OCSPPublisher




				The OCSPPublisher plug-in module configures a Certificate Manager to publish its CRLs to an Online Certificate Status Manager.   
			

				The Certificate Manager does not create any instances of the OCSPPublisher module at installation.
			

      ⁠Table C.7. OCSPPublisher Parameters
	 Parameter 	 Description 
	 host 	 Specifies the fully qualified hostname of the Online Certificate Status Manager. 
	 port 	 Specifies the port number on which the Online Certificate Status Manager is listening to the Certificate Manager. This is the Online Certificate Status Manager's TLS port number. 
	 path 	 Specifies the path for publishing the CRL. This must be the default path, /ocsp/agent/ocsp/addCRL. 
	 enableClientAuth 	 Sets whether to use client (certificate-based) authentication to access the OCSP service. 
	 nickname 	 Gives the nickname of the certificate in the OCSP service's database to use for client authentication. This is only used if the enableClientAuth option is set to true. 






      ⁠C.2. Mapper Plug-in Modules 




			This section describes the mapper plug-in modules provided for the Certificate Manager. These modules configure a Certificate Manager to enable and configure specific mapper instances.
		

			The available mapper plug-in modules include the following:
		
	
					Section C.2.1, “LdapCaSimpleMap”
				

	
					Section C.2.2, “LdapDNExactMap”
				

	
					Section C.2.3, “LdapSimpleMap”
				

	
					Section C.2.4, “LdapSubjAttrMap”
				

	
					Section C.2.5, “LdapDNCompsMap”
				




      ⁠C.2.1. LdapCaSimpleMap




				The LdapCaSimpleMap plug-in module configures a Certificate Manager to create an entry for the CA in an LDAP directory automatically and then map the CA's certificate to the directory entry by formulating the entry's DN from components specified in the certificate request, certificate subject name, certificate extension, and attribute variable assertion (AVA) constants. For more information on AVAs, check the directory documentation.   
			

				The CA certificate mapper specifies whether to create an entry for the CA, to map the certificate to an existing entry, or to do both.
			

				If a CA entry already exists in the publishing directory and the value assigned to the dnPattern parameter of this mapper is changed, but the uid and o attributes are the same, the mapper fails to create the second CA entry. For example, if the directory already has a CA entry for uid=CA,ou=Marketing,o=example.com and a mapper is configured to create another CA entry with uid=CA,ou=Engineering,o=example.com, the operation fails.
			

				The operation may fail because the directory has the UID Uniqueness plug-in set to a specific base DN. This setting prevents the directory from having two entries with the same UID under that base DN. In this example, it prevents the directory from having two entries under o=example.com with the same UID, CA.
			

				If the mapper fails to create a second CA entry, check the base DN to which the UID Uniqueness plug-in is set, and check if an entry with the same UID already exists in the directory. If necessary, adjust the mapper setting, remove the old CA entry, comment out the plug-in, or create the entry manually.
			

				During installation, the Certificate Manager automatically creates two instances of the CA certificate mapper module. The mappers are named as follows: 
			
	
						LdapCrlMap for CRLs (see Section C.2.1.2, “LdapCrlMap”)
					

	
						LdapCaCertMap for CA certificates (see Section C.2.1.1, “LdapCaCertMap”).
					




      ⁠Table C.8. LdapCaSimpleMap Configuration Parameters
	 Parameter 	 Description 
	 createCAEntry 	 
								Creates a CA's entry, if selected (default).
							

							 
								If selected, the Certificate Manager first attempts to create an entry for the CA in the directory. If the Certificate Manager succeeds in creating the entry, it then attempts to publish the CA's certificate to the entry. If this is not selected, the entry must already be present in order to publish to it.
							

							 
	 dnPattern 	 
								Specifies the DN pattern the Certificate Manager should use to construct to search for the CA's entry in the publishing directory. The value of dnPattern can be a list of AVAs separated by commas. An AVA can be a variable, such as cn=$subj.cn, that the Certificate Manager can derive from the certificate subject name or a constant, such as o=Example Corporation.
							

							 
								If the CA certificate does not have the cn component in its subject name, adjust the CA certificate mapping DN pattern to reflect the DN of the entry in the directory where the CA certificate is to be published. For example, if the CA certificate subject DN is o=Example Corporation and the CA's entry in the directory is cn=Certificate Authority, o=Example Corporation, the pattern is cn=Certificate Authority, o=$subj.o.
							

							 	
										Example 1: uid=CertMgr, o=Example Corporation
									

	
										Example 2: cn=$subj.cn,ou=$subj.ou,o=$subj.o,c=US
									

	
										Example 3: uid=$req.HTTP_PARAMS.uid, e=$ext.SubjectAlternativeName.RFC822Name,ou=$subj.ou
									




							 
								In the above examples, $req takes the attribute from the certificate request, $subj takes the attribute from the certificate subject name, and $ext takes the attribute from the certificate extension.
							

							 




      ⁠C.2.1.1. LdapCaCertMap




					The LdapCaCertMap mapper is an instance of the LdapCaSimpleMap module. The Certificate Manager automatically creates this mapper during installation.
				

					This mapper creates an entry for the CA in the directory and maps the CA certificate to the CA's entry in the directory.
				

					By default, the mapper is configured to create an entry for the CA in the directory, The default DN pattern for locating the CA's entry is as follows:
				

uid=$subj.cn,ou=people,o=$subj.o



      ⁠C.2.1.2. LdapCrlMap




					The LdapCrlMap mapper is an instance of the LdapCaSimpleMap module. The Certificate Manager automatically creates this mapper during installation.
				

					This mapper creates an entry for the CA in the directory and maps the CRL to the CA's entry in the directory.
				

					By default, the mapper is configured to create an entry for the CA in the directory. The default DN pattern for locating the CA's entry is as follows:
				

uid=$subj.cn,ou=people,o=$subj.o




      ⁠C.2.2. LdapDNExactMap




				The LdapDNExactMap plug-in module configures a Certificate Manager to map a certificate to an LDAP directory entry by searching for the LDAP entry DN that matches the certificate subject name. To use this mapper, each certificate subject name must exactly match a DN in a directory entry. For example, if the certificate subject name is uid=jdoe, o=Example Corporation, c=US, when searching the directory for the entry, the Certificate Manager only searches for an entry with the DN uid=jdoe, o=Example Corporation, c=US.
			

				If no matching entries are found, the server returns an error and does not publish the certificate.
			

				This mapper does not require any values for any parameters because it obtains all values from the certificate.
			


      ⁠C.2.3. LdapSimpleMap




				The LdapSimpleMap plug-in module configures a Certificate Manager to map a certificate to an LDAP directory entry by deriving the entry's DN from components specified in the certificate request, certificate's subject name, certificate extension, and attribute variable assertion (AVA) constants. For more information on AVAs, see the directory documentation.
			

				By default, the Certificate Manager uses mapper rules that are based on the simple mapper. During installation, the Certificate Manager automatically creates an instance of the simple mapper module, named LdapUserCertMap. The default mapper maps various types of end-entity certificates to their corresponding directory entries. 
			

				The simple mapper requires one parameter, dnPattern. The value of dnPattern can be a list of AVAs separated by commas. An AVA can be a variable, such as uid=$subj.UID, or a constant, such as o=Example Corporation.
			
	
						Example 1: uid=CertMgr, o=Example Corporation
					

	
						Example 2: cn=$subj.cn,ou=$subj.ou,o=$subj.o,c=US
					

	
						Example 3: uid=$req.HTTP_PARAMS.uid, e=$ext.SubjectAlternativeName.RFC822Name,ou=$subj.ou
					




				In the examples, $req takes the attribute from the certificate request, $subj takes the attribute from the certificate subject name, and $ext takes the attribute from the certificate extension.
			


      ⁠C.2.4. LdapSubjAttrMap




				The LdapSubjAttrMap plug-in module configures a Certificate Manager to map a certificate to an LDAP directory entry using a configurable LDAP attribute. To use this mapper, the directory entries must include the specified LDAP attribute.
			

				This mapper requires the exact pattern of the subject DN because the Certificate Manager searches the directory for the attribute with a value that exactly matches the entire subject DN. For example, if the specified LDAP attribute is certSubjectDN and the certificate subject name is uid=jdoe, o=Example Corporation, c=US, the Certificate Manager searches the directory for entries that have the attribute certSubjectDN=uid=jdoe, o=Example Corporation, c=US.
			

				If no matching entries are found, the server returns an error and writes it to the log.
			

				Table C.9, “LdapSubjAttrMap Parameters” describes these parameters.
			

      ⁠Table C.9. LdapSubjAttrMap Parameters
	 Parameter 	 Description 
	 certSubjNameAttr 	 Specifies the name of the LDAP attribute that contains a certificate subject name as its value. The default is certSubjectName, but this can be configured to any LDAP attribute. 
	 searchBase 	 Specifies the base DN for starting the attribute search. The permissible value is a valid DN of an LDAP entry, such as o=example.com, c=US. 





      ⁠C.2.5. LdapDNCompsMap




				The LdapDNCompsMap plug-in module implements the DN components mapper. This mapper maps a certificate to an LDAP directory entry by constructing the entry's DN from components, such as cn, ou, o, and c, specified in the certificate subject name, and then uses it as the search DN to locate the entry in the directory. The mapper locates the following entries:   
			
	
						The CA's entry in the directory for publishing the CA certificate and the CRL.
					

	
						End-entity entries in the directory for publishing end-entity certificates.
					




				The mapper takes DN components to build the search DN. The mapper also takes an optional root search DN. The server uses the DN components to form an LDAP entry to begin a subtree search and the filter components to form a search filter for the subtree. If none of the DN components are configured, the server uses the base DN for the subtree. If the base DN is null and none of the DN components match, an error is returned. If none of the DN components and filter components match, an error is returned. If the filter components are null, a base search is performed.
			

				Both the DNComps and filterComps parameters accept valid DN components or attributes separated by commas. The parameters do not accept multiple entries of an attribute; for example, filterComps can be set to cn,ou but not to cn,ou2,ou1. To create a filter with multiple instances of the same attribute, such as if directory entries contain multiple ou s, modify the source code for the LdapDNCompsMap module.
			

				The following components are commonly used in DNs:
			
	
						uid represents the user ID of a user in the directory.
					

	
						cn represents the common name of a user in the directory.
					

	
						ou represents an organizational unit in the directory.
					

	
						o represents an organization in the directory.
					

	
						l represents a locality (city).
					

	
						st represents a state.
					

	
						c represents a country.
					




				For example, the following DN represents the user named Jane Doe who works for the Sales department at Example Corporation, which is located in Mountain View, California, United States:
			

cn=Jane Doe, ou=Sales, o=Example Corporation, l=Mountain View, st=California, c=US


				The Certificate Manager can use some or all of these components (cn, ou, o, l, st, and c) to build a DN for searching the directory. When creating a mapper rule, these components can be specified for the server to use to build a DN; that is, components to match attributes in the directory. This is set through the dnComps parameter.
			

				For example, the components cn, ou, o, and c are set as values for the dnComps parameter. To locate Jane Doe's entry in the directory, the Certificate Manager constructs the following DN by reading the DN attribute values from the certificate, and uses the DN as the base for searching the directory:
			

cn=Jane Doe, ou=Sales, o=Example Corporation, c=US

	
						A subject name does not need to have all of the components specified in the dnComps parameter. The server ignores any components that are not part of the subject name, such as l and st in this example.
					

	
						Unspecified components are not used to build the DN. In the example, if the ou component is not included, the server uses this DN as the base for searching the directory: 

cn=Jane Doe, o=Example Corporation, c=US



					




				For the dnComps parameter, enter those DN components that the Certificate Manager can use to form the LDAP DN exactly. In certain situations, however, the subject name in a certificate may match more than one entry in the directory. Then, the Certificate Manager might not get a single, distinct matching entry from the DN. For example, the subject name cn=Jane Doe, ou=Sales, o=Example Corporation, c=US might match two users with the name Jane Doe in the directory. If that occurs, the Certificate Manager needs additional criteria to determine which entry corresponds to the subject of the certificate.
			

				To specify the components the Certificate Manager must use to distinguish between different entries in the directory, use the filterComps parameter; for details, see Table C.10, “LdapDNCompsMap Configuration Parameters”. For example, if cn, ou, o, and c are values for the dnComps parameter, enter l for the filterComps parameter only if the l attribute can be used to distinguish between entries with identical cn, ou, o, and c values.
			

				If the two Jane Doe entries are distinguished by the value of the uid attribute ‐ one entry's uid is janedoe1, and the other entry's uid is janedoe2 ‐ the subject names of certificates can be set to include the uid component.
			
NOTE


					The e, l, and st components are not included in the standard set of certificate request forms provided for end entities. These components can be added to the forms, or the issuing agents can be required to insert these components when editing the subject name in the certificate issuance forms.
				



      ⁠C.2.5.1. Configuration Parameters of LdapDNCompsMap




					With this configuration, a Certificate Manager maps its certificates with the ones in the LDAP directory by using the dnComps values to form a DN and the filterComps values to form a search filter for the subtree.
				
	
							If the formed DN is null, the server uses the baseDN value for the subtree. If both the formed DN and base DN are null, the server logs an error.
						

	
							If the filter is null, the server uses the baseDN value for the search. If both the filter and base DN are null, the server logs an error.
						




					Table C.10, “LdapDNCompsMap Configuration Parameters” describes these parameters.
				

      ⁠Table C.10. LdapDNCompsMap Configuration Parameters
	 Parameter 	 Description 
	 baseDN 	 Specifies the DN to start searching for an entry in the publishing directory. If the dnComps field is blank, the server uses the base DN value to start its search in the directory. 
	 dnComps 	 
									Specifies where in the publishing directory the Certificate Manager should start searching for an LDAP entry that matches the CA's or the end entity's information.
								

								 
									For example, if dnComps uses the o and c attributes of the DN, the server starts the search from the o=org, c=country entry in the directory, where org and country are replaced with values from the DN in the certificate.
								

								 
									If the dnComps field is empty, the server checks the baseDN field and searches the directory tree specified by that DN for entries matching the filter specified by filterComps parameter values.
								

								 
									The permissible values are valid DN components or attributes separated by commas.
								

								 
	 filterComps 	 
									Specifies components the Certificate Manager should use to filter entries from the search result. The server uses the filterComps values to form an LDAP search filter for the subtree. The server constructs the filter by gathering values for these attributes from the certificate subject name; it uses the filter to search for and match entries in the LDAP directory.
								

								 
									If the server finds more than one entry in the directory that matches the information gathered from the certificate, the search is successful, and the server optionally performs a verification. For example, if filterComps is set to use the email and user ID attributes (filterComps=e,uid), the server searches the directory for an entry whose values for email and user ID match the information gathered from the certificate.
								

								 
									The permissible values are valid directory attributes in the certificate DN separated by commas. The attribute names for the filters need to be attribute names from the certificate, not from ones in the LDAP directory. For example, most certificates have an e attribute for the user's email address; LDAP calls that attribute mail.
								

								 







      ⁠C.3. Rule Instances




			This section discusses the rule instances that have been set.
		

      ⁠C.3.1. LdapCaCertRule




				The LdapCaCertRule can be used to publish CA certificates to an LDAP directory.
			

      ⁠Table C.11. LdapCaCert Rule Configuration Parameters
	 Parameter 	 Value 	 Description 
	 type 	 cacert 	 Specifies the type of certificate that will be published. 
	 predicate 	   	 Specifies a predicate for the publisher. 
	 enable 	 yes 	 Enables the rule. 
	 mapper 	 LdapCaCertMap 	 Specifies the mapper used with the rule. See Section C.2.1.1, “LdapCaCertMap” for details on the mapper. 
	 publisher 	 LdapCaCertPublisher 	 Specifies the publisher used with the rule. See Section C.1.2, “LdapCaCertPublisher” for details on the publisher. 





      ⁠C.3.2. LdapXCertRule




				The LdapXCertRule is used to publish cross-pair certificates to an LDAP directory.
			

      ⁠Table C.12. LdapXCert Rule Configuration Parameters
	 Parameter 	 Value 	 Description 
	 type 	 xcert 	 Specifies the type of certificate that will be published. 
	 predicate 	   	 Specifies a predicate for the publisher. 
	 enable 	 yes 	 Enables the rule. 
	 mapper 	 LdapCaCertMap 	 Specifies the mapper used with the rule. See Section C.2.1.1, “LdapCaCertMap” for details on the mapper. 
	 publisher 	 LdapCrossCertPairPublisher 	 Specifies the publisher used with the rule. See Section C.1.6, “LdapCertificatePairPublisher” for details on this publisher. 





      ⁠C.3.3. LdapUserCertRule




				The LdapUserCertRule is used to publish user certificates to an LDAP directory.
			

      ⁠Table C.13. LdapUserCert Rule Configuration Parameters
	 Parameter 	 Value 	 Description 
	 type 	 certs 	 Specifies the type of certificate that will be published. 
	 predicate 	   	 Specifies a predicate for the publisher. 
	 enable 	 yes 	 Enables the rule. 
	 mapper 	 LdapUserCertMap 	 Specifies the mapper used with the rule. See Section C.2.3, “LdapSimpleMap” for details on the mapper. 
	 publisher 	 LdapUserCertPublisher 	 Specifies the publisher used with the rule. See Section C.1.3, “LdapUserCertPublisher” for details on the publisher. 





      ⁠C.3.4. LdapCRLRule




				The LdapCRLRule is used to publish CRLs to an LDAP directory.
			

      ⁠Table C.14. LdapCRL Rule Configuration Parameters
	 Parameter 	 Value 	 Description 
	 type 	 crl 	 Specifies the type of certificate that will be published. 
	 predicate 	   	 Specifies a predicate for the publisher. 
	 enable 	 yes 	 Enables the rule. 
	 mapper 	 LdapCrlMap 	 Specifies the mapper used with the rule. See Section C.2.1.2, “LdapCrlMap” for details on the mapper. 
	 publisher 	 LdapCrlPublisher 	 Specifies the publisher used with the rule. See Section C.1.4, “LdapCrlPublisher” for details on the publisher. 







      ⁠Appendix D. ACL Reference




		This section describes what each resource controls, lists the possible operations describing the outcome of those operations, and provides the default ACIs for each ACL resource defined. Each subsystem contains only those ACLs that are relevant to that subsystem.
	

      ⁠D.1. About ACL Configuration Files




			Access control is the method to set rules on who can access part of a server and the operations that user can perform. The four subsystems which depend on the LDAP directory service and use a Java console — the CA, KRA, OCSP, and TKS — all implement LDAP-style access control to access their resources. These access control lists (ACLs) are located in the acl.ldif files in the instance's /var/lib/pki/instance_name/conf directory.
		
NOTE


				This section provides only a very brief overview of access control concepts. Access control is described in much more detail in Managing Access Control in the Red Hat Directory Server Administration Guide.
			



			The Certificate System ACL files are LDIF files that are loaded by the internal database. The individual ACLs are defined as resourceACLS attributes which identify the area of the subsystem being protected and then a list of all of the specific access controls being set.
		
resourceACLS: class_name:all rights: allow|deny (rights)  type=target description

			Each rule which allows or denies access to a resource is called an access control instruction (ACI). (The sum of all of the ACIs for a resource is an access control list.) Before defining the actual ACI, the ACL attribute is first applied to a specific plug-in class used by the Certificate System subsystem. This focuses each ACL to a specific function performed by the subsystem, providing both more security for the instance and better control over applying ACLs.
		

      ⁠Example D.1. Default ACL to List Certificate Profiles
resourceACLS: certServer.ca.profiles:list:allow (list)  group="Certificate Manager Agents":Certificate Manager agents may list profiles



			Because each subsystem (CA, KRA, OCSP, and TKS) has different resources for its operations, each subsystem instance has its own acl.ldif file and its own defined ACLs.
		

			Each ACI defines what access or behavior can be done (the right) and who the ACI applies to (the target). The basic format of an ACI is, then:
		
allow|deny (rights) user|group

			Rights are types of operations that the ACI allows a user to perform. For LDAP ACIs, there is a relatively limited list of rights to directory entries, like search, read, write, and delete. The Certificate System uses additional rights that cover common PKI tasks, like revoke, submit, and assign.
		

			If an operation is not explicitly allowed in an ACI, then it is implicitly denied. If an operation is explicitly denied in one ACI, then it trumps any ACI which explicitly allows it. Deny rules are always superior to allow rules to provide additional security.
		

			Each ACI has to apply to specific users or groups. This is set using a couple of common conditions, usually user= or group=, though there are other options, like ipaddress= which defines client-based access rather than entry-based access. If there is more than one condition, the conditions can be composed using the double pipe (||) operator, signifying logical disjunction ("or"), and the double ampersand (&&) operator, signifying logical conjunction ("and"). For example, group="group1" || "group2".
		

			Each area of the resourceACLS attribute value is defined in Table D.1, “Sections of the ACL Attribute Value”.
		

      ⁠Table D.1. Sections of the ACL Attribute Value
	 Value 	 Description 
	 class_name 	 The plug-in class to which the ACI is applied. 
	 all operations 	 The list of every operation covered in the ACI definition. There can be multiple operations in a single ACI and multiple ACIs in a single resourceACLS attribute. 
	 allow|deny 	 Whether the action is being allowed for the target user or group or denied to the target user or group. 
	 (operations) 	 The operations being allowed or denied. 
	 type=target 	 The target to identify who this applies to. This is commonly a user (such as user="name") or a group (group="group"). If there is more than one condition, the conditions can be composed using the double pipe (||) operator (logical "or") and the double ampersand (&&) operator (logical "and"). For example, group="group1" || "group2". 
	 description 	 A description of what the ACL is doing. 





      ⁠D.2. Common ACLs




			This section covers the default access control configuration that is common for all four subsystem types. These access control rules manage access to basic and common configuration settings, such as logging and adding users and groups.
		
IMPORTANT


				These ACLs are common in that the same ACLs occur in each subsystem instance's acl.ldif file. These are not shared ACLs in the sense that the configuration files or settings are held in common by all subsystem instances. As with all other instance configuration, these ACLs are maintained independently of other subsystem instances, in the instance-specific acl.ldif file.
			



      ⁠D.2.1. certServer.acl.configuration




				Controls operations to the ACL configuration. The default configuration is:
			
allow (read) group="Administrators" || group="Certificate Manager Agents" || group="Registration Manager Agents" || group="Key Recovery Authority Agents" || group="Online Certificate Status Manager Agents" || group="Auditors";allow (modify) group="Administrators"

      ⁠Table D.2. certServer.acl.configuration ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View ACL resources and list ACL resources, ACL listing evaluators, and ACL evaluator types. 	 Allow 	 	Administrators
	Agents
	Auditors


							 
	 modify 	 Add, delete, and update ACL evaluators. 	 Allow 	 Administrators 





      ⁠D.2.2. certServer.admin.certificate




				Controls which users can import a certificate through a Certificate Manager. By default, this operation is allowed to everyone. The default configuration is:
			
allow (import) user="anybody"
NOTE


					This entry is associated with the CA administration web interface which is used to configure the instance. This ACL is only available during instance configuration and is unavailable after the CA is running.
				



      ⁠Table D.3. certServer.admin.certificate ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 import 	 Import a CA administrator certificate, and retrieve certificates by serial number. 	 Allow 	 Anyone 





      ⁠D.2.3. certServer.auth.configuration




				Controls operations on the authentication configuration.
			
allow (read) group="Administrators" || group="Certificate Manager Agents" || group="Registration Manager Agents" || group="Key Recovery Authority Agents" || group="Online Certificate Status Manager Agents" || group="Auditors";allow (modify) group="Administrators

      ⁠Table D.4. certServer.auth.configuration ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View authentication plug-ins, authentication type, configured authentication manager plug-ins, and authentication instances. List authentication manager plug-ins and authentication manager instances. 	 Allow 	 	Administrators
	Agents
	Auditors


							 
	 modify 	 Add or delete authentication plug-ins and authentication instances. Modify authentication instances. 	 Allow 	 Administrators 





      ⁠D.2.4. certServer.clone.configuration




				Controls who can read and modify the configuration information used in cloning. The default setting is:
			
allow (modify,read) group="Enterprise CA Administrators" || group="Enterprise KRA Administrators" || group="Enterprise OCSP Administrators" || group="Enterprise TKS Administrators"

      ⁠Table D.5. certServer.clone.configuration ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View original instance configuration. 	 Allow 	 Enterprise Administrators 
	 modify 	 Modify original instance configuration. 	 Allow 	 Enterprise Administrators 





      ⁠D.2.5. certServer.general.configuration




				Controls access to the general configuration of the subsystem instance, including who can view and edit the CA's settings.
			
allow (read) group="Administrators" || group="Auditors" || group="Certificate Manager Agents" || group="Registration Manager Agents" || group="Key Recovery Authority Agents" || group="Online Certificate Status Manager Agents";allow (modify) group="Administrators"

      ⁠Table D.6. certServer.general.configuration ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View the operating environment, LDAP configuration, SMTP configuration, server statistics, encryption, token names, subject name of certificates, certificate nicknames, all subsystems loaded by the server, CA certificates, and all certificates for management. 	 Allow 	 	Administrators
	Agents
	Auditors


							 
	 modify 	 Modify the settings for the LDAP database, SMTP, and encryption. Issue import certificates, install certificates, trust and untrust CA certificates, import cross-pair certificates, and delete certificates. Perform server restart and stop operations. Log in all tokens and check token status. Run self-tests on demand. Get certificate information. Process the certificate subject name. Validate the certificate subject name, certificate key length, and certificate extension. 	 Allow 	 Administrators 





      ⁠D.2.6. certServer.log.configuration




				Controls access to the log configuration for the Certificate Manager, including changing the log settings.
			
allow (read) group="Administrators" || group="Auditors" || group="Certificate Manager Agents" || group="Registration Manager Agents" || group="Key Recovery Authority Agents" || group="Online Certificate Status Manager Agents";allow (modify) group="Administrators"

      ⁠Table D.7. certServer.log.configuration ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View log plug-in information, log plug-in configuration, and log instance configuration. List log plug-ins and log instances (excluding NTEventLog). 	 Allow 	 	Administrators
	Agents
	Auditors


							 
	 modify 	 Add and delete log plug-ins and log instances. Modify log instances, including log rollover parameters and log level. 	 Allow 	 Administrators 





      ⁠D.2.7. certServer.log.configuration.fileName




				Restricts access to change the file name of a log for the instance.
			
allow (read) group="Administrators" || group="Auditors" || group="Certificate Manager Agents" || group="Registration Manager Agents" || group="Key Recovery Authority Agents" || group="Online Certificate Status Manager Agents";deny (modify) user=anybody

      ⁠Table D.8. certServer.log.configuration.fileName ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View the value of the fileName parameter for a log instance. 	 Allow 	 	Administrators
	Agents
	Auditors


							 
	 modify 	 Change the value of the fileName parameter for a log instance. 	 Deny 	 Anyone 





      ⁠D.2.8. certServer.log.content.system




				Controls who can view the instance's logs.
			
allow (read) group="Administrators" || group="Certificate Manager Agents" || group="Registration Manager Agents" || group="Key Recovery Authority Agents" || group="Online Certificate Status Manager Agents" || group="Auditors"

      ⁠Table D.9. certServer.log.content.system ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View log content. List all logs. 	 Allow 	 	Administrators
	Agents
	Auditors


							 





      ⁠D.2.9. certServer.log.content.transactions




				Controls who can view the instance's transactions logs.
			
allow (read) group="Administrators" || group="Certificate Manager Agents" || group="Registration Manager Agents" || group="Key Recovery Authority Agents" || group="Online Certificate Status Manager Agents" || group="Auditors"

      ⁠Table D.10. certServer.log.content.transactions ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View log content. List all logs. 	 Allow 	 	Administrators
	Agents
	Auditors


							 





      ⁠D.2.10. certServer.log.content.signedAudit




				Controls who has access to the signed audit logs. The default setting is:
			
allow (read) group="Auditors"

      ⁠Table D.11. certServer.log.content.signedAudit ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View log content. List logs. 	 Allow 	 	Auditors


							 





      ⁠D.2.11. certServer.registry.configuration




				Controls access to the administration registry, the file that is used to register plug-in modules. Currently, this is only used to register certificate profile plug-ins.
			
allow (read) group="Administrators" || group="Certificate Manager Agents" || group="Registration Manager Agents" || group="Key Recovery Authority Agents" || group="Online Certificate Status Manager Agents" || group="Auditors";allow (modify) group="Administrators"

      ⁠Table D.12. certServer.registry.configuration ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View the administration registry, supported policy constraints, profile plug-in configuration, and the list of profile plug-ins. 	 Allow 	 	Administrators
	Agents
	Auditors


							 
	 modify 	 Register individual profile implementation plug-ins. 	 Allow 	 Administrators 






      ⁠D.3. Certificate Manager-Specific ACLs




			This section covers the default access control configuration attributes which are set specifically for the Certificate Manager. The CA ACL configuration also includes all of the common ACLs listed in Section D.2, “Common ACLs”.
		

			There are access control rules set for each of the CA's interfaces (administrative console and agents and end-entities services pages) and for common operations like listing and downloading certificates.
		

      ⁠D.3.1. certServer.admin.ocsp




				Limits access to the Certificate Manager's OCSP configuration to members of the enterprise OCSP administrators group.
			
allow (modify,read) group="Enterprise OCSP Administrators"

      ⁠Table D.13. certServer.admin.ocsp ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 modify 	 Modify the OCSP configuration, OCSP stores configuration, and default OCSP store. 	 Allow 	 Enterprise OCSP Administrators 
	 read 	 Read the OCSP configuration. 	 Allow 	 Enterprise OCSP Administrators 





      ⁠D.3.2. certServer.ca.certificate




				Controls basic management operations for certificates in the agents services interface, including importing and revoking certificates. The default configuration is:
			
allow (import,unrevoke,revoke,read) group="Certificate Manager Agents"

      ⁠Table D.14. certServer.ca.certificate ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 import 	 Retrieve a certificate by serial number. 	 Allow 	 Certificate Manager Agents 
	 unrevoke 	 Change the status of a certificate from revoked. 	 Allow 	 Certificate Manager Agents 
	 revoke 	 Change the status of a certificate to revoked. 	 Allow 	 Certificate Manager Agents 
	 read 	 Retrieve certificates based on the request ID, and display certificate details based on the request ID or serial number. 	 Allow 	 Certificate Manager Agents 





      ⁠D.3.3. certServer.ca.certificates




				Controls operations for listing or revoking certificates through the agent services interface. The default configuration is:
			
allow (revoke,list) group="Certificate Manager Agents"|| group="Registration Manager Agents"

      ⁠Table D.15. certServer.ca.certificates ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 revoke 	 Revoke a certificates, or approve certificate revocation requests. Revoke a certificate from the TPS. Prompt users for additional data about a revocation request. 	 Allow 	 	Certificate Manager Agents
	Registration Manager Agents


							 
	 list 	 List certificates based on a search. Retrieve details about a range of certificates based on a range of serial numbers. 	 Allow 	 	Certificate Manager Agents
	Registration Manager Agents


							 





      ⁠D.3.4. certServer.ca.configuration




				Controls operations on the general configuration for a Certificate Manager. The default configuration is:
			
allow (read) group="Administrators" || group="Certificate Manager Agents" || group="Registration Manager Agents" || group="Key Recovery Authority Agents" || group="Online Certificate Status Manager Agents" || group="Auditors";allow (modify) group="Administrators"

      ⁠Table D.16. certServer.ca.configuration ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View CRL plug-in information, general CA configuration, CA connector configuration, CRL issuing points configuration, CRL profile configuration, request notification configuration, revocation notification configuration, request in queue notification configuration, and CRL extensions configuration. List CRL extensions configuration and CRL issuing points configuration. 	 Allow 	 	Administrators
	Agents
	Auditors


							 
	 modify 	 Add and delete CRL issuing points. Modify general CA settings, CA connector configuration, CRL issuing points configuration, CRL configuration, request notification configuration, revocation notification configuration, request in queue notification configuration, and CRL extensions configuration. 	 Allow 	 Administrators 





      ⁠D.3.5. certServer.ca.connector




				Controls operations to submit requests over a special connector to the CA. The default configuration is:
			
allow (submit) group="Trusted Managers"

      ⁠Table D.17. certServer.ca.connector ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 submit 	 Submit requests from remote trusted managers. 	 Allow 	 Trusted Managers 





      ⁠D.3.6. certServer.ca.connectorInfo




				Controls access to the connector information to manage trusted relationships between a CA and KRA. These trust relationships are special configurations which allow a CA and KRA to automatically connect to perform key archival and recovery operations. These trust relationships are configured through special connector plug-ins.
			
allow (read) group="Enterprise KRA Administrators";allow (modify) group="Enterprise KRA Administrators" || group="Subsystem Group"

      ⁠Table D.18. certServer.ca.connectorInfo ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 Read connector plug-in settings. 	 Allow 	 Enterprise KRA Administrators 
	 modify 	 Modify connector plug-in settings. 	 Allow 	 	 Enterprise KRA Administrators 
	 Subsystem Group 


							 





      ⁠D.3.7. certServer.ca.crl




				Controls access to read or update CRLs through the agent services interface. The default setting is:
			
allow (read,update) group="Certificate Manager Agents"

      ⁠Table D.19. certServer.ca.crl ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 Display CRLs and get detailed information about CA CRL processing. 	 Allow 	 Certificate Manager Agents 
	 update 	 Update CRLs. 	 Allow 	 Certificate Manager Agents 





      ⁠D.3.8. certServer.ca.directory




				Controls access to the LDAP directory used for publishing certificates and CRLs.
			
allow (update) group="Certificate Manager Agents"

      ⁠Table D.20. certServer.ca.directory ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 update 	 Publish CA certificates, CRLs, and user certificates to the LDAP directory. 	 Allow 	 Certificate Manager Agents 





      ⁠D.3.9. certServer.ca.group




				Controls access to the internal database for adding users and groups for the Certificate Manager instance.
			
allow (modify,read) group="Administrators"

      ⁠Table D.21. certServer.ca.group ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 modify 	 Create, edit, or delete user and group entries for the instance. Add or modify a user certificate within attributes 	 Allow 	 Administrators 
	 read 	 View user and group entries for the instance. 	 Allow 	 Administrators 





      ⁠D.3.10. certServer.ca.ocsp




				Controls the ability to access and read OCSP information, such as usage statistics, through the agent services interface.
			
allow (read) group="Certificate Manager Agents"

      ⁠Table D.22. certServer.ca.ocsp ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 Retrieve OCSP usage statistics. 	 Allow 	 Certificate Manager Agents 





      ⁠D.3.11. certServer.ca.profile




				Controls access to certificate profile configuration in the agent services pages.
			
allow (read,approve) group="Certificate Manager Agents"

      ⁠Table D.23. certServer.ca.profile ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View the details of the certificate profiles. 	 Allow 	 Certificate Manager Agents 
	 approve 	 Approve and enable certificate profiles. 	 Allow 	 Certificate Manager Agents 





      ⁠D.3.12. certServer.ca.profiles




				Controls access to list certificate profiles in the agent services interface.
			
allow (list) group="Certificate Manager Agents"

      ⁠Table D.24. certServer.ca.profiles ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 list 	 List certificate profiles. 	 Allow 	 Certificate Manager Agents 





      ⁠D.3.13. certServer.ca.registerUser




				Defines which group or user can create an agent user for the instance. The default configuration is:
			
allow (modify,read) group="Enterprise CA Administrators" || group="Enterprise KRA Administrators" || group="Enterprise OCSP Administrators" || group="Enterprise TKS Administrators" || group="Enterprise TPS Administrators"

      ⁠Table D.25. certServer.ca.registerUser ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 modify 	 Register a new agent. 	 Allow 	 Enterprise Administrators 
	 read 	 Read existing agent information. 	 Allow 	 Enterprise Administrators 





      ⁠D.3.14. certServer.ca.request.enrollment




				Controls how the enrollment request are handled and assigned. The default setting is:
			
allow (submit) user="anybody";allow (read,execute,assign,unassign) group="Certificate Manager Agents"

      ⁠Table D.26. certServer.ca.request.enrollment ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View an enrollment request. 	 Allow 	 Certificate Manager Agents 
	 execute 	 Modify the approval state of a request. 	 Allow 	 Certificate Manager Agents 
	 submit 	 Sumbit a request. 	 Allow 	 Anybody 
	 assign 	 Assign a request to a Certificate Manager agent. 	 Allow 	 Certificate Manager Agents 
	 unassign 	 Change the assignment of a request. 	 Allow 	 Certificate Manager Agents 





      ⁠D.3.15. certServer.ca.request.profile




				Controls the handling of certificate profile-based requests. The default setting is:
			
allow (approve,read) group="Certificate Manager Agents"

      ⁠Table D.27. certServer.ca.request.profile ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 approve 	 Modify the approval state of a certificate profile-based certificate request. 	 Allow 	 Certificate Manager Agents 
	 read 	 View a certificate profile-based certificate request. 	 Allow 	 Certificate Manager Agents 





      ⁠D.3.16. certServer.ca.requests




				Controls who can list certificate requests in the agents services interface.
			
allow (list) group="Certificate Manager Agents"|| group="Registration Manager Agents"

      ⁠Table D.28. certServer.ca.requests ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 list 	 Retrieve details on a range of requests, and search for certificates using a complex filter. 	 Allow 	 	 Certificate Manager Agents 
	 Registration Manager Agents 


							 





      ⁠D.3.17. certServer.ca.systemstatus




				Controls who can view the statistics for the Certificate Manager instance.
			
allow (read) group="Certificate Manager Agents"

      ⁠Table D.29. certServer.ca.systemstatus ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View statistics. 	 Allow 	 Certificate Manager Agents 





      ⁠D.3.18. certServer.ee.certchain




				Controls who can access the CA certificate chain in the end-entities page.
			
allow (download,read) user="anybody"

      ⁠Table D.30. certServer.ee.certchain ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 download 	 Download the CA's certificate chain. 	 Allow 	 Anyone 
	 read 	 View the CA's certificate chain. 	 Allow 	 Anyone 





      ⁠D.3.19. certServer.ee.certificate




				Controls who can access certificates, for most operations like importing or revoking certificates, through the end-entities page.
			
allow (renew,revoke,read,import) user="anybody"

      ⁠Table D.31. certServer.ee.certificate ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 renew 	 Submit a request to renew an existing certificate. 	 Allow 	 Anyone 
	 revoke 	 Submit a revocation request for a user certificate. 	 Allow 	 Anyone 
	 read 	 Retrieve and view certificates based on the certificate serial number or request ID. 	 Allow 	 Anyone 
	 import 	 Import a certificate based on serial number. 	 Allow 	 Anyone 





      ⁠D.3.20. certServer.ee.certificates




				Controls who can list revoked certificates or submit a revocation request in the end-entities page.
			
allow (revoke,list) user="anybody"

      ⁠Table D.32. certServer.ee.certificates ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 revoke 	 Submit a list of certificates to revoke. 	 Allow 	 
								Subject of Certificate to be Revoked must match Certificate presented to authenticate to the CA.
							

							 
	 list 	 Search for certificates matching specified criteria. 	 Allow 	 Anyone 





      ⁠D.3.21. certServer.ee.crl




				Controls access to CRLs through the end-entities page.
			
allow (read,add) user="anybody"

      ⁠Table D.33. certServer.ee.crl ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 Retrieve and view the certificate revocation list. 	 Allow 	 Anyone 
	 add 	 Add CRLs to the OCSP server. 	 Allow 	 Anyone 





      ⁠D.3.22. certServer.ee.profile




				Controls some access to certificate profiles in the end-entities page, including who can view details about a profile or submit a request through the profile.
			
allow (submit,read) user="anybody"

      ⁠Table D.34. certServer.ee.profile ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 submit 	 Submit a certificate request through a certificate profile. 	 Allow 	 Anyone 
	 read 	 Displaying details of a certificate profile. 	 Allow 	 Anyone 





      ⁠D.3.23. certServer.ee.profiles




				Controls who can list active certificate profiles in the end-entities page.
			
allow (list) user="anybody"

      ⁠Table D.35. certServer.ee.profiles ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 list 	 List certificate profiles. 	 Allow 	 Anyone 





      ⁠D.3.24. certServer.ee.request.ocsp




				Controls access, based on IP address, on which clients submit OCSP requests.
			
allow (submit) ipaddress=".*"

      ⁠Table D.36. certServer.ee.request.ocsp ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 submit 	 Submit OCSP requests. 	 Allow 	 All IP addresses 





      ⁠D.3.25. certServer.ee.request.revocation




				Controls what users can submit certificate revocation requests in the end-entities page.
			
allow (submit) user="anybody"

      ⁠Table D.37. certServer.ee.request.revocation ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 submit 	 Submit a request to revoke a certificate. 	 Allow 	 Anyone 





      ⁠D.3.26. certServer.ee.requestStatus




				Controls who can view the status for a certificate request in the end-entities page.
			
allow (read) user="anybody"

      ⁠Table D.38. certServer.ee.requestStatus ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 Retrieve the status of a request and serial numbers of any certificates that have been issued against that request. 	 Allow 	 Anyone 





      ⁠D.3.27. certServer.job.configuration




				Controls who can configure jobs for the Certificate Manager.
			
allow (read) group="Administrators" || group="Certificate Manager Agents" || group="Registration Manager Agents" || group="Key Recovery Authority Agents" || group="Online Certificate Status Manager Agents" || group="Auditors";allow (modify) group="Administrators"

      ⁠Table D.39. certServer.job.configuration ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View basic job settings, job instance settings, and job plug-in settings. List job plug-ins and job instances. 	 Allow 	 	Administrators
	Agents
	Auditors


							 
	 modify 	 Add and delete job plug-ins and job instances. Modify job plug-ins and job instances. 	 Allow 	 Administrators 





      ⁠D.3.28. certServer.profile.configuration




				Controls access to the certificate profile configuration. The default setting is:
			
allow (read) group="Administrators" || group="Certificate Manager Agents" || group="Registration Manager Agents" || group="Key Recovery Authority Agents" || group="Online Certificate Status Manager Agents" || group="Auditors";allow (modify) group="Administrators"

      ⁠Table D.40. certServer.profile.configuration ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View certificate profile defaults and constraints, input, output, input configuration, output configuration, default configuration, policy constraints configuration, and certificate profile instance configuration. List certificate profile plug-ins and certificate profile instances. 	 Allow 	 	Administrators
	Agents
	Auditors


							 
	 modify 	 Add, modify, and delete certificate profile defaults and constraints, input, output, and certificate profile instances. Add and modify default policy constraints configuration. 	 Allow 	 Administrators 





      ⁠D.3.29. certServer.publisher.configuration




				Controls who can view and edit the publishing configuration for the Certificate Manager. The default configuration is:
			
allow (read) group="Administrators" || group="Auditors" || group="Certificate Manager Agents" || group="Registration Manager Agents" || group="Key Recovery Authority Agents" || group="Online Certificate Status Manager Agents";allow (modify) group="Administrators"

      ⁠Table D.41. certServer.publisher.configuration ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View LDAP server destination information, publisher plug-in configuration, publisher instance configuration, mapper plug-in configuration, mapper instance configuration, rules plug-in configuration, and rules instance configuration. List publisher plug-ins and instances, rules plug-ins and instances, and mapper plug-ins and instances. 	 Allow 	 	Administrators
	Agents
	Auditors


							 
	 modify 	 Add and delete publisher plug-ins, publisher instances, mapper plug-ins, mapper instances, rules plug-ins, and rules instances. Modify publisher instances, mapper instances, rules instances, and LDAP server destination information. 	 Allow 	 Administrators 





      ⁠D.3.30. certServer.securitydomain.domainxml




				Controls access to the security domain information maintained in a registry by the domain host Certificate Manager. The security domain configuration is directly accessed and modified by subsystem instances during configuration, so appropriate access must always be allowed to subsystems, or configuration could fail.
			
allow (read) user="anybody";allow (modify) group="Subsystem Group"

      ⁠Table D.42. certServer.securitydomain.domainxml ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View the security domain configuration. 	 Allow 	 Anybody 
	 modify 	 Modify the security domain configuration by changing instance information and adding and removing instances. 	 Allow 	 	 Subsystem Groups 
	 Enterprise Administrators 


							 






      ⁠D.4. Key Recovery Authority-Specific ACLs




			This section covers the default access control configuration which apply specifically to the KRA. The KRA ACL configuration also includes all of the common ACLs listed in Section D.2, “Common ACLs”.
		

			There are access control rules set for each of the KRA's interfaces (administrative console and agents and end-entities services pages) and for common operations like listing and downloading keys.
		

      ⁠D.4.1. certServer.job.configuration




				Controls who can configure jobs for the KRA.
			
allow (read) group="Administrators" || group="Key Recovery Authority Agents" ||  group="Auditors";allow (modify) group="Administrators"

      ⁠Table D.43. certServer.job.configuration ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View basic job settings, job instance settings, and job plug-in settings. List job plug-ins and job instances. 	 Allow 	 	Administrators
	Agents
	Auditors


							 
	 modify 	 Add and delete job plug-ins and job instances. Modify job plug-ins and job instances. 	 Allow 	 Administrators 





      ⁠D.4.2. certServer.kra.certificate.transport




				Controls who can view the transport certificate for the KRA.
			
allow (read) user="anybody"

      ⁠Table D.44. certServer.kra.certificate.transport ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View the transport certificate for the KRA instance. 	 Allow 	 Anyone 





      ⁠D.4.3. certServer.kra.configuration




				Controls who can configure and manage the setup for the KRA.
			
allow (read) group="Administrators" || group="Auditors" || group="Key Recovery Authority Agents" || allow (modify) group="Administrators"

      ⁠Table D.45. certServer.kra.configuration ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 Read the number of required recovery agent approvals. 	 Allow 	 	Administrators
	Agents
	Auditors


							 
	 modify 	 Change the number of required recovery agent approvals. 	 Allow 	 Administrators 





      ⁠D.4.4. certServer.kra.connector




				Controls what entities can submit requests over a special connector configured on the CA to connect to the KRA. The default configuration is:
			
allow (submit) group="Trusted Managers"

      ⁠Table D.46. certServer.kra.connector ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 submit 	 Submit a new key archival request (for non-TMS only). 	 Allow 	 Trusted Managers 





      ⁠D.4.5. certServer.kra.GenerateKeyPair




				Controls who can submit key recovery requests to the KRA. The default configuration is:
			
allow (execute) group="Key Recovery Authority Agents"

      ⁠Table D.47. certServer.kra.GenerateKeyPair ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 Execute 	 Execute server-side key generation (TMS only). 	 Allow 	 KRA Agents 





      ⁠D.4.6. certServer.kra.getTransportCert




				Controls who can submit key recovery requests to the KRA. The default configuration is:
			
allow (download) group="Enterprise CA Administrators" || group="Enterprise KRA Administrators" || group="Enterprise OCSP Administrators" || group="Enterprise TKS Administrators" || group="Enterprise TPS Administrators"

      ⁠Table D.48. certServer.kra.getTransportCert ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 download 	 Retrieve KRA transport certificate. 	 Allow 	 Enterprise Administrators 





      ⁠D.4.7. certServer.kra.group




				Controls access to the internal database for adding users and groups for the KRA instance.
			
allow (modify,read) group="Administrators"

      ⁠Table D.49. certServer.kra.group ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 modify 	 Create, edit, or delete user and group entries for the instance. 	 Allow 	 Administrators 
	 read 	 View user and group entries for the instance. 	 Allow 	 	Administrators


							 





      ⁠D.4.8. certServer.kra.key




				Controls who can access key information through viewing, recovering, or downloading keys. The default configuration is:
			
allow (read,recover,download) group="Key Recovery Authority Agents"

      ⁠Table D.50. certServer.kra.key ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 Display public information about key archival record. 	 Allow 	 KRA Agents 
	 recover 	 Retrieve key information from the database to perform a recovery operation. 	 Allow 	 KRA Agents 
	 download 	 Download key information through the agent services pages. 	 Allow 	 KRA Agents 





      ⁠D.4.9. certServer.kra.keys




				Controls who can list archived keys through the agent services pages.
			
allow (list) group="Key Recovery Authority Agents"

      ⁠Table D.51. certServer.kra.keys ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 list 	 Search for and list a range of archived keys. 	 Allow 	 KRA Agents 





      ⁠D.4.10. certServer.kra.registerUser




				Defines which group or user can create an agent user for the instance. The default configuration is:
			
allow (modify,read) group="Enterprise CA Administrators" || group="Enterprise KRA Administrators" || group="Enterprise OCSP Administrators" || group="Enterprise TKS Administrators" || group="Enterprise TPS Administrators"

      ⁠Table D.52. certServer.kra.registerUser ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 modify 	 Register a new user. 	 Allow 	 Enterprise Administrators 
	 read 	 Read existing user info. 	 Allow 	 Enterprise Administrators 





      ⁠D.4.11. certServer.kra.request




				Controls who can view key archival and recovery requests in the agents services interface.
			
allow (read) group="Key Recovery Authority Agents"

      ⁠Table D.53. certServer.kra.request ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View a key archival or recovery request. 	 Allow 	 KRA Agents 





      ⁠D.4.12. certServer.kra.request.status




				Controls who can view the status for a key recovery request in the end-entities page.
			
allow (read) group="Key Recovery Authority Agents"

      ⁠Table D.54. certServer.kra.request.status ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 Retrieve the status of a key recovery request in the agents services pages. 	 Allow 	 KRA Agents 





      ⁠D.4.13. certServer.kra.requests




				Controls who can list key archival and recovery requests in the agents services interface.
			
allow (list) group="Key Recovery Authority Agents"

      ⁠Table D.55. certServer.kra.requests ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 list 	 Retrieve details on a range of key archival and recovery requests. 	 Allow 	 KRA Agents 





      ⁠D.4.14. certServer.kra.systemstatus




				Controls who can view the statistics for the KRA instance.
			
allow (read) group="Key Recovery Authority Agents"

      ⁠Table D.56. certServer.kra.systemstatus ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View statistics. 	 Allow 	 KRA Agents 





      ⁠D.4.15. certServer.kra.TokenKeyRecovery




				Controls who can submit key recovery requests for a token to the KRA. This is a common request for replacing a lost token. The default configuration is:
			
allow (submit) group="Key Recovery Authority Agents"

      ⁠Table D.57. certServer.kra.TokenKeyRecovery ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 submit 	 Submit or initiate key recovery requests for a token recovery. 	 Allow 	 KRA Agents 






      ⁠D.5. Online Certificate Status Manager-Specific ACLs




			This section covers the default access control configuration attributes which are set specifically for the Online Certificate Status Manager. The OCSP responder's ACL configuration also includes all of the common ACLs listed in Section D.2, “Common ACLs”.
		

			There are access control rules set for each of the OCSP's interfaces (administrative console and agents and end-entities services pages) and for common operations like listing and downloading CRLs.
		

      ⁠D.5.1. certServer.ee.crl




				Controls access to CRLs through the end-entities page.
			
allow (read) user="anybody"

      ⁠Table D.58. certServer.ee.crl ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 Retrieve and view the certificate revocation list. 	 Allow 	 Anyone 





      ⁠D.5.2. certServer.ee.request.ocsp




				Controls access, based on IP address, on which clients submit OCSP requests.
			
allow (submit) ipaddress=".*"

      ⁠Table D.59. certServer.ee.request.ocsp ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 submit 	 Submit OCSP requests. 	 Allow 	 All IP addresses 





      ⁠D.5.3. certServer.ocsp.ca




				Controls who can instruct the OCSP responder. The default setting is:
			
allow (add) group="Online Certificate Status Manager Agents"

      ⁠Table D.60. certServer.ocsp.ca ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 Add 	 Instruct the OCSP responder to respond to OCSP requests for a new CA. 	 Allow 	 OCSP Manager Agents 





      ⁠D.5.4. certServer.ocsp.cas




				Controls who can list, in the agent services interface, all of the Certificate Managers which publish CRLs to the Online Certificate Status Manager. The default setting is:
			
allow (list) group="Online Certificate Status Manager Agents"

      ⁠Table D.61. certServer.ocsp.cas ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 list 	 Lists all of the Certificate Managers which publish CRLs to the OCSP responder. 	 Allow 	 Agents 





      ⁠D.5.5. certServer.ocsp.certificate




				Controls who can validate the status of a certificate. The default setting is:
			
allow (validate) group="Online Certificate Status Manager Agents"

      ⁠Table D.62. certServer.ocsp.certificate ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 validate 	 Verifies the status of a specified certificate. 	 Allow 	 OCSP Agents 





      ⁠D.5.6. certServer.ocsp.configuration




				Controls who can access, view, or modify the configuration for the Certificate Manager's OCSP services. The default configuration is:
			
allow (read) group="Administrators" || group="Online Certificate Status Manager Agents" || group="Auditors";allow (modify) group="Administrators"

      ⁠Table D.63. certServer.ocsp.configuration ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View OCSP plug-in information, OCSP configuration, and OCSP stores configuration. List OCSP stores configuration. 	 Allow 	 	Administrators
	Online Certificate Status Manager Agents
	Auditors


							 
	 modify 	 Modify the OCSP configuration, OCSP stores configuration, and default OCSP store. 	 Allow 	 Administrators 





      ⁠D.5.7. certServer.ocsp.crl




				Controls access to read or update CRLs through the agent services interface. The default setting is:
			
allow (add) group="Online Certificate Status Manager Agents" || group="Trusted Managers"

      ⁠Table D.64. certServer.ocsp.crl ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 add 	 Add new CRLs to those managed by the OCSP responder. 	 Allow 	 	 OCSP Agents 
	 Trusted Managers 


							 





      ⁠D.5.8. certServer.ocsp.group




				Controls access to the internal database for adding users and groups for the Online Certificate Status Manager instance.
			
allow (modify,read) group="Administrators"

      ⁠Table D.65. certServer.ocsp.group ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 modify 	 Create, edit or delete user and group entries for the instance. 	 Allow 	 Administrators 
	 read 	 View user and group entries for the instance. 	 Allow 	 Administrators 





      ⁠D.5.9. certServer.ocsp.info




				Controls who can read information about the OCSP responder.
			
allow (read) group="Online Certificate Status Manager Agents"

      ⁠Table D.66. certServer.ocsp.info ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 View OCSP responder information. 	 Allow 	 OCSP Agents 






      ⁠D.6. Token Key Service-Specific ACLs




			This section covers the default access control configuration attributes which are set specifically for the Token Key Service (TKS). The TKS ACL configuration also includes all of the common ACLs listed in Section D.2, “Common ACLs”.
		

			There are access control rules set for the TKS's administrative console and for access by other subsystems to the TKS.
		

      ⁠D.6.1. certServer.tks.encrypteddata




				Controls who can encrypt data.
			
allow(execute) group="Token Key Service Manager Agents"


      ⁠Table D.67. certServer.tks.encrypteddata ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 Execute 	 Encrypted data stored in the TKS. 	 Allow 	 TKS Agents 





      ⁠D.6.2. certServer.tks.group




				Controls access to the internal database for adding users and groups for the TKS instance.
			
allow (modify,read) group="Administrators"

      ⁠Table D.68. certServer.tks.group ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 modify 	 Create, edit, or delete user and group entries for the instance. 	 Allow 	 Administrators 
	 read 	 View user and group entries for the instance. 	 Allow 	 Administrators 





      ⁠D.6.3. certServer.tks.importTransportCert




				Controls who can import the transport certificate used by the TKS to deliver keys.
			
allow (modify,read) group="Enterprise CA Administrators" || group="Enterprise KRA Administrators" || group="Enterprise OCSP Administrators" || group="Enterprise TKS Administrators" || group="Enterprise TPS Administrators"

      ⁠Table D.69. certServer.tks.importTransportCert ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 modify 	 Update the transport certificate. 	 Allow 	 Enterprise Administrators 
	 read 	 Import the transport certificate. 	 Allow 	 Enterprise Administrators 





      ⁠D.6.4. certServer.tks.keysetdata




				Controls who can view information about key sets derived and stored by the TKS.
			
allow (execute) group="Token Key Service Manager Agents"

      ⁠Table D.70. certServer.tks.keysetdata ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 Execute 	 Create diversified key set data. 	 Allow 	 TKS Agents 





      ⁠D.6.5. certServer.tks.registerUser




				Defines which group or user can create an agent user for the instance. The default configuration is:
			
allow (modify,read) group="Enterprise CA Administrators" || group="Enterprise KRA Administrators" || group="Enterprise OCSP Administrators" || group="Enterprise TKS Administrators" || group="Enterprise TPS Administrators"

      ⁠Table D.71. certServer.tks.registerUser ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 modify 	 Register a new agent. 	 Allow 	 Enterprise Administrators 
	 read 	 Read existing agent information. 	 Allow 	 Enterprise Administrators 





      ⁠D.6.6. certServer.tks.sessionkey




				Controls who can create the session keys used by the TKS instance to connections to the TPS.
			
allow (execute) group="Token Key Service Manager Agents"

      ⁠Table D.72. certServer.tks.sessionkey ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 Execute 	 Create session keys generated by the TKS. 	 Allow 	 TKS Agents 





      ⁠D.6.7. certServer.tks.randomdata




				Controls who can create random data.
			
allow (execute) group="Token Key Service Manager Agents"

      ⁠Table D.73. certServer.tks.randomdata ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 Execute 	 Generate random data. 	 Allow 	 TKS Agents 






      ⁠D.7. TPS-specific ACLs




			This section covers the default access control configuration attributes which are set specifically for the Token Processing System (TPS). The TPS ACL configuration also includes all of the common ACLs listed in Section D.2, “Common ACLs”.
		

      ⁠D.7.1. certServer.tps.account




				Controls that users can log in and log out.
			
allow (login,logout) user="anybody"

      ⁠Table D.74. certServer.tps.account ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 login 	 Log into the TPS 	 Allow 	 All users 
	 logout 	 Log out from the TPS 	 Allow 	 All users 





      ⁠D.7.2. certServer.tps.authenticators




				Controls that only administrators can access authenticators.
			
allow (read,change-status,add,modify,remove) group="Administrators"

      ⁠Table D.75. certServer.tps.authenticators ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 Read authenticators 	 Allow 	 Administrators 
	 change-status 	 Change status of authenticators 	 Allow 	 Administrators 
	 add 	 Add authenticators 	 Allow 	 Administrators 
	 modify 	 Update authenticators 	 Allow 	 Administrators 
	 remove 	 Remove authenticators 	 Allow 	 Administrators 





      ⁠D.7.3. certServer.tps.audit




				Controls that only administrators can access the audit configuration.
			
allow (read,modify) group="Administrators"

      ⁠Table D.76. certServer.tps.audit ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 Read configuration audit settings 	 Allow 	 Administrators 
	 modify 	 Update configuration audit settings 	 Allow 	 Administrators 





      ⁠D.7.4. certServer.tps.config




				Controls that only administrators can access the configuration.
			
allow (read,modify) group="Administrators"

      ⁠Table D.77. certServer.tps.config ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 Read configuration settings 	 Allow 	 Administrators 
	 modify 	 Update configuration settings 	 Allow 	 Administrators 





      ⁠D.7.5. certServer.tps.connectors




				Controls that only administrators can access connectors.
			
allow (read,change-status,add,modify,remove) group="Administrators"

      ⁠Table D.78. certServer.tps.connectors ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 Read connectors 	 Allow 	 Administrators 
	 change-status 	 Change the status of connectors 	 Allow 	 Administrators 
	 add 	 Add connectors 	 Allow 	 Administrators 
	 modify 	 Update connectors 	 Allow 	 Administrators 
	 remove 	 Remove connectors 	 Allow 	 Administrators 





      ⁠D.7.6. certServer.tps.groups




				Enables administrators to execute group operations.
			
allow (execute) group="Administrators"

      ⁠Table D.79. certServer.tps.groups ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 execute 	 Execute group operations 	 Allow 	 Administrators 





      ⁠D.7.7. certServer.tps.users




				Enables administrators to execute user operations.
			
allow (execute) group="Administrators"

      ⁠Table D.80. certServer.tps.users ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 execute 	 Execute user operations 	 Allow 	 Administrators 





      ⁠D.7.8. certServer.tps.profiles




				Allows that administrators and TPS agents can read and change the status of profiles. However, only administrators can add, modify, and remove profiles.
			
allow (read,change-status) group="Administrators" || group="TPS Agents" ; allow (add,modify,remove) group="Administrators"

      ⁠Table D.81. certServer.tps.profiles ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 Read profiles 	 Allow 	 Administrators, TPS agents 
	 change-status 	 Change status of profiles 	 Allow 	 Administrators, TPS agents 
	 add 	 Add profiles 	 Allow 	 Administrators 
	 modify 	 Update profiles 	 Allow 	 Administrators 
	 remove 	 Remove profiles 	 Allow 	 Administrators 





      ⁠D.7.9. certServer.tps.profile-mappings




				Controls that only administrators can access profile mappings.
			
allow (read,change-status,add,modify,remove) group="Administrators"

      ⁠Table D.82. certServer.tps.users ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 Read profile mappings 	 Allow 	 Administrators 
	 change-status 	 Change status of profile mappings 	 Allow 	 Administrators 
	 add 	 Add profile mappings 	 Allow 	 Administrators 
	 modify 	 Update profile settings 	 Allow 	 Administrators 
	 remove 	 Remove profile settings 	 Allow 	 Administrators 





      ⁠D.7.10. certServer.tps.selftests




				Controls that only administrators can access self tests.
			
allow (read,execute) group="Administrators"

      ⁠Table D.83. certServer.tps.selftests ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 Read self tests 	 Allow 	 Administrators 
	 execute 	 Execute self tests 	 Allow 	 Administrators 





      ⁠D.7.11. certServer.tps.tokens




				Controls that administrators, agents, and operators can read tokens. However, only administrators can add and remove tokens, and only agents can modify tokens.
			
allow (read) group="Administrators" || group="TPS Agents" || group="TPS Operators"; allow (add,remove) group="Administrators" ; allow (modify) group="TPS Agents"

      ⁠Table D.84. certServer.tps.tokens ACL Summary
	 Operations 	 Description 	 Allow/Deny Access 	 Targeted Users/Groups 
	 read 	 Read tokens 	 Allow 	 Administrators, TPS agents, TPS operators 
	 add 	 Add tokens 	 Allow 	 Administrators 
	 remove 	 Remove tokens 	 Allow 	 Administrators 
	 modify 	 Update tokens 	 Allow 	 TPS agents 







      ⁠Appendix E. Audit Events




		This appendix contains two parts. The first part, Section E.1, “Required Audit Events and Their Examples”, contains a list of required audit events grouped by the requirement ID from the CA Protection Profile V2.1, where each audit event is accompanied by one or more examples. The second part, Section E.2, “Audit Event Descriptions” provides individual audit event and their parameter description and format. Every audit event in the log is accompanied by the following information:
	
	
				The Java identifier of the thread. For example:
			
0.localhost-startStop-1

	
				The time stamp the event occurred at. For example:
			
[21/Jan/2019:17:53:00 IST]

	
				The log source (14 is SIGNED_AUDIT):
			
[14]

	
				The current log level (6 is Security-related events. See the Log Levels (Message Categories) section in the Red Hat Certificate System Planning, Installation, and Deployment Guide (Common Criteria Edition)). For example:
			
[6]

	
				The information about the log event (which is log event specific; see Section E.2, “Audit Event Descriptions” for information about each field in a particular log event). For example:
			
[AuditEvent=AUDIT_LOG_STARTUP][SubjectID=$System$][Outcome=Success] audit function startup




      ⁠E.1. Required Audit Events and Their Examples




			This section contains all required audit events per Common Criteria CA Protection Profile v.2.1.
		

			For audit events descriptions, see Section E.2, “Audit Event Descriptions”.
		

      ⁠FAU_GEN.1
	
					Start-up of the TSF audit functions
				
	
							AUDIT_LOG_STARTUP
						
0.localhost-startStop-1 - [21/Jan/2019:17:53:00 IST] [14] [6] [AuditEvent=AUDIT_LOG_STARTUP][SubjectID=$System$][Outcome=Success] audit function startup




	
					All administrative actions invoked through the TFS interface
				
	
							CONFIG_CERT_PROFILE
						
0.http-bio-20443-exec-35 - [02/Jan/2019:05:05:09 EST] [14] [6] [AuditEvent=CONFIG_CERT_PROFILE][SubjectID=caadmin][Outcome=Success][ParamNameValPairs=Scope;;rules+Operation;;OP_ADD+Resource;;caAgentExample+class_id;;caEnrollImpl+name;;caAgentExample Enrollment Profile+description;;This certificate profile is for enrolling user certificates+visible;;true] certificate profile configuration parameter(s) change

	
							CERT_PROFILE_APPROVAL
						
0.http-bio-8443-exec-8 - [15/Nov/2018:15:37:19 PST] [14] [6] [AuditEvent=CERT_PROFILE_APPROVAL][SubjectID=cfuEC-0830-agent-2][Outcome=Success][ProfileID=caTPSCert][Op=disapprove] certificate profile approval

	
							CONFIG_OCSP_PROFILE
						
0.http-bio-22443-exec-11 - [30/Jan/2019:06:18:02 EST] [14] [6] [AuditEvent=CONFIG_OCSP_PROFILE][SubjectID=ocspadmin][Outcome=Success][ParamNameValPairs=Scope;;ocspStoresRules+Operation;;OP_MODIFY+Resource;;ldapStore+includeNextUpdate;;false+byName;;true+implName;;com.netscape.cms.ocsp.LDAPStore+numConns;;0+caCertAttr;;cACertificate;binary+notFoundAsGood;;true+crlAttr;;certificateRevocationList;binary] OCSP profile configuration parameter(s) change

	
							CONFIG_CRL_PROFILE
						
0.http-bio-20443-exec-48 - [29/Jan/2019:04:29:29 EST] [14] [6] [AuditEvent=CONFIG_CRL_PROFILE][SubjectID=caadmin][Outcome=Success][ParamNameValPairs=Scope;;crl+Operation;;OP_MODIFY+Resource;;MasterCRL+enableCRLUpdates;;true+updateSchema;;1+extendedNextUpdate;;true+alwaysUpdate;;false+enableDailyUpdates;;true+dailyUpdates;;4:30+enableUpdateInterval;;true+autoUpdateInterval;;240+nextUpdateGracePeriod;;0+nextAsThisUpdateExtension;;0] CRL profile configuration parameter(s) change

	
							CONFIG_AUTH
						
0.http-bio-20443-exec-11 - [15/Jan/2019:08:36:39 EST] [14] [6] [AuditEvent=CONFIG_AUTH][SubjectID=caadmin][Outcome=Success][ParamNameValPairs=Scope;;instance+Operation;;OP_ADD+Resource;;plug502+implName;;UidPwdDirAuth+ldap.ldapconn.host;;server.example.com+dnpattern;;uid=test,ou=people,o=topology-02-CA+ldapStringAttributes;;mail+ldap.ldapconn.version;;3+ldap.ldapconn.port;;3389+ldap.maxConns;;10+ldap.basedn;;dc=example,dc=com+ldap.minConns;;3+ldap.ldapconn.secureConn;;false+ldapByteAttributes;;uid+ldap.password;;(sensitive)+ldap.ldapauth.authtype;;BasicAuth+ldap.ldapauth.bindDN;;cn=direcory manager] authentication configuration parameter(s) change
0.http-bio-20080-exec-25 - [29/Jan/2019:04:54:14 EST] [14] [6] [AuditEvent=CONFIG_AUTH][SubjectID=caadmin][Outcome=Success][ParamNameValPairs=Scope;;instance+Operation;;OP_ADD+Resource;;plug7487+implName;;AgentCertAuth] authentication configuration parameter(s) change

	
							CONFIG_ROLE(success)
						
0.http-bio-20443-exec-50 - [18/Jan/2019:04:08:45 EST] [14] [6] [AuditEvent=CONFIG_ROLE][SubjectID=caadmin][Outcome=Success][ParamNameValPairs=Scope;;certs+Operation;;OP_ADD+Resource;;CA_AdminV+cert;;-----BEGIN CERTIFICATE-----MIIDYTCCAkmgAwIBAgIBfz...-----END CERTIFICATE-----] role configuration parameter(s) change

	
							CONFIG_ROLE(Failure)
						
0.http-bio-20443-exec-39 - [18/Jan/2019:04:08:57 EST] [14] [6] [AuditEvent=CONFIG_ROLE][SubjectID=caadmin][Outcome=Failure][ParamNameValPairs=Scope;;users+Operation;;OP_ADD+Resource;;CA_AdminUnTrusted+password;;********+phone;;<null>+fullname;;CA_AdminUnTrusted+state;;<null>+userType;;<null>+email;;<null>] role configuration parameter(s) change

	
							CONFIG_ACL
						
	
									CA
								
CA = 0.http-bio-20443-exec-18 - [29/Jan/2019:05:15:16 EST] [14] [6] [AuditEvent=CONFIG_ACL][SubjectID=caadmin][Outcome=Success][ParamNameValPairs=Scope;;acls+Operation;;OP_MODIFY+Resource;;testACL+aci;;allow (read,allow) group="testGroup"+desc;;ALLOW READ to testGroup+rights;;read,allow] ACL configuration parameter(s) change




	
							CONFIG_SIGNED_AUDIT
						
	
									CA
								
0.http-bio-20443-exec-20 - [29/Jan/2019:02:44:04 EST] [14] [6] [AuditEvent=CONFIG_SIGNED_AUDIT][SubjectID=caadmin][Outcome=Success][ParamNameValPairs=Action;;disable] signed audit configuration parameter(s) change

	
									KRA
								
0.http-bio-21443-exec-9 - [30/Jan/2019:08:15:11 EST] [14] [6] [AuditEvent=CONFIG_SIGNED_AUDIT][SubjectID=kraadmin][Outcome=Success][ParamNameValPairs=Action;;enable] signed audit configuration parameter(s) change

	
									OCSP
								
0.http-bio-22443-exec-17 - [30/Jan/2019:08:17:06 EST] [14] [6] [AuditEvent=CONFIG_SIGNED_AUDIT][SubjectID=ocspadmin][Outcome=Success][ParamNameValPairs=Action;;enable] signed audit configuration parameter(s) change

	
									TKS
								
0.http-bio-23443-exec-15 - [30/Jan/2019:08:18:52 EST] [14] [6] [AuditEvent=CONFIG_SIGNED_AUDIT][SubjectID=tksadmin][Outcome=Success][ParamNameValPairs=Action;;enable] signed audit configuration parameter(s) change

	
									TPS
								
0.http-bio-25443-exec-5 - [30/Jan/2019:08:20:03 EST] [14] [6] [AuditEvent=CONFIG_SIGNED_AUDIT][SubjectID=tpsadmin][Outcome=Success][ParamNameValPairs=Action;;enable] signed audit configuration parameter(s) change




	
							CONFIG_TRUSTED_PUBLIC_KEY
						
	
									CA
								
0.http-bio-20443-exec-9 - [29/Jan/2019:03:25:02 EST] [14] [6] [AuditEvent=CONFIG_TRUSTED_PUBLIC_KEY][SubjectID=caadmin][Outcome=Success][ParamNameValPairs=Scope;;installCert+Operation;;OP_MODIFY+Resource;;trustedCACert+pkcs10;;-----BEGIN CERTIFICATE-----MIIEBDCCAuygAwI...-----END CERTIFICATE-----+nickname;;<null>+pathname;;<null>+serverRoot;;<null>+serverID;;instanceID] certificate database configuration

	
									KRA
								
0.http-bio-21443-exec-17 - [30/Jan/2019:08:29:07 EST] [14] [6] [AuditEvent=CONFIG_TRUSTED_PUBLIC_KEY][SubjectID=kraadmin][Outcome=Success][ParamNameValPairs=Scope;;installCert+Operation;;OP_MODIFY+Resource;;trustedCACert+pkcs10;;-----BEGIN CERTIFICATE-----MIIEBDCCAuygAw...-----END CERTIFICATE-----+nickname;;<null>+pathname;;<null>+serverRoot;;<null>+serverID;;instanceID] certificate database configuration

	
									OCSP
								
0.http-bio-22443-exec-25 - [30/Jan/2019:08:41:08 EST] [14] [6] [AuditEvent=CONFIG_TRUSTED_PUBLIC_KEY][SubjectID=ocspadmin][Outcome=Success][ParamNameValPairs=Scope;;installCert+Operation;;OP_MODIFY+Resource;;trustedCACert+pkcs10;;-----BEGIN CERTIFICATE-----MIIEBDCCAuygAwIB...-----END CERTIFICATE-----+nickname;;<null>+pathname;;<null>+serverRoot;;<null>+serverID;;instanceID] certificate database configuration

	
									TKS
								
0.http-bio-23443-exec-23 - [30/Jan/2019:08:45:40 EST] [14] [6] [AuditEvent=CONFIG_TRUSTED_PUBLIC_KEY][SubjectID=tksadmin][Outcome=Success][ParamNameValPairs=Scope;;installCert+Operation;;OP_MODIFY+Resource;;trustedCACert+pkcs10;;-----BEGIN CERTIFICATE-----MIIEBDCCAuygAwIBA...-----END CERTIFICATE-----+nickname;;<null>+pathname;;<null>+serverRoot;;<null>+serverID;;instanceID] certificate database configuration

	
									TPS
								
0.http-bio-22443-exec-23 - [30/Jan/2019:08:46:13 EST] [14] [6] [AuditEvent=CONFIG_TRUSTED_PUBLIC_KEY][SubjectID=tpsadmin][Outcome=Success][ParamNameValPairs=Scope;;installCert+Operation;;OP_MODIFY+Resource;;trustedCACert+pkcs10;;-----BEGIN CERTIFICATE-----MIIEBDCCAuygAwIBA...-----END CERTIFICATE-----+nickname;;<null>+pathname;;<null>+serverRoot;;<null>+serverID;;instanceID] certificate database configuration




	
							CONFIG_DRM
						
0.http-bio-21443-exec-1 - [24/Jan/2019:09:36:52 EST] [14] [6] [AuditEvent=CONFIG_DRM][SubjectID=kraadmin][Outcome=Success][ParamNameValPairs=Scope;;general+Operation;;OP_MODIFY+Resource;;RS_ID_CONFIG+noOfRequiredRecoveryAgents;;2] DRM configuration parameter(s) change

	
							OCSP_ADD_CA_REQUEST_PROCESSED
						
	
									Success
								
0.http-bio-22443-exec-24 - [29/Jan/2019:03:15:59 EST] [14] [6] [AuditEvent=OCSP_ADD_CA_REQUEST_PROCESSED][SubjectID=ocspadmin][Outcome=Success][CASubjectDN=CN=CA Signing Certificate,OU=topology-02-CA,O=topology-02_example.com] Add CA for OCSP Responde

	
									Failure
								
0.http-bio-22443-exec-12 - [30/Jan/2019:06:44:32 EST] [14] [6] [AuditEvent=OCSP_ADD_CA_REQUEST_PROCESSED][SubjectID=ocspadmin][Outcome=Failure][CASubjectDN=<null>] Add CA for OCSP Responder




	
							OCSP_REMOVE_CA_REQUEST_PROCESSED
						
0.http-bio-22443-exec-24 - [29/Jan/2019:03:13:43 EST] [14] [6] [AuditEvent=OCSP_REMOVE_CA_REQUEST_PROCESSED][SubjectID=ocspadmin][Outcome=Success][CASubjectDN=CN=CA Signing Certificate,OU=topology-02-CA,O=topology-02_example.com] Remove CA for OCSP Responder is successful

	
							SECURITY_DOMAIN_UPDATE
						
	
									Operation: Issue_token
								
0.http-bio-20443-exec-10 - [16/Jan/2019:03:19:57 EST] [14] [6] [AuditEvent=SECURITY_DOMAIN_UPDATE][SubjectID=caadmin][Outcome=Success][ParamNameValPairs=operation;;issue_token+token;;2433856184928074456+ip;;192.0.2.1+uid;;caadmin+groupname;;Enterprise TKS Administrators] security domain update

	
									Operation: Add
								
0.http-bio-20443-exec-18 - [02/Jan/2019:04:39:21 EST] [14] [6] [AuditEvent=SECURITY_DOMAIN_UPDATE][SubjectID=caadmin][Outcome=Success][ParamNameValPairs=host;;server.example.com+name;;OCSP server.example.com 22443+sport;;22443+clone;;false+type;;OCSP+operation;;add] security domain update




	
							CONFIG_SERIAL_NUMBER
						
	
									CA
								
0.http-bio-20443-exec-2 - [29/Jan/2019:07:53:21 EST] [14] [6] [AuditEvent=CONFIG_SERIAL_NUMBER][SubjectID=caadmin][Outcome=Success][ParamNameValPairs=source;;updateNumberRange+type;;request+beginNumber;;9990001+endNumber;;10000000] serial number range update

	
									KRA
								
0.http-bio-21443-exec-7 - [18/Jan/2019:19:11:47 EST] [14] [6] [AuditEvent=CONFIG_SERIAL_NUMBER][SubjectID=caadmin][Outcome=Success][ParamNameValPairs=source;;updateNumberRange+type;;serialNo+beginNumber;;fff0001+endNumber;;10000000] serial number range update










      ⁠FDP_CER_EXT.1 (extended)
	
					Certificate generation
				
	
							CERT_REQUEST_PROCESSED (SUCCESS)
						
0.http-bio-8443-exec-24 - [07/Sep/2018:10:21:57 PDT] [14] [6] [AuditEvent=CERT_REQUEST_PROCESSED][SubjectID=caadmin][Outcome=Success][ReqID=7][CertSerialNum=7] certificate request processed







      ⁠FDP_CER_EXT.2 (extended)
	
					Linking of certificates to certificate requests
				
	
							PROFILE_CERT_REQUEST
						
0.http-bio-8443-exec-24 - [07/Sep/2018:10:21:57 PDT] [14] [6] [AuditEvent=PROFILE_CERT_REQUEST][SubjectID=caadmin][Outcome=Success][ReqID=7][ProfileID=caECFullCMCUserCert][CertSubject=CN=cfuEC-0830] certificate request made with certificate profiles
Note


								The ReqID field effectively links to the ReqID field of a successful CERT_REQUEST_PROCESSED event.
							









      ⁠FDP_CER_EXT.3
	
					Failed certificate approvals
				
	
							CERT_REQUEST_PROCESSED (FAILURE)
						
0.http-bio-20443-exec-4 - [21/Jan/2019:00:24:16 EST] [14] [6] [AuditEvent=CERT_REQUEST_PROCESSED][SubjectID=$NonRoleUser$][Outcome=Failure][ReqID=1483][InfoName=rejectReason][InfoValue=Request 1483 Rejected - Subject Name Not Matched UID=testuser00,E=example@example.com,CN=MyTestUser] certificate request processed







      ⁠FIA_X509_EXT.1, FIA_X509_EXT.2
	
					Failed certificate validations; failed authentications
				
	
							ACCESS_SESSION_ESTABLISH (FAILURE)
						
	
									User with revoked cert trying to perform an operation.
								
0.http-bio-21443-exec-9 - [12/Feb/2019:14:52:26 EST] [14] [6] [AuditEvent=ACCESS_SESSION_ESTABLISH][ClientIP=192.0.2.1][ServerIP=192.0.2.2][SubjectID=UID=KRA_AgentR,E=KRA_AgentR@example.org,CN=KRA_AgentR,OU=IDMQE,C=US][Outcome=Failure][Info=CERTIFICATE_REVOKED] access session establish failure

	
									User with expired cert trying to perform an operation.
								
0.http-bio-21443-exec-9 - [12/Feb/2019:14:52:26 EST] [14] [6] [AuditEvent=ACCESS_SESSION_ESTABLISH][ClientIP=192.0.2.1][ServerIP=192.0.2.2][SubjectID=UID=KRA_AgentR,E=KRA_AgentR@example.org,CN=KRA_AgentR,OU=IDMQE,C=US][Outcome=Failure][Info=CERTIFICATE_EXPIRED] access session establish failure

	
									CMC enrollment request submitted using a TLS client cert issued by an unknown CA.
								
0.http-bio-20443-exec-28 - [12/Feb/2019:16:31:08 EST] [14] [6] [AuditEvent=ACCESS_SESSION_ESTABLISH][ClientIP=192.0.2.1][ServerIP=192.0.2.2][SubjectID=CN=CA Signing Certificate,OU=pki-tomcat,O=EXAMPLE][Outcome=Failure][Info=UNKNOWN_CA] access session establish failure

	
									When client protocol does not match. For example: client use ssl3 but server does not support.
								
0.http-bio-20443-exec-11 - [12/Feb/2019:16:35:26 EST] [14] [6] [AuditEvent=ACCESS_SESSION_ESTABLISH][ClientIP=192.0.2.1][ServerIP=192.0.2.2][SubjectID=][Outcome=Failure][Info=HANDSHAKE_FAILURE] access session establish failure

	
									For incorrect protocol version. Example server supports tls1.1 and tls1.2 but client sends tls1.
								
0.http-bio-20443-exec-46 - [12/Feb/2019:16:39:10 EST] [14] [6] [AuditEvent=ACCESS_SESSION_ESTABLISH][ClientIP=192.0.2.1][ServerIP=192.0.2.2][SubjectID=][Outcome=Failure][Info=PROTOCOL_VERSION] access session establish failure

	
									When client sends list of cipher but Server have no list of ciphers.
								

									Server:
								
0.http-bio-21443-exec-3 - [13/Feb/2019:07:40:44 EST] [14] [6] [AuditEvent=ACCESS_SESSION_ESTABLISH][ClientIP=192.0.2.1][ServerIP=192.0.2.2][SubjectID=][Outcome=Failure][Info=INTERNAL_ERROR] access session establish failure










      ⁠FIA_UIA_EXT.1
	
					Privileged user identification and authentication
				
	
							ACCESS_SESSION_ESTABLISH
						
	
									CA Example
								
0.http-bio-8443-exec-1 - [10/Oct/2018:15:42:13 PDT] [14] [6] [AuditEvent=ACCESS_SESSION_ESTABLISH][ClientIP=192.0.2.1][ServerIP=192.0.2.1][SubjectID=][Outcome=Success] access session establish success

	
									TPS Example
								
0.http-bio-25443-exec-1 - [02/Jan/2019:04:44:12 EST] [14] [6] [AuditEvent=ACCESS_SESSION_ESTABLISH][ClientIP=192.0.2.1][ServerIP=192.0.2.1][SubjectID=][Outcome=Success] access session establish success




	
							AUTH
						
	
									CA Example
								
0.http-bio-8443-exec-1 - [28/Nov/2018:16:23:15 PST] [14] [6] [AuditEvent=AUTH][SubjectID=caagentJoe][Outcome=Success][AuthMgr=CMCAuth] authentication success

	
									TPS Example
								
0.http-bio-25443-exec-1 - [25/Jan/2019:13:00:59 IST] [14] [6] [AuditEvent=AUTH][SubjectID=tpsadmin][Outcome=Success][AuthMgr=passwdUserDBAuthMgr] authentication success




	
							AUTHZ
						
	
									CA Example
								
0.http-bio-8443-exec-1 - [28/Nov/2018:16:23:15 PST] [14] [6] [AuditEvent=AUTHZ][SubjectID=caagentJoe][Outcome=Success][aclResource=certServer.ee.profile][Op=submit] authorization success

	
									TPS Example
								
0.http-bio-25443-exec-1 - [25/Jan/2019:13:00:59 IST] [14] [6] [AuditEvent=AUTHZ][SubjectID=tpsadmin][Outcome=Success][aclResource=certServer.tps.account][Op=login][Info=AccountResource.login] authorization success




	
							ROLE_ASSUME
						
	
									CA Example
								
0.http-bio-8443-exec-1 - [28/Nov/2018:16:23:15 PST] [14] [6] [AuditEvent=ROLE_ASSUME][SubjectID=caagentJoe][Outcome=Success][Role=Certificate Manager Agents] assume privileged role

	
									TPS Example
								
0.http-bio-25443-exec-9 - [25/Jan/2019:13:00:07 IST] [14] [6] [AuditEvent=ROLE_ASSUME][SubjectID=cfu][Outcome=Success][Role=Certificate Manager Agents] assume privileged role










      ⁠FMT_SMR.2
	
					Modifications to the group of users that are part of a role
				
	
							CONFIG_ROLE
						

							See CONFIG_ROLE event above.
						







      ⁠FPT_FLS.1
	
					Failure with preservation of secure state
				
	
							SELFTESTS_EXECUTION
						
	
									CA Example
								
0.localhost-startStop-1 - [10/Jan/2019:00:47:57 EST] [14] [6] [AuditEvent=SELFTESTS_EXECUTION][SubjectID=$System$][Outcome=Failure] self tests execution (see selftests.log for details)

	
									TPS Example
								
0.localhost-startStop-1 - [22/Jan/2019:11:55:32 IST] [14] [6] [AuditEvent=SELFTESTS_EXECUTION][SubjectID=$System$][Outcome=Failure] self tests execution (see selftests.log for details)










      ⁠FPT_KST_EXT.2
	
					Private/secret keys are stored by the HSM and the only operations to "access" those keys are through the TSF as signing operations.
				
CERT_REQUEST_PROCESSED (failure)                         
0.http-bio-20443-exec-8 - [28/Jan/2019:13:48:14 EST] [14] [6] [AuditEvent=CERT_REQUEST_PROCESSED][SubjectID=$Unidentified$][Outcome=Failure][ReqID=28][InfoName=rejectReason][InfoValue=Request Key Type RSA Not Matched Rejected - {1}] certificate request processed




      ⁠FPT_RCV.1
	
					The fact that a failure or service discontinuity occurred. Resumption of the regular operation.
				
	
							Failure: SELFTESTS_EXECUTION (Failure)
						
	
									CA Example
								
0.localhost-startStop-1 - [29/Jan/2019:13:29:03 UTC] [14] [6] [AuditEvent=SELFTESTS_EXECUTION][SubjectID=$System$][Outcome=Failure] self tests execution (see selftests.log for details)

	
									TPS Example
								
0.localhost-startStop-1 - [22/Jan/2019:11:55:32 IST] [14] [6] [AuditEvent=SELFTESTS_EXECUTION][SubjectID=$System$][Outcome=Failure] self tests execution (see selftests.log for details)




	
							Self-test log, see 13.3.2. Configuring Self-Tests in Red Hat Certificat Systemitem's Planning, Installation, and Deployment Guide.
						

	
							Resumption: AUDIT_LOG_STARTUP; SELFTESTS_EXECUTION (Success)
						
	
									TPS Example
								
0.localhost-startStop-1 - [21/Jan/2019:16:47:44 IST] [14] [6] [AuditEvent=AUDIT_LOG_STARTUP][SubjectID=$System$][Outcome=Success] audit function startup

	
									CA Example
								
0.localhost-startStop-1 - [04/Feb/2019:18:29:38 EST] [14] [6] [AuditEvent=SELFTESTS_EXECUTION][SubjectID=$System$][Outcome=Success] self tests execution (see selftests.log for details)










      ⁠FPT_STM.1
	
					Changes to the time.
				

					See Section 13.2.3.3, “Displaying Time Change Events”
				




      ⁠FPT_TUD_EXT.1
	
					Initiation of update.
				

					See Section 13.2.3.4, “Displaying Package Update Events”.
				




      ⁠FTA_SSL.4
	
					The termination of an interactive session.
				
	
							ACCESS_SESSION_TERMINATED
						
	

								
0.http-bio-20443-exec-7 - [21/Jan/2019:03:42:17 EST] [14] [6] [AuditEvent=ACCESS_SESSION_TERMINATED][ClientIP=192.0.2.1][ServerIP=192.0.2.1][SubjectID=CN=PKI Administrator,E=caadmin@example.com,OU=topology-02-CA,O=topology-02_example.com][Outcome=Success][Info=CLOSE_NOTIFY] access session terminated

	
									TPS
								
0.http-bio-25443-exec-1 - [02/Jan/2019:04:44:12 EST] [14] [6] [AuditEvent=ACCESS_SESSION_TERMINATED][ClientIP=192.0.2.1][ServerIP=192.0.2.1][SubjectID=][Outcome=Success][Info=CLOSE_NOTIFY] access session










      ⁠FTP_TRP.1
	
					Initiation of the trusted channel. Termination of the trusted channel. Failures of the trusted path functions.
				
	
							ACCESS_SESSION_ESTABLISH
						
	

								
2529:0.http-bio-20443-exec-8 - [29/Jan/2019:02:41:10 EST] [14] [6] [AuditEvent=ACCESS_SESSION_ESTABLISH][ClientIP=192.0.2.1][ServerIP=192.0.2.1][SubjectID=CN=PKI Administrator,E=tpsadmin@server.example.com,OU=topology-02-TPS,O=topology-02_example.com][Outcome=Failure][Info=UNKNOWN_CA] access session establish failure

	
									TPS
								
0.http-bio-25443-exec-4 - [25/Jan/2019:12:58:31 IST] [14] [6] [AuditEvent=ACCESS_SESSION_ESTABLISH][ClientIP=0:0:0:0:0:0:0:1][ServerIP=0:0:0:0:0:0:0:1][SubjectID=][Outcome=Failure][Info=RECORD_OVERFLOW] access session establish failure




	
							ACCESS_SESSION_TERMINATED
						
	

								
0.http-bio-20443-exec-48 - [29/Jan/2019:04:30:49 EST] [14] [6] [AuditEvent=ACCESS_SESSION_TERMINATED][ClientIP=192.0.2.1][ServerIP=192.0.2.1][SubjectID=][Outcome=Success][Info=CLOSE_NOTIFY] access session terminated

	
									TPS
								
TPS=0.http-bio-25443-exec-19 - [25/Jan/2019:12:47:07 IST] [14] [6] [AuditEvent=ACCESS_SESSION_TERMINATED][ClientIP=192.0.2.1][ServerIP=192.0.2.1][SubjectID=][Outcome=Success][Info=CLOSE_NOTIFY] access session terminated










      ⁠FCS_CKM.1 and FCS_CKM.2
	
					Not available. There are no TOE-related functions where a TOE subsystem generates (or requests the OE to generate) a non-ephemeral key. All system certificates are generated in the same manner as user keys during the installation, before the TOE is running and, thus, before the it can audit.
				




      ⁠FCS_CKM_EXT.4
	
					Not available
				




      ⁠FCS_COP.1(2)
	
					All occurrences of signature generation using a CA signing key.
				
	
							CERT_SIGNING_INFO records CA signing certificate key info at system startup
						
0.authorityMonitor - [03/Jan/2019:02:33:35 EST] [14] [6] [AuditEvent=CERT_SIGNING_INFO][SubjectID=$System$][Outcome=Success][SKI=E3:D2:5B:2A:F5:76:FF:7B:48:CA:94:18:5F:7B:BD:6B:95:FB:8F:30][AuthorityID=dbec10a4-1264-4759-96d5-6d2aadbf9d34] certificate signing info

	
							CERT_REQUEST_PROCESSED (success)
						
0.http-bio-20443-exec-378 - [19/Jan/2019:05:57:39 EST] [14] [6] [AuditEvent=CERT_REQUEST_PROCESSED][SubjectID=caadmin][Outcome=Success][ReqID=1352][CertSerialNum=984] certificate request processed

	
							OCSP_SIGNING_INFO records OCSP signing certificate key info at system startup
						
0.http-bio-29443-exec-3 - [10/Oct/2018:14:15:24 PDT] [14] [6] [AuditEvent=OCSP_SIGNING_INFO][SubjectID=$System$][Outcome=Success][SKI=71:B1:D0:AE:44:DF:ED:D0:20:15:2B:E3:37:E8:EE:04:EB:D6:F1:44] OCSP signing info

	
							OCSP_GENERATION (success)
						
0.http-nio-22080-exec-3 - [31/Jan/2019:15:34:47 EST] [14] [6] [AuditEvent=OCSP_GENERATION][SubjectID=$NonRoleUser$][Outcome=Success] OCSP response generation

	
							CRL_SIGNING_INFO records CRL signing certificate key info at system startup
						
0.localhost-startStop-1 - [10/Jan/2019:09:10:27 EST] [14] [6] [AuditEvent=CRL_SIGNING_INFO][SubjectID=$System$][Outcome=Success][SKI=23:98:ED:52:5B:2C:27:C6:FF:7C:34:D1:D5:48:57:E9:B8:D1:4E:95] CRL signing info

	
							FULL_CRL_GENERATION (success)
						
0.CRLIssuingPoint-testing123 - [30/Jan/2019:08:35:02 EST] [14] [6] [AuditEvent=FULL_CRL_GENERATION][SubjectID=$System$][Outcome=Success][CRLnum=6] Full CRL generation

	
							DELTA_CRL_GENERATION (success)
						
0.CRLIssuingPoint-testing123 - [30/Jan/2019:08:35:01 EST] [14] [6] [AuditEvent=DELTA_CRL_GENERATION][SubjectID=$Unidentified$][Outcome=Success][CRLnum=5] Delta CRL generation




	
					Failure in signature generation.
				
	
							CERT_REQUEST_PROCESSED (failure)
						
0.http-bio-20443-exec-8 - [28/Jan/2019:13:48:14 EST] [14] [6] [AuditEvent=CERT_REQUEST_PROCESSED][SubjectID=$Unidentified$][Outcome=Failure][ReqID=28][InfoName=rejectReason][InfoValue=Request Key Type RSA Not Matched Rejected - {1}] certificate request processed

	
							OCSP_GENERATION (failure)
						
0.http-nio-22080-exec-6 - [31/Jan/2019:15:35:38 EST] [14] [6] [AuditEvent=OCSP_GENERATION][SubjectID=$NonRoleUser$][Outcome=Failure][FailureReason=Missing issuer certificate] OCSP response generation

	
							FULL_CRL_GENERATION (failure)
						







      ⁠FCS_HTTPS_EXT.1 and FCS_TLSS_EXT.2
	
					Failure to establish a HTTPS/TLS session.
				
	
							ACCESS_SESSION_ESTABLISH (Failure)
						
See FTP_TRP.1




	
					Establishment/termination of a HTTPS/TLS session
				
	
							ACCESS_SESSION_TERMINATED
						
See FIA_UIA_EXT.1







      ⁠FCS_TLSC_EXT.2
	
					Failure to establish a TLS session.
				
	
							CLIENT_ACCESS_SESSION_ESTABLISH (Failure)
						
0.http-bio-20443-exec-21 - [13/Feb/2019:07:48:08 EST] [14] [6] [AuditEvent=CLIENT_ACCESS_SESSION_ESTABLISH][ClientHost=192.0.2.1][ServerHost=pki1.example.com][ServerPort=21443][SubjectID=SYSTEM][Outcome=Failure][Info=send:java.io.IOException: SocketException cannot write on socket] access session failed to establish when Certificate System acts as client

							When Server is not reachable by Client and Session ran into failures. In this scenario, CA acts as a client for KRA during Key Archival and KRA is not reachable by CA.
						
0.http-bio-20443-exec-11 - [12/Feb/2019:18:20:03 EST] [14] [6] [AuditEvent=CLIENT_ACCESS_SESSION_ESTABLISH][ClientHost=192.0.2.1][ServerHost=pki1.example.com][ServerPort=21443][SubjectID=SYSTEM][Outcome=Failure][Info=send:java.io.IOException: Socket has been closed, and cannot be reused.] access session failed to establish when Certificate System acts as client

							When CA's subsystem cert is revoked and it tried to access KRA.
						
	
									KRA
								
0.http-bio-21443-exec-3 - [13/Feb/2019:08:15:53 EST] [14] [6] [AuditEvent=ACCESS_SESSION_ESTABLISH][ClientIP=192.0.2.1][ServerIP=192.0.2.2][SubjectID=CN=Subsystem Certificate,OU=topology-02-CA,O=topology-02_Foobarmaster.org][Outcome=Failure][Info=CERTIFICATE_REVOKED] access session establish failure

	
									CA
								
0.http-bio-20443-exec-10 - [13/Feb/2019:08:16:08 EST] [14] [6] [AuditEvent=CLIENT_ACCESS_SESSION_ESTABLISH][ClientHost=192.0.2.1][ServerHost=pki1.example.com][ServerPort=21443][SubjectID=SYSTEM][Outcome=Failure][Info=send:java.io.IOException: SocketException cannot write on socket] access session failed to establish when Certificate System acts as client







	
					Establishment/termination of a TLS session.
				
	
							CLIENT_ACCESS_SESSION_TERMINATED
						
0.http-bio-8443-exec-6 - [10/Oct/2018:15:10:54 PDT] [14] [6] [AuditEvent=CLIENT_ACCESS_SESSION_TERMINATED][ClientHost=192.0.2.1][ServerHost=192.0.2.1][ServerPort=29443][SubjectID=SYSTEM][Outcome=Success][Info=CLOSE_NOTIFY] access session terminated when Certificate System acts as client







      ⁠FDP_CRL_EXT.1
	
					Failure to generate a CRL.
				
	
							FULL_CRL_GENERATION (failure)
						
0.http-bio-20444-exec-9 - [01/Feb/2019:15:40:38 EST] [14] [6] [AuditEvent=FULL_CRL_GENERATION][SubjectID=caadmin][Outcome=Failure][FailureReason=Record not found] Full CRL generation







      ⁠FDP_OCSPG_EXT.1
	
					Failure to generate certificate status information.
				
	
							OCSP_GENERATION (failure)
						







      ⁠FIA_AFL.1
	
					The reaching of the threshold for the Unsuccessful Authentication Attempts. The action Taken. The re-enablement of disabled non-administrative accounts.
				

					Not available. For password authentication only. Certificate System provides certificate-based authentication only.
				




      ⁠FIA_CMCS_EXT.1
	
					CMC requests (generated or received) containing certificate requests or revocation requests. CMC responses issued.
				
	
							CMC_SIGNED_REQUEST_SIG_VERIFY
						
0.http-bio-20080-exec-22 - [24/Jan/2019:08:44:51 EST] [14] [6] [AuditEvent=CMC_SIGNED_REQUEST_SIG_VERIFY][SubjectID=$NonRoleUser$][Outcome=Failure][ReqType=$Unidentified$][CertSubject=$Unidentified$][SignerInfo=$Unidentified$] agent signed CMC request signature verification

	
							CMC_USER_SIGNED_REQUEST_SIG_VERIFY
						
	
									Successful request:
								
0.http-bio-20443-exec-1 - [18/Feb/2019:12:07:20 EST] [14] [6] [AuditEvent=CMC_USER_SIGNED_REQUEST_SIG_VERIFY][SubjectID=UID=test10,CN=test10,O=example.org][Outcome=Success][ReqType=enrollment][CertSubject=<null>][SignerInfo=UID=test10,CN=test10,O=example.org] User signed CMC request signature verification success




	
							CMC_REQUEST_RECEIVED
						
	
									Successful request:
								
0.http-bio-20443-exec-13 - [29/Jan/2019:04:26:49 EST] [14] [6] [AuditEvent=CMC_REQUEST_RECEIVED][SubjectID=$Unidentified$][Outcome=Success][CMCRequest=MIICoAYJKoZIhv...] CMC request received

	
									Failed request:
								
0.http-bio-20443-exec-14 - [29/Jan/2019:07:15:27 EST] [14] [6] [AuditEvent=CMC_REQUEST_RECEIVED][SubjectID=$Unidentified$][Outcome=Success][CMCRequest=MIGOBgkqhkiG9w...] CMC request received




	
							PROOF_OF_POSSESSION (Enrollment Event)
						
0.http-bio-20443-exec-13 - [29/Jan/2019:04:26:49 EST] [14] [6] [AuditEvent=PROOF_OF_POSSESSION][SubjectID=user1a][Outcome=Success][Info=method=EnrollProfile: verifyPOP: ] proof of possession

	
							PROFILE_CERT_REQUEST (Enrollment Event)
						
0.http-bio-20443-exec-13 - [29/Jan/2019:04:26:49 EST] [14] [6] [AuditEvent=PROFILE_CERT_REQUEST][SubjectID=user1a][Outcome=Success][ReqID=31][ProfileID=caECFullCMCSharedTokenCert][CertSubject=UID=user1a,OU=People,DC=rhel76,DC=test] certificate request made with certificate profiles

	
							CERT_STATUS_CHANGE_REQUEST
						
	
									Success:
								
0.http-bio-20443-exec-5 - [05/Feb/2019:05:57:12 EST] [14] [6] [AuditEvent=CERT_STATUS_CHANGE_REQUEST][SubjectID=caadmin][Outcome=Success][ReqID=121][CertSerialNum=0x67][RequestType=on-hold] certificate revocation/unrevocation request made

	
									Failure:
								
0.http-bio-20443-exec-13 - [05/Feb/2019:05:58:55 EST] [14] [6] [AuditEvent=CERT_STATUS_CHANGE_REQUEST][SubjectID=caadmin][Outcome=Failure][ReqID=<null>][CertSerialNum=0x67][RequestType=on-hold] certificate revocation/unrevocation request made




	
							CERT_REQUEST_PROCESSED
						
	
									Successful request:
								
0.http-bio-20443-exec-13 - [29/Jan/2019:04:26:49 EST] [14] [6] [AuditEvent=CERT_REQUEST_PROCESSED][SubjectID=$Unidentified$][Outcome=Success][ReqID=31][CertSerialNum=20] certificate request processed




	
							CERT_STATUS_CHANGE_REQUEST_PROCESSED
						
	
									Successful request:
								
0.http-bio-20443-exec-9 - [29/Jan/2019:07:43:36 EST] [14] [6] [AuditEvent=CERT_STATUS_CHANGE_REQUEST_PROCESSED][SubjectID=UID=user1a,OU=People,DC=rhel76,DC=test][Outcome=Success][ReqID=32][CertSerialNum=20][RequestType=revoke][RevokeReasonNum=Certificate_Hold][Approval=complete] certificate status change request processed

	
									Failed request:
								
	0.http-bio-20443-exec-14 - [29/Jan/2019:07:15:27 EST] [14] [6] [AuditEvent=CERT_STATUS_CHANGE_REQUEST_PROCESSED][SubjectID=<null>][Outcome=Failure][ReqID=<null>][CertSerialNum=20][RequestType=revoke][RevokeReasonNum=Certificate_Hold][Approval=rejected][Info=CMCOutputTemplate: SharedSecret.getSharedToken(BigInteger serial): shrTok not found in metaInfo] certificate status change request processed

	0.http-bio-20443-exec-20 - [29/Jan/2019:07:30:41 EST] [14] [6] [AuditEvent=CERT_STATUS_CHANGE_REQUEST_PROCESSED][SubjectID=UID=user1a,OU=People,DC=rhel76,DC=test][Outcome=Failure][ReqID=<null>][CertSerialNum=20][RequestType=revoke][RevokeReasonNum=Certificate_Hold][Approval=rejected][Info= certificate issuer DN and revocation request issuer DN do not match] certificate status change request processed

	0.http-bio-20443-exec-16 - [29/Jan/2019:07:55:27 EST] [14] [6] [AuditEvent=CERT_STATUS_CHANGE_REQUEST_PROCESSED][SubjectID=<null>][Outcome=Failure][ReqID=<null>][CertSerialNum=20][RequestType=revoke][RevokeReasonNum=Certificate_Hold][Approval=rejected][Info= shared secret not found] certificate status change request processed







	
							CMC_RESPONSE_SENT
						
	
									Enrollment
								
	
											Successful response
										
0.http-bio-20443-exec-13 - [29/Jan/2019:04:26:49 EST] [14] [6] [AuditEvent=CMC_RESPONSE_SENT][SubjectID=user1a][Outcome=Success][CMCResponse=MIIHTAYJKoZI...] CMC response sent




	
									Revocation
								
	
											Successful revocation
										
0.http-bio-20443-exec-9 - [29/Jan/2019:07:43:36 EST] [14] [6] [AuditEvent=CMC_RESPONSE_SENT][SubjectID=$Unidentified$][Outcome=Success][CMCResponse=MIIExgYJKoZ...] CMC response sent

	
											Failed revocation
										
	
													Revocation does not happen
												
0.http-bio-20443-exec-20 - [29/Jan/2019:07:30:41 EST] [14] [6] [AuditEvent=CMC_RESPONSE_SENT][SubjectID=$Unidentified$][Outcome=Success][CMCResponse=MIIFDgYJKoZIh...] CMC response sent
















      ⁠FPT_SKY_EXT.1(2)/OTH
	
					AUTHZ
				
	
							Failure: Agent user attempts to retrieve audit log:
						
0.http-bio-8443-exec-2 - [22/Feb/2019:15:03:38 PST] [14] [6] [AuditEvent=AUTHZ][SubjectID=EC-CA-agent-2][Outcome=Failure][aclResource=certServer.log.content.signedAudit][Op=read][Info=Authorization Error] authorization failure

	
							Success: Auditor user retrieved audit log:
						
0.http-bio-8443-exec-13 - [22/Feb/2019:15:25:34 PST] [14] [6] [AuditEvent=AUTHZ][SubjectID=EC-CA-auditor][Outcome=Success][aclResource=certServer.log.content.signedAudit][Op=read][Info=AuditResource.getAuditFile] authorization success







      ⁠FTP_ITC.1
	
					Initiation of the trusted channel. Termination of the trusted channel. Failure of the trusted channel functions.
				
	
							See FCS_HTTPS_EXT.1
						

	
							See FCS_TLSC_EXT.2
						








      ⁠E.2. Audit Event Descriptions




			For required audit events and their examples, see Section E.1, “Required Audit Events and Their Examples”.
		


####################### SIGNED AUDIT EVENTS #############################
# Common fields:
# - Outcome: "Success" or "Failure"
# - SubjectID: The UID of the user responsible for the operation
#     "$System$" or "SYSTEM" if system-initiated operation (e.g. log signing).
#
#########################################################################
# Required Audit Events
#
# Event: ACCESS_SESSION_ESTABLISH with [Outcome=Failure]
# Description: This event is used when access session failed to establish.
# Applicable subsystems: CA, KRA, OCSP, TKS, TPS
# Enabled by default: Yes
# Fields:
# - ClientIP: Client IP address.
# - ServerIP: Server IP address.
# - SubjectID: Client certificate subject DN.
# - Outcome: Failure
# - Info: Failure reason.
#
LOGGING_SIGNED_AUDIT_ACCESS_SESSION_ESTABLISH_FAILURE=\
<type=ACCESS_SESSION_ESTABLISH>:[AuditEvent=ACCESS_SESSION_ESTABLISH]{0} access session establish failure
#
# Event: ACCESS_SESSION_ESTABLISH with [Outcome=Success]
# Description: This event is used when access session was established successfully.
# Applicable subsystems: CA, KRA, OCSP, TKS, TPS
# Enabled by default: Yes
# Fields:
# - ClientIP: Client IP address.
# - ServerIP: Server IP address.
# - SubjectID: Client certificate subject DN.
# - Outcome: Success
#
LOGGING_SIGNED_AUDIT_ACCESS_SESSION_ESTABLISH_SUCCESS=\
<type=ACCESS_SESSION_ESTABLISH>:[AuditEvent=ACCESS_SESSION_ESTABLISH]{0} access session establish success
#
# Event: ACCESS_SESSION_TERMINATED
# Description: This event is used when access session was terminated.
# Applicable subsystems: CA, KRA, OCSP, TKS, TPS
# Enabled by default: Yes
# Fields:
# - ClientIP: Client IP address.
# - ServerIP: Server IP address.
# - SubjectID: Client certificate subject DN.
# - Info: The TLS Alert received from NSS
# - Outcome: Success
# - Info: The TLS Alert received from NSS
#
LOGGING_SIGNED_AUDIT_ACCESS_SESSION_TERMINATED=\
<type=ACCESS_SESSION_TERMINATED>:[AuditEvent=ACCESS_SESSION_TERMINATED]{0} access session terminated
#
# Event: AUDIT_LOG_SIGNING
# Description: This event is used when a signature on the audit log is generated (same as "flush" time).
# Applicable subsystems: CA, KRA, OCSP, TKS, TPS
# Enabled by default: Yes
# Fields:
# - SubjectID: Predefined to be "$System$" because this operation
#     associates with no user.
# - Outcome: Success
# - sig: The base-64 encoded signature of the buffer just flushed.
#
LOGGING_SIGNED_AUDIT_AUDIT_LOG_SIGNING_3=[AuditEvent=AUDIT_LOG_SIGNING][SubjectID={0}][Outcome={1}] signature of audit buffer just flushed: sig: {2}
#
# Event: AUDIT_LOG_STARTUP
# Description: This event is used at audit function startup.
# Applicable subsystems: CA, KRA, OCSP, TKS, TPS
# Enabled by default: Yes
# Fields:
# - SubjectID: $System$
# - Outcome:
#
LOGGING_SIGNED_AUDIT_AUDIT_LOG_STARTUP_2=<type=AUDIT_LOG_STARTUP>:[AuditEvent=AUDIT_LOG_STARTUP][SubjectID={0}][Outcome={1}] audit function startup
#
# Event: AUTH with [Outcome=Failure]
# Description: This event is used when authentication fails.
#   In case of TLS-client auth, only webserver env can pick up the TLS violation.
#   CS authMgr can pick up certificate mismatch, so this event is used.
# Applicable subsystems: CA, KRA, OCSP, TKS, TPS
# Enabled by default: Yes
# Fields:
# - SubjectID:
# - Outcome: Failure
#     (obviously, if authentication failed, you won't have a valid SubjectID, so
#     in this case, SubjectID should be $Unidentified$)
# - AuthMgr: The authentication manager instance name that did
#     this authentication.
# - AttemptedCred: The credential attempted and failed.
#
LOGGING_SIGNED_AUDIT_AUTH_FAIL=<type=AUTH>:[AuditEvent=AUTH]{0} authentication failure
#
# Event: AUTH with [Outcome=Success]
# Description: This event is used when authentication succeeded.
# Applicable subsystems: CA, KRA, OCSP, TKS, TPS
# Enabled by default: Yes
# Fields:
# - SubjectID: id of user who has been authenticated
# - Outcome: Success
# - AuthMgr: The authentication manager instance name that did
#     this authentication.
#
LOGGING_SIGNED_AUDIT_AUTH_SUCCESS=<type=AUTH>:[AuditEvent=AUTH]{0} authentication success
#
# Event: AUTHZ with [Outcome=Failure]
# Description: This event is used when authorization has failed.
# Applicable subsystems: CA, KRA, OCSP, TKS, TPS
# Enabled by default: Yes
# Fields:
# - SubjectID: id of user who has failed to be authorized for an action
# - Outcome: Failure
# - aclResource: The ACL resource ID as defined in ACL resource list.
# - Op: One of the operations as defined with the ACL statement
#    e.g. "read" for an ACL statement containing "(read,write)".
# - Info:
#
LOGGING_SIGNED_AUDIT_AUTHZ_FAIL=<type=AUTHZ>:[AuditEvent=AUTHZ]{0} authorization failure
#
# Event: AUTHZ with [Outcome=Success]
# Description: This event is used when authorization is successful.
# Applicable subsystems: CA, KRA, OCSP, TKS, TPS
# Enabled by default: Yes
# Fields:
# - SubjectID: id of user who has been authorized for an action
# - Outcome: Success
# - aclResource: The ACL resource ID as defined in ACL resource list.
# - Op: One of the operations as defined with the ACL statement
#     e.g. "read" for an ACL statement containing "(read,write)".
#
LOGGING_SIGNED_AUDIT_AUTHZ_SUCCESS=<type=AUTHZ>:[AuditEvent=AUTHZ]{0} authorization success
#
# Event: CERT_PROFILE_APPROVAL
# Description: This event is used when an agent approves/disapproves a certificate profile set by the
#   administrator for automatic approval.
# Applicable subsystems: CA
# Enabled by default: Yes
# Fields:
# - SubjectID: id of the CA agent who approved the certificate enrollment profile
# - Outcome:
# - ProfileID: One of the profiles defined by the administrator
#     and to be approved by an agent.
# - Op: "approve" or "disapprove".
#
LOGGING_SIGNED_AUDIT_CERT_PROFILE_APPROVAL_4=<type=CERT_PROFILE_APPROVAL>:[AuditEvent=CERT_PROFILE_APPROVAL][SubjectID={0}][Outcome={1}][ProfileID={2}][Op={3}] certificate profile approval
#
# Event: CERT_REQUEST_PROCESSED
# Description: This event is used when certificate request has just been through the approval process.
# Applicable subsystems: CA
# Enabled by default: Yes
# Fields:
# - SubjectID: The UID of the agent who approves, rejects, or cancels
#     the certificate request.
# - Outcome:
# - ReqID: The request ID.
# - InfoName: "certificate" (in case of approval), "rejectReason"
#     (in case of reject), or "cancelReason" (in case of cancel)
# - InfoValue: The certificate (in case of success), a reject reason in
#     text, or a cancel reason in text.
# - CertSerialNum:
#
LOGGING_SIGNED_AUDIT_CERT_REQUEST_PROCESSED=<type=CERT_REQUEST_PROCESSED>:[AuditEvent=CERT_REQUEST_PROCESSED]{0} certificate request processed
#
# Event: CERT_SIGNING_INFO
# Description: This event indicates which key is used to sign certificates.
# Applicable subsystems: CA
# Enabled by default: Yes
# Fields:
# - SubjectID: $System$
# - Outcome: Success
# - SKI: Subject Key Identifier of the certificate signing certificate
# - AuthorityID: (applicable only to lightweight CA)
#
LOGGING_SIGNED_AUDIT_CERT_SIGNING_INFO=<type=CERT_SIGNING_INFO>:[AuditEvent=CERT_SIGNING_INFO]{0} certificate signing info
#
# Event: CERT_STATUS_CHANGE_REQUEST
# Description: This event is used when a certificate status change request (e.g. revocation)
#   is made (before approval process).
# Applicable subsystems: CA
# Enabled by default: Yes
# Fields:
# - SubjectID: id of uer who performed the action
# - Outcome:
# - ReqID: The request ID.
# - CertSerialNum: The serial number (in hex) of the certificate to be revoked.
# - RequestType: "revoke", "on-hold", "off-hold"
#
LOGGING_SIGNED_AUDIT_CERT_STATUS_CHANGE_REQUEST=<type=CERT_STATUS_CHANGE_REQUEST>:[AuditEvent=CERT_STATUS_CHANGE_REQUEST]{0} certificate revocation/unrevocation request made
#
# Event: CERT_STATUS_CHANGE_REQUEST_PROCESSED
# Description: This event is used when certificate status is changed (revoked, expired, on-hold,
#   off-hold).
# Applicable subsystems: CA
# Enabled by default: Yes
# Fields:
# - SubjectID: The UID of the agent that processed the request.
# - Outcome:
# - ReqID: The request ID.
# - RequestType: "revoke", "on-hold", "off-hold"
# - Approval: "complete", "rejected", or "canceled"
#     (note that "complete" means "approved")
# - CertSerialNum: The serial number (in hex).
# - RevokeReasonNum: One of the following number:
#     reason number       reason
#     --------------------------------------
#     0              Unspecified
#     1              Key compromised
#     2              CA key compromised (should not be used)
#     3              Affiliation changed
#     4              Certificate superceded
#     5              Cessation of operation
#     6              Certificate is on-hold
# - Info:
#
LOGGING_SIGNED_AUDIT_CERT_STATUS_CHANGE_REQUEST_PROCESSED=<type=CERT_STATUS_CHANGE_REQUEST_PROCESSED>:[AuditEvent=CERT_STATUS_CHANGE_REQUEST_PROCESSED]{0} certificate status change request processed
#
# Event: CLIENT_ACCESS_SESSION_ESTABLISH with [Outcome=Failure]
# Description: This event is when access session failed to establish when Certificate System acts as client.
# Applicable subsystems: CA, KRA, OCSP, TKS, TPS
# Enabled by default: Yes
# Fields:
# - ClientHost: Client hostname.
# - ServerHost: Server hostname.
# - ServerPort: Server port.
# - SubjectID: SYSTEM
# - Outcome: Failure
# - Info:
#
LOGGING_SIGNED_AUDIT_CLIENT_ACCESS_SESSION_ESTABLISH_FAILURE=\
<type=CLIENT_ACCESS_SESSION_ESTABLISH>:[AuditEvent=CLIENT_ACCESS_SESSION_ESTABLISH]{0} access session failed to establish when Certificate System acts as client
#
# Event: CLIENT_ACCESS_SESSION_ESTABLISH with [Outcome=Success]
# Description: This event is used when access session was established successfully when
#   Certificate System acts as client.
# Applicable subsystems: CA, KRA, OCSP, TKS, TPS
# Enabled by default: Yes
# Fields:
# - ClientHost: Client hostname.
# - ServerHost: Server hostname.
# - ServerPort: Server port.
# - SubjectID: SYSTEM
# - Outcome: Success
#
LOGGING_SIGNED_AUDIT_CLIENT_ACCESS_SESSION_ESTABLISH_SUCCESS=\
<type=CLIENT_ACCESS_SESSION_ESTABLISH>:[AuditEvent=CLIENT_ACCESS_SESSION_ESTABLISH]{0} access session establish successfully when Certificate System acts as client
#
# Event: CLIENT_ACCESS_SESSION_TERMINATED
# Description: This event is used when access session was terminated when Certificate System acts as client.
# Applicable subsystems: CA, KRA, OCSP, TKS, TPS
# Enabled by default: Yes
# Fields:
# - ClientHost: Client hostname.
# - ServerHost: Server hostname.
# - ServerPort: Server port.
# - SubjectID: SYSTEM
# - Outcome: Success
# - Info: The TLS Alert received from NSS
#
LOGGING_SIGNED_AUDIT_CLIENT_ACCESS_SESSION_TERMINATED=\
<type=CLIENT_ACCESS_SESSION_TERMINATED>:[AuditEvent=CLIENT_ACCESS_SESSION_TERMINATED]{0} access session terminated when Certificate System acts as client
#
# Event: CMC_REQUEST_RECEIVED
# Description: This event is used when a CMC request is received.
# Applicable subsystems: CA
# Enabled by default: Yes
# Fields:
# - SubjectID: The UID of user that triggered this event.
#     If CMC requests is signed by an agent, SubjectID should
#     be that of the agent.
#     In case of an unsigned request, it would bear $Unidentified$.
# - Outcome:
# - CMCRequest: Base64 encoding of the CMC request received
#
LOGGING_SIGNED_AUDIT_CMC_REQUEST_RECEIVED_3=<type=CMC_REQUEST_RECEIVED>:[AuditEvent=CMC_REQUEST_RECEIVED][SubjectID={0}][Outcome={1}][CMCRequest={2}] CMC request received
#
# Event: CMC_RESPONSE_SENT
# Description: This event is used when a CMC response is sent.
# Applicable subsystems: CA
# Enabled by default: Yes
# Fields:
# - SubjectID: The UID of user that triggered this event.
# - Outcome:
# - CMCResponse: Base64 encoding of the CMC response sent
#
LOGGING_SIGNED_AUDIT_CMC_RESPONSE_SENT_3=<type=CMC_RESPONSE_SENT>:[AuditEvent=CMC_RESPONSE_SENT][SubjectID={0}][Outcome={1}][CMCResponse={2}] CMC response sent
#
# Event: CMC_SIGNED_REQUEST_SIG_VERIFY
# Description: This event is used when agent signed CMC certificate requests or revocation requests
#   are submitted and signature is verified.
# Applicable subsystems: CA
# Enabled by default: Yes
# Fields:
# - SubjectID: the user who signed the CMC request (success case)
# - Outcome:
# - ReqType: The request type (enrollment, or revocation).
# - CertSubject: The certificate subject name of the certificate request.
# - SignerInfo: A unique String representation for the signer.
#
LOGGING_SIGNED_AUDIT_CMC_SIGNED_REQUEST_SIG_VERIFY=<type=CMC_SIGNED_REQUEST_SIG_VERIFY>:[AuditEvent=CMC_SIGNED_REQUEST_SIG_VERIFY]{0} agent signed CMC request signature verification
#
# Event: CMC_USER_SIGNED_REQUEST_SIG_VERIFY
# Description: This event is used when CMC (user-signed or self-signed) certificate requests or revocation requests
#   are submitted and signature is verified.
# Applicable subsystems: CA
# Enabled by default: Yes
# Fields:
# - SubjectID: the user who signed the CMC request (success case)
# - Outcome:
# - ReqType: The request type (enrollment, or revocation).
# - CertSubject: The certificate subject name of the certificate request.
# - CMCSignerInfo: A unique String representation for the CMC request signer.
# - info:
#
LOGGING_SIGNED_AUDIT_CMC_USER_SIGNED_REQUEST_SIG_VERIFY_FAILURE=<type=CMC_USER_SIGNED_REQUEST_SIG_VERIFY>:[AuditEvent=CMC_USER_SIGNED_REQUEST_SIG_VERIFY]{0} User signed CMC request signature verification failure
LOGGING_SIGNED_AUDIT_CMC_USER_SIGNED_REQUEST_SIG_VERIFY_SUCCESS=<type=CMC_USER_SIGNED_REQUEST_SIG_VERIFY>:[AuditEvent=CMC_USER_SIGNED_REQUEST_SIG_VERIFY]{0} User signed CMC request signature verification success
#
# Event: CONFIG_ACL
# Description: This event is used when configuring ACL information.
# Applicable subsystems: CA, KRA, OCSP, TKS, TPS
# Enabled by default: Yes
# Fields:
# - SubjectID: id of administrator who performed the action
# - Outcome:
# - ParamNameValPairs: A name-value pair
#     (where name and value are separated by the delimiter ;;)
#     separated by + (if more than one name-value pair) of config params changed.
#
LOGGING_SIGNED_AUDIT_CONFIG_ACL_3=<type=CONFIG_ACL>:[AuditEvent=CONFIG_ACL][SubjectID={0}][Outcome={1}][ParamNameValPairs={2}] ACL configuration parameter(s) change
#
# Event: CONFIG_AUTH
# Description: This event is used when configuring authentication.
# Applicable subsystems: CA, KRA, OCSP, TKS, TPS
# Enabled by default: Yes
# Fields:
# - SubjectID: id of administrator who performed the action
# - Outcome:
# - ParamNameValPairs: A name-value pair
#     (where name and value are separated by the delimiter ;;)
#     separated by + (if more than one name-value pair) of config params changed.
#     --- Password MUST NOT be logged ---
#
LOGGING_SIGNED_AUDIT_CONFIG_AUTH_3=<type=CONFIG_AUTH>:[AuditEvent=CONFIG_AUTH][SubjectID={0}][Outcome={1}][ParamNameValPairs={2}] authentication configuration parameter(s) change
#
# Event: CONFIG_CERT_PROFILE
# Description: This event is used when configuring certificate profile
#   (general settings and certificate profile).
# Applicable subsystems: CA
# Enabled by default: Yes
# Fields:
# - SubjectID: id of administrator who performed the action
# - Outcome:
# - ParamNameValPairs: A name-value pair
#     (where name and value are separated by the delimiter ;;)
#     separated by + (if more than one name-value pair) of config params changed.
#
LOGGING_SIGNED_AUDIT_CONFIG_CERT_PROFILE_3=<type=CONFIG_CERT_PROFILE>:[AuditEvent=CONFIG_CERT_PROFILE][SubjectID={0}][Outcome={1}][ParamNameValPairs={2}] certificate profile configuration parameter(s) change
#
# Event: CONFIG_CRL_PROFILE
# Description: This event is used when configuring CRL profile
#   (extensions, frequency, CRL format).
# Applicable subsystems: CA
# Enabled by default: Yes
# Fields:
# - SubjectID: id of administrator who performed the action
# - Outcome:
# - ParamNameValPairs: A name-value pair
#     (where name and value are separated by the delimiter ;;)
#     separated by + (if more than one name-value pair) of config params changed.
#
LOGGING_SIGNED_AUDIT_CONFIG_CRL_PROFILE_3=<type=CONFIG_CRL_PROFILE>:[AuditEvent=CONFIG_CRL_PROFILE][SubjectID={0}][Outcome={1}][ParamNameValPairs={2}] CRL profile configuration parameter(s) change
#
# Event: CONFIG_DRM
# Description: This event is used when configuring KRA.
#   This includes key recovery scheme, change of any secret component.
# Applicable subsystems: KRA
# Enabled by default: Yes
# Fields:
# - SubjectID: id of administrator who performed the action
# - Outcome:
# - ParamNameValPairs A name-value pair
#     (where name and value are separated by the delimiter ;;)
#     separated by + (if more than one name-value pair) of config params changed.
#     --- secret component (password) MUST NOT be logged ---
#
LOGGING_SIGNED_AUDIT_CONFIG_DRM_3=<type=CONFIG_DRM>:[AuditEvent=CONFIG_DRM][SubjectID={0}][Outcome={1}][ParamNameValPairs={2}] DRM configuration parameter(s) change
#
# Event: CONFIG_OCSP_PROFILE
# Description: This event is used when configuring OCSP profile
#   (everything under Online Certificate Status Manager).
# Applicable subsystems: OCSP
# Enabled by default: Yes
# Fields:
# - SubjectID: id of administrator who performed the action
# - Outcome:
# - ParamNameValPairs: A name-value pair
#     (where name and value are separated by the delimiter ;;)
#     separated by + (if more than one name-value pair) of config params changed.
#
LOGGING_SIGNED_AUDIT_CONFIG_OCSP_PROFILE_3=<type=CONFIG_OCSP_PROFILE>:[AuditEvent=CONFIG_OCSP_PROFILE][SubjectID={0}][Outcome={1}][ParamNameValPairs={2}] OCSP profile configuration parameter(s) change
#
# Event: CONFIG_ROLE
# Description: This event is used when configuring role information.
#   This includes anything under users/groups, add/remove/edit a role, etc.
# Applicable subsystems: CA, KRA, OCSP, TKS, TPS
# Enabled by default: Yes
# Fields:
# - SubjectID: id of administrator who performed the action
# - Outcome:
# - ParamNameValPairs: A name-value pair
#     (where name and value are separated by the delimiter ;;)
#     separated by + (if more than one name-value pair) of config params changed.
#
LOGGING_SIGNED_AUDIT_CONFIG_ROLE=<type=CONFIG_ROLE>:[AuditEvent=CONFIG_ROLE]{0} role configuration parameter(s) change
#
# Event: CONFIG_SERIAL_NUMBER
# Description: This event is used when configuring serial number ranges
#   (when requesting a serial number range when cloning, for example).
# Applicable subsystems: CA, KRA
# Enabled by default: Yes
# Fields:
# - SubjectID: id of administrator who performed the action
# - Outcome:
# - ParamNameValPairs: A name-value pair
#     (where name and value are separated by the delimiter ;;)
#     separated by + (if more than one name-value pair) of config params changed.
#
LOGGING_SIGNED_AUDIT_CONFIG_SERIAL_NUMBER_1=<type=CONFIG_SERIAL_NUMBER>:[AuditEvent=CONFIG_SERIAL_NUMBER][SubjectID={0}][Outcome={1}][ParamNameValPairs={2}] serial number range update
#
# Event: CONFIG_SIGNED_AUDIT
# Description: This event is used when configuring signedAudit.
# Applicable subsystems: CA, KRA, OCSP, TKS, TPS
# Enabled by default: Yes
# Fields:
# - SubjectID: id of administrator who performed the action
# - Outcome:
# - ParamNameValPairs: A name-value pair
#     (where name and value are separated by the delimiter ;;)
#     separated by + (if more than one name-value pair) of config params changed.
#
LOGGING_SIGNED_AUDIT_CONFIG_SIGNED_AUDIT=<type=CONFIG_SIGNED_AUDIT>:[AuditEvent=CONFIG_SIGNED_AUDIT]{0} signed audit configuration parameter(s) change
#
# Event: CONFIG_TRUSTED_PUBLIC_KEY
# Description: This event is used when:
#   1. "Manage Certificate" is used to edit the trustness of certificates
#      and deletion of certificates
#   2. "Certificate Setup Wizard" is used to import CA certificates into the
#      certificate database (Although CrossCertificatePairs are stored
#      within internaldb, audit them as well)
# Applicable subsystems: CA, KRA, OCSP, TKS, TPS
# Enabled by default: Yes
# Fields:
# - SubjectID: ID of administrator who performed this configuration
# - Outcome:
# - ParamNameValPairs: A name-value pair
#     (where name and value are separated by the delimiter ;;)
#     separated by + (if more than one name-value pair) of config params changed.
#
LOGGING_SIGNED_AUDIT_CONFIG_TRUSTED_PUBLIC_KEY=<type=CONFIG_TRUSTED_PUBLIC_KEY>:[AuditEvent=CONFIG_TRUSTED_PUBLIC_KEY]{0} certificate database configuration
#
# Event: CRL_SIGNING_INFO
# Description: This event indicates which key is used to sign CRLs.
# Applicable subsystems: CA
# Enabled by default: Yes
# Fields:
# - SubjectID: $System$
# - Outcome:
# - SKI: Subject Key Identifier of the CRL signing certificate
#
LOGGING_SIGNED_AUDIT_CRL_SIGNING_INFO=<type=CRL_SIGNING_INFO>:[AuditEvent=CRL_SIGNING_INFO]{0} CRL signing info
#
# Event: DELTA_CRL_GENERATION
# Description: This event is used when delta CRL generation is complete.
# Applicable subsystems: CA
# Enabled by default: Yes
# Fields:
# - SubjectID: $Unidentified$
# - Outcome: "Success" when delta CRL is generated successfully, "Failure" otherwise.
# - CRLnum: The CRL number that identifies the CRL
# - Info:
# - FailureReason:
#
LOGGING_SIGNED_AUDIT_DELTA_CRL_GENERATION=<type=DELTA_CRL_GENERATION>:[AuditEvent=DELTA_CRL_GENERATION]{0} Delta CRL generation
#
# Event: FULL_CRL_GENERATION
# Description: This event is used when full CRL generation is complete.
# Applicable subsystems: CA
# Enabled by default: Yes
# Fields:
# - SubjectID: $System$
# - Outcome: "Success" when full CRL is generated successfully, "Failure" otherwise.
# - CRLnum: The CRL number that identifies the CRL
# - Info:
# - FailureReason:
#
LOGGING_SIGNED_AUDIT_FULL_CRL_GENERATION=<type=FULL_CRL_GENERATION>:[AuditEvent=FULL_CRL_GENERATION]{0} Full CRL generation
#
# Event: PROFILE_CERT_REQUEST
# Description: This event is used when a profile certificate request is made (before approval process).
# Applicable subsystems: CA
# Enabled by default: Yes
# Fields:
# - SubjectID: The UID of user that triggered this event.
#     If CMC enrollment requests signed by an agent, SubjectID should
#     be that of the agent.
# - Outcome:
# - CertSubject: The certificate subject name of the certificate request.
# - ReqID: The certificate request ID.
# - ProfileID: One of the certificate profiles defined by the
#     administrator.
#
LOGGING_SIGNED_AUDIT_PROFILE_CERT_REQUEST_5=<type=PROFILE_CERT_REQUEST>:[AuditEvent=PROFILE_CERT_REQUEST][SubjectID={0}][Outcome={1}][ReqID={2}][ProfileID={3}][CertSubject={4}] certificate request made with certificate profiles
#
# Event: PROOF_OF_POSSESSION
# Description: This event is used for proof of possession during certificate enrollment processing.
# Applicable subsystems: CA
# Enabled by default: Yes
# Fields:
# - SubjectID: id that represents the authenticated user
# - Outcome:
# - Info: some information on when/how it occurred
#
LOGGING_SIGNED_AUDIT_PROOF_OF_POSSESSION_3=<type=PROOF_OF_POSSESSION>:[AuditEvent=PROOF_OF_POSSESSION][SubjectID={0}][Outcome={1}][Info={2}] proof of possession
#
# Event: OCSP_ADD_CA_REQUEST_PROCESSED
# Description: This event is used when an add CA request to the OCSP Responder is processed.
# Applicable subsystems: OCSP
# Enabled by default: Yes
# Fields:
# - SubjectID: OCSP administrator user id
# - Outcome: "Success" when CA is added successfully, "Failure" otherwise.
# - CASubjectDN: The subject DN of the leaf CA cert in the chain.
#
LOGGING_SIGNED_AUDIT_OCSP_ADD_CA_REQUEST_PROCESSED=<type=OCSP_ADD_CA_REQUEST_PROCESSED>:[AuditEvent=OCSP_ADD_CA_REQUEST_PROCESSED]{0} Add CA for OCSP Responder
#
# Event: OCSP_GENERATION
# Description: This event is used when an OCSP response generated is complete.
# Applicable subsystems: CA, OCSP
# Enabled by default: Yes
# Fields:
# - SubjectID: $NonRoleUser$
# - Outcome: "Success" when OCSP response is generated successfully, "Failure" otherwise.
# - FailureReason:
#
LOGGING_SIGNED_AUDIT_OCSP_GENERATION=<type=OCSP_GENERATION>:[AuditEvent=OCSP_GENERATION]{0} OCSP response generation
#
# Event: OCSP_REMOVE_CA_REQUEST_PROCESSED with [Outcome=Failure]
# Description: This event is used when a remove CA request to the OCSP Responder is processed and failed.
# Applicable subsystems: OCSP
# Enabled by default: Yes
# Fields:
# - SubjectID: OCSP administrator user id
# - Outcome: Failure
# - CASubjectDN: The subject DN of the leaf CA certificate in the chain.
#
LOGGING_SIGNED_AUDIT_OCSP_REMOVE_CA_REQUEST_PROCESSED_FAILURE=<type=OCSP_REMOVE_CA_REQUEST_PROCESSED>:[AuditEvent=OCSP_REMOVE_CA_REQUEST_PROCESSED]{0} Remove CA for OCSP Responder has failed
#
# Event: OCSP_REMOVE_CA_REQUEST_PROCESSED with [Outcome=Success]
# Description: This event is used when a remove CA request to the OCSP Responder is processed successfully.
# Applicable subsystems: OCSP
# Enabled by default: Yes
# Fields:
# - SubjectID: OCSP administrator user id
# - Outcome: "Success" when CA is removed successfully, "Failure" otherwise.
# - CASubjectDN: The subject DN of the leaf CA certificate in the chain.
#
LOGGING_SIGNED_AUDIT_OCSP_REMOVE_CA_REQUEST_PROCESSED_SUCCESS=<type=OCSP_REMOVE_CA_REQUEST_PROCESSED>:[AuditEvent=OCSP_REMOVE_CA_REQUEST_PROCESSED]{0} Remove CA for OCSP Responder is successful
#
# Event: OCSP_SIGNING_INFO
# Description: This event indicates which key is used to sign OCSP responses.
# Applicable subsystems: CA, OCSP
# Enabled by default: Yes
# Fields:
# - SubjectID: $System$
# - Outcome:
# - SKI: Subject Key Identifier of the OCSP signing certificate
# - AuthorityID: (applicable only to lightweight CA)
#
LOGGING_SIGNED_AUDIT_OCSP_SIGNING_INFO=<type=OCSP_SIGNING_INFO>:[AuditEvent=OCSP_SIGNING_INFO]{0} OCSP signing info
#
# Event: ROLE_ASSUME
# Description: This event is used when a user assumes a role.
# Applicable subsystems: CA, KRA, OCSP, TKS, TPS
# Enabled by default: Yes
# Fields:
# - SubjectID:
# - Outcome:
# - Role: One of the valid roles:
#     "Administrators", "Certificate Manager Agents", or "Auditors".
#     Note that customized role names can be used once configured.
#
LOGGING_SIGNED_AUDIT_ROLE_ASSUME=<type=ROLE_ASSUME>:[AuditEvent=ROLE_ASSUME]{0} assume privileged role
#
# Event: SECURITY_DOMAIN_UPDATE
# Description: This event is used when updating contents of security domain
#   (add/remove a subsystem).
# Applicable subsystems: CA
# Enabled by default: Yes
# Fields:
# - SubjectID: CA administrator user ID
# - Outcome:
# - ParamNameValPairs: A name-value pair
#     (where name and value are separated by the delimiter ;;)
#     separated by + (if more than one name-value pair) of config params changed.
#
LOGGING_SIGNED_AUDIT_SECURITY_DOMAIN_UPDATE_1=<type=SECURITY_DOMAIN_UPDATE>:[AuditEvent=SECURITY_DOMAIN_UPDATE][SubjectID={0}][Outcome={1}][ParamNameValPairs={2}] security domain update
#
# Event: SELFTESTS_EXECUTION
# Description: This event is used when self tests are run.
# Applicable subsystems: CA, KRA, OCSP, TKS, TPS
# Enabled by default: Yes
# Fields:
# - SubjectID: $System$
# - Outcome:
#
LOGGING_SIGNED_AUDIT_SELFTESTS_EXECUTION_2=<type=SELFTESTS_EXECUTION>:[AuditEvent=SELFTESTS_EXECUTION][SubjectID={0}][Outcome={1}] self tests execution (see selftests.log for details)






      ⁠Glossary



A
	
      ⁠access control
	
					The process of controlling what particular users are allowed to do. For example, access control to servers is typically based on an identity, established by a password or a certificate, and on rules regarding what that entity can do. See also access control list (ACL).
				

	
      ⁠access control instructions (ACI)
	
					An access rule that specifies how subjects requesting access are to be identified or what rights are allowed or denied for a particular subject. See access control list (ACL).
				

	
      ⁠access control list (ACL)
	
					A collection of access control entries that define a hierarchy of access rules to be evaluated when a server receives a request for access to a particular resource. See access control instructions (ACI).
				

	
      ⁠administrator
	
					The person who installs and configures one or more Certificate System managers and sets up privileged users, or agents, for them. See also agent.
				

	
      ⁠Advanced Encryption Standard (AES)
	
					The Advanced Encryption Standard (AES), like its predecessor Data Encryption Standard (DES), is a FIPS-approved symmetric-key encryption standard. AES was adopted by the US government in 2002. It defines three block ciphers, AES-128, AES-192 and AES-256. The National Institute of Standards and Technology (NIST) defined the AES standard in U.S. FIPS PUB 197. For more information, see http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.
				

	
      ⁠agent
	
					A user who belongs to a group authorized to manage agent services for a Certificate System manager. See also Certificate Manager agent, Key Recovery Authority agent.
				

	
      ⁠agent services
	
					1. Services that can be administered by a Certificate System agent through HTML pages served by the Certificate System subsystem for which the agent has been assigned the necessary privileges.
				

					2. The HTML pages for administering such services.
				

	
      ⁠agent-approved enrollment
	
					An enrollment that requires an agent to approve the request before the certificate is issued.
				

	
      ⁠APDU
	
					Application protocol data unit. A communication unit (analogous to a byte) that is used in communications between a smart card and a smart card reader.
				

	
      ⁠attribute value assertion (AVA)
	
					An assertion of the form attribute = value, where attribute is a tag, such as o (organization) or uid (user ID), and value is a value such as "Red Hat, Inc." or a login name. AVAs are used to form the distinguished name (DN) that identifies the subject of a certificate, called the subject name of the certificate.
				

	
      ⁠audit log
	
					A log that records various system events. This log can be signed, providing proof that it was not tampered with, and can only be read by an auditor user.
				

	
      ⁠auditor
	
					A privileged user who can view the signed audit logs.
				

	
      ⁠authentication
	
					Confident identification; assurance that a party to some computerized transaction is not an impostor. Authentication typically involves the use of a password, certificate, PIN, or other information to validate identity over a computer network. See also password-based authentication, certificate-based authentication, client authentication, server authentication.
				

	
      ⁠authentication module
	
					A set of rules (implemented as a Java™ class) for authenticating an end entity, agent, administrator, or any other entity that needs to interact with a Certificate System subsystem. In the case of typical end-user enrollment, after the user has supplied the information requested by the enrollment form, the enrollment servlet uses an authentication module associated with that form to validate the information and authenticate the user's identity. See servlet.
				

	
      ⁠authorization
	
					Permission to access a resource controlled by a server. Authorization typically takes place after the ACLs associated with a resource have been evaluated by a server. See access control list (ACL).
				

	
      ⁠automated enrollment
	
					A way of configuring a Certificate System subsystem that allows automatic authentication for end-entity enrollment, without human intervention. With this form of authentication, a certificate request that completes authentication module processing successfully is automatically approved for profile processing and certificate issuance.
				



B
	
      ⁠bind DN
	
					A user ID, in the form of a distinguished name (DN), used with a password to authenticate to Red Hat Directory Server.
				



C
	
      ⁠CA certificate
	
					A certificate that identifies a certificate authority. See also certificate authority (CA), subordinate CA, root CA.
				

	
      ⁠CA hierarchy
	
					A hierarchy of CAs in which a root CA delegates the authority to issue certificates to subordinate CAs. Subordinate CAs can also expand the hierarchy by delegating issuing status to other CAs. See also certificate authority (CA), subordinate CA, root CA.
				

	
      ⁠CA server key
	
					The TLS server key of the server providing a CA service.
				

	
      ⁠CA signing key
	
					The private key that corresponds to the public key in the CA certificate. A CA uses its signing key to sign certificates and CRLs.
				

	
      ⁠certificate
	
					Digital data, formatted according to the X.509 standard, that specifies the name of an individual, company, or other entity (the subject name of the certificate) and certifies that a public key, which is also included in the certificate, belongs to that entity. A certificate is issued and digitally signed by a certificate authority (CA). A certificate's validity can be verified by checking the CA's digital signature through public-key cryptography techniques. To be trusted within a public-key infrastructure (PKI), a certificate must be issued and signed by a CA that is trusted by other entities enrolled in the PKI.
				

	
      ⁠certificate authority (CA)
	
					A trusted entity that issues a certificate after verifying the identity of the person or entity the certificate is intended to identify. A CA also renews and revokes certificates and generates CRLs. The entity named in the issuer field of a certificate is always a CA. Certificate authorities can be independent third parties or a person or organization using certificate-issuing server software, such as Red Hat Certificate System.
				

	
      ⁠certificate chain
	
					A hierarchical series of certificates signed by successive certificate authorities. A CA certificate identifies a certificate authority (CA) and is used to sign certificates issued by that authority. A CA certificate can in turn be signed by the CA certificate of a parent CA, and so on up to a root CA. Certificate System allows any end entity to retrieve all the certificates in a certificate chain.
				

	
      ⁠certificate extensions
	
					An X.509 v3 certificate contains an extensions field that permits any number of additional fields to be added to the certificate. Certificate extensions provide a way of adding information such as alternative subject names and usage restrictions to certificates. A number of standard extensions have been defined by the PKIX working group.
				

	
      ⁠certificate fingerprint
	
					A one-way hash associated with a certificate. The number is not part of the certificate itself, but is produced by applying a hash function to the contents of the certificate. If the contents of the certificate changes, even by a single character, the same function produces a different number. Certificate fingerprints can therefore be used to verify that certificates have not been tampered with.
				

	
      ⁠Certificate Management Message Formats (CMMF)
	
					Message formats used to convey certificate requests and revocation requests from end entities to a Certificate Manager and to send a variety of information to end entities. A proposed standard from the Internet Engineering Task Force (IETF) PKIX working group. CMMF is subsumed by another proposed standard, Certificate Management Messages over Cryptographic Message Syntax (CMC). For detailed information, see https://tools.ietf.org/html/draft-ietf-pkix-cmmf-02.
				

	
      ⁠Certificate Management Messages over Cryptographic Message Syntax (CMC)
	
					Message format used to convey a request for a certificate to a Certificate Manager. A proposed standard from the Internet Engineering Task Force (IETF) PKIX working group. For detailed information, see https://tools.ietf.org/html/draft-ietf-pkix-cmc-02.
				

	
      ⁠Certificate Manager
	
					An independent Certificate System subsystem that acts as a certificate authority. A Certificate Manager instance issues, renews, and revokes certificates, which it can publish along with CRLs to an LDAP directory. It accepts requests from end entities. See certificate authority (CA).
				

	
      ⁠Certificate Manager agent
	
					A user who belongs to a group authorized to manage agent services for a Certificate Manager. These services include the ability to access and modify (approve and reject) certificate requests and issue certificates.
				

	
      ⁠certificate profile
	
					A set of configuration settings that defines a certain type of enrollment. The certificate profile sets policies for a particular type of enrollment along with an authentication method in a certificate profile.
				

	
      ⁠Certificate Request Message Format (CRMF)
	
					Format used for messages related to management of X.509 certificates. This format is a subset of CMMF. See also Certificate Management Message Formats (CMMF). For detailed information, see https://tools.ietf.org/html/rfc2511.
				

	
      ⁠certificate revocation list (CRL)
	
					As defined by the X.509 standard, a list of revoked certificates by serial number, generated and signed by a certificate authority (CA).
				

	
      ⁠Certificate System
	
					See Red Hat Certificate System, Cryptographic Message Syntax (CS).
				

	
      ⁠Certificate System console
	
					A console that can be opened for any single Certificate System instance. A Certificate System console allows the Certificate System administrator to control configuration settings for the corresponding Certificate System instance.
				

	
      ⁠Certificate System subsystem
	
					One of the five Certificate System managers: Certificate Manager, Online Certificate Status Manager, Key Recovery Authority, Token Key Service, or Token Processing System.
				

	
      ⁠certificate-based authentication
	
					Authentication based on certificates and public-key cryptography. See also password-based authentication.
				

	
      ⁠chain of trust
	
					See certificate chain.
				

	
      ⁠chained CA
	
					See linked CA.
				

	
      ⁠cipher
	
					See cryptographic algorithm.
				

	
      ⁠client authentication
	
					The process of identifying a client to a server, such as with a name and password or with a certificate and some digitally signed data. See certificate-based authentication, password-based authentication, server authentication.
				

	
      ⁠client TLS certificate
	
					A certificate used to identify a client to a server using the TLS protocol. See Transport Layer Security (TLS).
				

	
      ⁠CMC
	
					See Certificate Management Messages over Cryptographic Message Syntax (CMC).
				

	
      ⁠CMC Enrollment
	
					Features that allow either signed enrollment or signed revocation requests to be sent to a Certificate Manager using an agent's signing certificate. These requests are then automatically processed by the Certificate Manager.
				

	
      ⁠CMMF
	
					See Certificate Management Message Formats (CMMF).
				

	
      ⁠Common Criteria
	
					A certification standard that evaluates computer security, both for software and hardware components. The software or hardware vendor defines the operating environment and specified configuration, identifies any threats, and outlines both the development and deployment processes for the target of evaluation (the thing being evaluated). The Common Criteria certification laboratory then tests the implementation design to look for any vulnerabilities.
				

	
      ⁠CRL
	
					See certificate revocation list (CRL).
				

	
      ⁠CRMF
	
					See Certificate Request Message Format (CRMF).
				

	
      ⁠cross-certification
	
					The exchange of certificates by two CAs in different certification hierarchies, or chains. Cross-certification extends the chain of trust so that it encompasses both hierarchies. See also certificate authority (CA).
				

	
      ⁠cross-pair certificate
	
					A certificate issued by one CA to another CA which is then stored by both CAs to form a circle of trust. The two CAs issue certificates to each other, and then store both cross-pair certificates as a certificate pair.
				

	
      ⁠cryptographic algorithm
	
					A set of rules or directions used to perform cryptographic operations such as encryption and decryption.
				

	
      ⁠Cryptographic Message Syntax (CS)
	
					The syntax used to digitally sign, digest, authenticate, or encrypt arbitrary messages, such as CMMF.
				

	
      ⁠cryptographic module
	
					See PKCS #11 module.
				

	
      ⁠cryptographic service provider (CSP)
	
					A cryptographic module that performs cryptographic services, such as key generation, key storage, and encryption, on behalf of software that uses a standard interface such as that defined by PKCS #11 to request such services.
				

	
      ⁠CSP
	
					See cryptographic service provider (CSP).
				



D
	
      ⁠decryption
	
					Unscrambling data that has been encrypted. See encryption.
				

	
      ⁠delta CRL
	
					A CRL containing a list of those certificates that have been revoked since the last full CRL was issued.
				

	
      ⁠digital ID
	
					See certificate.
				

	
      ⁠digital signature
	
					To create a digital signature, the signing software first creates a one-way hash from the data to be signed, such as a newly issued certificate. The one-way hash is then encrypted with the private key of the signer. The resulting digital signature is unique for each piece of data signed. Even a single comma added to a message changes the digital signature for that message. Successful decryption of the digital signature with the signer's public key and comparison with another hash of the same data provides tamper detection. Verification of the certificate chain for the certificate containing the public key provides authentication of the signer. See also nonrepudiation, encryption.
				

	
      ⁠distinguished name (DN)
	
					A series of AVAs that identify the subject of a certificate. See attribute value assertion (AVA).
				

	
      ⁠distribution points
	
					Used for CRLs to define a set of certificates. Each distribution point is defined by a set of certificates that are issued. A CRL can be created for a particular distribution point.
				

	
      ⁠dual key pair
	
					Two public-private key pairs, four keys altogether, corresponding to two separate certificates. The private key of one pair is used for signing operations, and the public and private keys of the other pair are used for encryption and decryption operations. Each pair corresponds to a separate certificate. See also encryption key, public-key cryptography, signing key.
				

	
      ⁠Key Recovery Authority
	
					An optional, independent Certificate System subsystem that manages the long-term archival and recovery of RSA encryption keys for end entities. A Certificate Manager can be configured to archive end entities' encryption keys with a Key Recovery Authority before issuing new certificates. The Key Recovery Authority is useful only if end entities are encrypting data, such as sensitive email, that the organization may need to recover someday. It can be used only with end entities that support dual key pairs: two separate key pairs, one for encryption and one for digital signatures.
				

	
      ⁠Key Recovery Authority agent
	
					A user who belongs to a group authorized to manage agent services for a Key Recovery Authority, including managing the request queue and authorizing recovery operation using HTML-based administration pages.
				

	
      ⁠Key Recovery Authority recovery agent
	
					One of the m of n people who own portions of the storage key for the Key Recovery Authority.
				

	
      ⁠Key Recovery Authority storage key
	
					Special key used by the Key Recovery Authority to encrypt the end entity's encryption key after it has been decrypted with the Key Recovery Authority's private transport key. The storage key never leaves the Key Recovery Authority.
				

	
      ⁠Key Recovery Authority transport certificate
	
					Certifies the public key used by an end entity to encrypt the entity's encryption key for transport to the Key Recovery Authority. The Key Recovery Authority uses the private key corresponding to the certified public key to decrypt the end entity's key before encrypting it with the storage key.
				



E
	
      ⁠eavesdropping
	
					Surreptitious interception of information sent over a network by an entity for which the information is not intended.
				

	
      ⁠Elliptic Curve Cryptography (ECC)
	
					A cryptographic algorithm which uses elliptic curves to create additive logarithms for the mathematical problems which are the basis of the cryptographic keys. ECC ciphers are more efficient to use than RSA ciphers and, because of their intrinsic complexity, are stronger at smaller bits than RSA ciphers.
				

	
      ⁠encryption
	
					Scrambling information in a way that disguises its meaning. See decryption.
				

	
      ⁠encryption key
	
					A private key used for encryption only. An encryption key and its equivalent public key, plus a signing key and its equivalent public key, constitute a dual key pair.
				

	
      ⁠end entity
	
					In a public-key infrastructure (PKI), a person, router, server, or other entity that uses a certificate to identify itself.
				

	
      ⁠enrollment
	
					The process of requesting and receiving an X.509 certificate for use in a public-key infrastructure (PKI). Also known as registration.
				

	
      ⁠extensions field
	
					See certificate extensions.
				



F
	
      ⁠Federal Bridge Certificate Authority (FBCA)
	
					A configuration where two CAs form a circle of trust by issuing cross-pair certificates to each other and storing the two cross-pair certificates as a single certificate pair.
				

	
      ⁠fingerprint
	
					See certificate fingerprint.
				

	
      ⁠FIPS PUBS 140
	
					Federal Information Standards Publications (FIPS PUBS) 140 is a US government standard for implementations of cryptographic modules, hardware or software that encrypts and decrypts data or performs other cryptographic operations, such as creating or verifying digital signatures. Many products sold to the US government must comply with one or more of the FIPS standards. See http://www.nist.gov/itl/fipscurrent.cfm.
				

	
      ⁠firewall
	
					A system or combination of systems that enforces a boundary between two or more networks.
				



I
	
      ⁠impersonation
	
					The act of posing as the intended recipient of information sent over a network. Impersonation can take two forms: spoofing and misrepresentation.
				

	
      ⁠input
	
					In the context of the certificate profile feature, it defines the enrollment form for a particular certificate profile. Each input is set, which then dynamically creates the enrollment form from all inputs configured for this enrollment.
				

	
      ⁠intermediate CA
	
					A CA whose certificate is located between the root CA and the issued certificate in a certificate chain.
				

	
      ⁠IP spoofing
	
					The forgery of client IP addresses.
				



J
	
      ⁠JAR file
	
					A digital envelope for a compressed collection of files organized according to the Java™ archive (JAR) format.
				

	
      ⁠Java™ archive (JAR) format
	
					A set of conventions for associating digital signatures, installer scripts, and other information with files in a directory.
				

	
      ⁠Java™ Cryptography Architecture (JCA)
	
					The API specification and reference developed by Sun Microsystems for cryptographic services. See http://java.sun.com/products/jdk/1.2/docs/guide/security/CryptoSpec.Introduction.
				

	
      ⁠Java™ Development Kit (JDK)
	
					Software development kit provided by Sun Microsystems for developing applications and applets using the Java™ programming language.
				

	
      ⁠Java™ Native Interface (JNI)
	
					A standard programming interface that provides binary compatibility across different implementations of the Java™ Virtual Machine (JVM) on a given platform, allowing existing code written in a language such as C or C++ for a single platform to bind to Java™. See http://java.sun.com/products/jdk/1.2/docs/guide/jni/index.html.
				

	
      ⁠Java™ Security Services (JSS)
	
					A Java™ interface for controlling security operations performed by Network Security Services (NSS).
				



K
	
      ⁠KEA
	
					See Key Exchange Algorithm (KEA).
				

	
      ⁠key
	
					A large number used by a cryptographic algorithm to encrypt or decrypt data. A person's public key, for example, allows other people to encrypt messages intended for that person. The messages must then be decrypted by using the corresponding private key.
				

	
      ⁠key exchange
	
					A procedure followed by a client and server to determine the symmetric keys they will both use during a TLS session.
				

	
      ⁠Key Exchange Algorithm (KEA)
	
					An algorithm used for key exchange by the US Government.
				



L
	
      ⁠Lightweight Directory Access Protocol (LDAP)
	
					A directory service protocol designed to run over TCP/IP and across multiple platforms. LDAP is a simplified version of Directory Access Protocol (DAP), used to access X.500 directories. LDAP is under IETF change control and has evolved to meet Internet requirements.
				

	
      ⁠linked CA
	
					An internally deployed certificate authority (CA) whose certificate is signed by a public, third-party CA. The internal CA acts as the root CA for certificates it issues, and the third- party CA acts as the root CA for certificates issued by other CAs that are linked to the same third-party root CA. Also known as "chained CA" and by other terms used by different public CAs.
				



M
	
      ⁠manual authentication
	
					A way of configuring a Certificate System subsystem that requires human approval of each certificate request. With this form of authentication, a servlet forwards a certificate request to a request queue after successful authentication module processing. An agent with appropriate privileges must then approve each request individually before profile processing and certificate issuance can proceed.
				

	
      ⁠MD5
	
					A message digest algorithm that was developed by Ronald Rivest. See also one-way hash.
				

	
      ⁠message digest
	
					See one-way hash.
				

	
      ⁠misrepresentation
	
					The presentation of an entity as a person or organization that it is not. For example, a website might pretend to be a furniture store when it is really a site that takes credit-card payments but never sends any goods. Misrepresentation is one form of impersonation. See also spoofing.
				



N
	
      ⁠Network Security Services (NSS)
	
					A set of libraries designed to support cross-platform development of security-enabled communications applications. Applications built using the NSS libraries support the Transport Layer Security (TLS) protocol for authentication, tamper detection, and encryption, and the PKCS #11 protocol for cryptographic token interfaces. NSS is also available separately as a software development kit.
				

	
      ⁠non-TMS
	
					Non-token management system. Refers to a configuration of subsystems (the CA and, optionally, KRA and OCSP) which do not handle smart cards directly.
				
See Also token management system (TMS).

	
      ⁠nonrepudiation
	
					The inability by the sender of a message to deny having sent the message. A digital signature provides one form of nonrepudiation.
				



O
	
      ⁠object signing
	
					A method of file signing that allows software developers to sign Java code, JavaScript scripts, or any kind of file and allows users to identify the signers and control access by signed code to local system resources.
				

	
      ⁠object-signing certificate
	
					A certificate whose associated private key is used to sign objects; related to object signing.
				

	
      ⁠OCSP
	
					Online Certificate Status Protocol.
				

	
      ⁠one-way hash
	
					1. A number of fixed-length generated from data of arbitrary length with the aid of a hashing algorithm. The number, also called a message digest, is unique to the hashed data. Any change in the data, even deleting or altering a single character, results in a different value.
				

					2. The content of the hashed data cannot be deduced from the hash.
				

	
      ⁠operation
	
					The specific operation, such as read or write, that is being allowed or denied in an access control instruction.
				

	
      ⁠output
	
					In the context of the certificate profile feature, it defines the resulting form from a successful certificate enrollment for a particular certificate profile. Each output is set, which then dynamically creates the form from all outputs configured for this enrollment.
				



P
	
      ⁠password-based authentication
	
					Confident identification by means of a name and password. See also authentication, certificate-based authentication.
				

	
      ⁠PKCS #10
	
					The public-key cryptography standard that governs certificate requests.
				

	
      ⁠PKCS #11
	
					The public-key cryptography standard that governs cryptographic tokens such as smart cards.
				

	
      ⁠PKCS #11 module
	
					A driver for a cryptographic device that provides cryptographic services, such as encryption and decryption, through the PKCS #11 interface. A PKCS #11 module, also called a cryptographic module or cryptographic service provider, can be implemented in either hardware or software. A PKCS #11 module always has one or more slots, which may be implemented as physical hardware slots in some form of physical reader, such as for smart cards, or as conceptual slots in software. Each slot for a PKCS #11 module can in turn contain a token, which is the hardware or software device that actually provides cryptographic services and optionally stores certificates and keys. Red Hat provides a built-in PKCS #11 module with Certificate System.
				

	
      ⁠PKCS #12
	
					The public-key cryptography standard that governs key portability.
				

	
      ⁠PKCS #7
	
					The public-key cryptography standard that governs signing and encryption.
				

	
      ⁠private key
	
					One of a pair of keys used in public-key cryptography. The private key is kept secret and is used to decrypt data encrypted with the corresponding public key.
				

	
      ⁠proof-of-archival (POA)
	
					Data signed with the private Key Recovery Authority transport key that contains information about an archived end-entity key, including key serial number, name of the Key Recovery Authority, subject name of the corresponding certificate, and date of archival. The signed proof-of-archival data are the response returned by the Key Recovery Authority to the Certificate Manager after a successful key archival operation. See also Key Recovery Authority transport certificate.
				

	
      ⁠public key
	
					One of a pair of keys used in public-key cryptography. The public key is distributed freely and published as part of a certificate. It is typically used to encrypt data sent to the public key's owner, who then decrypts the data with the corresponding private key.
				

	
      ⁠public-key cryptography
	
					A set of well-established techniques and standards that allow an entity to verify its identity electronically or to sign and encrypt electronic data. Two keys are involved, a public key and a private key. A public key is published as part of a certificate, which associates that key with a particular identity. The corresponding private key is kept secret. Data encrypted with the public key can be decrypted only with the private key.
				

	
      ⁠public-key infrastructure (PKI)
	
					The standards and services that facilitate the use of public-key cryptography and X.509 v3 certificates in a networked environment.
				



R
	
      ⁠RC2, RC4
	
					Cryptographic algorithms developed for RSA Data Security by Rivest. See also cryptographic algorithm.
				

	
      ⁠Red Hat Certificate System
	
					A highly configurable set of software components and tools for creating, deploying, and managing certificates. Certificate System is comprised of five major subsystems that can be installed in different Certificate System instances in different physical locations: Certificate Manager, Online Certificate Status Manager, Key Recovery Authority, Token Key Service, and Token Processing System.
				

	
      ⁠registration
	
					See enrollment.
				

	
      ⁠root CA
	
					The certificate authority (CA) with a self-signed certificate at the top of a certificate chain. See also CA certificate, subordinate CA.
				

	
      ⁠RSA algorithm
	
					Short for Rivest-Shamir-Adleman, a public-key algorithm for both encryption and authentication. It was developed by Ronald Rivest, Adi Shamir, and Leonard Adleman and introduced in 1978.
				

	
      ⁠RSA key exchange
	
					A key-exchange algorithm for TLS based on the RSA algorithm.
				



S
	
      ⁠sandbox
	
					A Java™ term for the carefully defined limits within which Java™ code must operate.
				

	
      ⁠secure channel
	
					A security association between the TPS and the smart card which allows encrypted communciation based on a shared master key generated by the TKS and the smart card APDUs.
				

	
      ⁠security domain
	
					A centralized repository or inventory of PKI subsystems. Its primary purpose is to facilitate the installation and configuration of new PKI services by automatically establishing trusted relationships between subsystems.
				

	
      ⁠self tests
	
					A feature that tests a Certificate System instance both when the instance starts up and on-demand.
				

	
      ⁠server authentication
	
					The process of identifying a server to a client. See also client authentication.
				

	
      ⁠server TLS certificate
	
					A certificate used to identify a server to a client using the Transport Layer Security (TLS) protocol.
				

	
      ⁠servlet
	
					Java™ code that handles a particular kind of interaction with end entities on behalf of a Certificate System subsystem. For example, certificate enrollment, revocation, and key recovery requests are each handled by separate servlets.
				

	
      ⁠SHA-1
	
					Secure Hash Algorithm, a hash function used by the US government.
				

	
      ⁠signature algorithm
	
					A cryptographic algorithm used to create digital signatures. Certificate System supports the MD5 and SHA-1 signing algorithms. See also cryptographic algorithm, digital signature.
				

	
      ⁠signed audit log
	
					See audit log.
				

	
      ⁠signing certificate
	
					A certificate whose public key corresponds to a private key used to create digital signatures. For example, a Certificate Manager must have a signing certificate whose public key corresponds to the private key it uses to sign the certificates it issues.
				

	
      ⁠signing key
	
					A private key used for signing only. A signing key and its equivalent public key, plus an encryption key and its equivalent public key, constitute a dual key pair.
				

	
      ⁠single sign-on
	
					1. In Certificate System, a password that simplifies the way to sign on to Red Hat Certificate System by storing the passwords for the internal database and tokens. Each time a user logs on, he is required to enter this single password.
				

					2. The ability for a user to log in once to a single computer and be authenticated automatically by a variety of servers within a network. Partial single sign-on solutions can take many forms, including mechanisms for automatically tracking passwords used with different servers. Certificates support single sign-on within a public-key infrastructure (PKI). A user can log in once to a local client's private-key database and, as long as the client software is running, rely on certificate-based authentication to access each server within an organization that the user is allowed to access.
				

	
      ⁠slot
	
					The portion of a PKCS #11 module, implemented in either hardware or software, that contains a token.
				

	
      ⁠smart card
	
					A small device that contains a microprocessor and stores cryptographic information, such as keys and certificates, and performs cryptographic operations. Smart cards implement some or all of the PKCS #11 interface.
				

	
      ⁠spoofing
	
					Pretending to be someone else. For example, a person can pretend to have the email address jdoe@example.com, or a computer can identify itself as a site called www.redhat.com when it is not. Spoofing is one form of impersonation. See also misrepresentation.
				

	
      ⁠subject
	
					The entity identified by a certificate. In particular, the subject field of a certificate contains a subject name that uniquely describes the certified entity.
				

	
      ⁠subject name
	
					A distinguished name (DN) that uniquely describes the subject of a certificate.
				

	
      ⁠subordinate CA
	
					A certificate authority whose certificate is signed by another subordinate CA or by the root CA. See CA certificate, root CA.
				

	
      ⁠symmetric encryption
	
					An encryption method that uses the same cryptographic key to encrypt and decrypt a given message.
				

	
      ⁠TLS
	
					See Transport Layer Security (TLS).
				



T
	
      ⁠tamper detection
	
					A mechanism ensuring that data received in electronic form entirely corresponds with the original version of the same data.
				

	
      ⁠token
	
					A hardware or software device that is associated with a slot in a PKCS #11 module. It provides cryptographic services and optionally stores certificates and keys.
				

	
      ⁠token key service (TKS)
	
					A subsystem in the token management system which derives specific, separate keys for every smart card based on the smart card APDUs and other shared information, like the token CUID.
				

	
      ⁠token management system (TMS)
	
					The interrelated subsystems — CA, TKS, TPS, and, optionally, the KRA — which are used to manage certificates on smart cards (tokens).
				

	
      ⁠token processing system (TPS)
	
					A subsystem which interacts directly the Enterprise Security Client and smart cards to manage the keys and certificates on those smart cards.
				

	
      ⁠Transport Layer Security (TLS)
	
					A protocol that allows mutual authentication between a client and server and the establishment of an authenticated and encrypted connection. TLS runs above TCP/IP and below HTTP, LDAP, IMAP, NNTP, and other high-level network protocols.
				

	
      ⁠tree hierarchy
	
					The hierarchical structure of an LDAP directory.
				

	
      ⁠trust
	
					Confident reliance on a person or other entity. In a public-key infrastructure (PKI), trust refers to the relationship between the user of a certificate and the certificate authority (CA) that issued the certificate. If a CA is trusted, then valid certificates issued by that CA can be trusted.
				



V
	
      ⁠virtual private network (VPN)
	
					A way of connecting geographically distant divisions of an enterprise. The VPN allows the divisions to communicate over an encrypted channel, allowing authenticated, confidential transactions that would normally be restricted to a private network.
				





      ⁠Index



A
	adding
		extensions
		to CRLs, Setting CRL Extensions




	administrators
		creating, Creating Users
	deleting, Deleting a Certificate System User
	modifying
		group membership, Changing Members in a Group


	tools provided
		Certificate System console, Using pkiconsole for CA, OCSP, KRA, and TKS Subsystems




	agents
		creating, Creating Users
	deleting, Deleting a Certificate System User
	modifying
		group membership, Changing Members in a Group


	role defined, Agents
	See also Agent Services interface, Agents


	archiving
		users' private encryption keys, Setting up Key Archival and Recovery


	auditors
		creating, Creating Users


	authorityInfoAccess, authorityInfoAccess
	authorityKeyIdentifier, Setting Restrictions on CA Certificates , authorityKeyIdentifier, authorityKeyIdentifier


B
	base-64 encoded file
		viewing content, Viewing Certificates and CRLs Published to File


	basicConstraints, basicConstraints


C
	CA
		configuring ECC signing algorithm, Setting the Signing Algorithms for Certificates


	CA certificate mapper, LdapCaSimpleMap
	CA certificate publisher, LdapCaCertPublisher, LdapCertificatePairPublisher
	CA signing certificate, CA Signing Key Pair and Certificate
		changing trust settings of, Changing the Trust Settings of a CA Certificate
	deleting, Deleting Certificates from the Database
	nickname, CA Signing Key Pair and Certificate
	viewing details of, Viewing Database Content through the Console


	certificate
		viewing content, Viewing Certificates and CRLs Published to File


	certificate chains
		installing in the certificate database, Installing Certificates through the Console
	why install, About CA Certificate Chains


	certificate database
		how to manage, Managing the Certificate Database
	what it contains, Managing the Certificate Database
	where it is maintained, Managing the Certificate Database


	Certificate Manager
		administrators
		creating, Creating Users


	agents
		creating, Creating Users


	key pairs and certificates
		CA signing certificate, CA Signing Key Pair and Certificate
	OCSP signing certificate, OCSP Signing Key Pair and Certificate
	subsystem certificate, Subsystem Certificate
	TLS CA signing certificate, OCSP Signing Key Pair and Certificate
	TLS server certificate, TLS Server Key Pair and Certificate


	manual updates to publishing directory, Updating Certificates and CRLs in a Directory
	serial number range, Changing the Restrictions for CAs on Issuing Certificates


	certificate profiles
		signing algorithms, Setting the Signing Algorithms for Certificates


	certificate renewal, Configuring Profiles to Enable Renewal
	Certificate Setup Wizard
		using to install certificate chains, Installing Certificates through the Console
	using to install certificates, Installing Certificates through the Console


	Certificate System console
		Configuration tab, Using pkiconsole for CA, OCSP, KRA, and TKS Subsystems
	managing logs, Viewing Logs in the Console
	Status tab, Using pkiconsole for CA, OCSP, KRA, and TKS Subsystems


	certificateIssuer, certificateIssuer
	certificatePolicies, certificatePoliciesExt
	certificates
		extensions for, Setting Restrictions on CA Certificates , Defaults, Constraints, and Extensions for Certificates and CRLs
	finding , Performing Revocation as an Agent from the Web UI
	installing, Installing Certificates in the Certificate System Database
	publishing to files, Publishing to Files
	publishing to LDAP directory
		required schema, Configuring the LDAP Directory


	searching for , Searching for Certificates (Advanced)
	signing algorithms, Setting the Signing Algorithms for Certificates
	taking off hold, Taking Ceritificates Off Hold


	certutil
		requesting certificates, Creating Certificate Signing Requests


	changing
		group members, Changing Members in a Group
	trust settings in certificates, Changing the Trust Settings of a CA Certificate
		why would you change, Changing the Trust Settings of a CA Certificate




	Configuration tab, Using pkiconsole for CA, OCSP, KRA, and TKS Subsystems
	CRL
		viewing content, Viewing Certificates and CRLs Published to File


	CRL Distribution Point extension, CRL Issuing Points
	CRL extension modules
		CRLReason, Freshest CRL Extension Default


	CRL publisher, LdapCrlPublisher
	CRL signing certificate, About Revoking Certificates
	cRLDistributionPoints, CRLDistributionPoints
	CRLNumber, CRLNumber
	CRLReason, CRLReason
	CRLs
		defined, About Revoking Certificates
	entering multiple update times, Configuring CRLs for Each Issuing Point
	entering update period, Configuring CRLs for Each Issuing Point
	extension-specific modules, About CRL Extensions
	extensions for, Standard X.509 v3 CRL Extensions Reference
	issuing or distribution points, CRL Issuing Points
	publishing of, About Revoking Certificates
	publishing to files, Publishing to Files
	publishing to LDAP directory, Publishing CRLs, LDAP Publishing
		required schema, Configuring the LDAP Directory


	supported extensions, About Revoking Certificates
	when automated updates take place, About Revoking Certificates
	when generated, About Revoking Certificates
	who generates it, About Revoking Certificates




D
	deleting
		privileged users, Deleting a Certificate System User


	deltaCRLIndicator, deltaCRLIndicator
	DER-encoded file
		viewing content, Viewing Certificates and CRLs Published to File


	DN components mapper, LdapDNCompsMap
	downloading certificates, Installing Certificates in the Certificate System Database


E
	ECC
		configuring, Setting the Signing Algorithms for Certificates
	requesting, Creating Certificate Signing Requests


	encrypted file system (EFS), Extended Key Usage Extension Default
	end-entity certificate publisher, LdapUserCertPublisher
	end-entity certificates
		renewal, Configuring Profiles to Enable Renewal


	Extended Key Usage extension 
		OIDs for encrypted file system, Extended Key Usage Extension Default


	extensions, Setting Restrictions on CA Certificates , Defaults, Constraints, and Extensions for Certificates and CRLs
		an example, Standard X.509 v3 Certificate Extension Reference
	authorityInfoAccess, authorityInfoAccess
	authorityKeyIdentifier, Setting Restrictions on CA Certificates , authorityKeyIdentifier, authorityKeyIdentifier
	basicConstraints, basicConstraints
	CA certificates and, Setting Restrictions on CA Certificates 
	certificateIssuer, certificateIssuer
	certificatePolicies, certificatePoliciesExt
	cRLDistributionPoints, CRLDistributionPoints
	CRLNumber, CRLNumber
	CRLReason, CRLReason
	deltaCRLIndicator, deltaCRLIndicator
	extKeyUsage, extKeyUsage
	invalidityDate, invalidityDate
	issuerAltName, issuerAltName Extension, issuerAltName
	issuingDistributionPoint, issuingDistributionPoint
	keyUsage, keyUsage
	nameConstraints, nameConstraints
	netscape-cert-type, netscape-cert-type
	Netscape-defined, Netscape-Defined Certificate Extensions Reference
	policyConstraints, policyConstraints
	policyMappings, policyMappings
	privateKeyUsagePeriod, privateKeyUsagePeriod
	subjectAltName, subjectAltName
	subjectDirectoryAttributes, subjectDirectoryAttributes
	X.509 certificate, summarized, Standard X.509 v3 Certificate Extension Reference
	X.509 CRL, summarized, Standard X.509 v3 CRL Extensions Reference


	extKeyUsage, extKeyUsage


F
	file-based publisher, FileBasedPublisher


G
	groups
		changing members, Changing Members in a Group




I
	installing certificates, Installing Certificates in the Certificate System Database
	invalidityDate, invalidityDate
	issuerAltName, issuerAltName Extension, issuerAltName
	issuingDistributionPoint, issuingDistributionPoint


K
	key archival
		how keys are stored, Key Archival
	reasons to archive, Key Archival


	key recovery, Key Archival
	Key Recovery Authority
		administrators
		creating, Creating Users


	agents
		creating, Creating Users


	key pairs and certificates
		list of, Key Recovery Authority Certificates
	storage key pair, Storage Key Pair
	subsystem certificate, Subsystem Certificate
	transport certificate, Transport Key Pair and Certificate




	keyUsage, keyUsage


L
	LDAP publishing
		defined, LDAP Publishing
	manual updates, Updating Certificates and CRLs in a Directory
		when to do, Manually Updating Certificates in the Directory
	who can do this, Updating Certificates and CRLs in a Directory




	logging
		managing from Certificate System console, Viewing Logs in the Console




M
	managing
		certificate database, Managing the Certificate Database


	mappers
		created during installation, Creating Mappers, LdapCaSimpleMap, LdapSimpleMap


	mappers that use
		CA certificate, LdapCaSimpleMap
	DN components, LdapDNCompsMap


	modifying
		privileged user's group membership, Changing Members in a Group




N
	Name extension modules
		Issuer Alternative Name, Issuer Alternative Name Extension Default


	nameConstraints, nameConstraints
	netscape-cert-type, netscape-cert-type
	nickname
		for CA signing certificate, CA Signing Key Pair and Certificate
	for OCSP signing certificate, OCSP Signing Key Pair and Certificate
	for signing certificate, OCSP Signing Key Pair and Certificate
	for subsystem certificate, Subsystem Certificate, Subsystem Certificate, Subsystem Certificate
	for TLS server certificate, TLS Server Key Pair and Certificate, TLS Server Key Pair and Certificate
	for TLS signing certificate, OCSP Signing Key Pair and Certificate




O
	OCSP publisher, OCSPPublisher
	OCSP signing certificate, OCSP Signing Key Pair and Certificate
		nickname, OCSP Signing Key Pair and Certificate


	Online Certificate Status Manager
		administrators
		creating, Creating Users


	agents
		creating, Creating Users


	key pairs and certificates
		signing certificate, OCSP Signing Key Pair and Certificate
	subsystem certificate, Subsystem Certificate
	TLS server certificate, TLS Server Key Pair and Certificate






P
	plug-in modules
		for CRL extensions
		CRLReason, Freshest CRL Extension Default


	for publishing
		FileBasedPublisher, FileBasedPublisher
	LdapCaCertPublisher, LdapCaCertPublisher, LdapCertificatePairPublisher
	LdapCaSimpleMap, LdapCaSimpleMap
	LdapCrlPublisher, LdapCrlPublisher
	LdapDNCompsMap, LdapDNCompsMap
	LdapUserCertPublisher, LdapUserCertPublisher
	OCSPPublisher, OCSPPublisher


	Issuer Alternative Name, Issuer Alternative Name Extension Default


	policyConstraints, policyConstraints
	policyMappings, policyMappings
	privateKeyUsagePeriod, privateKeyUsagePeriod
	privileged users
		deleting, Deleting a Certificate System User
	modifying privileges
		group membership, Changing Members in a Group


	types
		agents, Agents




	profiles 
		how profiles work , The Enrollment Profile


	publishers
		created during installation, Configuring LDAP Publishers, LdapCaCertPublisher, LdapUserCertPublisher, LdapCertificatePairPublisher


	publishers that can publish to
		CA's entry in the directory, LdapCaCertPublisher, LdapCrlPublisher, LdapCertificatePairPublisher
	files, FileBasedPublisher
	OCSP responder, OCSPPublisher
	users' entries in the directory, LdapUserCertPublisher


	publishing
		of certificates
		to files, Publishing to Files


	of CRLs, About Revoking Certificates
		to files, Publishing to Files
	to LDAP directory, Publishing CRLs, LDAP Publishing


	viewing content, Viewing Certificates and CRLs Published to File


	publishing directory
		defined, LDAP Publishing




R
	recovering users' private keys, Key Archival
	registering
		custom OIDs, Standard X.509 v3 Certificate Extension Reference


	requesting certificates
		ECC certificates, Creating Certificate Signing Requests
	using certutil, Creating Certificate Signing Requests


	revoking certificates
		taking certificate off hold, Taking Ceritificates Off Hold


	roles
		agent, Agents


	RSA
		configuring, Setting the Signing Algorithms for Certificates




S
	setting CRL extensions, Setting CRL Extensions
	signing algorithms, Setting the Signing Algorithms for Certificates
		ECC certificates, Setting the Signing Algorithms for Certificates
	RSA certificates, Setting the Signing Algorithms for Certificates


	signing certificate, OCSP Signing Key Pair and Certificate
		changing trust settings of, Changing the Trust Settings of a CA Certificate
	deleting, Deleting Certificates from the Database
	nickname, OCSP Signing Key Pair and Certificate
	viewing details of, Viewing Database Content through the Console


	Status tab, Using pkiconsole for CA, OCSP, KRA, and TKS Subsystems
	storage key pair, Storage Key Pair
	subjectAltName, subjectAltName
	subjectDirectoryAttributes, subjectDirectoryAttributes
	subjectKeyIdentifier
		subjectKeyIdentifier, subjectKeyIdentifier


	subsystem certificate, Subsystem Certificate, Subsystem Certificate, Subsystem Certificate
		nickname, Subsystem Certificate, Subsystem Certificate, Subsystem Certificate




T
	TLS CA signing certificate, OCSP Signing Key Pair and Certificate
		nickname, OCSP Signing Key Pair and Certificate


	TLS server certificate, TLS Server Key Pair and Certificate, TLS Server Key Pair and Certificate
		changing trust settings of, Changing the Trust Settings of a CA Certificate
	deleting, Deleting Certificates from the Database
	nickname, TLS Server Key Pair and Certificate, TLS Server Key Pair and Certificate
	viewing details of, Viewing Database Content through the Console


	Token Key Service
		administrators
		creating, Creating Users


	agents
		creating, Creating Users




	tokens
		changing password of, Changing a Token's Password
	managing, Managing Tokens Used by the Subsystems
	viewing which tokens are installed, Viewing Tokens


	transport certificate, Transport Key Pair and Certificate
		changing trust settings of, Changing the Trust Settings of a CA Certificate
	deleting, Deleting Certificates from the Database
	viewing details of, Viewing Database Content through the Console
	when used, Key Archival


	trusted managers
		deleting, Deleting a Certificate System User
	modifying
		group membership, Changing Members in a Group






U
	users
		creating, Creating Users







      ⁠Appendix F. Revision History




		Note that revision numbers relate to the edition of this manual, not to version numbers of Red Hat Certificate System.
	

			Revision History
	Revision 9.4-1	Thu Feb 11, 2021	 
	
						Various minor corrections for 9.4 Common Criteria Maintenance Update.



				
	Revision 9.4-0	Wed Apr 10, 2019	 
	
						Initial version of this guide.



				




	

OEBPS/Common_Content/fonts/overpass_light-web.woff


OEBPS/Common_Content/fonts/redhat/text/RedHatText-Regular.woff


OEBPS/images/profile_default.png
Certificate Profile Rule Editor

Centificate Profile Instance ID:

Centificate Profile Description:

End User Certificate Profile:

Centificate Profile Authentication:

Centificate Profile Plugin ID: catniollimpl

Policies | Inputs | Outputs

Set i ] Defaults Constraints Add
usercenger |1 Subject Name__.[Subject Name...|

usercenser |2 Walidity Default_[Valicity Const Delete
userCerSet |3 [Key Default__|Key Constraint

usercenset |4 Authority Key ... [No Constraint Edit
usercenset |5 ALA Extension.. |No Constraint

usercenset |6 Key Usage De.._[Key Usage Ex. ||

usercenset |7 Extended Key._[No Constraint_| -

oK. Cancel Help






OEBPS/images/cmrm.png
Publishing directory

cep

CRMF

Certificates
and CRLs.

Q=

Registration Certificate
Manager Manager

CMMF
KEYGEN tag
PKCSHT
PKCSHIO

HTTR/
HTTPS

O @ Q R





OEBPS/images/profile_inputs2.png
New Certificate Profile Editor. ()

cate Profile Instance ID:

o

Farameter Vaiue ]
ET frue -
sne frue
snen frue
an-ou fase
snouz ]
snouL fase
snou frue
s frue
snc frue

oK. Cancel Help






OEBPS/images/tps-connection-select.png
Red Hat” TPS Services

Main Menu : Administrator Operations : Subsystem Connection Configuration

Use this form to add or modify subsystem connections.
Either select an item to edit in the drop-down box below and click "Edit",
or fill in the name of a new subsystem connection and click the "Add" button.

Edit an existing Subsystem ]
Connection: ==t

Add a new Subsystem Connection: E_d,m]

tksl






OEBPS/images/ocsp-revstore.png
Configuration | Status

N Red Hat Certficate System:
2 Users and Groups
@ Access Control List
@ Log
@ System Keys and Certific
3 Online Cerificate Status |
@ Revocation info Store

Revocation Info Store Management

Store flame

5 ldapstore

Enabled
Disabled

Status

Certificate System

Set Default

Edit/View





OEBPS/Common_Content/images/rhlogo.png
& RedHat





OEBPS/images/crl-format-tab.png
Console Edit View Help

Configuration

Red Hat Cerlificate Sy5tem:9443 | Updates | Cache | Format

Users and Groups

Access Control List CRL Format
Log
Systern Keys and Certiicares | Revocation list signing algorithm: [SHALWIthRSA | v
Authertication
& Job Scheauler Allow extensions for CRLS v2:
¢ Centificate Manager
Policies CRL Contents
Centficate Profiles
Notification [ Indlude expired certificates
9 CRL Issuing Paints
9 MasterCRL [l CA centificates only

CRL Extensions
& Publishing [] Certificates issued according to profiles:





OEBPS/images/kra_tran.png
Retrieval

Certificates Installing this certicate in a server

The following farmat can be used to instal this certificate into a Netscape server.

BEGIN CERTIFICATE-
MIIB6DCCAZKGRWIBAGTBA] ANBgkahkiGOuIBAQQRADBpMQSWC QYDYQQGEWI VI zELMAKGA L IEC
QDEXCZATBGNVBACTAK IWMREWDWYDVQQKEWhOZXR 2 Y2 FuaTEPMADGA 1 UECXMGTUNQUWT MR
VQODEXNDZXI 0z p T2 FO2S BN YWShZ2V yMB4 DTk SMDMEMDA4MD AiF 0 XD TAUMDMZHD A 4MD Au
@ZELMAKGAUEBRMCYVMXC2ATBGVBAGTAKNEMQSWC QYDVOQHE TNV ERMAG GA 1UEC RMT TV (e
CGUXDZANBGNVBASTEKLDUHY iczEMBwGA 1 UEAXMYRGFOYSBSZWHvdnV yeSBNYWShAZV yMEwaT
K02 ThveNAQEBBOADSWAWSATEAMHa3C 1LD+peOX 10X EVEN 1K/ 3R2 Oy VyvHUAL ZKaMu G |
OntNTOPYnRh4UTBEhgOrF LTT0ku3 SeMpGDkC AWEAA M MCEWHWYDVRO BBGWF AT AT 105 THC
XPANSH3DKTnF £ 1owDQ¥ K02 Thve HAQEEBQADOQA2 zAchKNIQhxdyy2k ImxRxc2 1aC3GTQRVE
FSRSTUKEUES L /<t CEgecIHp D YUk SIulg P yoTs

END CERTIFICATE

‘\mpnmng this certificate ﬁ
‘ >






OEBPS/images/job_config.png
Job Instance ID: requestint

Job Instance Editor.

QueueNotifier

Job Plugin ID: RequestinQueuejob

enabled
aon

subsystemld
summary.enabled
summary.emailSubject
summary.emailTemplate
summary.senderEmail

summary.recipientEmail

o0

=

[Reduests in Queue Summary Report
[usr/lib rhpki-ca/emallsfrig LSurnmary: html

Enable this plugin

oK

Cancel

Help






OEBPS/images/cm8.png
Red Hat® Agent Services

Certificate Manager

List

List Certificates
Use this form to list certificates whose serial numbers fall within a
specified range.

Enter a range of certificate serial numbers in hexadecimal form
(starting with Ox, as in the certificate list), or in decimal form.

Lowest serial number 001 (leave blank for no lower limit)

Highest serial number|1004 (leave blank for no upper limit)

¥l Do not show certificates that have been revoked
Do not show certificates that have expired o are not yet valid

first 20 | records






OEBPS/Common_Content/images/dot.png





OEBPS/Common_Content/images/30.png





OEBPS/images/new_issuingpoint.png
CRLissuing point name:
Description:






OEBPS/Common_Content/images/22.png





OEBPS/Common_Content/images/5.png





OEBPS/images/signalg-default.png
Configuration

[ Red Har Certificate System: 9
@, Users and Groups
@4 Access Control List
Log
@3 System Keys and Centificar
@ Authentication
o @ Job Scheduler
4 (2 Centficate Manager
Centficate Profiles
@4 Notification
& @ CRUIssuing Foints
@ Publishing

© General Settings | Connectors

Centificate Validity

[] Override validity nesting requiren

Centificate Serial Number
Next Serial Number: (0%
Ending Serial Number: 0%

Default Signing Algorithm

Algorithm: [SHAIWithRSA |~

BAATWItRSA
A2 bwithRsA
ISHASL2withRsA
MDswitnRsA N
MD2withgsA






OEBPS/Common_Content/images/note.png





OEBPS/images/clone_material.png
Clone Feature

You are installing a clone subsystem
To install a clone subsystem, execute the following steps:
1) Click Cancel.

2) Inthe <server_root>/alias directory, copy the master's
cent-<master_instance_id>- <machine_name>-cerie.db and
cert-<master_instance_id>-<machine_name>-key3.db to this cloned
instance’s ceri-<clone_instance_id>- <machine_name>~certs.db and
cert-<clane_instance_id>-<machine_name>-key3.db in the same directory.

3) Copy <server_raot>f<master_instance_id>/config/kra-cert.db to
<server_root>/<clone_instance_id>/confiakra-cert.db (For Data Recovery.
Manager Clone Ony)

#)Capy <server_raat>/<master_instance_id>/confia/kra-key.db o
<server_raot>/<clone_instance_id> config/kra-key.db (For Data Recovery.
Manager Clone Only, and If the master DRM's starage key Is nat stared on
hardware token)

S)Capy <server_raot>/<master_instance_id>/canfig/kra-mn.confta
<server_root=/<clone_instance_id> /config,/kra-mn.conf (For Data Recovery
Manager Clone Ony)

6) Restart this Installation Wizard

<Back Next> Cancel Help






OEBPS/images/crosspair.png
Certificate Profil

Rule Editor

Centificate Profile Instance ID:

Centificate Profile Name: [crosspair

Certificate Profile Descriptios

End,

Certificat|

ce

Pol

Set |

Default

Constraint

¢ [crosspair

Auto Request Assignment Default
Basic Constraints Extension Default

Certficate Version Defaul

Extension Constraint

oK.

Cancel

Help






OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-MediumItalic.woff2


OEBPS/images/14HIER.png
—
Asia CA Europe CA usaca
Subordinate CA  Subordinate CA Subordinate CA
]
Tesisssisilicciicinisd
Sales CA Marketing CA Engineering CA

Subordinate CA

Subordinate CA

Subordinate CA

Certificate Issued by
Engineering CA





OEBPS/images/publisher1.png
Configuration

Red Hat Certificate System: (" publishers Management | Publisher Plugin Registration |
Users and Groups

Access Control List Publisher Plugin Name ] add
Log LdanCrossCenPairPublisher_|LdapCertiicatePairPublisher -
System Keys and Certii | |~ OCsPPublisher (OCSPPublisher Delete
Authentication LdapCaCertPublisher LdapCaCertPublisher
o Job Scheculer [LaapliserCerPublisher Eait/View
¥ (E"P‘!;:‘:SME"EEE’ LdapDeltaCriPublisher LdapDeltaCrlPublisher
o e brofies | | LdanCriPublsher LaanCriPublisher
Notification
o CRL Issuing Paints
4 Publishing
Mappers
Publishers

Rules





OEBPS/Common_Content/images/37.png





OEBPS/images/ra-user-add.png
ate System

‘ Red Hat® Cert

Administrator Interface

uip smith
Name [John Smith
Em

ismith@example com

MVKISHIWIKjsikdikIOQW
Certificate PSKFDkdsopwpaogcmzAX
Alksopdapeckalwkdkd29ekd

Add User





OEBPS/images/AddUserToGroup.png
UID: ADMIN

Administrator Interface

[GID_[remote_admins
[Name|Remote Admiristrators

Delete This Group

Members

redhat [Delete]

New Member
jsmith |+ Add





OEBPS/images/crl-sched2.png
* Updates | Cache | Format

Update Schema
Enable CRL generatios

Generate full CRL every [3] deitas).

Extend next update time in full CRLs []






OEBPS/images/crlhttp5.png
Select Rule Piugin Implementation;






OEBPS/images/acl1.png
‘Access Control Editor ()
Resource name:  centServer.auth.configuration

Alowabte ights: [reagmocity ]

ACI entries:

allow (reac) group =" Administrators" || aroup="Certi = Add
allow (o) group="Administrators
Delete
Edit
] I D]
Description:
[Adiministrators, agerts, and auaitors are llowed (o read =
[authentication configuration but only administrators allowe to mocity | =/
oI D]
Ciick a labelec! component for a help description

oK. Cancel Help






OEBPS/images/tps-auth-ui.png
Red Hat” TPS Services

Main Menu : Administrator Operations : Authentication Source Configuration

UID:admin

Authentication
Source:
Status:

Contents:

0
Enabled

auth. instance.
auth. instance.
auth. instance.
auth. instance.
auth. instance.
auth. instance.
auth. instance.
auth. instance.
auth. instance.
auth. instance.
auth. instance.
auth. instance.
auth. instance.
auth. instance.
auth. instance.
auth. instance.
auth. instance.
auth. instance.
auth. instance.
auth. instance.
auth. instance.
auth. instance.

SsLon=false
attributes=nail, cn,uid
attributes._ooL

attributes. 002=# attributes will be available
attributes. 003=# as $auth.<attribute=§
attributes. 004

certdir=/var/lib/pki-tps/cont
hostport=Localhost:389

LibraryFactory=GetAuthentication

Tibraryliane=/usr/1ib/11bldapauth. so

retries=1

retryConnect=3

alse

DAP_Authentication

ul.description.en=This authenticates user against the LDAP directory.
ui. id. PASSWORD. description.en=_DAP Password

Ui id. PASSWORD. nane. en=LDAP Password

ui. id.UID.description.en=LDAP User ID

ui.id.UID. nane. en=LDAP User ID

Ui title.en=LDAP Authentication






OEBPS/images/tps-profile-change.png
Main Menu : Administrator Operations : Profile Configuration

UID:admin

Please confirm changes to the Profile: userKey

Parameters added:

op.pinReset.userkey. zfoo=bar

Parameters deleted:

Parameters changed:

Confirm Changes | [ Back | [ Cancel






OEBPS/Common_Content/fonts/overpass_regular-web.woff


OEBPS/images/inst-certs-tps.png
b Subject Names

Each certficate associated with this instance needs to have a unique name within the PKI hierarchy. The following
information will be used to generate these unique names. [Details]
SSL Server Certificate

DN:  |CN=Token Processing System,0=Example Domain

Nickname:  [serverCert cert-pki-tps

Subsystem Certificate

DN:  CN=TPS Subsystem Certificate, 0=Example Domain

Nickname:  [subsystemCert cert-pki-tps






OEBPS/Common_Content/images/green.png





OEBPS/Common_Content/fonts/overpass_light-web.ttf


OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Regular.woff2


OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Bold.woff2


OEBPS/images/crl-updates-tab-set-time.png
Updates | Cache | Format

Update Schema
Enable CRL generation:

Generate full CRL every [3 delta(s).
in full CRLs []

Extend next update timi

Update Frequency

[ Every time a certificate is revoked or released from hold

Update CRL at [1:50.04:55.06.55

[] update CRL every minutes

Next update grace period [0 minutes






OEBPS/images/inst-certs-links-drm.png
6 Requests and Certificates

A centficate signing request (CSR) contains a public key and is an unsigned copy of the certficate.

If a given CSR has been successfully signed by a CA, then the certficate will be designated below by a certficate
icon labeled Certficate Generated Successfully.

However, if a given CSR contains an action required label under ts certficate icon, then those requests must be
‘manually submitted to a CA for certficate generation. [Details]

Press the [Next] button once all certficates have been generated successfully.

CN=example,0=Example Domain

Step 1: Copy the Certficate Request (CSR) to enroll at an extemal CA

action required Step 2: Import the Certificate Chain (optional if the certificate already contains

@ the chain)
ﬂ Step 3: Paste in the Base64-encoded Certficate after enrollment at an extemal
cA

CN=KRA Transport Certificate,0=Example Domain
View Certificate Request (CSR)
View Certificate in Base64-Encoding
Certficate Generated  View Centficate Pretty Print

Successfully
CN=KRA Storage Certiicate, 0=Example Domain





OEBPS/images/user2.png
Edit User Information ()

user ID: [examplel
Full name: [Example User
femail@example_com
: [100-555-1212
1

oK. Cancel Help






OEBPS/images/flatfileauth1.png
Configuration

Redl Hat Certificate System:9% | Authentication Instance | Authentication Plugin Registration
@ Users and Groups

@] ccess cControl it Tnstance Name Flugin Name ] -
Log & raCertAuth AgemtCertAuth B
@ 5ystern Keys and Centficar | | & AgentCertAuth [agertcenaum Detete
@ Auhemication = SsLcleiCeniauh sLclentcenai
o @) job Schectuer FatFleAutn Eatvieel
& 3 Centicae Hanager & Tokendutn oken At
Certicat Frofies = Chcaun ciicaim






OEBPS/images/tps-auth-ui1.png
Red Hat” TPS Services

Main Menu : Administrator Operations : Authentication Source Configuration

Use this form to add or modify authentication sources.
Either select an item to edit in the drop-down box below and click "Edit",
or fill in the name of a new authentication source and click the "Add" button.

Edit an existing Authentication o[z
Source: =

Add a new Authentication Source: |






OEBPS/images/selinux1.png
« Applications

Favorites & IcedTea-Web Policy Editor
Accessories

% SELinux Management
Documentation
e Bl setinux Policy Management Tool
Internet
Office

Sound & Video
Sundry
System Tools
Utilities

Other






OEBPS/images/chkconfig.png
- Service Configuration

Ele View Actions EditRunievel Help

=]

save Revert

ackground Services | On Demand Services.

These services are started once and run in the background
You can specify in which runlevels they are started.

Currently Running in Runlevel: 5 Editing Runlevel: 5

) Description

Certificate Authority (Tomcat 5.0)
Start  Stop Restart

o o

O pand

Status
Ki-ca (pid 1181) s running

[ pii-cacionel

Unsecure Port = hitp://
O pki-caclone2 E wilbur.redbudcomputer local:9180/ca/ee/ca
Secure Agent Port = hitps://
wilbur redbudcomputer local:9443/ca/agent/ca
O pki-ocsp Secure EE Port = htps:/
wilburredbudcomputer local:9444/caree/ca

O pikra

O piira

=) (G I} [






OEBPS/images/autoenroll.png
domain
controlier

proxy submits the
fequest 1o the CA

envollee asks the

domain controller

for the auto enrol
proxy host

Sl contacts
e A Shral proxy
directly L

\

Red Hat
Certificate
Authority

windows domain





OEBPS/images/mappers4.png
Mapper Editor ()

Mapper ID: [DNmapper

Mapper Plugin ID: LdapDNCompsMap

baseDN [ou=marketing, dc =example]
dnComps [uic, cn,mail
filterComps [s1]

Comma-separated list of attribuites to form the fikter

oK. Cancel Help






OEBPS/images/tps-self-tests.png
TPS Admin *

Red Hat” TPS Services

Operator

Operations Agent Operations

Operations

Tokens

« List/Search Tokens
+ Add New Token

Users

+ Add User

+ List Users

+ Search Users

Activities
« List/Search Activities

Self Tests
«[Run Self Tests

Auditing
- Configure Signed Audit





OEBPS/images/04cert.png
John Doe's Certificate

|

Issuer's digital

Does user's
public key validate
User's digital signature?

John Doe's digital
signature

Is today's date within
@ valdity period?

Isissuing CA a
trusted CA?

O 0oes isuing ci's
publickey vatdate
suer's gt
Siansture?

© nocs ssuing ca's
publickey valiite
Fesuer's diita signature?

Directory Server

Server's list of
trusted CAs

Issuing CA's
Certifacte

issuer's public ke

Issuer's di
ignature






OEBPS/images/05pcrypt2.png
Encryption Decryption

g ® g

Symmetric  Scrambled  Symmatic
Data






OEBPS/images/kra-recovery-agents.png
m = instanceiD) =TT

= locainost - Red Hat.

Console Edit View Help

Certificate System

Configuration | Status

T Red Hat Certificate System-10: |+ General Settings

£, Users and Groups
@ Access Control List B=rbie iR st

Q Log Required Number of Agents: [
@i System Keys and Certificat

(3 Data Recovery Manager






OEBPS/images/token-transition.png
allowed
states the
‘card can

transition to

& _
Smart Card.
Status: UNINITIALIZED (0)

allowed
states the
‘card can

transition to

[
Smart Card
Status: TEMPORARILY LOST (3)

allowed
states the
Jcard can
gy —nstionto
Smart Card
Status: FOUND (4)

[~ Physically damaged (1)
——>Lost (2)
[———>Temporarily lost (3)
|———>Found ()
[———>Permanenty lost (5)

L Terminated (6)

[———Found (4)
{————>-Permanenty lost (5)

b Terminated ()

————-Physically damaged (1)
——>Lost (2
[———>Temporarily lost (3)

L Terminated ()





OEBPS/Common_Content/fonts/redhat/text/RedHatText-Bold.eot


OEBPS/images/rule2.png
Select Rule Plugin Implementation






OEBPS/images/ca-renew3.png
Certificate Profile

Congratulations, your request has been processed successfully
Your request ID is 55.
Outputs

« Certificate Pretty Print

Cercificate:






OEBPS/images/ca-crl1.png
Red Hat® Certificate Manager

Check Request
Status

List Certificates

Retrieval

Import Certificate Revocation List
Use this form to check whether a particular certificate has been
revoked or to import the latest Certificate Revocation List.

Select CRL issuing point
Issuing point: [MasterCRL [v|

Select one of these actions
© Check whether the following certificate is included in CRL cache
@ Check whether the following certificate is listed by CRL

Certificate serial number: [15

Import the latest CRL to your browser
Import the latest delta CRL to your browser
Download the latest CRL in binary form

Download the latest delta CRL in binary form

00000

Display the CRL information: [CachedCRL [+






OEBPS/images/aep-dcom-security.png
Red Hat Auto Enrollment Proxy Properties

Genera | Locaion | Securty | Endports | identty|
+ Launch snd Actvaton
" Use Defaut
Securty |
& Customize.
Group orsernames:
€71 Administrtors (EXAMPLE \Administrators)
[-Access Pemissions ——| | ¢ INTERACTIVE
 Use Defauk € svsTEM
& Customize.
it | Remove
" Corfigurston Pemissios
Pemisions fo Adrinistatos Mow___Deny
 Use Defat Local Launch &}
& Cusomize Remot Launch &}
Local Actvaton &}
Remoe Actvaton &}






OEBPS/images/15chn.png
CA certificate
RootCA MM

Trusted authority

1—\

CA certificate
Asia CA Europe CA ptedny
Root CA
|

Untrusted authority

Sales CA Marketing CA

CA certificate
signed by
UsACA

Engineering CA
oy

Untrusted authority

CA certificate
issued by
I Engineering CA

Program verifying the certificate






OEBPS/images/mmc-menu.png





OEBPS/images/ra-services.png
‘ Red Hat® Certificate System

Certificate System RA Services Page

® SSL End Users Services
* Agent Services
* Administrator Services





OEBPS/Common_Content/fonts/overpass_bold-web.eot


OEBPS/images/cm_connector2.png
Edit Connector

Data Recovery Manager Connector:

Enable

Host:
Port:
Timeout Gec):

Nickname:

server example.com

10443

3o

[Server-Cent cent-rhpki-ca

Please select a certificate from the following table for SSL client

authentication;

(Certiicate Name|_Serial Number | _Issuer Name | Taken Name
casigningCert ..|1 (CN=Centficat.._ internal
locspsigningCe... 2 (CN=Certficat.__internal
Server-Certc.. 3 (CN=Centficat... internal
subsystemCer...|4 (CN=Certficat... internal
Kl

oK. Cancel Help






OEBPS/Common_Content/fonts/redhat/text/RedHatText-MediumItalic.woff


OEBPS/images/dcomenroll.png
Windows server

Certificate
Authority





OEBPS/images/cm11.png
Red Hat® Agent Services

Certificate Manager

Certificate 0x0a

Certificate contents

List

" Cercificate:
Certificates

Data:
Version: v3
Serial Number: Oxh
Signature Algorithm: SHAIWIthRSA - 1.2.840.113549.1.1.5
Issuer: CN=Cercificate Authority,O=Example Domain
validity:
Not Before: Tuesday, May 19, 2009 10:04:47 M CDT America/Chicago
Not After: Sunday, November 15, 2009 9:04:47 RM CST America/Chicago
Subject: UID=jsmith,E=jsmith@example.com, CN=John Smith
Subject Public Key Info:
Algorithm: RSA - 1.2.840.113549.1.1.1
Bublic Rey:
Exponent: 63537
Bublic Rey Modulus: (1024 bits)

D2:68:CE:24:22:47:73:2D:

55:7C:65:96:3C:D8:35: 961

as:on:se =7

s &

is2: :FD:

6 s

ra2: is9:

res: :57:

Extensions:
Idencifier: Authority Key Identifier - 2.5.28.35
Critical: no

Key Identifier:
53:17:7F:AE: 4
c2:eFiami22






OEBPS/images/client-cert-import1.png
Certificate Manager

Your Certificates People Servers Authorities

You have certificates from these organizations that identify you

Certificate Name Security Device

View. Backup. Backup AlL. Import... Delete.

Serial Number

Expires On

oK

a





OEBPS/images/proxy-menu.png
) voats Frefox ,
@) voais Tunderbig






OEBPS/images/ca-crl3.png
Certificate Manager

Retrieval

Check Request Certificate Revocation List
Status

Certificate revocation list summary.
CRL issuing point: MasterCRL
CRL number: 12

Number of CRL entries: 0
CRL issuing point description: CA's complete Certificate Revocation List

Certificate revocation list bases4 encoded

—-—--BEGIN CERTIFICATE REVOCATION LIST—
MIIBNTCBGGIBATANBgkqhK: GowOBAQUFADBAMRS WHAYDVQQKE XVSZHR1AWRID2 10
AXR101BEb21naN4xH3ACBGNVBANT FUNL cnRpZml § YXR1EF1dGhveml OeReNMDKH.
NTTXMTAWMDAWHACNMDIHNT LXHT QuMDAWHGACMAWWCG YDVROUBAMCAQUWDQY JKOZT






OEBPS/images/cm_enabled_random_both_boxes_checked.png
cal.example.com - Red Hat Cert

ate System - instancelD

- Certificate System
[ Confiquration | Status |

Red Hat Certificate Syster9445 || General Settings | Connetors
@, Users and Groups
@ Access Control List Certificate Validity

Log
@ System Keys and Certificates
@ Authentication
G Job Scheduler Certificate Serial Number
o (3 Certificate Manager

Console Edit_View Help

[] override validity nesting requirement

Enable serial number management

Enable random certificate serial numbers

Default Signing Algorithm

Algorithm: [SHAZ56withRSA






OEBPS/Common_Content/images/4.png





OEBPS/images/proxy-logging.png
Certificate System Proxy Configuration

Roout | CA Catcte | Acive Diecary | CAComnecion Loggng
Logging Events

¥ Request Frocessing ¥ Miscellaneous

IV Certficate lssuance

Debug events
I~ com/pcom I™ Function callentrylexit
T Configuration / Registry T~ Extra detail

I CA Communication

Alllogs are written to the ‘application’ event log ErEoie

Apply. Cancel H






OEBPS/images/cm13.png
Red Hat® Agent Services

Certificate Manager

Revoke
Certificates.

Certificate Revocation Confirmation

Use this form to confirm certificate revocation by selecting appropriate revocation
reason and submitting the form.

Important: When making this request you must use the browser environment in which
you have access to your authentication certificate and key.

Certificate Details
The details of the certificate being revoked are below:
Serial lumbr: 0x03
Subject Nlame: UID=jsmith, E=jsmith@example.com, Cli=John Smith
valid ot before: 5/19/2009 and not after: 11/15/2009

Select Invalidity Date
Please select the date on which it is known or suspected that the private key was
compromised or that the certificate otherwise became invalid.

Invalidity date: [6 [v][May ] [2009 [

Select Revocation Reason
Please select reason for revocation.

@ Unspecified

OKey compromised

O CA key compromised
O Affiliation changed

O Certificate superseded
O Cessation of operation
O Certificate is on hold

Additional Comments
1f vou want to include anv additional comments in vour revocation request. writa them






OEBPS/images/profile_rule.png
= Profile Rule Editor

Profile Instance D;

Prfie Name: [i2 Server Crtate Envaimant
Prfie Set s or vl semer cereates
Ena Userpreie: [7e =
Prfie Authentcation:
Prfie Pigin 1D caEmalm
Potciss | inpus | owputs |
S| s [oem [oms sdd
e T SueSuge =
|server. 2 [validit. . [validit. BeED
T — i =
eervor - {ate- Neco |, 2|
server. 6 Kev U [Kev U, =

oK cancel Help






OEBPS/images/createCAEntry.png
Mapper Plugin ID: LdapCasimpleMap

dnPattern [UD=$subj.cn,0U=people,0=$subj

createCAEntry






OEBPS/Common_Content/images/23.png





OEBPS/images/crlhttp4.png
Certificate System

Rules Management

Status “Add
L3

' LdapXCertRule.
S LdapUserCertRule
| [.= LaanCriRule

Delete

L pamview. ||





OEBPS/Common_Content/images/40.png





OEBPS/images/ca-basic.png
Certificate Manager

cert and sends
tto the user





OEBPS/images/kra_spy.png
Daf

Recovery
Manager
Agent

HTTPS

Data Recovery Manager
° -

Policy

Decisi

fon

Accept

Reject

Accept

[

PKCS #12 package

2
e

&

Internal
database

Logs

Reject





OEBPS/images/aep-domain3.png
windows domain

domain
controlier

Ao
Enl
Frosy.

domain
member

domain
contolier

‘windows domain

windows forest





OEBPS/images/tps-audit.png
Red Hat” TPS Services

Main Menu : Administrator Operations : Configure Audit Logging

UID:admin

Enable Audit Logging © Enable Disable
Enable Audit Log Signing: Enable @ Disable
Audit Log Signing Interval (seconds)

Audit Log Signing Buffer Size (bytes,
minimum 51.2):
[AUDLT_LOG_STARTUP

|AUDIT_LOG_SHUTDOWN
LOGGLG_SLGNED_AUDLT_SLGNING

Events Always Logged

Selected Optional Events to be logged:

AUTHZ_SUCCESS AUTHZ_FAIL AUTH_FAIL
AUTH_SUCCESS ROLE_ASSUME ENROLLMENT
PIN_RESET FORMAT CONFIG

CONFIG_ROLE
CONFIG_AUDIT
RENEWAL

CONFIG_TOKEN
APPLET UPGRADE
CIMC_CERT VERIFICATION

CONFIG_PROFILE
KEY CHANGEOVER






OEBPS/images/rule1.png
Console Edit View Help

Configuration

Redl Hat Certiicate Systern: /| Rules Management

Users and Groups

Access Contro List Ruie Status ] Add
Log ocsprule Enabled -
System Keys and Certifl | | | dapCaCariRule Enabled Delete
fumertcaton LaapxCertrule Enablea

I paneminn
% Publishing

Rl






OEBPS/images/profile_inputs.png
Certificate Profile Rule Editor

Certificate Profile Description: [cmcOtherCert

End User Certificate Profil

Certificate Profile Authenticati

Plugi aserverCertEnrollimpl

cate Profi

inputs | outputs
nputs ]

] Add
(Certificate Request Input -

i
Deletel

Certificate Profile Input Editor x

Select one of the following inputs:

Certificate Renewal Request Serial Number Input
Certicate Request Input

Request Input
Dual Key Generation Input
Encryption Key Generation Input
Encryption Key Generation Input

oK cancel






OEBPS/images/subsystem.png
Token
Management
System: Token operations

Certficate Manager

Sending
approve:
Tequests //Issuing

Publishing
n CRLS

b

Registration

cre

OCSP Responder

Authority
=

"Wﬁﬂ:ﬁ 7 hais
"





OEBPS/images/acl.png
Console Edit View Help

Configuration

Redl Hat Certificate System 9543
Users and Groups
HAcess Cariral Lisi
Log
Syster Keys and Certificates
Authentication

& Job Schecluler

o Centficate Manager

Access Control List | Evaluator Plugin Registration |

Certerver. admin.ocsp

certServer, auth. configur.

Only Enterprise Administr.
[ anybody may submit an
Agministrators, agents, .

Resource Name Description Add
certServer.acl.configura... |Administrators, agents a.
certServer.admin.certif... |Any user may import a c Edit






OEBPS/images/inst-ldap-tps.png
b Internal Database

Please provide information to an existing Red Hat Directory Server that can be used as the

intemal database for this instance. [Details]

Note: If the Red Hat Directory Server is at a remote host, it is highly recommended that SSL

should be used.

Host:

Port:

Base DN:

Database:

Bind DN:

Bind Password:

[CIRemove the existing data from the Base DN shown above.

e

localhost

389

de=senver example com-pki-tps

senver example com-pki-tps

cn=Directory Manager

Osst






OEBPS/Common_Content/images/38.png





OEBPS/Common_Content/images/bkgrnd_greydots.png





OEBPS/images/profile_policy.png
Default

Constraint

Certificate Profile Policy Editor

Authority Info Access Extension Default
Authority Key Identifier Extension Default
Auto Request Assignment Default

Basic Constraints Extension Constraint
Extension Constraint
No Constraint






OEBPS/images/publisher4.png
Publisher. Editor.

Publisher ID: [OCSPPublisher

Publisher Plugin ID: OCSPPublisher

host [ocsp.example.com
port [11443
path [jocsp/agent/ocsp/addCRL

enableClientauth

nickName [subsystemCert cert-pki-ca

oK cancel Help






OEBPS/images/flatfileauth2.png
Authentication Instance Editor

Authentication Instance ID: flatFileAuth
Authentication Plugin ID: FlatFileAuth

fileName [/var lib/pki-ca) conf fatfile.tx]
KeyAuributes [UID
authAttributes [PWD

deferOnFailure

Pathname of password file

oK. Cancel Help






OEBPS/Common_Content/fonts/redhat/text/RedHatText-RegularItalic.woff


OEBPS/images/tps-profilemapping-select.png
S Red Hat” TPS Services
A\ 4

Main Menu : Administrator Operations : Profile Mapping Configuration

Use this form to add or modify profile mappings.
Either select an item to edit in the drop-down box below and click "Edit",
or fill in the name of a new profile mapping and click the "Add" button.

Edit an existing Profile Mapping: [enron 3] [Ear ]
Add a new Profile Mapping: [ [(Ada |






OEBPS/images/reqflow.png
Request status: Agent views
pending

Request status:

‘pending

Tequest

Agent assigns
request to self

Request status:
pasllllllAeaaniiiii
Agent Cancels pending

request FCeeD

Request status:
pending

Agent Cancels
request

Certificate
issued
request status:
Completed

Status of
cloned request:
Pending






OEBPS/images/publishing-queue.png
Certificate System

T Red Hat Certiicate System:€
@, Users and Groups
@ Access Control List

Log
@ System Keys and Certf Enable Publishing Queue
@ Authentication

o @ Job Scheduler [ Enable Default LDAP Connection
¢ (3 Certficate Manager
Certificate Profiles
@ Notification
& @ CRL Issuing Points
o & Publishing!

Destination






OEBPS/Common_Content/images/shine.png





OEBPS/Common_Content/images/shade.png





OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BoldItalic.woff2


OEBPS/images/selinux-policy.png
File Help
Select:
Status

Boolean
File Labeling

User Mapping
SELinux User
Network Port

Process Domain

New  Add Remove Enable Audit

Fitter |

Module Name v Version

pesign 100
pingd 110
piranha 100
pkes 101
pki 10.0.11
plymouthd 120
podsleuth 17.0






OEBPS/images/mmc-open.png
Fle Acion View Favors |






OEBPS/Common_Content/images/36.png





OEBPS/Common_Content/images/stock-home.png





OEBPS/images/inst-certs-drm.png
b Subject Names

Each certficate associated with this instance needs to have a unique name within the PKI hierarchy.
The following information will be used to generate these unique names. [Details]
Storage Certificate

DN: CN=Data Recovery Manager,0=Example Domain

Nickname: [serverCert cert-pkira

Transport Certificate

DN:  [cN=KRA Transport Certificate,0=Example Domain

Nickname: firansportCert cert-pkikra






OEBPS/Common_Content/images/image_right.png





OEBPS/Common_Content/images/red.png





OEBPS/Common_Content/images/stock-go-up.png





OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-RegularItalic.woff


OEBPS/images/tps-list-users.png
Red Hat® TPS Services

Main Menu : Administrator Operations : Search Results

User D
admin
elackey
jsmith
itvler
mreynolds

Total: 5

Name
TUS Administrator
Ella Lackey
John Smith
Jaye Tyler
Malcolm Reynolds

Date Created
2009/05/20 12:11:30
2009/05/20 13:23:07
2009/05/20 13:22:27
2009/05/20 13:21:44
2009/05/20 13:23:29

UID:admin

Date Modified
2009/05/20 12:11:30
2009/05/20 13:23:07
2009/05/20 13:22:27
2009/05/20 13:21:44
2009/05/20 13:23:29





OEBPS/Common_Content/images/28.png





OEBPS/images/tps-admin.png
Hat® TPS S

Administrator Operations

Tokens
« List/Search Tokens
* Add New Token

Users

* Add User

« List Users

« Search Users

Activities
« List/Search Activities

Self Tests
« Run Self Tests

Advanced Configuration
« Profiles
« Subsvstem Comnections

« Profile Mappings
+ Authentication Sources

« General






OEBPS/Common_Content/images/3.png





OEBPS/images/cert-wizard-inst2.png
icate Setup Wizard

Location of Certificate
Indicate the location of the certficate:

© The centificate is located in this file:

® The centificate is located in the text area below:

Paste a base-64 encoded centficate (ncluding

BEGIN CERTIFICATE-.
MIDRZCCAI+gAwIBAQIBCIANBOKThKIGSWOBAQUF ADA2 MROWEGYDV
MEWGALUEAXMY Q2YyHGImaWNdGUGQXY 02CyaXRS MBXDT A2

MJE2MY oweZEIMBIGALUECMLOGY 2CBKD2 1haWd4x GIAYBIKONKIG
MRUWEWYKCZImiZPyL GOBARMFYWR1ali4 M DAUBGNYBAMTI01SQSBE:
(€ 3RRBMNIIHJor GtpL Ity T CBnz ANBgkoihkIGOWOBAQEF AAOBIQ AwgY
[2e3nZbhdCe 1+ gTNS CreKy /xVHK3af3 7 W 10iDYJ9 91 jF WM clevePOO!
IN32510PscmBReinocUOtZMR3 ghXyghM + OV KHhe 1j5ar/L Lotay 0TG

< L I 0|

Paste from the Clipboard

<Back Next> Cancel Help






OEBPS/Common_Content/fonts/redhat/text/RedHatText-BoldItalic.woff2


OEBPS/images/file-signing.png
Enrollment / Renewal W /.- (W "

Certificate Profile

Use this form to submit the request.

Certificate Profile - Agent-Authenticated File Signing

This certificate profile is for getting file signing certificate with agent authentication.

Authentication - Agent Authentication
This plugin authenticates agents using a certificate.

Inputs

Key Generation

« Key Generation Request Type  pkcs10

« Key Generation Request 0% v
File Signing Input

« URL Of File Being Signed

o Text Being Signed
Requestor Information

« Requestor Name
« Requestor Email

« Requestor Phone






OEBPS/Common_Content/images/image_left.png
& RedHat





OEBPS/images/ra-group-add.png
‘ Red Hat® Certificate System

Administrator Interface

GID [rdu-agents

Name [Raleigh Agents
Add Group





OEBPS/Common_Content/fonts/overpass_regular-web.ttf


OEBPS/Common_Content/images/16.png





OEBPS/Common_Content/images/13.png





OEBPS/images/pkcs11.png
PKCS#11 Module. Slots Tokens

<«  Crypto services token
<« Certiicate DB Token






OEBPS/Common_Content/fonts/redhat/text/RedHatText-MediumItalic.eot


OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Medium.woff2


OEBPS/images/tps-general.png
Red Hat® TPS Services
A\ 4

Main Menu : Adm ns : General Configuration

General: General
Status: Enabled

applet. 000=#HEEFFFHEHEFEEIHIEREEEMEREEEREREEEEEE
applet. 001=# applet information

applet. 002=% SAE Key:
applet. 003=# applet.aid.cardmgr_instance=A0000001510000

applec. 004=#HifidEstEHEEEFFEFIITHIIHIBEEEERERERERHEE
applet.aid.cazdmgs_instance=A0000000030000
applet.aid.netkey File=627601FF0000
applet.aid.nstkey_instance=627601FF000000
applet.aid.nstkey old_file=A000000001
applet.aid.netkey old_instance=A00000000101
applet.delete ola=true

applet.so_pin=000000000000

channel T R T
channel. channel.encryption:

channel
channel - enable encryption for all cperation commands to token
channel - default is true
channel channel.blocksize=242
channel channel.defKeyVersion=0
channel channel.defReyIndex=0

Contents: channel SHE I R

channel.blocksize=2:t
channel.defXeyTndex=0
channel.defXeyVeraion=0
channel _encryption=crue
f£ailover.pod. enable=talse
general.applet_ex
general.pulength.mineis
general.search.sizelimit.default=100
general.search.sizelimit.max=2000
general.search.cinelimit.default=10
general.search.sinelimit.max=10

general.YerifyProgf=l






OEBPS/images/ca-html.png
-
Enroliment 1§ X

List Certificate

Certificate Profile
Profiles

Use this form to select a certificate profile for the request.

Certificate Profile Name Description

ProfileList.temp






OEBPS/Common_Content/fonts/overpass_bold-web.ttf


OEBPS/images/crlhttp7.png
Console Edit

Configuration

Redl Hat Certiicate System:9< | "» General

@ Users and Groups

@ Access Control List ¥ Enable Publishing
Log 3

@System Keys and Certicar | [ Enable Default LDAP Connection
@) Authentication
& job Schectler Destination

- (3 Centificate Manager

Certficate Profiles
@4 Notification
& @ CRUIssuing Foints
# @ Publishing
Mappers Passwoid:





OEBPS/images/aep-dcom-identity.png
Red Hat Auto Enrollment Proxy Properties

General | Location | Securty | Endpoints | Identty

Which user acoount do you want to use to un his application?

€ Theinterastive user,
€ The lsunching user

& This user.






OEBPS/Common_Content/images/Enterprise_title_logo.png
& RedHat





OEBPS/images/ra-group-list.png
ate System

‘ Red Hat® Cer

Administrator Interface

Add New Group

[GID [Name
[agents [Agents

[administrators|[Administrators

Previous | Next





OEBPS/Common_Content/fonts/portal/nimbus/iconfont.woff


OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Medium.eot


OEBPS/Common_Content/images/Online_title_logo.png
& RedHat





OEBPS/images/profile_new.png
Select Certificate Profile Plugin Implementatiol

CA Centificate Enroliment Prafile

Generic Centificate Enroliment Prafile

Server Centificate Enroliment Prafile
& Enrolimen P






OEBPS/images/cert-retrieve1.png
)

v W Retricval ¥

Check Request Check Request Status
Status Use this form to verify status of the specified certificate request.

List Certificates

@ Enter a request identifying number (in decimal form).

Request identifier: 6






OEBPS/Common_Content/images/warning.png





OEBPS/images/aep-domain2.png
domain
controlier

‘Ao
v
bty

domain
member

windows domain





OEBPS/Common_Content/fonts/redhat/text/RedHatText-Medium.woff


OEBPS/images/renew2.png
User Identification Request

‘This site has requested that you identify yourself with a certificate:
‘wibur redbudcomputer local:o444

‘Organization: "Redbudcomputer Domain”

Issued Under: "Redbudcomputer Domain”

Choose a certificate to present as identification:
Jaye Tyler's Example Domain 0 [31] V]

Jaye Tyler'sExample Doman I [31]

Malcolm Reynolds's Exampie Domain ID [25]

OCSP Adminiirator of Instance pki-ocsp's Example Doman ID [21]

TPS Administrators Example Domain ID [15]

KRA Administrator of Instance pki4r2's Example Domai ID [14]

“TKS Administrator of Instance pki-ks's Example Domain ID [0€]

‘John Smith's Example Domain 1D [0A]

RA Admiistrator's Exampie Domain ID [05]

‘CA Administrator of Instance pki-cas Example Domai ID [06]

o o)






OEBPS/Common_Content/images/important.png





OEBPS/images/crl-updates-tab-drift-prevention.png
| Updates [ Cache | Format

Update Schema

Enable CRL generation:

Generate full CRL every [3 delta(s).

Extend next update time in full CRLs []

Update Frequency

pdate CRL at

pdate CRL every 240 | minutes
Next update grace period [0 minutes






OEBPS/images/20chver.png
Root CA
Untrusted authority [SERSNHISN
LR e et
1 Check validity period and verify

that this s signed by Root CA.
Untrusted authority Since Root CA Is not trusted,

certficate chain cannot be verified,
and client authentication fals.

Check validity period and verify
that this s signed by USA CA.
Since USA CA Is not trusted,
check the next certiicate.

Engineering CA

Untrusted authority

CA certificate Check validity period and verify
Issued by, that this s signed by Engineering
Engineering CA CA. Since Engineering CA is not

trusted, check the next certificate.

Program verifying the certificate






OEBPS/images/tps-operator.png
-

Main Menu

Operator Operations ~ Agent €

Tokens

List/Search Tokens
Certificates
List/Search Certficates
Activities

List/Search A






OEBPS/Common_Content/images/35.png





OEBPS/images/profile-input.png
Inputs

Key Generation
Key Generation Request Type
Key Generation Request

Subject Name
uD

Email
Common Name
Organizational Unit 3
Organizational Unit 2
Organizational Unit 1
Organizational Unit
Organization

Country

Requestor Information
Requestor Name
Requestor Email
Requestor Phone

512 [v

(Encryption and Signing)






OEBPS/images/client-cert-import2.png
Please enter the password that was used to encrypt this certificate backup:

Cancel oK






OEBPS/images/proxy-ad.png
oot | CACeticatsActve Directony | CA Comnection | Loging |
“Active Directory Setup

Populte AD Populte AD with CA service sefings

¥ Overwrite existing settings






OEBPS/images/acl-add.png
Resource namy

Allowable rights:
ACI entries:

certSenver.ca.demo

read modfy

nad

Delete

Edit






OEBPS/images/mappers2.png
Mapper Editor

Mapper I
Mapper Plugin I

: LdapCaCertMap
LdapcasimpleMap

dnPattern [UD=$subj.cn,0U=people.0=$subj

createCAEntry

il L IHD

Describes how to form the Ldap Subject name in

the directory. Example 1: ‘uid=CertMgr,

o=Fedora’. Example 2

“uid=$req HTTP_PARAMS uid,

E=$ext SubjectAlternativeName RFCB22Name,
Subj ou’. $req means: take the atribute from

the request. $subj means: take the atribute from

the certificate subject name. $ext means: take the

attribute from the certificate extension






OEBPS/images/tps-connection.png
Red Hat® TPS Services
A\ 4

Main Menu : Administrator Operations : Subsystem Connection Configuration

Subsystem Connection: cal
Status: Enabled
conn.cal.sSLom
Somn.cal. 000=HEHHIEHHEEHHIEEHHEEHIEEHIEEHIEEIINE
Gopn.cal. 001~# CA comnection
Gomn.cal. 002-#
Gomn.cal._003=# gomn.ca<n>.hQStROTK:
Gomn.cal. 004~ - host name and port number of your CA, format is hostiport
copa.cal. somn.can>.clientiicknane:
conn.cal. ~ nickname of the client cercificate for
GoEn.cal. 007=#  authentication
conn.cal gonn.can>. gexvles.enrollnent:
conn.cal = serviet to contact in CA
sonp-cal. ( - must be '/ca/profileSubmit3SLClient’
Gomn.cal. 011~# gopn.ca<n>. zetryConRegt:
conn.cal ~ number of reconnection attempts on failure
conn.cal gopn.cacn>. cimeout:
conn.cal. ~connection timeout
Gomn.cal. 015=# gopn.ca<n>.SSLOR:
Gopn.cal. 016= - enable SSL or not
conn.cal gonn.ca<n>. keepalive:
conn.cal. = enable keep alive or not
Contents: Gomn.cal. 01o=#
Gomn.cal. 020~# where
Gopn.cal. 021~ <n> - CA comnection ID
Somn.cal. 022=HEHHEEHHERHHEEHEEE IR HEEEITE
copa.cal.clientiicknanesubsystenCert cert-pki-tRs
Gomn.cal.hostadminport-hp-d1360-04.zhts. eng.brg. 2edhat. com: 9445
Gomn.cal.hostagentport-hp-d1360-04.zhts. eng.brg. zedbat . com: 9443
Gomn.cal.hostporE-hp-d1360-04.Zhts . eng.brg. £edhat. com: 9444
copn.cal.kesphlivescrue
copn.cal.zetzyConnect=3
Gomn.cal.gervler. enzollment=/ca/gs/ca/profileSubmi tSSICIient
onp-cal.gervlet. renewal=/ca/ge/ca/profilesubmitSSLCLient
gomn.cal.gervlst. a/gs/subsysten/ca/doRevake
conn.cal.servier. ca/gs/subsysten/ca/delnzevake
Gonn.cal. Timeout=100






OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Regular.woff


OEBPS/Common_Content/images/2.png





OEBPS/images/16chver.png
Trusted authority ICTIALY
Certificate

(A Check validity period and verify

that this s signed by Root CA.
Since Root CA s trusted,
| verifcation stops here.

Untrusted authority Eapm—yy
Certificate

Check valdity period and veriy
that this is signed by USA CA.
Since USA CA is not trusted,
check the next certificate.

CA certificate Check validity period and verity
Issued by, that this is signed by Engineering

Engineering CA CA. Since Engineering CA s not
| trusted, check the next certificate.

Program verifying the certificate






OEBPS/images/tps-config-error.png
augh-
augh-
augh-
augh-
augh-
augh-
augh-
augh-
augh-
augh-
augh-

instance.
instance.
instance.
instance
instance
instance
instance
instance
instance
instance
instance

0.ho3tpors-localnoay

ocalnoss3es

0.13bzaryFectory-GetAuthenticarion

0.1ibraryName=/usr/lib/libldapanth.s0
- W
‘The page at https://tps.example.server.com
- —
[ myawesomeauth s notavald parameter. |fainst the LDAR
| Valid parameters have the format auth.instance.” ||
I &






OEBPS/Common_Content/images/15.png





OEBPS/images/publisher2b.png
Select Publisher Plugin Implementation

FileBasedPublisher
LdapCaCentPublisher
LeapCertificatePairPublisher
LeapCriPublisher
LeapDehaCriPublisher
LlapUserCertPublisher






OEBPS/images/proxy-cacxn.png
Host:

CAType: [Red Hat C58.0
Add CA Remove CA

“Authentication to CA - Choose SSL Client Certficate.

[Serl: 18 ame: O=Example Domain. E=admin@eXample com, O1D.0.9.2342 162003
|Sera: 12000000000032509317 Name: DC=ocal, DC=example, OU=MyBusiness, OID| —
| Seral: 06 Name: O=E xample Dormain, E=admin @example com, ID.0.9.2342 152003(






OEBPS/images/take-off-hold1.png
Red Hat” Agent Services

cate Manager

left blank above. Pattern matching wildcard values can be used in this search

Revocation Informa

n
[ Show certificates revoked by: | |

[ show certificates revoked during the period:
statdate: [ 3| s][ 3]

search for

End date

O

Show certificates revoked from the reason: |Cessation of operation

Certificate is on hold
Remove certificate from CRL
Privilege withdrawn





OEBPS/images/cert-req-html.png
Red Hat® Cer

icate Manager

List Certificate
Profiles Certifi

te Profile - Manual User Dual-Use Certificate Enrollment

This certificate profile is for enrolling user certificates

Inputs

Key Generation

« Key Generation Request Type crmf

« Key Generation Request 512 [v] (Encryption and Signing)
Subject Name

« U smith

« Email ismith@example.com

« Common Name John Smith

« Organizational Uit 3 People

« Organizational Uit 2 Engineering

« Organizational Uit 1 Development

« Organizational Unit

* Organization

« Country us
Requestor Information

* Requestor Name John Smith

« Requestor Email tsmith@example com

* Requestor Phone 19195550010

Submit





OEBPS/Common_Content/images/20.png





OEBPS/Common_Content/fonts/overpass_light-web.eot


OEBPS/Common_Content/scripts/highlight.pack.js
/*! highlight.js v9.2.0 | BSD3 License | git.io/hljslicense */
!function(e){var n="object"==typeof window&&window||"object"==typeof self&&self;"undefined"!=typeof exports?e(exports):n&&(n.hljs=e({}),"function"==typeof define&&define.amd&&define([],function(){return n.hljs}))}(function(e){function n(e){return e.replace(/&/gm,"&amp;").replace(/</gm,"&lt;").replace(/>/gm,"&gt;")}function t(e){return e.nodeName.toLowerCase()}function r(e,n){var t=e&&e.exec(n);return t&&0==t.index}function a(e){return/^(no-?highlight|plain|text)$/i.test(e)}function i(e){var n,t,r,i=e.className+" ";if(i+=e.parentNode?e.parentNode.className:"",t=/\blang(?:uage)?-([\w-]+)\b/i.exec(i))return w(t[1])?t[1]:"no-highlight";for(i=i.split(/\s+/),n=0,r=i.length;r>n;n++)if(w(i[n])||a(i[n]))return i[n]}function o(e,n){var t,r={};for(t in e)r[t]=e[t];if(n)for(t in n)r[t]=n[t];return r}function u(e){var n=[];return function r(e,a){for(var i=e.firstChild;i;i=i.nextSibling)3==i.nodeType?a+=i.nodeValue.length:1==i.nodeType&&(n.push({event:"start",offset:a,node:i}),a=r(i,a),t(i).match(/br|hr|img|input/)||n.push({event:"stop",offset:a,node:i}));return a}(e,0),n}function c(e,r,a){function i(){return e.length&&r.length?e[0].offset!=r[0].offset?e[0].offset<r[0].offset?e:r:"start"==r[0].event?e:r:e.length?e:r}function o(e){function r(e){return" "+e.nodeName+'="'+n(e.value)+'"'}f+="<"+t(e)+Array.prototype.map.call(e.attributes,r).join("")+">"}function u(e){f+="</"+t(e)+">"}function c(e){("start"==e.event?o:u)(e.node)}for(var s=0,f="",l=[];e.length||r.length;){var g=i();if(f+=n(a.substr(s,g[0].offset-s)),s=g[0].offset,g==e){l.reverse().forEach(u);do c(g.splice(0,1)[0]),g=i();while(g==e&&g.length&&g[0].offset==s);l.reverse().forEach(o)}else"start"==g[0].event?l.push(g[0].node):l.pop(),c(g.splice(0,1)[0])}return f+n(a.substr(s))}function s(e){function n(e){return e&&e.source||e}function t(t,r){return new RegExp(n(t),"m"+(e.cI?"i":"")+(r?"g":""))}function r(a,i){if(!a.compiled){if(a.compiled=!0,a.k=a.k||a.bK,a.k){var u={},c=function(n,t){e.cI&&(t=t.toLowerCase()),t.split(" ").forEach(function(e){var t=e.split("|");u[t[0]]=[n,t[1]?Number(t[1]):1]})};"string"==typeof a.k?c("keyword",a.k):Object.keys(a.k).forEach(function(e){c(e,a.k[e])}),a.k=u}a.lR=t(a.l||/\b\w+\b/,!0),i&&(a.bK&&(a.b="\\b("+a.bK.split(" ").join("|")+")\\b"),a.b||(a.b=/\B|\b/),a.bR=t(a.b),a.e||a.eW||(a.e=/\B|\b/),a.e&&(a.eR=t(a.e)),a.tE=n(a.e)||"",a.eW&&i.tE&&(a.tE+=(a.e?"|":"")+i.tE)),a.i&&(a.iR=t(a.i)),void 0===a.r&&(a.r=1),a.c||(a.c=[]);var s=[];a.c.forEach(function(e){e.v?e.v.forEach(function(n){s.push(o(e,n))}):s.push("self"==e?a:e)}),a.c=s,a.c.forEach(function(e){r(e,a)}),a.starts&&r(a.starts,i);var f=a.c.map(function(e){return e.bK?"\\.?("+e.b+")\\.?":e.b}).concat([a.tE,a.i]).map(n).filter(Boolean);a.t=f.length?t(f.join("|"),!0):{exec:function(){return null}}}}r(e)}function f(e,t,a,i){function o(e,n){for(var t=0;t<n.c.length;t++)if(r(n.c[t].bR,e))return n.c[t]}function u(e,n){if(r(e.eR,n)){for(;e.endsParent&&e.parent;)e=e.parent;return e}return e.eW?u(e.parent,n):void 0}function c(e,n){return!a&&r(n.iR,e)}function g(e,n){var t=N.cI?n[0].toLowerCase():n[0];return e.k.hasOwnProperty(t)&&e.k[t]}function p(e,n,t,r){var a=r?"":E.classPrefix,i='<span class="'+a,o=t?"":"</span>";return i+=e+'">',i+n+o}function h(){if(!k.k)return n(M);var e="",t=0;k.lR.lastIndex=0;for(var r=k.lR.exec(M);r;){e+=n(M.substr(t,r.index-t));var a=g(k,r);a?(B+=a[1],e+=p(a[0],n(r[0]))):e+=n(r[0]),t=k.lR.lastIndex,r=k.lR.exec(M)}return e+n(M.substr(t))}function d(){var e="string"==typeof k.sL;if(e&&!R[k.sL])return n(M);var t=e?f(k.sL,M,!0,y[k.sL]):l(M,k.sL.length?k.sL:void 0);return k.r>0&&(B+=t.r),e&&(y[k.sL]=t.top),p(t.language,t.value,!1,!0)}function b(){L+=void 0!==k.sL?d():h(),M=""}function v(e,n){L+=e.cN?p(e.cN,"",!0):"",k=Object.create(e,{parent:{value:k}})}function m(e,n){if(M+=e,void 0===n)return b(),0;var t=o(n,k);if(t)return t.skip?M+=n:(t.eB&&(M+=n),b(),t.rB||t.eB||(M=n)),v(t,n),t.rB?0:n.length;var r=u(k,n);if(r){var a=k;a.skip?M+=n:(a.rE||a.eE||(M+=n),b(),a.eE&&(M=n));do k.cN&&(L+="</span>"),k.skip||(B+=k.r),k=k.parent;while(k!=r.parent);return r.starts&&v(r.starts,""),a.rE?0:n.length}if(c(n,k))throw new Error('Illegal lexeme "'+n+'" for mode "'+(k.cN||"<unnamed>")+'"');return M+=n,n.length||1}var N=w(e);if(!N)throw new Error('Unknown language: "'+e+'"');s(N);var x,k=i||N,y={},L="";for(x=k;x!=N;x=x.parent)x.cN&&(L=p(x.cN,"",!0)+L);var M="",B=0;try{for(var C,j,I=0;;){if(k.t.lastIndex=I,C=k.t.exec(t),!C)break;j=m(t.substr(I,C.index-I),C[0]),I=C.index+j}for(m(t.substr(I)),x=k;x.parent;x=x.parent)x.cN&&(L+="</span>");return{r:B,value:L,language:e,top:k}}catch(O){if(-1!=O.message.indexOf("Illegal"))return{r:0,value:n(t)};throw O}}function l(e,t){t=t||E.languages||Object.keys(R);var r={r:0,value:n(e)},a=r;return t.forEach(function(n){if(w(n)){var t=f(n,e,!1);t.language=n,t.r>a.r&&(a=t),t.r>r.r&&(a=r,r=t)}}),a.language&&(r.second_best=a),r}function g(e){return E.tabReplace&&(e=e.replace(/^((<[^>]+>|\t)+)/gm,function(e,n){return n.replace(/\t/g,E.tabReplace)})),E.useBR&&(e=e.replace(/\n/g,"<br>")),e}function p(e,n,t){var r=n?x[n]:t,a=[e.trim()];return e.match(/\bhljs\b/)||a.push("hljs"),-1===e.indexOf(r)&&a.push(r),a.join(" ").trim()}function h(e){var n=i(e);if(!a(n)){var t;E.useBR?(t=document.createElementNS("http://www.w3.org/1999/xhtml","div"),t.innerHTML=e.innerHTML.replace(/\n/g,"").replace(/<br[ \/]*>/g,"\n")):t=e;var r=t.textContent,o=n?f(n,r,!0):l(r),s=u(t);if(s.length){var h=document.createElementNS("http://www.w3.org/1999/xhtml","div");h.innerHTML=o.value,o.value=c(s,u(h),r)}o.value=g(o.value),e.innerHTML=o.value,e.className=p(e.className,n,o.language),e.result={language:o.language,re:o.r},o.second_best&&(e.second_best={language:o.second_best.language,re:o.second_best.r})}}function d(e){E=o(E,e)}function b(){if(!b.called){b.called=!0;var e=document.querySelectorAll("pre code");Array.prototype.forEach.call(e,h)}}function v(){addEventListener("DOMContentLoaded",b,!1),addEventListener("load",b,!1)}function m(n,t){var r=R[n]=t(e);r.aliases&&r.aliases.forEach(function(e){x[e]=n})}function N(){return Object.keys(R)}function w(e){return e=(e||"").toLowerCase(),R[e]||R[x[e]]}var E={classPrefix:"hljs-",tabReplace:null,useBR:!1,languages:void 0},R={},x={};return e.highlight=f,e.highlightAuto=l,e.fixMarkup=g,e.highlightBlock=h,e.configure=d,e.initHighlighting=b,e.initHighlightingOnLoad=v,e.registerLanguage=m,e.listLanguages=N,e.getLanguage=w,e.inherit=o,e.IR="[a-zA-Z]\\w*",e.UIR="[a-zA-Z_]\\w*",e.NR="\\b\\d+(\\.\\d+)?",e.CNR="(-?)(\\b0[xX][a-fA-F0-9]+|(\\b\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)",e.BNR="\\b(0b[01]+)",e.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|-|-=|/=|/|:|;|<<|<<=|<=|<|===|==|=|>>>=|>>=|>=|>>>|>>|>|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~",e.BE={b:"\\\\[\\s\\S]",r:0},e.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[e.BE]},e.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[e.BE]},e.PWM={b:/\b(a|an|the|are|I|I'm|isn't|don't|doesn't|won't|but|just|should|pretty|simply|enough|gonna|going|wtf|so|such|will|you|your|like)\b/},e.C=function(n,t,r){var a=e.inherit({cN:"comment",b:n,e:t,c:[]},r||{});return a.c.push(e.PWM),a.c.push({cN:"doctag",b:"(?:TODO|FIXME|NOTE|BUG|XXX):",r:0}),a},e.CLCM=e.C("//","$"),e.CBCM=e.C("/\\*","\\*/"),e.HCM=e.C("#","$"),e.NM={cN:"number",b:e.NR,r:0},e.CNM={cN:"number",b:e.CNR,r:0},e.BNM={cN:"number",b:e.BNR,r:0},e.CSSNM={cN:"number",b:e.NR+"(%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?",r:0},e.RM={cN:"regexp",b:/\//,e:/\/[gimuy]*/,i:/\n/,c:[e.BE,{b:/\[/,e:/\]/,r:0,c:[e.BE]}]},e.TM={cN:"title",b:e.IR,r:0},e.UTM={cN:"title",b:e.UIR,r:0},e.METHOD_GUARD={b:"\\.\\s*"+e.UIR,r:0},e});hljs.registerLanguage("basic",function(E){return{cI:!0,i:"^.",l:"[a-zA-Z][a-zA-Z0-9_$%!#]*",k:{keyword:"ABS ASC AND ATN AUTO|0 BEEP BLOAD|10 BSAVE|10 CALL CALLS CDBL CHAIN CHDIR CHR$|10 CINT CIRCLE CLEAR CLOSE CLS COLOR COM COMMON CONT COS CSNG CSRLIN CVD CVI CVS DATA DATE$ DEFDBL DEFINT DEFSNG DEFSTR DEF|0 SEG USR DELETE DIM DRAW EDIT END ENVIRON ENVIRON$ EOF EQV ERASE ERDEV ERDEV$ ERL ERR ERROR EXP FIELD FILES FIX FOR|0 FRE GET GOSUB|10 GOTO HEX$ IF|0 THEN ELSE|0 INKEY$ INP INPUT INPUT# INPUT$ INSTR IMP INT IOCTL IOCTL$ KEY ON OFF LIST KILL LEFT$ LEN LET LINE LLIST LOAD LOC LOCATE LOF LOG LPRINT USING LSET MERGE MID$ MKDIR MKD$ MKI$ MKS$ MOD NAME NEW NEXT NOISE NOT OCT$ ON OR PEN PLAY STRIG OPEN OPTION BASE OUT PAINT PALETTE PCOPY PEEK PMAP POINT POKE POS PRINT PRINT] PSET PRESET PUT RANDOMIZE READ REM RENUM RESET|0 RESTORE RESUME RETURN|0 RIGHT$ RMDIR RND RSET RUN SAVE SCREEN SGN SHELL SIN SOUND SPACE$ SPC SQR STEP STICK STOP STR$ STRING$ SWAP SYSTEM TAB TAN TIME$ TIMER TROFF TRON TO USR VAL VARPTR VARPTR$ VIEW WAIT WHILE WEND WIDTH WINDOW WRITE XOR"},c:[E.QSM,E.C("REM","$",{r:10}),E.C("'","$",{r:0}),{cN:"symbol",b:"^[0-9]+ ",r:10},{cN:"number",b:"\\b([0-9]+[0-9edED.]*[#!]?)",r:0},{cN:"number",b:"(&[hH][0-9a-fA-F]{1,4})"},{cN:"number",b:"(&[oO][0-7]{1,6})"}]}});hljs.registerLanguage("vbnet",function(e){return{aliases:["vb"],cI:!0,k:{keyword:"addhandler addressof alias and andalso aggregate ansi as assembly auto binary by byref byval call case catch class compare const continue custom declare default delegate dim distinct do each equals else elseif end enum erase error event exit explicit finally for friend from function get global goto group handles if implements imports in inherits interface into is isfalse isnot istrue join key let lib like loop me mid mod module mustinherit mustoverride mybase myclass namespace narrowing new next not notinheritable notoverridable of off on operator option optional or order orelse overloads overridable overrides paramarray partial preserve private property protected public raiseevent readonly redim rem removehandler resume return select set shadows shared skip static step stop structure strict sub synclock take text then throw to try unicode until using when where while widening with withevents writeonly xor",built_in:"boolean byte cbool cbyte cchar cdate cdec cdbl char cint clng cobj csbyte cshort csng cstr ctype date decimal directcast double gettype getxmlnamespace iif integer long object sbyte short single string trycast typeof uinteger ulong ushort",literal:"true false nothing"},i:"//|{|}|endif|gosub|variant|wend",c:[e.inherit(e.QSM,{c:[{b:'""'}]}),e.C("'","$",{rB:!0,c:[{cN:"doctag",b:"'''|<!--|-->",c:[e.PWM]},{cN:"doctag",b:"</?",e:">",c:[e.PWM]}]}),e.CNM,{cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elseif end region externalsource"}}]}});hljs.registerLanguage("dockerfile",function(e){return{aliases:["docker"],cI:!0,k:"from maintainer cmd expose add copy entrypoint volume user workdir onbuild run env label",c:[e.HCM,{k:"run cmd entrypoint volume add copy workdir onbuild label",b:/^ *(onbuild +)?(run|cmd|entrypoint|volume|add|copy|workdir|label) +/,starts:{e:/[^\\]\n/,sL:"bash"}},{k:"from maintainer expose env user onbuild",b:/^ *(onbuild +)?(from|maintainer|expose|env|user|onbuild) +/,e:/[^\\]\n/,c:[e.ASM,e.QSM,e.NM,e.HCM]}]}});hljs.registerLanguage("php",function(e){var c={b:"\\$+[a-zA-Z_�-ÿ][a-zA-Z0-9_�-ÿ]*"},a={cN:"meta",b:/<\?(php)?|\?>/},i={cN:"string",c:[e.BE,a],v:[{b:'b"',e:'"'},{b:"b'",e:"'"},e.inherit(e.ASM,{i:null}),e.inherit(e.QSM,{i:null})]},t={v:[e.BNM,e.CNM]};return{aliases:["php3","php4","php5","php6"],cI:!0,k:"and include_once list abstract global private echo interface as static endswitch array null if endwhile or const for endforeach self var while isset public protected exit foreach throw elseif include __FILE__ empty require_once do xor return parent clone use __CLASS__ __LINE__ else break print eval new catch __METHOD__ case exception default die require __FUNCTION__ enddeclare final try switch continue endfor endif declare unset true false trait goto instanceof insteadof __DIR__ __NAMESPACE__ yield finally",c:[e.HCM,e.C("//","$",{c:[a]}),e.C("/\\*","\\*/",{c:[{cN:"doctag",b:"@[A-Za-z]+"}]}),e.C("__halt_compiler.+?;",!1,{eW:!0,k:"__halt_compiler",l:e.UIR}),{cN:"string",b:/<<<['"]?\w+['"]?$/,e:/^\w+;?$/,c:[e.BE,{cN:"subst",v:[{b:/\$\w+/},{b:/\{\$/,e:/\}/}]}]},a,c,{b:/(::|->)+[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*/},{cN:"function",bK:"function",e:/[;{]/,eE:!0,i:"\\$|\\[|%",c:[e.UTM,{cN:"params",b:"\\(",e:"\\)",c:["self",c,e.CBCM,i,t]}]},{cN:"class",bK:"class interface",e:"{",eE:!0,i:/[:\(\$"]/,c:[{bK:"extends implements"},e.UTM]},{bK:"namespace",e:";",i:/[\.']/,c:[e.UTM]},{bK:"use",e:";",c:[e.UTM]},{b:"=>"},i,t]}});hljs.registerLanguage("haml",function(s){return{cI:!0,c:[{cN:"meta",b:"^!!!( (5|1\\.1|Strict|Frameset|Basic|Mobile|RDFa|XML\\b.*))?$",r:10},s.C("^\\s*(!=#|=#|-#|/).*$",!1,{r:0}),{b:"^\\s*(-|=|!=)(?!#)",starts:{e:"\\n",sL:"ruby"}},{cN:"tag",b:"^\\s*%",c:[{cN:"selector-tag",b:"\\w+"},{cN:"selector-id",b:"#[\\w-]+"},{cN:"selector-class",b:"\\.[\\w-]+"},{b:"{\\s*",e:"\\s*}",c:[{b:":\\w+\\s*=>",e:",\\s+",rB:!0,eW:!0,c:[{cN:"attr",b:":\\w+"},s.ASM,s.QSM,{b:"\\w+",r:0}]}]},{b:"\\(\\s*",e:"\\s*\\)",eE:!0,c:[{b:"\\w+\\s*=",e:"\\s+",rB:!0,eW:!0,c:[{cN:"attr",b:"\\w+",r:0},s.ASM,s.QSM,{b:"\\w+",r:0}]}]}]},{b:"^\\s*[=~]\\s*"},{b:"#{",starts:{e:"}",sL:"ruby"}}]}});hljs.registerLanguage("perl",function(e){var t="getpwent getservent quotemeta msgrcv scalar kill dbmclose undef lc ma syswrite tr send umask sysopen shmwrite vec qx utime local oct semctl localtime readpipe do return format read sprintf dbmopen pop getpgrp not getpwnam rewinddir qqfileno qw endprotoent wait sethostent bless s|0 opendir continue each sleep endgrent shutdown dump chomp connect getsockname die socketpair close flock exists index shmgetsub for endpwent redo lstat msgctl setpgrp abs exit select print ref gethostbyaddr unshift fcntl syscall goto getnetbyaddr join gmtime symlink semget splice x|0 getpeername recv log setsockopt cos last reverse gethostbyname getgrnam study formline endhostent times chop length gethostent getnetent pack getprotoent getservbyname rand mkdir pos chmod y|0 substr endnetent printf next open msgsnd readdir use unlink getsockopt getpriority rindex wantarray hex system getservbyport endservent int chr untie rmdir prototype tell listen fork shmread ucfirst setprotoent else sysseek link getgrgid shmctl waitpid unpack getnetbyname reset chdir grep split require caller lcfirst until warn while values shift telldir getpwuid my getprotobynumber delete and sort uc defined srand accept package seekdir getprotobyname semop our rename seek if q|0 chroot sysread setpwent no crypt getc chown sqrt write setnetent setpriority foreach tie sin msgget map stat getlogin unless elsif truncate exec keys glob tied closedirioctl socket readlink eval xor readline binmode setservent eof ord bind alarm pipe atan2 getgrent exp time push setgrent gt lt or ne m|0 break given say state when",r={cN:"subst",b:"[$@]\\{",e:"\\}",k:t},s={b:"->{",e:"}"},n={v:[{b:/\$\d/},{b:/[\$%@](\^\w\b|#\w+(::\w+)*|{\w+}|\w+(::\w*)*)/},{b:/[\$%@][^\s\w{]/,r:0}]},i=[e.BE,r,n],o=[n,e.HCM,e.C("^\\=\\w","\\=cut",{eW:!0}),s,{cN:"string",c:i,v:[{b:"q[qwxr]?\\s*\\(",e:"\\)",r:5},{b:"q[qwxr]?\\s*\\[",e:"\\]",r:5},{b:"q[qwxr]?\\s*\\{",e:"\\}",r:5},{b:"q[qwxr]?\\s*\\|",e:"\\|",r:5},{b:"q[qwxr]?\\s*\\<",e:"\\>",r:5},{b:"qw\\s+q",e:"q",r:5},{b:"'",e:"'",c:[e.BE]},{b:'"',e:'"'},{b:"`",e:"`",c:[e.BE]},{b:"{\\w+}",c:[],r:0},{b:"-?\\w+\\s*\\=\\>",c:[],r:0}]},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},{b:"(\\/\\/|"+e.RSR+"|\\b(split|return|print|reverse|grep)\\b)\\s*",k:"split return print reverse grep",r:0,c:[e.HCM,{cN:"regexp",b:"(s|tr|y)/(\\\\.|[^/])*/(\\\\.|[^/])*/[a-z]*",r:10},{cN:"regexp",b:"(m|qr)?/",e:"/[a-z]*",c:[e.BE],r:0}]},{cN:"function",bK:"sub",e:"(\\s*\\(.*?\\))?[;{]",eE:!0,r:5,c:[e.TM]},{b:"-\\w\\b",r:0},{b:"^__DATA__$",e:"^__END__$",sL:"mojolicious",c:[{b:"^@@.*",e:"$",cN:"comment"}]}];return r.c=o,s.c=o,{aliases:["pl"],k:t,c:o}});hljs.registerLanguage("accesslog",function(T){return{c:[{cN:"number",b:"\\b\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}(:\\d{1,5})?\\b"},{cN:"number",b:"\\b\\d+\\b",r:0},{cN:"string",b:'"(GET|POST|HEAD|PUT|DELETE|CONNECT|OPTIONS|PATCH|TRACE)',e:'"',k:"GET POST HEAD PUT DELETE CONNECT OPTIONS PATCH TRACE",i:"\\n",r:10},{cN:"string",b:/\[/,e:/\]/,i:"\\n"},{cN:"string",b:'"',e:'"',i:"\\n"}]}});hljs.registerLanguage("d",function(e){var t={keyword:"abstract alias align asm assert auto body break byte case cast catch class const continue debug default delete deprecated do else enum export extern final finally for foreach foreach_reverse|10 goto if immutable import in inout int interface invariant is lazy macro mixin module new nothrow out override package pragma private protected public pure ref return scope shared static struct super switch synchronized template this throw try typedef typeid typeof union unittest version void volatile while with __FILE__ __LINE__ __gshared|10 __thread __traits __DATE__ __EOF__ __TIME__ __TIMESTAMP__ __VENDOR__ __VERSION__",built_in:"bool cdouble cent cfloat char creal dchar delegate double dstring float function idouble ifloat ireal long real short string ubyte ucent uint ulong ushort wchar wstring",literal:"false null true"},r="(0|[1-9][\\d_]*)",a="(0|[1-9][\\d_]*|\\d[\\d_]*|[\\d_]+?\\d)",i="0[bB][01_]+",n="([\\da-fA-F][\\da-fA-F_]*|_[\\da-fA-F][\\da-fA-F_]*)",_="0[xX]"+n,c="([eE][+-]?"+a+")",d="("+a+"(\\.\\d*|"+c+")|\\d+\\."+a+a+"|\\."+r+c+"?)",o="(0[xX]("+n+"\\."+n+"|\\.?"+n+")[pP][+-]?"+a+")",s="("+r+"|"+i+"|"+_+")",l="("+o+"|"+d+")",u="\\\\(['\"\\?\\\\abfnrtv]|u[\\dA-Fa-f]{4}|[0-7]{1,3}|x[\\dA-Fa-f]{2}|U[\\dA-Fa-f]{8})|&[a-zA-Z\\d]{2,};",b={cN:"number",b:"\\b"+s+"(L|u|U|Lu|LU|uL|UL)?",r:0},f={cN:"number",b:"\\b("+l+"([fF]|L|i|[fF]i|Li)?|"+s+"(i|[fF]i|Li))",r:0},g={cN:"string",b:"'("+u+"|.)",e:"'",i:"."},h={b:u,r:0},p={cN:"string",b:'"',c:[h],e:'"[cwd]?'},m={cN:"string",b:'[rq]"',e:'"[cwd]?',r:5},w={cN:"string",b:"`",e:"`[cwd]?"},N={cN:"string",b:'x"[\\da-fA-F\\s\\n\\r]*"[cwd]?',r:10},A={cN:"string",b:'q"\\{',e:'\\}"'},F={cN:"meta",b:"^#!",e:"$",r:5},y={cN:"meta",b:"#(line)",e:"$",r:5},L={cN:"keyword",b:"@[a-zA-Z_][a-zA-Z_\\d]*"},v=e.C("\\/\\+","\\+\\/",{c:["self"],r:10});return{l:e.UIR,k:t,c:[e.CLCM,e.CBCM,v,N,p,m,w,A,f,b,g,F,y,L]}});hljs.registerLanguage("csp",function(r){return{cI:!1,l:"[a-zA-Z][a-zA-Z0-9_-]*",k:{keyword:"base-uri child-src connect-src default-src font-src form-action frame-ancestors frame-src img-src media-src object-src plugin-types report-uri sandbox script-src style-src"},c:[{cN:"string",b:"'",e:"'"},{cN:"attribute",b:"^Content",e:":",eE:!0}]}});hljs.registerLanguage("apache",function(e){var r={cN:"number",b:"[\\$%]\\d+"};return{aliases:["apacheconf"],cI:!0,c:[e.HCM,{cN:"section",b:"</?",e:">"},{cN:"attribute",b:/\w+/,r:0,k:{nomarkup:"order deny allow setenv rewriterule rewriteengine rewritecond documentroot sethandler errordocument loadmodule options header listen serverroot servername"},starts:{e:/$/,r:0,k:{literal:"on off all"},c:[{cN:"meta",b:"\\s\\[",e:"\\]$"},{cN:"variable",b:"[\\$%]\\{",e:"\\}",c:["self",r]},r,e.QSM]}}],i:/\S/}});hljs.registerLanguage("prolog",function(c){var b={b:/[a-z][A-Za-z0-9_]*/,r:0},r={cN:"symbol",v:[{b:/[A-Z][a-zA-Z0-9_]*/},{b:/_[A-Za-z0-9_]*/}],r:0},e={b:/\(/,e:/\)/,r:0},n={b:/\[/,e:/\]/},a={cN:"comment",b:/%/,e:/$/,c:[c.PWM]},t={cN:"string",b:/`/,e:/`/,c:[c.BE]},g={cN:"string",b:/0\'(\\\'|.)/},s={cN:"string",b:/0\'\\s/},o={b:/:-/},N=[b,r,e,o,n,a,c.CBCM,c.QSM,c.ASM,t,g,s,c.CNM];return e.c=N,n.c=N,{c:N.concat([{b:/\.$/}])}});hljs.registerLanguage("lisp",function(b){var e="[a-zA-Z_\\-\\+\\*\\/\\<\\=\\>\\&\\#][a-zA-Z0-9_\\-\\+\\*\\/\\<\\=\\>\\&\\#!]*",c="\\|[^]*?\\|",r="(\\-|\\+)?\\d+(\\.\\d+|\\/\\d+)?((d|e|f|l|s|D|E|F|L|S)(\\+|\\-)?\\d+)?",a={cN:"meta",b:"^#!",e:"$"},l={cN:"literal",b:"\\b(t{1}|nil)\\b"},n={cN:"number",v:[{b:r,r:0},{b:"#(b|B)[0-1]+(/[0-1]+)?"},{b:"#(o|O)[0-7]+(/[0-7]+)?"},{b:"#(x|X)[0-9a-fA-F]+(/[0-9a-fA-F]+)?"},{b:"#(c|C)\\("+r+" +"+r,e:"\\)"}]},i=b.inherit(b.QSM,{i:null}),t=b.C(";","$",{r:0}),s={b:"\\*",e:"\\*"},u={cN:"symbol",b:"[:&]"+e},d={b:e,r:0},f={b:c},m={b:"\\(",e:"\\)",c:["self",l,i,n,d]},o={c:[n,i,s,u,m,d],v:[{b:"['`]\\(",e:"\\)"},{b:"\\(quote ",e:"\\)",k:{name:"quote"}},{b:"'"+c}]},v={v:[{b:"'"+e},{b:"#'"+e+"(::"+e+")*"}]},N={b:"\\(\\s*",e:"\\)"},A={eW:!0,r:0};return N.c=[{cN:"name",v:[{b:e},{b:c}]},A],A.c=[o,v,N,l,n,i,t,s,u,f,d],{i:/\S/,c:[n,a,l,i,t,o,v,N,d]}});hljs.registerLanguage("swift",function(e){var i={keyword:"__COLUMN__ __FILE__ __FUNCTION__ __LINE__ as as! as? associativity break case catch class continue convenience default defer deinit didSet do dynamic dynamicType else enum extension fallthrough false final for func get guard if import in indirect infix init inout internal is lazy left let mutating nil none nonmutating operator optional override postfix precedence prefix private protocol Protocol public repeat required rethrows return right self Self set static struct subscript super switch throw throws true try try! try? Type typealias unowned var weak where while willSet",literal:"true false nil",built_in:"abs advance alignof alignofValue anyGenerator assert assertionFailure bridgeFromObjectiveC bridgeFromObjectiveCUnconditional bridgeToObjectiveC bridgeToObjectiveCUnconditional c contains count countElements countLeadingZeros debugPrint debugPrintln distance dropFirst dropLast dump encodeBitsAsWords enumerate equal fatalError filter find getBridgedObjectiveCType getVaList indices insertionSort isBridgedToObjectiveC isBridgedVerbatimToObjectiveC isUniquelyReferenced isUniquelyReferencedNonObjC join lazy lexicographicalCompare map max maxElement min minElement numericCast overlaps partition posix precondition preconditionFailure print println quickSort readLine reduce reflect reinterpretCast reverse roundUpToAlignment sizeof sizeofValue sort split startsWith stride strideof strideofValue swap toString transcode underestimateCount unsafeAddressOf unsafeBitCast unsafeDowncast unsafeUnwrap unsafeReflect withExtendedLifetime withObjectAtPlusZero withUnsafePointer withUnsafePointerToObject withUnsafeMutablePointer withUnsafeMutablePointers withUnsafePointer withUnsafePointers withVaList zip"},t={cN:"type",b:"\\b[A-Z][\\w']*",r:0},n=e.C("/\\*","\\*/",{c:["self"]}),r={cN:"subst",b:/\\\(/,e:"\\)",k:i,c:[]},a={cN:"number",b:"\\b([\\d_]+(\\.[\\deE_]+)?|0x[a-fA-F0-9_]+(\\.[a-fA-F0-9p_]+)?|0b[01_]+|0o[0-7_]+)\\b",r:0},o=e.inherit(e.QSM,{c:[r,e.BE]});return r.c=[a],{k:i,c:[o,e.CLCM,n,t,a,{cN:"function",bK:"func",e:"{",eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/,i:/\(/}),{b:/</,e:/>/,i:/>/},{cN:"params",b:/\(/,e:/\)/,endsParent:!0,k:i,c:["self",a,o,e.CBCM,{b:":"}],i:/["']/}],i:/\[|%/},{cN:"class",bK:"struct protocol class extension enum",k:i,e:"\\{",eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/})]},{cN:"meta",b:"(@warn_unused_result|@exported|@lazy|@noescape|@NSCopying|@NSManaged|@objc|@convention|@required|@noreturn|@IBAction|@IBDesignable|@IBInspectable|@IBOutlet|@infix|@prefix|@postfix|@autoclosure|@testable|@available|@nonobjc|@NSApplicationMain|@UIApplicationMain)"},{bK:"import",e:/$/,c:[e.CLCM,n]}]}});hljs.registerLanguage("java",function(e){var a=e.UIR+"(<"+e.UIR+"(\\s*,\\s*"+e.UIR+")*>)?",t="false synchronized int abstract float private char boolean static null if const for true while long strictfp finally protected import native final void enum else break transient catch instanceof byte super volatile case assert short package default double public try this switch continue throws protected public private",r="\\b(0[bB]([01]+[01_]+[01]+|[01]+)|0[xX]([a-fA-F0-9]+[a-fA-F0-9_]+[a-fA-F0-9]+|[a-fA-F0-9]+)|(([\\d]+[\\d_]+[\\d]+|[\\d]+)(\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))?|\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))([eE][-+]?\\d+)?)[lLfF]?",c={cN:"number",b:r,r:0};return{aliases:["jsp"],k:t,i:/<\/|#/,c:[e.C("/\\*\\*","\\*/",{r:0,c:[{b:/\w+@/,r:0},{cN:"doctag",b:"@[A-Za-z]+"}]}),e.CLCM,e.CBCM,e.ASM,e.QSM,{cN:"class",bK:"class interface",e:/[{;=]/,eE:!0,k:"class interface",i:/[:"\[\]]/,c:[{bK:"extends implements"},e.UTM]},{bK:"new throw return else",r:0},{cN:"function",b:"("+a+"\\s+)+"+e.UIR+"\\s*\\(",rB:!0,e:/[{;=]/,eE:!0,k:t,c:[{b:e.UIR+"\\s*\\(",rB:!0,r:0,c:[e.UTM]},{cN:"params",b:/\(/,e:/\)/,k:t,r:0,c:[e.ASM,e.QSM,e.CNM,e.CBCM]},e.CLCM,e.CBCM]},c,{cN:"meta",b:"@[A-Za-z]+"}]}});hljs.registerLanguage("objectivec",function(e){var t={cN:"built_in",b:"(AV|CA|CF|CG|CI|MK|MP|NS|UI|XC)\\w+"},i={keyword:"int float while char export sizeof typedef const struct for union unsigned long volatile static bool mutable if do return goto void enum else break extern asm case short default double register explicit signed typename this switch continue wchar_t inline readonly assign readwrite self @synchronized id typeof nonatomic super unichar IBOutlet IBAction strong weak copy in out inout bycopy byref oneway __strong __weak __block __autoreleasing @private @protected @public @try @property @end @throw @catch @finally @autoreleasepool @synthesize @dynamic @selector @optional @required",literal:"false true FALSE TRUE nil YES NO NULL",built_in:"BOOL dispatch_once_t dispatch_queue_t dispatch_sync dispatch_async dispatch_once"},n=/[a-zA-Z@][a-zA-Z0-9_]*/,o="@interface @class @protocol @implementation";return{aliases:["mm","objc","obj-c"],k:i,l:n,i:"</",c:[t,e.CLCM,e.CBCM,e.CNM,e.QSM,{cN:"string",v:[{b:'@"',e:'"',i:"\\n",c:[e.BE]},{b:"'",e:"[^\\\\]'",i:"[^\\\\][^']"}]},{cN:"meta",b:"#",e:"$",c:[{cN:"meta-string",v:[{b:'"',e:'"'},{b:"<",e:">"}]}]},{cN:"class",b:"("+o.split(" ").join("|")+")\\b",e:"({|$)",eE:!0,k:o,l:n,c:[e.UTM]},{b:"\\."+e.UIR,r:0}]}});hljs.registerLanguage("json",function(e){var i={literal:"true false null"},n=[e.QSM,e.CNM],r={e:",",eW:!0,eE:!0,c:n,k:i},t={b:"{",e:"}",c:[{cN:"attr",b:/"/,e:/"/,c:[e.BE],i:"\\n"},e.inherit(r,{b:/:/})],i:"\\S"},c={b:"\\[",e:"\\]",c:[e.inherit(r)],i:"\\S"};return n.splice(n.length,0,t,c),{c:n,k:i,i:"\\S"}});hljs.registerLanguage("cmake",function(e){return{aliases:["cmake.in"],cI:!0,k:{keyword:"add_custom_command add_custom_target add_definitions add_dependencies add_executable add_library add_subdirectory add_test aux_source_directory break build_command cmake_minimum_required cmake_policy configure_file create_test_sourcelist define_property else elseif enable_language enable_testing endforeach endfunction endif endmacro endwhile execute_process export find_file find_library find_package find_path find_program fltk_wrap_ui foreach function get_cmake_property get_directory_property get_filename_component get_property get_source_file_property get_target_property get_test_property if include include_directories include_external_msproject include_regular_expression install link_directories load_cache load_command macro mark_as_advanced message option output_required_files project qt_wrap_cpp qt_wrap_ui remove_definitions return separate_arguments set set_directory_properties set_property set_source_files_properties set_target_properties set_tests_properties site_name source_group string target_link_libraries try_compile try_run unset variable_watch while build_name exec_program export_library_dependencies install_files install_programs install_targets link_libraries make_directory remove subdir_depends subdirs use_mangled_mesa utility_source variable_requires write_file qt5_use_modules qt5_use_package qt5_wrap_cpp on off true false and or equal less greater strless strgreater strequal matches"},c:[{cN:"variable",b:"\\${",e:"}"},e.HCM,e.QSM,e.NM]}});hljs.registerLanguage("bash",function(e){var t={cN:"variable",v:[{b:/\$[\w\d#@][\w\d_]*/},{b:/\$\{(.*?)}/}]},s={cN:"string",b:/"/,e:/"/,c:[e.BE,t,{cN:"variable",b:/\$\(/,e:/\)/,c:[e.BE]}]},a={cN:"string",b:/'/,e:/'/};return{aliases:["sh","zsh"],l:/-?[a-z\.]+/,k:{keyword:"if then else elif fi for while in do done case esac function",literal:"true false",built_in:"break cd continue eval exec exit export getopts hash pwd readonly return shift test times trap umask unset alias bind builtin caller command declare echo enable help let local logout mapfile printf read readarray source type typeset ulimit unalias set shopt autoload bg bindkey bye cap chdir clone comparguments compcall compctl compdescribe compfiles compgroups compquote comptags comptry compvalues dirs disable disown echotc echoti emulate fc fg float functions getcap getln history integer jobs kill limit log noglob popd print pushd pushln rehash sched setcap setopt stat suspend ttyctl unfunction unhash unlimit unsetopt vared wait whence where which zcompile zformat zftp zle zmodload zparseopts zprof zpty zregexparse zsocket zstyle ztcp",_:"-ne -eq -lt -gt -f -d -e -s -l -a"},c:[{cN:"meta",b:/^#![^\n]+sh\s*$/,r:10},{cN:"function",b:/\w[\w\d_]*\s*\(\s*\)\s*\{/,rB:!0,c:[e.inherit(e.TM,{b:/\w[\w\d_]*/})],r:0},e.HCM,s,a,t]}});hljs.registerLanguage("cs",function(e){var t="abstract as base bool break byte case catch char checked const continue decimal dynamic default delegate do double else enum event explicit extern false finally fixed float for foreach goto if implicit in int interface internal is lock long null when object operator out override params private protected public readonly ref sbyte sealed short sizeof stackalloc static string struct switch this true try typeof uint ulong unchecked unsafe ushort using virtual volatile void while async protected public private internal ascending descending from get group into join let orderby partial select set value var where yield",r=e.IR+"(<"+e.IR+">)?";return{aliases:["csharp"],k:t,i:/::/,c:[e.C("///","$",{rB:!0,c:[{cN:"doctag",v:[{b:"///",r:0},{b:"<!--|-->"},{b:"</?",e:">"}]}]}),e.CLCM,e.CBCM,{cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elif endif define undef warning error line region endregion pragma checksum"}},{cN:"string",b:'@"',e:'"',c:[{b:'""'}]},e.ASM,e.QSM,e.CNM,{bK:"class interface",e:/[{;=]/,i:/[^\s:]/,c:[e.TM,e.CLCM,e.CBCM]},{bK:"namespace",e:/[{;=]/,i:/[^\s:]/,c:[e.inherit(e.TM,{b:"[a-zA-Z](\\.?\\w)*"}),e.CLCM,e.CBCM]},{bK:"new return throw await",r:0},{cN:"function",b:"("+r+"\\s+)+"+e.IR+"\\s*\\(",rB:!0,e:/[{;=]/,eE:!0,k:t,c:[{b:e.IR+"\\s*\\(",rB:!0,c:[e.TM],r:0},{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,k:t,r:0,c:[e.ASM,e.QSM,e.CNM,e.CBCM]},e.CLCM,e.CBCM]}]}});hljs.registerLanguage("livescript",function(e){var t={keyword:"in if for while finally new do return else break catch instanceof throw try this switch continue typeof delete debugger case default function var with then unless until loop of by when and or is isnt not it that otherwise from to til fallthrough super case default function var void const let enum export import native __hasProp __extends __slice __bind __indexOf",literal:"true false null undefined yes no on off it that void",built_in:"npm require console print module global window document"},s="[A-Za-z$_](?:-[0-9A-Za-z$_]|[0-9A-Za-z$_])*",n=e.inherit(e.TM,{b:s}),i={cN:"subst",b:/#\{/,e:/}/,k:t},r={cN:"subst",b:/#[A-Za-z$_]/,e:/(?:\-[0-9A-Za-z$_]|[0-9A-Za-z$_])*/,k:t},c=[e.BNM,{cN:"number",b:"(\\b0[xX][a-fA-F0-9_]+)|(\\b\\d(\\d|_\\d)*(\\.(\\d(\\d|_\\d)*)?)?(_*[eE]([-+]\\d(_\\d|\\d)*)?)?[_a-z]*)",r:0,starts:{e:"(\\s*/)?",r:0}},{cN:"string",v:[{b:/'''/,e:/'''/,c:[e.BE]},{b:/'/,e:/'/,c:[e.BE]},{b:/"""/,e:/"""/,c:[e.BE,i,r]},{b:/"/,e:/"/,c:[e.BE,i,r]},{b:/\\/,e:/(\s|$)/,eE:!0}]},{cN:"regexp",v:[{b:"//",e:"//[gim]*",c:[i,e.HCM]},{b:/\/(?![ *])(\\\/|.)*?\/[gim]*(?=\W|$)/}]},{b:"@"+s},{b:"``",e:"``",eB:!0,eE:!0,sL:"javascript"}];i.c=c;var a={cN:"params",b:"\\(",rB:!0,c:[{b:/\(/,e:/\)/,k:t,c:["self"].concat(c)}]};return{aliases:["ls"],k:t,i:/\/\*/,c:c.concat([e.C("\\/\\*","\\*\\/"),e.HCM,{cN:"function",c:[n,a],rB:!0,v:[{b:"("+s+"\\s*(?:=|:=)\\s*)?(\\(.*\\))?\\s*\\B\\->\\*?",e:"\\->\\*?"},{b:"("+s+"\\s*(?:=|:=)\\s*)?!?(\\(.*\\))?\\s*\\B[-~]{1,2}>\\*?",e:"[-~]{1,2}>\\*?"},{b:"("+s+"\\s*(?:=|:=)\\s*)?(\\(.*\\))?\\s*\\B!?[-~]{1,2}>\\*?",e:"!?[-~]{1,2}>\\*?"}]},{cN:"class",bK:"class",e:"$",i:/[:="\[\]]/,c:[{bK:"extends",eW:!0,i:/[:="\[\]]/,c:[n]},n]},{b:s+":",e:":",rB:!0,rE:!0,r:0}])}});hljs.registerLanguage("makefile",function(e){var a={cN:"variable",b:/\$\(/,e:/\)/,c:[e.BE]};return{aliases:["mk","mak"],c:[e.HCM,{b:/^\w+\s*\W*=/,rB:!0,r:0,starts:{e:/\s*\W*=/,eE:!0,starts:{e:/$/,r:0,c:[a]}}},{cN:"section",b:/^[\w]+:\s*$/},{cN:"meta",b:/^\.PHONY:/,e:/$/,k:{"meta-keyword":".PHONY"},l:/[\.\w]+/},{b:/^\t+/,e:/$/,r:0,c:[e.QSM,a]}]}});hljs.registerLanguage("yaml",function(e){var a={literal:"{ } true false yes no Yes No True False null"},b="^[ \\-]*",r="[a-zA-Z_][\\w\\-]*",t={cN:"attr",v:[{b:b+r+":"},{b:b+'"'+r+'":'},{b:b+"'"+r+"':"}]},c={cN:"template-variable",v:[{b:"{{",e:"}}"},{b:"%{",e:"}"}]},l={cN:"string",r:0,v:[{b:/'/,e:/'/},{b:/"/,e:/"/}],c:[e.BE,c]};return{cI:!0,aliases:["yml","YAML","yaml"],c:[t,{cN:"meta",b:"^---s*$",r:10},{cN:"string",b:"[\\|>] *$",rE:!0,c:l.c,e:t.v[0].b},{b:"<%[%=-]?",e:"[%-]?%>",sL:"ruby",eB:!0,eE:!0,r:0},{cN:"type",b:"!!"+e.UIR},{cN:"meta",b:"&"+e.UIR+"$"},{cN:"meta",b:"\\*"+e.UIR+"$"},{cN:"bullet",b:"^ *-",r:0},l,e.HCM,e.CNM],k:a}});hljs.registerLanguage("dns",function(d){return{aliases:["bind","zone"],k:{keyword:"IN A AAAA AFSDB APL CAA CDNSKEY CDS CERT CNAME DHCID DLV DNAME DNSKEY DS HIP IPSECKEY KEY KX LOC MX NAPTR NS NSEC NSEC3 NSEC3PARAM PTR RRSIG RP SIG SOA SRV SSHFP TA TKEY TLSA TSIG TXT"},c:[d.C(";","$"),{cN:"meta",b:/^\$(TTL|GENERATE|INCLUDE|ORIGIN)\b/},{cN:"number",b:"((([0-9A-Fa-f]{1,4}:){7}([0-9A-Fa-f]{1,4}|:))|(([0-9A-Fa-f]{1,4}:){6}(:[0-9A-Fa-f]{1,4}|((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){5}(((:[0-9A-Fa-f]{1,4}){1,2})|:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){4}(((:[0-9A-Fa-f]{1,4}){1,3})|((:[0-9A-Fa-f]{1,4})?:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){3}(((:[0-9A-Fa-f]{1,4}){1,4})|((:[0-9A-Fa-f]{1,4}){0,2}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){2}(((:[0-9A-Fa-f]{1,4}){1,5})|((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){1}(((:[0-9A-Fa-f]{1,4}){1,6})|((:[0-9A-Fa-f]{1,4}){0,4}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(:(((:[0-9A-Fa-f]{1,4}){1,7})|((:[0-9A-Fa-f]{1,4}){0,5}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:)))\\b"},{cN:"number",b:"((25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9]).){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])\\b"},d.inherit(d.NM,{b:/\b\d+[dhwm]?/})]}});hljs.registerLanguage("sql",function(e){var t=e.C("--","$");return{cI:!0,i:/[<>{}*]/,c:[{bK:"begin end start commit rollback savepoint lock alter create drop rename call delete do handler insert load replace select truncate update set show pragma grant merge describe use explain help declare prepare execute deallocate release unlock purge reset change stop analyze cache flush optimize repair kill install uninstall checksum restore check backup revoke",e:/;/,eW:!0,k:{keyword:"abort abs absolute acc acce accep accept access accessed accessible account acos action activate add addtime admin administer advanced advise aes_decrypt aes_encrypt after agent aggregate ali alia alias allocate allow alter always analyze ancillary and any anydata anydataset anyschema anytype apply archive archived archivelog are as asc ascii asin assembly assertion associate asynchronous at atan atn2 attr attri attrib attribu attribut attribute attributes audit authenticated authentication authid authors auto autoallocate autodblink autoextend automatic availability avg backup badfile basicfile before begin beginning benchmark between bfile bfile_base big bigfile bin binary_double binary_float binlog bit_and bit_count bit_length bit_or bit_xor bitmap blob_base block blocksize body both bound buffer_cache buffer_pool build bulk by byte byteordermark bytes cache caching call calling cancel capacity cascade cascaded case cast catalog category ceil ceiling chain change changed char_base char_length character_length characters characterset charindex charset charsetform charsetid check checksum checksum_agg child choose chr chunk class cleanup clear client clob clob_base clone close cluster_id cluster_probability cluster_set clustering coalesce coercibility col collate collation collect colu colum column column_value columns columns_updated comment commit compact compatibility compiled complete composite_limit compound compress compute concat concat_ws concurrent confirm conn connec connect connect_by_iscycle connect_by_isleaf connect_by_root connect_time connection consider consistent constant constraint constraints constructor container content contents context contributors controlfile conv convert convert_tz corr corr_k corr_s corresponding corruption cos cost count count_big counted covar_pop covar_samp cpu_per_call cpu_per_session crc32 create creation critical cross cube cume_dist curdate current current_date current_time current_timestamp current_user cursor curtime customdatum cycle data database databases datafile datafiles datalength date_add date_cache date_format date_sub dateadd datediff datefromparts datename datepart datetime2fromparts day day_to_second dayname dayofmonth dayofweek dayofyear days db_role_change dbtimezone ddl deallocate declare decode decompose decrement decrypt deduplicate def defa defau defaul default defaults deferred defi defin define degrees delayed delegate delete delete_all delimited demand dense_rank depth dequeue des_decrypt des_encrypt des_key_file desc descr descri describ describe descriptor deterministic diagnostics difference dimension direct_load directory disable disable_all disallow disassociate discardfile disconnect diskgroup distinct distinctrow distribute distributed div do document domain dotnet double downgrade drop dumpfile duplicate duration each edition editionable editions element ellipsis else elsif elt empty enable enable_all enclosed encode encoding encrypt end end-exec endian enforced engine engines enqueue enterprise entityescaping eomonth error errors escaped evalname evaluate event eventdata events except exception exceptions exchange exclude excluding execu execut execute exempt exists exit exp expire explain export export_set extended extent external external_1 external_2 externally extract failed failed_login_attempts failover failure far fast feature_set feature_value fetch field fields file file_name_convert filesystem_like_logging final finish first first_value fixed flash_cache flashback floor flush following follows for forall force form forma format found found_rows freelist freelists freepools fresh from from_base64 from_days ftp full function general generated get get_format get_lock getdate getutcdate global global_name globally go goto grant grants greatest group group_concat group_id grouping grouping_id groups gtid_subtract guarantee guard handler hash hashkeys having hea head headi headin heading heap help hex hierarchy high high_priority hosts hour http id ident_current ident_incr ident_seed identified identity idle_time if ifnull ignore iif ilike ilm immediate import in include including increment index indexes indexing indextype indicator indices inet6_aton inet6_ntoa inet_aton inet_ntoa infile initial initialized initially initrans inmemory inner innodb input insert install instance instantiable instr interface interleaved intersect into invalidate invisible is is_free_lock is_ipv4 is_ipv4_compat is_not is_not_null is_used_lock isdate isnull isolation iterate java join json json_exists keep keep_duplicates key keys kill language large last last_day last_insert_id last_value lax lcase lead leading least leaves left len lenght length less level levels library like like2 like4 likec limit lines link list listagg little ln load load_file lob lobs local localtime localtimestamp locate locator lock locked log log10 log2 logfile logfiles logging logical logical_reads_per_call logoff logon logs long loop low low_priority lower lpad lrtrim ltrim main make_set makedate maketime managed management manual map mapping mask master master_pos_wait match matched materialized max maxextents maximize maxinstances maxlen maxlogfiles maxloghistory maxlogmembers maxsize maxtrans md5 measures median medium member memcompress memory merge microsecond mid migration min minextents minimum mining minus minute minvalue missing mod mode model modification modify module monitoring month months mount move movement multiset mutex name name_const names nan national native natural nav nchar nclob nested never new newline next nextval no no_write_to_binlog noarchivelog noaudit nobadfile nocheck nocompress nocopy nocycle nodelay nodiscardfile noentityescaping noguarantee nokeep nologfile nomapping nomaxvalue nominimize nominvalue nomonitoring none noneditionable nonschema noorder nopr nopro noprom nopromp noprompt norely noresetlogs noreverse normal norowdependencies noschemacheck noswitch not nothing notice notrim novalidate now nowait nth_value nullif nulls num numb numbe nvarchar nvarchar2 object ocicoll ocidate ocidatetime ociduration ociinterval ociloblocator ocinumber ociref ocirefcursor ocirowid ocistring ocitype oct octet_length of off offline offset oid oidindex old on online only opaque open operations operator optimal optimize option optionally or oracle oracle_date oradata ord ordaudio orddicom orddoc order ordimage ordinality ordvideo organization orlany orlvary out outer outfile outline output over overflow overriding package pad parallel parallel_enable parameters parent parse partial partition partitions pascal passing password password_grace_time password_lock_time password_reuse_max password_reuse_time password_verify_function patch path patindex pctincrease pctthreshold pctused pctversion percent percent_rank percentile_cont percentile_disc performance period period_add period_diff permanent physical pi pipe pipelined pivot pluggable plugin policy position post_transaction pow power pragma prebuilt precedes preceding precision prediction prediction_cost prediction_details prediction_probability prediction_set prepare present preserve prior priority private private_sga privileges procedural procedure procedure_analyze processlist profiles project prompt protection public publishingservername purge quarter query quick quiesce quota quotename radians raise rand range rank raw read reads readsize rebuild record records recover recovery recursive recycle redo reduced ref reference referenced references referencing refresh regexp_like register regr_avgx regr_avgy regr_count regr_intercept regr_r2 regr_slope regr_sxx regr_sxy reject rekey relational relative relaylog release release_lock relies_on relocate rely rem remainder rename repair repeat replace replicate replication required reset resetlogs resize resource respect restore restricted result result_cache resumable resume retention return returning returns reuse reverse revoke right rlike role roles rollback rolling rollup round row row_count rowdependencies rowid rownum rows rtrim rules safe salt sample save savepoint sb1 sb2 sb4 scan schema schemacheck scn scope scroll sdo_georaster sdo_topo_geometry search sec_to_time second section securefile security seed segment select self sequence sequential serializable server servererror session session_user sessions_per_user set sets settings sha sha1 sha2 share shared shared_pool short show shrink shutdown si_averagecolor si_colorhistogram si_featurelist si_positionalcolor si_stillimage si_texture siblings sid sign sin size size_t sizes skip slave sleep smalldatetimefromparts smallfile snapshot some soname sort soundex source space sparse spfile split sql sql_big_result sql_buffer_result sql_cache sql_calc_found_rows sql_small_result sql_variant_property sqlcode sqldata sqlerror sqlname sqlstate sqrt square standalone standby start starting startup statement static statistics stats_binomial_test stats_crosstab stats_ks_test stats_mode stats_mw_test stats_one_way_anova stats_t_test_ stats_t_test_indep stats_t_test_one stats_t_test_paired stats_wsr_test status std stddev stddev_pop stddev_samp stdev stop storage store stored str str_to_date straight_join strcmp strict string struct stuff style subdate subpartition subpartitions substitutable substr substring subtime subtring_index subtype success sum suspend switch switchoffset switchover sync synchronous synonym sys sys_xmlagg sysasm sysaux sysdate sysdatetimeoffset sysdba sysoper system system_user sysutcdatetime table tables tablespace tan tdo template temporary terminated tertiary_weights test than then thread through tier ties time time_format time_zone timediff timefromparts timeout timestamp timestampadd timestampdiff timezone_abbr timezone_minute timezone_region to to_base64 to_date to_days to_seconds todatetimeoffset trace tracking transaction transactional translate translation treat trigger trigger_nestlevel triggers trim truncate try_cast try_convert try_parse type ub1 ub2 ub4 ucase unarchived unbounded uncompress under undo unhex unicode uniform uninstall union unique unix_timestamp unknown unlimited unlock unpivot unrecoverable unsafe unsigned until untrusted unusable unused update updated upgrade upped upper upsert url urowid usable usage use use_stored_outlines user user_data user_resources users using utc_date utc_timestamp uuid uuid_short validate validate_password_strength validation valist value values var var_samp varcharc vari varia variab variabl variable variables variance varp varraw varrawc varray verify version versions view virtual visible void wait wallet warning warnings week weekday weekofyear wellformed when whene whenev wheneve whenever where while whitespace with within without work wrapped xdb xml xmlagg xmlattributes xmlcast xmlcolattval xmlelement xmlexists xmlforest xmlindex xmlnamespaces xmlpi xmlquery xmlroot xmlschema xmlserialize xmltable xmltype xor year year_to_month years yearweek",literal:"true false null",built_in:"array bigint binary bit blob boolean char character date dec decimal float int int8 integer interval number numeric real record serial serial8 smallint text varchar varying void"},c:[{cN:"string",b:"'",e:"'",c:[e.BE,{b:"''"}]},{cN:"string",b:'"',e:'"',c:[e.BE,{b:'""'}]},{cN:"string",b:"`",e:"`",c:[e.BE]},e.CNM,e.CBCM,t]},e.CBCM,t]}});hljs.registerLanguage("python",function(e){var r={cN:"meta",b:/^(>>>|\.\.\.) /},b={cN:"string",c:[e.BE],v:[{b:/(u|b)?r?'''/,e:/'''/,c:[r],r:10},{b:/(u|b)?r?"""/,e:/"""/,c:[r],r:10},{b:/(u|r|ur)'/,e:/'/,r:10},{b:/(u|r|ur)"/,e:/"/,r:10},{b:/(b|br)'/,e:/'/},{b:/(b|br)"/,e:/"/},e.ASM,e.QSM]},a={cN:"number",r:0,v:[{b:e.BNR+"[lLjJ]?"},{b:"\\b(0o[0-7]+)[lLjJ]?"},{b:e.CNR+"[lLjJ]?"}]},l={cN:"params",b:/\(/,e:/\)/,c:["self",r,a,b]};return{aliases:["py","gyp"],k:{keyword:"and elif is global as in if from raise for except finally print import pass return exec else break not with class assert yield try while continue del or def lambda async await nonlocal|10 None True False",built_in:"Ellipsis NotImplemented"},i:/(<\/|->|\?)/,c:[r,a,b,e.HCM,{v:[{cN:"function",bK:"def",r:10},{cN:"class",bK:"class"}],e:/:/,i:/[${=;\n,]/,c:[e.UTM,l,{b:/->/,eW:!0,k:"None"}]},{cN:"meta",b:/^[\t ]*@/,e:/$/},{b:/\b(print|exec)\(/}]}});hljs.registerLanguage("mercury",function(e){var i={keyword:"module use_module import_module include_module end_module initialise mutable initialize finalize finalise interface implementation pred mode func type inst solver any_pred any_func is semidet det nondet multi erroneous failure cc_nondet cc_multi typeclass instance where pragma promise external trace atomic or_else require_complete_switch require_det require_semidet require_multi require_nondet require_cc_multi require_cc_nondet require_erroneous require_failure",meta:"inline no_inline type_spec source_file fact_table obsolete memo loop_check minimal_model terminates does_not_terminate check_termination promise_equivalent_clauses foreign_proc foreign_decl foreign_code foreign_type foreign_import_module foreign_export_enum foreign_export foreign_enum may_call_mercury will_not_call_mercury thread_safe not_thread_safe maybe_thread_safe promise_pure promise_semipure tabled_for_io local untrailed trailed attach_to_io_state can_pass_as_mercury_type stable will_not_throw_exception may_modify_trail will_not_modify_trail may_duplicate may_not_duplicate affects_liveness does_not_affect_liveness doesnt_affect_liveness no_sharing unknown_sharing sharing",built_in:"some all not if then else true fail false try catch catch_any semidet_true semidet_false semidet_fail impure_true impure semipure"},r=e.C("%","$"),t={cN:"number",b:"0'.\\|0[box][0-9a-fA-F]*"},_=e.inherit(e.ASM,{r:0}),n=e.inherit(e.QSM,{r:0}),a={cN:"subst",b:"\\\\[abfnrtv]\\|\\\\x[0-9a-fA-F]*\\\\\\|%[-+# *.0-9]*[dioxXucsfeEgGp]",r:0};n.c.push(a);var o={cN:"built_in",v:[{b:"<=>"},{b:"<=",r:0},{b:"=>",r:0},{b:"/\\\\"},{b:"\\\\/"}]},l={cN:"built_in",v:[{b:":-\\|-->"},{b:"=",r:0}]};return{aliases:["m","moo"],k:i,c:[o,l,r,e.CBCM,t,e.NM,_,n,{b:/:-/}]}});hljs.registerLanguage("haskell",function(e){var i={v:[e.C("--","$"),e.C("{-","-}",{c:["self"]})]},a={cN:"meta",b:"{-#",e:"#-}"},l={cN:"meta",b:"^#",e:"$"},c={cN:"type",b:"\\b[A-Z][\\w']*",r:0},n={b:"\\(",e:"\\)",i:'"',c:[a,l,{cN:"type",b:"\\b[A-Z][\\w]*(\\((\\.\\.|,|\\w+)\\))?"},e.inherit(e.TM,{b:"[_a-z][\\w']*"}),i]},s={b:"{",e:"}",c:n.c};return{aliases:["hs"],k:"let in if then else case of where do module import hiding qualified type data newtype deriving class instance as default infix infixl infixr foreign export ccall stdcall cplusplus jvm dotnet safe unsafe family forall mdo proc rec",c:[{bK:"module",e:"where",k:"module where",c:[n,i],i:"\\W\\.|;"},{b:"\\bimport\\b",e:"$",k:"import qualified as hiding",c:[n,i],i:"\\W\\.|;"},{cN:"class",b:"^(\\s*)?(class|instance)\\b",e:"where",k:"class family instance where",c:[c,n,i]},{cN:"class",b:"\\b(data|(new)?type)\\b",e:"$",k:"data family type newtype deriving",c:[a,c,n,s,i]},{bK:"default",e:"$",c:[c,n,i]},{bK:"infix infixl infixr",e:"$",c:[e.CNM,i]},{b:"\\bforeign\\b",e:"$",k:"foreign import export ccall stdcall cplusplus jvm dotnet safe unsafe",c:[c,e.QSM,i]},{cN:"meta",b:"#!\\/usr\\/bin\\/env runhaskell",e:"$"},a,l,e.QSM,e.CNM,c,e.inherit(e.TM,{b:"^[_a-z][\\w']*"}),i,{b:"->|<-"}]}});hljs.registerLanguage("applescript",function(e){var t=e.inherit(e.QSM,{i:""}),r={cN:"params",b:"\\(",e:"\\)",c:["self",e.CNM,t]},i=e.C("--","$"),o=e.C("\\(\\*","\\*\\)",{c:["self",i]}),n=[i,o,e.HCM];return{aliases:["osascript"],k:{keyword:"about above after against and around as at back before beginning behind below beneath beside between but by considering contain contains continue copy div does eighth else end equal equals error every exit fifth first for fourth from front get given global if ignoring in into is it its last local me middle mod my ninth not of on onto or over prop property put ref reference repeat returning script second set seventh since sixth some tell tenth that the|0 then third through thru timeout times to transaction try until where while whose with without",literal:"AppleScript false linefeed return pi quote result space tab true",built_in:"alias application boolean class constant date file integer list number real record string text activate beep count delay launch log offset read round run say summarize write character characters contents day frontmost id item length month name paragraph paragraphs rest reverse running time version weekday word words year"},c:[t,e.CNM,{cN:"built_in",b:"\\b(clipboard info|the clipboard|info for|list (disks|folder)|mount volume|path to|(close|open for) access|(get|set) eof|current date|do shell script|get volume settings|random number|set volume|system attribute|system info|time to GMT|(load|run|store) script|scripting components|ASCII (character|number)|localized string|choose (application|color|file|file name|folder|from list|remote application|URL)|display (alert|dialog))\\b|^\\s*return\\b"},{cN:"literal",b:"\\b(text item delimiters|current application|missing value)\\b"},{cN:"keyword",b:"\\b(apart from|aside from|instead of|out of|greater than|isn't|(doesn't|does not) (equal|come before|come after|contain)|(greater|less) than( or equal)?|(starts?|ends|begins?) with|contained by|comes (before|after)|a (ref|reference)|POSIX file|POSIX path|(date|time) string|quoted form)\\b"},{bK:"on",i:"[${=;\\n]",c:[e.UTM,r]}].concat(n),i:"//|->|=>|\\[\\["}});hljs.registerLanguage("scala",function(e){var t={cN:"meta",b:"@[A-Za-z]+"},a={cN:"subst",v:[{b:"\\$[A-Za-z0-9_]+"},{b:"\\${",e:"}"}]},r={cN:"string",v:[{b:'"',e:'"',i:"\\n",c:[e.BE]},{b:'"""',e:'"""',r:10},{b:'[a-z]+"',e:'"',i:"\\n",c:[e.BE,a]},{cN:"string",b:'[a-z]+"""',e:'"""',c:[a],r:10}]},c={cN:"symbol",b:"'\\w[\\w\\d_]*(?!')"},i={cN:"type",b:"\\b[A-Z][A-Za-z0-9_]*",r:0},s={cN:"title",b:/[^0-9\n\t "'(),.`{}\[\]:;][^\n\t "'(),.`{}\[\]:;]+|[^0-9\n\t "'(),.`{}\[\]:;=]/,r:0},n={cN:"class",bK:"class object trait type",e:/[:={\[\n;]/,eE:!0,c:[{bK:"extends with",r:10},{b:/\[/,e:/\]/,eB:!0,eE:!0,r:0,c:[i]},{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,r:0,c:[i]},s]},l={cN:"function",bK:"def",e:/[:={\[(\n;]/,eE:!0,c:[s]};return{k:{literal:"true false null",keyword:"type yield lazy override def with val var sealed abstract private trait object if forSome for while throw finally protected extends import final return else break new catch super class case package default try this match continue throws implicit"},c:[e.CLCM,e.CBCM,r,c,i,l,n,e.CNM,t]}});hljs.registerLanguage("erlang",function(e){var r="[a-z'][a-zA-Z0-9_']*",c="("+r+":"+r+"|"+r+")",b={keyword:"after and andalso|10 band begin bnot bor bsl bzr bxor case catch cond div end fun if let not of orelse|10 query receive rem try when xor",literal:"false true"},i=e.C("%","$"),n={cN:"number",b:"\\b(\\d+#[a-fA-F0-9]+|\\d+(\\.\\d+)?([eE][-+]?\\d+)?)",r:0},a={b:"fun\\s+"+r+"/\\d+"},d={b:c+"\\(",e:"\\)",rB:!0,r:0,c:[{b:c,r:0},{b:"\\(",e:"\\)",eW:!0,rE:!0,r:0}]},o={b:"{",e:"}",r:0},t={b:"\\b_([A-Z][A-Za-z0-9_]*)?",r:0},f={b:"[A-Z][a-zA-Z0-9_]*",r:0},l={b:"#"+e.UIR,r:0,rB:!0,c:[{b:"#"+e.UIR,r:0},{b:"{",e:"}",r:0}]},s={bK:"fun receive if try case",e:"end",k:b};s.c=[i,a,e.inherit(e.ASM,{cN:""}),s,d,e.QSM,n,o,t,f,l];var u=[i,a,s,d,e.QSM,n,o,t,f,l];d.c[1].c=u,o.c=u,l.c[1].c=u;var h={cN:"params",b:"\\(",e:"\\)",c:u};return{aliases:["erl"],k:b,i:"(</|\\*=|\\+=|-=|/\\*|\\*/|\\(\\*|\\*\\))",c:[{cN:"function",b:"^"+r+"\\s*\\(",e:"->",rB:!0,i:"\\(|#|//|/\\*|\\\\|:|;",c:[h,e.inherit(e.TM,{b:r})],starts:{e:";|\\.",k:b,c:u}},i,{b:"^-",e:"\\.",r:0,eE:!0,rB:!0,l:"-"+e.IR,k:"-module -record -undef -export -ifdef -ifndef -author -copyright -doc -vsn -import -include -include_lib -compile -define -else -endif -file -behaviour -behavior -spec",c:[h]},n,e.QSM,l,t,f,o,{b:/\.$/}]}});hljs.registerLanguage("powershell",function(e){var t={b:"`[\\s\\S]",r:0},r={cN:"variable",v:[{b:/\$[\w\d][\w\d_:]*/}]},o={cN:"literal",b:/\$(null|true|false)\b/},a={cN:"string",b:/"/,e:/"/,c:[t,r,{cN:"variable",b:/\$[A-z]/,e:/[^A-z]/}]},i={cN:"string",b:/'/,e:/'/};return{aliases:["ps"],l:/-?[A-z\.\-]+/,cI:!0,k:{keyword:"if else foreach return function do while until elseif begin for trap data dynamicparam end break throw param continue finally in switch exit filter try process catch",built_in:"Add-Content Add-History Add-Member Add-PSSnapin Clear-Content Clear-Item Clear-Item Property Clear-Variable Compare-Object ConvertFrom-SecureString Convert-Path ConvertTo-Html ConvertTo-SecureString Copy-Item Copy-ItemProperty Export-Alias Export-Clixml Export-Console Export-Csv ForEach-Object Format-Custom Format-List Format-Table Format-Wide Get-Acl Get-Alias Get-AuthenticodeSignature Get-ChildItem Get-Command Get-Content Get-Credential Get-Culture Get-Date Get-EventLog Get-ExecutionPolicy Get-Help Get-History Get-Host Get-Item Get-ItemProperty Get-Location Get-Member Get-PfxCertificate Get-Process Get-PSDrive Get-PSProvider Get-PSSnapin Get-Service Get-TraceSource Get-UICulture Get-Unique Get-Variable Get-WmiObject Group-Object Import-Alias Import-Clixml Import-Csv Invoke-Expression Invoke-History Invoke-Item Join-Path Measure-Command Measure-Object Move-Item Move-ItemProperty New-Alias New-Item New-ItemProperty New-Object New-PSDrive New-Service New-TimeSpan New-Variable Out-Default Out-File Out-Host Out-Null Out-Printer Out-String Pop-Location Push-Location Read-Host Remove-Item Remove-ItemProperty Remove-PSDrive Remove-PSSnapin Remove-Variable Rename-Item Rename-ItemProperty Resolve-Path Restart-Service Resume-Service Select-Object Select-String Set-Acl Set-Alias Set-AuthenticodeSignature Set-Content Set-Date Set-ExecutionPolicy Set-Item Set-ItemProperty Set-Location Set-PSDebug Set-Service Set-TraceSource Set-Variable Sort-Object Split-Path Start-Service Start-Sleep Start-Transcript Stop-Process Stop-Service Stop-Transcript Suspend-Service Tee-Object Test-Path Trace-Command Update-FormatData Update-TypeData Where-Object Write-Debug Write-Error Write-Host Write-Output Write-Progress Write-Verbose Write-Warning",nomarkup:"-ne -eq -lt -gt -ge -le -not -like -notlike -match -notmatch -contains -notcontains -in -notin -replace"},c:[e.HCM,e.NM,a,i,o,r]}});hljs.registerLanguage("dust",function(e){var t="if eq ne lt lte gt gte select default math sep";return{aliases:["dst"],cI:!0,sL:"xml",c:[{cN:"template-tag",b:/\{[#\/]/,e:/\}/,i:/;/,c:[{cN:"name",b:/[a-zA-Z\.-]+/,starts:{eW:!0,r:0,c:[e.QSM]}}]},{cN:"template-variable",b:/\{/,e:/\}/,i:/;/,k:t}]}});hljs.registerLanguage("clojure",function(e){var t={"builtin-name":"def defonce cond apply if-not if-let if not not= = < > <= >= == + / * - rem quot neg? pos? delay? symbol? keyword? true? false? integer? empty? coll? list? set? ifn? fn? associative? sequential? sorted? counted? reversible? number? decimal? class? distinct? isa? float? rational? reduced? ratio? odd? even? char? seq? vector? string? map? nil? contains? zero? instance? not-every? not-any? libspec? -> ->> .. . inc compare do dotimes mapcat take remove take-while drop letfn drop-last take-last drop-while while intern condp case reduced cycle split-at split-with repeat replicate iterate range merge zipmap declare line-seq sort comparator sort-by dorun doall nthnext nthrest partition eval doseq await await-for let agent atom send send-off release-pending-sends add-watch mapv filterv remove-watch agent-error restart-agent set-error-handler error-handler set-error-mode! error-mode shutdown-agents quote var fn loop recur throw try monitor-enter monitor-exit defmacro defn defn- macroexpand macroexpand-1 for dosync and or when when-not when-let comp juxt partial sequence memoize constantly complement identity assert peek pop doto proxy defstruct first rest cons defprotocol cast coll deftype defrecord last butlast sigs reify second ffirst fnext nfirst nnext defmulti defmethod meta with-meta ns in-ns create-ns import refer keys select-keys vals key val rseq name namespace promise into transient persistent! conj! assoc! dissoc! pop! disj! use class type num float double short byte boolean bigint biginteger bigdec print-method print-dup throw-if printf format load compile get-in update-in pr pr-on newline flush read slurp read-line subvec with-open memfn time re-find re-groups rand-int rand mod locking assert-valid-fdecl alias resolve ref deref refset swap! reset! set-validator! compare-and-set! alter-meta! reset-meta! commute get-validator alter ref-set ref-history-count ref-min-history ref-max-history ensure sync io! new next conj set! to-array future future-call into-array aset gen-class reduce map filter find empty hash-map hash-set sorted-map sorted-map-by sorted-set sorted-set-by vec vector seq flatten reverse assoc dissoc list disj get union difference intersection extend extend-type extend-protocol int nth delay count concat chunk chunk-buffer chunk-append chunk-first chunk-rest max min dec unchecked-inc-int unchecked-inc unchecked-dec-inc unchecked-dec unchecked-negate unchecked-add-int unchecked-add unchecked-subtract-int unchecked-subtract chunk-next chunk-cons chunked-seq? prn vary-meta lazy-seq spread list* str find-keyword keyword symbol gensym force rationalize"},r="a-zA-Z_\\-!.?+*=<>&#'",n="["+r+"]["+r+"0-9/;:]*",a="[-+]?\\d+(\\.\\d+)?",o={b:n,r:0},s={cN:"number",b:a,r:0},i=e.inherit(e.QSM,{i:null}),c=e.C(";","$",{r:0}),d={cN:"literal",b:/\b(true|false|nil)\b/},l={b:"[\\[\\{]",e:"[\\]\\}]"},m={cN:"comment",b:"\\^"+n},p=e.C("\\^\\{","\\}"),u={cN:"symbol",b:"[:]"+n},f={b:"\\(",e:"\\)"},h={eW:!0,r:0},y={k:t,l:n,cN:"name",b:n,starts:h},b=[f,i,m,p,c,u,l,s,d,o];return f.c=[e.C("comment",""),y,h],h.c=b,l.c=b,{aliases:["clj"],i:/\S/,c:[f,i,m,p,c,u,l,s,d]}});hljs.registerLanguage("go",function(e){var t={keyword:"break default func interface select case map struct chan else goto package switch const fallthrough if range type continue for import return var go defer bool byte complex64 complex128 float32 float64 int8 int16 int32 int64 string uint8 uint16 uint32 uint64 int uint uintptr rune",literal:"true false iota nil",built_in:"append cap close complex copy imag len make new panic print println real recover delete"};return{aliases:["golang"],k:t,i:"</",c:[e.CLCM,e.CBCM,e.QSM,{cN:"string",b:"'",e:"[^\\\\]'"},{cN:"string",b:"`",e:"`"},{cN:"number",b:e.CNR+"[dflsi]?",r:0},e.CNM]}});hljs.registerLanguage("tcl",function(e){return{aliases:["tk"],k:"after append apply array auto_execok auto_import auto_load auto_mkindex auto_mkindex_old auto_qualify auto_reset bgerror binary break catch cd chan clock close concat continue dde dict encoding eof error eval exec exit expr fblocked fconfigure fcopy file fileevent filename flush for foreach format gets glob global history http if incr info interp join lappend|10 lassign|10 lindex|10 linsert|10 list llength|10 load lrange|10 lrepeat|10 lreplace|10 lreverse|10 lsearch|10 lset|10 lsort|10 mathfunc mathop memory msgcat namespace open package parray pid pkg::create pkg_mkIndex platform platform::shell proc puts pwd read refchan regexp registry regsub|10 rename return safe scan seek set socket source split string subst switch tcl_endOfWord tcl_findLibrary tcl_startOfNextWord tcl_startOfPreviousWord tcl_wordBreakAfter tcl_wordBreakBefore tcltest tclvars tell time tm trace unknown unload unset update uplevel upvar variable vwait while",c:[e.C(";[ \\t]*#","$"),e.C("^[ \\t]*#","$"),{bK:"proc",e:"[\\{]",eE:!0,c:[{cN:"title",b:"[ \\t\\n\\r]+(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*",e:"[ \\t\\n\\r]",eW:!0,eE:!0}]},{eE:!0,v:[{b:"\\$(\\{)?(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*\\(([a-zA-Z0-9_])*\\)",e:"[^a-zA-Z0-9_\\}\\$]"},{b:"\\$(\\{)?(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*",e:"(\\))?[^a-zA-Z0-9_\\}\\$]"}]},{cN:"string",c:[e.BE],v:[e.inherit(e.ASM,{i:null}),e.inherit(e.QSM,{i:null})]},{cN:"number",v:[e.BNM,e.CNM]}]}});hljs.registerLanguage("twig",function(e){var t={cN:"params",b:"\\(",e:"\\)"},a="attribute block constant cycle date dump include max min parent random range source template_from_string",r={bK:a,k:{name:a},r:0,c:[t]},c={b:/\|[A-Za-z_]+:?/,k:"abs batch capitalize convert_encoding date date_modify default escape first format join json_encode keys last length lower merge nl2br number_format raw replace reverse round slice sort split striptags title trim upper url_encode",c:[r]},s="autoescape block do embed extends filter flush for if import include macro sandbox set spaceless use verbatim";return s=s+" "+s.split(" ").map(function(e){return"end"+e}).join(" "),{aliases:["craftcms"],cI:!0,sL:"xml",c:[e.C(/\{#/,/#}/),{cN:"template-tag",b:/\{%/,e:/%}/,c:[{cN:"name",b:/\w+/,k:s,starts:{eW:!0,c:[c,r],r:0}}]},{cN:"template-variable",b:/\{\{/,e:/}}/,c:["self",c,r]}]}});hljs.registerLanguage("vhdl",function(e){var r="\\d(_|\\d)*",t="[eE][-+]?"+r,o=r+"(\\."+r+")?("+t+")?",n="\\w+",i=r+"#"+n+"(\\."+n+")?#("+t+")?",a="\\b("+i+"|"+o+")";return{cI:!0,k:{keyword:"abs access after alias all and architecture array assert attribute begin block body buffer bus case component configuration constant context cover disconnect downto default else elsif end entity exit fairness file for force function generate generic group guarded if impure in inertial inout is label library linkage literal loop map mod nand new next nor not null of on open or others out package port postponed procedure process property protected pure range record register reject release rem report restrict restrict_guarantee return rol ror select sequence severity shared signal sla sll sra srl strong subtype then to transport type unaffected units until use variable vmode vprop vunit wait when while with xnor xor",built_in:"boolean bit character severity_level integer time delay_length natural positive string bit_vector file_open_kind file_open_status std_ulogic std_ulogic_vector std_logic std_logic_vector unsigned signed boolean_vector integer_vector real_vector time_vector"},i:"{",c:[e.CBCM,e.C("--","$"),e.QSM,{cN:"number",b:a,r:0},{cN:"literal",b:"'(U|X|0|1|Z|W|L|H|-)'",c:[e.BE]},{cN:"symbol",b:"'[A-Za-z](_?[A-Za-z0-9])*",c:[e.BE]}]}});hljs.registerLanguage("javascript",function(e){return{aliases:["js","jsx"],k:{keyword:"in of if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const export super debugger as async await static import from as",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document Symbol Set Map WeakSet WeakMap Proxy Reflect Promise"},c:[{cN:"meta",r:10,b:/^\s*['"]use (strict|asm)['"]/},{cN:"meta",b:/^#!/,e:/$/},e.ASM,e.QSM,{cN:"string",b:"`",e:"`",c:[e.BE,{cN:"subst",b:"\\$\\{",e:"\\}"}]},e.CLCM,e.CBCM,{cN:"number",v:[{b:"\\b(0[bB][01]+)"},{b:"\\b(0[oO][0-7]+)"},{b:e.CNR}],r:0},{b:"("+e.RSR+"|\\b(case|return|throw)\\b)\\s*",k:"return throw case",c:[e.CLCM,e.CBCM,e.RM,{b:/</,e:/(\/\w+|\w+\/)>/,sL:"xml",c:[{b:/<\w+\/>/,skip:!0},{b:/<\w+/,e:/(\/\w+|\w+\/)>/,skip:!0,c:["self"]}]}],r:0},{cN:"function",bK:"function",e:/\{/,eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/}),{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,c:[e.CLCM,e.CBCM]}],i:/\[|%/},{b:/\$[(.]/},e.METHOD_GUARD,{cN:"class",bK:"class",e:/[{;=]/,eE:!0,i:/[:"\[\]]/,c:[{bK:"extends"},e.UTM]},{bK:"constructor",e:/\{/,eE:!0}],i:/#(?!!)/}});hljs.registerLanguage("less",function(e){var r="[\\w-]+",t="("+r+"|@{"+r+"})",a=[],c=[],s=function(e){return{cN:"string",b:"~?"+e+".*?"+e}},b=function(e,r,t){return{cN:e,b:r,r:t}},i={b:"\\(",e:"\\)",c:c,r:0};c.push(e.CLCM,e.CBCM,s("'"),s('"'),e.CSSNM,{b:"(url|data-uri)\\(",starts:{cN:"string",e:"[\\)\\n]",eE:!0}},b("number","#[0-9A-Fa-f]+\\b"),i,b("variable","@@?"+r,10),b("variable","@{"+r+"}"),b("built_in","~?`[^`]*?`"),{cN:"attribute",b:r+"\\s*:",e:":",rB:!0,eE:!0},{cN:"meta",b:"!important"});var n=c.concat({b:"{",e:"}",c:a}),o={bK:"when",eW:!0,c:[{bK:"and not"}].concat(c)},u={cN:"attribute",b:t,e:":",eE:!0,c:[e.CLCM,e.CBCM],i:/\S/,starts:{e:"[;}]",rE:!0,c:c,i:"[<=$]"}},C={cN:"keyword",b:"@(import|media|charset|font-face|(-[a-z]+-)?keyframes|supports|document|namespace|page|viewport|host)\\b",starts:{e:"[;{}]",rE:!0,c:c,r:0}},l={cN:"variable",v:[{b:"@"+r+"\\s*:",r:15},{b:"@"+r}],starts:{e:"[;}]",rE:!0,c:n}},p={v:[{b:"[\\.#:&\\[]",e:"[;{}]"},{b:t+"[^;]*{",e:"{"}],rB:!0,rE:!0,i:"[<='$\"]",c:[e.CLCM,e.CBCM,o,b("keyword","all\\b"),b("variable","@{"+r+"}"),b("selector-tag",t+"%?",0),b("selector-id","#"+t),b("selector-class","\\."+t,0),b("selector-tag","&",0),{cN:"selector-attr",b:"\\[",e:"\\]"},{b:"\\(",e:"\\)",c:n},{b:"!important"}]};return a.push(e.CLCM,e.CBCM,C,l,p,u),{cI:!0,i:"[=>'/<($\"]",c:a}});hljs.registerLanguage("q",function(e){var s={keyword:"do while select delete by update from",literal:"0b 1b",built_in:"neg not null string reciprocal floor ceiling signum mod xbar xlog and or each scan over prior mmu lsq inv md5 ltime gtime count first var dev med cov cor all any rand sums prds mins maxs fills deltas ratios avgs differ prev next rank reverse iasc idesc asc desc msum mcount mavg mdev xrank mmin mmax xprev rotate distinct group where flip type key til get value attr cut set upsert raze union inter except cross sv vs sublist enlist read0 read1 hopen hclose hdel hsym hcount peach system ltrim rtrim trim lower upper ssr view tables views cols xcols keys xkey xcol xasc xdesc fkeys meta lj aj aj0 ij pj asof uj ww wj wj1 fby xgroup ungroup ej save load rsave rload show csv parse eval min max avg wavg wsum sin cos tan sum",type:"`float `double int `timestamp `timespan `datetime `time `boolean `symbol `char `byte `short `long `real `month `date `minute `second `guid"};return{aliases:["k","kdb"],k:s,l:/(`?)[A-Za-z0-9_]+\b/,c:[e.CLCM,e.QSM,e.CNM]}});hljs.registerLanguage("gherkin",function(e){return{aliases:["feature"],k:"Feature Background Ability Business Need Scenario Scenarios Scenario Outline Scenario Template Examples Given And Then But When",c:[{cN:"keyword",b:"\\*"},{cN:"meta",b:"@[^@\\s]+"},{b:"\\|",e:"\\|\\w*$",c:[{cN:"string",b:"[^|]+"}]},{cN:"variable",b:"<",e:">"},e.HCM,{cN:"string",b:'"""',e:'"""'},e.QSM]}});hljs.registerLanguage("nginx",function(e){var r={cN:"variable",v:[{b:/\$\d+/},{b:/\$\{/,e:/}/},{b:"[\\$\\@]"+e.UIR}]},b={eW:!0,l:"[a-z/_]+",k:{literal:"on off yes no true false none blocked debug info notice warn error crit select break last permanent redirect kqueue rtsig epoll poll /dev/poll"},r:0,i:"=>",c:[e.HCM,{cN:"string",c:[e.BE,r],v:[{b:/"/,e:/"/},{b:/'/,e:/'/}]},{b:"([a-z]+):/",e:"\\s",eW:!0,eE:!0,c:[r]},{cN:"regexp",c:[e.BE,r],v:[{b:"\\s\\^",e:"\\s|{|;",rE:!0},{b:"~\\*?\\s+",e:"\\s|{|;",rE:!0},{b:"\\*(\\.[a-z\\-]+)+"},{b:"([a-z\\-]+\\.)+\\*"}]},{cN:"number",b:"\\b\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}(:\\d{1,5})?\\b"},{cN:"number",b:"\\b\\d+[kKmMgGdshdwy]*\\b",r:0},r]};return{aliases:["nginxconf"],c:[e.HCM,{b:e.UIR+"\\s+{",rB:!0,e:"{",c:[{cN:"section",b:e.UIR}],r:0},{b:e.UIR+"\\s",e:";|{",rB:!0,c:[{cN:"attribute",b:e.UIR,starts:b}],r:0}],i:"[^\\s\\}]"}});hljs.registerLanguage("rust",function(e){var t="([uif](8|16|32|64|size))?",r=e.inherit(e.CBCM);r.c.push("self");var n="Copy Send Sized Sync Drop Fn FnMut FnOnce drop Box ToOwned Clone PartialEq PartialOrd Eq Ord AsRef AsMut Into From Default Iterator Extend IntoIterator DoubleEndedIterator ExactSizeIterator Option Result SliceConcatExt String ToString Vec assert! assert_eq! bitflags! bytes! cfg! col! concat! concat_idents! debug_assert! debug_assert_eq! env! panic! file! format! format_args! include_bin! include_str! line! local_data_key! module_path! option_env! print! println! select! stringify! try! unimplemented! unreachable! vec! write! writeln! macro_rules!";return{aliases:["rs"],k:{keyword:"alignof as be box break const continue crate do else enum extern false fn for if impl in let loop match mod mut offsetof once priv proc pub pure ref return self Self sizeof static struct super trait true type typeof unsafe unsized use virtual while where yield int i8 i16 i32 i64 uint u8 u32 u64 float f32 f64 str char bool",literal:"true false Some None Ok Err",built_in:n},l:e.IR+"!?",i:"</",c:[e.CLCM,r,e.inherit(e.QSM,{b:/b?"/,i:null}),{cN:"string",v:[{b:/r(#*)".*?"\1(?!#)/},{b:/b?'\\?(x\w{2}|u\w{4}|U\w{8}|.)'/}]},{cN:"symbol",b:/'[a-zA-Z_][a-zA-Z0-9_]*/},{cN:"number",v:[{b:"\\b0b([01_]+)"+t},{b:"\\b0o([0-7_]+)"+t},{b:"\\b0x([A-Fa-f0-9_]+)"+t},{b:"\\b(\\d[\\d_]*(\\.[0-9_]+)?([eE][+-]?[0-9_]+)?)"+t}],r:0},{cN:"function",bK:"fn",e:"(\\(|<)",eE:!0,c:[e.UTM]},{cN:"meta",b:"#\\!?\\[",e:"\\]",c:[{cN:"meta-string",b:/"/,e:/"/}]},{cN:"class",bK:"type",e:";",c:[e.inherit(e.UTM,{endsParent:!0})],i:"\\S"},{cN:"class",bK:"trait enum struct",e:"{",c:[e.inherit(e.UTM,{endsParent:!0})],i:"[\\w\\d]"},{b:e.IR+"::",k:{built_in:n}},{b:"->"}]}});hljs.registerLanguage("groovy",function(e){return{k:{literal:"true false null",keyword:"byte short char int long boolean float double void def as in assert trait super this abstract static volatile transient public private protected synchronized final class interface enum if else for while switch case break default continue throw throws try catch finally implements extends new import package return instanceof"},c:[e.C("/\\*\\*","\\*/",{r:0,c:[{b:/\w+@/,r:0},{cN:"doctag",b:"@[A-Za-z]+"}]}),e.CLCM,e.CBCM,{cN:"string",b:'"""',e:'"""'},{cN:"string",b:"'''",e:"'''"},{cN:"string",b:"\\$/",e:"/\\$",r:10},e.ASM,{cN:"regexp",b:/~?\/[^\/\n]+\//,c:[e.BE]},e.QSM,{cN:"meta",b:"^#!/usr/bin/env",e:"$",i:"\n"},e.BNM,{cN:"class",bK:"class interface trait enum",e:"{",i:":",c:[{bK:"extends implements"},e.UTM]},e.CNM,{cN:"meta",b:"@[A-Za-z]+"},{cN:"string",b:/[^\?]{0}[A-Za-z0-9_$]+ *:/},{b:/\?/,e:/\:/},{cN:"symbol",b:"^\\s*[A-Za-z0-9_$]+:",r:0}],i:/#|<\//}});hljs.registerLanguage("aspectj",function(e){var t="false synchronized int abstract float private char boolean static null if const for true while long throw strictfp finally protected import native final return void enum else extends implements break transient new catch instanceof byte super volatile case assert short package default double public try this switch continue throws privileged aspectOf adviceexecution proceed cflowbelow cflow initialization preinitialization staticinitialization withincode target within execution getWithinTypeName handler thisJoinPoint thisJoinPointStaticPart thisEnclosingJoinPointStaticPart declare parents warning error soft precedence thisAspectInstance",i="get set args call";return{k:t,i:/<\/|#/,c:[e.C("/\\*\\*","\\*/",{r:0,c:[{b:/\w+@/,r:0},{cN:"doctag",b:"@[A-Za-z]+"}]}),e.CLCM,e.CBCM,e.ASM,e.QSM,{cN:"class",bK:"aspect",e:/[{;=]/,eE:!0,i:/[:;"\[\]]/,c:[{bK:"extends implements pertypewithin perthis pertarget percflowbelow percflow issingleton"},e.UTM,{b:/\([^\)]*/,e:/[)]+/,k:t+" "+i,eE:!1}]},{cN:"class",bK:"class interface",e:/[{;=]/,eE:!0,r:0,k:"class interface",i:/[:"\[\]]/,c:[{bK:"extends implements"},e.UTM]},{bK:"pointcut after before around throwing returning",e:/[)]/,eE:!1,i:/["\[\]]/,c:[{b:e.UIR+"\\s*\\(",rB:!0,c:[e.UTM]}]},{b:/[:]/,rB:!0,e:/[{;]/,r:0,eE:!1,k:t,i:/["\[\]]/,c:[{b:e.UIR+"\\s*\\(",k:t+" "+i},e.QSM]},{bK:"new throw",r:0},{cN:"function",b:/\w+ +\w+(\.)?\w+\s*\([^\)]*\)\s*((throws)[\w\s,]+)?[\{;]/,rB:!0,e:/[{;=]/,k:t,eE:!0,c:[{b:e.UIR+"\\s*\\(",rB:!0,r:0,c:[e.UTM]},{cN:"params",b:/\(/,e:/\)/,r:0,k:t,c:[e.ASM,e.QSM,e.CNM,e.CBCM]},e.CLCM,e.CBCM]},e.CNM,{cN:"meta",b:"@[A-Za-z]+"}]}});hljs.registerLanguage("actionscript",function(e){var a="[a-zA-Z_$][a-zA-Z0-9_$]*",t="([*]|[a-zA-Z_$][a-zA-Z0-9_$]*)",c={cN:"rest_arg",b:"[.]{3}",e:a,r:10};return{aliases:["as"],k:{keyword:"as break case catch class const continue default delete do dynamic each else extends final finally for function get if implements import in include instanceof interface internal is namespace native new override package private protected public return set static super switch this throw try typeof use var void while with",literal:"true false null undefined"},c:[e.ASM,e.QSM,e.CLCM,e.CBCM,e.CNM,{cN:"class",bK:"package",e:"{",c:[e.TM]},{cN:"class",bK:"class interface",e:"{",eE:!0,c:[{bK:"extends implements"},e.TM]},{cN:"meta",bK:"import include",e:";",k:{"meta-keyword":"import include"}},{cN:"function",bK:"function",e:"[{;]",eE:!0,i:"\\S",c:[e.TM,{cN:"params",b:"\\(",e:"\\)",c:[e.ASM,e.QSM,e.CLCM,e.CBCM,c]},{b:":\\s*"+t}]},e.METHOD_GUARD],i:/#/}});hljs.registerLanguage("diff",function(e){return{aliases:["patch"],c:[{cN:"meta",r:10,v:[{b:/^@@ +\-\d+,\d+ +\+\d+,\d+ +@@$/},{b:/^\*\*\* +\d+,\d+ +\*\*\*\*$/},{b:/^\-\-\- +\d+,\d+ +\-\-\-\-$/}]},{cN:"comment",v:[{b:/Index: /,e:/$/},{b:/=====/,e:/=====$/},{b:/^\-\-\-/,e:/$/},{b:/^\*{3} /,e:/$/},{b:/^\+\+\+/,e:/$/},{b:/\*{5}/,e:/\*{5}$/}]},{cN:"addition",b:"^\\+",e:"$"},{cN:"deletion",b:"^\\-",e:"$"},{cN:"addition",b:"^\\!",e:"$"}]}});hljs.registerLanguage("ini",function(e){var b={cN:"string",c:[e.BE],v:[{b:"'''",e:"'''",r:10},{b:'"""',e:'"""',r:10},{b:'"',e:'"'},{b:"'",e:"'"}]};return{aliases:["toml"],cI:!0,i:/\S/,c:[e.C(";","$"),e.HCM,{cN:"section",b:/^\s*\[+/,e:/\]+/},{b:/^[a-z0-9\[\]_-]+\s*=\s*/,e:"$",rB:!0,c:[{cN:"attr",b:/[a-z0-9\[\]_-]+/},{b:/=/,eW:!0,r:0,c:[{cN:"literal",b:/\bon|off|true|false|yes|no\b/},{cN:"variable",v:[{b:/\$[\w\d"][\w\d_]*/},{b:/\$\{(.*?)}/}]},b,{cN:"number",b:/([\+\-]+)?[\d]+_[\d_]+/},e.NM]}]}]}});hljs.registerLanguage("fortran",function(e){var t={cN:"params",b:"\\(",e:"\\)"},n={literal:".False. .True.",keyword:"kind do while private call intrinsic where elsewhere type endtype endmodule endselect endinterface end enddo endif if forall endforall only contains default return stop then public subroutine|10 function program .and. .or. .not. .le. .eq. .ge. .gt. .lt. goto save else use module select case access blank direct exist file fmt form formatted iostat name named nextrec number opened rec recl sequential status unformatted unit continue format pause cycle exit c_null_char c_alert c_backspace c_form_feed flush wait decimal round iomsg synchronous nopass non_overridable pass protected volatile abstract extends import non_intrinsic value deferred generic final enumerator class associate bind enum c_int c_short c_long c_long_long c_signed_char c_size_t c_int8_t c_int16_t c_int32_t c_int64_t c_int_least8_t c_int_least16_t c_int_least32_t c_int_least64_t c_int_fast8_t c_int_fast16_t c_int_fast32_t c_int_fast64_t c_intmax_t C_intptr_t c_float c_double c_long_double c_float_complex c_double_complex c_long_double_complex c_bool c_char c_null_ptr c_null_funptr c_new_line c_carriage_return c_horizontal_tab c_vertical_tab iso_c_binding c_loc c_funloc c_associated  c_f_pointer c_ptr c_funptr iso_fortran_env character_storage_size error_unit file_storage_size input_unit iostat_end iostat_eor numeric_storage_size output_unit c_f_procpointer ieee_arithmetic ieee_support_underflow_control ieee_get_underflow_mode ieee_set_underflow_mode newunit contiguous recursive pad position action delim readwrite eor advance nml interface procedure namelist include sequence elemental pure integer real character complex logical dimension allocatable|10 parameter external implicit|10 none double precision assign intent optional pointer target in out common equivalence data",built_in:"alog alog10 amax0 amax1 amin0 amin1 amod cabs ccos cexp clog csin csqrt dabs dacos dasin datan datan2 dcos dcosh ddim dexp dint dlog dlog10 dmax1 dmin1 dmod dnint dsign dsin dsinh dsqrt dtan dtanh float iabs idim idint idnint ifix isign max0 max1 min0 min1 sngl algama cdabs cdcos cdexp cdlog cdsin cdsqrt cqabs cqcos cqexp cqlog cqsin cqsqrt dcmplx dconjg derf derfc dfloat dgamma dimag dlgama iqint qabs qacos qasin qatan qatan2 qcmplx qconjg qcos qcosh qdim qerf qerfc qexp qgamma qimag qlgama qlog qlog10 qmax1 qmin1 qmod qnint qsign qsin qsinh qsqrt qtan qtanh abs acos aimag aint anint asin atan atan2 char cmplx conjg cos cosh exp ichar index int log log10 max min nint sign sin sinh sqrt tan tanh print write dim lge lgt lle llt mod nullify allocate deallocate adjustl adjustr all allocated any associated bit_size btest ceiling count cshift date_and_time digits dot_product eoshift epsilon exponent floor fraction huge iand ibclr ibits ibset ieor ior ishft ishftc lbound len_trim matmul maxexponent maxloc maxval merge minexponent minloc minval modulo mvbits nearest pack present product radix random_number random_seed range repeat reshape rrspacing scale scan selected_int_kind selected_real_kind set_exponent shape size spacing spread sum system_clock tiny transpose trim ubound unpack verify achar iachar transfer dble entry dprod cpu_time command_argument_count get_command get_command_argument get_environment_variable is_iostat_end ieee_arithmetic ieee_support_underflow_control ieee_get_underflow_mode ieee_set_underflow_mode is_iostat_eor move_alloc new_line selected_char_kind same_type_as extends_type_ofacosh asinh atanh bessel_j0 bessel_j1 bessel_jn bessel_y0 bessel_y1 bessel_yn erf erfc erfc_scaled gamma log_gamma hypot norm2 atomic_define atomic_ref execute_command_line leadz trailz storage_size merge_bits bge bgt ble blt dshiftl dshiftr findloc iall iany iparity image_index lcobound ucobound maskl maskr num_images parity popcnt poppar shifta shiftl shiftr this_image"};return{cI:!0,aliases:["f90","f95"],k:n,i:/\/\*/,c:[e.inherit(e.ASM,{cN:"string",r:0}),e.inherit(e.QSM,{cN:"string",r:0}),{cN:"function",bK:"subroutine function program",i:"[${=\\n]",c:[e.UTM,t]},e.C("!","$",{r:0}),{cN:"number",b:"(?=\\b|\\+|\\-|\\.)(?=\\.\\d|\\d)(?:\\d+)?(?:\\.?\\d*)(?:[de][+-]?\\d+)?\\b\\.?",r:0}]}});hljs.registerLanguage("tex",function(c){var e={cN:"tag",b:/\\/,r:0,c:[{cN:"name",v:[{b:/[a-zA-Zа-яА-я]+[*]?/},{b:/[^a-zA-Zа-яА-я0-9]/}],starts:{eW:!0,r:0,c:[{cN:"string",v:[{b:/\[/,e:/\]/},{b:/\{/,e:/\}/}]},{b:/\s*=\s*/,eW:!0,r:0,c:[{cN:"number",b:/-?\d*\.?\d+(pt|pc|mm|cm|in|dd|cc|ex|em)?/}]}]}}]};return{c:[e,{cN:"formula",c:[e],r:0,v:[{b:/\$\$/,e:/\$\$/},{b:/\$/,e:/\$/}]},c.C("%","$",{r:0})]}});hljs.registerLanguage("typescript",function(e){var r={keyword:"in if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const class public private protected get set super static implements enum export import declare type namespace abstract",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document any number boolean string void"};return{aliases:["ts"],k:r,c:[{cN:"meta",b:/^\s*['"]use strict['"]/},e.ASM,e.QSM,{cN:"string",b:"`",e:"`",c:[e.BE,{cN:"subst",b:"\\$\\{",e:"\\}"}]},e.CLCM,e.CBCM,{cN:"number",v:[{b:"\\b(0[bB][01]+)"},{b:"\\b(0[oO][0-7]+)"},{b:e.CNR}],r:0},{b:"("+e.RSR+"|\\b(case|return|throw)\\b)\\s*",k:"return throw case",c:[e.CLCM,e.CBCM,e.RM],r:0},{cN:"function",b:"function",e:/[\{;]/,eE:!0,k:r,c:["self",e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/}),{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,k:r,c:[e.CLCM,e.CBCM],i:/["'\(]/}],i:/\[|%/,r:0},{bK:"constructor",e:/\{/,eE:!0},{bK:"module",e:/\{/,eE:!0},{bK:"interface",e:/\{/,eE:!0,k:"interface extends"},{b:/\$[(.]/},{b:"\\."+e.IR,r:0}]}});hljs.registerLanguage("scss",function(e){var t="[a-zA-Z-][a-zA-Z0-9_-]*",i={cN:"variable",b:"(\\$"+t+")\\b"},r={cN:"number",b:"#[0-9A-Fa-f]+"};({cN:"attribute",b:"[A-Z\\_\\.\\-]+",e:":",eE:!0,i:"[^\\s]",starts:{eW:!0,eE:!0,c:[r,e.CSSNM,e.QSM,e.ASM,e.CBCM,{cN:"meta",b:"!important"}]}});return{cI:!0,i:"[=/|']",c:[e.CLCM,e.CBCM,{cN:"selector-id",b:"\\#[A-Za-z0-9_-]+",r:0},{cN:"selector-class",b:"\\.[A-Za-z0-9_-]+",r:0},{cN:"selector-attr",b:"\\[",e:"\\]",i:"$"},{cN:"selector-tag",b:"\\b(a|abbr|acronym|address|area|article|aside|audio|b|base|big|blockquote|body|br|button|canvas|caption|cite|code|col|colgroup|command|datalist|dd|del|details|dfn|div|dl|dt|em|embed|fieldset|figcaption|figure|footer|form|frame|frameset|(h[1-6])|head|header|hgroup|hr|html|i|iframe|img|input|ins|kbd|keygen|label|legend|li|link|map|mark|meta|meter|nav|noframes|noscript|object|ol|optgroup|option|output|p|param|pre|progress|q|rp|rt|ruby|samp|script|section|select|small|span|strike|strong|style|sub|sup|table|tbody|td|textarea|tfoot|th|thead|time|title|tr|tt|ul|var|video)\\b",r:0},{b:":(visited|valid|root|right|required|read-write|read-only|out-range|optional|only-of-type|only-child|nth-of-type|nth-last-of-type|nth-last-child|nth-child|not|link|left|last-of-type|last-child|lang|invalid|indeterminate|in-range|hover|focus|first-of-type|first-line|first-letter|first-child|first|enabled|empty|disabled|default|checked|before|after|active)"},{b:"::(after|before|choices|first-letter|first-line|repeat-index|repeat-item|selection|value)"},i,{cN:"attribute",b:"\\b(z-index|word-wrap|word-spacing|word-break|width|widows|white-space|visibility|vertical-align|unicode-bidi|transition-timing-function|transition-property|transition-duration|transition-delay|transition|transform-style|transform-origin|transform|top|text-underline-position|text-transform|text-shadow|text-rendering|text-overflow|text-indent|text-decoration-style|text-decoration-line|text-decoration-color|text-decoration|text-align-last|text-align|tab-size|table-layout|right|resize|quotes|position|pointer-events|perspective-origin|perspective|page-break-inside|page-break-before|page-break-after|padding-top|padding-right|padding-left|padding-bottom|padding|overflow-y|overflow-x|overflow-wrap|overflow|outline-width|outline-style|outline-offset|outline-color|outline|orphans|order|opacity|object-position|object-fit|normal|none|nav-up|nav-right|nav-left|nav-index|nav-down|min-width|min-height|max-width|max-height|mask|marks|margin-top|margin-right|margin-left|margin-bottom|margin|list-style-type|list-style-position|list-style-image|list-style|line-height|letter-spacing|left|justify-content|initial|inherit|ime-mode|image-orientation|image-resolution|image-rendering|icon|hyphens|height|font-weight|font-variant-ligatures|font-variant|font-style|font-stretch|font-size-adjust|font-size|font-language-override|font-kerning|font-feature-settings|font-family|font|float|flex-wrap|flex-shrink|flex-grow|flex-flow|flex-direction|flex-basis|flex|filter|empty-cells|display|direction|cursor|counter-reset|counter-increment|content|column-width|column-span|column-rule-width|column-rule-style|column-rule-color|column-rule|column-gap|column-fill|column-count|columns|color|clip-path|clip|clear|caption-side|break-inside|break-before|break-after|box-sizing|box-shadow|box-decoration-break|bottom|border-width|border-top-width|border-top-style|border-top-right-radius|border-top-left-radius|border-top-color|border-top|border-style|border-spacing|border-right-width|border-right-style|border-right-color|border-right|border-radius|border-left-width|border-left-style|border-left-color|border-left|border-image-width|border-image-source|border-image-slice|border-image-repeat|border-image-outset|border-image|border-color|border-collapse|border-bottom-width|border-bottom-style|border-bottom-right-radius|border-bottom-left-radius|border-bottom-color|border-bottom|border|background-size|background-repeat|background-position|background-origin|background-image|background-color|background-clip|background-attachment|background-blend-mode|background|backface-visibility|auto|animation-timing-function|animation-play-state|animation-name|animation-iteration-count|animation-fill-mode|animation-duration|animation-direction|animation-delay|animation|align-self|align-items|align-content)\\b",i:"[^\\s]"},{b:"\\b(whitespace|wait|w-resize|visible|vertical-text|vertical-ideographic|uppercase|upper-roman|upper-alpha|underline|transparent|top|thin|thick|text|text-top|text-bottom|tb-rl|table-header-group|table-footer-group|sw-resize|super|strict|static|square|solid|small-caps|separate|se-resize|scroll|s-resize|rtl|row-resize|ridge|right|repeat|repeat-y|repeat-x|relative|progress|pointer|overline|outside|outset|oblique|nowrap|not-allowed|normal|none|nw-resize|no-repeat|no-drop|newspaper|ne-resize|n-resize|move|middle|medium|ltr|lr-tb|lowercase|lower-roman|lower-alpha|loose|list-item|line|line-through|line-edge|lighter|left|keep-all|justify|italic|inter-word|inter-ideograph|inside|inset|inline|inline-block|inherit|inactive|ideograph-space|ideograph-parenthesis|ideograph-numeric|ideograph-alpha|horizontal|hidden|help|hand|groove|fixed|ellipsis|e-resize|double|dotted|distribute|distribute-space|distribute-letter|distribute-all-lines|disc|disabled|default|decimal|dashed|crosshair|collapse|col-resize|circle|char|center|capitalize|break-word|break-all|bottom|both|bolder|bold|block|bidi-override|below|baseline|auto|always|all-scroll|absolute|table|table-cell)\\b"},{b:":",e:";",c:[i,r,e.CSSNM,e.QSM,e.ASM,{cN:"meta",b:"!important"}]},{b:"@",e:"[{;]",k:"mixin include extend for if else each while charset import debug media page content font-face namespace warn",c:[i,e.QSM,e.ASM,r,e.CSSNM,{b:"\\s[A-Za-z0-9_.-]+",r:0}]}]}});hljs.registerLanguage("puppet",function(e){var s={keyword:"and case default else elsif false if in import enherits node or true undef unless main settings $string ",literal:"alias audit before loglevel noop require subscribe tag owner ensure group mode name|0 changes context force incl lens load_path onlyif provider returns root show_diff type_check en_address ip_address realname command environment hour monute month monthday special target weekday creates cwd ogoutput refresh refreshonly tries try_sleep umask backup checksum content ctime force ignore links mtime purge recurse recurselimit replace selinux_ignore_defaults selrange selrole seltype seluser source souirce_permissions sourceselect validate_cmd validate_replacement allowdupe attribute_membership auth_membership forcelocal gid ia_load_module members system host_aliases ip allowed_trunk_vlans description device_url duplex encapsulation etherchannel native_vlan speed principals allow_root auth_class auth_type authenticate_user k_of_n mechanisms rule session_owner shared options device fstype enable hasrestart directory present absent link atboot blockdevice device dump pass remounts poller_tag use message withpath adminfile allow_virtual allowcdrom category configfiles flavor install_options instance package_settings platform responsefile status uninstall_options vendor unless_system_user unless_uid binary control flags hasstatus manifest pattern restart running start stop allowdupe auths expiry gid groups home iterations key_membership keys managehome membership password password_max_age password_min_age profile_membership profiles project purge_ssh_keys role_membership roles salt shell uid baseurl cost descr enabled enablegroups exclude failovermethod gpgcheck gpgkey http_caching include includepkgs keepalive metadata_expire metalink mirrorlist priority protect proxy proxy_password proxy_username repo_gpgcheck s3_enabled skip_if_unavailable sslcacert sslclientcert sslclientkey sslverify mounted",built_in:"architecture augeasversion blockdevices boardmanufacturer boardproductname boardserialnumber cfkey dhcp_servers domain ec2_ ec2_userdata facterversion filesystems ldom fqdn gid hardwareisa hardwaremodel hostname id|0 interfaces ipaddress ipaddress_ ipaddress6 ipaddress6_ iphostnumber is_virtual kernel kernelmajversion kernelrelease kernelversion kernelrelease kernelversion lsbdistcodename lsbdistdescription lsbdistid lsbdistrelease lsbmajdistrelease lsbminordistrelease lsbrelease macaddress macaddress_ macosx_buildversion macosx_productname macosx_productversion macosx_productverson_major macosx_productversion_minor manufacturer memoryfree memorysize netmask metmask_ network_ operatingsystem operatingsystemmajrelease operatingsystemrelease osfamily partitions path physicalprocessorcount processor processorcount productname ps puppetversion rubysitedir rubyversion selinux selinux_config_mode selinux_config_policy selinux_current_mode selinux_current_mode selinux_enforced selinux_policyversion serialnumber sp_ sshdsakey sshecdsakey sshrsakey swapencrypted swapfree swapsize timezone type uniqueid uptime uptime_days uptime_hours uptime_seconds uuid virtual vlans xendomains zfs_version zonenae zones zpool_version"},r=e.C("#","$"),a="([A-Za-z_]|::)(\\w|::)*",i=e.inherit(e.TM,{b:a}),o={cN:"variable",b:"\\$"+a},t={cN:"string",c:[e.BE,o],v:[{b:/'/,e:/'/},{b:/"/,e:/"/}]};return{aliases:["pp"],c:[r,o,t,{bK:"class",e:"\\{|;",i:/=/,c:[i,r]},{bK:"define",e:/\{/,c:[{cN:"section",b:e.IR,endsParent:!0}]},{b:e.IR+"\\s+\\{",rB:!0,e:/\S/,c:[{cN:"keyword",b:e.IR},{b:/\{/,e:/\}/,k:s,r:0,c:[t,r,{b:"[a-zA-Z_]+\\s*=>",rB:!0,e:"=>",c:[{cN:"attr",b:e.IR}]},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},o]}],r:0}]}});hljs.registerLanguage("cpp",function(t){var e={cN:"keyword",b:"\\b[a-z\\d_]*_t\\b"},r={cN:"string",v:[t.inherit(t.QSM,{b:'((u8?|U)|L)?"'}),{b:'(u8?|U)?R"',e:'"',c:[t.BE]},{b:"'\\\\?.",e:"'",i:"."}]},i={cN:"number",v:[{b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},{b:t.CNR}],r:0},s={cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elif endif define undef warning error line pragma ifdef ifndef"},c:[{b:/\\\n/,r:0},{bK:"include",e:"$",k:{"meta-keyword":"include"},c:[t.inherit(r,{cN:"meta-string"}),{cN:"meta-string",b:"<",e:">",i:"\\n"}]},r,t.CLCM,t.CBCM]},a=t.IR+"\\s*\\(",c={keyword:"int float while private char catch export virtual operator sizeof dynamic_cast|10 typedef const_cast|10 const struct for static_cast|10 union namespace unsigned long volatile static protected bool template mutable if public friend do goto auto void enum else break extern using class asm case typeid short reinterpret_cast|10 default double register explicit signed typename try this switch continue inline delete alignof constexpr decltype noexcept static_assert thread_local restrict _Bool complex _Complex _Imaginary atomic_bool atomic_char atomic_schar atomic_uchar atomic_short atomic_ushort atomic_int atomic_uint atomic_long atomic_ulong atomic_llong atomic_ullong",built_in:"std string cin cout cerr clog stdin stdout stderr stringstream istringstream ostringstream auto_ptr deque list queue stack vector map set bitset multiset multimap unordered_set unordered_map unordered_multiset unordered_multimap array shared_ptr abort abs acos asin atan2 atan calloc ceil cosh cos exit exp fabs floor fmod fprintf fputs free frexp fscanf isalnum isalpha iscntrl isdigit isgraph islower isprint ispunct isspace isupper isxdigit tolower toupper labs ldexp log10 log malloc realloc memchr memcmp memcpy memset modf pow printf putchar puts scanf sinh sin snprintf sprintf sqrt sscanf strcat strchr strcmp strcpy strcspn strlen strncat strncmp strncpy strpbrk strrchr strspn strstr tanh tan vfprintf vprintf vsprintf endl initializer_list unique_ptr",literal:"true false nullptr NULL"};return{aliases:["c","cc","h","c++","h++","hpp"],k:c,i:"</",c:[e,t.CLCM,t.CBCM,i,r,s,{b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:c,c:["self",e]},{b:t.IR+"::",k:c},{bK:"new throw return else",r:0},{cN:"function",b:"("+t.IR+"[\\*&\\s]+)+"+a,rB:!0,e:/[{;=]/,eE:!0,k:c,i:/[^\w\s\*&]/,c:[{b:a,rB:!0,c:[t.TM],r:0},{cN:"params",b:/\(/,e:/\)/,k:c,r:0,c:[t.CLCM,t.CBCM,r,i]},t.CLCM,t.CBCM,s]}]}});hljs.registerLanguage("gradle",function(e){return{cI:!0,k:{keyword:"task project allprojects subprojects artifacts buildscript configurations dependencies repositories sourceSets description delete from into include exclude source classpath destinationDir includes options sourceCompatibility targetCompatibility group flatDir doLast doFirst flatten todir fromdir ant def abstract break case catch continue default do else extends final finally for if implements instanceof native new private protected public return static switch synchronized throw throws transient try volatile while strictfp package import false null super this true antlrtask checkstyle codenarc copy boolean byte char class double float int interface long short void compile runTime file fileTree abs any append asList asWritable call collect compareTo count div dump each eachByte eachFile eachLine every find findAll flatten getAt getErr getIn getOut getText grep immutable inject inspect intersect invokeMethods isCase join leftShift minus multiply newInputStream newOutputStream newPrintWriter newReader newWriter next plus pop power previous print println push putAt read readBytes readLines reverse reverseEach round size sort splitEachLine step subMap times toInteger toList tokenize upto waitForOrKill withPrintWriter withReader withStream withWriter withWriterAppend write writeLine"},c:[e.CLCM,e.CBCM,e.ASM,e.QSM,e.NM,e.RM]}});hljs.registerLanguage("elixir",function(e){var r="[a-zA-Z_][a-zA-Z0-9_]*(\\!|\\?)?",n="[a-zA-Z_]\\w*[!?=]?|[-+~]\\@|<<|>>|=~|===?|<=>|[<>]=?|\\*\\*|[-/+%^&*~`|]|\\[\\]=?",b="and false then defined module in return redo retry end for true self when next until do begin unless nil break not case cond alias while ensure or include use alias fn quote",c={cN:"subst",b:"#\\{",e:"}",l:r,k:b},a={cN:"string",c:[e.BE,c],v:[{b:/'/,e:/'/},{b:/"/,e:/"/}]},i={cN:"function",bK:"def defp defmacro",e:/\B\b/,c:[e.inherit(e.TM,{b:r,endsParent:!0})]},s=e.inherit(i,{cN:"class",bK:"defmodule defrecord",e:/\bdo\b|$|;/}),l=[a,e.HCM,s,i,{cN:"symbol",b:":",c:[a,{b:n}],r:0},{cN:"symbol",b:r+":",r:0},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},{cN:"variable",b:"(\\$\\W)|((\\$|\\@\\@?)(\\w+))"},{b:"->"},{b:"("+e.RSR+")\\s*",c:[e.HCM,{cN:"regexp",i:"\\n",c:[e.BE,c],v:[{b:"/",e:"/[a-z]*"},{b:"%r\\[",e:"\\][a-z]*"}]}],r:0}];return c.c=l,{l:r,k:b,c:l}});hljs.registerLanguage("http",function(e){var t="HTTP/[0-9\\.]+";return{aliases:["https"],i:"\\S",c:[{b:"^"+t,e:"$",c:[{cN:"number",b:"\\b\\d{3}\\b"}]},{b:"^[A-Z]+ (.*?) "+t+"$",rB:!0,e:"$",c:[{cN:"string",b:" ",e:" ",eB:!0,eE:!0},{b:t},{cN:"keyword",b:"[A-Z]+"}]},{cN:"attribute",b:"^\\w",e:": ",eE:!0,i:"\\n|\\s|=",starts:{e:"$",r:0}},{b:"\\n\\n",starts:{sL:[],eW:!0}}]}});hljs.registerLanguage("delphi",function(e){var r="exports register file shl array record property for mod while set ally label uses raise not stored class safecall var interface or private static exit index inherited to else stdcall override shr asm far resourcestring finalization packed virtual out and protected library do xorwrite goto near function end div overload object unit begin string on inline repeat until destructor write message program with read initialization except default nil if case cdecl in downto threadvar of try pascal const external constructor type public then implementation finally published procedure",t=[e.CLCM,e.C(/\{/,/\}/,{r:0}),e.C(/\(\*/,/\*\)/,{r:10})],a={cN:"string",b:/'/,e:/'/,c:[{b:/''/}]},i={cN:"string",b:/(#\d+)+/},c={b:e.IR+"\\s*=\\s*class\\s*\\(",rB:!0,c:[e.TM]},o={cN:"function",bK:"function constructor destructor procedure",e:/[:;]/,k:"function constructor|10 destructor|10 procedure|10",c:[e.TM,{cN:"params",b:/\(/,e:/\)/,k:r,c:[a,i]}].concat(t)};return{aliases:["dpr","dfm","pas","pascal","freepascal","lazarus","lpr","lfm"],cI:!0,k:r,i:/"|\$[G-Zg-z]|\/\*|<\/|\|/,c:[a,i,e.NM,c,o].concat(t)}});hljs.registerLanguage("ruby",function(e){var b="[a-zA-Z_]\\w*[!?=]?|[-+~]\\@|<<|>>|=~|===?|<=>|[<>]=?|\\*\\*|[-/+%^&*~`|]|\\[\\]=?",c="and false then defined module in return redo if BEGIN retry end for true self when next until do begin unless END rescue nil else break undef not super class case require yield alias while ensure elsif or include attr_reader attr_writer attr_accessor",r={cN:"doctag",b:"@[A-Za-z]+"},a={b:"#<",e:">"},s=[e.C("#","$",{c:[r]}),e.C("^\\=begin","^\\=end",{c:[r],r:10}),e.C("^__END__","\\n$")],n={cN:"subst",b:"#\\{",e:"}",k:c},t={cN:"string",c:[e.BE,n],v:[{b:/'/,e:/'/},{b:/"/,e:/"/},{b:/`/,e:/`/},{b:"%[qQwWx]?\\(",e:"\\)"},{b:"%[qQwWx]?\\[",e:"\\]"},{b:"%[qQwWx]?{",e:"}"},{b:"%[qQwWx]?<",e:">"},{b:"%[qQwWx]?/",e:"/"},{b:"%[qQwWx]?%",e:"%"},{b:"%[qQwWx]?-",e:"-"},{b:"%[qQwWx]?\\|",e:"\\|"},{b:/\B\?(\\\d{1,3}|\\x[A-Fa-f0-9]{1,2}|\\u[A-Fa-f0-9]{4}|\\?\S)\b/}]},i={cN:"params",b:"\\(",e:"\\)",endsParent:!0,k:c},d=[t,a,{cN:"class",bK:"class module",e:"$|;",i:/=/,c:[e.inherit(e.TM,{b:"[A-Za-z_]\\w*(::\\w+)*(\\?|\\!)?"}),{b:"<\\s*",c:[{b:"("+e.IR+"::)?"+e.IR}]}].concat(s)},{cN:"function",bK:"def",e:"$|;",c:[e.inherit(e.TM,{b:b}),i].concat(s)},{cN:"symbol",b:e.UIR+"(\\!|\\?)?:",r:0},{cN:"symbol",b:":",c:[t,{b:b}],r:0},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},{b:"(\\$\\W)|((\\$|\\@\\@?)(\\w+))"},{b:"("+e.RSR+")\\s*",c:[a,{cN:"regexp",c:[e.BE,n],i:/\n/,v:[{b:"/",e:"/[a-z]*"},{b:"%r{",e:"}[a-z]*"},{b:"%r\\(",e:"\\)[a-z]*"},{b:"%r!",e:"![a-z]*"},{b:"%r\\[",e:"\\][a-z]*"}]}].concat(s),r:0}].concat(s);n.c=d,i.c=d;var o="[>?]>",l="[\\w#]+\\(\\w+\\):\\d+:\\d+>",u="(\\w+-)?\\d+\\.\\d+\\.\\d(p\\d+)?[^>]+>",w=[{b:/^\s*=>/,starts:{e:"$",c:d}},{cN:"meta",b:"^("+o+"|"+l+"|"+u+")",starts:{e:"$",c:d}}];return{aliases:["rb","gemspec","podspec","thor","irb"],k:c,i:/\/\*/,c:s.concat(w).concat(d)}});hljs.registerLanguage("ceylon",function(e){var a="assembly module package import alias class interface object given value assign void function new of extends satisfies abstracts in out return break continue throw assert dynamic if else switch case for while try catch finally then let this outer super is exists nonempty",t="shared abstract formal default actual variable late native deprecatedfinal sealed annotation suppressWarnings small",s="doc by license see throws tagged",n={cN:"subst",eB:!0,eE:!0,b:/``/,e:/``/,k:a,r:10},r=[{cN:"string",b:'"""',e:'"""',r:10},{cN:"string",b:'"',e:'"',c:[n]},{cN:"string",b:"'",e:"'"},{cN:"number",b:"#[0-9a-fA-F_]+|\\$[01_]+|[0-9_]+(?:\\.[0-9_](?:[eE][+-]?\\d+)?)?[kMGTPmunpf]?",r:0}];return n.c=r,{k:{keyword:a+" "+t,meta:s},i:"\\$[^01]|#[^0-9a-fA-F]",c:[e.CLCM,e.C("/\\*","\\*/",{c:["self"]}),{cN:"meta",b:'@[a-z]\\w*(?:\\:"[^"]*")?'}].concat(r)}});hljs.registerLanguage("dts",function(e){var a={cN:"string",v:[e.inherit(e.QSM,{b:'((u8?|U)|L)?"'}),{b:'(u8?|U)?R"',e:'"',c:[e.BE]},{b:"'\\\\?.",e:"'",i:"."}]},c={cN:"number",v:[{b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},{b:e.CNR}],r:0},b={cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elif endif define undef ifdef ifndef"},c:[{b:/\\\n/,r:0},{bK:"include",e:"$",k:{"meta-keyword":"include"},c:[e.inherit(a,{cN:"meta-string"}),{cN:"meta-string",b:"<",e:">",i:"\\n"}]},a,e.CLCM,e.CBCM]},i={cN:"variable",b:"\\&[a-z\\d_]*\\b"},r={cN:"meta-keyword",b:"/[a-z][a-z\\d-]*/"},d={cN:"symbol",b:"^\\s*[a-zA-Z_][a-zA-Z\\d_]*:"},n={cN:"params",b:"<",e:">",c:[c,i]},s={cN:"class",b:/[a-zA-Z_][a-zA-Z\d_@]*\s{/,e:/[{;=]/,rB:!0,eE:!0},t={cN:"class",b:"/\\s*{",e:"};",r:10,c:[i,r,d,s,n,e.CLCM,e.CBCM,c,a]};return{k:"",c:[t,i,r,d,s,n,e.CLCM,e.CBCM,c,a,b,{b:e.IR+"::",k:""}]}});hljs.registerLanguage("django",function(e){var t={b:/\|[A-Za-z]+:?/,k:{name:"truncatewords removetags linebreaksbr yesno get_digit timesince random striptags filesizeformat escape linebreaks length_is ljust rjust cut urlize fix_ampersands title floatformat capfirst pprint divisibleby add make_list unordered_list urlencode timeuntil urlizetrunc wordcount stringformat linenumbers slice date dictsort dictsortreversed default_if_none pluralize lower join center default truncatewords_html upper length phone2numeric wordwrap time addslashes slugify first escapejs force_escape iriencode last safe safeseq truncatechars localize unlocalize localtime utc timezone"},c:[e.QSM,e.ASM]};return{aliases:["jinja"],cI:!0,sL:"xml",c:[e.C(/\{%\s*comment\s*%}/,/\{%\s*endcomment\s*%}/),e.C(/\{#/,/#}/),{cN:"template-tag",b:/\{%/,e:/%}/,c:[{cN:"name",b:/\w+/,k:{name:"comment endcomment load templatetag ifchanged endifchanged if endif firstof for endfor ifnotequal endifnotequal widthratio extends include spaceless endspaceless regroup ifequal endifequal ssi now with cycle url filter endfilter debug block endblock else autoescape endautoescape csrf_token empty elif endwith static trans blocktrans endblocktrans get_static_prefix get_media_prefix plural get_current_language language get_available_languages get_current_language_bidi get_language_info get_language_info_list localize endlocalize localtime endlocaltime timezone endtimezone get_current_timezone verbatim"},starts:{eW:!0,k:"in by as",c:[t],r:0}}]},{cN:"template-variable",b:/\{\{/,e:/}}/,c:[t]}]}});hljs.registerLanguage("css",function(e){var c="[a-zA-Z-][a-zA-Z0-9_-]*",t={b:/[A-Z\_\.\-]+\s*:/,rB:!0,e:";",eW:!0,c:[{cN:"attribute",b:/\S/,e:":",eE:!0,starts:{eW:!0,eE:!0,c:[{b:/[\w-]+\(/,rB:!0,c:[{cN:"built_in",b:/[\w-]+/},{b:/\(/,e:/\)/,c:[e.ASM,e.QSM]}]},e.CSSNM,e.QSM,e.ASM,e.CBCM,{cN:"number",b:"#[0-9A-Fa-f]+"},{cN:"meta",b:"!important"}]}}]};return{cI:!0,i:/[=\/|'\$]/,c:[e.CBCM,{cN:"selector-id",b:/#[A-Za-z0-9_-]+/},{cN:"selector-class",b:/\.[A-Za-z0-9_-]+/},{cN:"selector-attr",b:/\[/,e:/\]/,i:"$"},{cN:"selector-pseudo",b:/:(:)?[a-zA-Z0-9\_\-\+\(\)"'.]+/},{b:"@(font-face|page)",l:"[a-z-]+",k:"font-face page"},{b:"@",e:"[{;]",c:[{cN:"keyword",b:/\S+/},{b:/\s/,eW:!0,eE:!0,r:0,c:[e.ASM,e.QSM,e.CSSNM]}]},{cN:"selector-tag",b:c,r:0},{b:"{",e:"}",i:/\S/,c:[e.CBCM,t]}]}});hljs.registerLanguage("qml",function(r){var e={keyword:"in of on if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const export super debugger as async await",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document Symbol Set Map WeakSet WeakMap Proxy Reflect Behavior bool color coordinate date double enumeration font geocircle georectangle geoshape int list matrix4x4 parent point quaternion real rect size string url var variant vector2d vector3d vector4dPromise"},t="[a-zA-Z_][a-zA-Z0-9\\._]*",a={cN:"string",b:"(\\b|\"|')",e:"(//|/\\*|$)",i:"\\n",c:[r.BE]},n={bK:"import",e:"$",starts:{cN:"string",e:"(//|/\\*|$)",rE:!0},c:[a]},o={cN:"keyword",b:"\\bproperty\\b",starts:{cN:"string",e:"(:|=|;|,|//|/\\*|$)",rE:!0},r:0},i={cN:"keyword",b:"\\bsignal\\b",starts:{cN:"string",e:"(\\(|:|=|;|,|//|/\\*|$)",rE:!0},r:10},c={cN:"attribute",b:"\\bid\\s*:",starts:{cN:"emphasis",e:t,rE:!1},r:10},s={b:t+"\\s*:",rB:!0,c:[{cN:"attribute",b:t,includeBegin:!0,e:"\\s*:",eE:!0}],r:0},b={b:t+"\\s*{",rB:!0,c:[{cN:"decorator",k:e,b:t,includeBegin:!0,e:"\\s*{",eE:!0}],r:0};return{aliases:["qt"],cI:!1,k:e,c:[{cN:"pi",b:/^\s*['"]use (strict|asm)['"]/},r.ASM,r.QSM,{cN:"string",b:"`",e:"`",c:[r.BE,{cN:"subst",b:"\\$\\{",e:"\\}"}]},r.CLCM,r.CBCM,{cN:"number",v:[{b:"\\b(0[bB][01]+)"},{b:"\\b(0[oO][0-7]+)"},{b:r.CNR}],r:0},{b:"("+r.RSR+"|\\b(case|return|throw)\\b)\\s*",k:"return throw case",c:[r.CLCM,r.CBCM,r.RM,{b:/</,e:/>\s*[);\]]/,r:0,sL:"xml"}],r:0},n,i,o,{cN:"function",bK:"function",e:/\{/,eE:!0,c:[r.inherit(r.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/}),{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,c:[r.CLCM,r.CBCM]}],i:/\[|%/},{b:"\\."+r.IR,r:0},c,s,b],i:/#/}});hljs.registerLanguage("coffeescript",function(e){var c={keyword:"in if for while finally new do return else break catch instanceof throw try this switch continue typeof delete debugger super then unless until loop of by when and or is isnt not",literal:"true false null undefined yes no on off",built_in:"npm require console print module global window document"},n="[A-Za-z$_][0-9A-Za-z$_]*",r={cN:"subst",b:/#\{/,e:/}/,k:c},s=[e.BNM,e.inherit(e.CNM,{starts:{e:"(\\s*/)?",r:0}}),{cN:"string",v:[{b:/'''/,e:/'''/,c:[e.BE]},{b:/'/,e:/'/,c:[e.BE]},{b:/"""/,e:/"""/,c:[e.BE,r]},{b:/"/,e:/"/,c:[e.BE,r]}]},{cN:"regexp",v:[{b:"///",e:"///",c:[r,e.HCM]},{b:"//[gim]*",r:0},{b:/\/(?![ *])(\\\/|.)*?\/[gim]*(?=\W|$)/}]},{b:"@"+n},{b:"`",e:"`",eB:!0,eE:!0,sL:"javascript"}];r.c=s;var i=e.inherit(e.TM,{b:n}),t="(\\(.*\\))?\\s*\\B[-=]>",o={cN:"params",b:"\\([^\\(]",rB:!0,c:[{b:/\(/,e:/\)/,k:c,c:["self"].concat(s)}]};return{aliases:["coffee","cson","iced"],k:c,i:/\/\*/,c:s.concat([e.C("###","###"),e.HCM,{cN:"function",b:"^\\s*"+n+"\\s*=\\s*"+t,e:"[-=]>",rB:!0,c:[i,o]},{b:/[:\(,=]\s*/,r:0,c:[{cN:"function",b:t,e:"[-=]>",rB:!0,c:[o]}]},{cN:"class",bK:"class",e:"$",i:/[:="\[\]]/,c:[{bK:"extends",eW:!0,i:/[:="\[\]]/,c:[i]},i]},{b:n+":",e:":",rB:!0,rE:!0,r:0}])}});hljs.registerLanguage("vbscript",function(e){return{aliases:["vbs"],cI:!0,k:{keyword:"call class const dim do loop erase execute executeglobal exit for each next function if then else on error option explicit new private property let get public randomize redim rem select case set stop sub while wend with end to elseif is or xor and not class_initialize class_terminate default preserve in me byval byref step resume goto",built_in:"lcase month vartype instrrev ubound setlocale getobject rgb getref string weekdayname rnd dateadd monthname now day minute isarray cbool round formatcurrency conversions csng timevalue second year space abs clng timeserial fixs len asc isempty maths dateserial atn timer isobject filter weekday datevalue ccur isdate instr datediff formatdatetime replace isnull right sgn array snumeric log cdbl hex chr lbound msgbox ucase getlocale cos cdate cbyte rtrim join hour oct typename trim strcomp int createobject loadpicture tan formatnumber mid scriptenginebuildversion scriptengine split scriptengineminorversion cint sin datepart ltrim sqr scriptenginemajorversion time derived eval date formatpercent exp inputbox left ascw chrw regexp server response request cstr err",literal:"true false null nothing empty"},i:"//",c:[e.inherit(e.QSM,{c:[{b:'""'}]}),e.C(/'/,/$/,{r:0}),e.CNM]}});hljs.registerLanguage("fsharp",function(e){var t={b:"<",e:">",c:[e.inherit(e.TM,{b:/'[a-zA-Z0-9_]+/})]};return{aliases:["fs"],k:"abstract and as assert base begin class default delegate do done downcast downto elif else end exception extern false finally for fun function global if in inherit inline interface internal lazy let match member module mutable namespace new null of open or override private public rec return sig static struct then to true try type upcast use val void when while with yield",i:/\/\*/,c:[{cN:"keyword",b:/\b(yield|return|let|do)!/},{cN:"string",b:'@"',e:'"',c:[{b:'""'}]},{cN:"string",b:'"""',e:'"""'},e.C("\\(\\*","\\*\\)"),{cN:"class",bK:"type",e:"\\(|=|$",eE:!0,c:[e.UTM,t]},{cN:"meta",b:"\\[<",e:">\\]",r:10},{cN:"symbol",b:"\\B('[A-Za-z])\\b",c:[e.BE]},e.CLCM,e.inherit(e.QSM,{i:null}),e.CNM]}});hljs.registerLanguage("dart",function(e){var t={cN:"subst",b:"\\$\\{",e:"}",k:"true false null this is new super"},r={cN:"string",v:[{b:"r'''",e:"'''"},{b:'r"""',e:'"""'},{b:"r'",e:"'",i:"\\n"},{b:'r"',e:'"',i:"\\n"},{b:"'''",e:"'''",c:[e.BE,t]},{b:'"""',e:'"""',c:[e.BE,t]},{b:"'",e:"'",i:"\\n",c:[e.BE,t]},{b:'"',e:'"',i:"\\n",c:[e.BE,t]}]};t.c=[e.CNM,r];var n={keyword:"assert async await break case catch class const continue default do else enum extends false final finally for if in is new null rethrow return super switch sync this throw true try var void while with yield abstract as dynamic export external factory get implements import library operator part set static typedef",built_in:"print Comparable DateTime Duration Function Iterable Iterator List Map Match Null Object Pattern RegExp Set Stopwatch String StringBuffer StringSink Symbol Type Uri bool double int num document window querySelector querySelectorAll Element ElementList"};return{k:n,c:[r,e.C("/\\*\\*","\\*/",{sL:"markdown"}),e.C("///","$",{sL:"markdown"}),e.CLCM,e.CBCM,{cN:"class",bK:"class interface",e:"{",eE:!0,c:[{bK:"extends implements"},e.UTM]},e.CNM,{cN:"meta",b:"@[A-Za-z]+"},{b:"=>"}]}});hljs.registerLanguage("asciidoc",function(e){return{aliases:["adoc"],c:[e.C("^/{4,}\\n","\\n/{4,}$",{r:10}),e.C("^//","$",{r:0}),{cN:"title",b:"^\\.\\w.*$"},{b:"^[=\\*]{4,}\\n",e:"\\n^[=\\*]{4,}$",r:10},{cN:"section",r:10,v:[{b:"^(={1,5}) .+?( \\1)?$"},{b:"^[^\\[\\]\\n]+?\\n[=\\-~\\^\\+]{2,}$"}]},{cN:"meta",b:"^:.+?:",e:"\\s",eE:!0,r:10},{cN:"meta",b:"^\\[.+?\\]$",r:0},{cN:"quote",b:"^_{4,}\\n",e:"\\n_{4,}$",r:10},{cN:"code",b:"^[\\-\\.]{4,}\\n",e:"\\n[\\-\\.]{4,}$",r:10},{b:"^\\+{4,}\\n",e:"\\n\\+{4,}$",c:[{b:"<",e:">",sL:"xml",r:0}],r:10},{cN:"bullet",b:"^(\\*+|\\-+|\\.+|[^\\n]+?::)\\s+"},{cN:"symbol",b:"^(NOTE|TIP|IMPORTANT|WARNING|CAUTION):\\s+",r:10},{cN:"strong",b:"\\B\\*(?![\\*\\s])",e:"(\\n{2}|\\*)",c:[{b:"\\\\*\\w",r:0}]},{cN:"emphasis",b:"\\B'(?!['\\s])",e:"(\\n{2}|')",c:[{b:"\\\\'\\w",r:0}],r:0},{cN:"emphasis",b:"_(?![_\\s])",e:"(\\n{2}|_)",r:0},{cN:"string",v:[{b:"``.+?''"},{b:"`.+?'"}]},{cN:"code",b:"(`.+?`|\\+.+?\\+)",r:0},{cN:"code",b:"^[ \\t]",e:"$",r:0},{b:"^'{3,}[ \\t]*$",r:10},{b:"(link:)?(http|https|ftp|file|irc|image:?):\\S+\\[.*?\\]",rB:!0,c:[{b:"(link|image:?):",r:0},{cN:"link",b:"\\w",e:"[^\\[]+",r:0},{cN:"string",b:"\\[",e:"\\]",eB:!0,eE:!0,r:0}],r:10}]}});hljs.registerLanguage("dos",function(e){var r=e.C(/@?rem\b/,/$/,{r:10}),t={cN:"symbol",b:"^\\s*[A-Za-z._?][A-Za-z0-9_$#@~.?]*(:|\\s+label)",r:0};return{aliases:["bat","cmd"],cI:!0,i:/\/\*/,k:{keyword:"if else goto for in do call exit not exist errorlevel defined equ neq lss leq gtr geq",built_in:"prn nul lpt3 lpt2 lpt1 con com4 com3 com2 com1 aux shift cd dir echo setlocal endlocal set pause copy append assoc at attrib break cacls cd chcp chdir chkdsk chkntfs cls cmd color comp compact convert date dir diskcomp diskcopy doskey erase fs find findstr format ftype graftabl help keyb label md mkdir mode more move path pause print popd pushd promt rd recover rem rename replace restore rmdir shiftsort start subst time title tree type ver verify vol ping net ipconfig taskkill xcopy ren del"},c:[{cN:"variable",b:/%%[^ ]|%[^ ]+?%|![^ ]+?!/},{cN:"function",b:t.b,e:"goto:eof",c:[e.inherit(e.TM,{b:"([_a-zA-Z]\\w*\\.)*([_a-zA-Z]\\w*:)?[_a-zA-Z]\\w*"}),r]},{cN:"number",b:"\\b\\d+",r:0},r]}});hljs.registerLanguage("lua",function(e){var t="\\[=*\\[",a="\\]=*\\]",r={b:t,e:a,c:["self"]},n=[e.C("--(?!"+t+")","$"),e.C("--"+t,a,{c:[r],r:10})];return{l:e.UIR,k:{keyword:"and break do else elseif end false for if in local nil not or repeat return then true until while",built_in:"_G _VERSION assert collectgarbage dofile error getfenv getmetatable ipairs load loadfile loadstring module next pairs pcall print rawequal rawget rawset require select setfenv setmetatable tonumber tostring type unpack xpcall coroutine debug io math os package string table"},c:n.concat([{cN:"function",bK:"function",e:"\\)",c:[e.inherit(e.TM,{b:"([_a-zA-Z]\\w*\\.)*([_a-zA-Z]\\w*:)?[_a-zA-Z]\\w*"}),{cN:"params",b:"\\(",eW:!0,c:n}].concat(n)},e.CNM,e.ASM,e.QSM,{cN:"string",b:t,e:a,c:[r],r:5}])}});hljs.registerLanguage("julia",function(e){var r={keyword:"in abstract baremodule begin bitstype break catch ccall const continue do else elseif end export finally for function global if immutable import importall let local macro module quote return try type typealias using while",literal:"true false ARGS CPU_CORES C_NULL DL_LOAD_PATH DevNull ENDIAN_BOM ENV I|0 Inf Inf16 Inf32 InsertionSort JULIA_HOME LOAD_PATH MS_ASYNC MS_INVALIDATE MS_SYNC MergeSort NaN NaN16 NaN32 OS_NAME QuickSort RTLD_DEEPBIND RTLD_FIRST RTLD_GLOBAL RTLD_LAZY RTLD_LOCAL RTLD_NODELETE RTLD_NOLOAD RTLD_NOW RoundDown RoundFromZero RoundNearest RoundToZero RoundUp STDERR STDIN STDOUT VERSION WORD_SIZE catalan cglobal e|0 eu|0 eulergamma golden im nothing pi γ π φ Inf64 NaN64 RoundNearestTiesAway RoundNearestTiesUp ",built_in:"ANY ASCIIString AbstractArray AbstractRNG AbstractSparseArray Any ArgumentError Array Associative Base64Pipe Bidiagonal BigFloat BigInt BitArray BitMatrix BitVector Bool BoundsError Box CFILE Cchar Cdouble Cfloat Char CharString Cint Clong Clonglong ClusterManager Cmd Coff_t Colon Complex Complex128 Complex32 Complex64 Condition Cptrdiff_t Cshort Csize_t Cssize_t Cuchar Cuint Culong Culonglong Cushort Cwchar_t DArray DataType DenseArray Diagonal Dict DimensionMismatch DirectIndexString Display DivideError DomainError EOFError EachLine Enumerate ErrorException Exception Expr Factorization FileMonitor FileOffset Filter Float16 Float32 Float64 FloatRange FloatingPoint Function GetfieldNode GotoNode Hermitian IO IOBuffer IOStream IPv4 IPv6 InexactError Int Int128 Int16 Int32 Int64 Int8 IntSet Integer InterruptException IntrinsicFunction KeyError LabelNode LambdaStaticData LineNumberNode LoadError LocalProcess MIME MathConst MemoryError MersenneTwister Method MethodError MethodTable Module NTuple NewvarNode Nothing Number ObjectIdDict OrdinalRange OverflowError ParseError PollingFileWatcher ProcessExitedException ProcessGroup Ptr QuoteNode Range Range1 Ranges Rational RawFD Real Regex RegexMatch RemoteRef RepString RevString RopeString RoundingMode Set SharedArray Signed SparseMatrixCSC StackOverflowError Stat StatStruct StepRange String SubArray SubString SymTridiagonal Symbol SymbolNode Symmetric SystemError Task TextDisplay Timer TmStruct TopNode Triangular Tridiagonal Type TypeConstructor TypeError TypeName TypeVar UTF16String UTF32String UTF8String UdpSocket Uint Uint128 Uint16 Uint32 Uint64 Uint8 UndefRefError UndefVarError UniformScaling UnionType UnitRange Unsigned Vararg VersionNumber WString WeakKeyDict WeakRef Woodbury Zip AbstractChannel AbstractFloat AbstractString AssertionError Base64DecodePipe Base64EncodePipe BufferStream CapturedException CartesianIndex CartesianRange Channel Cintmax_t CompositeException Cstring Cuintmax_t Cwstring Date DateTime Dims Enum GenSym GlobalRef HTML InitError InvalidStateException Irrational LinSpace LowerTriangular NullException Nullable OutOfMemoryError Pair PartialQuickSort Pipe RandomDevice ReadOnlyMemoryError ReentrantLock Ref RemoteException SegmentationFault SerializationState SimpleVector TCPSocket Text Tuple UDPSocket UInt UInt128 UInt16 UInt32 UInt64 UInt8 UnicodeError Union UpperTriangular Val Void WorkerConfig AbstractMatrix AbstractSparseMatrix AbstractSparseVector AbstractVecOrMat AbstractVector DenseMatrix DenseVecOrMat DenseVector Matrix SharedMatrix SharedVector StridedArray StridedMatrix StridedVecOrMat StridedVector VecOrMat Vector "},t="[A-Za-z_\\u00A1-\\uFFFF][A-Za-z_0-9\\u00A1-\\uFFFF]*",a={l:t,k:r,i:/<\//},n={cN:"type",b:/::/},o={cN:"type",b:/<:/},i={cN:"number",b:/(\b0x[\d_]*(\.[\d_]*)?|0x\.\d[\d_]*)p[-+]?\d+|\b0[box][a-fA-F0-9][a-fA-F0-9_]*|(\b\d[\d_]*(\.[\d_]*)?|\.\d[\d_]*)([eEfF][-+]?\d+)?/,r:0},l={cN:"string",b:/'(.|\\[xXuU][a-zA-Z0-9]+)'/},c={cN:"subst",b:/\$\(/,e:/\)/,k:r},s={cN:"variable",b:"\\$"+t},d={cN:"string",c:[e.BE,c,s],v:[{b:/\w*"""/,e:/"""\w*/,r:10},{b:/\w*"/,e:/"\w*/}]},S={cN:"string",c:[e.BE,c,s],b:"`",e:"`"},u={cN:"meta",b:"@"+t},g={cN:"comment",v:[{b:"#=",e:"=#",r:10},{b:"#",e:"$"}]};return a.c=[i,l,n,o,d,S,u,g,e.HCM],c.c=a.c,a});hljs.registerLanguage("matlab",function(e){var a=[e.CNM,{cN:"string",b:"'",e:"'",c:[e.BE,{b:"''"}]}],s={r:0,c:[{b:/'['\.]*/}]};return{k:{keyword:"break case catch classdef continue else elseif end enumerated events for function global if methods otherwise parfor persistent properties return spmd switch try while",built_in:"sin sind sinh asin asind asinh cos cosd cosh acos acosd acosh tan tand tanh atan atand atan2 atanh sec secd sech asec asecd asech csc cscd csch acsc acscd acsch cot cotd coth acot acotd acoth hypot exp expm1 log log1p log10 log2 pow2 realpow reallog realsqrt sqrt nthroot nextpow2 abs angle complex conj imag real unwrap isreal cplxpair fix floor ceil round mod rem sign airy besselj bessely besselh besseli besselk beta betainc betaln ellipj ellipke erf erfc erfcx erfinv expint gamma gammainc gammaln psi legendre cross dot factor isprime primes gcd lcm rat rats perms nchoosek factorial cart2sph cart2pol pol2cart sph2cart hsv2rgb rgb2hsv zeros ones eye repmat rand randn linspace logspace freqspace meshgrid accumarray size length ndims numel disp isempty isequal isequalwithequalnans cat reshape diag blkdiag tril triu fliplr flipud flipdim rot90 find sub2ind ind2sub bsxfun ndgrid permute ipermute shiftdim circshift squeeze isscalar isvector ans eps realmax realmin pi i inf nan isnan isinf isfinite j why compan gallery hadamard hankel hilb invhilb magic pascal rosser toeplitz vander wilkinson"},i:'(//|"|#|/\\*|\\s+/\\w+)',c:[{cN:"function",bK:"function",e:"$",c:[e.UTM,{cN:"params",v:[{b:"\\(",e:"\\)"},{b:"\\[",e:"\\]"}]}]},{b:/[a-zA-Z_][a-zA-Z_0-9]*'['\.]*/,rB:!0,r:0,c:[{b:/[a-zA-Z_][a-zA-Z_0-9]*/,r:0},s.c[0]]},{b:"\\[",e:"\\]",c:a,r:0,starts:s},{b:"\\{",e:/}/,c:a,r:0,starts:s},{b:/\)/,r:0,starts:s},e.C("^\\s*\\%\\{\\s*$","^\\s*\\%\\}\\s*$"),e.C("\\%","$")].concat(a)}});hljs.registerLanguage("markdown",function(e){return{aliases:["md","mkdown","mkd"],c:[{cN:"section",v:[{b:"^#{1,6}",e:"$"},{b:"^.+?\\n[=-]{2,}$"}]},{b:"<",e:">",sL:"xml",r:0},{cN:"bullet",b:"^([*+-]|(\\d+\\.))\\s+"},{cN:"strong",b:"[*_]{2}.+?[*_]{2}"},{cN:"emphasis",v:[{b:"\\*.+?\\*"},{b:"_.+?_",r:0}]},{cN:"quote",b:"^>\\s+",e:"$"},{cN:"code",v:[{b:"`.+?`"},{b:"^( {4}|	)",e:"$",r:0}]},{b:"^[-\\*]{3,}",e:"$"},{b:"\\[.+?\\][\\(\\[].*?[\\)\\]]",rB:!0,c:[{cN:"string",b:"\\[",e:"\\]",eB:!0,rE:!0,r:0},{cN:"link",b:"\\]\\(",e:"\\)",eB:!0,eE:!0},{cN:"symbol",b:"\\]\\[",e:"\\]",eB:!0,eE:!0}],r:10},{b:"^\\[.+\\]:",rB:!0,c:[{cN:"symbol",b:"\\[",e:"\\]:",eB:!0,eE:!0,starts:{cN:"link",e:"$"}}]}]}});hljs.registerLanguage("vim",function(e){return{l:/[!#@\w]+/,k:{keyword:"N|0 P|0 X|0 a|0 ab abc abo al am an|0 ar arga argd arge argdo argg argl argu as au aug aun b|0 bN ba bad bd be bel bf bl bm bn bo bp br brea breaka breakd breakl bro bufdo buffers bun bw c|0 cN cNf ca cabc caddb cad caddf cal cat cb cc ccl cd ce cex cf cfir cgetb cgete cg changes chd che checkt cl cla clo cm cmapc cme cn cnew cnf cno cnorea cnoreme co col colo com comc comp con conf cope cp cpf cq cr cs cst cu cuna cunme cw delm deb debugg delc delf dif diffg diffo diffp diffpu diffs diffthis dig di dl dell dj dli do doautoa dp dr ds dsp e|0 ea ec echoe echoh echom echon el elsei em en endfo endf endt endw ene ex exe exi exu f|0 files filet fin fina fini fir fix fo foldc foldd folddoc foldo for fu go gr grepa gu gv ha helpf helpg helpt hi hid his ia iabc if ij il im imapc ime ino inorea inoreme int is isp iu iuna iunme j|0 ju k|0 keepa kee keepj lN lNf l|0 lad laddb laddf la lan lat lb lc lch lcl lcs le lefta let lex lf lfir lgetb lgete lg lgr lgrepa lh ll lla lli lmak lm lmapc lne lnew lnf ln loadk lo loc lockv lol lope lp lpf lr ls lt lu lua luad luaf lv lvimgrepa lw m|0 ma mak map mapc marks mat me menut mes mk mks mksp mkv mkvie mod mz mzf nbc nb nbs new nm nmapc nme nn nnoreme noa no noh norea noreme norm nu nun nunme ol o|0 om omapc ome on ono onoreme opt ou ounme ow p|0 profd prof pro promptr pc ped pe perld po popu pp pre prev ps pt ptN ptf ptj ptl ptn ptp ptr pts pu pw py3 python3 py3d py3f py pyd pyf quita qa rec red redi redr redraws reg res ret retu rew ri rightb rub rubyd rubyf rund ru rv sN san sa sal sav sb sbN sba sbf sbl sbm sbn sbp sbr scrip scripte scs se setf setg setl sf sfir sh sim sig sil sl sla sm smap smapc sme sn sni sno snor snoreme sor so spelld spe spelli spellr spellu spellw sp spr sre st sta startg startr star stopi stj sts sun sunm sunme sus sv sw sy synti sync tN tabN tabc tabdo tabe tabf tabfir tabl tabm tabnew tabn tabo tabp tabr tabs tab ta tags tc tcld tclf te tf th tj tl tm tn to tp tr try ts tu u|0 undoj undol una unh unl unlo unm unme uns up ve verb vert vim vimgrepa vi viu vie vm vmapc vme vne vn vnoreme vs vu vunme windo w|0 wN wa wh wi winc winp wn wp wq wqa ws wu wv x|0 xa xmapc xm xme xn xnoreme xu xunme y|0 z|0 ~ Next Print append abbreviate abclear aboveleft all amenu anoremenu args argadd argdelete argedit argglobal arglocal argument ascii autocmd augroup aunmenu buffer bNext ball badd bdelete behave belowright bfirst blast bmodified bnext botright bprevious brewind break breakadd breakdel breaklist browse bunload bwipeout change cNext cNfile cabbrev cabclear caddbuffer caddexpr caddfile call catch cbuffer cclose center cexpr cfile cfirst cgetbuffer cgetexpr cgetfile chdir checkpath checktime clist clast close cmap cmapclear cmenu cnext cnewer cnfile cnoremap cnoreabbrev cnoremenu copy colder colorscheme command comclear compiler continue confirm copen cprevious cpfile cquit crewind cscope cstag cunmap cunabbrev cunmenu cwindow delete delmarks debug debuggreedy delcommand delfunction diffupdate diffget diffoff diffpatch diffput diffsplit digraphs display deletel djump dlist doautocmd doautoall deletep drop dsearch dsplit edit earlier echo echoerr echohl echomsg else elseif emenu endif endfor endfunction endtry endwhile enew execute exit exusage file filetype find finally finish first fixdel fold foldclose folddoopen folddoclosed foldopen function global goto grep grepadd gui gvim hardcopy help helpfind helpgrep helptags highlight hide history insert iabbrev iabclear ijump ilist imap imapclear imenu inoremap inoreabbrev inoremenu intro isearch isplit iunmap iunabbrev iunmenu join jumps keepalt keepmarks keepjumps lNext lNfile list laddexpr laddbuffer laddfile last language later lbuffer lcd lchdir lclose lcscope left leftabove lexpr lfile lfirst lgetbuffer lgetexpr lgetfile lgrep lgrepadd lhelpgrep llast llist lmake lmap lmapclear lnext lnewer lnfile lnoremap loadkeymap loadview lockmarks lockvar lolder lopen lprevious lpfile lrewind ltag lunmap luado luafile lvimgrep lvimgrepadd lwindow move mark make mapclear match menu menutranslate messages mkexrc mksession mkspell mkvimrc mkview mode mzscheme mzfile nbclose nbkey nbsart next nmap nmapclear nmenu nnoremap nnoremenu noautocmd noremap nohlsearch noreabbrev noremenu normal number nunmap nunmenu oldfiles open omap omapclear omenu only onoremap onoremenu options ounmap ounmenu ownsyntax print profdel profile promptfind promptrepl pclose pedit perl perldo pop popup ppop preserve previous psearch ptag ptNext ptfirst ptjump ptlast ptnext ptprevious ptrewind ptselect put pwd py3do py3file python pydo pyfile quit quitall qall read recover redo redir redraw redrawstatus registers resize retab return rewind right rightbelow ruby rubydo rubyfile rundo runtime rviminfo substitute sNext sandbox sargument sall saveas sbuffer sbNext sball sbfirst sblast sbmodified sbnext sbprevious sbrewind scriptnames scriptencoding scscope set setfiletype setglobal setlocal sfind sfirst shell simalt sign silent sleep slast smagic smapclear smenu snext sniff snomagic snoremap snoremenu sort source spelldump spellgood spellinfo spellrepall spellundo spellwrong split sprevious srewind stop stag startgreplace startreplace startinsert stopinsert stjump stselect sunhide sunmap sunmenu suspend sview swapname syntax syntime syncbind tNext tabNext tabclose tabedit tabfind tabfirst tablast tabmove tabnext tabonly tabprevious tabrewind tag tcl tcldo tclfile tearoff tfirst throw tjump tlast tmenu tnext topleft tprevious trewind tselect tunmenu undo undojoin undolist unabbreviate unhide unlet unlockvar unmap unmenu unsilent update vglobal version verbose vertical vimgrep vimgrepadd visual viusage view vmap vmapclear vmenu vnew vnoremap vnoremenu vsplit vunmap vunmenu write wNext wall while winsize wincmd winpos wnext wprevious wqall wsverb wundo wviminfo xit xall xmapclear xmap xmenu xnoremap xnoremenu xunmap xunmenu yank",built_in:"synIDtrans atan2 range matcharg did_filetype asin feedkeys xor argv complete_check add getwinposx getqflist getwinposy screencol clearmatches empty extend getcmdpos mzeval garbagecollect setreg ceil sqrt diff_hlID inputsecret get getfperm getpid filewritable shiftwidth max sinh isdirectory synID system inputrestore winline atan visualmode inputlist tabpagewinnr round getregtype mapcheck hasmapto histdel argidx findfile sha256 exists toupper getcmdline taglist string getmatches bufnr strftime winwidth bufexists strtrans tabpagebuflist setcmdpos remote_read printf setloclist getpos getline bufwinnr float2nr len getcmdtype diff_filler luaeval resolve libcallnr foldclosedend reverse filter has_key bufname str2float strlen setline getcharmod setbufvar index searchpos shellescape undofile foldclosed setqflist buflisted strchars str2nr virtcol floor remove undotree remote_expr winheight gettabwinvar reltime cursor tabpagenr finddir localtime acos getloclist search tanh matchend rename gettabvar strdisplaywidth type abs py3eval setwinvar tolower wildmenumode log10 spellsuggest bufloaded synconcealed nextnonblank server2client complete settabwinvar executable input wincol setmatches getftype hlID inputsave searchpair or screenrow line settabvar histadd deepcopy strpart remote_peek and eval getftime submatch screenchar winsaveview matchadd mkdir screenattr getfontname libcall reltimestr getfsize winnr invert pow getbufline byte2line soundfold repeat fnameescape tagfiles sin strwidth spellbadword trunc maparg log lispindent hostname setpos globpath remote_foreground getchar synIDattr fnamemodify cscope_connection stridx winbufnr indent min complete_add nr2char searchpairpos inputdialog values matchlist items hlexists strridx browsedir expand fmod pathshorten line2byte argc count getwinvar glob foldtextresult getreg foreground cosh matchdelete has char2nr simplify histget searchdecl iconv winrestcmd pumvisible writefile foldlevel haslocaldir keys cos matchstr foldtext histnr tan tempname getcwd byteidx getbufvar islocked escape eventhandler remote_send serverlist winrestview synstack pyeval prevnonblank readfile cindent filereadable changenr exp"},i:/[{:]/,c:[e.NM,e.ASM,{cN:"string",b:/"(\\"|\n\\|[^"\n])*"/},e.C('"',"$"),{cN:"variable",b:/[bwtglsav]:[\w\d_]*/},{cN:"function",bK:"function function!",e:"$",r:0,c:[e.TM,{cN:"params",b:"\\(",e:"\\)"}]},{cN:"symbol",b:/<[\w-]+>/}]}});hljs.registerLanguage("ruleslanguage",function(T){return{k:{keyword:"BILL_PERIOD BILL_START BILL_STOP RS_EFFECTIVE_START RS_EFFECTIVE_STOP RS_JURIS_CODE RS_OPCO_CODE INTDADDATTRIBUTE|5 INTDADDVMSG|5 INTDBLOCKOP|5 INTDBLOCKOPNA|5 INTDCLOSE|5 INTDCOUNT|5 INTDCOUNTSTATUSCODE|5 INTDCREATEMASK|5 INTDCREATEDAYMASK|5 INTDCREATEFACTORMASK|5 INTDCREATEHANDLE|5 INTDCREATEOVERRIDEDAYMASK|5 INTDCREATEOVERRIDEMASK|5 INTDCREATESTATUSCODEMASK|5 INTDCREATETOUPERIOD|5 INTDDELETE|5 INTDDIPTEST|5 INTDEXPORT|5 INTDGETERRORCODE|5 INTDGETERRORMESSAGE|5 INTDISEQUAL|5 INTDJOIN|5 INTDLOAD|5 INTDLOADACTUALCUT|5 INTDLOADDATES|5 INTDLOADHIST|5 INTDLOADLIST|5 INTDLOADLISTDATES|5 INTDLOADLISTENERGY|5 INTDLOADLISTHIST|5 INTDLOADRELATEDCHANNEL|5 INTDLOADSP|5 INTDLOADSTAGING|5 INTDLOADUOM|5 INTDLOADUOMDATES|5 INTDLOADUOMHIST|5 INTDLOADVERSION|5 INTDOPEN|5 INTDREADFIRST|5 INTDREADNEXT|5 INTDRECCOUNT|5 INTDRELEASE|5 INTDREPLACE|5 INTDROLLAVG|5 INTDROLLPEAK|5 INTDSCALAROP|5 INTDSCALE|5 INTDSETATTRIBUTE|5 INTDSETDSTPARTICIPANT|5 INTDSETSTRING|5 INTDSETVALUE|5 INTDSETVALUESTATUS|5 INTDSHIFTSTARTTIME|5 INTDSMOOTH|5 INTDSORT|5 INTDSPIKETEST|5 INTDSUBSET|5 INTDTOU|5 INTDTOURELEASE|5 INTDTOUVALUE|5 INTDUPDATESTATS|5 INTDVALUE|5 STDEV INTDDELETEEX|5 INTDLOADEXACTUAL|5 INTDLOADEXCUT|5 INTDLOADEXDATES|5 INTDLOADEX|5 INTDLOADEXRELATEDCHANNEL|5 INTDSAVEEX|5 MVLOAD|5 MVLOADACCT|5 MVLOADACCTDATES|5 MVLOADACCTHIST|5 MVLOADDATES|5 MVLOADHIST|5 MVLOADLIST|5 MVLOADLISTDATES|5 MVLOADLISTHIST|5 IF FOR NEXT DONE SELECT END CALL ABORT CLEAR CHANNEL FACTOR LIST NUMBER OVERRIDE SET WEEK DISTRIBUTIONNODE ELSE WHEN THEN OTHERWISE IENUM CSV INCLUDE LEAVE RIDER SAVE DELETE NOVALUE SECTION WARN SAVE_UPDATE DETERMINANT LABEL REPORT REVENUE EACH IN FROM TOTAL CHARGE BLOCK AND OR CSV_FILE RATE_CODE AUXILIARY_DEMAND UIDACCOUNT RS BILL_PERIOD_SELECT HOURS_PER_MONTH INTD_ERROR_STOP SEASON_SCHEDULE_NAME ACCOUNTFACTOR ARRAYUPPERBOUND CALLSTOREDPROC GETADOCONNECTION GETCONNECT GETDATASOURCE GETQUALIFIER GETUSERID HASVALUE LISTCOUNT LISTOP LISTUPDATE LISTVALUE PRORATEFACTOR RSPRORATE SETBINPATH SETDBMONITOR WQ_OPEN BILLINGHOURS DATE DATEFROMFLOAT DATETIMEFROMSTRING DATETIMETOSTRING DATETOFLOAT DAY DAYDIFF DAYNAME DBDATETIME HOUR MINUTE MONTH MONTHDIFF MONTHHOURS MONTHNAME ROUNDDATE SAMEWEEKDAYLASTYEAR SECOND WEEKDAY WEEKDIFF YEAR YEARDAY YEARSTR COMPSUM HISTCOUNT HISTMAX HISTMIN HISTMINNZ HISTVALUE MAXNRANGE MAXRANGE MINRANGE COMPIKVA COMPKVA COMPKVARFROMKQKW COMPLF IDATTR FLAG LF2KW LF2KWH MAXKW POWERFACTOR READING2USAGE AVGSEASON MAXSEASON MONTHLYMERGE SEASONVALUE SUMSEASON ACCTREADDATES ACCTTABLELOAD CONFIGADD CONFIGGET CREATEOBJECT CREATEREPORT EMAILCLIENT EXPBLKMDMUSAGE EXPMDMUSAGE EXPORT_USAGE FACTORINEFFECT GETUSERSPECIFIEDSTOP INEFFECT ISHOLIDAY RUNRATE SAVE_PROFILE SETREPORTTITLE USEREXIT WATFORRUNRATE TO TABLE ACOS ASIN ATAN ATAN2 BITAND CEIL COS COSECANT COSH COTANGENT DIVQUOT DIVREM EXP FABS FLOOR FMOD FREPM FREXPN LOG LOG10 MAX MAXN MIN MINNZ MODF POW ROUND ROUND2VALUE ROUNDINT SECANT SIN SINH SQROOT TAN TANH FLOAT2STRING FLOAT2STRINGNC INSTR LEFT LEN LTRIM MID RIGHT RTRIM STRING STRINGNC TOLOWER TOUPPER TRIM NUMDAYS READ_DATE STAGING",built_in:"IDENTIFIER OPTIONS XML_ELEMENT XML_OP XML_ELEMENT_OF DOMDOCCREATE DOMDOCLOADFILE DOMDOCLOADXML DOMDOCSAVEFILE DOMDOCGETROOT DOMDOCADDPI DOMNODEGETNAME DOMNODEGETTYPE DOMNODEGETVALUE DOMNODEGETCHILDCT DOMNODEGETFIRSTCHILD DOMNODEGETSIBLING DOMNODECREATECHILDELEMENT DOMNODESETATTRIBUTE DOMNODEGETCHILDELEMENTCT DOMNODEGETFIRSTCHILDELEMENT DOMNODEGETSIBLINGELEMENT DOMNODEGETATTRIBUTECT DOMNODEGETATTRIBUTEI DOMNODEGETATTRIBUTEBYNAME DOMNODEGETBYNAME"},c:[T.CLCM,T.CBCM,T.ASM,T.QSM,T.CNM,{cN:"literal",v:[{b:"#\\s+[a-zA-Z\\ \\.]*",r:0},{b:"#[a-zA-Z\\ \\.]+"}]}]}});hljs.registerLanguage("xml",function(s){var e="[A-Za-z0-9\\._:-]+",t={eW:!0,i:/</,r:0,c:[{cN:"attr",b:e,r:0},{b:"=",r:0,c:[{cN:"string",v:[{b:/"/,e:/"/},{b:/'/,e:/'/},{b:/[^\s\/>]+/}]}]}]};return{aliases:["html","xhtml","rss","atom","xsl","plist"],cI:!0,c:[{cN:"meta",b:"<!DOCTYPE",e:">",r:10,c:[{b:"\\[",e:"\\]"}]},s.C("<!--","-->",{r:10}),{b:"<\\!\\[CDATA\\[",e:"\\]\\]>",r:10},{b:/<\?(php)?/,e:/\?>/,sL:"php",c:[{b:"/\\*",e:"\\*/",skip:!0}]},{cN:"tag",b:"<style(?=\\s|>|$)",e:">",k:{name:"style"},c:[t],starts:{e:"</style>",rE:!0,sL:["css","xml"]}},{cN:"tag",b:"<script(?=\\s|>|$)",e:">",k:{name:"script"},c:[t],starts:{e:"</script>",rE:!0,sL:["actionscript","javascript","handlebars","xml"]}},{cN:"meta",v:[{b:/<\?xml/,e:/\?>/,r:10},{b:/<\?\w+/,e:/\?>/}]},{cN:"tag",b:"</?",e:"/?>",c:[{cN:"name",b:/[^\/><\s]+/,r:0},t]}]}});hljs.registerLanguage("autoit",function(e){var t="ByRef Case Const ContinueCase ContinueLoop Default Dim Do Else ElseIf EndFunc EndIf EndSelect EndSwitch EndWith Enum Exit ExitLoop For Func Global If In Local Next ReDim Return Select Static Step Switch Then To Until Volatile WEnd While With",r="True False And Null Not Or",i="Abs ACos AdlibRegister AdlibUnRegister Asc AscW ASin Assign ATan AutoItSetOption AutoItWinGetTitle AutoItWinSetTitle Beep Binary BinaryLen BinaryMid BinaryToString BitAND BitNOT BitOR BitRotate BitShift BitXOR BlockInput Break Call CDTray Ceiling Chr ChrW ClipGet ClipPut ConsoleRead ConsoleWrite ConsoleWriteError ControlClick ControlCommand ControlDisable ControlEnable ControlFocus ControlGetFocus ControlGetHandle ControlGetPos ControlGetText ControlHide ControlListView ControlMove ControlSend ControlSetText ControlShow ControlTreeView Cos Dec DirCopy DirCreate DirGetSize DirMove DirRemove DllCall DllCallAddress DllCallbackFree DllCallbackGetPtr DllCallbackRegister DllClose DllOpen DllStructCreate DllStructGetData DllStructGetPtr DllStructGetSize DllStructSetData DriveGetDrive DriveGetFileSystem DriveGetLabel DriveGetSerial DriveGetType DriveMapAdd DriveMapDel DriveMapGet DriveSetLabel DriveSpaceFree DriveSpaceTotal DriveStatus EnvGet EnvSet EnvUpdate Eval Execute Exp FileChangeDir FileClose FileCopy FileCreateNTFSLink FileCreateShortcut FileDelete FileExists FileFindFirstFile FileFindNextFile FileFlush FileGetAttrib FileGetEncoding FileGetLongName FileGetPos FileGetShortcut FileGetShortName FileGetSize FileGetTime FileGetVersion FileInstall FileMove FileOpen FileOpenDialog FileRead FileReadLine FileReadToArray FileRecycle FileRecycleEmpty FileSaveDialog FileSelectFolder FileSetAttrib FileSetEnd FileSetPos FileSetTime FileWrite FileWriteLine Floor FtpSetProxy FuncName GUICreate GUICtrlCreateAvi GUICtrlCreateButton GUICtrlCreateCheckbox GUICtrlCreateCombo GUICtrlCreateContextMenu GUICtrlCreateDate GUICtrlCreateDummy GUICtrlCreateEdit GUICtrlCreateGraphic GUICtrlCreateGroup GUICtrlCreateIcon GUICtrlCreateInput GUICtrlCreateLabel GUICtrlCreateList GUICtrlCreateListView GUICtrlCreateListViewItem GUICtrlCreateMenu GUICtrlCreateMenuItem GUICtrlCreateMonthCal GUICtrlCreateObj GUICtrlCreatePic GUICtrlCreateProgress GUICtrlCreateRadio GUICtrlCreateSlider GUICtrlCreateTab GUICtrlCreateTabItem GUICtrlCreateTreeView GUICtrlCreateTreeViewItem GUICtrlCreateUpdown GUICtrlDelete GUICtrlGetHandle GUICtrlGetState GUICtrlRead GUICtrlRecvMsg GUICtrlRegisterListViewSort GUICtrlSendMsg GUICtrlSendToDummy GUICtrlSetBkColor GUICtrlSetColor GUICtrlSetCursor GUICtrlSetData GUICtrlSetDefBkColor GUICtrlSetDefColor GUICtrlSetFont GUICtrlSetGraphic GUICtrlSetImage GUICtrlSetLimit GUICtrlSetOnEvent GUICtrlSetPos GUICtrlSetResizing GUICtrlSetState GUICtrlSetStyle GUICtrlSetTip GUIDelete GUIGetCursorInfo GUIGetMsg GUIGetStyle GUIRegisterMsg GUISetAccelerators GUISetBkColor GUISetCoord GUISetCursor GUISetFont GUISetHelp GUISetIcon GUISetOnEvent GUISetState GUISetStyle GUIStartGroup GUISwitch Hex HotKeySet HttpSetProxy HttpSetUserAgent HWnd InetClose InetGet InetGetInfo InetGetSize InetRead IniDelete IniRead IniReadSection IniReadSectionNames IniRenameSection IniWrite IniWriteSection InputBox Int IsAdmin IsArray IsBinary IsBool IsDeclared IsDllStruct IsFloat IsFunc IsHWnd IsInt IsKeyword IsNumber IsObj IsPtr IsString Log MemGetStats Mod MouseClick MouseClickDrag MouseDown MouseGetCursor MouseGetPos MouseMove MouseUp MouseWheel MsgBox Number ObjCreate ObjCreateInterface ObjEvent ObjGet ObjName OnAutoItExitRegister OnAutoItExitUnRegister Opt Ping PixelChecksum PixelGetColor PixelSearch ProcessClose ProcessExists ProcessGetStats ProcessList ProcessSetPriority ProcessWait ProcessWaitClose ProgressOff ProgressOn ProgressSet Ptr Random RegDelete RegEnumKey RegEnumVal RegRead RegWrite Round Run RunAs RunAsWait RunWait Send SendKeepActive SetError SetExtended ShellExecute ShellExecuteWait Shutdown Sin Sleep SoundPlay SoundSetWaveVolume SplashImageOn SplashOff SplashTextOn Sqrt SRandom StatusbarGetText StderrRead StdinWrite StdioClose StdoutRead String StringAddCR StringCompare StringFormat StringFromASCIIArray StringInStr StringIsAlNum StringIsAlpha StringIsASCII StringIsDigit StringIsFloat StringIsInt StringIsLower StringIsSpace StringIsUpper StringIsXDigit StringLeft StringLen StringLower StringMid StringRegExp StringRegExpReplace StringReplace StringReverse StringRight StringSplit StringStripCR StringStripWS StringToASCIIArray StringToBinary StringTrimLeft StringTrimRight StringUpper Tan TCPAccept TCPCloseSocket TCPConnect TCPListen TCPNameToIP TCPRecv TCPSend TCPShutdown TCPStartup TimerDiff TimerInit ToolTip TrayCreateItem TrayCreateMenu TrayGetMsg TrayItemDelete TrayItemGetHandle TrayItemGetState TrayItemGetText TrayItemSetOnEvent TrayItemSetState TrayItemSetText TraySetClick TraySetIcon TraySetOnEvent TraySetPauseIcon TraySetState TraySetToolTip TrayTip UBound UDPBind UDPCloseSocket UDPOpen UDPRecv UDPSend UDPShutdown UDPStartup VarGetType WinActivate WinActive WinClose WinExists WinFlash WinGetCaretPos WinGetClassList WinGetClientSize WinGetHandle WinGetPos WinGetProcess WinGetState WinGetText WinGetTitle WinKill WinList WinMenuSelectItem WinMinimizeAll WinMinimizeAllUndo WinMove WinSetOnTop WinSetState WinSetTitle WinSetTrans WinWait WinWaitActive WinWaitClose WinWaitNotActive Array1DToHistogram ArrayAdd ArrayBinarySearch ArrayColDelete ArrayColInsert ArrayCombinations ArrayConcatenate ArrayDelete ArrayDisplay ArrayExtract ArrayFindAll ArrayInsert ArrayMax ArrayMaxIndex ArrayMin ArrayMinIndex ArrayPermute ArrayPop ArrayPush ArrayReverse ArraySearch ArrayShuffle ArraySort ArraySwap ArrayToClip ArrayToString ArrayTranspose ArrayTrim ArrayUnique Assert ChooseColor ChooseFont ClipBoard_ChangeChain ClipBoard_Close ClipBoard_CountFormats ClipBoard_Empty ClipBoard_EnumFormats ClipBoard_FormatStr ClipBoard_GetData ClipBoard_GetDataEx ClipBoard_GetFormatName ClipBoard_GetOpenWindow ClipBoard_GetOwner ClipBoard_GetPriorityFormat ClipBoard_GetSequenceNumber ClipBoard_GetViewer ClipBoard_IsFormatAvailable ClipBoard_Open ClipBoard_RegisterFormat ClipBoard_SetData ClipBoard_SetDataEx ClipBoard_SetViewer ClipPutFile ColorConvertHSLtoRGB ColorConvertRGBtoHSL ColorGetBlue ColorGetCOLORREF ColorGetGreen ColorGetRed ColorGetRGB ColorSetCOLORREF ColorSetRGB Crypt_DecryptData Crypt_DecryptFile Crypt_DeriveKey Crypt_DestroyKey Crypt_EncryptData Crypt_EncryptFile Crypt_GenRandom Crypt_HashData Crypt_HashFile Crypt_Shutdown Crypt_Startup DateAdd DateDayOfWeek DateDaysInMonth DateDiff DateIsLeapYear DateIsValid DateTimeFormat DateTimeSplit DateToDayOfWeek DateToDayOfWeekISO DateToDayValue DateToMonth Date_Time_CompareFileTime Date_Time_DOSDateTimeToArray Date_Time_DOSDateTimeToFileTime Date_Time_DOSDateTimeToStr Date_Time_DOSDateToArray Date_Time_DOSDateToStr Date_Time_DOSTimeToArray Date_Time_DOSTimeToStr Date_Time_EncodeFileTime Date_Time_EncodeSystemTime Date_Time_FileTimeToArray Date_Time_FileTimeToDOSDateTime Date_Time_FileTimeToLocalFileTime Date_Time_FileTimeToStr Date_Time_FileTimeToSystemTime Date_Time_GetFileTime Date_Time_GetLocalTime Date_Time_GetSystemTime Date_Time_GetSystemTimeAdjustment Date_Time_GetSystemTimeAsFileTime Date_Time_GetSystemTimes Date_Time_GetTickCount Date_Time_GetTimeZoneInformation Date_Time_LocalFileTimeToFileTime Date_Time_SetFileTime Date_Time_SetLocalTime Date_Time_SetSystemTime Date_Time_SetSystemTimeAdjustment Date_Time_SetTimeZoneInformation Date_Time_SystemTimeToArray Date_Time_SystemTimeToDateStr Date_Time_SystemTimeToDateTimeStr Date_Time_SystemTimeToFileTime Date_Time_SystemTimeToTimeStr Date_Time_SystemTimeToTzSpecificLocalTime Date_Time_TzSpecificLocalTimeToSystemTime DayValueToDate DebugBugReportEnv DebugCOMError DebugOut DebugReport DebugReportEx DebugReportVar DebugSetup Degree EventLog__Backup EventLog__Clear EventLog__Close EventLog__Count EventLog__DeregisterSource EventLog__Full EventLog__Notify EventLog__Oldest EventLog__Open EventLog__OpenBackup EventLog__Read EventLog__RegisterSource EventLog__Report Excel_BookAttach Excel_BookClose Excel_BookList Excel_BookNew Excel_BookOpen Excel_BookOpenText Excel_BookSave Excel_BookSaveAs Excel_Close Excel_ColumnToLetter Excel_ColumnToNumber Excel_ConvertFormula Excel_Export Excel_FilterGet Excel_FilterSet Excel_Open Excel_PictureAdd Excel_Print Excel_RangeCopyPaste Excel_RangeDelete Excel_RangeFind Excel_RangeInsert Excel_RangeLinkAddRemove Excel_RangeRead Excel_RangeReplace Excel_RangeSort Excel_RangeValidate Excel_RangeWrite Excel_SheetAdd Excel_SheetCopyMove Excel_SheetDelete Excel_SheetList FileCountLines FileCreate FileListToArray FileListToArrayRec FilePrint FileReadToArray FileWriteFromArray FileWriteLog FileWriteToLine FTP_Close FTP_Command FTP_Connect FTP_DecodeInternetStatus FTP_DirCreate FTP_DirDelete FTP_DirGetCurrent FTP_DirPutContents FTP_DirSetCurrent FTP_FileClose FTP_FileDelete FTP_FileGet FTP_FileGetSize FTP_FileOpen FTP_FilePut FTP_FileRead FTP_FileRename FTP_FileTimeLoHiToStr FTP_FindFileClose FTP_FindFileFirst FTP_FindFileNext FTP_GetLastResponseInfo FTP_ListToArray FTP_ListToArray2D FTP_ListToArrayEx FTP_Open FTP_ProgressDownload FTP_ProgressUpload FTP_SetStatusCallback GDIPlus_ArrowCapCreate GDIPlus_ArrowCapDispose GDIPlus_ArrowCapGetFillState GDIPlus_ArrowCapGetHeight GDIPlus_ArrowCapGetMiddleInset GDIPlus_ArrowCapGetWidth GDIPlus_ArrowCapSetFillState GDIPlus_ArrowCapSetHeight GDIPlus_ArrowCapSetMiddleInset GDIPlus_ArrowCapSetWidth GDIPlus_BitmapApplyEffect GDIPlus_BitmapApplyEffectEx GDIPlus_BitmapCloneArea GDIPlus_BitmapConvertFormat GDIPlus_BitmapCreateApplyEffect GDIPlus_BitmapCreateApplyEffectEx GDIPlus_BitmapCreateDIBFromBitmap GDIPlus_BitmapCreateFromFile GDIPlus_BitmapCreateFromGraphics GDIPlus_BitmapCreateFromHBITMAP GDIPlus_BitmapCreateFromHICON GDIPlus_BitmapCreateFromHICON32 GDIPlus_BitmapCreateFromMemory GDIPlus_BitmapCreateFromResource GDIPlus_BitmapCreateFromScan0 GDIPlus_BitmapCreateFromStream GDIPlus_BitmapCreateHBITMAPFromBitmap GDIPlus_BitmapDispose GDIPlus_BitmapGetHistogram GDIPlus_BitmapGetHistogramEx GDIPlus_BitmapGetHistogramSize GDIPlus_BitmapGetPixel GDIPlus_BitmapLockBits GDIPlus_BitmapSetPixel GDIPlus_BitmapUnlockBits GDIPlus_BrushClone GDIPlus_BrushCreateSolid GDIPlus_BrushDispose GDIPlus_BrushGetSolidColor GDIPlus_BrushGetType GDIPlus_BrushSetSolidColor GDIPlus_ColorMatrixCreate GDIPlus_ColorMatrixCreateGrayScale GDIPlus_ColorMatrixCreateNegative GDIPlus_ColorMatrixCreateSaturation GDIPlus_ColorMatrixCreateScale GDIPlus_ColorMatrixCreateTranslate GDIPlus_CustomLineCapClone GDIPlus_CustomLineCapCreate GDIPlus_CustomLineCapDispose GDIPlus_CustomLineCapGetStrokeCaps GDIPlus_CustomLineCapSetStrokeCaps GDIPlus_Decoders GDIPlus_DecodersGetCount GDIPlus_DecodersGetSize GDIPlus_DrawImageFX GDIPlus_DrawImageFXEx GDIPlus_DrawImagePoints GDIPlus_EffectCreate GDIPlus_EffectCreateBlur GDIPlus_EffectCreateBrightnessContrast GDIPlus_EffectCreateColorBalance GDIPlus_EffectCreateColorCurve GDIPlus_EffectCreateColorLUT GDIPlus_EffectCreateColorMatrix GDIPlus_EffectCreateHueSaturationLightness GDIPlus_EffectCreateLevels GDIPlus_EffectCreateRedEyeCorrection GDIPlus_EffectCreateSharpen GDIPlus_EffectCreateTint GDIPlus_EffectDispose GDIPlus_EffectGetParameters GDIPlus_EffectSetParameters GDIPlus_Encoders GDIPlus_EncodersGetCLSID GDIPlus_EncodersGetCount GDIPlus_EncodersGetParamList GDIPlus_EncodersGetParamListSize GDIPlus_EncodersGetSize GDIPlus_FontCreate GDIPlus_FontDispose GDIPlus_FontFamilyCreate GDIPlus_FontFamilyCreateFromCollection GDIPlus_FontFamilyDispose GDIPlus_FontFamilyGetCellAscent GDIPlus_FontFamilyGetCellDescent GDIPlus_FontFamilyGetEmHeight GDIPlus_FontFamilyGetLineSpacing GDIPlus_FontGetHeight GDIPlus_FontPrivateAddFont GDIPlus_FontPrivateAddMemoryFont GDIPlus_FontPrivateCollectionDispose GDIPlus_FontPrivateCreateCollection GDIPlus_GraphicsClear GDIPlus_GraphicsCreateFromHDC GDIPlus_GraphicsCreateFromHWND GDIPlus_GraphicsDispose GDIPlus_GraphicsDrawArc GDIPlus_GraphicsDrawBezier GDIPlus_GraphicsDrawClosedCurve GDIPlus_GraphicsDrawClosedCurve2 GDIPlus_GraphicsDrawCurve GDIPlus_GraphicsDrawCurve2 GDIPlus_GraphicsDrawEllipse GDIPlus_GraphicsDrawImage GDIPlus_GraphicsDrawImagePointsRect GDIPlus_GraphicsDrawImageRect GDIPlus_GraphicsDrawImageRectRect GDIPlus_GraphicsDrawLine GDIPlus_GraphicsDrawPath GDIPlus_GraphicsDrawPie GDIPlus_GraphicsDrawPolygon GDIPlus_GraphicsDrawRect GDIPlus_GraphicsDrawString GDIPlus_GraphicsDrawStringEx GDIPlus_GraphicsFillClosedCurve GDIPlus_GraphicsFillClosedCurve2 GDIPlus_GraphicsFillEllipse GDIPlus_GraphicsFillPath GDIPlus_GraphicsFillPie GDIPlus_GraphicsFillPolygon GDIPlus_GraphicsFillRect GDIPlus_GraphicsFillRegion GDIPlus_GraphicsGetCompositingMode GDIPlus_GraphicsGetCompositingQuality GDIPlus_GraphicsGetDC GDIPlus_GraphicsGetInterpolationMode GDIPlus_GraphicsGetSmoothingMode GDIPlus_GraphicsGetTransform GDIPlus_GraphicsMeasureCharacterRanges GDIPlus_GraphicsMeasureString GDIPlus_GraphicsReleaseDC GDIPlus_GraphicsResetClip GDIPlus_GraphicsResetTransform GDIPlus_GraphicsRestore GDIPlus_GraphicsRotateTransform GDIPlus_GraphicsSave GDIPlus_GraphicsScaleTransform GDIPlus_GraphicsSetClipPath GDIPlus_GraphicsSetClipRect GDIPlus_GraphicsSetClipRegion GDIPlus_GraphicsSetCompositingMode GDIPlus_GraphicsSetCompositingQuality GDIPlus_GraphicsSetInterpolationMode GDIPlus_GraphicsSetPixelOffsetMode GDIPlus_GraphicsSetSmoothingMode GDIPlus_GraphicsSetTextRenderingHint GDIPlus_GraphicsSetTransform GDIPlus_GraphicsTransformPoints GDIPlus_GraphicsTranslateTransform GDIPlus_HatchBrushCreate GDIPlus_HICONCreateFromBitmap GDIPlus_ImageAttributesCreate GDIPlus_ImageAttributesDispose GDIPlus_ImageAttributesSetColorKeys GDIPlus_ImageAttributesSetColorMatrix GDIPlus_ImageDispose GDIPlus_ImageGetDimension GDIPlus_ImageGetFlags GDIPlus_ImageGetGraphicsContext GDIPlus_ImageGetHeight GDIPlus_ImageGetHorizontalResolution GDIPlus_ImageGetPixelFormat GDIPlus_ImageGetRawFormat GDIPlus_ImageGetThumbnail GDIPlus_ImageGetType GDIPlus_ImageGetVerticalResolution GDIPlus_ImageGetWidth GDIPlus_ImageLoadFromFile GDIPlus_ImageLoadFromStream GDIPlus_ImageResize GDIPlus_ImageRotateFlip GDIPlus_ImageSaveToFile GDIPlus_ImageSaveToFileEx GDIPlus_ImageSaveToStream GDIPlus_ImageScale GDIPlus_LineBrushCreate GDIPlus_LineBrushCreateFromRect GDIPlus_LineBrushCreateFromRectWithAngle GDIPlus_LineBrushGetColors GDIPlus_LineBrushGetRect GDIPlus_LineBrushMultiplyTransform GDIPlus_LineBrushResetTransform GDIPlus_LineBrushSetBlend GDIPlus_LineBrushSetColors GDIPlus_LineBrushSetGammaCorrection GDIPlus_LineBrushSetLinearBlend GDIPlus_LineBrushSetPresetBlend GDIPlus_LineBrushSetSigmaBlend GDIPlus_LineBrushSetTransform GDIPlus_MatrixClone GDIPlus_MatrixCreate GDIPlus_MatrixDispose GDIPlus_MatrixGetElements GDIPlus_MatrixInvert GDIPlus_MatrixMultiply GDIPlus_MatrixRotate GDIPlus_MatrixScale GDIPlus_MatrixSetElements GDIPlus_MatrixShear GDIPlus_MatrixTransformPoints GDIPlus_MatrixTranslate GDIPlus_PaletteInitialize GDIPlus_ParamAdd GDIPlus_ParamInit GDIPlus_ParamSize GDIPlus_PathAddArc GDIPlus_PathAddBezier GDIPlus_PathAddClosedCurve GDIPlus_PathAddClosedCurve2 GDIPlus_PathAddCurve GDIPlus_PathAddCurve2 GDIPlus_PathAddCurve3 GDIPlus_PathAddEllipse GDIPlus_PathAddLine GDIPlus_PathAddLine2 GDIPlus_PathAddPath GDIPlus_PathAddPie GDIPlus_PathAddPolygon GDIPlus_PathAddRectangle GDIPlus_PathAddString GDIPlus_PathBrushCreate GDIPlus_PathBrushCreateFromPath GDIPlus_PathBrushGetCenterPoint GDIPlus_PathBrushGetFocusScales GDIPlus_PathBrushGetPointCount GDIPlus_PathBrushGetRect GDIPlus_PathBrushGetWrapMode GDIPlus_PathBrushMultiplyTransform GDIPlus_PathBrushResetTransform GDIPlus_PathBrushSetBlend GDIPlus_PathBrushSetCenterColor GDIPlus_PathBrushSetCenterPoint GDIPlus_PathBrushSetFocusScales GDIPlus_PathBrushSetGammaCorrection GDIPlus_PathBrushSetLinearBlend GDIPlus_PathBrushSetPresetBlend GDIPlus_PathBrushSetSigmaBlend GDIPlus_PathBrushSetSurroundColor GDIPlus_PathBrushSetSurroundColorsWithCount GDIPlus_PathBrushSetTransform GDIPlus_PathBrushSetWrapMode GDIPlus_PathClone GDIPlus_PathCloseFigure GDIPlus_PathCreate GDIPlus_PathCreate2 GDIPlus_PathDispose GDIPlus_PathFlatten GDIPlus_PathGetData GDIPlus_PathGetFillMode GDIPlus_PathGetLastPoint GDIPlus_PathGetPointCount GDIPlus_PathGetPoints GDIPlus_PathGetWorldBounds GDIPlus_PathIsOutlineVisiblePoint GDIPlus_PathIsVisiblePoint GDIPlus_PathIterCreate GDIPlus_PathIterDispose GDIPlus_PathIterGetSubpathCount GDIPlus_PathIterNextMarkerPath GDIPlus_PathIterNextSubpathPath GDIPlus_PathIterRewind GDIPlus_PathReset GDIPlus_PathReverse GDIPlus_PathSetFillMode GDIPlus_PathSetMarker GDIPlus_PathStartFigure GDIPlus_PathTransform GDIPlus_PathWarp GDIPlus_PathWiden GDIPlus_PathWindingModeOutline GDIPlus_PenCreate GDIPlus_PenCreate2 GDIPlus_PenDispose GDIPlus_PenGetAlignment GDIPlus_PenGetColor GDIPlus_PenGetCustomEndCap GDIPlus_PenGetDashCap GDIPlus_PenGetDashStyle GDIPlus_PenGetEndCap GDIPlus_PenGetMiterLimit GDIPlus_PenGetWidth GDIPlus_PenSetAlignment GDIPlus_PenSetColor GDIPlus_PenSetCustomEndCap GDIPlus_PenSetDashCap GDIPlus_PenSetDashStyle GDIPlus_PenSetEndCap GDIPlus_PenSetLineCap GDIPlus_PenSetLineJoin GDIPlus_PenSetMiterLimit GDIPlus_PenSetStartCap GDIPlus_PenSetWidth GDIPlus_RectFCreate GDIPlus_RegionClone GDIPlus_RegionCombinePath GDIPlus_RegionCombineRect GDIPlus_RegionCombineRegion GDIPlus_RegionCreate GDIPlus_RegionCreateFromPath GDIPlus_RegionCreateFromRect GDIPlus_RegionDispose GDIPlus_RegionGetBounds GDIPlus_RegionGetHRgn GDIPlus_RegionTransform GDIPlus_RegionTranslate GDIPlus_Shutdown GDIPlus_Startup GDIPlus_StringFormatCreate GDIPlus_StringFormatDispose GDIPlus_StringFormatGetMeasurableCharacterRangeCount GDIPlus_StringFormatSetAlign GDIPlus_StringFormatSetLineAlign GDIPlus_StringFormatSetMeasurableCharacterRanges GDIPlus_TextureCreate GDIPlus_TextureCreate2 GDIPlus_TextureCreateIA GetIP GUICtrlAVI_Close GUICtrlAVI_Create GUICtrlAVI_Destroy GUICtrlAVI_IsPlaying GUICtrlAVI_Open GUICtrlAVI_OpenEx GUICtrlAVI_Play GUICtrlAVI_Seek GUICtrlAVI_Show GUICtrlAVI_Stop GUICtrlButton_Click GUICtrlButton_Create GUICtrlButton_Destroy GUICtrlButton_Enable GUICtrlButton_GetCheck GUICtrlButton_GetFocus GUICtrlButton_GetIdealSize GUICtrlButton_GetImage GUICtrlButton_GetImageList GUICtrlButton_GetNote GUICtrlButton_GetNoteLength GUICtrlButton_GetSplitInfo GUICtrlButton_GetState GUICtrlButton_GetText GUICtrlButton_GetTextMargin GUICtrlButton_SetCheck GUICtrlButton_SetDontClick GUICtrlButton_SetFocus GUICtrlButton_SetImage GUICtrlButton_SetImageList GUICtrlButton_SetNote GUICtrlButton_SetShield GUICtrlButton_SetSize GUICtrlButton_SetSplitInfo GUICtrlButton_SetState GUICtrlButton_SetStyle GUICtrlButton_SetText GUICtrlButton_SetTextMargin GUICtrlButton_Show GUICtrlComboBoxEx_AddDir GUICtrlComboBoxEx_AddString GUICtrlComboBoxEx_BeginUpdate GUICtrlComboBoxEx_Create GUICtrlComboBoxEx_CreateSolidBitMap GUICtrlComboBoxEx_DeleteString GUICtrlComboBoxEx_Destroy GUICtrlComboBoxEx_EndUpdate GUICtrlComboBoxEx_FindStringExact GUICtrlComboBoxEx_GetComboBoxInfo GUICtrlComboBoxEx_GetComboControl GUICtrlComboBoxEx_GetCount GUICtrlComboBoxEx_GetCurSel GUICtrlComboBoxEx_GetDroppedControlRect GUICtrlComboBoxEx_GetDroppedControlRectEx GUICtrlComboBoxEx_GetDroppedState GUICtrlComboBoxEx_GetDroppedWidth GUICtrlComboBoxEx_GetEditControl GUICtrlComboBoxEx_GetEditSel GUICtrlComboBoxEx_GetEditText GUICtrlComboBoxEx_GetExtendedStyle GUICtrlComboBoxEx_GetExtendedUI GUICtrlComboBoxEx_GetImageList GUICtrlComboBoxEx_GetItem GUICtrlComboBoxEx_GetItemEx GUICtrlComboBoxEx_GetItemHeight GUICtrlComboBoxEx_GetItemImage GUICtrlComboBoxEx_GetItemIndent GUICtrlComboBoxEx_GetItemOverlayImage GUICtrlComboBoxEx_GetItemParam GUICtrlComboBoxEx_GetItemSelectedImage GUICtrlComboBoxEx_GetItemText GUICtrlComboBoxEx_GetItemTextLen GUICtrlComboBoxEx_GetList GUICtrlComboBoxEx_GetListArray GUICtrlComboBoxEx_GetLocale GUICtrlComboBoxEx_GetLocaleCountry GUICtrlComboBoxEx_GetLocaleLang GUICtrlComboBoxEx_GetLocalePrimLang GUICtrlComboBoxEx_GetLocaleSubLang GUICtrlComboBoxEx_GetMinVisible GUICtrlComboBoxEx_GetTopIndex GUICtrlComboBoxEx_GetUnicode GUICtrlComboBoxEx_InitStorage GUICtrlComboBoxEx_InsertString GUICtrlComboBoxEx_LimitText GUICtrlComboBoxEx_ReplaceEditSel GUICtrlComboBoxEx_ResetContent GUICtrlComboBoxEx_SetCurSel GUICtrlComboBoxEx_SetDroppedWidth GUICtrlComboBoxEx_SetEditSel GUICtrlComboBoxEx_SetEditText GUICtrlComboBoxEx_SetExtendedStyle GUICtrlComboBoxEx_SetExtendedUI GUICtrlComboBoxEx_SetImageList GUICtrlComboBoxEx_SetItem GUICtrlComboBoxEx_SetItemEx GUICtrlComboBoxEx_SetItemHeight GUICtrlComboBoxEx_SetItemImage GUICtrlComboBoxEx_SetItemIndent GUICtrlComboBoxEx_SetItemOverlayImage GUICtrlComboBoxEx_SetItemParam GUICtrlComboBoxEx_SetItemSelectedImage GUICtrlComboBoxEx_SetMinVisible GUICtrlComboBoxEx_SetTopIndex GUICtrlComboBoxEx_SetUnicode GUICtrlComboBoxEx_ShowDropDown GUICtrlComboBox_AddDir GUICtrlComboBox_AddString GUICtrlComboBox_AutoComplete GUICtrlComboBox_BeginUpdate GUICtrlComboBox_Create GUICtrlComboBox_DeleteString GUICtrlComboBox_Destroy GUICtrlComboBox_EndUpdate GUICtrlComboBox_FindString GUICtrlComboBox_FindStringExact GUICtrlComboBox_GetComboBoxInfo GUICtrlComboBox_GetCount GUICtrlComboBox_GetCueBanner GUICtrlComboBox_GetCurSel GUICtrlComboBox_GetDroppedControlRect GUICtrlComboBox_GetDroppedControlRectEx GUICtrlComboBox_GetDroppedState GUICtrlComboBox_GetDroppedWidth GUICtrlComboBox_GetEditSel GUICtrlComboBox_GetEditText GUICtrlComboBox_GetExtendedUI GUICtrlComboBox_GetHorizontalExtent GUICtrlComboBox_GetItemHeight GUICtrlComboBox_GetLBText GUICtrlComboBox_GetLBTextLen GUICtrlComboBox_GetList GUICtrlComboBox_GetListArray GUICtrlComboBox_GetLocale GUICtrlComboBox_GetLocaleCountry GUICtrlComboBox_GetLocaleLang GUICtrlComboBox_GetLocalePrimLang GUICtrlComboBox_GetLocaleSubLang GUICtrlComboBox_GetMinVisible GUICtrlComboBox_GetTopIndex GUICtrlComboBox_InitStorage GUICtrlComboBox_InsertString GUICtrlComboBox_LimitText GUICtrlComboBox_ReplaceEditSel GUICtrlComboBox_ResetContent GUICtrlComboBox_SelectString GUICtrlComboBox_SetCueBanner GUICtrlComboBox_SetCurSel GUICtrlComboBox_SetDroppedWidth GUICtrlComboBox_SetEditSel GUICtrlComboBox_SetEditText GUICtrlComboBox_SetExtendedUI GUICtrlComboBox_SetHorizontalExtent GUICtrlComboBox_SetItemHeight GUICtrlComboBox_SetMinVisible GUICtrlComboBox_SetTopIndex GUICtrlComboBox_ShowDropDown GUICtrlDTP_Create GUICtrlDTP_Destroy GUICtrlDTP_GetMCColor GUICtrlDTP_GetMCFont GUICtrlDTP_GetMonthCal GUICtrlDTP_GetRange GUICtrlDTP_GetRangeEx GUICtrlDTP_GetSystemTime GUICtrlDTP_GetSystemTimeEx GUICtrlDTP_SetFormat GUICtrlDTP_SetMCColor GUICtrlDTP_SetMCFont GUICtrlDTP_SetRange GUICtrlDTP_SetRangeEx GUICtrlDTP_SetSystemTime GUICtrlDTP_SetSystemTimeEx GUICtrlEdit_AppendText GUICtrlEdit_BeginUpdate GUICtrlEdit_CanUndo GUICtrlEdit_CharFromPos GUICtrlEdit_Create GUICtrlEdit_Destroy GUICtrlEdit_EmptyUndoBuffer GUICtrlEdit_EndUpdate GUICtrlEdit_Find GUICtrlEdit_FmtLines GUICtrlEdit_GetCueBanner GUICtrlEdit_GetFirstVisibleLine GUICtrlEdit_GetLimitText GUICtrlEdit_GetLine GUICtrlEdit_GetLineCount GUICtrlEdit_GetMargins GUICtrlEdit_GetModify GUICtrlEdit_GetPasswordChar GUICtrlEdit_GetRECT GUICtrlEdit_GetRECTEx GUICtrlEdit_GetSel GUICtrlEdit_GetText GUICtrlEdit_GetTextLen GUICtrlEdit_HideBalloonTip GUICtrlEdit_InsertText GUICtrlEdit_LineFromChar GUICtrlEdit_LineIndex GUICtrlEdit_LineLength GUICtrlEdit_LineScroll GUICtrlEdit_PosFromChar GUICtrlEdit_ReplaceSel GUICtrlEdit_Scroll GUICtrlEdit_SetCueBanner GUICtrlEdit_SetLimitText GUICtrlEdit_SetMargins GUICtrlEdit_SetModify GUICtrlEdit_SetPasswordChar GUICtrlEdit_SetReadOnly GUICtrlEdit_SetRECT GUICtrlEdit_SetRECTEx GUICtrlEdit_SetRECTNP GUICtrlEdit_SetRectNPEx GUICtrlEdit_SetSel GUICtrlEdit_SetTabStops GUICtrlEdit_SetText GUICtrlEdit_ShowBalloonTip GUICtrlEdit_Undo GUICtrlHeader_AddItem GUICtrlHeader_ClearFilter GUICtrlHeader_ClearFilterAll GUICtrlHeader_Create GUICtrlHeader_CreateDragImage GUICtrlHeader_DeleteItem GUICtrlHeader_Destroy GUICtrlHeader_EditFilter GUICtrlHeader_GetBitmapMargin GUICtrlHeader_GetImageList GUICtrlHeader_GetItem GUICtrlHeader_GetItemAlign GUICtrlHeader_GetItemBitmap GUICtrlHeader_GetItemCount GUICtrlHeader_GetItemDisplay GUICtrlHeader_GetItemFlags GUICtrlHeader_GetItemFormat GUICtrlHeader_GetItemImage GUICtrlHeader_GetItemOrder GUICtrlHeader_GetItemParam GUICtrlHeader_GetItemRect GUICtrlHeader_GetItemRectEx GUICtrlHeader_GetItemText GUICtrlHeader_GetItemWidth GUICtrlHeader_GetOrderArray GUICtrlHeader_GetUnicodeFormat GUICtrlHeader_HitTest GUICtrlHeader_InsertItem GUICtrlHeader_Layout GUICtrlHeader_OrderToIndex GUICtrlHeader_SetBitmapMargin GUICtrlHeader_SetFilterChangeTimeout GUICtrlHeader_SetHotDivider GUICtrlHeader_SetImageList GUICtrlHeader_SetItem GUICtrlHeader_SetItemAlign GUICtrlHeader_SetItemBitmap GUICtrlHeader_SetItemDisplay GUICtrlHeader_SetItemFlags GUICtrlHeader_SetItemFormat GUICtrlHeader_SetItemImage GUICtrlHeader_SetItemOrder GUICtrlHeader_SetItemParam GUICtrlHeader_SetItemText GUICtrlHeader_SetItemWidth GUICtrlHeader_SetOrderArray GUICtrlHeader_SetUnicodeFormat GUICtrlIpAddress_ClearAddress GUICtrlIpAddress_Create GUICtrlIpAddress_Destroy GUICtrlIpAddress_Get GUICtrlIpAddress_GetArray GUICtrlIpAddress_GetEx GUICtrlIpAddress_IsBlank GUICtrlIpAddress_Set GUICtrlIpAddress_SetArray GUICtrlIpAddress_SetEx GUICtrlIpAddress_SetFocus GUICtrlIpAddress_SetFont GUICtrlIpAddress_SetRange GUICtrlIpAddress_ShowHide GUICtrlListBox_AddFile GUICtrlListBox_AddString GUICtrlListBox_BeginUpdate GUICtrlListBox_ClickItem GUICtrlListBox_Create GUICtrlListBox_DeleteString GUICtrlListBox_Destroy GUICtrlListBox_Dir GUICtrlListBox_EndUpdate GUICtrlListBox_FindInText GUICtrlListBox_FindString GUICtrlListBox_GetAnchorIndex GUICtrlListBox_GetCaretIndex GUICtrlListBox_GetCount GUICtrlListBox_GetCurSel GUICtrlListBox_GetHorizontalExtent GUICtrlListBox_GetItemData GUICtrlListBox_GetItemHeight GUICtrlListBox_GetItemRect GUICtrlListBox_GetItemRectEx GUICtrlListBox_GetListBoxInfo GUICtrlListBox_GetLocale GUICtrlListBox_GetLocaleCountry GUICtrlListBox_GetLocaleLang GUICtrlListBox_GetLocalePrimLang GUICtrlListBox_GetLocaleSubLang GUICtrlListBox_GetSel GUICtrlListBox_GetSelCount GUICtrlListBox_GetSelItems GUICtrlListBox_GetSelItemsText GUICtrlListBox_GetText GUICtrlListBox_GetTextLen GUICtrlListBox_GetTopIndex GUICtrlListBox_InitStorage GUICtrlListBox_InsertString GUICtrlListBox_ItemFromPoint GUICtrlListBox_ReplaceString GUICtrlListBox_ResetContent GUICtrlListBox_SelectString GUICtrlListBox_SelItemRange GUICtrlListBox_SelItemRangeEx GUICtrlListBox_SetAnchorIndex GUICtrlListBox_SetCaretIndex GUICtrlListBox_SetColumnWidth GUICtrlListBox_SetCurSel GUICtrlListBox_SetHorizontalExtent GUICtrlListBox_SetItemData GUICtrlListBox_SetItemHeight GUICtrlListBox_SetLocale GUICtrlListBox_SetSel GUICtrlListBox_SetTabStops GUICtrlListBox_SetTopIndex GUICtrlListBox_Sort GUICtrlListBox_SwapString GUICtrlListBox_UpdateHScroll GUICtrlListView_AddArray GUICtrlListView_AddColumn GUICtrlListView_AddItem GUICtrlListView_AddSubItem GUICtrlListView_ApproximateViewHeight GUICtrlListView_ApproximateViewRect GUICtrlListView_ApproximateViewWidth GUICtrlListView_Arrange GUICtrlListView_BeginUpdate GUICtrlListView_CancelEditLabel GUICtrlListView_ClickItem GUICtrlListView_CopyItems GUICtrlListView_Create GUICtrlListView_CreateDragImage GUICtrlListView_CreateSolidBitMap GUICtrlListView_DeleteAllItems GUICtrlListView_DeleteColumn GUICtrlListView_DeleteItem GUICtrlListView_DeleteItemsSelected GUICtrlListView_Destroy GUICtrlListView_DrawDragImage GUICtrlListView_EditLabel GUICtrlListView_EnableGroupView GUICtrlListView_EndUpdate GUICtrlListView_EnsureVisible GUICtrlListView_FindInText GUICtrlListView_FindItem GUICtrlListView_FindNearest GUICtrlListView_FindParam GUICtrlListView_FindText GUICtrlListView_GetBkColor GUICtrlListView_GetBkImage GUICtrlListView_GetCallbackMask GUICtrlListView_GetColumn GUICtrlListView_GetColumnCount GUICtrlListView_GetColumnOrder GUICtrlListView_GetColumnOrderArray GUICtrlListView_GetColumnWidth GUICtrlListView_GetCounterPage GUICtrlListView_GetEditControl GUICtrlListView_GetExtendedListViewStyle GUICtrlListView_GetFocusedGroup GUICtrlListView_GetGroupCount GUICtrlListView_GetGroupInfo GUICtrlListView_GetGroupInfoByIndex GUICtrlListView_GetGroupRect GUICtrlListView_GetGroupViewEnabled GUICtrlListView_GetHeader GUICtrlListView_GetHotCursor GUICtrlListView_GetHotItem GUICtrlListView_GetHoverTime GUICtrlListView_GetImageList GUICtrlListView_GetISearchString GUICtrlListView_GetItem GUICtrlListView_GetItemChecked GUICtrlListView_GetItemCount GUICtrlListView_GetItemCut GUICtrlListView_GetItemDropHilited GUICtrlListView_GetItemEx GUICtrlListView_GetItemFocused GUICtrlListView_GetItemGroupID GUICtrlListView_GetItemImage GUICtrlListView_GetItemIndent GUICtrlListView_GetItemParam GUICtrlListView_GetItemPosition GUICtrlListView_GetItemPositionX GUICtrlListView_GetItemPositionY GUICtrlListView_GetItemRect GUICtrlListView_GetItemRectEx GUICtrlListView_GetItemSelected GUICtrlListView_GetItemSpacing GUICtrlListView_GetItemSpacingX GUICtrlListView_GetItemSpacingY GUICtrlListView_GetItemState GUICtrlListView_GetItemStateImage GUICtrlListView_GetItemText GUICtrlListView_GetItemTextArray GUICtrlListView_GetItemTextString GUICtrlListView_GetNextItem GUICtrlListView_GetNumberOfWorkAreas GUICtrlListView_GetOrigin GUICtrlListView_GetOriginX GUICtrlListView_GetOriginY GUICtrlListView_GetOutlineColor GUICtrlListView_GetSelectedColumn GUICtrlListView_GetSelectedCount GUICtrlListView_GetSelectedIndices GUICtrlListView_GetSelectionMark GUICtrlListView_GetStringWidth GUICtrlListView_GetSubItemRect GUICtrlListView_GetTextBkColor GUICtrlListView_GetTextColor GUICtrlListView_GetToolTips GUICtrlListView_GetTopIndex GUICtrlListView_GetUnicodeFormat GUICtrlListView_GetView GUICtrlListView_GetViewDetails GUICtrlListView_GetViewLarge GUICtrlListView_GetViewList GUICtrlListView_GetViewRect GUICtrlListView_GetViewSmall GUICtrlListView_GetViewTile GUICtrlListView_HideColumn GUICtrlListView_HitTest GUICtrlListView_InsertColumn GUICtrlListView_InsertGroup GUICtrlListView_InsertItem GUICtrlListView_JustifyColumn GUICtrlListView_MapIDToIndex GUICtrlListView_MapIndexToID GUICtrlListView_RedrawItems GUICtrlListView_RegisterSortCallBack GUICtrlListView_RemoveAllGroups GUICtrlListView_RemoveGroup GUICtrlListView_Scroll GUICtrlListView_SetBkColor GUICtrlListView_SetBkImage GUICtrlListView_SetCallBackMask GUICtrlListView_SetColumn GUICtrlListView_SetColumnOrder GUICtrlListView_SetColumnOrderArray GUICtrlListView_SetColumnWidth GUICtrlListView_SetExtendedListViewStyle GUICtrlListView_SetGroupInfo GUICtrlListView_SetHotItem GUICtrlListView_SetHoverTime GUICtrlListView_SetIconSpacing GUICtrlListView_SetImageList GUICtrlListView_SetItem GUICtrlListView_SetItemChecked GUICtrlListView_SetItemCount GUICtrlListView_SetItemCut GUICtrlListView_SetItemDropHilited GUICtrlListView_SetItemEx GUICtrlListView_SetItemFocused GUICtrlListView_SetItemGroupID GUICtrlListView_SetItemImage GUICtrlListView_SetItemIndent GUICtrlListView_SetItemParam GUICtrlListView_SetItemPosition GUICtrlListView_SetItemPosition32 GUICtrlListView_SetItemSelected GUICtrlListView_SetItemState GUICtrlListView_SetItemStateImage GUICtrlListView_SetItemText GUICtrlListView_SetOutlineColor GUICtrlListView_SetSelectedColumn GUICtrlListView_SetSelectionMark GUICtrlListView_SetTextBkColor GUICtrlListView_SetTextColor GUICtrlListView_SetToolTips GUICtrlListView_SetUnicodeFormat GUICtrlListView_SetView GUICtrlListView_SetWorkAreas GUICtrlListView_SimpleSort GUICtrlListView_SortItems GUICtrlListView_SubItemHitTest GUICtrlListView_UnRegisterSortCallBack GUICtrlMenu_AddMenuItem GUICtrlMenu_AppendMenu GUICtrlMenu_CalculatePopupWindowPosition GUICtrlMenu_CheckMenuItem GUICtrlMenu_CheckRadioItem GUICtrlMenu_CreateMenu GUICtrlMenu_CreatePopup GUICtrlMenu_DeleteMenu GUICtrlMenu_DestroyMenu GUICtrlMenu_DrawMenuBar GUICtrlMenu_EnableMenuItem GUICtrlMenu_FindItem GUICtrlMenu_FindParent GUICtrlMenu_GetItemBmp GUICtrlMenu_GetItemBmpChecked GUICtrlMenu_GetItemBmpUnchecked GUICtrlMenu_GetItemChecked GUICtrlMenu_GetItemCount GUICtrlMenu_GetItemData GUICtrlMenu_GetItemDefault GUICtrlMenu_GetItemDisabled GUICtrlMenu_GetItemEnabled GUICtrlMenu_GetItemGrayed GUICtrlMenu_GetItemHighlighted GUICtrlMenu_GetItemID GUICtrlMenu_GetItemInfo GUICtrlMenu_GetItemRect GUICtrlMenu_GetItemRectEx GUICtrlMenu_GetItemState GUICtrlMenu_GetItemStateEx GUICtrlMenu_GetItemSubMenu GUICtrlMenu_GetItemText GUICtrlMenu_GetItemType GUICtrlMenu_GetMenu GUICtrlMenu_GetMenuBackground GUICtrlMenu_GetMenuBarInfo GUICtrlMenu_GetMenuContextHelpID GUICtrlMenu_GetMenuData GUICtrlMenu_GetMenuDefaultItem GUICtrlMenu_GetMenuHeight GUICtrlMenu_GetMenuInfo GUICtrlMenu_GetMenuStyle GUICtrlMenu_GetSystemMenu GUICtrlMenu_InsertMenuItem GUICtrlMenu_InsertMenuItemEx GUICtrlMenu_IsMenu GUICtrlMenu_LoadMenu GUICtrlMenu_MapAccelerator GUICtrlMenu_MenuItemFromPoint GUICtrlMenu_RemoveMenu GUICtrlMenu_SetItemBitmaps GUICtrlMenu_SetItemBmp GUICtrlMenu_SetItemBmpChecked GUICtrlMenu_SetItemBmpUnchecked GUICtrlMenu_SetItemChecked GUICtrlMenu_SetItemData GUICtrlMenu_SetItemDefault GUICtrlMenu_SetItemDisabled GUICtrlMenu_SetItemEnabled GUICtrlMenu_SetItemGrayed GUICtrlMenu_SetItemHighlighted GUICtrlMenu_SetItemID GUICtrlMenu_SetItemInfo GUICtrlMenu_SetItemState GUICtrlMenu_SetItemSubMenu GUICtrlMenu_SetItemText GUICtrlMenu_SetItemType GUICtrlMenu_SetMenu GUICtrlMenu_SetMenuBackground GUICtrlMenu_SetMenuContextHelpID GUICtrlMenu_SetMenuData GUICtrlMenu_SetMenuDefaultItem GUICtrlMenu_SetMenuHeight GUICtrlMenu_SetMenuInfo GUICtrlMenu_SetMenuStyle GUICtrlMenu_TrackPopupMenu GUICtrlMonthCal_Create GUICtrlMonthCal_Destroy GUICtrlMonthCal_GetCalendarBorder GUICtrlMonthCal_GetCalendarCount GUICtrlMonthCal_GetColor GUICtrlMonthCal_GetColorArray GUICtrlMonthCal_GetCurSel GUICtrlMonthCal_GetCurSelStr GUICtrlMonthCal_GetFirstDOW GUICtrlMonthCal_GetFirstDOWStr GUICtrlMonthCal_GetMaxSelCount GUICtrlMonthCal_GetMaxTodayWidth GUICtrlMonthCal_GetMinReqHeight GUICtrlMonthCal_GetMinReqRect GUICtrlMonthCal_GetMinReqRectArray GUICtrlMonthCal_GetMinReqWidth GUICtrlMonthCal_GetMonthDelta GUICtrlMonthCal_GetMonthRange GUICtrlMonthCal_GetMonthRangeMax GUICtrlMonthCal_GetMonthRangeMaxStr GUICtrlMonthCal_GetMonthRangeMin GUICtrlMonthCal_GetMonthRangeMinStr GUICtrlMonthCal_GetMonthRangeSpan GUICtrlMonthCal_GetRange GUICtrlMonthCal_GetRangeMax GUICtrlMonthCal_GetRangeMaxStr GUICtrlMonthCal_GetRangeMin GUICtrlMonthCal_GetRangeMinStr GUICtrlMonthCal_GetSelRange GUICtrlMonthCal_GetSelRangeMax GUICtrlMonthCal_GetSelRangeMaxStr GUICtrlMonthCal_GetSelRangeMin GUICtrlMonthCal_GetSelRangeMinStr GUICtrlMonthCal_GetToday GUICtrlMonthCal_GetTodayStr GUICtrlMonthCal_GetUnicodeFormat GUICtrlMonthCal_HitTest GUICtrlMonthCal_SetCalendarBorder GUICtrlMonthCal_SetColor GUICtrlMonthCal_SetCurSel GUICtrlMonthCal_SetDayState GUICtrlMonthCal_SetFirstDOW GUICtrlMonthCal_SetMaxSelCount GUICtrlMonthCal_SetMonthDelta GUICtrlMonthCal_SetRange GUICtrlMonthCal_SetSelRange GUICtrlMonthCal_SetToday GUICtrlMonthCal_SetUnicodeFormat GUICtrlRebar_AddBand GUICtrlRebar_AddToolBarBand GUICtrlRebar_BeginDrag GUICtrlRebar_Create GUICtrlRebar_DeleteBand GUICtrlRebar_Destroy GUICtrlRebar_DragMove GUICtrlRebar_EndDrag GUICtrlRebar_GetBandBackColor GUICtrlRebar_GetBandBorders GUICtrlRebar_GetBandBordersEx GUICtrlRebar_GetBandChildHandle GUICtrlRebar_GetBandChildSize GUICtrlRebar_GetBandCount GUICtrlRebar_GetBandForeColor GUICtrlRebar_GetBandHeaderSize GUICtrlRebar_GetBandID GUICtrlRebar_GetBandIdealSize GUICtrlRebar_GetBandLength GUICtrlRebar_GetBandLParam GUICtrlRebar_GetBandMargins GUICtrlRebar_GetBandMarginsEx GUICtrlRebar_GetBandRect GUICtrlRebar_GetBandRectEx GUICtrlRebar_GetBandStyle GUICtrlRebar_GetBandStyleBreak GUICtrlRebar_GetBandStyleChildEdge GUICtrlRebar_GetBandStyleFixedBMP GUICtrlRebar_GetBandStyleFixedSize GUICtrlRebar_GetBandStyleGripperAlways GUICtrlRebar_GetBandStyleHidden GUICtrlRebar_GetBandStyleHideTitle GUICtrlRebar_GetBandStyleNoGripper GUICtrlRebar_GetBandStyleTopAlign GUICtrlRebar_GetBandStyleUseChevron GUICtrlRebar_GetBandStyleVariableHeight GUICtrlRebar_GetBandText GUICtrlRebar_GetBarHeight GUICtrlRebar_GetBarInfo GUICtrlRebar_GetBKColor GUICtrlRebar_GetColorScheme GUICtrlRebar_GetRowCount GUICtrlRebar_GetRowHeight GUICtrlRebar_GetTextColor GUICtrlRebar_GetToolTips GUICtrlRebar_GetUnicodeFormat GUICtrlRebar_HitTest GUICtrlRebar_IDToIndex GUICtrlRebar_MaximizeBand GUICtrlRebar_MinimizeBand GUICtrlRebar_MoveBand GUICtrlRebar_SetBandBackColor GUICtrlRebar_SetBandForeColor GUICtrlRebar_SetBandHeaderSize GUICtrlRebar_SetBandID GUICtrlRebar_SetBandIdealSize GUICtrlRebar_SetBandLength GUICtrlRebar_SetBandLParam GUICtrlRebar_SetBandStyle GUICtrlRebar_SetBandStyleBreak GUICtrlRebar_SetBandStyleChildEdge GUICtrlRebar_SetBandStyleFixedBMP GUICtrlRebar_SetBandStyleFixedSize GUICtrlRebar_SetBandStyleGripperAlways GUICtrlRebar_SetBandStyleHidden GUICtrlRebar_SetBandStyleHideTitle GUICtrlRebar_SetBandStyleNoGripper GUICtrlRebar_SetBandStyleTopAlign GUICtrlRebar_SetBandStyleUseChevron GUICtrlRebar_SetBandStyleVariableHeight GUICtrlRebar_SetBandText GUICtrlRebar_SetBarInfo GUICtrlRebar_SetBKColor GUICtrlRebar_SetColorScheme GUICtrlRebar_SetTextColor GUICtrlRebar_SetToolTips GUICtrlRebar_SetUnicodeFormat GUICtrlRebar_ShowBand GUICtrlRichEdit_AppendText GUICtrlRichEdit_AutoDetectURL GUICtrlRichEdit_CanPaste GUICtrlRichEdit_CanPasteSpecial GUICtrlRichEdit_CanRedo GUICtrlRichEdit_CanUndo GUICtrlRichEdit_ChangeFontSize GUICtrlRichEdit_Copy GUICtrlRichEdit_Create GUICtrlRichEdit_Cut GUICtrlRichEdit_Deselect GUICtrlRichEdit_Destroy GUICtrlRichEdit_EmptyUndoBuffer GUICtrlRichEdit_FindText GUICtrlRichEdit_FindTextInRange GUICtrlRichEdit_GetBkColor GUICtrlRichEdit_GetCharAttributes GUICtrlRichEdit_GetCharBkColor GUICtrlRichEdit_GetCharColor GUICtrlRichEdit_GetCharPosFromXY GUICtrlRichEdit_GetCharPosOfNextWord GUICtrlRichEdit_GetCharPosOfPreviousWord GUICtrlRichEdit_GetCharWordBreakInfo GUICtrlRichEdit_GetFirstCharPosOnLine GUICtrlRichEdit_GetFont GUICtrlRichEdit_GetLineCount GUICtrlRichEdit_GetLineLength GUICtrlRichEdit_GetLineNumberFromCharPos GUICtrlRichEdit_GetNextRedo GUICtrlRichEdit_GetNextUndo GUICtrlRichEdit_GetNumberOfFirstVisibleLine GUICtrlRichEdit_GetParaAlignment GUICtrlRichEdit_GetParaAttributes GUICtrlRichEdit_GetParaBorder GUICtrlRichEdit_GetParaIndents GUICtrlRichEdit_GetParaNumbering GUICtrlRichEdit_GetParaShading GUICtrlRichEdit_GetParaSpacing GUICtrlRichEdit_GetParaTabStops GUICtrlRichEdit_GetPasswordChar GUICtrlRichEdit_GetRECT GUICtrlRichEdit_GetScrollPos GUICtrlRichEdit_GetSel GUICtrlRichEdit_GetSelAA GUICtrlRichEdit_GetSelText GUICtrlRichEdit_GetSpaceUnit GUICtrlRichEdit_GetText GUICtrlRichEdit_GetTextInLine GUICtrlRichEdit_GetTextInRange GUICtrlRichEdit_GetTextLength GUICtrlRichEdit_GetVersion GUICtrlRichEdit_GetXYFromCharPos GUICtrlRichEdit_GetZoom GUICtrlRichEdit_GotoCharPos GUICtrlRichEdit_HideSelection GUICtrlRichEdit_InsertText GUICtrlRichEdit_IsModified GUICtrlRichEdit_IsTextSelected GUICtrlRichEdit_Paste GUICtrlRichEdit_PasteSpecial GUICtrlRichEdit_PauseRedraw GUICtrlRichEdit_Redo GUICtrlRichEdit_ReplaceText GUICtrlRichEdit_ResumeRedraw GUICtrlRichEdit_ScrollLineOrPage GUICtrlRichEdit_ScrollLines GUICtrlRichEdit_ScrollToCaret GUICtrlRichEdit_SetBkColor GUICtrlRichEdit_SetCharAttributes GUICtrlRichEdit_SetCharBkColor GUICtrlRichEdit_SetCharColor GUICtrlRichEdit_SetEventMask GUICtrlRichEdit_SetFont GUICtrlRichEdit_SetLimitOnText GUICtrlRichEdit_SetModified GUICtrlRichEdit_SetParaAlignment GUICtrlRichEdit_SetParaAttributes GUICtrlRichEdit_SetParaBorder GUICtrlRichEdit_SetParaIndents GUICtrlRichEdit_SetParaNumbering GUICtrlRichEdit_SetParaShading GUICtrlRichEdit_SetParaSpacing GUICtrlRichEdit_SetParaTabStops GUICtrlRichEdit_SetPasswordChar GUICtrlRichEdit_SetReadOnly GUICtrlRichEdit_SetRECT GUICtrlRichEdit_SetScrollPos GUICtrlRichEdit_SetSel GUICtrlRichEdit_SetSpaceUnit GUICtrlRichEdit_SetTabStops GUICtrlRichEdit_SetText GUICtrlRichEdit_SetUndoLimit GUICtrlRichEdit_SetZoom GUICtrlRichEdit_StreamFromFile GUICtrlRichEdit_StreamFromVar GUICtrlRichEdit_StreamToFile GUICtrlRichEdit_StreamToVar GUICtrlRichEdit_Undo GUICtrlSlider_ClearSel GUICtrlSlider_ClearTics GUICtrlSlider_Create GUICtrlSlider_Destroy GUICtrlSlider_GetBuddy GUICtrlSlider_GetChannelRect GUICtrlSlider_GetChannelRectEx GUICtrlSlider_GetLineSize GUICtrlSlider_GetLogicalTics GUICtrlSlider_GetNumTics GUICtrlSlider_GetPageSize GUICtrlSlider_GetPos GUICtrlSlider_GetRange GUICtrlSlider_GetRangeMax GUICtrlSlider_GetRangeMin GUICtrlSlider_GetSel GUICtrlSlider_GetSelEnd GUICtrlSlider_GetSelStart GUICtrlSlider_GetThumbLength GUICtrlSlider_GetThumbRect GUICtrlSlider_GetThumbRectEx GUICtrlSlider_GetTic GUICtrlSlider_GetTicPos GUICtrlSlider_GetToolTips GUICtrlSlider_GetUnicodeFormat GUICtrlSlider_SetBuddy GUICtrlSlider_SetLineSize GUICtrlSlider_SetPageSize GUICtrlSlider_SetPos GUICtrlSlider_SetRange GUICtrlSlider_SetRangeMax GUICtrlSlider_SetRangeMin GUICtrlSlider_SetSel GUICtrlSlider_SetSelEnd GUICtrlSlider_SetSelStart GUICtrlSlider_SetThumbLength GUICtrlSlider_SetTic GUICtrlSlider_SetTicFreq GUICtrlSlider_SetTipSide GUICtrlSlider_SetToolTips GUICtrlSlider_SetUnicodeFormat GUICtrlStatusBar_Create GUICtrlStatusBar_Destroy GUICtrlStatusBar_EmbedControl GUICtrlStatusBar_GetBorders GUICtrlStatusBar_GetBordersHorz GUICtrlStatusBar_GetBordersRect GUICtrlStatusBar_GetBordersVert GUICtrlStatusBar_GetCount GUICtrlStatusBar_GetHeight GUICtrlStatusBar_GetIcon GUICtrlStatusBar_GetParts GUICtrlStatusBar_GetRect GUICtrlStatusBar_GetRectEx GUICtrlStatusBar_GetText GUICtrlStatusBar_GetTextFlags GUICtrlStatusBar_GetTextLength GUICtrlStatusBar_GetTextLengthEx GUICtrlStatusBar_GetTipText GUICtrlStatusBar_GetUnicodeFormat GUICtrlStatusBar_GetWidth GUICtrlStatusBar_IsSimple GUICtrlStatusBar_Resize GUICtrlStatusBar_SetBkColor GUICtrlStatusBar_SetIcon GUICtrlStatusBar_SetMinHeight GUICtrlStatusBar_SetParts GUICtrlStatusBar_SetSimple GUICtrlStatusBar_SetText GUICtrlStatusBar_SetTipText GUICtrlStatusBar_SetUnicodeFormat GUICtrlStatusBar_ShowHide GUICtrlTab_ActivateTab GUICtrlTab_ClickTab GUICtrlTab_Create GUICtrlTab_DeleteAllItems GUICtrlTab_DeleteItem GUICtrlTab_DeselectAll GUICtrlTab_Destroy GUICtrlTab_FindTab GUICtrlTab_GetCurFocus GUICtrlTab_GetCurSel GUICtrlTab_GetDisplayRect GUICtrlTab_GetDisplayRectEx GUICtrlTab_GetExtendedStyle GUICtrlTab_GetImageList GUICtrlTab_GetItem GUICtrlTab_GetItemCount GUICtrlTab_GetItemImage GUICtrlTab_GetItemParam GUICtrlTab_GetItemRect GUICtrlTab_GetItemRectEx GUICtrlTab_GetItemState GUICtrlTab_GetItemText GUICtrlTab_GetRowCount GUICtrlTab_GetToolTips GUICtrlTab_GetUnicodeFormat GUICtrlTab_HighlightItem GUICtrlTab_HitTest GUICtrlTab_InsertItem GUICtrlTab_RemoveImage GUICtrlTab_SetCurFocus GUICtrlTab_SetCurSel GUICtrlTab_SetExtendedStyle GUICtrlTab_SetImageList GUICtrlTab_SetItem GUICtrlTab_SetItemImage GUICtrlTab_SetItemParam GUICtrlTab_SetItemSize GUICtrlTab_SetItemState GUICtrlTab_SetItemText GUICtrlTab_SetMinTabWidth GUICtrlTab_SetPadding GUICtrlTab_SetToolTips GUICtrlTab_SetUnicodeFormat GUICtrlToolbar_AddBitmap GUICtrlToolbar_AddButton GUICtrlToolbar_AddButtonSep GUICtrlToolbar_AddString GUICtrlToolbar_ButtonCount GUICtrlToolbar_CheckButton GUICtrlToolbar_ClickAccel GUICtrlToolbar_ClickButton GUICtrlToolbar_ClickIndex GUICtrlToolbar_CommandToIndex GUICtrlToolbar_Create GUICtrlToolbar_Customize GUICtrlToolbar_DeleteButton GUICtrlToolbar_Destroy GUICtrlToolbar_EnableButton GUICtrlToolbar_FindToolbar GUICtrlToolbar_GetAnchorHighlight GUICtrlToolbar_GetBitmapFlags GUICtrlToolbar_GetButtonBitmap GUICtrlToolbar_GetButtonInfo GUICtrlToolbar_GetButtonInfoEx GUICtrlToolbar_GetButtonParam GUICtrlToolbar_GetButtonRect GUICtrlToolbar_GetButtonRectEx GUICtrlToolbar_GetButtonSize GUICtrlToolbar_GetButtonState GUICtrlToolbar_GetButtonStyle GUICtrlToolbar_GetButtonText GUICtrlToolbar_GetColorScheme GUICtrlToolbar_GetDisabledImageList GUICtrlToolbar_GetExtendedStyle GUICtrlToolbar_GetHotImageList GUICtrlToolbar_GetHotItem GUICtrlToolbar_GetImageList GUICtrlToolbar_GetInsertMark GUICtrlToolbar_GetInsertMarkColor GUICtrlToolbar_GetMaxSize GUICtrlToolbar_GetMetrics GUICtrlToolbar_GetPadding GUICtrlToolbar_GetRows GUICtrlToolbar_GetString GUICtrlToolbar_GetStyle GUICtrlToolbar_GetStyleAltDrag GUICtrlToolbar_GetStyleCustomErase GUICtrlToolbar_GetStyleFlat GUICtrlToolbar_GetStyleList GUICtrlToolbar_GetStyleRegisterDrop GUICtrlToolbar_GetStyleToolTips GUICtrlToolbar_GetStyleTransparent GUICtrlToolbar_GetStyleWrapable GUICtrlToolbar_GetTextRows GUICtrlToolbar_GetToolTips GUICtrlToolbar_GetUnicodeFormat GUICtrlToolbar_HideButton GUICtrlToolbar_HighlightButton GUICtrlToolbar_HitTest GUICtrlToolbar_IndexToCommand GUICtrlToolbar_InsertButton GUICtrlToolbar_InsertMarkHitTest GUICtrlToolbar_IsButtonChecked GUICtrlToolbar_IsButtonEnabled GUICtrlToolbar_IsButtonHidden GUICtrlToolbar_IsButtonHighlighted GUICtrlToolbar_IsButtonIndeterminate GUICtrlToolbar_IsButtonPressed GUICtrlToolbar_LoadBitmap GUICtrlToolbar_LoadImages GUICtrlToolbar_MapAccelerator GUICtrlToolbar_MoveButton GUICtrlToolbar_PressButton GUICtrlToolbar_SetAnchorHighlight GUICtrlToolbar_SetBitmapSize GUICtrlToolbar_SetButtonBitMap GUICtrlToolbar_SetButtonInfo GUICtrlToolbar_SetButtonInfoEx GUICtrlToolbar_SetButtonParam GUICtrlToolbar_SetButtonSize GUICtrlToolbar_SetButtonState GUICtrlToolbar_SetButtonStyle GUICtrlToolbar_SetButtonText GUICtrlToolbar_SetButtonWidth GUICtrlToolbar_SetCmdID GUICtrlToolbar_SetColorScheme GUICtrlToolbar_SetDisabledImageList GUICtrlToolbar_SetDrawTextFlags GUICtrlToolbar_SetExtendedStyle GUICtrlToolbar_SetHotImageList GUICtrlToolbar_SetHotItem GUICtrlToolbar_SetImageList GUICtrlToolbar_SetIndent GUICtrlToolbar_SetIndeterminate GUICtrlToolbar_SetInsertMark GUICtrlToolbar_SetInsertMarkColor GUICtrlToolbar_SetMaxTextRows GUICtrlToolbar_SetMetrics GUICtrlToolbar_SetPadding GUICtrlToolbar_SetParent GUICtrlToolbar_SetRows GUICtrlToolbar_SetStyle GUICtrlToolbar_SetStyleAltDrag GUICtrlToolbar_SetStyleCustomErase GUICtrlToolbar_SetStyleFlat GUICtrlToolbar_SetStyleList GUICtrlToolbar_SetStyleRegisterDrop GUICtrlToolbar_SetStyleToolTips GUICtrlToolbar_SetStyleTransparent GUICtrlToolbar_SetStyleWrapable GUICtrlToolbar_SetToolTips GUICtrlToolbar_SetUnicodeFormat GUICtrlToolbar_SetWindowTheme GUICtrlTreeView_Add GUICtrlTreeView_AddChild GUICtrlTreeView_AddChildFirst GUICtrlTreeView_AddFirst GUICtrlTreeView_BeginUpdate GUICtrlTreeView_ClickItem GUICtrlTreeView_Create GUICtrlTreeView_CreateDragImage GUICtrlTreeView_CreateSolidBitMap GUICtrlTreeView_Delete GUICtrlTreeView_DeleteAll GUICtrlTreeView_DeleteChildren GUICtrlTreeView_Destroy GUICtrlTreeView_DisplayRect GUICtrlTreeView_DisplayRectEx GUICtrlTreeView_EditText GUICtrlTreeView_EndEdit GUICtrlTreeView_EndUpdate GUICtrlTreeView_EnsureVisible GUICtrlTreeView_Expand GUICtrlTreeView_ExpandedOnce GUICtrlTreeView_FindItem GUICtrlTreeView_FindItemEx GUICtrlTreeView_GetBkColor GUICtrlTreeView_GetBold GUICtrlTreeView_GetChecked GUICtrlTreeView_GetChildCount GUICtrlTreeView_GetChildren GUICtrlTreeView_GetCount GUICtrlTreeView_GetCut GUICtrlTreeView_GetDropTarget GUICtrlTreeView_GetEditControl GUICtrlTreeView_GetExpanded GUICtrlTreeView_GetFirstChild GUICtrlTreeView_GetFirstItem GUICtrlTreeView_GetFirstVisible GUICtrlTreeView_GetFocused GUICtrlTreeView_GetHeight GUICtrlTreeView_GetImageIndex GUICtrlTreeView_GetImageListIconHandle GUICtrlTreeView_GetIndent GUICtrlTreeView_GetInsertMarkColor GUICtrlTreeView_GetISearchString GUICtrlTreeView_GetItemByIndex GUICtrlTreeView_GetItemHandle GUICtrlTreeView_GetItemParam GUICtrlTreeView_GetLastChild GUICtrlTreeView_GetLineColor GUICtrlTreeView_GetNext GUICtrlTreeView_GetNextChild GUICtrlTreeView_GetNextSibling GUICtrlTreeView_GetNextVisible GUICtrlTreeView_GetNormalImageList GUICtrlTreeView_GetParentHandle GUICtrlTreeView_GetParentParam GUICtrlTreeView_GetPrev GUICtrlTreeView_GetPrevChild GUICtrlTreeView_GetPrevSibling GUICtrlTreeView_GetPrevVisible GUICtrlTreeView_GetScrollTime GUICtrlTreeView_GetSelected GUICtrlTreeView_GetSelectedImageIndex GUICtrlTreeView_GetSelection GUICtrlTreeView_GetSiblingCount GUICtrlTreeView_GetState GUICtrlTreeView_GetStateImageIndex GUICtrlTreeView_GetStateImageList GUICtrlTreeView_GetText GUICtrlTreeView_GetTextColor GUICtrlTreeView_GetToolTips GUICtrlTreeView_GetTree GUICtrlTreeView_GetUnicodeFormat GUICtrlTreeView_GetVisible GUICtrlTreeView_GetVisibleCount GUICtrlTreeView_HitTest GUICtrlTreeView_HitTestEx GUICtrlTreeView_HitTestItem GUICtrlTreeView_Index GUICtrlTreeView_InsertItem GUICtrlTreeView_IsFirstItem GUICtrlTreeView_IsParent GUICtrlTreeView_Level GUICtrlTreeView_SelectItem GUICtrlTreeView_SelectItemByIndex GUICtrlTreeView_SetBkColor GUICtrlTreeView_SetBold GUICtrlTreeView_SetChecked GUICtrlTreeView_SetCheckedByIndex GUICtrlTreeView_SetChildren GUICtrlTreeView_SetCut GUICtrlTreeView_SetDropTarget GUICtrlTreeView_SetFocused GUICtrlTreeView_SetHeight GUICtrlTreeView_SetIcon GUICtrlTreeView_SetImageIndex GUICtrlTreeView_SetIndent GUICtrlTreeView_SetInsertMark GUICtrlTreeView_SetInsertMarkColor GUICtrlTreeView_SetItemHeight GUICtrlTreeView_SetItemParam GUICtrlTreeView_SetLineColor GUICtrlTreeView_SetNormalImageList GUICtrlTreeView_SetScrollTime GUICtrlTreeView_SetSelected GUICtrlTreeView_SetSelectedImageIndex GUICtrlTreeView_SetState GUICtrlTreeView_SetStateImageIndex GUICtrlTreeView_SetStateImageList GUICtrlTreeView_SetText GUICtrlTreeView_SetTextColor GUICtrlTreeView_SetToolTips GUICtrlTreeView_SetUnicodeFormat GUICtrlTreeView_Sort GUIImageList_Add GUIImageList_AddBitmap GUIImageList_AddIcon GUIImageList_AddMasked GUIImageList_BeginDrag GUIImageList_Copy GUIImageList_Create GUIImageList_Destroy GUIImageList_DestroyIcon GUIImageList_DragEnter GUIImageList_DragLeave GUIImageList_DragMove GUIImageList_Draw GUIImageList_DrawEx GUIImageList_Duplicate GUIImageList_EndDrag GUIImageList_GetBkColor GUIImageList_GetIcon GUIImageList_GetIconHeight GUIImageList_GetIconSize GUIImageList_GetIconSizeEx GUIImageList_GetIconWidth GUIImageList_GetImageCount GUIImageList_GetImageInfoEx GUIImageList_Remove GUIImageList_ReplaceIcon GUIImageList_SetBkColor GUIImageList_SetIconSize GUIImageList_SetImageCount GUIImageList_Swap GUIScrollBars_EnableScrollBar GUIScrollBars_GetScrollBarInfoEx GUIScrollBars_GetScrollBarRect GUIScrollBars_GetScrollBarRGState GUIScrollBars_GetScrollBarXYLineButton GUIScrollBars_GetScrollBarXYThumbBottom GUIScrollBars_GetScrollBarXYThumbTop GUIScrollBars_GetScrollInfo GUIScrollBars_GetScrollInfoEx GUIScrollBars_GetScrollInfoMax GUIScrollBars_GetScrollInfoMin GUIScrollBars_GetScrollInfoPage GUIScrollBars_GetScrollInfoPos GUIScrollBars_GetScrollInfoTrackPos GUIScrollBars_GetScrollPos GUIScrollBars_GetScrollRange GUIScrollBars_Init GUIScrollBars_ScrollWindow GUIScrollBars_SetScrollInfo GUIScrollBars_SetScrollInfoMax GUIScrollBars_SetScrollInfoMin GUIScrollBars_SetScrollInfoPage GUIScrollBars_SetScrollInfoPos GUIScrollBars_SetScrollRange GUIScrollBars_ShowScrollBar GUIToolTip_Activate GUIToolTip_AddTool GUIToolTip_AdjustRect GUIToolTip_BitsToTTF GUIToolTip_Create GUIToolTip_Deactivate GUIToolTip_DelTool GUIToolTip_Destroy GUIToolTip_EnumTools GUIToolTip_GetBubbleHeight GUIToolTip_GetBubbleSize GUIToolTip_GetBubbleWidth GUIToolTip_GetCurrentTool GUIToolTip_GetDelayTime GUIToolTip_GetMargin GUIToolTip_GetMarginEx GUIToolTip_GetMaxTipWidth GUIToolTip_GetText GUIToolTip_GetTipBkColor GUIToolTip_GetTipTextColor GUIToolTip_GetTitleBitMap GUIToolTip_GetTitleText GUIToolTip_GetToolCount GUIToolTip_GetToolInfo GUIToolTip_HitTest GUIToolTip_NewToolRect GUIToolTip_Pop GUIToolTip_PopUp GUIToolTip_SetDelayTime GUIToolTip_SetMargin GUIToolTip_SetMaxTipWidth GUIToolTip_SetTipBkColor GUIToolTip_SetTipTextColor GUIToolTip_SetTitle GUIToolTip_SetToolInfo GUIToolTip_SetWindowTheme GUIToolTip_ToolExists GUIToolTip_ToolToArray GUIToolTip_TrackActivate GUIToolTip_TrackPosition GUIToolTip_Update GUIToolTip_UpdateTipText HexToString IEAction IEAttach IEBodyReadHTML IEBodyReadText IEBodyWriteHTML IECreate IECreateEmbedded IEDocGetObj IEDocInsertHTML IEDocInsertText IEDocReadHTML IEDocWriteHTML IEErrorNotify IEFormElementCheckBoxSelect IEFormElementGetCollection IEFormElementGetObjByName IEFormElementGetValue IEFormElementOptionSelect IEFormElementRadioSelect IEFormElementSetValue IEFormGetCollection IEFormGetObjByName IEFormImageClick IEFormReset IEFormSubmit IEFrameGetCollection IEFrameGetObjByName IEGetObjById IEGetObjByName IEHeadInsertEventScript IEImgClick IEImgGetCollection IEIsFrameSet IELinkClickByIndex IELinkClickByText IELinkGetCollection IELoadWait IELoadWaitTimeout IENavigate IEPropertyGet IEPropertySet IEQuit IETableGetCollection IETableWriteToArray IETagNameAllGetCollection IETagNameGetCollection IE_Example IE_Introduction IE_VersionInfo INetExplorerCapable INetGetSource INetMail INetSmtpMail IsPressed MathCheckDiv Max MemGlobalAlloc MemGlobalFree MemGlobalLock MemGlobalSize MemGlobalUnlock MemMoveMemory MemVirtualAlloc MemVirtualAllocEx MemVirtualFree MemVirtualFreeEx Min MouseTrap NamedPipes_CallNamedPipe NamedPipes_ConnectNamedPipe NamedPipes_CreateNamedPipe NamedPipes_CreatePipe NamedPipes_DisconnectNamedPipe NamedPipes_GetNamedPipeHandleState NamedPipes_GetNamedPipeInfo NamedPipes_PeekNamedPipe NamedPipes_SetNamedPipeHandleState NamedPipes_TransactNamedPipe NamedPipes_WaitNamedPipe Net_Share_ConnectionEnum Net_Share_FileClose Net_Share_FileEnum Net_Share_FileGetInfo Net_Share_PermStr Net_Share_ResourceStr Net_Share_SessionDel Net_Share_SessionEnum Net_Share_SessionGetInfo Net_Share_ShareAdd Net_Share_ShareCheck Net_Share_ShareDel Net_Share_ShareEnum Net_Share_ShareGetInfo Net_Share_ShareSetInfo Net_Share_StatisticsGetSvr Net_Share_StatisticsGetWrk Now NowCalc NowCalcDate NowDate NowTime PathFull PathGetRelative PathMake PathSplit ProcessGetName ProcessGetPriority Radian ReplaceStringInFile RunDos ScreenCapture_Capture ScreenCapture_CaptureWnd ScreenCapture_SaveImage ScreenCapture_SetBMPFormat ScreenCapture_SetJPGQuality ScreenCapture_SetTIFColorDepth ScreenCapture_SetTIFCompression Security__AdjustTokenPrivileges Security__CreateProcessWithToken Security__DuplicateTokenEx Security__GetAccountSid Security__GetLengthSid Security__GetTokenInformation Security__ImpersonateSelf Security__IsValidSid Security__LookupAccountName Security__LookupAccountSid Security__LookupPrivilegeValue Security__OpenProcessToken Security__OpenThreadToken Security__OpenThreadTokenEx Security__SetPrivilege Security__SetTokenInformation Security__SidToStringSid Security__SidTypeStr Security__StringSidToSid SendMessage SendMessageA SetDate SetTime Singleton SoundClose SoundLength SoundOpen SoundPause SoundPlay SoundPos SoundResume SoundSeek SoundStatus SoundStop SQLite_Changes SQLite_Close SQLite_Display2DResult SQLite_Encode SQLite_ErrCode SQLite_ErrMsg SQLite_Escape SQLite_Exec SQLite_FastEncode SQLite_FastEscape SQLite_FetchData SQLite_FetchNames SQLite_GetTable SQLite_GetTable2d SQLite_LastInsertRowID SQLite_LibVersion SQLite_Open SQLite_Query SQLite_QueryFinalize SQLite_QueryReset SQLite_QuerySingleRow SQLite_SafeMode SQLite_SetTimeout SQLite_Shutdown SQLite_SQLiteExe SQLite_Startup SQLite_TotalChanges StringBetween StringExplode StringInsert StringProper StringRepeat StringTitleCase StringToHex TCPIpToName TempFile TicksToTime Timer_Diff Timer_GetIdleTime Timer_GetTimerID Timer_Init Timer_KillAllTimers Timer_KillTimer Timer_SetTimer TimeToTicks VersionCompare viClose viExecCommand viFindGpib viGpibBusReset viGTL viInteractiveControl viOpen viSetAttribute viSetTimeout WeekNumberISO WinAPI_AbortPath WinAPI_ActivateKeyboardLayout WinAPI_AddClipboardFormatListener WinAPI_AddFontMemResourceEx WinAPI_AddFontResourceEx WinAPI_AddIconOverlay WinAPI_AddIconTransparency WinAPI_AddMRUString WinAPI_AdjustBitmap WinAPI_AdjustTokenPrivileges WinAPI_AdjustWindowRectEx WinAPI_AlphaBlend WinAPI_AngleArc WinAPI_AnimateWindow WinAPI_Arc WinAPI_ArcTo WinAPI_ArrayToStruct WinAPI_AssignProcessToJobObject WinAPI_AssocGetPerceivedType WinAPI_AssocQueryString WinAPI_AttachConsole WinAPI_AttachThreadInput WinAPI_BackupRead WinAPI_BackupReadAbort WinAPI_BackupSeek WinAPI_BackupWrite WinAPI_BackupWriteAbort WinAPI_Beep WinAPI_BeginBufferedPaint WinAPI_BeginDeferWindowPos WinAPI_BeginPaint WinAPI_BeginPath WinAPI_BeginUpdateResource WinAPI_BitBlt WinAPI_BringWindowToTop WinAPI_BroadcastSystemMessage WinAPI_BrowseForFolderDlg WinAPI_BufferedPaintClear WinAPI_BufferedPaintInit WinAPI_BufferedPaintSetAlpha WinAPI_BufferedPaintUnInit WinAPI_CallNextHookEx WinAPI_CallWindowProc WinAPI_CallWindowProcW WinAPI_CascadeWindows WinAPI_ChangeWindowMessageFilterEx WinAPI_CharToOem WinAPI_ChildWindowFromPointEx WinAPI_ClientToScreen WinAPI_ClipCursor WinAPI_CloseDesktop WinAPI_CloseEnhMetaFile WinAPI_CloseFigure WinAPI_CloseHandle WinAPI_CloseThemeData WinAPI_CloseWindow WinAPI_CloseWindowStation WinAPI_CLSIDFromProgID WinAPI_CoInitialize WinAPI_ColorAdjustLuma WinAPI_ColorHLSToRGB WinAPI_ColorRGBToHLS WinAPI_CombineRgn WinAPI_CombineTransform WinAPI_CommandLineToArgv WinAPI_CommDlgExtendedError WinAPI_CommDlgExtendedErrorEx WinAPI_CompareString WinAPI_CompressBitmapBits WinAPI_CompressBuffer WinAPI_ComputeCrc32 WinAPI_ConfirmCredentials WinAPI_CopyBitmap WinAPI_CopyCursor WinAPI_CopyEnhMetaFile WinAPI_CopyFileEx WinAPI_CopyIcon WinAPI_CopyImage WinAPI_CopyRect WinAPI_CopyStruct WinAPI_CoTaskMemAlloc WinAPI_CoTaskMemFree WinAPI_CoTaskMemRealloc WinAPI_CoUninitialize WinAPI_Create32BitHBITMAP WinAPI_Create32BitHICON WinAPI_CreateANDBitmap WinAPI_CreateBitmap WinAPI_CreateBitmapIndirect WinAPI_CreateBrushIndirect WinAPI_CreateBuffer WinAPI_CreateBufferFromStruct WinAPI_CreateCaret WinAPI_CreateColorAdjustment WinAPI_CreateCompatibleBitmap WinAPI_CreateCompatibleBitmapEx WinAPI_CreateCompatibleDC WinAPI_CreateDesktop WinAPI_CreateDIB WinAPI_CreateDIBColorTable WinAPI_CreateDIBitmap WinAPI_CreateDIBSection WinAPI_CreateDirectory WinAPI_CreateDirectoryEx WinAPI_CreateEllipticRgn WinAPI_CreateEmptyIcon WinAPI_CreateEnhMetaFile WinAPI_CreateEvent WinAPI_CreateFile WinAPI_CreateFileEx WinAPI_CreateFileMapping WinAPI_CreateFont WinAPI_CreateFontEx WinAPI_CreateFontIndirect WinAPI_CreateGUID WinAPI_CreateHardLink WinAPI_CreateIcon WinAPI_CreateIconFromResourceEx WinAPI_CreateIconIndirect WinAPI_CreateJobObject WinAPI_CreateMargins WinAPI_CreateMRUList WinAPI_CreateMutex WinAPI_CreateNullRgn WinAPI_CreateNumberFormatInfo WinAPI_CreateObjectID WinAPI_CreatePen WinAPI_CreatePoint WinAPI_CreatePolygonRgn WinAPI_CreateProcess WinAPI_CreateProcessWithToken WinAPI_CreateRect WinAPI_CreateRectEx WinAPI_CreateRectRgn WinAPI_CreateRectRgnIndirect WinAPI_CreateRoundRectRgn WinAPI_CreateSemaphore WinAPI_CreateSize WinAPI_CreateSolidBitmap WinAPI_CreateSolidBrush WinAPI_CreateStreamOnHGlobal WinAPI_CreateString WinAPI_CreateSymbolicLink WinAPI_CreateTransform WinAPI_CreateWindowEx WinAPI_CreateWindowStation WinAPI_DecompressBuffer WinAPI_DecryptFile WinAPI_DeferWindowPos WinAPI_DefineDosDevice WinAPI_DefRawInputProc WinAPI_DefSubclassProc WinAPI_DefWindowProc WinAPI_DefWindowProcW WinAPI_DeleteDC WinAPI_DeleteEnhMetaFile WinAPI_DeleteFile WinAPI_DeleteObject WinAPI_DeleteObjectID WinAPI_DeleteVolumeMountPoint WinAPI_DeregisterShellHookWindow WinAPI_DestroyCaret WinAPI_DestroyCursor WinAPI_DestroyIcon WinAPI_DestroyWindow WinAPI_DeviceIoControl WinAPI_DisplayStruct WinAPI_DllGetVersion WinAPI_DllInstall WinAPI_DllUninstall WinAPI_DPtoLP WinAPI_DragAcceptFiles WinAPI_DragFinish WinAPI_DragQueryFileEx WinAPI_DragQueryPoint WinAPI_DrawAnimatedRects WinAPI_DrawBitmap WinAPI_DrawEdge WinAPI_DrawFocusRect WinAPI_DrawFrameControl WinAPI_DrawIcon WinAPI_DrawIconEx WinAPI_DrawLine WinAPI_DrawShadowText WinAPI_DrawText WinAPI_DrawThemeBackground WinAPI_DrawThemeEdge WinAPI_DrawThemeIcon WinAPI_DrawThemeParentBackground WinAPI_DrawThemeText WinAPI_DrawThemeTextEx WinAPI_DuplicateEncryptionInfoFile WinAPI_DuplicateHandle WinAPI_DuplicateTokenEx WinAPI_DwmDefWindowProc WinAPI_DwmEnableBlurBehindWindow WinAPI_DwmEnableComposition WinAPI_DwmExtendFrameIntoClientArea WinAPI_DwmGetColorizationColor WinAPI_DwmGetColorizationParameters WinAPI_DwmGetWindowAttribute WinAPI_DwmInvalidateIconicBitmaps WinAPI_DwmIsCompositionEnabled WinAPI_DwmQueryThumbnailSourceSize WinAPI_DwmRegisterThumbnail WinAPI_DwmSetColorizationParameters WinAPI_DwmSetIconicLivePreviewBitmap WinAPI_DwmSetIconicThumbnail WinAPI_DwmSetWindowAttribute WinAPI_DwmUnregisterThumbnail WinAPI_DwmUpdateThumbnailProperties WinAPI_DWordToFloat WinAPI_DWordToInt WinAPI_EjectMedia WinAPI_Ellipse WinAPI_EmptyWorkingSet WinAPI_EnableWindow WinAPI_EncryptFile WinAPI_EncryptionDisable WinAPI_EndBufferedPaint WinAPI_EndDeferWindowPos WinAPI_EndPaint WinAPI_EndPath WinAPI_EndUpdateResource WinAPI_EnumChildProcess WinAPI_EnumChildWindows WinAPI_EnumDesktops WinAPI_EnumDesktopWindows WinAPI_EnumDeviceDrivers WinAPI_EnumDisplayDevices WinAPI_EnumDisplayMonitors WinAPI_EnumDisplaySettings WinAPI_EnumDllProc WinAPI_EnumFiles WinAPI_EnumFileStreams WinAPI_EnumFontFamilies WinAPI_EnumHardLinks WinAPI_EnumMRUList WinAPI_EnumPageFiles WinAPI_EnumProcessHandles WinAPI_EnumProcessModules WinAPI_EnumProcessThreads WinAPI_EnumProcessWindows WinAPI_EnumRawInputDevices WinAPI_EnumResourceLanguages WinAPI_EnumResourceNames WinAPI_EnumResourceTypes WinAPI_EnumSystemGeoID WinAPI_EnumSystemLocales WinAPI_EnumUILanguages WinAPI_EnumWindows WinAPI_EnumWindowsPopup WinAPI_EnumWindowStations WinAPI_EnumWindowsTop WinAPI_EqualMemory WinAPI_EqualRect WinAPI_EqualRgn WinAPI_ExcludeClipRect WinAPI_ExpandEnvironmentStrings WinAPI_ExtCreatePen WinAPI_ExtCreateRegion WinAPI_ExtFloodFill WinAPI_ExtractIcon WinAPI_ExtractIconEx WinAPI_ExtSelectClipRgn WinAPI_FatalAppExit WinAPI_FatalExit WinAPI_FileEncryptionStatus WinAPI_FileExists WinAPI_FileIconInit WinAPI_FileInUse WinAPI_FillMemory WinAPI_FillPath WinAPI_FillRect WinAPI_FillRgn WinAPI_FindClose WinAPI_FindCloseChangeNotification WinAPI_FindExecutable WinAPI_FindFirstChangeNotification WinAPI_FindFirstFile WinAPI_FindFirstFileName WinAPI_FindFirstStream WinAPI_FindNextChangeNotification WinAPI_FindNextFile WinAPI_FindNextFileName WinAPI_FindNextStream WinAPI_FindResource WinAPI_FindResourceEx WinAPI_FindTextDlg WinAPI_FindWindow WinAPI_FlashWindow WinAPI_FlashWindowEx WinAPI_FlattenPath WinAPI_FloatToDWord WinAPI_FloatToInt WinAPI_FlushFileBuffers WinAPI_FlushFRBuffer WinAPI_FlushViewOfFile WinAPI_FormatDriveDlg WinAPI_FormatMessage WinAPI_FrameRect WinAPI_FrameRgn WinAPI_FreeLibrary WinAPI_FreeMemory WinAPI_FreeMRUList WinAPI_FreeResource WinAPI_GdiComment WinAPI_GetActiveWindow WinAPI_GetAllUsersProfileDirectory WinAPI_GetAncestor WinAPI_GetApplicationRestartSettings WinAPI_GetArcDirection WinAPI_GetAsyncKeyState WinAPI_GetBinaryType WinAPI_GetBitmapBits WinAPI_GetBitmapDimension WinAPI_GetBitmapDimensionEx WinAPI_GetBkColor WinAPI_GetBkMode WinAPI_GetBoundsRect WinAPI_GetBrushOrg WinAPI_GetBufferedPaintBits WinAPI_GetBufferedPaintDC WinAPI_GetBufferedPaintTargetDC WinAPI_GetBufferedPaintTargetRect WinAPI_GetBValue WinAPI_GetCaretBlinkTime WinAPI_GetCaretPos WinAPI_GetCDType WinAPI_GetClassInfoEx WinAPI_GetClassLongEx WinAPI_GetClassName WinAPI_GetClientHeight WinAPI_GetClientRect WinAPI_GetClientWidth WinAPI_GetClipboardSequenceNumber WinAPI_GetClipBox WinAPI_GetClipCursor WinAPI_GetClipRgn WinAPI_GetColorAdjustment WinAPI_GetCompressedFileSize WinAPI_GetCompression WinAPI_GetConnectedDlg WinAPI_GetCurrentDirectory WinAPI_GetCurrentHwProfile WinAPI_GetCurrentObject WinAPI_GetCurrentPosition WinAPI_GetCurrentProcess WinAPI_GetCurrentProcessExplicitAppUserModelID WinAPI_GetCurrentProcessID WinAPI_GetCurrentThemeName WinAPI_GetCurrentThread WinAPI_GetCurrentThreadId WinAPI_GetCursor WinAPI_GetCursorInfo WinAPI_GetDateFormat WinAPI_GetDC WinAPI_GetDCEx WinAPI_GetDefaultPrinter WinAPI_GetDefaultUserProfileDirectory WinAPI_GetDesktopWindow WinAPI_GetDeviceCaps WinAPI_GetDeviceDriverBaseName WinAPI_GetDeviceDriverFileName WinAPI_GetDeviceGammaRamp WinAPI_GetDIBColorTable WinAPI_GetDIBits WinAPI_GetDiskFreeSpaceEx WinAPI_GetDlgCtrlID WinAPI_GetDlgItem WinAPI_GetDllDirectory WinAPI_GetDriveBusType WinAPI_GetDriveGeometryEx WinAPI_GetDriveNumber WinAPI_GetDriveType WinAPI_GetDurationFormat WinAPI_GetEffectiveClientRect WinAPI_GetEnhMetaFile WinAPI_GetEnhMetaFileBits WinAPI_GetEnhMetaFileDescription WinAPI_GetEnhMetaFileDimension WinAPI_GetEnhMetaFileHeader WinAPI_GetErrorMessage WinAPI_GetErrorMode WinAPI_GetExitCodeProcess WinAPI_GetExtended WinAPI_GetFileAttributes WinAPI_GetFileID WinAPI_GetFileInformationByHandle WinAPI_GetFileInformationByHandleEx WinAPI_GetFilePointerEx WinAPI_GetFileSizeEx WinAPI_GetFileSizeOnDisk WinAPI_GetFileTitle WinAPI_GetFileType WinAPI_GetFileVersionInfo WinAPI_GetFinalPathNameByHandle WinAPI_GetFinalPathNameByHandleEx WinAPI_GetFocus WinAPI_GetFontMemoryResourceInfo WinAPI_GetFontName WinAPI_GetFontResourceInfo WinAPI_GetForegroundWindow WinAPI_GetFRBuffer WinAPI_GetFullPathName WinAPI_GetGeoInfo WinAPI_GetGlyphOutline WinAPI_GetGraphicsMode WinAPI_GetGuiResources WinAPI_GetGUIThreadInfo WinAPI_GetGValue WinAPI_GetHandleInformation WinAPI_GetHGlobalFromStream WinAPI_GetIconDimension WinAPI_GetIconInfo WinAPI_GetIconInfoEx WinAPI_GetIdleTime WinAPI_GetKeyboardLayout WinAPI_GetKeyboardLayoutList WinAPI_GetKeyboardState WinAPI_GetKeyboardType WinAPI_GetKeyNameText WinAPI_GetKeyState WinAPI_GetLastActivePopup WinAPI_GetLastError WinAPI_GetLastErrorMessage WinAPI_GetLayeredWindowAttributes WinAPI_GetLocaleInfo WinAPI_GetLogicalDrives WinAPI_GetMapMode WinAPI_GetMemorySize WinAPI_GetMessageExtraInfo WinAPI_GetModuleFileNameEx WinAPI_GetModuleHandle WinAPI_GetModuleHandleEx WinAPI_GetModuleInformation WinAPI_GetMonitorInfo WinAPI_GetMousePos WinAPI_GetMousePosX WinAPI_GetMousePosY WinAPI_GetMUILanguage WinAPI_GetNumberFormat WinAPI_GetObject WinAPI_GetObjectID WinAPI_GetObjectInfoByHandle WinAPI_GetObjectNameByHandle WinAPI_GetObjectType WinAPI_GetOpenFileName WinAPI_GetOutlineTextMetrics WinAPI_GetOverlappedResult WinAPI_GetParent WinAPI_GetParentProcess WinAPI_GetPerformanceInfo WinAPI_GetPEType WinAPI_GetPhysicallyInstalledSystemMemory WinAPI_GetPixel WinAPI_GetPolyFillMode WinAPI_GetPosFromRect WinAPI_GetPriorityClass WinAPI_GetProcAddress WinAPI_GetProcessAffinityMask WinAPI_GetProcessCommandLine WinAPI_GetProcessFileName WinAPI_GetProcessHandleCount WinAPI_GetProcessID WinAPI_GetProcessIoCounters WinAPI_GetProcessMemoryInfo WinAPI_GetProcessName WinAPI_GetProcessShutdownParameters WinAPI_GetProcessTimes WinAPI_GetProcessUser WinAPI_GetProcessWindowStation WinAPI_GetProcessWorkingDirectory WinAPI_GetProfilesDirectory WinAPI_GetPwrCapabilities WinAPI_GetRawInputBuffer WinAPI_GetRawInputBufferLength WinAPI_GetRawInputData WinAPI_GetRawInputDeviceInfo WinAPI_GetRegionData WinAPI_GetRegisteredRawInputDevices WinAPI_GetRegKeyNameByHandle WinAPI_GetRgnBox WinAPI_GetROP2 WinAPI_GetRValue WinAPI_GetSaveFileName WinAPI_GetShellWindow WinAPI_GetStartupInfo WinAPI_GetStdHandle WinAPI_GetStockObject WinAPI_GetStretchBltMode WinAPI_GetString WinAPI_GetSysColor WinAPI_GetSysColorBrush WinAPI_GetSystemDefaultLangID WinAPI_GetSystemDefaultLCID WinAPI_GetSystemDefaultUILanguage WinAPI_GetSystemDEPPolicy WinAPI_GetSystemInfo WinAPI_GetSystemMetrics WinAPI_GetSystemPowerStatus WinAPI_GetSystemTimes WinAPI_GetSystemWow64Directory WinAPI_GetTabbedTextExtent WinAPI_GetTempFileName WinAPI_GetTextAlign WinAPI_GetTextCharacterExtra WinAPI_GetTextColor WinAPI_GetTextExtentPoint32 WinAPI_GetTextFace WinAPI_GetTextMetrics WinAPI_GetThemeAppProperties WinAPI_GetThemeBackgroundContentRect WinAPI_GetThemeBackgroundExtent WinAPI_GetThemeBackgroundRegion WinAPI_GetThemeBitmap WinAPI_GetThemeBool WinAPI_GetThemeColor WinAPI_GetThemeDocumentationProperty WinAPI_GetThemeEnumValue WinAPI_GetThemeFilename WinAPI_GetThemeFont WinAPI_GetThemeInt WinAPI_GetThemeMargins WinAPI_GetThemeMetric WinAPI_GetThemePartSize WinAPI_GetThemePosition WinAPI_GetThemePropertyOrigin WinAPI_GetThemeRect WinAPI_GetThemeString WinAPI_GetThemeSysBool WinAPI_GetThemeSysColor WinAPI_GetThemeSysColorBrush WinAPI_GetThemeSysFont WinAPI_GetThemeSysInt WinAPI_GetThemeSysSize WinAPI_GetThemeSysString WinAPI_GetThemeTextExtent WinAPI_GetThemeTextMetrics WinAPI_GetThemeTransitionDuration WinAPI_GetThreadDesktop WinAPI_GetThreadErrorMode WinAPI_GetThreadLocale WinAPI_GetThreadUILanguage WinAPI_GetTickCount WinAPI_GetTickCount64 WinAPI_GetTimeFormat WinAPI_GetTopWindow WinAPI_GetUDFColorMode WinAPI_GetUpdateRect WinAPI_GetUpdateRgn WinAPI_GetUserDefaultLangID WinAPI_GetUserDefaultLCID WinAPI_GetUserDefaultUILanguage WinAPI_GetUserGeoID WinAPI_GetUserObjectInformation WinAPI_GetVersion WinAPI_GetVersionEx WinAPI_GetVolumeInformation WinAPI_GetVolumeInformationByHandle WinAPI_GetVolumeNameForVolumeMountPoint WinAPI_GetWindow WinAPI_GetWindowDC WinAPI_GetWindowDisplayAffinity WinAPI_GetWindowExt WinAPI_GetWindowFileName WinAPI_GetWindowHeight WinAPI_GetWindowInfo WinAPI_GetWindowLong WinAPI_GetWindowOrg WinAPI_GetWindowPlacement WinAPI_GetWindowRect WinAPI_GetWindowRgn WinAPI_GetWindowRgnBox WinAPI_GetWindowSubclass WinAPI_GetWindowText WinAPI_GetWindowTheme WinAPI_GetWindowThreadProcessId WinAPI_GetWindowWidth WinAPI_GetWorkArea WinAPI_GetWorldTransform WinAPI_GetXYFromPoint WinAPI_GlobalMemoryStatus WinAPI_GradientFill WinAPI_GUIDFromString WinAPI_GUIDFromStringEx WinAPI_HashData WinAPI_HashString WinAPI_HiByte WinAPI_HideCaret WinAPI_HiDWord WinAPI_HiWord WinAPI_InflateRect WinAPI_InitMUILanguage WinAPI_InProcess WinAPI_IntersectClipRect WinAPI_IntersectRect WinAPI_IntToDWord WinAPI_IntToFloat WinAPI_InvalidateRect WinAPI_InvalidateRgn WinAPI_InvertANDBitmap WinAPI_InvertColor WinAPI_InvertRect WinAPI_InvertRgn WinAPI_IOCTL WinAPI_IsAlphaBitmap WinAPI_IsBadCodePtr WinAPI_IsBadReadPtr WinAPI_IsBadStringPtr WinAPI_IsBadWritePtr WinAPI_IsChild WinAPI_IsClassName WinAPI_IsDoorOpen WinAPI_IsElevated WinAPI_IsHungAppWindow WinAPI_IsIconic WinAPI_IsInternetConnected WinAPI_IsLoadKBLayout WinAPI_IsMemory WinAPI_IsNameInExpression WinAPI_IsNetworkAlive WinAPI_IsPathShared WinAPI_IsProcessInJob WinAPI_IsProcessorFeaturePresent WinAPI_IsRectEmpty WinAPI_IsThemeActive WinAPI_IsThemeBackgroundPartiallyTransparent WinAPI_IsThemePartDefined WinAPI_IsValidLocale WinAPI_IsWindow WinAPI_IsWindowEnabled WinAPI_IsWindowUnicode WinAPI_IsWindowVisible WinAPI_IsWow64Process WinAPI_IsWritable WinAPI_IsZoomed WinAPI_Keybd_Event WinAPI_KillTimer WinAPI_LineDDA WinAPI_LineTo WinAPI_LoadBitmap WinAPI_LoadCursor WinAPI_LoadCursorFromFile WinAPI_LoadIcon WinAPI_LoadIconMetric WinAPI_LoadIconWithScaleDown WinAPI_LoadImage WinAPI_LoadIndirectString WinAPI_LoadKeyboardLayout WinAPI_LoadLibrary WinAPI_LoadLibraryEx WinAPI_LoadMedia WinAPI_LoadResource WinAPI_LoadShell32Icon WinAPI_LoadString WinAPI_LoadStringEx WinAPI_LoByte WinAPI_LocalFree WinAPI_LockDevice WinAPI_LockFile WinAPI_LockResource WinAPI_LockWindowUpdate WinAPI_LockWorkStation WinAPI_LoDWord WinAPI_LongMid WinAPI_LookupIconIdFromDirectoryEx WinAPI_LoWord WinAPI_LPtoDP WinAPI_MAKELANGID WinAPI_MAKELCID WinAPI_MakeLong WinAPI_MakeQWord WinAPI_MakeWord WinAPI_MapViewOfFile WinAPI_MapVirtualKey WinAPI_MaskBlt WinAPI_MessageBeep WinAPI_MessageBoxCheck WinAPI_MessageBoxIndirect WinAPI_MirrorIcon WinAPI_ModifyWorldTransform WinAPI_MonitorFromPoint WinAPI_MonitorFromRect WinAPI_MonitorFromWindow WinAPI_Mouse_Event WinAPI_MoveFileEx WinAPI_MoveMemory WinAPI_MoveTo WinAPI_MoveToEx WinAPI_MoveWindow WinAPI_MsgBox WinAPI_MulDiv WinAPI_MultiByteToWideChar WinAPI_MultiByteToWideCharEx WinAPI_NtStatusToDosError WinAPI_OemToChar WinAPI_OffsetClipRgn WinAPI_OffsetPoints WinAPI_OffsetRect WinAPI_OffsetRgn WinAPI_OffsetWindowOrg WinAPI_OpenDesktop WinAPI_OpenFileById WinAPI_OpenFileDlg WinAPI_OpenFileMapping WinAPI_OpenIcon WinAPI_OpenInputDesktop WinAPI_OpenJobObject WinAPI_OpenMutex WinAPI_OpenProcess WinAPI_OpenProcessToken WinAPI_OpenSemaphore WinAPI_OpenThemeData WinAPI_OpenWindowStation WinAPI_PageSetupDlg WinAPI_PaintDesktop WinAPI_PaintRgn WinAPI_ParseURL WinAPI_ParseUserName WinAPI_PatBlt WinAPI_PathAddBackslash WinAPI_PathAddExtension WinAPI_PathAppend WinAPI_PathBuildRoot WinAPI_PathCanonicalize WinAPI_PathCommonPrefix WinAPI_PathCompactPath WinAPI_PathCompactPathEx WinAPI_PathCreateFromUrl WinAPI_PathFindExtension WinAPI_PathFindFileName WinAPI_PathFindNextComponent WinAPI_PathFindOnPath WinAPI_PathGetArgs WinAPI_PathGetCharType WinAPI_PathGetDriveNumber WinAPI_PathIsContentType WinAPI_PathIsDirectory WinAPI_PathIsDirectoryEmpty WinAPI_PathIsExe WinAPI_PathIsFileSpec WinAPI_PathIsLFNFileSpec WinAPI_PathIsRelative WinAPI_PathIsRoot WinAPI_PathIsSameRoot WinAPI_PathIsSystemFolder WinAPI_PathIsUNC WinAPI_PathIsUNCServer WinAPI_PathIsUNCServerShare WinAPI_PathMakeSystemFolder WinAPI_PathMatchSpec WinAPI_PathParseIconLocation WinAPI_PathRelativePathTo WinAPI_PathRemoveArgs WinAPI_PathRemoveBackslash WinAPI_PathRemoveExtension WinAPI_PathRemoveFileSpec WinAPI_PathRenameExtension WinAPI_PathSearchAndQualify WinAPI_PathSkipRoot WinAPI_PathStripPath WinAPI_PathStripToRoot WinAPI_PathToRegion WinAPI_PathUndecorate WinAPI_PathUnExpandEnvStrings WinAPI_PathUnmakeSystemFolder WinAPI_PathUnquoteSpaces WinAPI_PathYetAnotherMakeUniqueName WinAPI_PickIconDlg WinAPI_PlayEnhMetaFile WinAPI_PlaySound WinAPI_PlgBlt WinAPI_PointFromRect WinAPI_PolyBezier WinAPI_PolyBezierTo WinAPI_PolyDraw WinAPI_Polygon WinAPI_PostMessage WinAPI_PrimaryLangId WinAPI_PrintDlg WinAPI_PrintDlgEx WinAPI_PrintWindow WinAPI_ProgIDFromCLSID WinAPI_PtInRect WinAPI_PtInRectEx WinAPI_PtInRegion WinAPI_PtVisible WinAPI_QueryDosDevice WinAPI_QueryInformationJobObject WinAPI_QueryPerformanceCounter WinAPI_QueryPerformanceFrequency WinAPI_RadialGradientFill WinAPI_ReadDirectoryChanges WinAPI_ReadFile WinAPI_ReadProcessMemory WinAPI_Rectangle WinAPI_RectInRegion WinAPI_RectIsEmpty WinAPI_RectVisible WinAPI_RedrawWindow WinAPI_RegCloseKey WinAPI_RegConnectRegistry WinAPI_RegCopyTree WinAPI_RegCopyTreeEx WinAPI_RegCreateKey WinAPI_RegDeleteEmptyKey WinAPI_RegDeleteKey WinAPI_RegDeleteKeyValue WinAPI_RegDeleteTree WinAPI_RegDeleteTreeEx WinAPI_RegDeleteValue WinAPI_RegDisableReflectionKey WinAPI_RegDuplicateHKey WinAPI_RegEnableReflectionKey WinAPI_RegEnumKey WinAPI_RegEnumValue WinAPI_RegFlushKey WinAPI_RegisterApplicationRestart WinAPI_RegisterClass WinAPI_RegisterClassEx WinAPI_RegisterHotKey WinAPI_RegisterPowerSettingNotification WinAPI_RegisterRawInputDevices WinAPI_RegisterShellHookWindow WinAPI_RegisterWindowMessage WinAPI_RegLoadMUIString WinAPI_RegNotifyChangeKeyValue WinAPI_RegOpenKey WinAPI_RegQueryInfoKey WinAPI_RegQueryLastWriteTime WinAPI_RegQueryMultipleValues WinAPI_RegQueryReflectionKey WinAPI_RegQueryValue WinAPI_RegRestoreKey WinAPI_RegSaveKey WinAPI_RegSetValue WinAPI_ReleaseCapture WinAPI_ReleaseDC WinAPI_ReleaseMutex WinAPI_ReleaseSemaphore WinAPI_ReleaseStream WinAPI_RemoveClipboardFormatListener WinAPI_RemoveDirectory WinAPI_RemoveFontMemResourceEx WinAPI_RemoveFontResourceEx WinAPI_RemoveWindowSubclass WinAPI_ReOpenFile WinAPI_ReplaceFile WinAPI_ReplaceTextDlg WinAPI_ResetEvent WinAPI_RestartDlg WinAPI_RestoreDC WinAPI_RGB WinAPI_RotatePoints WinAPI_RoundRect WinAPI_SaveDC WinAPI_SaveFileDlg WinAPI_SaveHBITMAPToFile WinAPI_SaveHICONToFile WinAPI_ScaleWindowExt WinAPI_ScreenToClient WinAPI_SearchPath WinAPI_SelectClipPath WinAPI_SelectClipRgn WinAPI_SelectObject WinAPI_SendMessageTimeout WinAPI_SetActiveWindow WinAPI_SetArcDirection WinAPI_SetBitmapBits WinAPI_SetBitmapDimensionEx WinAPI_SetBkColor WinAPI_SetBkMode WinAPI_SetBoundsRect WinAPI_SetBrushOrg WinAPI_SetCapture WinAPI_SetCaretBlinkTime WinAPI_SetCaretPos WinAPI_SetClassLongEx WinAPI_SetColorAdjustment WinAPI_SetCompression WinAPI_SetCurrentDirectory WinAPI_SetCurrentProcessExplicitAppUserModelID WinAPI_SetCursor WinAPI_SetDCBrushColor WinAPI_SetDCPenColor WinAPI_SetDefaultPrinter WinAPI_SetDeviceGammaRamp WinAPI_SetDIBColorTable WinAPI_SetDIBits WinAPI_SetDIBitsToDevice WinAPI_SetDllDirectory WinAPI_SetEndOfFile WinAPI_SetEnhMetaFileBits WinAPI_SetErrorMode WinAPI_SetEvent WinAPI_SetFileAttributes WinAPI_SetFileInformationByHandleEx WinAPI_SetFilePointer WinAPI_SetFilePointerEx WinAPI_SetFileShortName WinAPI_SetFileValidData WinAPI_SetFocus WinAPI_SetFont WinAPI_SetForegroundWindow WinAPI_SetFRBuffer WinAPI_SetGraphicsMode WinAPI_SetHandleInformation WinAPI_SetInformationJobObject WinAPI_SetKeyboardLayout WinAPI_SetKeyboardState WinAPI_SetLastError WinAPI_SetLayeredWindowAttributes WinAPI_SetLocaleInfo WinAPI_SetMapMode WinAPI_SetMessageExtraInfo WinAPI_SetParent WinAPI_SetPixel WinAPI_SetPolyFillMode WinAPI_SetPriorityClass WinAPI_SetProcessAffinityMask WinAPI_SetProcessShutdownParameters WinAPI_SetProcessWindowStation WinAPI_SetRectRgn WinAPI_SetROP2 WinAPI_SetSearchPathMode WinAPI_SetStretchBltMode WinAPI_SetSysColors WinAPI_SetSystemCursor WinAPI_SetTextAlign WinAPI_SetTextCharacterExtra WinAPI_SetTextColor WinAPI_SetTextJustification WinAPI_SetThemeAppProperties WinAPI_SetThreadDesktop WinAPI_SetThreadErrorMode WinAPI_SetThreadExecutionState WinAPI_SetThreadLocale WinAPI_SetThreadUILanguage WinAPI_SetTimer WinAPI_SetUDFColorMode WinAPI_SetUserGeoID WinAPI_SetUserObjectInformation WinAPI_SetVolumeMountPoint WinAPI_SetWindowDisplayAffinity WinAPI_SetWindowExt WinAPI_SetWindowLong WinAPI_SetWindowOrg WinAPI_SetWindowPlacement WinAPI_SetWindowPos WinAPI_SetWindowRgn WinAPI_SetWindowsHookEx WinAPI_SetWindowSubclass WinAPI_SetWindowText WinAPI_SetWindowTheme WinAPI_SetWinEventHook WinAPI_SetWorldTransform WinAPI_SfcIsFileProtected WinAPI_SfcIsKeyProtected WinAPI_ShellAboutDlg WinAPI_ShellAddToRecentDocs WinAPI_ShellChangeNotify WinAPI_ShellChangeNotifyDeregister WinAPI_ShellChangeNotifyRegister WinAPI_ShellCreateDirectory WinAPI_ShellEmptyRecycleBin WinAPI_ShellExecute WinAPI_ShellExecuteEx WinAPI_ShellExtractAssociatedIcon WinAPI_ShellExtractIcon WinAPI_ShellFileOperation WinAPI_ShellFlushSFCache WinAPI_ShellGetFileInfo WinAPI_ShellGetIconOverlayIndex WinAPI_ShellGetImageList WinAPI_ShellGetKnownFolderIDList WinAPI_ShellGetKnownFolderPath WinAPI_ShellGetLocalizedName WinAPI_ShellGetPathFromIDList WinAPI_ShellGetSetFolderCustomSettings WinAPI_ShellGetSettings WinAPI_ShellGetSpecialFolderLocation WinAPI_ShellGetSpecialFolderPath WinAPI_ShellGetStockIconInfo WinAPI_ShellILCreateFromPath WinAPI_ShellNotifyIcon WinAPI_ShellNotifyIconGetRect WinAPI_ShellObjectProperties WinAPI_ShellOpenFolderAndSelectItems WinAPI_ShellOpenWithDlg WinAPI_ShellQueryRecycleBin WinAPI_ShellQueryUserNotificationState WinAPI_ShellRemoveLocalizedName WinAPI_ShellRestricted WinAPI_ShellSetKnownFolderPath WinAPI_ShellSetLocalizedName WinAPI_ShellSetSettings WinAPI_ShellStartNetConnectionDlg WinAPI_ShellUpdateImage WinAPI_ShellUserAuthenticationDlg WinAPI_ShellUserAuthenticationDlgEx WinAPI_ShortToWord WinAPI_ShowCaret WinAPI_ShowCursor WinAPI_ShowError WinAPI_ShowLastError WinAPI_ShowMsg WinAPI_ShowOwnedPopups WinAPI_ShowWindow WinAPI_ShutdownBlockReasonCreate WinAPI_ShutdownBlockReasonDestroy WinAPI_ShutdownBlockReasonQuery WinAPI_SizeOfResource WinAPI_StretchBlt WinAPI_StretchDIBits WinAPI_StrFormatByteSize WinAPI_StrFormatByteSizeEx WinAPI_StrFormatKBSize WinAPI_StrFromTimeInterval WinAPI_StringFromGUID WinAPI_StringLenA WinAPI_StringLenW WinAPI_StrLen WinAPI_StrokeAndFillPath WinAPI_StrokePath WinAPI_StructToArray WinAPI_SubLangId WinAPI_SubtractRect WinAPI_SwapDWord WinAPI_SwapQWord WinAPI_SwapWord WinAPI_SwitchColor WinAPI_SwitchDesktop WinAPI_SwitchToThisWindow WinAPI_SystemParametersInfo WinAPI_TabbedTextOut WinAPI_TerminateJobObject WinAPI_TerminateProcess WinAPI_TextOut WinAPI_TileWindows WinAPI_TrackMouseEvent WinAPI_TransparentBlt WinAPI_TwipsPerPixelX WinAPI_TwipsPerPixelY WinAPI_UnhookWindowsHookEx WinAPI_UnhookWinEvent WinAPI_UnionRect WinAPI_UnionStruct WinAPI_UniqueHardwareID WinAPI_UnloadKeyboardLayout WinAPI_UnlockFile WinAPI_UnmapViewOfFile WinAPI_UnregisterApplicationRestart WinAPI_UnregisterClass WinAPI_UnregisterHotKey WinAPI_UnregisterPowerSettingNotification WinAPI_UpdateLayeredWindow WinAPI_UpdateLayeredWindowEx WinAPI_UpdateLayeredWindowIndirect WinAPI_UpdateResource WinAPI_UpdateWindow WinAPI_UrlApplyScheme WinAPI_UrlCanonicalize WinAPI_UrlCombine WinAPI_UrlCompare WinAPI_UrlCreateFromPath WinAPI_UrlFixup WinAPI_UrlGetPart WinAPI_UrlHash WinAPI_UrlIs WinAPI_UserHandleGrantAccess WinAPI_ValidateRect WinAPI_ValidateRgn WinAPI_VerQueryRoot WinAPI_VerQueryValue WinAPI_VerQueryValueEx WinAPI_WaitForInputIdle WinAPI_WaitForMultipleObjects WinAPI_WaitForSingleObject WinAPI_WideCharToMultiByte WinAPI_WidenPath WinAPI_WindowFromDC WinAPI_WindowFromPoint WinAPI_WordToShort WinAPI_Wow64EnableWow64FsRedirection WinAPI_WriteConsole WinAPI_WriteFile WinAPI_WriteProcessMemory WinAPI_ZeroMemory WinNet_AddConnection WinNet_AddConnection2 WinNet_AddConnection3 WinNet_CancelConnection WinNet_CancelConnection2 WinNet_CloseEnum WinNet_ConnectionDialog WinNet_ConnectionDialog1 WinNet_DisconnectDialog WinNet_DisconnectDialog1 WinNet_EnumResource WinNet_GetConnection WinNet_GetConnectionPerformance WinNet_GetLastError WinNet_GetNetworkInformation WinNet_GetProviderName WinNet_GetResourceInformation WinNet_GetResourceParent WinNet_GetUniversalName WinNet_GetUser WinNet_OpenEnum WinNet_RestoreConnection WinNet_UseConnection Word_Create Word_DocAdd Word_DocAttach Word_DocClose Word_DocExport Word_DocFind Word_DocFindReplace Word_DocGet Word_DocLinkAdd Word_DocLinkGet Word_DocOpen Word_DocPictureAdd Word_DocPrint Word_DocRangeSet Word_DocSave Word_DocSaveAs Word_DocTableRead Word_DocTableWrite Word_Quit",I={
v:[e.C(";","$",{r:0}),e.C("#cs","#ce"),e.C("#comments-start","#comments-end")]},n={b:"\\$[A-z0-9_]+"},l={cN:"string",v:[{b:/"/,e:/"/,c:[{b:/""/,r:0}]},{b:/'/,e:/'/,c:[{b:/''/,r:0}]}]},o={v:[e.BNM,e.CNM]},a={cN:"meta",b:"#",e:"$",k:{"meta-keyword":"include include-once NoTrayIcon OnAutoItStartRegister RequireAdmin pragma Au3Stripper_Ignore_Funcs Au3Stripper_Ignore_Variables Au3Stripper_Off Au3Stripper_On Au3Stripper_Parameters AutoIt3Wrapper_Add_Constants AutoIt3Wrapper_Au3Check_Parameters AutoIt3Wrapper_Au3Check_Stop_OnWarning AutoIt3Wrapper_Aut2Exe AutoIt3Wrapper_AutoIt3 AutoIt3Wrapper_AutoIt3Dir AutoIt3Wrapper_Change2CUI AutoIt3Wrapper_Compile_Both AutoIt3Wrapper_Compression AutoIt3Wrapper_EndIf AutoIt3Wrapper_Icon AutoIt3Wrapper_If_Compile AutoIt3Wrapper_If_Run AutoIt3Wrapper_Jump_To_First_Error AutoIt3Wrapper_OutFile AutoIt3Wrapper_OutFile_Type AutoIt3Wrapper_OutFile_X64 AutoIt3Wrapper_PlugIn_Funcs AutoIt3Wrapper_Res_Comment Autoit3Wrapper_Res_Compatibility AutoIt3Wrapper_Res_Description AutoIt3Wrapper_Res_Field AutoIt3Wrapper_Res_File_Add AutoIt3Wrapper_Res_FileVersion AutoIt3Wrapper_Res_FileVersion_AutoIncrement AutoIt3Wrapper_Res_Icon_Add AutoIt3Wrapper_Res_Language AutoIt3Wrapper_Res_LegalCopyright AutoIt3Wrapper_Res_ProductVersion AutoIt3Wrapper_Res_requestedExecutionLevel AutoIt3Wrapper_Res_SaveSource AutoIt3Wrapper_Run_After AutoIt3Wrapper_Run_Au3Check AutoIt3Wrapper_Run_Au3Stripper AutoIt3Wrapper_Run_Before AutoIt3Wrapper_Run_Debug_Mode AutoIt3Wrapper_Run_SciTE_Minimized AutoIt3Wrapper_Run_SciTE_OutputPane_Minimized AutoIt3Wrapper_Run_Tidy AutoIt3Wrapper_ShowProgress AutoIt3Wrapper_Testing AutoIt3Wrapper_Tidy_Stop_OnError AutoIt3Wrapper_UPX_Parameters AutoIt3Wrapper_UseUPX AutoIt3Wrapper_UseX64 AutoIt3Wrapper_Version AutoIt3Wrapper_Versioning AutoIt3Wrapper_Versioning_Parameters Tidy_Off Tidy_On Tidy_Parameters EndRegion Region"},c:[{b:/\\\n/,r:0},{bK:"include",k:{"meta-keyword":"include"},e:"$",c:[l,{cN:"meta-string",v:[{b:"<",e:">"},{b:/"/,e:/"/,c:[{b:/""/,r:0}]},{b:/'/,e:/'/,c:[{b:/''/,r:0}]}]}]},l,I]},_={cN:"symbol",b:"@[A-z0-9_]+"},G={cN:"function",bK:"Func",e:"$",i:"\\$|\\[|%",c:[e.UTM,{cN:"params",b:"\\(",e:"\\)",c:[n,l,o]}]};return{cI:!0,i:/\/\*/,k:{keyword:t,built_in:i,literal:r},c:[I,n,l,o,a,_,G]}});hljs.registerLanguage("r",function(e){var r="([a-zA-Z]|\\.[a-zA-Z.])[a-zA-Z0-9._]*";return{c:[e.HCM,{b:r,l:r,k:{keyword:"function if in break next repeat else for return switch while try tryCatch stop warning require library attach detach source setMethod setGeneric setGroupGeneric setClass ...",literal:"NULL NA TRUE FALSE T F Inf NaN NA_integer_|10 NA_real_|10 NA_character_|10 NA_complex_|10"},r:0},{cN:"number",b:"0[xX][0-9a-fA-F]+[Li]?\\b",r:0},{cN:"number",b:"\\d+(?:[eE][+\\-]?\\d*)?L\\b",r:0},{cN:"number",b:"\\d+\\.(?!\\d)(?:i\\b)?",r:0},{cN:"number",b:"\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",r:0},{b:"`",e:"`",r:0},{cN:"string",c:[e.BE],v:[{b:'"',e:'"'},{b:"'",e:"'"}]}]}});



OEBPS/images/tms2.png
‘Token Key Service
—_—

Token
Processing
Sysiem

Token
e

Token
Processing
sy

Enterprise Security Client





OEBPS/images/publisher3.png
@ Publisher Editor.

FilePublisher

FileBasedPublisher

Publisher I

Publisher Plugin I

directory [/export/CS/cri:

Filename.der

Filename.b64,

timeStamp |LocalTime -

latestCriLink []

alLinkext
zipCRLs []

zipLevel -

Stores the certficates or CRLS into files. Certificate is
names as cert-<serfaino>.der or b4, and CRL is
namas as <IssuingPoint>-<thisUpdats-times> dr or
"1,

oK. Cancel Help






OEBPS/images/tps-agent.png
Main Menu

Agent Operations

Tokens
« List/Search Tokens

Certificates
« ListScarch Certficates

Activities
« List/Search Activities

Advanced Configuration
« Profiles





OEBPS/images/AddNewUser.png
UID: ADMIN

Administrator Interface

uip [ismith
Name  [John Smith

Email  [jsmith@example.com

ICERTIFICATE—
IMIIDY2CCAKugAwIBAg!

Certificate






OEBPS/Common_Content/images/29.png





OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BlackItalic.eot


OEBPS/images/ra-newagent-cert.png
RA Services : Agent Enroliment
Enroll Interface

Your Certificate:
Subject DN: UID=jsmith E=jsmith@example.com

-----BEGIN CERTIFICATE.
MITDOTCCAIGghwIBAQIENTANBgkqhkiG9wOBAQUFADBANR AwHAYDVQQKE XVSZR1AWR Jb2LWXRL
‘C1BED21haN4xHACBQNVEAMT FUN cnRp 21 ] YXR1 EF1dGhven 0eTASEWOROTALM] cyMDE2MTda
~F0WOTE 43y MDE 2T daMDax I TABgkahk1 G90BCQERERDZbRL0aEBL eGF L cGx L LulivTERMEQS.
CgmsJonTe ixkAQE TRnpzbW10aDCEnzANBkghi1GowORAQE FAACR ] QAwgYKCaYEAZSQYOceukg o
62VR0VH3b1pbhnGK V0T TCIaTHK)BYBeAN293362J0LApQNT+UgBALNL 3Bh3aliny qea WL pnxQ
0QpaNEmKTANEDHRqYHJ7 44KqUR4 L2222 6A8DIL FLOMLEAKLnV VDS Za 1 GE 4023E 2GR T3 7D
2T FRYECAREARR OB ] CBW2ATBllVESME GDANBS T53+uS3y22liesUZLB/ ZTwoSL1 JBLBgQrBOER
'BQUBAQQ/MDOWORY TKYBBQURMAGGL 2h0GHAS Ly 9321 aX TucHVKYnVKY 29T CRV0ZX IubGa YWW6
OTE4MCS3¥SSVYaNMAIGALUADHES /RBP4 DAdBQNVASUEF JAUB Q9= BoE FEQeDAQY IKYEBQUE
AQWIAYDVRORBBOWGAEZJHJ1CXVLC3QuenV RV 2dGIy K2V T YL sJDANBgKahkiGIW0BAQUFAROC.
AQEAXSOKPLIYJVSCfadc0ZuiF/ 2010402 TChaQvDKSnXKUFE 1nC/eUKBnzul +AbKopPaQ3KTL.
‘VAAWAURM603ySBceaDbQ+yaaKyTSQnl1+01 AvIpTRC444 S THDL 81NV 951 DoT RAMKKERNGZDEN
QIQRVOCSecrpeAE Ip+puliak3nd N1 FAHCA GMKHUTHA Owasw IEEVIQQIBQLYnBot/ 02n08 9uzC
STIqCEAXUMs 6/bIDKMI sqKrWOqga 1RSE 6 £EySIqFBLNS8ZY ECIRUDNT 189x/ARBDOCL/GHO1 T+
‘VE31€WR1 XCwS 1 RHE 6RRRZ5 Tpq01 YK/ 0++01Ch3h6QR==

—----END CERTIFICATE---—-

import certificate





OEBPS/images/cm14.png
gent Services

Certificate Manager

Update Certificate Revocation List

In most cases, the certificate revocation list (CRL) is updated
automatically. In a few situations, however, you may want to update the
CRL manually. Use this form to update the CRL manually.

Issuing point: [MasterCRL [v|
Signature algorithm: [SHATWIhRSA [v|

wait for update: []
Clear CRL cache: []

Issuing point  CRL numbers  Number of entries  Recent changes
0,0,0

Update MasterCRL 12 o

Revocation
List






OEBPS/images/client-cert-import3.png
Certificate Manager

Your Certificates People Servers Authorities

You have certificates from these organizations that identify you

Certificate Name Security Device

~ EXAMPLEDOMAIN

PKI Administrator Software Security Device

View. Backup..  BackupAll. | Import.. Delete.

Serial Number

a

Expires On

06 November 30, 2020

oK






OEBPS/images/crlhttp6.png
~ Rule Editor.

Rule ID: [FileCriRule

Rule Plugin ID: Rule

type [ert ~
predicate

enable

mapper [NoMap ~
publisher ~

Use the publisher to publish the certificate or crl a
directory etc

oK ) Cancel Help






OEBPS/Common_Content/images/21.png





OEBPS/images/aep-domain1.png
domain
controlier

‘windows domain






OEBPS/Common_Content/fonts/portal/nimbus/iconfont.ttf


OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Regular.eot


OEBPS/Common_Content/images/14.png





OEBPS/images/job_sched.png
Console EditView Help

Configuration

Red Hat Certficate System 9445 | General Settings
Users and Groups
Access Control it
Log
System Keys and Certfcates | - Frequency Secting
Auhenication

{ i— Check Frequency [L | minutes

Jobs
o Certficate Hanager

Enable Jobs Scheduler





OEBPS/images/ra-user-list.png
L)

Red Hat® Cer!

Administrator Interface

Add New User

JuID. IName [Email

[mreynolds [Malcolm Reynolds [mreynolds@example.com
[ivler__Jjaye Tyler fiyler@example.com
[smith _fjohn Smith smith@example.com
[edmin __[RA Administrator |diackey@redhat.com

Previous | Next





OEBPS/images/06pcrypt.png
Encryption Decryption

g - m &

Original Prvate  Scrambled  Public Original
Data ey Data Key Data






OEBPS/Common_Content/images/1.png





OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Black.woff2


OEBPS/images/inst-ldap-ca.png
6 Internal Database

Please provide information to an existing Red Hat Directory Server that can be used as the

intemal database for this instance. [Details]

Note: If the Red Hat Directory Server is at a remote host, it is highly recommended that SSL

should be used.

Host:

Port:

Base DN:

Database:

Bind DN:

Bind Password:

[CIRemove the existing data from the Base DN shown above.

e

localhost

389

de=senver example com-pki-ca

‘senver.example.comfpki-ca.

cn=Directory Manager

Osst






OEBPS/images/agent-edit2.png
This token has been physically damaged. | Emkj Show Cerificates | Show Activi
Go ==






OEBPS/images/ra-newagent-ee.png
RA EE Services
* SCEP Enrollment

* Server Enrollment

® User Enroliment

* Agent Enrollment

* Request Status Check






OEBPS/images/04digsgn.png
Network
2 |

Hashing Bl

Algorithm T2 GTCi

%
encryption  Signature Signature  decryption

One-way.

— "hash —

One-way__|

hash

Identical
[ hashes validate

data integrity.





OEBPS/images/crl-sched1.png
Configuration

Red Hat Certficate System 9
), Users and Groups

@ Access Control List
@ Log

@ System Keys and Certifica
@ Authentication
& @ Job Schedluler
9 (3 Centficate Manager
Certificate Profiles
@ Notification
% @ CRLIssuing Points
o @ MasterCRL
> @ Publishing






OEBPS/Common_Content/fonts/redhat/text/RedHatText-RegularItalic.woff2


OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Black.woff


OEBPS/images/ra-newagent-pin.png
RA Services : Agent Enroliment
Agent Interface

“This form is for new agent to request for agent certificate.

u: smith
Your
Email: ismith@example.com|

[submi ]





OEBPS/Common_Content/images/18.png





OEBPS/images/tps-general-channel.png
Red Hat® TPS Services
A\ 4

Main Menu : Admi

ns : General Configuration

General: General
Status: Enabled

applet. 000=#HEEFFFHEHEFEEIHIEREEEMEREEEREREEEEEE
applet. 001=# applet information

applet. 002=% SAE Key:

applet. 003=# applet.aid.cardmgr_instance=A0000001510000
applec. 004=#HifidEstEHEEEFFEFIITHIIHIBEEEERERERERHEE
applet.aid.cazdmgs_instance=A0000000030000
applet.aid.netkey File=627601FF0000
applet.aid.nstkey_instance=627601FF000000
applet.aid.nstkey old_file=A000000001
applet.aid.netkey old_instance=A00000000101
applet.delete ola=true

SHEHHHH R
channel.encryption:

- enable encryprion for all operation commands To Token
- Gefault is crue
channel.blocksize=242
channel.defXeyVersion=0
channel.defXeyTndex=0
Contents: FEREEIIRIM IR AN AN III I IS
channel.blocksize=2:t
channel.defXeyTndex=0
channel.defXeyVeraion=0
channel _encryption=crue

general.applec_ex:
general.pylength.min=16
general.search.sizelimit.default=100
general.search.sizelimit.max=2000
general.search.gimelimit.default=10
general.search.timelimit.max=10
general.yerifyProof=1






OEBPS/Common_Content/images/dot2.png





OEBPS/Common_Content/images/documentation.png





OEBPS/images/crl-cache-tab.png
Red Hat Certificate System:¢ /| Updates

ache | Format

@, Users and Groups
@] Access Control List

CRL Cache

Q100 s and cortt Enable CRL cache:
ystem Keys and Certfic

@) Authentication Save cache every [15 minutes
£ Job scheduler Enable cache recovery:

¢ (3 Certficate Manager

Certificate Profiles Enable CRL cache testing: []

@ Notification
9 @ CRL Issuing Points
> @ Viastereii]
o @ Publishing





OEBPS/Common_Content/fonts/redhat/text/RedHatText-Medium.woff2


OEBPS/Common_Content/fonts/redhat/text/RedHatText-MediumItalic.woff2


OEBPS/images/mmc-add.png
Sandatns | Exensons|

Use this page to add or remove a standalone Snap-in from the consol.

T M ®






OEBPS/Common_Content/images/26.png





OEBPS/Common_Content/fonts/redhat/text/RedHatText-Bold.woff


OEBPS/images/ra-admin.png
‘ Red Hat® Certificate System

RA Admin Services

e List Users

® Add New User
e List Groups

* Add New Group





OEBPS/images/user4.png
Edit Group Information ()

Group name: [New Group
Group description: [group for viewing logs

Group Members:

usero /add user|
userl

Delete






OEBPS/Common_Content/fonts/redhat/text/RedHatText-Medium.eot


OEBPS/Common_Content/fonts/overpass_regular-web.eot


OEBPS/images/ra-newagent-approve2.png
Agent Interface
All| OPEN | APPROVED | REJECTED| FAILED

Requestid |7

[Type [agent
Data [wid=jsmith
[output 0

[Serial Number|unavailable
[Subject DN__[unavaiable

[Meta info o
[Status [oPEN
[Error o

[Assigned To_[agents

[Created By _[smith@example.com

[Updated At _[2009-5-27 15:14:14)
[Processed By [0

[Created At [2000-5-27 15:14:13

i [192.168.123.122
[Note o

Approve | Reject

Add Note





OEBPS/images/tms.png
The TKS derives unique
Keys for the TS based on (he
smart card's CUID.

Token Key Service

The TPS sends. —
cerificate requests
10 the GA fo enroll

the smart card,

Joken I
Sl privete keys.

Enterprise Security Client

The TPS and ESC.
Token communicate
—

B Smant Card
The TPS ant
The DRM archives' S and smart

PN ‘Smart card operations St

Grer SaL s
Smart tard are sent hrouoh the. 8Socure chanael.

DRM (Optional) By





OEBPS/images/tps-profile-approve.png
pe>. keyGen. <keyType>.privateReyArtrid=k2
pe>. keyGen. <keyType>.publicKeyAttrId=k3
pe>. keyGen. <keyType>.privateKeyNumber=2 -

Disable | | Reject | [ Approve andEnable | [ Cancel






OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BlackItalic.woff


OEBPS/images/tps-menu.png
Red Hat® TPS Services

UID:admin

Tokens





OEBPS/images/ca-drm.png
Archival

User

»

Ref

User

r

Auser sends a
certrequest to
the CA

The CA profile
delermines that
the new keys
should be
archived in
he DRM

Certificate Manager

@ (2] (3)

Auser loses a

certand The DRM agents.

The CA0r TPS
requests the

et 2 oo b
o o e, e
e
Teen Toe
T e el
PR coricat Mansger S

P2t 6





OEBPS/Common_Content/fonts/redhat/text/RedHatText-RegularItalic.eot


OEBPS/Common_Content/scripts/css_conflicts.js
function fixCSSConflicts() {}




OEBPS/images/crlhttp2.png
Certificate System

Publishers Management | Publisher Plugin Registration

Pubisher Flugin Name Add
LdapCentficatepairpubiisher || K
= LespCaCenPubliner [LdapCacepusis
& LdapUserCertPublisher _|LdapUserCertPublis
@ LdapDeltaCrlPublisher _|LdapDeltaCrlPublisher Edit/ View
|_ = Laapcripubiisher. |LaapCripubiisher 1

Delete






OEBPS/Common_Content/images/34.png





OEBPS/images/inst-ldap-kra.png
b Internal Database

Please provide information to an existing Red Hat Directory Server that can be used as the

intemal database for this instance. [Details]

Note: If the Red Hat Directory Server is at a remote host, it is highly recommended that SSL

should be used.

Host:

Port:

Base DN:

Database:

Bind DN:

Bind Password:

[CIRemove the existing data from the Base DN shown above.

e

localhost

389

de=senver example com-pki-kra

senver example com-pki-kra

cn=Directory Manager

Osst






OEBPS/images/ca-import2.png
Certificates
When a server requests your personal certificate
Select one automatically
® Askyou every time
Query OCSP responder servers to confirm the current validity of View Certificates...

certificates ) )
Security Devices...





OEBPS/images/ocsp_arch.png
OCSP requests from end users

| |

OCSP Responder oCsP Clone

& e
- -
Database Database
iy x

Replication






OEBPS/images/ca-renew1-alt.png
Revocation

Certificate Profile

Use this form to submit the request.

Certificate Profile - Renew certificate to be manually approved by agents
This certificate profile is for renewing certificates to be approved manually by agents.

Inputs

Serial Number of Certificate to
Renew

« Serial Number of Certificate to Renew






OEBPS/images/kra_arc.png
&

Clet capableof generating
CRMFrequests o

iz

Certificate
manager

g
8

internal
Database  4—

Proof-of-archival
token






OEBPS/images/Aep_wizard2.png
Certificate Request Wizard

Certificate Types
A certiicate type contains presst properties for ceticates.

Select a certficate typs for your request. You can access only cerficate types that
‘you have permissions for and that are avalble from a trusted CA.

Certficate types:

To select a cryptographic sevice provider and a CA, select Advanced,

I™ advanced

<ok ==






OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BoldItalic.woff


OEBPS/Common_Content/fonts/redhat/text/RedHatText-Bold.woff2


OEBPS/images/crl-updates-tab.png
Console Edit View Help

Configuration

Redl Hat Certificate System 9443
Users and Groups
Access Control List
Log
Syster Keys and Certificates
Authentication
& Job Schecluler
- Certificate Manager
Policies
Certiicate Profiles
Notification
9 CRL Issuing Paints
9 MastercRL
CRL Extensions
o Publishing

Updates | Cache | Format

Update Schema

Enable CRL generation:

Generate full CRL every [31 deltacs).

Extend next update time in full CRLs []

Update Frequency
(] Every time a certificate is revoked or released from hold

[J update CRL at

Update CRLevery  [240 minutes
Next update grace period [0 minutes






OEBPS/images/tps-profilemapping.png
Red Hat® TPS Services

Main Menu : Admi

strator Operations : Profile Mapping Configuration

token operation profie 1D

Profile Mapping: earoll
Status: Enabled

orf mappind.0.filver. spplestiajozVezsian:
opt ! mapping.0.filcer.sppletiinerVersion
op.enzoll.mapping. 0. filter. cokenATR=
op.enzoll mapping. 0. filter. cokenCUID. enx
op.enzoll mapping. 0. filter. sokenCUD. start
op.enzoll mapping. 0. filter. sokenType-yssskey
op.enzoll mapping. 0. tazget. sokenTyRe-ussskey
op.enzoll mapping. 1. filter. applechialorVersion
op.enzoll mapping.l.filter. sppledtiinasVerason=
op.enzoll.mapping. 1. filter. cokenATR=
op.enzoll mapping. 1. filter. cokencUID.
op.enzoll mapping.l.filter. cokenCUID.
op.enzoll.mapping.l.filter.
op.enzoll.mapping.l.carget. sokenlype=ackey
op.enzoll mapping. 2. Filter. spplerhialorVersion
op.enzoll mapping. 2. filter. sppletiinasVeraion
op.enzoll.mapping. 2. filter. cokenATR=
op.enzoll mapping. 2. filter. cokenCUID. end=
op.enzoll mapping. 2. filter. sokenCUiD. start
op.enzoll mapping. 2. filter. sokenType=
Conteats: op.enzoll mapping. 2. tazget. cokenType-ysszkey
“mapping.ozder=0, 1,2






OEBPS/images/ra-user-view.png
Administrator Interface

UiD edmin
Name _[RA Administrator
[Email __[dackey@redhat.com

[Certificate [MIDTTCCAWgAWEAQIEC TANBGKANKIGSWOBAQUE
|ADEAMRAWHAYDVQQKEXVSZ WRIdWRb21wd XRIciEE
lb21haWi xH{ACBGNVEAMTFUNIcnRpZ miYXRIEFL
|dGhvemI0eTACFWOWOTALMTkXNDQYMjFaFWOXMDAL
IMTINDQYMjFaMHUXHIACBGNVEASTFVJIZ GILZ GNY
lbXB1dGVyIERVbWFpblERMEEGCSqGSIbIDQEIARYS
[2GxhY2tleUBYZWRoYXQUY2SEMRUWEWYKCZImiZPy
LG QBARMFYWRtaWA xG TAXEGNVBAMTEFJBIEFKbW

2 XNOCmFOb3iwgZ ewDQYJKoZIhvecNAQEEEQADGYOA
IMIGJA0GEAKAZhXY+ WErMIpxNOZbHC2TLCTmeE +bg
l0dPWED2ueqZECEKEAWS-+1Byzm +4gImRTAICM +UG
1L04Q3F5VaAb2qrxgANZUNG CFZ1f5C0dUVIO26
|veqiafaNm2ej4 uEgFiFaliHG XIk7ek1vjvPkQe
lUEKOpgkqTCOS6AIOX0VAAGMBAAGIgRAWGZ OwHYD
[VROJEE gwFoAULXd kEBEm TXFGS 3AT2UBKPS yiw
|SWYIKWYBBQUHAQEEPZAIMDSGCCsGAQUFBZABhI90
|dHRwOIBVd2lsYnVyLnZ GJ1Z GNVbXBLGVyL mxv
[Y2FSOjlODAVY2EVb2NZCDAOBGNVHQEEATEEBAMC
[BPAWHQYDVROIBBYWFAYIKWYBBQUHAWIGCCSGAQUF
[BWMEMAOGCSqGSIb3DQEBEQUAAAIBAQCTObNmINLSa
180gPNSCYnFTUCELN1NWSGZN3vsvXgeV-+3Weh
l0V6HY)xifazie7h2gDsP]X1WgTOOPSU2KDLWG7m
[2C-+StDVUNisSYMVeTYve +qDziD2xroziMODEZN3E
0£71p4 5 Xeeon2wKpTiLC VW ohajkQnOuxqfksDZI
r0T/srdU7 fGlkzkpKuS c2rma nHaJES xasNVpXFT
/RACC7S1vDAPGDP+06HxN1HWRWZ gizyoxs2Ddma
[2lyLF20CvcRagVljzYAIZjEXkZ MAIQEEFOC THm6
jvQIxP0q4 TIRPORKNMapzOUNRZ yNwaJHm/BM7vyZ
[yvzhlpuzaToc

[Delete]





OEBPS/images/tps-profile-submit.png
“false L
saversion=1] g

[(save | [(Cancel | [ SubmitForApproval | [ Delete |






OEBPS/Common_Content/images/11.png





OEBPS/images/tps-profile-review.png
Red Hat® TPS Services

Main Menu : Agent Operations : Profile Review and Approval

UID:admin

Use this form to select profiles for review.
Select an item in the drop-down mem below and click "Review"

Profie: userkey S

Review | [ Cancel






OEBPS/images/crl-extensions.png
Console Edit View Help

Configuration

Redl Hat Certiicate Systern:9443 *|"CRL Extensions Management
Users and Groups

Access Control List Ruie || Eayw
Log Enabled -

System Keys and Certiicates | | DeltaCRLinicator Disabled
Authentication IssuerAlternativeNarne Disabled
o Job Scheculer InvalidityDate Enabled
¢ Certficate Manager AuthorityKeyidenifier Disabled
Policies FreshestCRL Disabled
Certicate Profiles CRiNemper Ensbled

Notification
L o IssuingDistribuionPoint |Disabled
- Haldlnstruction Disabled

CRL Extensions
o Publishing






OEBPS/images/ra-group-member.png
‘ Red Hat® Certificate System

Administrator Interface

[GID__[rdu-agents
[Name [Raleigh Agents

Delete This Group

Members






OEBPS/images/19chver.png
Engineering CA

Trusted authority
Certificate

Check validity period and verify that

Certificate Issued this is signed by Engineering CA.

by Engineering CA Since Engineering CA s trusted,
verification stops here,

Program verifying the certificate





OEBPS/images/acl2.png
ACI Editor ()

Access () allow  ® Deny

Rights: [Tead
modify

Syntax:

oI D]

Click a labeled component for a help description

oK Cancel Help






OEBPS/images/profile-desc.png
Certificate Profile Information:

Certificate Profile Id: caUserCert

Certificate Profie Name:  Manual User Dual-Use Certificate Enrollment
Description: This certificate profile is for enrolling user certificates.
End User Certificate Profile: true

Approved: true

Approved By: admin





OEBPS/images/publisher4b.png
Publisher. Editor.

Publisher ID: [OCSPPublisher

Publisher Plugin ID: OCSPPublisher

host [ocsp.example.com
port [11446
path [jocsp/ee/ocsp/addCRL

enableclientAuth []

nickName [subsystemCert cert-pki-ca

oK cancel Help






OEBPS/images/ra-user-delete.png
[0£721p45 Xeeon2wKpTiLCVWA ohakQnouxafiksDZI
r0T/srdU7fGlkzkpKuS c2rma nHajSxasNVpXFT
/RACC751vDAPGDP +06txN1HWRWZ gizyoxs2Ddma
[2lyLF20CvcRagVljzYAIEXkZ mAIQIEEFOC 1Hm6
jvQIxP0q4 TIRPORKNMapzOUNRZ yNwaJHm/BM7vyZ
[wzhlpnzaTos

[Delete]





OEBPS/images/selinux-port.png
SELinux Administration

Ele Help

Select:
Status

Boolean
File Labeling,
User Mapping
SELinux User
Translation

Network Port

Policy Module

* L B

Add  Properties  Delete

[ Group view

Fiter |
ST ey MIMES
e

o [ sss7
TN - ssas
———— - 559
——— - sn
AT epw— 100
ik w s sas3
iy, w s saas
iy, w s sass
S @ o701






OEBPS/Common_Content/images/9.png





OEBPS/Common_Content/scripts/menu.js
/* global window document labels lang_menu_2_div hljs */
var docs = (function(docs){
    /*
     * NOTE: The docs module will not work properly unless the init function is called, as the jQuery object is dynamically
     * loaded using requirejs.
     */
    var jQuery = window.jQuery;
    var listeners = [];
    var ready = false;

    // BEGIN UTIL FUNCTIONS
    docs.utils = (function() {
        var exports = {};

        exports.setCookie = function(name, value, expires, path, domain, secure) {
            document.cookie = name + "=" + value +
            ((expires) ? ";expires=" + expires.toGMTString() : "") +
            ((path) ? ";path=" + path : "");
            // +
            //		((domain) ? ";domain=" + domain : "") +
            //		((secure) ? ";secure" : "");
        };

        exports.isSafari = function() {
            return navigator.userAgent.indexOf("Safari") != -1 && navigator.userAgent.indexOf("Chrome") == -1;
        };

        exports.scrollToTarget = function() {
            if (jQuery(window.location.hash).length > 0) {
                jQuery('html, body').animate({ scrollTop: jQuery(window.location.hash).offset().top}, 1000);
            }
        };

        exports.getCurrentPageName = function() {
            return window.location.href.substr(window.location.href.lastIndexOf("/") + 1);
        };

        exports.escapeElementId = function(elem) {
            return elem.replace('&', '\\&');
        };

        return exports;
    }());
    // END UTIL FUNCTIONS

    // BEGIN TOC FUNCTIONS
    docs.toc = (function(utils) {
        var num_days = 7;
        var name_menu = window.location.hostname + '-publican-menu';

        function init() {
            // New toc
            var navigation = jQuery('#navigation');
            if (navigation.is(":visible")) {
                initNewToc(navigation);
            }

            // Old selectbox toc
            var docToc = jQuery(".doctoc");
            if (docToc.is(":visible")) {
                initOldToc(docToc);
            }
        }

        function initOldToc(docToc) {
            checkToc();
            docToc.load('index.html .toc:eq(0)', function () {
                loadDocNav();
            });
            utils.scrollToTarget();
        }

        function initNewToc(navigation) {
            navigation.load('index.html div > div.toc:eq(0), section > div.toc:eq(0)', function () {
                // Add the close button and bind the click event
                var tocButton = jQuery('<button class="menu-toggle"><span></span></button>');
                navigation.append(tocButton);
                tocButton.click(function (e) {
                    toggleToc();
                });

                // Check the saved state and apply the toc styling
                styleToc();
                checkToc();

                // Safari has a bug in getBoundingClientRect that needs the page to be loaded to return valid info.
                if (utils.isSafari()) {
                    jQuery(window).load(function () {
                        styleToc();
                    });
                }
            });

            jQuery(window).scroll(function (e) {
                styleToc();
            }).resize(function (e) {
                styleToc();
            });

            // Add a mechanism to handle the the main menu dropdowns.
            // TODO: This is hacky and a better way should be found to handle this.
            jQuery('.primary-nav a').on('click', function () {
                setTimeout(function () {
                    styleToc();
                }, 600);
            });
        }

        function loadDocNav() {
            var topDocNav = getTopDocNav();
            var bottomDocNav = getBottomDocNav();

            updateDocNavItems(utils.getCurrentPageName(), topDocNav, bottomDocNav);

            var onChange = function () {
                var currentPage = utils.getCurrentPageName();
                var newSelection = jQuery(this).val();
                window.location = newSelection;
                if (newSelection.indexOf(currentPage) === 0) {
                    updateDocNavItems(newSelection, getTopDocNav(), getBottomDocNav());
                }
            };
            topDocNav.change(onChange);
            bottomDocNav.change(onChange);
        }

        function updateDocNavItems(filename, topDocNav, bottomDocNav) {
            topDocNav.val(filename);
            bottomDocNav.val(filename);
        }

        function getTopDocNav() {
            return jQuery(".docnav.top").find(".pageSelect");
        }

        function getBottomDocNav() {
            return jQuery(".docnav.bottom").find("select");
        }

        function styleToc() {
            /* NOTE: We need to use an absolute position due to the portal adding content (ie outage messages), which then makes the toc overlap
             * that. There is a minor effect of some flickering, but it's minimal and currently the best situation since no events are fired by the
             * portal to say it's finished.
             */
            var nav = jQuery('#navigation');
            var navToc = nav.find('.toc');

            var main = jQuery('#legacy-portal');
            var main_rect = main[0].getBoundingClientRect();
            var main_height = main.height();
            var main_bottom = main_rect.bottom;
            var main_top = main_rect.top;

            var my_top = main.offset().top - jQuery('#main').offset().top + 5;
            var height = main_height - 5;
            var pos = "absolute";
            if (main_top <= 0) {
                my_top = 0;
                pos = "fixed";
            }

            if (navToc.is(':visible')) {
                if (pos === "fixed") {
                    if (height > ((window.innerHeight || document.documentElement.clientHeight) - my_top)) {
                        height = (window.innerHeight || document.documentElement.clientHeight) - my_top;
                    }

                    if (my_top + height > main_bottom) {
                        height = main_bottom - my_top;
                    }
                } else {
                    if (height > ((window.innerHeight || document.documentElement.clientHeight) - main_top)) {
                        height = (window.innerHeight || document.documentElement.clientHeight) - main_top - 5;
                    }

                    if (height > main_bottom) {
                        height = main_bottom;
                    }
                }

                nav.attr('style', 'top: ' + my_top + 'px !important; height: ' + height + 'px; position: ' + pos);
                navToc.attr('style', 'top: 0px !important; height: ' + height + 'px;');
            } else {
                nav.attr('style', 'top: ' + my_top + 'px !important; height: 0px; position: ' + pos);
            }
        }

        function checkToc() {
            if (document.cookie) {
                var cookies = document.cookie.split(/ *; */);
                for (var i = 0; i < cookies.length; i++) {
                    var current_c = cookies[i].split("=");
                    if (current_c[0] == name_menu) {
                        var menu_status = current_c[1];
                        if (menu_status == "closed") {
                            hideToc();
                        }
                        break;
                    }
                }
            }
        }

        function toggleToc() {
            if (jQuery("#navigation .toc").is(':visible')) {
                hideToc();
            } else {
                showToc();
            }
        }

        function hideToc() {
            var nav = jQuery("#navigation");
            nav.find("button").addClass("tocClosed");
            nav.find(".toc").hide();
            jQuery("#main").addClass('noLtoc');
            styleToc();

            var expDate = new Date();
            expDate.setDate(expDate.getDate() + num_days);
            utils.setCookie(name_menu, 'closed', expDate, '/', false, false);
        }

        function showToc() {
            var nav = jQuery("#navigation");
            nav.find("button").removeClass("tocClosed");
            nav.find(".toc").show();
            jQuery("#main").removeClass('noLtoc');
            styleToc();

            var expDate = new Date();
            expDate.setDate(expDate.getDate() + num_days);
            utils.setCookie(name_menu, 'open', expDate, '/', false, false);
        }

        return {
            init: init,
            toggleToc: toggleToc,
            getTopDocNav: getTopDocNav,
            getBottomDocNav: getBottomDocNav
        };
    }(docs.utils));
    // END TOC FUNCTIONS

    // BEGIN BREADCRUMB FUNCTIONS
    docs.breadcrumbs = (function(labels, utils) {
        var work = 1;

        function init(current_product, current_version, current_book) {
            var support_label = labels["trans_strings"]["Support"];
            var doc_label = labels["trans_strings"]["Product_Documentation"];

            // Create the very basic breadcrumb array
            var doc_array = [doc_label];
            var breadcrumbs = [
                [support_label, "/support/"],
                doc_array
            ];

            // Create the base breadcrumb, which will later be replaced with the extended version
            if (typeof current_product != "undefined" && current_product != '') {
                var prod_label = getProductLabel(current_product);
                var prod_array = [prod_label];
                breadcrumbs.push(prod_array);

                doc_array[1] = "../";

                if (typeof current_version != "undefined" && current_version != '') {
                    var version_label = getVersionLabel(current_product, current_version);
                    var version_array = [version_label];
                    breadcrumbs.push(version_array);

                    doc_array[1] = "../../";
                    prod_array[1] = "../";

                    if (typeof current_book != "undefined" && current_book != '') {
                        doc_array[1] = "../../../../";
                        prod_array[1] = "../../../";
                        version_array[1] = "../../";

                        var book_label = getBookLabel(current_product, current_version, current_book);
                        breadcrumbs.push([book_label]);
                    }
                }
            }

            window.breadcrumbs = breadcrumbs;
        }

        function getProductLabel(current_product) {
            if (current_product !== 'Products') {
                return labels[current_product]["label"];
            } else {
                return labels["trans_strings"]["Products"];
            }
        }

        function getVersionLabel(current_product, current_version) {
            if (current_version !== 'Versions') {
                return labels[current_product][current_version]["label"];
            } else {
                return labels["trans_strings"]["Versions"];
            }
        }

        function getBookLabel(current_product, current_version, current_book) {
            if (current_book !== 'Books') {
                return labels[current_product][current_version][current_book]["label"];
            } else {
                return labels["trans_strings"]["Books"];
            }
        }

        function loadMenus(toc_path, current_product, current_version, current_book) {
            var breadcrumbs = jQuery("#breadcrumbs");

            // Add a small timeout, to try to fix the items not loading
            setTimeout(function () {
                // We only care about fixing up the default breadcrumbs if we have a current product
                if (typeof current_product !== "undefined" && current_product != '') {
                    // Build the new breadcrumbs html
                    var html = jQuery(buildHTML(toc_path, current_product, current_version, current_book));

                    // Remove the dummy Product Documentation text node
                    var breadcrumbsDiv = breadcrumbs.get(0);
                    while (breadcrumbsDiv.childNodes.length > 1) {
                        breadcrumbsDiv.removeChild(breadcrumbsDiv.lastChild);
                    }

                    // Add the new breadcrumbs
                    breadcrumbs.append(html);

                    // Add a small timeout, to try to fix the items not loading
                    // Load and add the hover menus
                    loadMenu("product_menu", toc_path + "/products_menu.html");
                    loadMenu("version_menu", toc_path + '/' + current_product + "/versions_menu.html");
                    if (typeof current_version !== "undefined" && current_version != '') {
                        loadMenu("book_menu", toc_path + '/' + current_product + '/' + current_version + '/' + "/books_menu.html");
                        if (typeof current_book != "undefined" && current_book != '') {
                            loadMenu("book_lang_menu", toc_path + '/' + current_product + '/' + current_version + '/' + current_book + "/lang_menu.html");
                            loadMenu("book_format_menu", toc_path + '/' + current_product + '/' + current_version + '/' + current_book + "/format_menu.html", true);
                        }
                    }
                }

                // For splash pages the language menu is loaded in a global javascript variable
                if (typeof lang_menu_2_div != "undefined" && lang_menu_2_div != '') {
                    breadcrumbs.append(lang_menu_2_div);
                    bindMouseEvents(breadcrumbs, 'lang_menu_2', 'lang_menu_list');
                }

                bindMenuEvents(breadcrumbs, current_version, current_book);
            }, 500);
        }

        function buildHTML(toc_path, current_product, current_version, current_book) {
            // Get the labels
            var prod_label = getProductLabel(current_product);

            // Convert the default menu into something we can use
            var html = '<a href="' + toc_path + '/index.html">' + labels["trans_strings"]["Product_Documentation"] + '</a>';
            html += '<div id="product_menu"><div>' + prod_label + '</div></div>';
            if (typeof current_version !== "undefined" && current_version !== '') {
                var version_label = getVersionLabel(current_product, current_version);
                html += '<div id="version_menu"><div>' + version_label + '</div></div>';
                if (typeof current_book !== "undefined" && current_book !== '') {
                    var book_label = getBookLabel(current_product, current_version, current_book);
                    html += '<div id="book_menu"><div>' + book_label + '</div></div>';

                    if (current_book !== 'Books') {
                        html += '<div id="left-menu"><div id="book_format_menu"><div>' + labels["trans_strings"]["Formats"] + '</div></div>';
                        html += '<div id="book_lang_menu"></div></div>';
                    }
                }
            }
            return html;
        }

        // Setup the menu expand/retract listeners
        function bindMenuEvents(breadcrumbs, current_version, current_book) {
            bindMouseEvents(breadcrumbs, 'product_menu', 'product_menu_list');

            if (typeof current_version !== "undefined" && current_version !== '') {
                bindMouseEvents(breadcrumbs, 'version_menu', 'version_menu_list');

                if (typeof current_book !== "undefined" && current_book !== '') {
                    bindMouseEvents(breadcrumbs, 'book_menu', 'book_menu_list');

                    if (current_book !== 'Books') {
                        bindMouseEvents(breadcrumbs, 'book_format_menu', 'book_format_menu_list');
                        bindMouseEvents(breadcrumbs, 'book_lang_menu', 'book_lang_menu_list');
                    }
                }
            }
        }

        function bindMouseEvents(parent_ele, id, menu_id) {
            var menu_ele = jQuery('#' + id, parent_ele);
            menu_ele.on('mouseout', function () {
                work = 1;
                retractMenu(menu_id);
            });
            menu_ele.on('mouseover', function () {
                work = 1;
                expandMenu(menu_id);
            });
        }

        function loadMenu(id, url, replace) {
            jQuery.get(url, function(data) {
                if (replace) {
                    jQuery('#' + id).html(data);
                } else {
                    jQuery('#' + id).append(data);
                }
            });
        }

        function expandMenu(id) {
            if (work) {
                work = 0;
                var entity = document.getElementById(id);
                if (entity) {
                    var my_class = entity.className;
                    var my_parent = entity.parentNode;
                    if (my_class.indexOf("hidden") != -1) {
                        entity.className = my_class.replace(/hidden/, "visible");
                        my_parent.className = my_parent.className.replace(/collapsed/, "expanded");
                    }
                }
            }
        }

        function retractMenu(id) {
            if (work) {
                work = 0;
                var entity = document.getElementById(id);
                if (entity) {
                    var my_class = entity.className;
                    var my_parent = entity.parentNode;
                    if (my_class.indexOf("visible") != -1) {
                        entity.className = my_class.replace(/visible/, "hidden");
                        my_parent.className = my_parent.className.replace(/expanded/, "collapsed");
                    }
                }
            }
        }

        return {
            init: init,
            loadMenus: loadMenus,
            expandMenu: expandMenu,
            retractMenu: retractMenu
        };
    }(window.labels, docs.utils));
    // END BREADCRUMBS FUNCTIONS

    // START ANALYTICS FUNCTIONS
    docs.analytics = (function() {
        function runAnalytics(ajq) {
            /*
             var pkBaseUrl = (('https:' == document.location.protocol) ? 'https://engstats.redhat.com/piwik/' : 'http://engstats.redhat.com/piwik/');
             var pkUrl = pkBaseUrl + 'piwik.js';
             ajq('body').append('<noscript><p><img src="https://engstats.redhat.com/piwik/piwik.php?idsite=3" style="border:0" alt="" /></p></noscript>');
             require([pkUrl], function() {
             try {
             var piwikTracker = Piwik.getTracker(pkBaseUrl + 'piwik.php', 3);
             if (document.location.hostname == 'access.redhat.com') {
             piwikTracker.trackPageView();
             piwikTracker.enableLinkTracking();
             }
             } catch(err) {}
             });
             */
        }

        return {
            runAnalytics: runAnalytics
        };
    }());
    // END ANALYTICS FUNCTIONS

    // START SPLASH PAGE FUNCTIONS
    docs.splash_page = (function(utils) {
        function init() {
            jQuery(window).bind('hashchange', function () {
                if (window.location.hash === "") {
                    // activate the default section
                } else {
                    //Grab what is after the # from the url bar and remove the #
                    var anchorid = window.location.hash.replace("#", "");
                    var id = anchorid;
                    if (anchorid.match("_")) {
                        id = id.replace(/_.*/g, '');
                    }
                    activateElement2(id + '-selector');
                    activateElement(id + '-categories');
                    activateElement(id);
                    if (anchorid.match("_")) {
                        activateElement2(anchorid, 1);
                    }
                }
            });
            jQuery(window).trigger('hashchange');
        }

        function _activateElement(ele) {
            ele.addClass('active');
            ele.removeClass('hidden');
            ele.siblings().addClass('hidden');
            ele.siblings().removeClass('active');
        }

        function activateElement(elem) {
            _activateElement(jQuery('#' + utils.escapeElementId(elem)));
        }

        function activateElement2(elem, focus) {
            var ele = jQuery('#' + utils.escapeElementId(elem));
            ele.addClass('active');
            ele.siblings().removeClass('active');
            if (focus) {
                jQuery('html,body').animate({scrollTop: ele.offset().top},'slow');
            }
        }

        function activateParentElement(elem) {
            _activateElement(jQuery('#' + utils.escapeElementId(elem)).parent());
        }

        function resetCategories(categ, vers, me) {
            categ = utils.escapeElementId(categ);
            vers = utils.escapeElementId(vers);
            jQuery('#' + categ).children().removeClass('active');
            jQuery(me).addClass('active');
            jQuery('#' +vers).children().removeClass('active');
            jQuery('#' +vers).children().removeClass('hidden');
        }

        return {
            init: init,
            activateElement: activateElement,
            activateElement2: activateElement2,
            activateParentElement: activateParentElement,
            resetCategories: resetCategories
        }
    }(docs.utils));
    // END SPLASH PAGE FUNCTIONS

    function _init(ajq) {
        // Update the JQuery reference, as jquery may only have been loaded during this call
        jQuery = ajq;

        // The docs module is now ready so fire an event
        fireReady();
    }

    function fireReady() {
        if (!ready) {
            ready = true;

            // Fire the ready event to any listeners
            for (var i = 0; i < listeners.length; i++) {
                listeners[i]();
            }
        }
    }

    docs.whenReady = function(callback) {
        if (ready) {
            callback();
        } else {
            listeners.push(callback);
        }
    };

    docs.isReady = function() {
        return ready;
    };

    docs.init = function(toc_path, current_product, current_version, current_book) {
        // Set the siteMapState variable so that the main tab is highlighted
        window.siteMapState = "products & services";

        // Build the core breadcrumbs window object
        docs.breadcrumbs.init(current_product, current_version, current_book);

        // Load the rest of the content when the chroming is ready
        chrometwo_require(['jquery', 'chrome_lib'], function (ajq, lib) {
            // Init the internals
            _init(ajq);

            // Initialise the table of contents
            docs.toc.init();

            // Enable highlighting
            if (typeof hljs !== "undefined") {
                ajq('pre[class*="language-"]').each(function (i, block) {
                    hljs.highlightBlock(block);
                });
            }

            // Load the breadcrumbs menu items
            lib.whenBreadcrumbsReady(function() {
                docs.breadcrumbs.loadMenus(toc_path, current_product, current_version, current_book);
            });
        });
    };

    docs.init_splash_page = function() {
        chrometwo_require(['jquery'], function (ajq) {
            // Init the internals
            _init(ajq);

            // Export some functions to the window, since the templates use window based functions
            window.activateElement = docs.splash_page.activateElement;
            window.activateElement2 = docs.splash_page.activateElement2;
            window.activateParentElement = docs.splash_page.activateParentElement;
            window.resetCategories = docs.splash_page.resetCategories;

            // Initialise the splash page functionality
            docs.splash_page.init();
        });
    };

    // Export some functions to the window for legacy purposes
    window.initializeBreadcrumbs = docs.init;
    window.runAnalytics = docs.analytics.runAnalytics;

    // jQuery may already be available, if that's the case then fire the ready event
    if (typeof jQuery !== 'undefined') {
        fireReady();
    }

    return docs;
}({}));



OEBPS/images/self-test.png
- Certificate System

BN Red Hat Certificate System 9445 Internal Database Self Tests
&Y Users and Groups
@] Access Control List el s

Log
@ System Keys and Certificates
@ Authentication
&G Job Scheduler
o (3 Certficate Manager

Run self tests specified on-demand:






OEBPS/images/user3.png
Edit User Information ()

User ID: [TrustedCA
Full name: [server.example.com

oK. Cancel Help






OEBPS/images/mmc-snapin.png
Descrption
“The Cericates snap-n allows you to browse the corterts of the:
certicate storesfor yourseF, 2 senvie, or  computer.

[ ) B






OEBPS/Common_Content/images/17.png





OEBPS/images/take-off-hold.png
Red Hat” Agent Services

Certificate Manager

search for

Search Results

Issuer: CN=Certificate Authority,0=Example Domain

Total number of records found: 1

Serial number  Subject name
mith.
0x0000000f ontent services, OU=people, C=us
Version Certificate Type.
3 X509
—— Not valid before
[(Detas |
== 47292010 18:19:25
— Issued on
[orr voia |
e 47292010 18:19:56
Revoked on

4/29/2010 18:34:39
Revocation Reason
Certicate is on hold

=ismith@example.com, CN=John Smith, OU=engineering,

Subject public key algorithm
PKCS #1 RSA with 512-bit key
Not valid after

10/26/2010 18:19:25

Issued by

admin

Revoked by

admin





OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BoldItalic.eot


OEBPS/Common_Content/images/yellow.png





OEBPS/Common_Content/images/27.png





OEBPS/images/access.png
Agent
EE Ports hgent

HTTP
HTTPS
HTTPS

End-entity
registration
services.
(HTML forms)

Browsers, Browsers
SmartCards and

other products

End Enti

Agents

Administration
Port

HTTPS

Red Hat
Console/.
€S window.

Java
application

Administrators





OEBPS/images/cert-wizard-renew.png
Key-Pair Information for the OCSP Signing Certificate

Select the token (cryptographic device) on which to generate the key.
pair

finternal

Specify which key pair to use for this request.

® Use existing key pair

Create new key pair





OEBPS/images/crlhttp3.png
~ Publisher Editor.

(CriFilePublisher

FileBasedPublisher

Publisher I

Publisher Plugin I

directory [/var/iib/pki-ca/webapps/ca/ee cajcr]

Filename.der

Filename.b64 []

timeStamp |LocalTime -

latestCriLink
alLinkext

2ipCRLs

zipLevel [9 -

Name extension used by link to the latest CRL
Default name extension is 'der

oK. Cancel Help






OEBPS/Common_Content/images/stock-go-back.png





OEBPS/images/ra-newagent-approve1.png





OEBPS/Common_Content/scripts/jquery-1.7.1.min.js
/*! jQuery v1.7.1 jquery.com | jquery.org/license */
(function(a,b){function cy(a){return f.isWindow(a)?a:a.nodeType===9?a.defaultView||a.parentWindow:!1}function cv(a){if(!ck[a]){var b=c.body,d=f("<"+a+">").appendTo(b),e=d.css("display");d.remove();if(e==="none"||e===""){cl||(cl=c.createElement("iframe"),cl.frameBorder=cl.width=cl.height=0),b.appendChild(cl);if(!cm||!cl.createElement)cm=(cl.contentWindow||cl.contentDocument).document,cm.write((c.compatMode==="CSS1Compat"?"<!doctype html>":"")+"<html><body>"),cm.close();d=cm.createElement(a),cm.body.appendChild(d),e=f.css(d,"display"),b.removeChild(cl)}ck[a]=e}return ck[a]}function cu(a,b){var c={};f.each(cq.concat.apply([],cq.slice(0,b)),function(){c[this]=a});return c}function ct(){cr=b}function cs(){setTimeout(ct,0);return cr=f.now()}function cj(){try{return new a.ActiveXObject("Microsoft.XMLHTTP")}catch(b){}}function ci(){try{return new a.XMLHttpRequest}catch(b){}}function cc(a,c){a.dataFilter&&(c=a.dataFilter(c,a.dataType));var d=a.dataTypes,e={},g,h,i=d.length,j,k=d[0],l,m,n,o,p;for(g=1;g<i;g++){if(g===1)for(h in a.converters)typeof h=="string"&&(e[h.toLowerCase()]=a.converters[h]);l=k,k=d[g];if(k==="*")k=l;else if(l!=="*"&&l!==k){m=l+" "+k,n=e[m]||e["* "+k];if(!n){p=b;for(o in e){j=o.split(" ");if(j[0]===l||j[0]==="*"){p=e[j[1]+" "+k];if(p){o=e[o],o===!0?n=p:p===!0&&(n=o);break}}}}!n&&!p&&f.error("No conversion from "+m.replace(" "," to ")),n!==!0&&(c=n?n(c):p(o(c)))}}return c}function cb(a,c,d){var e=a.contents,f=a.dataTypes,g=a.responseFields,h,i,j,k;for(i in g)i in d&&(c[g[i]]=d[i]);while(f[0]==="*")f.shift(),h===b&&(h=a.mimeType||c.getResponseHeader("content-type"));if(h)for(i in e)if(e[i]&&e[i].test(h)){f.unshift(i);break}if(f[0]in d)j=f[0];else{for(i in d){if(!f[0]||a.converters[i+" "+f[0]]){j=i;break}k||(k=i)}j=j||k}if(j){j!==f[0]&&f.unshift(j);return d[j]}}function ca(a,b,c,d){if(f.isArray(b))f.each(b,function(b,e){c||bE.test(a)?d(a,e):ca(a+"["+(typeof e=="object"||f.isArray(e)?b:"")+"]",e,c,d)});else if(!c&&b!=null&&typeof b=="object")for(var e in b)ca(a+"["+e+"]",b[e],c,d);else d(a,b)}function b_(a,c){var d,e,g=f.ajaxSettings.flatOptions||{};for(d in c)c[d]!==b&&((g[d]?a:e||(e={}))[d]=c[d]);e&&f.extend(!0,a,e)}function b$(a,c,d,e,f,g){f=f||c.dataTypes[0],g=g||{},g[f]=!0;var h=a[f],i=0,j=h?h.length:0,k=a===bT,l;for(;i<j&&(k||!l);i++)l=h[i](c,d,e),typeof l=="string"&&(!k||g[l]?l=b:(c.dataTypes.unshift(l),l=b$(a,c,d,e,l,g)));(k||!l)&&!g["*"]&&(l=b$(a,c,d,e,"*",g));return l}function bZ(a){return function(b,c){typeof b!="string"&&(c=b,b="*");if(f.isFunction(c)){var d=b.toLowerCase().split(bP),e=0,g=d.length,h,i,j;for(;e<g;e++)h=d[e],j=/^\+/.test(h),j&&(h=h.substr(1)||"*"),i=a[h]=a[h]||[],i[j?"unshift":"push"](c)}}}function bC(a,b,c){var d=b==="width"?a.offsetWidth:a.offsetHeight,e=b==="width"?bx:by,g=0,h=e.length;if(d>0){if(c!=="border")for(;g<h;g++)c||(d-=parseFloat(f.css(a,"padding"+e[g]))||0),c==="margin"?d+=parseFloat(f.css(a,c+e[g]))||0:d-=parseFloat(f.css(a,"border"+e[g]+"Width"))||0;return d+"px"}d=bz(a,b,b);if(d<0||d==null)d=a.style[b]||0;d=parseFloat(d)||0;if(c)for(;g<h;g++)d+=parseFloat(f.css(a,"padding"+e[g]))||0,c!=="padding"&&(d+=parseFloat(f.css(a,"border"+e[g]+"Width"))||0),c==="margin"&&(d+=parseFloat(f.css(a,c+e[g]))||0);return d+"px"}function bp(a,b){b.src?f.ajax({url:b.src,async:!1,dataType:"script"}):f.globalEval((b.text||b.textContent||b.innerHTML||"").replace(bf,"/*$0*/")),b.parentNode&&b.parentNode.removeChild(b)}function bo(a){var b=c.createElement("div");bh.appendChild(b),b.innerHTML=a.outerHTML;return b.firstChild}function bn(a){var b=(a.nodeName||"").toLowerCase();b==="input"?bm(a):b!=="script"&&typeof a.getElementsByTagName!="undefined"&&f.grep(a.getElementsByTagName("input"),bm)}function bm(a){if(a.type==="checkbox"||a.type==="radio")a.defaultChecked=a.checked}function bl(a){return typeof a.getElementsByTagName!="undefined"?a.getElementsByTagName("*"):typeof a.querySelectorAll!="undefined"?a.querySelectorAll("*"):[]}function bk(a,b){var c;if(b.nodeType===1){b.clearAttributes&&b.clearAttributes(),b.mergeAttributes&&b.mergeAttributes(a),c=b.nodeName.toLowerCase();if(c==="object")b.outerHTML=a.outerHTML;else if(c!=="input"||a.type!=="checkbox"&&a.type!=="radio"){if(c==="option")b.selected=a.defaultSelected;else if(c==="input"||c==="textarea")b.defaultValue=a.defaultValue}else a.checked&&(b.defaultChecked=b.checked=a.checked),b.value!==a.value&&(b.value=a.value);b.removeAttribute(f.expando)}}function bj(a,b){if(b.nodeType===1&&!!f.hasData(a)){var c,d,e,g=f._data(a),h=f._data(b,g),i=g.events;if(i){delete h.handle,h.events={};for(c in i)for(d=0,e=i[c].length;d<e;d++)f.event.add(b,c+(i[c][d].namespace?".":"")+i[c][d].namespace,i[c][d],i[c][d].data)}h.data&&(h.data=f.extend({},h.data))}}function bi(a,b){return f.nodeName(a,"table")?a.getElementsByTagName("tbody")[0]||a.appendChild(a.ownerDocument.createElement("tbody")):a}function U(a){var b=V.split("|"),c=a.createDocumentFragment();if(c.createElement)while(b.length)c.createElement(b.pop());return c}function T(a,b,c){b=b||0;if(f.isFunction(b))return f.grep(a,function(a,d){var e=!!b.call(a,d,a);return e===c});if(b.nodeType)return f.grep(a,function(a,d){return a===b===c});if(typeof b=="string"){var d=f.grep(a,function(a){return a.nodeType===1});if(O.test(b))return f.filter(b,d,!c);b=f.filter(b,d)}return f.grep(a,function(a,d){return f.inArray(a,b)>=0===c})}function S(a){return!a||!a.parentNode||a.parentNode.nodeType===11}function K(){return!0}function J(){return!1}function n(a,b,c){var d=b+"defer",e=b+"queue",g=b+"mark",h=f._data(a,d);h&&(c==="queue"||!f._data(a,e))&&(c==="mark"||!f._data(a,g))&&setTimeout(function(){!f._data(a,e)&&!f._data(a,g)&&(f.removeData(a,d,!0),h.fire())},0)}function m(a){for(var b in a){if(b==="data"&&f.isEmptyObject(a[b]))continue;if(b!=="toJSON")return!1}return!0}function l(a,c,d){if(d===b&&a.nodeType===1){var e="data-"+c.replace(k,"-$1").toLowerCase();d=a.getAttribute(e);if(typeof d=="string"){try{d=d==="true"?!0:d==="false"?!1:d==="null"?null:f.isNumeric(d)?parseFloat(d):j.test(d)?f.parseJSON(d):d}catch(g){}f.data(a,c,d)}else d=b}return d}function h(a){var b=g[a]={},c,d;a=a.split(/\s+/);for(c=0,d=a.length;c<d;c++)b[a[c]]=!0;return b}var c=a.document,d=a.navigator,e=a.location,f=function(){function J(){if(!e.isReady){try{c.documentElement.doScroll("left")}catch(a){setTimeout(J,1);return}e.ready()}}var e=function(a,b){return new e.fn.init(a,b,h)},f=a.jQuery,g=a.$,h,i=/^(?:[^#<]*(<[\w\W]+>)[^>]*$|#([\w\-]*)$)/,j=/\S/,k=/^\s+/,l=/\s+$/,m=/^<(\w+)\s*\/?>(?:<\/\1>)?$/,n=/^[\],:{}\s]*$/,o=/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g,p=/"[^"\\\n\r]*"|true|false|null|-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g,q=/(?:^|:|,)(?:\s*\[)+/g,r=/(webkit)[ \/]([\w.]+)/,s=/(opera)(?:.*version)?[ \/]([\w.]+)/,t=/(msie) ([\w.]+)/,u=/(mozilla)(?:.*? rv:([\w.]+))?/,v=/-([a-z]|[0-9])/ig,w=/^-ms-/,x=function(a,b){return(b+"").toUpperCase()},y=d.userAgent,z,A,B,C=Object.prototype.toString,D=Object.prototype.hasOwnProperty,E=Array.prototype.push,F=Array.prototype.slice,G=String.prototype.trim,H=Array.prototype.indexOf,I={};e.fn=e.prototype={constructor:e,init:function(a,d,f){var g,h,j,k;if(!a)return this;if(a.nodeType){this.context=this[0]=a,this.length=1;return this}if(a==="body"&&!d&&c.body){this.context=c,this[0]=c.body,this.selector=a,this.length=1;return this}if(typeof a=="string"){a.charAt(0)!=="<"||a.charAt(a.length-1)!==">"||a.length<3?g=i.exec(a):g=[null,a,null];if(g&&(g[1]||!d)){if(g[1]){d=d instanceof e?d[0]:d,k=d?d.ownerDocument||d:c,j=m.exec(a),j?e.isPlainObject(d)?(a=[c.createElement(j[1])],e.fn.attr.call(a,d,!0)):a=[k.createElement(j[1])]:(j=e.buildFragment([g[1]],[k]),a=(j.cacheable?e.clone(j.fragment):j.fragment).childNodes);return e.merge(this,a)}h=c.getElementById(g[2]);if(h&&h.parentNode){if(h.id!==g[2])return f.find(a);this.length=1,this[0]=h}this.context=c,this.selector=a;return this}return!d||d.jquery?(d||f).find(a):this.constructor(d).find(a)}if(e.isFunction(a))return f.ready(a);a.selector!==b&&(this.selector=a.selector,this.context=a.context);return e.makeArray(a,this)},selector:"",jquery:"1.7.1",length:0,size:function(){return this.length},toArray:function(){return F.call(this,0)},get:function(a){return a==null?this.toArray():a<0?this[this.length+a]:this[a]},pushStack:function(a,b,c){var d=this.constructor();e.isArray(a)?E.apply(d,a):e.merge(d,a),d.prevObject=this,d.context=this.context,b==="find"?d.selector=this.selector+(this.selector?" ":"")+c:b&&(d.selector=this.selector+"."+b+"("+c+")");return d},each:function(a,b){return e.each(this,a,b)},ready:function(a){e.bindReady(),A.add(a);return this},eq:function(a){a=+a;return a===-1?this.slice(a):this.slice(a,a+1)},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},slice:function(){return this.pushStack(F.apply(this,arguments),"slice",F.call(arguments).join(","))},map:function(a){return this.pushStack(e.map(this,function(b,c){return a.call(b,c,b)}))},end:function(){return this.prevObject||this.constructor(null)},push:E,sort:[].sort,splice:[].splice},e.fn.init.prototype=e.fn,e.extend=e.fn.extend=function(){var a,c,d,f,g,h,i=arguments[0]||{},j=1,k=arguments.length,l=!1;typeof i=="boolean"&&(l=i,i=arguments[1]||{},j=2),typeof i!="object"&&!e.isFunction(i)&&(i={}),k===j&&(i=this,--j);for(;j<k;j++)if((a=arguments[j])!=null)for(c in a){d=i[c],f=a[c];if(i===f)continue;l&&f&&(e.isPlainObject(f)||(g=e.isArray(f)))?(g?(g=!1,h=d&&e.isArray(d)?d:[]):h=d&&e.isPlainObject(d)?d:{},i[c]=e.extend(l,h,f)):f!==b&&(i[c]=f)}return i},e.extend({noConflict:function(b){a.$===e&&(a.$=g),b&&a.jQuery===e&&(a.jQuery=f);return e},isReady:!1,readyWait:1,holdReady:function(a){a?e.readyWait++:e.ready(!0)},ready:function(a){if(a===!0&&!--e.readyWait||a!==!0&&!e.isReady){if(!c.body)return setTimeout(e.ready,1);e.isReady=!0;if(a!==!0&&--e.readyWait>0)return;A.fireWith(c,[e]),e.fn.trigger&&e(c).trigger("ready").off("ready")}},bindReady:function(){if(!A){A=e.Callbacks("once memory");if(c.readyState==="complete")return setTimeout(e.ready,1);if(c.addEventListener)c.addEventListener("DOMContentLoaded",B,!1),a.addEventListener("load",e.ready,!1);else if(c.attachEvent){c.attachEvent("onreadystatechange",B),a.attachEvent("onload",e.ready);var b=!1;try{b=a.frameElement==null}catch(d){}c.documentElement.doScroll&&b&&J()}}},isFunction:function(a){return e.type(a)==="function"},isArray:Array.isArray||function(a){return e.type(a)==="array"},isWindow:function(a){return a&&typeof a=="object"&&"setInterval"in a},isNumeric:function(a){return!isNaN(parseFloat(a))&&isFinite(a)},type:function(a){return a==null?String(a):I[C.call(a)]||"object"},isPlainObject:function(a){if(!a||e.type(a)!=="object"||a.nodeType||e.isWindow(a))return!1;try{if(a.constructor&&!D.call(a,"constructor")&&!D.call(a.constructor.prototype,"isPrototypeOf"))return!1}catch(c){return!1}var d;for(d in a);return d===b||D.call(a,d)},isEmptyObject:function(a){for(var b in a)return!1;return!0},error:function(a){throw new Error(a)},parseJSON:function(b){if(typeof b!="string"||!b)return null;b=e.trim(b);if(a.JSON&&a.JSON.parse)return a.JSON.parse(b);if(n.test(b.replace(o,"@").replace(p,"]").replace(q,"")))return(new Function("return "+b))();e.error("Invalid JSON: "+b)},parseXML:function(c){var d,f;try{a.DOMParser?(f=new DOMParser,d=f.parseFromString(c,"text/xml")):(d=new ActiveXObject("Microsoft.XMLDOM"),d.async="false",d.loadXML(c))}catch(g){d=b}(!d||!d.documentElement||d.getElementsByTagName("parsererror").length)&&e.error("Invalid XML: "+c);return d},noop:function(){},globalEval:function(b){b&&j.test(b)&&(a.execScript||function(b){a.eval.call(a,b)})(b)},camelCase:function(a){return a.replace(w,"ms-").replace(v,x)},nodeName:function(a,b){return a.nodeName&&a.nodeName.toUpperCase()===b.toUpperCase()},each:function(a,c,d){var f,g=0,h=a.length,i=h===b||e.isFunction(a);if(d){if(i){for(f in a)if(c.apply(a[f],d)===!1)break}else for(;g<h;)if(c.apply(a[g++],d)===!1)break}else if(i){for(f in a)if(c.call(a[f],f,a[f])===!1)break}else for(;g<h;)if(c.call(a[g],g,a[g++])===!1)break;return a},trim:G?function(a){return a==null?"":G.call(a)}:function(a){return a==null?"":(a+"").replace(k,"").replace(l,"")},makeArray:function(a,b){var c=b||[];if(a!=null){var d=e.type(a);a.length==null||d==="string"||d==="function"||d==="regexp"||e.isWindow(a)?E.call(c,a):e.merge(c,a)}return c},inArray:function(a,b,c){var d;if(b){if(H)return H.call(b,a,c);d=b.length,c=c?c<0?Math.max(0,d+c):c:0;for(;c<d;c++)if(c in b&&b[c]===a)return c}return-1},merge:function(a,c){var d=a.length,e=0;if(typeof c.length=="number")for(var f=c.length;e<f;e++)a[d++]=c[e];else while(c[e]!==b)a[d++]=c[e++];a.length=d;return a},grep:function(a,b,c){var d=[],e;c=!!c;for(var f=0,g=a.length;f<g;f++)e=!!b(a[f],f),c!==e&&d.push(a[f]);return d},map:function(a,c,d){var f,g,h=[],i=0,j=a.length,k=a instanceof e||j!==b&&typeof j=="number"&&(j>0&&a[0]&&a[j-1]||j===0||e.isArray(a));if(k)for(;i<j;i++)f=c(a[i],i,d),f!=null&&(h[h.length]=f);else for(g in a)f=c(a[g],g,d),f!=null&&(h[h.length]=f);return h.concat.apply([],h)},guid:1,proxy:function(a,c){if(typeof c=="string"){var d=a[c];c=a,a=d}if(!e.isFunction(a))return b;var f=F.call(arguments,2),g=function(){return a.apply(c,f.concat(F.call(arguments)))};g.guid=a.guid=a.guid||g.guid||e.guid++;return g},access:function(a,c,d,f,g,h){var i=a.length;if(typeof c=="object"){for(var j in c)e.access(a,j,c[j],f,g,d);return a}if(d!==b){f=!h&&f&&e.isFunction(d);for(var k=0;k<i;k++)g(a[k],c,f?d.call(a[k],k,g(a[k],c)):d,h);return a}return i?g(a[0],c):b},now:function(){return(new Date).getTime()},uaMatch:function(a){a=a.toLowerCase();var b=r.exec(a)||s.exec(a)||t.exec(a)||a.indexOf("compatible")<0&&u.exec(a)||[];return{browser:b[1]||"",version:b[2]||"0"}},sub:function(){function a(b,c){return new a.fn.init(b,c)}e.extend(!0,a,this),a.superclass=this,a.fn=a.prototype=this(),a.fn.constructor=a,a.sub=this.sub,a.fn.init=function(d,f){f&&f instanceof e&&!(f instanceof a)&&(f=a(f));return e.fn.init.call(this,d,f,b)},a.fn.init.prototype=a.fn;var b=a(c);return a},browser:{}}),e.each("Boolean Number String Function Array Date RegExp Object".split(" "),function(a,b){I["[object "+b+"]"]=b.toLowerCase()}),z=e.uaMatch(y),z.browser&&(e.browser[z.browser]=!0,e.browser.version=z.version),e.browser.webkit&&(e.browser.safari=!0),j.test(" ")&&(k=/^[\s\xA0]+/,l=/[\s\xA0]+$/),h=e(c),c.addEventListener?B=function(){c.removeEventListener("DOMContentLoaded",B,!1),e.ready()}:c.attachEvent&&(B=function(){c.readyState==="complete"&&(c.detachEvent("onreadystatechange",B),e.ready())});return e}(),g={};f.Callbacks=function(a){a=a?g[a]||h(a):{};var c=[],d=[],e,i,j,k,l,m=function(b){var d,e,g,h,i;for(d=0,e=b.length;d<e;d++)g=b[d],h=f.type(g),h==="array"?m(g):h==="function"&&(!a.unique||!o.has(g))&&c.push(g)},n=function(b,f){f=f||[],e=!a.memory||[b,f],i=!0,l=j||0,j=0,k=c.length;for(;c&&l<k;l++)if(c[l].apply(b,f)===!1&&a.stopOnFalse){e=!0;break}i=!1,c&&(a.once?e===!0?o.disable():c=[]:d&&d.length&&(e=d.shift(),o.fireWith(e[0],e[1])))},o={add:function(){if(c){var a=c.length;m(arguments),i?k=c.length:e&&e!==!0&&(j=a,n(e[0],e[1]))}return this},remove:function(){if(c){var b=arguments,d=0,e=b.length;for(;d<e;d++)for(var f=0;f<c.length;f++)if(b[d]===c[f]){i&&f<=k&&(k--,f<=l&&l--),c.splice(f--,1);if(a.unique)break}}return this},has:function(a){if(c){var b=0,d=c.length;for(;b<d;b++)if(a===c[b])return!0}return!1},empty:function(){c=[];return this},disable:function(){c=d=e=b;return this},disabled:function(){return!c},lock:function(){d=b,(!e||e===!0)&&o.disable();return this},locked:function(){return!d},fireWith:function(b,c){d&&(i?a.once||d.push([b,c]):(!a.once||!e)&&n(b,c));return this},fire:function(){o.fireWith(this,arguments);return this},fired:function(){return!!e}};return o};var i=[].slice;f.extend({Deferred:function(a){var b=f.Callbacks("once memory"),c=f.Callbacks("once memory"),d=f.Callbacks("memory"),e="pending",g={resolve:b,reject:c,notify:d},h={done:b.add,fail:c.add,progress:d.add,state:function(){return e},isResolved:b.fired,isRejected:c.fired,then:function(a,b,c){i.done(a).fail(b).progress(c);return this},always:function(){i.done.apply(i,arguments).fail.apply(i,arguments);return this},pipe:function(a,b,c){return f.Deferred(function(d){f.each({done:[a,"resolve"],fail:[b,"reject"],progress:[c,"notify"]},function(a,b){var c=b[0],e=b[1],g;f.isFunction(c)?i[a](function(){g=c.apply(this,arguments),g&&f.isFunction(g.promise)?g.promise().then(d.resolve,d.reject,d.notify):d[e+"With"](this===i?d:this,[g])}):i[a](d[e])})}).promise()},promise:function(a){if(a==null)a=h;else for(var b in h)a[b]=h[b];return a}},i=h.promise({}),j;for(j in g)i[j]=g[j].fire,i[j+"With"]=g[j].fireWith;i.done(function(){e="resolved"},c.disable,d.lock).fail(function(){e="rejected"},b.disable,d.lock),a&&a.call(i,i);return i},when:function(a){function m(a){return function(b){e[a]=arguments.length>1?i.call(arguments,0):b,j.notifyWith(k,e)}}function l(a){return function(c){b[a]=arguments.length>1?i.call(arguments,0):c,--g||j.resolveWith(j,b)}}var b=i.call(arguments,0),c=0,d=b.length,e=Array(d),g=d,h=d,j=d<=1&&a&&f.isFunction(a.promise)?a:f.Deferred(),k=j.promise();if(d>1){for(;c<d;c++)b[c]&&b[c].promise&&f.isFunction(b[c].promise)?b[c].promise().then(l(c),j.reject,m(c)):--g;g||j.resolveWith(j,b)}else j!==a&&j.resolveWith(j,d?[a]:[]);return k}}),f.support=function(){var b,d,e,g,h,i,j,k,l,m,n,o,p,q=c.createElement("div"),r=c.documentElement;q.setAttribute("className","t"),q.innerHTML="   <link/><table></table><a href='/a' style='top:1px;float:left;opacity:.55;'>a</a><input type='checkbox'/>",d=q.getElementsByTagName("*"),e=q.getElementsByTagName("a")[0];if(!d||!d.length||!e)return{};g=c.createElement("select"),h=g.appendChild(c.createElement("option")),i=q.getElementsByTagName("input")[0],b={leadingWhitespace:q.firstChild.nodeType===3,tbody:!q.getElementsByTagName("tbody").length,htmlSerialize:!!q.getElementsByTagName("link").length,style:/top/.test(e.getAttribute("style")),hrefNormalized:e.getAttribute("href")==="/a",opacity:/^0.55/.test(e.style.opacity),cssFloat:!!e.style.cssFloat,checkOn:i.value==="on",optSelected:h.selected,getSetAttribute:q.className!=="t",enctype:!!c.createElement("form").enctype,html5Clone:c.createElement("nav").cloneNode(!0).outerHTML!=="<:nav></:nav>",submitBubbles:!0,changeBubbles:!0,focusinBubbles:!1,deleteExpando:!0,noCloneEvent:!0,inlineBlockNeedsLayout:!1,shrinkWrapBlocks:!1,reliableMarginRight:!0},i.checked=!0,b.noCloneChecked=i.cloneNode(!0).checked,g.disabled=!0,b.optDisabled=!h.disabled;try{delete q.test}catch(s){b.deleteExpando=!1}!q.addEventListener&&q.attachEvent&&q.fireEvent&&(q.attachEvent("onclick",function(){b.noCloneEvent=!1}),q.cloneNode(!0).fireEvent("onclick")),i=c.createElement("input"),i.value="t",i.setAttribute("type","radio"),b.radioValue=i.value==="t",i.setAttribute("checked","checked"),q.appendChild(i),k=c.createDocumentFragment(),k.appendChild(q.lastChild),b.checkClone=k.cloneNode(!0).cloneNode(!0).lastChild.checked,b.appendChecked=i.checked,k.removeChild(i),k.appendChild(q),q.innerHTML="",a.getComputedStyle&&(j=c.createElement("div"),j.style.width="0",j.style.marginRight="0",q.style.width="2px",q.appendChild(j),b.reliableMarginRight=(parseInt((a.getComputedStyle(j,null)||{marginRight:0}).marginRight,10)||0)===0);if(q.attachEvent)for(o in{submit:1,change:1,focusin:1})n="on"+o,p=n in q,p||(q.setAttribute(n,"return;"),p=typeof q[n]=="function"),b[o+"Bubbles"]=p;k.removeChild(q),k=g=h=j=q=i=null,f(function(){var a,d,e,g,h,i,j,k,m,n,o,r=c.getElementsByTagName("body")[0];!r||(j=1,k="position:absolute;top:0;left:0;width:1px;height:1px;margin:0;",m="visibility:hidden;border:0;",n="style='"+k+"border:5px solid #000;padding:0;'",o="<div "+n+"><div></div></div>"+"<table "+n+" cellpadding='0' cellspacing='0'>"+"<tr><td></td></tr></table>",a=c.createElement("div"),a.style.cssText=m+"width:0;height:0;position:static;top:0;margin-top:"+j+"px",r.insertBefore(a,r.firstChild),q=c.createElement("div"),a.appendChild(q),q.innerHTML="<table><tr><td style='padding:0;border:0;display:none'></td><td>t</td></tr></table>",l=q.getElementsByTagName("td"),p=l[0].offsetHeight===0,l[0].style.display="",l[1].style.display="none",b.reliableHiddenOffsets=p&&l[0].offsetHeight===0,q.innerHTML="",q.style.width=q.style.paddingLeft="1px",f.boxModel=b.boxModel=q.offsetWidth===2,typeof q.style.zoom!="undefined"&&(q.style.display="inline",q.style.zoom=1,b.inlineBlockNeedsLayout=q.offsetWidth===2,q.style.display="",q.innerHTML="<div style='width:4px;'></div>",b.shrinkWrapBlocks=q.offsetWidth!==2),q.style.cssText=k+m,q.innerHTML=o,d=q.firstChild,e=d.firstChild,h=d.nextSibling.firstChild.firstChild,i={doesNotAddBorder:e.offsetTop!==5,doesAddBorderForTableAndCells:h.offsetTop===5},e.style.position="fixed",e.style.top="20px",i.fixedPosition=e.offsetTop===20||e.offsetTop===15,e.style.position=e.style.top="",d.style.overflow="hidden",d.style.position="relative",i.subtractsBorderForOverflowNotVisible=e.offsetTop===-5,i.doesNotIncludeMarginInBodyOffset=r.offsetTop!==j,r.removeChild(a),q=a=null,f.extend(b,i))});return b}();var j=/^(?:\{.*\}|\[.*\])$/,k=/([A-Z])/g;f.extend({cache:{},uuid:0,expando:"jQuery"+(f.fn.jquery+Math.random()).replace(/\D/g,""),noData:{embed:!0,object:"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000",applet:!0},hasData:function(a){a=a.nodeType?f.cache[a[f.expando]]:a[f.expando];return!!a&&!m(a)},data:function(a,c,d,e){if(!!f.acceptData(a)){var g,h,i,j=f.expando,k=typeof c=="string",l=a.nodeType,m=l?f.cache:a,n=l?a[j]:a[j]&&j,o=c==="events";if((!n||!m[n]||!o&&!e&&!m[n].data)&&k&&d===b)return;n||(l?a[j]=n=++f.uuid:n=j),m[n]||(m[n]={},l||(m[n].toJSON=f.noop));if(typeof c=="object"||typeof c=="function")e?m[n]=f.extend(m[n],c):m[n].data=f.extend(m[n].data,c);g=h=m[n],e||(h.data||(h.data={}),h=h.data),d!==b&&(h[f.camelCase(c)]=d);if(o&&!h[c])return g.events;k?(i=h[c],i==null&&(i=h[f.camelCase(c)])):i=h;return i}},removeData:function(a,b,c){if(!!f.acceptData(a)){var d,e,g,h=f.expando,i=a.nodeType,j=i?f.cache:a,k=i?a[h]:h;if(!j[k])return;if(b){d=c?j[k]:j[k].data;if(d){f.isArray(b)||(b in d?b=[b]:(b=f.camelCase(b),b in d?b=[b]:b=b.split(" ")));for(e=0,g=b.length;e<g;e++)delete d[b[e]];if(!(c?m:f.isEmptyObject)(d))return}}if(!c){delete j[k].data;if(!m(j[k]))return}f.support.deleteExpando||!j.setInterval?delete j[k]:j[k]=null,i&&(f.support.deleteExpando?delete a[h]:a.removeAttribute?a.removeAttribute(h):a[h]=null)}},_data:function(a,b,c){return f.data(a,b,c,!0)},acceptData:function(a){if(a.nodeName){var b=f.noData[a.nodeName.toLowerCase()];if(b)return b!==!0&&a.getAttribute("classid")===b}return!0}}),f.fn.extend({data:function(a,c){var d,e,g,h=null;if(typeof a=="undefined"){if(this.length){h=f.data(this[0]);if(this[0].nodeType===1&&!f._data(this[0],"parsedAttrs")){e=this[0].attributes;for(var i=0,j=e.length;i<j;i++)g=e[i].name,g.indexOf("data-")===0&&(g=f.camelCase(g.substring(5)),l(this[0],g,h[g]));f._data(this[0],"parsedAttrs",!0)}}return h}if(typeof a=="object")return this.each(function(){f.data(this,a)});d=a.split("."),d[1]=d[1]?"."+d[1]:"";if(c===b){h=this.triggerHandler("getData"+d[1]+"!",[d[0]]),h===b&&this.length&&(h=f.data(this[0],a),h=l(this[0],a,h));return h===b&&d[1]?this.data(d[0]):h}return this.each(function(){var b=f(this),e=[d[0],c];b.triggerHandler("setData"+d[1]+"!",e),f.data(this,a,c),b.triggerHandler("changeData"+d[1]+"!",e)})},removeData:function(a){return this.each(function(){f.removeData(this,a)})}}),f.extend({_mark:function(a,b){a&&(b=(b||"fx")+"mark",f._data(a,b,(f._data(a,b)||0)+1))},_unmark:function(a,b,c){a!==!0&&(c=b,b=a,a=!1);if(b){c=c||"fx";var d=c+"mark",e=a?0:(f._data(b,d)||1)-1;e?f._data(b,d,e):(f.removeData(b,d,!0),n(b,c,"mark"))}},queue:function(a,b,c){var d;if(a){b=(b||"fx")+"queue",d=f._data(a,b),c&&(!d||f.isArray(c)?d=f._data(a,b,f.makeArray(c)):d.push(c));return d||[]}},dequeue:function(a,b){b=b||"fx";var c=f.queue(a,b),d=c.shift(),e={};d==="inprogress"&&(d=c.shift()),d&&(b==="fx"&&c.unshift("inprogress"),f._data(a,b+".run",e),d.call(a,function(){f.dequeue(a,b)},e)),c.length||(f.removeData(a,b+"queue "+b+".run",!0),n(a,b,"queue"))}}),f.fn.extend({queue:function(a,c){typeof a!="string"&&(c=a,a="fx");if(c===b)return f.queue(this[0],a);return this.each(function(){var b=f.queue(this,a,c);a==="fx"&&b[0]!=="inprogress"&&f.dequeue(this,a)})},dequeue:function(a){return this.each(function(){f.dequeue(this,a)})},delay:function(a,b){a=f.fx?f.fx.speeds[a]||a:a,b=b||"fx";return this.queue(b,function(b,c){var d=setTimeout(b,a);c.stop=function(){clearTimeout(d)}})},clearQueue:function(a){return this.queue(a||"fx",[])},promise:function(a,c){function m(){--h||d.resolveWith(e,[e])}typeof a!="string"&&(c=a,a=b),a=a||"fx";var d=f.Deferred(),e=this,g=e.length,h=1,i=a+"defer",j=a+"queue",k=a+"mark",l;while(g--)if(l=f.data(e[g],i,b,!0)||(f.data(e[g],j,b,!0)||f.data(e[g],k,b,!0))&&f.data(e[g],i,f.Callbacks("once memory"),!0))h++,l.add(m);m();return d.promise()}});var o=/[\n\t\r]/g,p=/\s+/,q=/\r/g,r=/^(?:button|input)$/i,s=/^(?:button|input|object|select|textarea)$/i,t=/^a(?:rea)?$/i,u=/^(?:autofocus|autoplay|async|checked|controls|defer|disabled|hidden|loop|multiple|open|readonly|required|scoped|selected)$/i,v=f.support.getSetAttribute,w,x,y;f.fn.extend({attr:function(a,b){return f.access(this,a,b,!0,f.attr)},removeAttr:function(a){return this.each(function(){f.removeAttr(this,a)})},prop:function(a,b){return f.access(this,a,b,!0,f.prop)},removeProp:function(a){a=f.propFix[a]||a;return this.each(function(){try{this[a]=b,delete this[a]}catch(c){}})},addClass:function(a){var b,c,d,e,g,h,i;if(f.isFunction(a))return this.each(function(b){f(this).addClass(a.call(this,b,this.className))});if(a&&typeof a=="string"){b=a.split(p);for(c=0,d=this.length;c<d;c++){e=this[c];if(e.nodeType===1)if(!e.className&&b.length===1)e.className=a;else{g=" "+e.className+" ";for(h=0,i=b.length;h<i;h++)~g.indexOf(" "+b[h]+" ")||(g+=b[h]+" ");e.className=f.trim(g)}}}return this},removeClass:function(a){var c,d,e,g,h,i,j;if(f.isFunction(a))return this.each(function(b){f(this).removeClass(a.call(this,b,this.className))});if(a&&typeof a=="string"||a===b){c=(a||"").split(p);for(d=0,e=this.length;d<e;d++){g=this[d];if(g.nodeType===1&&g.className)if(a){h=(" "+g.className+" ").replace(o," ");for(i=0,j=c.length;i<j;i++)h=h.replace(" "+c[i]+" "," ");g.className=f.trim(h)}else g.className=""}}return this},toggleClass:function(a,b){var c=typeof a,d=typeof b=="boolean";if(f.isFunction(a))return this.each(function(c){f(this).toggleClass(a.call(this,c,this.className,b),b)});return this.each(function(){if(c==="string"){var e,g=0,h=f(this),i=b,j=a.split(p);while(e=j[g++])i=d?i:!h.hasClass(e),h[i?"addClass":"removeClass"](e)}else if(c==="undefined"||c==="boolean")this.className&&f._data(this,"__className__",this.className),this.className=this.className||a===!1?"":f._data(this,"__className__")||""})},hasClass:function(a){var b=" "+a+" ",c=0,d=this.length;for(;c<d;c++)if(this[c].nodeType===1&&(" "+this[c].className+" ").replace(o," ").indexOf(b)>-1)return!0;return!1},val:function(a){var c,d,e,g=this[0];{if(!!arguments.length){e=f.isFunction(a);return this.each(function(d){var g=f(this),h;if(this.nodeType===1){e?h=a.call(this,d,g.val()):h=a,h==null?h="":typeof h=="number"?h+="":f.isArray(h)&&(h=f.map(h,function(a){return a==null?"":a+""})),c=f.valHooks[this.nodeName.toLowerCase()]||f.valHooks[this.type];if(!c||!("set"in c)||c.set(this,h,"value")===b)this.value=h}})}if(g){c=f.valHooks[g.nodeName.toLowerCase()]||f.valHooks[g.type];if(c&&"get"in c&&(d=c.get(g,"value"))!==b)return d;d=g.value;return typeof d=="string"?d.replace(q,""):d==null?"":d}}}}),f.extend({valHooks:{option:{get:function(a){var b=a.attributes.value;return!b||b.specified?a.value:a.text}},select:{get:function(a){var b,c,d,e,g=a.selectedIndex,h=[],i=a.options,j=a.type==="select-one";if(g<0)return null;c=j?g:0,d=j?g+1:i.length;for(;c<d;c++){e=i[c];if(e.selected&&(f.support.optDisabled?!e.disabled:e.getAttribute("disabled")===null)&&(!e.parentNode.disabled||!f.nodeName(e.parentNode,"optgroup"))){b=f(e).val();if(j)return b;h.push(b)}}if(j&&!h.length&&i.length)return f(i[g]).val();return h},set:function(a,b){var c=f.makeArray(b);f(a).find("option").each(function(){this.selected=f.inArray(f(this).val(),c)>=0}),c.length||(a.selectedIndex=-1);return c}}},attrFn:{val:!0,css:!0,html:!0,text:!0,data:!0,width:!0,height:!0,offset:!0},attr:function(a,c,d,e){var g,h,i,j=a.nodeType;if(!!a&&j!==3&&j!==8&&j!==2){if(e&&c in f.attrFn)return f(a)[c](d);if(typeof a.getAttribute=="undefined")return f.prop(a,c,d);i=j!==1||!f.isXMLDoc(a),i&&(c=c.toLowerCase(),h=f.attrHooks[c]||(u.test(c)?x:w));if(d!==b){if(d===null){f.removeAttr(a,c);return}if(h&&"set"in h&&i&&(g=h.set(a,d,c))!==b)return g;a.setAttribute(c,""+d);return d}if(h&&"get"in h&&i&&(g=h.get(a,c))!==null)return g;g=a.getAttribute(c);return g===null?b:g}},removeAttr:function(a,b){var c,d,e,g,h=0;if(b&&a.nodeType===1){d=b.toLowerCase().split(p),g=d.length;for(;h<g;h++)e=d[h],e&&(c=f.propFix[e]||e,f.attr(a,e,""),a.removeAttribute(v?e:c),u.test(e)&&c in a&&(a[c]=!1))}},attrHooks:{type:{set:function(a,b){if(r.test(a.nodeName)&&a.parentNode)f.error("type property can't be changed");else if(!f.support.radioValue&&b==="radio"&&f.nodeName(a,"input")){var c=a.value;a.setAttribute("type",b),c&&(a.value=c);return b}}},value:{get:function(a,b){if(w&&f.nodeName(a,"button"))return w.get(a,b);return b in a?a.value:null},set:function(a,b,c){if(w&&f.nodeName(a,"button"))return w.set(a,b,c);a.value=b}}},propFix:{tabindex:"tabIndex",readonly:"readOnly","for":"htmlFor","class":"className",maxlength:"maxLength",cellspacing:"cellSpacing",cellpadding:"cellPadding",rowspan:"rowSpan",colspan:"colSpan",usemap:"useMap",frameborder:"frameBorder",contenteditable:"contentEditable"},prop:function(a,c,d){var e,g,h,i=a.nodeType;if(!!a&&i!==3&&i!==8&&i!==2){h=i!==1||!f.isXMLDoc(a),h&&(c=f.propFix[c]||c,g=f.propHooks[c]);return d!==b?g&&"set"in g&&(e=g.set(a,d,c))!==b?e:a[c]=d:g&&"get"in g&&(e=g.get(a,c))!==null?e:a[c]}},propHooks:{tabIndex:{get:function(a){var c=a.getAttributeNode("tabindex");return c&&c.specified?parseInt(c.value,10):s.test(a.nodeName)||t.test(a.nodeName)&&a.href?0:b}}}}),f.attrHooks.tabindex=f.propHooks.tabIndex,x={get:function(a,c){var d,e=f.prop(a,c);return e===!0||typeof e!="boolean"&&(d=a.getAttributeNode(c))&&d.nodeValue!==!1?c.toLowerCase():b},set:function(a,b,c){var d;b===!1?f.removeAttr(a,c):(d=f.propFix[c]||c,d in a&&(a[d]=!0),a.setAttribute(c,c.toLowerCase()));return c}},v||(y={name:!0,id:!0},w=f.valHooks.button={get:function(a,c){var d;d=a.getAttributeNode(c);return d&&(y[c]?d.nodeValue!=="":d.specified)?d.nodeValue:b},set:function(a,b,d){var e=a.getAttributeNode(d);e||(e=c.createAttribute(d),a.setAttributeNode(e));return e.nodeValue=b+""}},f.attrHooks.tabindex.set=w.set,f.each(["width","height"],function(a,b){f.attrHooks[b]=f.extend(f.attrHooks[b],{set:function(a,c){if(c===""){a.setAttribute(b,"auto");return c}}})}),f.attrHooks.contenteditable={get:w.get,set:function(a,b,c){b===""&&(b="false"),w.set(a,b,c)}}),f.support.hrefNormalized||f.each(["href","src","width","height"],function(a,c){f.attrHooks[c]=f.extend(f.attrHooks[c],{get:function(a){var d=a.getAttribute(c,2);return d===null?b:d}})}),f.support.style||(f.attrHooks.style={get:function(a){return a.style.cssText.toLowerCase()||b},set:function(a,b){return a.style.cssText=""+b}}),f.support.optSelected||(f.propHooks.selected=f.extend(f.propHooks.selected,{get:function(a){var b=a.parentNode;b&&(b.selectedIndex,b.parentNode&&b.parentNode.selectedIndex);return null}})),f.support.enctype||(f.propFix.enctype="encoding"),f.support.checkOn||f.each(["radio","checkbox"],function(){f.valHooks[this]={get:function(a){return a.getAttribute("value")===null?"on":a.value}}}),f.each(["radio","checkbox"],function(){f.valHooks[this]=f.extend(f.valHooks[this],{set:function(a,b){if(f.isArray(b))return a.checked=f.inArray(f(a).val(),b)>=0}})});var z=/^(?:textarea|input|select)$/i,A=/^([^\.]*)?(?:\.(.+))?$/,B=/\bhover(\.\S+)?\b/,C=/^key/,D=/^(?:mouse|contextmenu)|click/,E=/^(?:focusinfocus|focusoutblur)$/,F=/^(\w*)(?:#([\w\-]+))?(?:\.([\w\-]+))?$/,G=function(a){var b=F.exec(a);b&&(b[1]=(b[1]||"").toLowerCase(),b[3]=b[3]&&new RegExp("(?:^|\\s)"+b[3]+"(?:\\s|$)"));return b},H=function(a,b){var c=a.attributes||{};return(!b[1]||a.nodeName.toLowerCase()===b[1])&&(!b[2]||(c.id||{}).value===b[2])&&(!b[3]||b[3].test((c["class"]||{}).value))},I=function(a){return f.event.special.hover?a:a.replace(B,"mouseenter$1 mouseleave$1")};
    f.event={add:function(a,c,d,e,g){var h,i,j,k,l,m,n,o,p,q,r,s;if(!(a.nodeType===3||a.nodeType===8||!c||!d||!(h=f._data(a)))){d.handler&&(p=d,d=p.handler),d.guid||(d.guid=f.guid++),j=h.events,j||(h.events=j={}),i=h.handle,i||(h.handle=i=function(a){return typeof f!="undefined"&&(!a||f.event.triggered!==a.type)?f.event.dispatch.apply(i.elem,arguments):b},i.elem=a),c=f.trim(I(c)).split(" ");for(k=0;k<c.length;k++){l=A.exec(c[k])||[],m=l[1],n=(l[2]||"").split(".").sort(),s=f.event.special[m]||{},m=(g?s.delegateType:s.bindType)||m,s=f.event.special[m]||{},o=f.extend({type:m,origType:l[1],data:e,handler:d,guid:d.guid,selector:g,quick:G(g),namespace:n.join(".")},p),r=j[m];if(!r){r=j[m]=[],r.delegateCount=0;if(!s.setup||s.setup.call(a,e,n,i)===!1)a.addEventListener?a.addEventListener(m,i,!1):a.attachEvent&&a.attachEvent("on"+m,i)}s.add&&(s.add.call(a,o),o.handler.guid||(o.handler.guid=d.guid)),g?r.splice(r.delegateCount++,0,o):r.push(o),f.event.global[m]=!0}a=null}},global:{},remove:function(a,b,c,d,e){var g=f.hasData(a)&&f._data(a),h,i,j,k,l,m,n,o,p,q,r,s;if(!!g&&!!(o=g.events)){b=f.trim(I(b||"")).split(" ");for(h=0;h<b.length;h++){i=A.exec(b[h])||[],j=k=i[1],l=i[2];if(!j){for(j in o)f.event.remove(a,j+b[h],c,d,!0);continue}p=f.event.special[j]||{},j=(d?p.delegateType:p.bindType)||j,r=o[j]||[],m=r.length,l=l?new RegExp("(^|\\.)"+l.split(".").sort().join("\\.(?:.*\\.)?")+"(\\.|$)"):null;for(n=0;n<r.length;n++)s=r[n],(e||k===s.origType)&&(!c||c.guid===s.guid)&&(!l||l.test(s.namespace))&&(!d||d===s.selector||d==="**"&&s.selector)&&(r.splice(n--,1),s.selector&&r.delegateCount--,p.remove&&p.remove.call(a,s));r.length===0&&m!==r.length&&((!p.teardown||p.teardown.call(a,l)===!1)&&f.removeEvent(a,j,g.handle),delete o[j])}f.isEmptyObject(o)&&(q=g.handle,q&&(q.elem=null),f.removeData(a,["events","handle"],!0))}},customEvent:{getData:!0,setData:!0,changeData:!0},trigger:function(c,d,e,g){if(!e||e.nodeType!==3&&e.nodeType!==8){var h=c.type||c,i=[],j,k,l,m,n,o,p,q,r,s;if(E.test(h+f.event.triggered))return;h.indexOf("!")>=0&&(h=h.slice(0,-1),k=!0),h.indexOf(".")>=0&&(i=h.split("."),h=i.shift(),i.sort());if((!e||f.event.customEvent[h])&&!f.event.global[h])return;c=typeof c=="object"?c[f.expando]?c:new f.Event(h,c):new f.Event(h),c.type=h,c.isTrigger=!0,c.exclusive=k,c.namespace=i.join("."),c.namespace_re=c.namespace?new RegExp("(^|\\.)"+i.join("\\.(?:.*\\.)?")+"(\\.|$)"):null,o=h.indexOf(":")<0?"on"+h:"";if(!e){j=f.cache;for(l in j)j[l].events&&j[l].events[h]&&f.event.trigger(c,d,j[l].handle.elem,!0);return}c.result=b,c.target||(c.target=e),d=d!=null?f.makeArray(d):[],d.unshift(c),p=f.event.special[h]||{};if(p.trigger&&p.trigger.apply(e,d)===!1)return;r=[[e,p.bindType||h]];if(!g&&!p.noBubble&&!f.isWindow(e)){s=p.delegateType||h,m=E.test(s+h)?e:e.parentNode,n=null;for(;m;m=m.parentNode)r.push([m,s]),n=m;n&&n===e.ownerDocument&&r.push([n.defaultView||n.parentWindow||a,s])}for(l=0;l<r.length&&!c.isPropagationStopped();l++)m=r[l][0],c.type=r[l][1],q=(f._data(m,"events")||{})[c.type]&&f._data(m,"handle"),q&&q.apply(m,d),q=o&&m[o],q&&f.acceptData(m)&&q.apply(m,d)===!1&&c.preventDefault();c.type=h,!g&&!c.isDefaultPrevented()&&(!p._default||p._default.apply(e.ownerDocument,d)===!1)&&(h!=="click"||!f.nodeName(e,"a"))&&f.acceptData(e)&&o&&e[h]&&(h!=="focus"&&h!=="blur"||c.target.offsetWidth!==0)&&!f.isWindow(e)&&(n=e[o],n&&(e[o]=null),f.event.triggered=h,e[h](),f.event.triggered=b,n&&(e[o]=n));return c.result}},dispatch:function(c){c=f.event.fix(c||a.event);var d=(f._data(this,"events")||{})[c.type]||[],e=d.delegateCount,g=[].slice.call(arguments,0),h=!c.exclusive&&!c.namespace,i=[],j,k,l,m,n,o,p,q,r,s,t;g[0]=c,c.delegateTarget=this;if(e&&!c.target.disabled&&(!c.button||c.type!=="click")){m=f(this),m.context=this.ownerDocument||this;for(l=c.target;l!=this;l=l.parentNode||this){o={},q=[],m[0]=l;for(j=0;j<e;j++)r=d[j],s=r.selector,o[s]===b&&(o[s]=r.quick?H(l,r.quick):m.is(s)),o[s]&&q.push(r);q.length&&i.push({elem:l,matches:q})}}d.length>e&&i.push({elem:this,matches:d.slice(e)});for(j=0;j<i.length&&!c.isPropagationStopped();j++){p=i[j],c.currentTarget=p.elem;for(k=0;k<p.matches.length&&!c.isImmediatePropagationStopped();k++){r=p.matches[k];if(h||!c.namespace&&!r.namespace||c.namespace_re&&c.namespace_re.test(r.namespace))c.data=r.data,c.handleObj=r,n=((f.event.special[r.origType]||{}).handle||r.handler).apply(p.elem,g),n!==b&&(c.result=n,n===!1&&(c.preventDefault(),c.stopPropagation()))}}return c.result},props:"attrChange attrName relatedNode srcElement altKey bubbles cancelable ctrlKey currentTarget eventPhase metaKey relatedTarget shiftKey target timeStamp view which".split(" "),fixHooks:{},keyHooks:{props:"char charCode key keyCode".split(" "),filter:function(a,b){a.which==null&&(a.which=b.charCode!=null?b.charCode:b.keyCode);return a}},mouseHooks:{props:"button buttons clientX clientY fromElement offsetX offsetY pageX pageY screenX screenY toElement".split(" "),filter:function(a,d){var e,f,g,h=d.button,i=d.fromElement;a.pageX==null&&d.clientX!=null&&(e=a.target.ownerDocument||c,f=e.documentElement,g=e.body,a.pageX=d.clientX+(f&&f.scrollLeft||g&&g.scrollLeft||0)-(f&&f.clientLeft||g&&g.clientLeft||0),a.pageY=d.clientY+(f&&f.scrollTop||g&&g.scrollTop||0)-(f&&f.clientTop||g&&g.clientTop||0)),!a.relatedTarget&&i&&(a.relatedTarget=i===a.target?d.toElement:i),!a.which&&h!==b&&(a.which=h&1?1:h&2?3:h&4?2:0);return a}},fix:function(a){if(a[f.expando])return a;var d,e,g=a,h=f.event.fixHooks[a.type]||{},i=h.props?this.props.concat(h.props):this.props;a=f.Event(g);for(d=i.length;d;)e=i[--d],a[e]=g[e];a.target||(a.target=g.srcElement||c),a.target.nodeType===3&&(a.target=a.target.parentNode),a.metaKey===b&&(a.metaKey=a.ctrlKey);return h.filter?h.filter(a,g):a},special:{ready:{setup:f.bindReady},load:{noBubble:!0},focus:{delegateType:"focusin"},blur:{delegateType:"focusout"},beforeunload:{setup:function(a,b,c){f.isWindow(this)&&(this.onbeforeunload=c)},teardown:function(a,b){this.onbeforeunload===b&&(this.onbeforeunload=null)}}},simulate:function(a,b,c,d){var e=f.extend(new f.Event,c,{type:a,isSimulated:!0,originalEvent:{}});d?f.event.trigger(e,null,b):f.event.dispatch.call(b,e),e.isDefaultPrevented()&&c.preventDefault()}},f.event.handle=f.event.dispatch,f.removeEvent=c.removeEventListener?function(a,b,c){a.removeEventListener&&a.removeEventListener(b,c,!1)}:function(a,b,c){a.detachEvent&&a.detachEvent("on"+b,c)},f.Event=function(a,b){if(!(this instanceof f.Event))return new f.Event(a,b);a&&a.type?(this.originalEvent=a,this.type=a.type,this.isDefaultPrevented=a.defaultPrevented||a.returnValue===!1||a.getPreventDefault&&a.getPreventDefault()?K:J):this.type=a,b&&f.extend(this,b),this.timeStamp=a&&a.timeStamp||f.now(),this[f.expando]=!0},f.Event.prototype={preventDefault:function(){this.isDefaultPrevented=K;var a=this.originalEvent;!a||(a.preventDefault?a.preventDefault():a.returnValue=!1)},stopPropagation:function(){this.isPropagationStopped=K;var a=this.originalEvent;!a||(a.stopPropagation&&a.stopPropagation(),a.cancelBubble=!0)},stopImmediatePropagation:function(){this.isImmediatePropagationStopped=K,this.stopPropagation()},isDefaultPrevented:J,isPropagationStopped:J,isImmediatePropagationStopped:J},f.each({mouseenter:"mouseover",mouseleave:"mouseout"},function(a,b){f.event.special[a]={delegateType:b,bindType:b,handle:function(a){var c=this,d=a.relatedTarget,e=a.handleObj,g=e.selector,h;if(!d||d!==c&&!f.contains(c,d))a.type=e.origType,h=e.handler.apply(this,arguments),a.type=b;return h}}}),f.support.submitBubbles||(f.event.special.submit={setup:function(){if(f.nodeName(this,"form"))return!1;f.event.add(this,"click._submit keypress._submit",function(a){var c=a.target,d=f.nodeName(c,"input")||f.nodeName(c,"button")?c.form:b;d&&!d._submit_attached&&(f.event.add(d,"submit._submit",function(a){this.parentNode&&!a.isTrigger&&f.event.simulate("submit",this.parentNode,a,!0)}),d._submit_attached=!0)})},teardown:function(){if(f.nodeName(this,"form"))return!1;f.event.remove(this,"._submit")}}),f.support.changeBubbles||(f.event.special.change={setup:function(){if(z.test(this.nodeName)){if(this.type==="checkbox"||this.type==="radio")f.event.add(this,"propertychange._change",function(a){a.originalEvent.propertyName==="checked"&&(this._just_changed=!0)}),f.event.add(this,"click._change",function(a){this._just_changed&&!a.isTrigger&&(this._just_changed=!1,f.event.simulate("change",this,a,!0))});return!1}f.event.add(this,"beforeactivate._change",function(a){var b=a.target;z.test(b.nodeName)&&!b._change_attached&&(f.event.add(b,"change._change",function(a){this.parentNode&&!a.isSimulated&&!a.isTrigger&&f.event.simulate("change",this.parentNode,a,!0)}),b._change_attached=!0)})},handle:function(a){var b=a.target;if(this!==b||a.isSimulated||a.isTrigger||b.type!=="radio"&&b.type!=="checkbox")return a.handleObj.handler.apply(this,arguments)},teardown:function(){f.event.remove(this,"._change");return z.test(this.nodeName)}}),f.support.focusinBubbles||f.each({focus:"focusin",blur:"focusout"},function(a,b){var d=0,e=function(a){f.event.simulate(b,a.target,f.event.fix(a),!0)};f.event.special[b]={setup:function(){d++===0&&c.addEventListener(a,e,!0)},teardown:function(){--d===0&&c.removeEventListener(a,e,!0)}}}),f.fn.extend({on:function(a,c,d,e,g){var h,i;if(typeof a=="object"){typeof c!="string"&&(d=c,c=b);for(i in a)this.on(i,c,d,a[i],g);return this}d==null&&e==null?(e=c,d=c=b):e==null&&(typeof c=="string"?(e=d,d=b):(e=d,d=c,c=b));if(e===!1)e=J;else if(!e)return this;g===1&&(h=e,e=function(a){f().off(a);return h.apply(this,arguments)},e.guid=h.guid||(h.guid=f.guid++));return this.each(function(){f.event.add(this,a,e,d,c)})},one:function(a,b,c,d){return this.on.call(this,a,b,c,d,1)},off:function(a,c,d){if(a&&a.preventDefault&&a.handleObj){var e=a.handleObj;f(a.delegateTarget).off(e.namespace?e.type+"."+e.namespace:e.type,e.selector,e.handler);return this}if(typeof a=="object"){for(var g in a)this.off(g,c,a[g]);return this}if(c===!1||typeof c=="function")d=c,c=b;d===!1&&(d=J);return this.each(function(){f.event.remove(this,a,d,c)})},bind:function(a,b,c){return this.on(a,null,b,c)},unbind:function(a,b){return this.off(a,null,b)},live:function(a,b,c){f(this.context).on(a,this.selector,b,c);return this},die:function(a,b){f(this.context).off(a,this.selector||"**",b);return this},delegate:function(a,b,c,d){return this.on(b,a,c,d)},undelegate:function(a,b,c){return arguments.length==1?this.off(a,"**"):this.off(b,a,c)},trigger:function(a,b){return this.each(function(){f.event.trigger(a,b,this)})},triggerHandler:function(a,b){if(this[0])return f.event.trigger(a,b,this[0],!0)},toggle:function(a){var b=arguments,c=a.guid||f.guid++,d=0,e=function(c){var e=(f._data(this,"lastToggle"+a.guid)||0)%d;f._data(this,"lastToggle"+a.guid,e+1),c.preventDefault();return b[e].apply(this,arguments)||!1};e.guid=c;while(d<b.length)b[d++].guid=c;return this.click(e)},hover:function(a,b){return this.mouseenter(a).mouseleave(b||a)}}),f.each("blur focus focusin focusout load resize scroll unload click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup error contextmenu".split(" "),function(a,b){f.fn[b]=function(a,c){c==null&&(c=a,a=null);return arguments.length>0?this.on(b,null,a,c):this.trigger(b)},f.attrFn&&(f.attrFn[b]=!0),C.test(b)&&(f.event.fixHooks[b]=f.event.keyHooks),D.test(b)&&(f.event.fixHooks[b]=f.event.mouseHooks)}),function(){function x(a,b,c,e,f,g){for(var h=0,i=e.length;h<i;h++){var j=e[h];if(j){var k=!1;j=j[a];while(j){if(j[d]===c){k=e[j.sizset];break}if(j.nodeType===1){g||(j[d]=c,j.sizset=h);if(typeof b!="string"){if(j===b){k=!0;break}}else if(m.filter(b,[j]).length>0){k=j;break}}j=j[a]}e[h]=k}}}function w(a,b,c,e,f,g){for(var h=0,i=e.length;h<i;h++){var j=e[h];if(j){var k=!1;j=j[a];while(j){if(j[d]===c){k=e[j.sizset];break}j.nodeType===1&&!g&&(j[d]=c,j.sizset=h);if(j.nodeName.toLowerCase()===b){k=j;break}j=j[a]}e[h]=k}}}var a=/((?:\((?:\([^()]+\)|[^()]+)+\)|\[(?:\[[^\[\]]*\]|['"][^'"]*['"]|[^\[\]'"]+)+\]|\\.|[^ >+~,(\[\\]+)+|[>+~])(\s*,\s*)?((?:.|\r|\n)*)/g,d="sizcache"+(Math.random()+"").replace(".",""),e=0,g=Object.prototype.toString,h=!1,i=!0,j=/\\/g,k=/\r\n/g,l=/\W/;[0,0].sort(function(){i=!1;return 0});var m=function(b,d,e,f){e=e||[],d=d||c;var h=d;if(d.nodeType!==1&&d.nodeType!==9)return[];if(!b||typeof b!="string")return e;var i,j,k,l,n,q,r,t,u=!0,v=m.isXML(d),w=[],x=b;do{a.exec(""),i=a.exec(x);if(i){x=i[3],w.push(i[1]);if(i[2]){l=i[3];break}}}while(i);if(w.length>1&&p.exec(b))if(w.length===2&&o.relative[w[0]])j=y(w[0]+w[1],d,f);else{j=o.relative[w[0]]?[d]:m(w.shift(),d);while(w.length)b=w.shift(),o.relative[b]&&(b+=w.shift()),j=y(b,j,f)}else{!f&&w.length>1&&d.nodeType===9&&!v&&o.match.ID.test(w[0])&&!o.match.ID.test(w[w.length-1])&&(n=m.find(w.shift(),d,v),d=n.expr?m.filter(n.expr,n.set)[0]:n.set[0]);if(d){n=f?{expr:w.pop(),set:s(f)}:m.find(w.pop(),w.length===1&&(w[0]==="~"||w[0]==="+")&&d.parentNode?d.parentNode:d,v),j=n.expr?m.filter(n.expr,n.set):n.set,w.length>0?k=s(j):u=!1;while(w.length)q=w.pop(),r=q,o.relative[q]?r=w.pop():q="",r==null&&(r=d),o.relative[q](k,r,v)}else k=w=[]}k||(k=j),k||m.error(q||b);if(g.call(k)==="[object Array]")if(!u)e.push.apply(e,k);else if(d&&d.nodeType===1)for(t=0;k[t]!=null;t++)k[t]&&(k[t]===!0||k[t].nodeType===1&&m.contains(d,k[t]))&&e.push(j[t]);else for(t=0;k[t]!=null;t++)k[t]&&k[t].nodeType===1&&e.push(j[t]);else s(k,e);l&&(m(l,h,e,f),m.uniqueSort(e));return e};m.uniqueSort=function(a){if(u){h=i,a.sort(u);if(h)for(var b=1;b<a.length;b++)a[b]===a[b-1]&&a.splice(b--,1)}return a},m.matches=function(a,b){return m(a,null,null,b)},m.matchesSelector=function(a,b){return m(b,null,null,[a]).length>0},m.find=function(a,b,c){var d,e,f,g,h,i;if(!a)return[];for(e=0,f=o.order.length;e<f;e++){h=o.order[e];if(g=o.leftMatch[h].exec(a)){i=g[1],g.splice(1,1);if(i.substr(i.length-1)!=="\\"){g[1]=(g[1]||"").replace(j,""),d=o.find[h](g,b,c);if(d!=null){a=a.replace(o.match[h],"");break}}}}d||(d=typeof b.getElementsByTagName!="undefined"?b.getElementsByTagName("*"):[]);return{set:d,expr:a}},m.filter=function(a,c,d,e){var f,g,h,i,j,k,l,n,p,q=a,r=[],s=c,t=c&&c[0]&&m.isXML(c[0]);while(a&&c.length){for(h in o.filter)if((f=o.leftMatch[h].exec(a))!=null&&f[2]){k=o.filter[h],l=f[1],g=!1,f.splice(1,1);if(l.substr(l.length-1)==="\\")continue;s===r&&(r=[]);if(o.preFilter[h]){f=o.preFilter[h](f,s,d,r,e,t);if(!f)g=i=!0;else if(f===!0)continue}if(f)for(n=0;(j=s[n])!=null;n++)j&&(i=k(j,f,n,s),p=e^i,d&&i!=null?p?g=!0:s[n]=!1:p&&(r.push(j),g=!0));if(i!==b){d||(s=r),a=a.replace(o.match[h],"");if(!g)return[];break}}if(a===q)if(g==null)m.error(a);else break;q=a}return s},m.error=function(a){throw new Error("Syntax error, unrecognized expression: "+a)};var n=m.getText=function(a){var b,c,d=a.nodeType,e="";if(d){if(d===1||d===9){if(typeof a.textContent=="string")return a.textContent;if(typeof a.innerText=="string")return a.innerText.replace(k,"");for(a=a.firstChild;a;a=a.nextSibling)e+=n(a)}else if(d===3||d===4)return a.nodeValue}else for(b=0;c=a[b];b++)c.nodeType!==8&&(e+=n(c));return e},o=m.selectors={order:["ID","NAME","TAG"],match:{ID:/#((?:[\w\u00c0-\uFFFF\-]|\\.)+)/,CLASS:/\.((?:[\w\u00c0-\uFFFF\-]|\\.)+)/,NAME:/\[name=['"]*((?:[\w\u00c0-\uFFFF\-]|\\.)+)['"]*\]/,ATTR:/\[\s*((?:[\w\u00c0-\uFFFF\-]|\\.)+)\s*(?:(\S?=)\s*(?:(['"])(.*?)\3|(#?(?:[\w\u00c0-\uFFFF\-]|\\.)*)|)|)\s*\]/,TAG:/^((?:[\w\u00c0-\uFFFF\*\-]|\\.)+)/,CHILD:/:(only|nth|last|first)-child(?:\(\s*(even|odd|(?:[+\-]?\d+|(?:[+\-]?\d*)?n\s*(?:[+\-]\s*\d+)?))\s*\))?/,POS:/:(nth|eq|gt|lt|first|last|even|odd)(?:\((\d*)\))?(?=[^\-]|$)/,PSEUDO:/:((?:[\w\u00c0-\uFFFF\-]|\\.)+)(?:\((['"]?)((?:\([^\)]+\)|[^\(\)]*)+)\2\))?/},leftMatch:{},attrMap:{"class":"className","for":"htmlFor"},attrHandle:{href:function(a){return a.getAttribute("href")},type:function(a){return a.getAttribute("type")}},relative:{"+":function(a,b){var c=typeof b=="string",d=c&&!l.test(b),e=c&&!d;d&&(b=b.toLowerCase());for(var f=0,g=a.length,h;f<g;f++)if(h=a[f]){while((h=h.previousSibling)&&h.nodeType!==1);a[f]=e||h&&h.nodeName.toLowerCase()===b?h||!1:h===b}e&&m.filter(b,a,!0)},">":function(a,b){var c,d=typeof b=="string",e=0,f=a.length;if(d&&!l.test(b)){b=b.toLowerCase();for(;e<f;e++){c=a[e];if(c){var g=c.parentNode;a[e]=g.nodeName.toLowerCase()===b?g:!1}}}else{for(;e<f;e++)c=a[e],c&&(a[e]=d?c.parentNode:c.parentNode===b);d&&m.filter(b,a,!0)}},"":function(a,b,c){var d,f=e++,g=x;typeof b=="string"&&!l.test(b)&&(b=b.toLowerCase(),d=b,g=w),g("parentNode",b,f,a,d,c)},"~":function(a,b,c){var d,f=e++,g=x;typeof b=="string"&&!l.test(b)&&(b=b.toLowerCase(),d=b,g=w),g("previousSibling",b,f,a,d,c)}},find:{ID:function(a,b,c){if(typeof b.getElementById!="undefined"&&!c){var d=b.getElementById(a[1]);return d&&d.parentNode?[d]:[]}},NAME:function(a,b){if(typeof b.getElementsByName!="undefined"){var c=[],d=b.getElementsByName(a[1]);for(var e=0,f=d.length;e<f;e++)d[e].getAttribute("name")===a[1]&&c.push(d[e]);return c.length===0?null:c}},TAG:function(a,b){if(typeof b.getElementsByTagName!="undefined")return b.getElementsByTagName(a[1])}},preFilter:{CLASS:function(a,b,c,d,e,f){a=" "+a[1].replace(j,"")+" ";if(f)return a;for(var g=0,h;(h=b[g])!=null;g++)h&&(e^(h.className&&(" "+h.className+" ").replace(/[\t\n\r]/g," ").indexOf(a)>=0)?c||d.push(h):c&&(b[g]=!1));return!1},ID:function(a){return a[1].replace(j,"")},TAG:function(a,b){return a[1].replace(j,"").toLowerCase()},CHILD:function(a){if(a[1]==="nth"){a[2]||m.error(a[0]),a[2]=a[2].replace(/^\+|\s*/g,"");var b=/(-?)(\d*)(?:n([+\-]?\d*))?/.exec(a[2]==="even"&&"2n"||a[2]==="odd"&&"2n+1"||!/\D/.test(a[2])&&"0n+"+a[2]||a[2]);a[2]=b[1]+(b[2]||1)-0,a[3]=b[3]-0}else a[2]&&m.error(a[0]);a[0]=e++;return a},ATTR:function(a,b,c,d,e,f){var g=a[1]=a[1].replace(j,"");!f&&o.attrMap[g]&&(a[1]=o.attrMap[g]),a[4]=(a[4]||a[5]||"").replace(j,""),a[2]==="~="&&(a[4]=" "+a[4]+" ");return a},PSEUDO:function(b,c,d,e,f){if(b[1]==="not")if((a.exec(b[3])||"").length>1||/^\w/.test(b[3]))b[3]=m(b[3],null,null,c);else{var g=m.filter(b[3],c,d,!0^f);d||e.push.apply(e,g);return!1}else if(o.match.POS.test(b[0])||o.match.CHILD.test(b[0]))return!0;return b},POS:function(a){a.unshift(!0);return a}},filters:{enabled:function(a){return a.disabled===!1&&a.type!=="hidden"},disabled:function(a){return a.disabled===!0},checked:function(a){return a.checked===!0},selected:function(a){a.parentNode&&a.parentNode.selectedIndex;return a.selected===!0},parent:function(a){return!!a.firstChild},empty:function(a){return!a.firstChild},has:function(a,b,c){return!!m(c[3],a).length},header:function(a){return/h\d/i.test(a.nodeName)},text:function(a){var b=a.getAttribute("type"),c=a.type;return a.nodeName.toLowerCase()==="input"&&"text"===c&&(b===c||b===null)},radio:function(a){return a.nodeName.toLowerCase()==="input"&&"radio"===a.type},checkbox:function(a){return a.nodeName.toLowerCase()==="input"&&"checkbox"===a.type},file:function(a){return a.nodeName.toLowerCase()==="input"&&"file"===a.type},password:function(a){return a.nodeName.toLowerCase()==="input"&&"password"===a.type},submit:function(a){var b=a.nodeName.toLowerCase();return(b==="input"||b==="button")&&"submit"===a.type},image:function(a){return a.nodeName.toLowerCase()==="input"&&"image"===a.type},reset:function(a){var b=a.nodeName.toLowerCase();return(b==="input"||b==="button")&&"reset"===a.type},button:function(a){var b=a.nodeName.toLowerCase();return b==="input"&&"button"===a.type||b==="button"},input:function(a){return/input|select|textarea|button/i.test(a.nodeName)},focus:function(a){return a===a.ownerDocument.activeElement}},setFilters:{first:function(a,b){return b===0},last:function(a,b,c,d){return b===d.length-1},even:function(a,b){return b%2===0},odd:function(a,b){return b%2===1},lt:function(a,b,c){return b<c[3]-0},gt:function(a,b,c){return b>c[3]-0},nth:function(a,b,c){return c[3]-0===b},eq:function(a,b,c){return c[3]-0===b}},filter:{PSEUDO:function(a,b,c,d){var e=b[1],f=o.filters[e];if(f)return f(a,c,b,d);if(e==="contains")return(a.textContent||a.innerText||n([a])||"").indexOf(b[3])>=0;if(e==="not"){var g=b[3];for(var h=0,i=g.length;h<i;h++)if(g[h]===a)return!1;return!0}m.error(e)},CHILD:function(a,b){var c,e,f,g,h,i,j,k=b[1],l=a;switch(k){case"only":case"first":while(l=l.previousSibling)if(l.nodeType===1)return!1;if(k==="first")return!0;l=a;case"last":while(l=l.nextSibling)if(l.nodeType===1)return!1;return!0;case"nth":c=b[2],e=b[3];if(c===1&&e===0)return!0;f=b[0],g=a.parentNode;if(g&&(g[d]!==f||!a.nodeIndex)){i=0;for(l=g.firstChild;l;l=l.nextSibling)l.nodeType===1&&(l.nodeIndex=++i);g[d]=f}j=a.nodeIndex-e;return c===0?j===0:j%c===0&&j/c>=0}},ID:function(a,b){return a.nodeType===1&&a.getAttribute("id")===b},TAG:function(a,b){return b==="*"&&a.nodeType===1||!!a.nodeName&&a.nodeName.toLowerCase()===b},CLASS:function(a,b){return(" "+(a.className||a.getAttribute("class"))+" ").indexOf(b)>-1},ATTR:function(a,b){var c=b[1],d=m.attr?m.attr(a,c):o.attrHandle[c]?o.attrHandle[c](a):a[c]!=null?a[c]:a.getAttribute(c),e=d+"",f=b[2],g=b[4];return d==null?f==="!=":!f&&m.attr?d!=null:f==="="?e===g:f==="*="?e.indexOf(g)>=0:f==="~="?(" "+e+" ").indexOf(g)>=0:g?f==="!="?e!==g:f==="^="?e.indexOf(g)===0:f==="$="?e.substr(e.length-g.length)===g:f==="|="?e===g||e.substr(0,g.length+1)===g+"-":!1:e&&d!==!1},POS:function(a,b,c,d){var e=b[2],f=o.setFilters[e];if(f)return f(a,c,b,d)}}},p=o.match.POS,q=function(a,b){return"\\"+(b-0+1)};for(var r in o.match)o.match[r]=new RegExp(o.match[r].source+/(?![^\[]*\])(?![^\(]*\))/.source),o.leftMatch[r]=new RegExp(/(^(?:.|\r|\n)*?)/.source+o.match[r].source.replace(/\\(\d+)/g,q));var s=function(a,b){a=Array.prototype.slice.call(a,0);if(b){b.push.apply(b,a);return b}return a};try{Array.prototype.slice.call(c.documentElement.childNodes,0)[0].nodeType}catch(t){s=function(a,b){var c=0,d=b||[];if(g.call(a)==="[object Array]")Array.prototype.push.apply(d,a);else if(typeof a.length=="number")for(var e=a.length;c<e;c++)d.push(a[c]);else for(;a[c];c++)d.push(a[c]);return d}}var u,v;c.documentElement.compareDocumentPosition?u=function(a,b){if(a===b){h=!0;return 0}if(!a.compareDocumentPosition||!b.compareDocumentPosition)return a.compareDocumentPosition?-1:1;return a.compareDocumentPosition(b)&4?-1:1}:(u=function(a,b){if(a===b){h=!0;return 0}if(a.sourceIndex&&b.sourceIndex)return a.sourceIndex-b.sourceIndex;var c,d,e=[],f=[],g=a.parentNode,i=b.parentNode,j=g;if(g===i)return v(a,b);if(!g)return-1;if(!i)return 1;while(j)e.unshift(j),j=j.parentNode;j=i;while(j)f.unshift(j),j=j.parentNode;c=e.length,d=f.length;for(var k=0;k<c&&k<d;k++)if(e[k]!==f[k])return v(e[k],f[k]);return k===c?v(a,f[k],-1):v(e[k],b,1)},v=function(a,b,c){if(a===b)return c;var d=a.nextSibling;while(d){if(d===b)return-1;d=d.nextSibling}return 1}),function(){var a=c.createElement("div"),d="script"+(new Date).getTime(),e=c.documentElement;a.innerHTML="<a name='"+d+"'/>",e.insertBefore(a,e.firstChild),c.getElementById(d)&&(o.find.ID=function(a,c,d){if(typeof c.getElementById!="undefined"&&!d){var e=c.getElementById(a[1]);return e?e.id===a[1]||typeof e.getAttributeNode!="undefined"&&e.getAttributeNode("id").nodeValue===a[1]?[e]:b:[]}},o.filter.ID=function(a,b){var c=typeof a.getAttributeNode!="undefined"&&a.getAttributeNode("id");return a.nodeType===1&&c&&c.nodeValue===b}),e.removeChild(a),e=a=null}(),function(){var a=c.createElement("div");a.appendChild(c.createComment("")),a.getElementsByTagName("*").length>0&&(o.find.TAG=function(a,b){var c=b.getElementsByTagName(a[1]);if(a[1]==="*"){var d=[];for(var e=0;c[e];e++)c[e].nodeType===1&&d.push(c[e]);c=d}return c}),a.innerHTML="<a href='#'></a>",a.firstChild&&typeof a.firstChild.getAttribute!="undefined"&&a.firstChild.getAttribute("href")!=="#"&&(o.attrHandle.href=function(a){return a.getAttribute("href",2)}),a=null}(),c.querySelectorAll&&function(){var a=m,b=c.createElement("div"),d="__sizzle__";b.innerHTML="<p class='TEST'></p>";if(!b.querySelectorAll||b.querySelectorAll(".TEST").length!==0){m=function(b,e,f,g){e=e||c;if(!g&&!m.isXML(e)){var h=/^(\w+$)|^\.([\w\-]+$)|^#([\w\-]+$)/.exec(b);if(h&&(e.nodeType===1||e.nodeType===9)){if(h[1])return s(e.getElementsByTagName(b),f);if(h[2]&&o.find.CLASS&&e.getElementsByClassName)return s(e.getElementsByClassName(h[2]),f)}if(e.nodeType===9){if(b==="body"&&e.body)return s([e.body],f);if(h&&h[3]){var i=e.getElementById(h[3]);if(!i||!i.parentNode)return s([],f);if(i.id===h[3])return s([i],f)}try{return s(e.querySelectorAll(b),f)}catch(j){}}else if(e.nodeType===1&&e.nodeName.toLowerCase()!=="object"){var k=e,l=e.getAttribute("id"),n=l||d,p=e.parentNode,q=/^\s*[+~]/.test(b);l?n=n.replace(/'/g,"\\$&"):e.setAttribute("id",n),q&&p&&(e=e.parentNode);try{if(!q||p)return s(e.querySelectorAll("[id='"+n+"'] "+b),f)}catch(r){}finally{l||k.removeAttribute("id")}}}return a(b,e,f,g)};for(var e in a)m[e]=a[e];b=null}}(),function(){var a=c.documentElement,b=a.matchesSelector||a.mozMatchesSelector||a.webkitMatchesSelector||a.msMatchesSelector;if(b){var d=!b.call(c.createElement("div"),"div"),e=!1;try{b.call(c.documentElement,"[test!='']:sizzle")}catch(f){e=!0}m.matchesSelector=function(a,c){c=c.replace(/\=\s*([^'"\]]*)\s*\]/g,"='$1']");if(!m.isXML(a))try{if(e||!o.match.PSEUDO.test(c)&&!/!=/.test(c)){var f=b.call(a,c);if(f||!d||a.document&&a.document.nodeType!==11)return f}}catch(g){}return m(c,null,null,[a]).length>0}}}(),function(){var a=c.createElement("div");a.innerHTML="<div class='test e'></div><div class='test'></div>";if(!!a.getElementsByClassName&&a.getElementsByClassName("e").length!==0){a.lastChild.className="e";if(a.getElementsByClassName("e").length===1)return;o.order.splice(1,0,"CLASS"),o.find.CLASS=function(a,b,c){if(typeof b.getElementsByClassName!="undefined"&&!c)return b.getElementsByClassName(a[1])},a=null}}(),c.documentElement.contains?m.contains=function(a,b){return a!==b&&(a.contains?a.contains(b):!0)}:c.documentElement.compareDocumentPosition?m.contains=function(a,b){return!!(a.compareDocumentPosition(b)&16)}:m.contains=function(){return!1},m.isXML=function(a){var b=(a?a.ownerDocument||a:0).documentElement;return b?b.nodeName!=="HTML":!1};var y=function(a,b,c){var d,e=[],f="",g=b.nodeType?[b]:b;while(d=o.match.PSEUDO.exec(a))f+=d[0],a=a.replace(o.match.PSEUDO,"");a=o.relative[a]?a+"*":a;for(var h=0,i=g.length;h<i;h++)m(a,g[h],e,c);return m.filter(f,e)};m.attr=f.attr,m.selectors.attrMap={},f.find=m,f.expr=m.selectors,f.expr[":"]=f.expr.filters,f.unique=m.uniqueSort,f.text=m.getText,f.isXMLDoc=m.isXML,f.contains=m.contains}();var L=/Until$/,M=/^(?:parents|prevUntil|prevAll)/,N=/,/,O=/^.[^:#\[\.,]*$/,P=Array.prototype.slice,Q=f.expr.match.POS,R={children:!0,contents:!0,next:!0,prev:!0};f.fn.extend({find:function(a){var b=this,c,d;if(typeof a!="string")return f(a).filter(function(){for(c=0,d=b.length;c<d;c++)if(f.contains(b[c],this))return!0});var e=this.pushStack("","find",a),g,h,i;for(c=0,d=this.length;c<d;c++){g=e.length,f.find(a,this[c],e);if(c>0)for(h=g;h<e.length;h++)for(i=0;i<g;i++)if(e[i]===e[h]){e.splice(h--,1);break}}return e},has:function(a){var b=f(a);return this.filter(function(){for(var a=0,c=b.length;a<c;a++)if(f.contains(this,b[a]))return!0})},not:function(a){return this.pushStack(T(this,a,!1),"not",a)},filter:function(a){return this.pushStack(T(this,a,!0),"filter",a)},is:function(a){return!!a&&(typeof a=="string"?Q.test(a)?f(a,this.context).index(this[0])>=0:f.filter(a,this).length>0:this.filter(a).length>0)},closest:function(a,b){var c=[],d,e,g=this[0];if(f.isArray(a)){var h=1;while(g&&g.ownerDocument&&g!==b){for(d=0;d<a.length;d++)f(g).is(a[d])&&c.push({selector:a[d],elem:g,level:h});g=g.parentNode,h++}return c}var i=Q.test(a)||typeof a!="string"?f(a,b||this.context):0;for(d=0,e=this.length;d<e;d++){g=this[d];while(g){if(i?i.index(g)>-1:f.find.matchesSelector(g,a)){c.push(g);break}g=g.parentNode;if(!g||!g.ownerDocument||g===b||g.nodeType===11)break}}c=c.length>1?f.unique(c):c;return this.pushStack(c,"closest",a)},index:function(a){if(!a)return this[0]&&this[0].parentNode?this.prevAll().length:-1;if(typeof a=="string")return f.inArray(this[0],f(a));return f.inArray(a.jquery?a[0]:a,this)},add:function(a,b){var c=typeof a=="string"?f(a,b):f.makeArray(a&&a.nodeType?[a]:a),d=f.merge(this.get(),c);return this.pushStack(S(c[0])||S(d[0])?d:f.unique(d))},andSelf:function(){return this.add(this.prevObject)}}),f.each({parent:function(a){var b=a.parentNode;return b&&b.nodeType!==11?b:null},parents:function(a){return f.dir(a,"parentNode")},parentsUntil:function(a,b,c){return f.dir(a,"parentNode",c)},next:function(a){return f.nth(a,2,"nextSibling")},prev:function(a){return f.nth(a,2,"previousSibling")},nextAll:function(a){return f.dir(a,"nextSibling")},prevAll:function(a){return f.dir(a,"previousSibling")},nextUntil:function(a,b,c){return f.dir(a,"nextSibling",c)},prevUntil:function(a,b,c){return f.dir(a,"previousSibling",c)},siblings:function(a){return f.sibling(a.parentNode.firstChild,a)},children:function(a){return f.sibling(a.firstChild)},contents:function(a){return f.nodeName(a,"iframe")?a.contentDocument||a.contentWindow.document:f.makeArray(a.childNodes)}},function(a,b){f.fn[a]=function(c,d){var e=f.map(this,b,c);L.test(a)||(d=c),d&&typeof d=="string"&&(e=f.filter(d,e)),e=this.length>1&&!R[a]?f.unique(e):e,(this.length>1||N.test(d))&&M.test(a)&&(e=e.reverse());return this.pushStack(e,a,P.call(arguments).join(","))}}),f.extend({filter:function(a,b,c){c&&(a=":not("+a+")");return b.length===1?f.find.matchesSelector(b[0],a)?[b[0]]:[]:f.find.matches(a,b)},dir:function(a,c,d){var e=[],g=a[c];while(g&&g.nodeType!==9&&(d===b||g.nodeType!==1||!f(g).is(d)))g.nodeType===1&&e.push(g),g=g[c];return e},nth:function(a,b,c,d){b=b||1;var e=0;for(;a;a=a[c])if(a.nodeType===1&&++e===b)break;return a},sibling:function(a,b){var c=[];for(;a;a=a.nextSibling)a.nodeType===1&&a!==b&&c.push(a);return c}});var V="abbr|article|aside|audio|canvas|datalist|details|figcaption|figure|footer|header|hgroup|mark|meter|nav|output|progress|section|summary|time|video",W=/ jQuery\d+="(?:\d+|null)"/g,X=/^\s+/,Y=/<(?!area|br|col|embed|hr|img|input|link|meta|param)(([\w:]+)[^>]*)\/>/ig,Z=/<([\w:]+)/,$=/<tbody/i,_=/<|&#?\w+;/,ba=/<(?:script|style)/i,bb=/<(?:script|object|embed|option|style)/i,bc=new RegExp("<(?:"+V+")","i"),bd=/checked\s*(?:[^=]|=\s*.checked.)/i,be=/\/(java|ecma)script/i,bf=/^\s*<!(?:\[CDATA\[|\-\-)/,bg={option:[1,"<select multiple='multiple'>","</select>"],legend:[1,"<fieldset>","</fieldset>"],thead:[1,"<table>","</table>"],tr:[2,"<table><tbody>","</tbody></table>"],td:[3,"<table><tbody><tr>","</tr></tbody></table>"],col:[2,"<table><tbody></tbody><colgroup>","</colgroup></table>"],area:[1,"<map>","</map>"],_default:[0,"",""]},bh=U(c);bg.optgroup=bg.option,bg.tbody=bg.tfoot=bg.colgroup=bg.caption=bg.thead,bg.th=bg.td,f.support.htmlSerialize||(bg._default=[1,"div<div>","</div>"]),f.fn.extend({text:function(a){if(f.isFunction(a))return this.each(function(b){var c=f(this);c.text(a.call(this,b,c.text()))});if(typeof a!="object"&&a!==b)return this.empty().append((this[0]&&this[0].ownerDocument||c).createTextNode(a));return f.text(this)},wrapAll:function(a){if(f.isFunction(a))return this.each(function(b){f(this).wrapAll(a.call(this,b))});if(this[0]){var b=f(a,this[0].ownerDocument).eq(0).clone(!0);this[0].parentNode&&b.insertBefore(this[0]),b.map(function(){var a=this;while(a.firstChild&&a.firstChild.nodeType===1)a=a.firstChild;return a}).append(this)}return this},wrapInner:function(a){if(f.isFunction(a))return this.each(function(b){f(this).wrapInner(a.call(this,b))});return this.each(function(){var b=f(this),c=b.contents();c.length?c.wrapAll(a):b.append(a)})},wrap:function(a){var b=f.isFunction(a);return this.each(function(c){f(this).wrapAll(b?a.call(this,c):a)})},unwrap:function(){return this.parent().each(function(){f.nodeName(this,"body")||f(this).replaceWith(this.childNodes)}).end()},append:function(){return this.domManip(arguments,!0,function(a){this.nodeType===1&&this.appendChild(a)})},prepend:function(){return this.domManip(arguments,!0,function(a){this.nodeType===1&&this.insertBefore(a,this.firstChild)})},before:function(){if(this[0]&&this[0].parentNode)return this.domManip(arguments,!1,function(a){this.parentNode.insertBefore(a,this)});if(arguments.length){var a=f.clean(arguments);a.push.apply(a,this.toArray());return this.pushStack(a,"before",arguments)}},after:function(){if(this[0]&&this[0].parentNode)return this.domManip(arguments,!1,function(a){this.parentNode.insertBefore(a,this.nextSibling)});if(arguments.length){var a=this.pushStack(this,"after",arguments);a.push.apply(a,f.clean(arguments));return a}},remove:function(a,b){for(var c=0,d;(d=this[c])!=null;c++)if(!a||f.filter(a,[d]).length)!b&&d.nodeType===1&&(f.cleanData(d.getElementsByTagName("*")),f.cleanData([d])),d.parentNode&&d.parentNode.removeChild(d);return this},empty:function()
    {for(var a=0,b;(b=this[a])!=null;a++){b.nodeType===1&&f.cleanData(b.getElementsByTagName("*"));while(b.firstChild)b.removeChild(b.firstChild)}return this},clone:function(a,b){a=a==null?!1:a,b=b==null?a:b;return this.map(function(){return f.clone(this,a,b)})},html:function(a){if(a===b)return this[0]&&this[0].nodeType===1?this[0].innerHTML.replace(W,""):null;if(typeof a=="string"&&!ba.test(a)&&(f.support.leadingWhitespace||!X.test(a))&&!bg[(Z.exec(a)||["",""])[1].toLowerCase()]){a=a.replace(Y,"<$1></$2>");try{for(var c=0,d=this.length;c<d;c++)this[c].nodeType===1&&(f.cleanData(this[c].getElementsByTagName("*")),this[c].innerHTML=a)}catch(e){this.empty().append(a)}}else f.isFunction(a)?this.each(function(b){var c=f(this);c.html(a.call(this,b,c.html()))}):this.empty().append(a);return this},replaceWith:function(a){if(this[0]&&this[0].parentNode){if(f.isFunction(a))return this.each(function(b){var c=f(this),d=c.html();c.replaceWith(a.call(this,b,d))});typeof a!="string"&&(a=f(a).detach());return this.each(function(){var b=this.nextSibling,c=this.parentNode;f(this).remove(),b?f(b).before(a):f(c).append(a)})}return this.length?this.pushStack(f(f.isFunction(a)?a():a),"replaceWith",a):this},detach:function(a){return this.remove(a,!0)},domManip:function(a,c,d){var e,g,h,i,j=a[0],k=[];if(!f.support.checkClone&&arguments.length===3&&typeof j=="string"&&bd.test(j))return this.each(function(){f(this).domManip(a,c,d,!0)});if(f.isFunction(j))return this.each(function(e){var g=f(this);a[0]=j.call(this,e,c?g.html():b),g.domManip(a,c,d)});if(this[0]){i=j&&j.parentNode,f.support.parentNode&&i&&i.nodeType===11&&i.childNodes.length===this.length?e={fragment:i}:e=f.buildFragment(a,this,k),h=e.fragment,h.childNodes.length===1?g=h=h.firstChild:g=h.firstChild;if(g){c=c&&f.nodeName(g,"tr");for(var l=0,m=this.length,n=m-1;l<m;l++)d.call(c?bi(this[l],g):this[l],e.cacheable||m>1&&l<n?f.clone(h,!0,!0):h)}k.length&&f.each(k,bp)}return this}}),f.buildFragment=function(a,b,d){var e,g,h,i,j=a[0];b&&b[0]&&(i=b[0].ownerDocument||b[0]),i.createDocumentFragment||(i=c),a.length===1&&typeof j=="string"&&j.length<512&&i===c&&j.charAt(0)==="<"&&!bb.test(j)&&(f.support.checkClone||!bd.test(j))&&(f.support.html5Clone||!bc.test(j))&&(g=!0,h=f.fragments[j],h&&h!==1&&(e=h)),e||(e=i.createDocumentFragment(),f.clean(a,i,e,d)),g&&(f.fragments[j]=h?e:1);return{fragment:e,cacheable:g}},f.fragments={},f.each({appendTo:"append",prependTo:"prepend",insertBefore:"before",insertAfter:"after",replaceAll:"replaceWith"},function(a,b){f.fn[a]=function(c){var d=[],e=f(c),g=this.length===1&&this[0].parentNode;if(g&&g.nodeType===11&&g.childNodes.length===1&&e.length===1){e[b](this[0]);return this}for(var h=0,i=e.length;h<i;h++){var j=(h>0?this.clone(!0):this).get();f(e[h])[b](j),d=d.concat(j)}return this.pushStack(d,a,e.selector)}}),f.extend({clone:function(a,b,c){var d,e,g,h=f.support.html5Clone||!bc.test("<"+a.nodeName)?a.cloneNode(!0):bo(a);if((!f.support.noCloneEvent||!f.support.noCloneChecked)&&(a.nodeType===1||a.nodeType===11)&&!f.isXMLDoc(a)){bk(a,h),d=bl(a),e=bl(h);for(g=0;d[g];++g)e[g]&&bk(d[g],e[g])}if(b){bj(a,h);if(c){d=bl(a),e=bl(h);for(g=0;d[g];++g)bj(d[g],e[g])}}d=e=null;return h},clean:function(a,b,d,e){var g;b=b||c,typeof b.createElement=="undefined"&&(b=b.ownerDocument||b[0]&&b[0].ownerDocument||c);var h=[],i;for(var j=0,k;(k=a[j])!=null;j++){typeof k=="number"&&(k+="");if(!k)continue;if(typeof k=="string")if(!_.test(k))k=b.createTextNode(k);else{k=k.replace(Y,"<$1></$2>");var l=(Z.exec(k)||["",""])[1].toLowerCase(),m=bg[l]||bg._default,n=m[0],o=b.createElement("div");b===c?bh.appendChild(o):U(b).appendChild(o),o.innerHTML=m[1]+k+m[2];while(n--)o=o.lastChild;if(!f.support.tbody){var p=$.test(k),q=l==="table"&&!p?o.firstChild&&o.firstChild.childNodes:m[1]==="<table>"&&!p?o.childNodes:[];for(i=q.length-1;i>=0;--i)f.nodeName(q[i],"tbody")&&!q[i].childNodes.length&&q[i].parentNode.removeChild(q[i])}!f.support.leadingWhitespace&&X.test(k)&&o.insertBefore(b.createTextNode(X.exec(k)[0]),o.firstChild),k=o.childNodes}var r;if(!f.support.appendChecked)if(k[0]&&typeof (r=k.length)=="number")for(i=0;i<r;i++)bn(k[i]);else bn(k);k.nodeType?h.push(k):h=f.merge(h,k)}if(d){g=function(a){return!a.type||be.test(a.type)};for(j=0;h[j];j++)if(e&&f.nodeName(h[j],"script")&&(!h[j].type||h[j].type.toLowerCase()==="text/javascript"))e.push(h[j].parentNode?h[j].parentNode.removeChild(h[j]):h[j]);else{if(h[j].nodeType===1){var s=f.grep(h[j].getElementsByTagName("script"),g);h.splice.apply(h,[j+1,0].concat(s))}d.appendChild(h[j])}}return h},cleanData:function(a){var b,c,d=f.cache,e=f.event.special,g=f.support.deleteExpando;for(var h=0,i;(i=a[h])!=null;h++){if(i.nodeName&&f.noData[i.nodeName.toLowerCase()])continue;c=i[f.expando];if(c){b=d[c];if(b&&b.events){for(var j in b.events)e[j]?f.event.remove(i,j):f.removeEvent(i,j,b.handle);b.handle&&(b.handle.elem=null)}g?delete i[f.expando]:i.removeAttribute&&i.removeAttribute(f.expando),delete d[c]}}}});var bq=/alpha\([^)]*\)/i,br=/opacity=([^)]*)/,bs=/([A-Z]|^ms)/g,bt=/^-?\d+(?:px)?$/i,bu=/^-?\d/,bv=/^([\-+])=([\-+.\de]+)/,bw={position:"absolute",visibility:"hidden",display:"block"},bx=["Left","Right"],by=["Top","Bottom"],bz,bA,bB;f.fn.css=function(a,c){if(arguments.length===2&&c===b)return this;return f.access(this,a,c,!0,function(a,c,d){return d!==b?f.style(a,c,d):f.css(a,c)})},f.extend({cssHooks:{opacity:{get:function(a,b){if(b){var c=bz(a,"opacity","opacity");return c===""?"1":c}return a.style.opacity}}},cssNumber:{fillOpacity:!0,fontWeight:!0,lineHeight:!0,opacity:!0,orphans:!0,widows:!0,zIndex:!0,zoom:!0},cssProps:{"float":f.support.cssFloat?"cssFloat":"styleFloat"},style:function(a,c,d,e){if(!!a&&a.nodeType!==3&&a.nodeType!==8&&!!a.style){var g,h,i=f.camelCase(c),j=a.style,k=f.cssHooks[i];c=f.cssProps[i]||i;if(d===b){if(k&&"get"in k&&(g=k.get(a,!1,e))!==b)return g;return j[c]}h=typeof d,h==="string"&&(g=bv.exec(d))&&(d=+(g[1]+1)*+g[2]+parseFloat(f.css(a,c)),h="number");if(d==null||h==="number"&&isNaN(d))return;h==="number"&&!f.cssNumber[i]&&(d+="px");if(!k||!("set"in k)||(d=k.set(a,d))!==b)try{j[c]=d}catch(l){}}},css:function(a,c,d){var e,g;c=f.camelCase(c),g=f.cssHooks[c],c=f.cssProps[c]||c,c==="cssFloat"&&(c="float");if(g&&"get"in g&&(e=g.get(a,!0,d))!==b)return e;if(bz)return bz(a,c)},swap:function(a,b,c){var d={};for(var e in b)d[e]=a.style[e],a.style[e]=b[e];c.call(a);for(e in b)a.style[e]=d[e]}}),f.curCSS=f.css,f.each(["height","width"],function(a,b){f.cssHooks[b]={get:function(a,c,d){var e;if(c){if(a.offsetWidth!==0)return bC(a,b,d);f.swap(a,bw,function(){e=bC(a,b,d)});return e}},set:function(a,b){if(!bt.test(b))return b;b=parseFloat(b);if(b>=0)return b+"px"}}}),f.support.opacity||(f.cssHooks.opacity={get:function(a,b){return br.test((b&&a.currentStyle?a.currentStyle.filter:a.style.filter)||"")?parseFloat(RegExp.$1)/100+"":b?"1":""},set:function(a,b){var c=a.style,d=a.currentStyle,e=f.isNumeric(b)?"alpha(opacity="+b*100+")":"",g=d&&d.filter||c.filter||"";c.zoom=1;if(b>=1&&f.trim(g.replace(bq,""))===""){c.removeAttribute("filter");if(d&&!d.filter)return}c.filter=bq.test(g)?g.replace(bq,e):g+" "+e}}),f(function(){f.support.reliableMarginRight||(f.cssHooks.marginRight={get:function(a,b){var c;f.swap(a,{display:"inline-block"},function(){b?c=bz(a,"margin-right","marginRight"):c=a.style.marginRight});return c}})}),c.defaultView&&c.defaultView.getComputedStyle&&(bA=function(a,b){var c,d,e;b=b.replace(bs,"-$1").toLowerCase(),(d=a.ownerDocument.defaultView)&&(e=d.getComputedStyle(a,null))&&(c=e.getPropertyValue(b),c===""&&!f.contains(a.ownerDocument.documentElement,a)&&(c=f.style(a,b)));return c}),c.documentElement.currentStyle&&(bB=function(a,b){var c,d,e,f=a.currentStyle&&a.currentStyle[b],g=a.style;f===null&&g&&(e=g[b])&&(f=e),!bt.test(f)&&bu.test(f)&&(c=g.left,d=a.runtimeStyle&&a.runtimeStyle.left,d&&(a.runtimeStyle.left=a.currentStyle.left),g.left=b==="fontSize"?"1em":f||0,f=g.pixelLeft+"px",g.left=c,d&&(a.runtimeStyle.left=d));return f===""?"auto":f}),bz=bA||bB,f.expr&&f.expr.filters&&(f.expr.filters.hidden=function(a){var b=a.offsetWidth,c=a.offsetHeight;return b===0&&c===0||!f.support.reliableHiddenOffsets&&(a.style&&a.style.display||f.css(a,"display"))==="none"},f.expr.filters.visible=function(a){return!f.expr.filters.hidden(a)});var bD=/%20/g,bE=/\[\]$/,bF=/\r?\n/g,bG=/#.*$/,bH=/^(.*?):[ \t]*([^\r\n]*)\r?$/mg,bI=/^(?:color|date|datetime|datetime-local|email|hidden|month|number|password|range|search|tel|text|time|url|week)$/i,bJ=/^(?:about|app|app\-storage|.+\-extension|file|res|widget):$/,bK=/^(?:GET|HEAD)$/,bL=/^\/\//,bM=/\?/,bN=/<script\b[^<]*(?:(?!<\/script>)<[^<]*)*<\/script>/gi,bO=/^(?:select|textarea)/i,bP=/\s+/,bQ=/([?&])_=[^&]*/,bR=/^([\w\+\.\-]+:)(?:\/\/([^\/?#:]*)(?::(\d+))?)?/,bS=f.fn.load,bT={},bU={},bV,bW,bX=["*/"]+["*"];try{bV=e.href}catch(bY){bV=c.createElement("a"),bV.href="",bV=bV.href}bW=bR.exec(bV.toLowerCase())||[],f.fn.extend({load:function(a,c,d){if(typeof a!="string"&&bS)return bS.apply(this,arguments);if(!this.length)return this;var e=a.indexOf(" ");if(e>=0){var g=a.slice(e,a.length);a=a.slice(0,e)}var h="GET";c&&(f.isFunction(c)?(d=c,c=b):typeof c=="object"&&(c=f.param(c,f.ajaxSettings.traditional),h="POST"));var i=this;f.ajax({url:a,type:h,dataType:"html",data:c,complete:function(a,b,c){c=a.responseText,a.isResolved()&&(a.done(function(a){c=a}),i.html(g?f("<div>").append(c.replace(bN,"")).find(g):c)),d&&i.each(d,[c,b,a])}});return this},serialize:function(){return f.param(this.serializeArray())},serializeArray:function(){return this.map(function(){return this.elements?f.makeArray(this.elements):this}).filter(function(){return this.name&&!this.disabled&&(this.checked||bO.test(this.nodeName)||bI.test(this.type))}).map(function(a,b){var c=f(this).val();return c==null?null:f.isArray(c)?f.map(c,function(a,c){return{name:b.name,value:a.replace(bF,"\r\n")}}):{name:b.name,value:c.replace(bF,"\r\n")}}).get()}}),f.each("ajaxStart ajaxStop ajaxComplete ajaxError ajaxSuccess ajaxSend".split(" "),function(a,b){f.fn[b]=function(a){return this.on(b,a)}}),f.each(["get","post"],function(a,c){f[c]=function(a,d,e,g){f.isFunction(d)&&(g=g||e,e=d,d=b);return f.ajax({type:c,url:a,data:d,success:e,dataType:g})}}),f.extend({getScript:function(a,c){return f.get(a,b,c,"script")},getJSON:function(a,b,c){return f.get(a,b,c,"json")},ajaxSetup:function(a,b){b?b_(a,f.ajaxSettings):(b=a,a=f.ajaxSettings),b_(a,b);return a},ajaxSettings:{url:bV,isLocal:bJ.test(bW[1]),global:!0,type:"GET",contentType:"application/x-www-form-urlencoded",processData:!0,async:!0,accepts:{xml:"application/xml, text/xml",html:"text/html",text:"text/plain",json:"application/json, text/javascript","*":bX},contents:{xml:/xml/,html:/html/,json:/json/},responseFields:{xml:"responseXML",text:"responseText"},converters:{"* text":a.String,"text html":!0,"text json":f.parseJSON,"text xml":f.parseXML},flatOptions:{context:!0,url:!0}},ajaxPrefilter:bZ(bT),ajaxTransport:bZ(bU),ajax:function(a,c){function w(a,c,l,m){if(s!==2){s=2,q&&clearTimeout(q),p=b,n=m||"",v.readyState=a>0?4:0;var o,r,u,w=c,x=l?cb(d,v,l):b,y,z;if(a>=200&&a<300||a===304){if(d.ifModified){if(y=v.getResponseHeader("Last-Modified"))f.lastModified[k]=y;if(z=v.getResponseHeader("Etag"))f.etag[k]=z}if(a===304)w="notmodified",o=!0;else try{r=cc(d,x),w="success",o=!0}catch(A){w="parsererror",u=A}}else{u=w;if(!w||a)w="error",a<0&&(a=0)}v.status=a,v.statusText=""+(c||w),o?h.resolveWith(e,[r,w,v]):h.rejectWith(e,[v,w,u]),v.statusCode(j),j=b,t&&g.trigger("ajax"+(o?"Success":"Error"),[v,d,o?r:u]),i.fireWith(e,[v,w]),t&&(g.trigger("ajaxComplete",[v,d]),--f.active||f.event.trigger("ajaxStop"))}}typeof a=="object"&&(c=a,a=b),c=c||{};var d=f.ajaxSetup({},c),e=d.context||d,g=e!==d&&(e.nodeType||e instanceof f)?f(e):f.event,h=f.Deferred(),i=f.Callbacks("once memory"),j=d.statusCode||{},k,l={},m={},n,o,p,q,r,s=0,t,u,v={readyState:0,setRequestHeader:function(a,b){if(!s){var c=a.toLowerCase();a=m[c]=m[c]||a,l[a]=b}return this},getAllResponseHeaders:function(){return s===2?n:null},getResponseHeader:function(a){var c;if(s===2){if(!o){o={};while(c=bH.exec(n))o[c[1].toLowerCase()]=c[2]}c=o[a.toLowerCase()]}return c===b?null:c},overrideMimeType:function(a){s||(d.mimeType=a);return this},abort:function(a){a=a||"abort",p&&p.abort(a),w(0,a);return this}};h.promise(v),v.success=v.done,v.error=v.fail,v.complete=i.add,v.statusCode=function(a){if(a){var b;if(s<2)for(b in a)j[b]=[j[b],a[b]];else b=a[v.status],v.then(b,b)}return this},d.url=((a||d.url)+"").replace(bG,"").replace(bL,bW[1]+"//"),d.dataTypes=f.trim(d.dataType||"*").toLowerCase().split(bP),d.crossDomain==null&&(r=bR.exec(d.url.toLowerCase()),d.crossDomain=!(!r||r[1]==bW[1]&&r[2]==bW[2]&&(r[3]||(r[1]==="http:"?80:443))==(bW[3]||(bW[1]==="http:"?80:443)))),d.data&&d.processData&&typeof d.data!="string"&&(d.data=f.param(d.data,d.traditional)),b$(bT,d,c,v);if(s===2)return!1;t=d.global,d.type=d.type.toUpperCase(),d.hasContent=!bK.test(d.type),t&&f.active++===0&&f.event.trigger("ajaxStart");if(!d.hasContent){d.data&&(d.url+=(bM.test(d.url)?"&":"?")+d.data,delete d.data),k=d.url;if(d.cache===!1){var x=f.now(),y=d.url.replace(bQ,"$1_="+x);d.url=y+(y===d.url?(bM.test(d.url)?"&":"?")+"_="+x:"")}}(d.data&&d.hasContent&&d.contentType!==!1||c.contentType)&&v.setRequestHeader("Content-Type",d.contentType),d.ifModified&&(k=k||d.url,f.lastModified[k]&&v.setRequestHeader("If-Modified-Since",f.lastModified[k]),f.etag[k]&&v.setRequestHeader("If-None-Match",f.etag[k])),v.setRequestHeader("Accept",d.dataTypes[0]&&d.accepts[d.dataTypes[0]]?d.accepts[d.dataTypes[0]]+(d.dataTypes[0]!=="*"?", "+bX+"; q=0.01":""):d.accepts["*"]);for(u in d.headers)v.setRequestHeader(u,d.headers[u]);if(d.beforeSend&&(d.beforeSend.call(e,v,d)===!1||s===2)){v.abort();return!1}for(u in{success:1,error:1,complete:1})v[u](d[u]);p=b$(bU,d,c,v);if(!p)w(-1,"No Transport");else{v.readyState=1,t&&g.trigger("ajaxSend",[v,d]),d.async&&d.timeout>0&&(q=setTimeout(function(){v.abort("timeout")},d.timeout));try{s=1,p.send(l,w)}catch(z){if(s<2)w(-1,z);else throw z}}return v},param:function(a,c){var d=[],e=function(a,b){b=f.isFunction(b)?b():b,d[d.length]=encodeURIComponent(a)+"="+encodeURIComponent(b)};c===b&&(c=f.ajaxSettings.traditional);if(f.isArray(a)||a.jquery&&!f.isPlainObject(a))f.each(a,function(){e(this.name,this.value)});else for(var g in a)ca(g,a[g],c,e);return d.join("&").replace(bD,"+")}}),f.extend({active:0,lastModified:{},etag:{}});var cd=f.now(),ce=/(\=)\?(&|$)|\?\?/i;f.ajaxSetup({jsonp:"callback",jsonpCallback:function(){return f.expando+"_"+cd++}}),f.ajaxPrefilter("json jsonp",function(b,c,d){var e=b.contentType==="application/x-www-form-urlencoded"&&typeof b.data=="string";if(b.dataTypes[0]==="jsonp"||b.jsonp!==!1&&(ce.test(b.url)||e&&ce.test(b.data))){var g,h=b.jsonpCallback=f.isFunction(b.jsonpCallback)?b.jsonpCallback():b.jsonpCallback,i=a[h],j=b.url,k=b.data,l="$1"+h+"$2";b.jsonp!==!1&&(j=j.replace(ce,l),b.url===j&&(e&&(k=k.replace(ce,l)),b.data===k&&(j+=(/\?/.test(j)?"&":"?")+b.jsonp+"="+h))),b.url=j,b.data=k,a[h]=function(a){g=[a]},d.always(function(){a[h]=i,g&&f.isFunction(i)&&a[h](g[0])}),b.converters["script json"]=function(){g||f.error(h+" was not called");return g[0]},b.dataTypes[0]="json";return"script"}}),f.ajaxSetup({accepts:{script:"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript"},contents:{script:/javascript|ecmascript/},converters:{"text script":function(a){f.globalEval(a);return a}}}),f.ajaxPrefilter("script",function(a){a.cache===b&&(a.cache=!1),a.crossDomain&&(a.type="GET",a.global=!1)}),f.ajaxTransport("script",function(a){if(a.crossDomain){var d,e=c.head||c.getElementsByTagName("head")[0]||c.documentElement;return{send:function(f,g){d=c.createElement("script"),d.async="async",a.scriptCharset&&(d.charset=a.scriptCharset),d.src=a.url,d.onload=d.onreadystatechange=function(a,c){if(c||!d.readyState||/loaded|complete/.test(d.readyState))d.onload=d.onreadystatechange=null,e&&d.parentNode&&e.removeChild(d),d=b,c||g(200,"success")},e.insertBefore(d,e.firstChild)},abort:function(){d&&d.onload(0,1)}}}});var cf=a.ActiveXObject?function(){for(var a in ch)ch[a](0,1)}:!1,cg=0,ch;f.ajaxSettings.xhr=a.ActiveXObject?function(){return!this.isLocal&&ci()||cj()}:ci,function(a){f.extend(f.support,{ajax:!!a,cors:!!a&&"withCredentials"in a})}(f.ajaxSettings.xhr()),f.support.ajax&&f.ajaxTransport(function(c){if(!c.crossDomain||f.support.cors){var d;return{send:function(e,g){var h=c.xhr(),i,j;c.username?h.open(c.type,c.url,c.async,c.username,c.password):h.open(c.type,c.url,c.async);if(c.xhrFields)for(j in c.xhrFields)h[j]=c.xhrFields[j];c.mimeType&&h.overrideMimeType&&h.overrideMimeType(c.mimeType),!c.crossDomain&&!e["X-Requested-With"]&&(e["X-Requested-With"]="XMLHttpRequest");try{for(j in e)h.setRequestHeader(j,e[j])}catch(k){}h.send(c.hasContent&&c.data||null),d=function(a,e){var j,k,l,m,n;try{if(d&&(e||h.readyState===4)){d=b,i&&(h.onreadystatechange=f.noop,cf&&delete ch[i]);if(e)h.readyState!==4&&h.abort();else{j=h.status,l=h.getAllResponseHeaders(),m={},n=h.responseXML,n&&n.documentElement&&(m.xml=n),m.text=h.responseText;try{k=h.statusText}catch(o){k=""}!j&&c.isLocal&&!c.crossDomain?j=m.text?200:404:j===1223&&(j=204)}}}catch(p){e||g(-1,p)}m&&g(j,k,m,l)},!c.async||h.readyState===4?d():(i=++cg,cf&&(ch||(ch={},f(a).unload(cf)),ch[i]=d),h.onreadystatechange=d)},abort:function(){d&&d(0,1)}}}});var ck={},cl,cm,cn=/^(?:toggle|show|hide)$/,co=/^([+\-]=)?([\d+.\-]+)([a-z%]*)$/i,cp,cq=[["height","marginTop","marginBottom","paddingTop","paddingBottom"],["width","marginLeft","marginRight","paddingLeft","paddingRight"],["opacity"]],cr;f.fn.extend({show:function(a,b,c){var d,e;if(a||a===0)return this.animate(cu("show",3),a,b,c);for(var g=0,h=this.length;g<h;g++)d=this[g],d.style&&(e=d.style.display,!f._data(d,"olddisplay")&&e==="none"&&(e=d.style.display=""),e===""&&f.css(d,"display")==="none"&&f._data(d,"olddisplay",cv(d.nodeName)));for(g=0;g<h;g++){d=this[g];if(d.style){e=d.style.display;if(e===""||e==="none")d.style.display=f._data(d,"olddisplay")||""}}return this},hide:function(a,b,c){if(a||a===0)return this.animate(cu("hide",3),a,b,c);var d,e,g=0,h=this.length;for(;g<h;g++)d=this[g],d.style&&(e=f.css(d,"display"),e!=="none"&&!f._data(d,"olddisplay")&&f._data(d,"olddisplay",e));for(g=0;g<h;g++)this[g].style&&(this[g].style.display="none");return this},_toggle:f.fn.toggle,toggle:function(a,b,c){var d=typeof a=="boolean";f.isFunction(a)&&f.isFunction(b)?this._toggle.apply(this,arguments):a==null||d?this.each(function(){var b=d?a:f(this).is(":hidden");f(this)[b?"show":"hide"]()}):this.animate(cu("toggle",3),a,b,c);return this},fadeTo:function(a,b,c,d){return this.filter(":hidden").css("opacity",0).show().end().animate({opacity:b},a,c,d)},animate:function(a,b,c,d){function g(){e.queue===!1&&f._mark(this);var b=f.extend({},e),c=this.nodeType===1,d=c&&f(this).is(":hidden"),g,h,i,j,k,l,m,n,o;b.animatedProperties={};for(i in a){g=f.camelCase(i),i!==g&&(a[g]=a[i],delete a[i]),h=a[g],f.isArray(h)?(b.animatedProperties[g]=h[1],h=a[g]=h[0]):b.animatedProperties[g]=b.specialEasing&&b.specialEasing[g]||b.easing||"swing";if(h==="hide"&&d||h==="show"&&!d)return b.complete.call(this);c&&(g==="height"||g==="width")&&(b.overflow=[this.style.overflow,this.style.overflowX,this.style.overflowY],f.css(this,"display")==="inline"&&f.css(this,"float")==="none"&&(!f.support.inlineBlockNeedsLayout||cv(this.nodeName)==="inline"?this.style.display="inline-block":this.style.zoom=1))}b.overflow!=null&&(this.style.overflow="hidden");for(i in a)j=new f.fx(this,b,i),h=a[i],cn.test(h)?(o=f._data(this,"toggle"+i)||(h==="toggle"?d?"show":"hide":0),o?(f._data(this,"toggle"+i,o==="show"?"hide":"show"),j[o]()):j[h]()):(k=co.exec(h),l=j.cur(),k?(m=parseFloat(k[2]),n=k[3]||(f.cssNumber[i]?"":"px"),n!=="px"&&(f.style(this,i,(m||1)+n),l=(m||1)/j.cur()*l,f.style(this,i,l+n)),k[1]&&(m=(k[1]==="-="?-1:1)*m+l),j.custom(l,m,n)):j.custom(l,h,""));return!0}var e=f.speed(b,c,d);if(f.isEmptyObject(a))return this.each(e.complete,[!1]);a=f.extend({},a);return e.queue===!1?this.each(g):this.queue(e.queue,g)},stop:function(a,c,d){typeof a!="string"&&(d=c,c=a,a=b),c&&a!==!1&&this.queue(a||"fx",[]);return this.each(function(){function h(a,b,c){var e=b[c];f.removeData(a,c,!0),e.stop(d)}var b,c=!1,e=f.timers,g=f._data(this);d||f._unmark(!0,this);if(a==null)for(b in g)g[b]&&g[b].stop&&b.indexOf(".run")===b.length-4&&h(this,g,b);else g[b=a+".run"]&&g[b].stop&&h(this,g,b);for(b=e.length;b--;)e[b].elem===this&&(a==null||e[b].queue===a)&&(d?e[b](!0):e[b].saveState(),c=!0,e.splice(b,1));(!d||!c)&&f.dequeue(this,a)})}}),f.each({slideDown:cu("show",1),slideUp:cu("hide",1),slideToggle:cu("toggle",1),fadeIn:{opacity:"show"},fadeOut:{opacity:"hide"},fadeToggle:{opacity:"toggle"}},function(a,b){f.fn[a]=function(a,c,d){return this.animate(b,a,c,d)}}),f.extend({speed:function(a,b,c){var d=a&&typeof a=="object"?f.extend({},a):{complete:c||!c&&b||f.isFunction(a)&&a,duration:a,easing:c&&b||b&&!f.isFunction(b)&&b};d.duration=f.fx.off?0:typeof d.duration=="number"?d.duration:d.duration in f.fx.speeds?f.fx.speeds[d.duration]:f.fx.speeds._default;if(d.queue==null||d.queue===!0)d.queue="fx";d.old=d.complete,d.complete=function(a){f.isFunction(d.old)&&d.old.call(this),d.queue?f.dequeue(this,d.queue):a!==!1&&f._unmark(this)};return d},easing:{linear:function(a,b,c,d){return c+d*a},swing:function(a,b,c,d){return(-Math.cos(a*Math.PI)/2+.5)*d+c}},timers:[],fx:function(a,b,c){this.options=b,this.elem=a,this.prop=c,b.orig=b.orig||{}}}),f.fx.prototype={update:function(){this.options.step&&this.options.step.call(this.elem,this.now,this),(f.fx.step[this.prop]||f.fx.step._default)(this)},cur:function(){if(this.elem[this.prop]!=null&&(!this.elem.style||this.elem.style[this.prop]==null))return this.elem[this.prop];var a,b=f.css(this.elem,this.prop);return isNaN(a=parseFloat(b))?!b||b==="auto"?0:b:a},custom:function(a,c,d){function h(a){return e.step(a)}var e=this,g=f.fx;this.startTime=cr||cs(),this.end=c,this.now=this.start=a,this.pos=this.state=0,this.unit=d||this.unit||(f.cssNumber[this.prop]?"":"px"),h.queue=this.options.queue,h.elem=this.elem,h.saveState=function(){e.options.hide&&f._data(e.elem,"fxshow"+e.prop)===b&&f._data(e.elem,"fxshow"+e.prop,e.start)},h()&&f.timers.push(h)&&!cp&&(cp=setInterval(g.tick,g.interval))},show:function(){var a=f._data(this.elem,"fxshow"+this.prop);this.options.orig[this.prop]=a||f.style(this.elem,this.prop),this.options.show=!0,a!==b?this.custom(this.cur(),a):this.custom(this.prop==="width"||this.prop==="height"?1:0,this.cur()),f(this.elem).show()},hide:function(){this.options.orig[this.prop]=f._data(this.elem,"fxshow"+this.prop)||f.style(this.elem,this.prop),this.options.hide=!0,this.custom(this.cur(),0)},step:function(a){var b,c,d,e=cr||cs(),g=!0,h=this.elem,i=this.options;if(a||e>=i.duration+this.startTime){this.now=this.end,this.pos=this.state=1,this.update(),i.animatedProperties[this.prop]=!0;for(b in i.animatedProperties)i.animatedProperties[b]!==!0&&(g=!1);if(g){i.overflow!=null&&!f.support.shrinkWrapBlocks&&f.each(["","X","Y"],function(a,b){h.style["overflow"+b]=i.overflow[a]}),i.hide&&f(h).hide();if(i.hide||i.show)for(b in i.animatedProperties)f.style(h,b,i.orig[b]),f.removeData(h,"fxshow"+b,!0),f.removeData(h,"toggle"+b,!0);d=i.complete,d&&(i.complete=!1,d.call(h))}return!1}i.duration==Infinity?this.now=e:(c=e-this.startTime,this.state=c/i.duration,this.pos=f.easing[i.animatedProperties[this.prop]](this.state,c,0,1,i.duration),this.now=this.start+(this.end-this.start)*this.pos),this.update();return!0}},f.extend(f.fx,{tick:function(){var a,b=f.timers,c=0;for(;c<b.length;c++)a=b[c],!a()&&b[c]===a&&b.splice(c--,1);b.length||f.fx.stop()},interval:13,stop:function(){clearInterval(cp),cp=null},speeds:{slow:600,fast:200,_default:400},step:{opacity:function(a){f.style(a.elem,"opacity",a.now)},_default:function(a){a.elem.style&&a.elem.style[a.prop]!=null?a.elem.style[a.prop]=a.now+a.unit:a.elem[a.prop]=a.now}}}),f.each(["width","height"],function(a,b){f.fx.step[b]=function(a){f.style(a.elem,b,Math.max(0,a.now)+a.unit)}}),f.expr&&f.expr.filters&&(f.expr.filters.animated=function(a){return f.grep(f.timers,function(b){return a===b.elem}).length});var cw=/^t(?:able|d|h)$/i,cx=/^(?:body|html)$/i;"getBoundingClientRect"in c.documentElement?f.fn.offset=function(a){var b=this[0],c;if(a)return this.each(function(b){f.offset.setOffset(this,a,b)});if(!b||!b.ownerDocument)return null;if(b===b.ownerDocument.body)return f.offset.bodyOffset(b);try{c=b.getBoundingClientRect()}catch(d){}var e=b.ownerDocument,g=e.documentElement;if(!c||!f.contains(g,b))return c?{top:c.top,left:c.left}:{top:0,left:0};var h=e.body,i=cy(e),j=g.clientTop||h.clientTop||0,k=g.clientLeft||h.clientLeft||0,l=i.pageYOffset||f.support.boxModel&&g.scrollTop||h.scrollTop,m=i.pageXOffset||f.support.boxModel&&g.scrollLeft||h.scrollLeft,n=c.top+l-j,o=c.left+m-k;return{top:n,left:o}}:f.fn.offset=function(a){var b=this[0];if(a)return this.each(function(b){f.offset.setOffset(this,a,b)});if(!b||!b.ownerDocument)return null;if(b===b.ownerDocument.body)return f.offset.bodyOffset(b);var c,d=b.offsetParent,e=b,g=b.ownerDocument,h=g.documentElement,i=g.body,j=g.defaultView,k=j?j.getComputedStyle(b,null):b.currentStyle,l=b.offsetTop,m=b.offsetLeft;while((b=b.parentNode)&&b!==i&&b!==h){if(f.support.fixedPosition&&k.position==="fixed")break;c=j?j.getComputedStyle(b,null):b.currentStyle,l-=b.scrollTop,m-=b.scrollLeft,b===d&&(l+=b.offsetTop,m+=b.offsetLeft,f.support.doesNotAddBorder&&(!f.support.doesAddBorderForTableAndCells||!cw.test(b.nodeName))&&(l+=parseFloat(c.borderTopWidth)||0,m+=parseFloat(c.borderLeftWidth)||0),e=d,d=b.offsetParent),f.support.subtractsBorderForOverflowNotVisible&&c.overflow!=="visible"&&(l+=parseFloat(c.borderTopWidth)||0,m+=parseFloat(c.borderLeftWidth)||0),k=c}if(k.position==="relative"||k.position==="static")l+=i.offsetTop,m+=i.offsetLeft;f.support.fixedPosition&&k.position==="fixed"&&(l+=Math.max(h.scrollTop,i.scrollTop),m+=Math.max(h.scrollLeft,i.scrollLeft));return{top:l,left:m}},f.offset={bodyOffset:function(a){var b=a.offsetTop,c=a.offsetLeft;f.support.doesNotIncludeMarginInBodyOffset&&(b+=parseFloat(f.css(a,"marginTop"))||0,c+=parseFloat(f.css(a,"marginLeft"))||0);return{top:b,left:c}},setOffset:function(a,b,c){var d=f.css(a,"position");d==="static"&&(a.style.position="relative");var e=f(a),g=e.offset(),h=f.css(a,"top"),i=f.css(a,"left"),j=(d==="absolute"||d==="fixed")&&f.inArray("auto",[h,i])>-1,k={},l={},m,n;j?(l=e.position(),m=l.top,n=l.left):(m=parseFloat(h)||0,n=parseFloat(i)||0),f.isFunction(b)&&(b=b.call(a,c,g)),b.top!=null&&(k.top=b.top-g.top+m),b.left!=null&&(k.left=b.left-g.left+n),"using"in b?b.using.call(a,k):e.css(k)}},f.fn.extend({position:function(){if(!this[0])return null;var a=this[0],b=this.offsetParent(),c=this.offset(),d=cx.test(b[0].nodeName)?{top:0,left:0}:b.offset();c.top-=parseFloat(f.css(a,"marginTop"))||0,c.left-=parseFloat(f.css(a,"marginLeft"))||0,d.top+=parseFloat(f.css(b[0],"borderTopWidth"))||0,d.left+=parseFloat(f.css(b[0],"borderLeftWidth"))||0;return{top:c.top-d.top,left:c.left-d.left}},offsetParent:function(){return this.map(function(){var a=this.offsetParent||c.body;while(a&&!cx.test(a.nodeName)&&f.css(a,"position")==="static")a=a.offsetParent;return a})}}),f.each(["Left","Top"],function(a,c){var d="scroll"+c;f.fn[d]=function(c){var e,g;if(c===b){e=this[0];if(!e)return null;g=cy(e);return g?"pageXOffset"in g?g[a?"pageYOffset":"pageXOffset"]:f.support.boxModel&&g.document.documentElement[d]||g.document.body[d]:e[d]}return this.each(function(){g=cy(this),g?g.scrollTo(a?f(g).scrollLeft():c,a?c:f(g).scrollTop()):this[d]=c})}}),f.each(["Height","Width"],function(a,c){var d=c.toLowerCase();f.fn["inner"+c]=function(){var a=this[0];return a?a.style?parseFloat(f.css(a,d,"padding")):this[d]():null},f.fn["outer"+c]=function(a){var b=this[0];return b?b.style?parseFloat(f.css(b,d,a?"margin":"border")):this[d]():null},f.fn[d]=function(a){var e=this[0];if(!e)return a==null?null:this;if(f.isFunction(a))return this.each(function(b){var c=f(this);c[d](a.call(this,b,c[d]()))});if(f.isWindow(e)){var g=e.document.documentElement["client"+c],h=e.document.body;return e.document.compatMode==="CSS1Compat"&&g||h&&h["client"+c]||g}if(e.nodeType===9)return Math.max(e.documentElement["client"+c],e.body["scroll"+c],e.documentElement["scroll"+c],e.body["offset"+c],e.documentElement["offset"+c]);if(a===b){var i=f.css(e,d),j=parseFloat(i);return f.isNumeric(j)?j:i}return this.css(d,typeof a=="string"?a:a+"px")}}),a.jQuery=a.$=f,typeof define=="function"&&define.amd&&define.amd.jQuery&&define("jquery",[],function(){return f})})(window);



OEBPS/Common_Content/fonts/portal/nimbus/iconfont.eot


OEBPS/images/job.png
Console Edit_View. Help

Configuration

Red Hat Certiicate System:9445 :|["Job Instance | Job Plugin Registration

Users and Groups

Access Control List Instance Narne | Staus | Add
Log bisabied
System Keys and Certificates certRenewalNotifier  |Disabled Delete
Authentication publishCerts Disabled
7o gneauer unpublishExpiredCents [Disabled Edit/ View
ks

o= Centificate Manager





OEBPS/Common_Content/images/33.png





OEBPS/images/ca-forms-list.png
Red Hat® Certificate Manager

/ Revocal

List Certificate
Profiles.

Certificate Profile

Use this form to select a certificate profile for the request.

Certificate Profile Name

© Manual User Dual-Use Certificate Enroliment

© Manual User Signing & Encryption Certificates
Enroliment

Description
This certifica
certificates.

This certifica
certificates.
later.

This profile i





OEBPS/Common_Content/fonts/overpass_bold-web.woff


OEBPS/images/rule3.png
Rule Editor

Rule ID: LdapUserCertRule
Rule Plugin ID: Rule

type [cens =

predicate

enable

mapper |LdapUserCertMap ~

publisher LdapUserCertPublisher ~






OEBPS/images/admin-newuser.png
Red Hat® TPS Services

Main Menu : Admin Operations : Add New User

User ID:

User First Name:

User Last Name:

Role:

Certificate:

Agent ¥ Admin
MITDT3CCAS agAwIBAGTEC; ANBgkqnkiGSwOBAQUF A
ADBAMRAVHAYDVQRKEXVS 2R WA b2 1vdXR1C15E
b21nai4xE)ACBGNVEANT FUNL cRpZml  TXRLIEF
AGBVCTL 0eTACFWOUOTALMT Ik NTAONDAa FWOUOTER|
MTUXNTAONDGaMFAXE ZARBQNVBANTCKpVaG4gU2 1D,
dGGXITABGkqhkiGSUOBCOEHERDZEN] 0aEB1eCFE
CGx 1 LniNvBTEWMBQGCqmS JonT8 i xkAQETBmpZEW10
2DCBn2ANBgkqnici G2wOBAQEFAROS QAVSYRCOYER
0m3L9CTHEY01Q1 DHEOERLYE 2278 2DuNGO2PPCTE
SCGomrQ++nOv5406UnEeO+VNoV/ 1pNb5H21y/ 1Mp.
TTMENYP6UY3OsSLIqINL 4R2me2 327 455 SUNQIEAL V]






OEBPS/images/cm_single.png
O @ Q &

CRMF

CMME

KEYGEN tag

PKCS#7
PKCS#10
HTTP/

HTTPS

Publishing directory

LDAP or
LDAPS
Certificates
and CRLs,






OEBPS/images/cm_generaltab_random_serial_numbers.png
cal.example.com - Red Hat Cert

ate System - instancelD

- Certificate System
[ Confiquration | Status |

Red Hat Certificate Syster9445 || General Settings | Connetors
@, Users and Groups
@ Access Control List Certificate Validity

Log
@ System Keys and Certificates
@ Authentication
G Job Scheduler Certificate Serial Number
o (3 Certificate Manager

Console Edit_View Help

[] override validity nesting requirement

[] Enable serial number management

[m]

Default Signing Algorithm

Algorithm: [SHA256withRSA






OEBPS/images/Aep_wizard1.png
2]

=

Welcome to the Certificate
Request Wizard

This wizard helps you request a new certficate from a
certfication authority (CA) in your domain.

A certiicate, which s ssued by a certfication authorkty,
is 3 confrmation of your identiy and contains
information used o protect data or to establish secure:
netwark cannectins.

A private key is the secret half of a publc and private.
Kkey pairassociated with a cerficate. It is used to
digtally sign or decrypt data encrypted with the
corresponding publc key.

To continue, cick Next

=






OEBPS/images/subsys-renewal.png
Certificate Profile - Manual Certificate Manager

igning Certificate Enrollment

This certificate profile is for enrolling Certificate Authority certificates.

Inputs

Certificate Request Input
« Certificate Request Type

« Certificate Request

Requestor Information

« Requestor Name
« Requestor Email

« Requestor Phone

PKCS#10[v

SEGIN CERTIFICATE-
MIIDo3CCAoquAWIBAGIBLIANBgkqhkiGIwOBAQUEADBAMRSUE
VQQKEXVSZWR1dWRIb21waXR1C1BED21hal4xH] ACBGNVEAMTE
SYXRLIEF1dGhveml0eTAe FuOwOTALM I ExNzAZMS VaFwOXMTAL
ZaMDUXEZARBGNVEAGTCKS1dyBED2 1naW4xH I ACBGNVEAMTFUN
XR1IEF1dGhveml 0eTCCASTWDQYJK0Z ThveNAQEBBQADGGEPAD
AJOGTZMALECKO1KP+nQZ00GTECRYKNE 4] aaX I 1922ms++ar 1
QSGKDMXyPGZSErLEARIXVRE+KNWHERS/ Towl IPAGGR3ST1PWE
hg1C3eTEGVG1033XzAnyx TEUngXAGOue3wI4uZESYCLADLE
2¥shzéucudPrtPdcegrVoTGoTENTote 3 HGLLNI KD47/ VXAV

admin
‘admin@example com

919-655-0000





OEBPS/images/profile_new2.png
Certificate Profile Instance Editor

x

* Certificate Profile Instance I

Cer

ificate Profile Nam

Certificate Profile Descripti

End User Certi

ate Prof

Certificate Profile Authentication:

Certificate Profile Plugin ID:

[cMCAuth

caServercert...

oK

cancel






OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-RegularItalic.woff2


OEBPS/images/ca-import1.png
¥ General
@ Home
Q search

& Firefox Account





OEBPS/images/cavalidity-console.png
Certificate Profile Instance ID:

New Certificate Profile Editor

Policy set ID:
Policy ID:
Default | Constraint
Parameter Value
range
startTime
bypassCAnotafter

Bypass CA notAfter constraint

oK

cancel

Help






OEBPS/Common_Content/images/12.png





OEBPS/Common_Content/fonts/redhat/text/RedHatText-BoldItalic.eot


OEBPS/images/notifya.png
Console Edit_View. Help

Configuration

Redl Hat Certificate System.9443
Users and Groups
Access Control List
Log
Syster Keys and Certificates
Authentication
& Job Schecluler
- Certificate Manager
Policies
Certiicate Profiles
Nificatiar
o CRL Issuing Paints
o= Publishing

Centificate Issued | Certificate Revoked | Request In Queue |

Email Information Settings
Sender's E-mail Address:
Subject:

Content template path:

Enable Certificate Issued notification

[admin@example com
fYour Centificate Renuest
[usr/libhpki-ca/emalls certissued_CA htmi






OEBPS/images/cert-db1.png
Console Edit View Help

Configuration

Red Hat Cerlficate Sy5tem 9543 | CA Centificates |  Local Certificates
Users and Groups

Access Control List (Cantiicate. ] Serial Nu._. Jssuer Namd Token Na. Add/Renew
Log m] a imternal |~
e Keis AR CBrificaEs | [ocspsin... 2 c internal Delete
Authenication Server-C...3 o internal
& Job Scheduler Server-C._.[5 Ci iinternal View
o Centficate Manager Server-C |6 & internal
subsyste... |4 i internal






OEBPS/Common_Content/fonts/redhat/text/RedHatText-BoldItalic.woff


OEBPS/images/list-requests.png
List Requests

Use this form to show a list of certificate requests

Request type: | show all requests

Request status: | show pending requests

Starting request number:

Find

first

20

records






OEBPS/images/pubtab.png
Certificate System

JE Red Hat Certficate 5 | > General
@, Users and Group!
@] Access Control Li Enable Publishing

Log

@ System Keys and Enable Publishing Queue
@ Authentication
o @ Job Scheduler Enable Default LDAP Connection
¢ (3 Certficate Manag
Certificate Pro

@ Notification Host name: [server.example.com ]

o @ CRL Issuing Po

& Rubiching. Port number: [389 [] Use SSL communication
@ Mappers ctory manager DN: [cn=Directory Manager ]
Publishers
Rules Password:

LDAP version:

Destination

Authentication: [Basic authentication | v|






OEBPS/images/ocsp-revstore-db.png
Revocation Info Store Editor.

Revocation Info Store ID: defStore
Store Plugin ID: com.netscape.cms....

notFoundAsGood

byName

includeNextupdate []

Return GOOD if the requested serial number was
not found

oK cancel Help






OEBPS/Common_Content/images/8.png





OEBPS/images/mappers1.png
Console Edit View

Configuration

Help

Red Hat Certificate System
Users and Groups
Access Control List
Log
System Keys and Certif
Authentication

& Job Schecluler

- Certificate Manager

Policies
Certiicate Profiles
Notification
o CRL Issuing Paints
% Publishing
Wappers
Publishers
Rules

Mappers Management

Mapber Plugin Registration |

Mapper Plugin Name Add

LdapCaCerthiap LoapCasimpletan =
LoiapSimpleMap Delete

NoMap NoMap

LdapCriMap LoapCasimpietan Edit/View






OEBPS/Common_Content/fonts/redhat/text/RedHatText-Regular.eot


OEBPS/images/ocsp-revstore-ldap.png
Revocation Info Store Editor.

Revocation Info Store ID: IdapStore
Store Plugin ID: com.netscape.cms....

numconnsfo |
byName
caCertattr [cACertificate:binary |
crlattr [certificateRevocationListbinar|

notFoundAsGood

includeNextupdate []

[T L D

“The total number of LDAP connections.

oK cancel Help






OEBPS/Common_Content/images/h1-bg.png





OEBPS/content.opf
   9_idm140260509010192 Administration Guide (Common Criteria Edition) This guide covers all aspects of installing, configuring, and managing Certificate System 9.4 in a Common Criteria environment. It also covers management tasks such as adding users; requesting, renewing, and revoking certificates; publishing CRLs; and managing smart cards. This guide is intended for Certificate System administrators. Red Hat en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    



OEBPS/images/cm12.png
gent Services

Certificate Manager

Revoke
Certificates.

Search Results

Issuer: CN=Certificate Authority,O=Example Domain

Total number of records found: 10 (Maximum size reached)

Serial number  Subject name

0x00000001  CN=Certificate Authority, O=Example Domain

Version Certificate Type
3 X.500

Not valid before
51972008 :35:36

Issued on
5/19/2009 9:35:36

Subject public key algorithm
PKCS #1 RSA with 2048-bit key
Not valid after

5/9/2011 9:35:36

Issued by

system





OEBPS/images/crl-default-list.png
Console Edit View Help

Redl Hat Certificate System.9443
Users and Groups
Access Control List
Log
Syster Keys and Certificates
Authentication
& Job Schecluler
- Certificate Manager
Policies
Certiicate Profiles
Notification
9 CRL Issuing Paints
¢ MasterCRL
CRL Extensions
o Publishing

CRL Issuing Points

List of CRL issuing points:

Add

Edit

Delete






OEBPS/images/arch.png
HTTP Engine

End-Entity (Non-SSL)

HTML Forms

Agent (SSL)
End-Entity (SSL)

g ..
ome §

HTML Forms
Console

Certificate System

Directory Server

Other Subsystem Modules

Authorization

Authentication

Serviets
Agent

End-Entity. Administration
Services

Interface Services  Interface

Servets Invocation

Jst

NS

PKCS #11

PKCS#11 Module

Third-Party
Module

Internal
Module

FIPS

Module

certX.db

Slots Tokens

dhi bl

<« Crypto services token
<« Certificate DB Token

35 «—mmm Fs Certfcate 0B Token





OEBPS/images/cm10.png
gent Services

Certificate Manager

Search for
Certificates

Search Results

Issuer: CN=Certificate Authority,O=Example Domain

Total number of records found: 10 (Maximum size reached)

Serial number  Subject name

0x00000001  CN=Certificate Authority, O=Example Domain

Version Certificate Type
3 X.500

Not valid before
51972008 :35:36

Issued on
5/19/2009 9:35:36

Subject public key algorithm
PKCS #1 RSA with 2048-bit key
Not valid after

5/9/2011 9:35:36

Issued by

system





OEBPS/Common_Content/images/32.png





OEBPS/images/run-mmc.png
Type the name of a program, folder, document, or
Internet resource, and Windows wi opent fo you.

Open: [ e v






OEBPS/images/profile_editor.png
New Certificate Profile Editor

Centificate Profile Instance ID:

Policy Set ID: [set1
Policy ID:

“Default | Constraint |

Parameter Value
basicConstraintsCritical fise |~
basicConstraintsisCA true ~
basicConstraintsPathLen -1

Criticality

oK. Cancel Help






OEBPS/images/profile_editor2.png
New Certificate Profile Editor
Centificate Profile Instance ID:

Policy Set ID: [set1

ol [
Default | Constraint |

Parameter Value
basicConstraintsCritical flse |~
basicConstraintslsCA e v
basicConstraintsMinPathLen -1

basicConstraintsMaxPathLen 100

Is CA

oK. Cancel Help






OEBPS/images/cmrmdrm.png
Publishing directory

cep
o5k
CRMF Certificates
and CRLs
CMMF
PKCSHT
“'.‘j'.’,,‘.;:',"" comeas
PKCSHIO Manager

HTTR/ HTTPS

HTTPS

o @5 @ R

Data Recovery Manager





OEBPS/images/Aep_wizard4.png
Certificate Request Wizard

Completing the Certificate

izard
Request Wizar

You have successfull completed the Certficate.
Reaquest wizard

You have speciied the following settings:

ore>
Computer Name  GHOST
Certfcate Template Domain Controler

<ok ol






OEBPS/images/02cert.png
© User enters private-key password.

|

SSL connection Web Server (5)
© Ctient senas Sateh
certifcate @1 oo
d evid

e Scross network, @) Serveruses the  authenticated
Client retrieves certificateand  identity.
private key evidence to
and uses it to authenticate
create evidence the user's dentity.

(digital signature).






OEBPS/images/05scrypt2.png
Encryption Decryption

g ® g

Symmetric  Scrambled  Symmatic
Data






OEBPS/images/selinux-file.png
File Help
Select:
Status

Boolean

User Mapping
SELinux User
Network Port
Policy Module

Process Domain

SELinux Administration

+ & (€]

Q

Add  Properties Delete  Customized
Fiter |pki-ca
File Selinux File
Specification File Type Type
Jetc/pki-ca(/.*)? pki_tomcat_etc

Ivar/libfipalpki-calpublish (/. *)?
Ivar/liblpki-ca(/.*)?
Ivarflib/pki-cafalias (/.*)?
Ivarfloglpki-ca(/.*)?

Ivarfrun/pki-ca.pid

pki_tomcat_cert_t:s0
pki_tomcat_var_lib_t:s0
pki_tomcat_cert_t:s0
pki_tomcat_log_t:s0

pki_tomcat_var_run_t:s0

all files

all files

all files

all files

all files






OEBPS/images/profile_outputs.png
Certificate Profile Output Editor x

Select one of the following outputs:

CMMF Response Output
nSNKeyOutputimpl
PKCS7 Output

oK cancel






OEBPS/images/profile-policyset.png
Policy Information:

Policy Set: userCertset

[# _[Extensions / Fields [Constraints
1 [This default populates a User-Supplied Certificate [This constraint accepts the subject name that matches UID:
|Subject Name to the request.
10 [No Default [This constraint rejects the validity that is not between 30 days before and 30 days
jafter original cert expiration date days.
2 [This default populates a Certificate Validity to_|[This constraint rejects the validity that is not between 365 days.
the request. The default values are Range=180 in
ldays
3 [This default populates a User-Supplied Certificate [This constraint accepts the key only if Key Type=-, Key Min Length=256, Key Max
ey to the request. lLength=4006
[+ [This default populates an Authority Key Identifier [No Constraint
[Extension (2.5.29.35) to the request.






OEBPS/images/cmdrm.png
Publishing
directory

LDAP or
CRMF LDAPS

. Certificates
CMMF and CRLs

KEYGEN tag
PKCS#7
PKCS#10 HTTPS

Certificate Data
HTTP/ Manager Recovery.
Manager

O @5 @ &





OEBPS/images/additional-notes.png
Additional Notes

Approve request v submit






OEBPS/images/mappers3.png
Select Mapper, Plugin Implementation

LoapCasimplehap

LelapDNExactMap
LeapEnhancedhap

LeapSimpleMap
LelapSubjAttritap
NoMap






OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BlackItalic.woff2


OEBPS/Common_Content/images/39.png





OEBPS/images/cert-submit-html.png
Red Hat® Cert

Certificate Profile -

icate Manager

Manual Server Certificate Enrollment

This certificate profile is for enrolling server certificates.

Inputs

Certificate
Request Input

* Certificate Request
Type

* Certificate Request

Requestor
Information

« Requestor Name
« Requestor Email

« Requestor Phone

PKCS#10[v]

EGIN CERTIFICATE REQUES:
MIIB1TCH/wIBADAMMSQUIGYDVQQDEXT3aNxid

XIucmVKYRVKY29tcHVOZKTHbES) “MIWrigZ8wDQY
K02 1nVCNAQERBQADGYORMIGIACGBAL4CRASTAN
UnuEHEYXmMEQH M1PRTGh3 qEOSBLNbEVRHGITREE
TaBESHYFYBLN6Z31T1cEZYDqmS fpe2sSTraw/W5™
M123FeRql5+keHDzXxrShRxnRYLT ZvodHY ENEVaR
NECSKaRfKKScR43K17£qhs564 "M/ FrWBCETZVEYZ
| GdUEQ+hAGMBAAGGHDAUBQkqhkiGIWOBCQIXITALY
'BOGA1UGEQQN " MMBSBENDZb10aEB1eGFECGX 1L
VHTANBGkqhKiGOwOBAQUFAROBGQB4 T2  sHuFe MM

John Smith
tsmith@example com
'9185551880|





OEBPS/images/proxy-cacert.png
Certificate System Proxy Configuration

Roout CACerfcate | cte Diectoy | CAConnection | Logong |

Load From File

BSGIN CERTIZICATE-
ILS05L81CAUAIT4 BDRVIUSUZ R0 FURS DS LSOE DRENSU1ER18090
[F1V205401.CQNJQkFUQUSCE2 tnaGrpRaL BHEIEUVVERURCRULS
[NHA1QULEU1 RS OV4VINa1pDQPKV1JqY 3 Tud2RY U aUIEY 3
T2 TR Ta k) g0V JBTVRGVUS 52550 FpTblpZNEIsSIVE.
MARESEE S DRp LVEE L w0 SURTENVGE 4 TRANMUL EiimEGaz
[B4TURBND 12237 0RE 0X T p YD1 FQXATakE S GRAOVKTBB1AGV kDS
|DRpaRDoxXdOMRTYR I FXR1 25 SUVSdnIK AR aXVITUISROSRVY
[VBe= 90T BB G 1AVDS0224U2 1 YU BRRZ1SDRPRRETITULT
|R1agusC22cxaGepRE1 SME TRUDVGQUE BQUFROSNSU1CR24LR0
FRRUF3SE 2 TBGaHASN KL YUUUSDQPCACF YL FIS K1 41 BRMER
[R120ae OGS %23 KR 92 02d0HT2 520N Eem1 e XVEBO 4y T
[PEM15Ca1 k443U IDRERL L ou Vi s S2REQUNS 2 U EpRESRKSZ 54,
QOGS SHEZ L 21 Rz 4K 2 FveEN I GHnlind 2G4 5 cOpgERmD

S

CAName |

_torly | Comd | o |






OEBPS/images/ra-newagent-enroll.png
RA Services : Agent Enroliment

For RA agent enrollment, an agent must submit a pin creation
request first before performing certificate enrollment.

® Pin Creation Request
e Certificate Enroliment





OEBPS/images/icon.png





OEBPS/images/tps-general-search.png
Red Hat® TPS Services

Main Menu : Adm ns : General Configuration

General: General
Status: Enabled

applet. 000=#HEEFFFHEHEFEEIHIEREEEMEREEEREREEEEEE
applet. 001=# applet information

applet. 002=% SAE Key:
applet. 003=# applet.aid.cardmgr_instance=A0000001510000

applec. 004=#HifidEstEHEEEFFEFIITHIIHIBEEEERERERERHEE
applet.aid.cazdmgs_instance=A0000000030000
applet.aid.netkey File=627601FF0000
applet.aid.nstkey_instance=627601FF000000
applet.aid.nstkey old_file=A000000001
applet.aid.netkey old_instance=A00000000101
applet.delete ola=true

applet.so_pin=000000000000
T R T

channel.encryption:

- enable encryprion for all operation commands To Token

- Gefault is crue

channel.blocksize=242

channel.defXeyVersion=0

channel.defXeyTndex=0
FEREEIIRIM IR AN AN III I IS
channel.blocksize=2:t
channel.defXeyTndex=0
channel.defXeyVeraion=0
channel _encryption=crue

Contents:

general.pylengzh.mi
general.search.sizelimit.default=100
general.search.sizelimit.max=2000
general.search.gimelimit.default=10
general.search.timelimit.max=10

general.YerifyProgf=l






OEBPS/Common_Content/images/bullet_arrowblue.png





OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Black.eot


OEBPS/Common_Content/images/24.png





OEBPS/images/ca-ocsp.png
(2) (1)

A client contacts ‘The CA periodically,

the OCSP (o UDIShes s
seeifa cert RLs (0 the )
isvalid GCSP responder =

=]

beooo
&F “meocse
(—

replies with
the cert status

(3]

OCSP Responder






OEBPS/Common_Content/images/title_logo.png
& RedHat





OEBPS/images/cm_connector.png
Configuration

Red i Coriate Syem 3545 | Ganrat Secings

Connectors

Users and Groups
Access Control List List of connectors:
Log
Syster Keys and Certificates
Authentication

& Job Scheduler.

o {Cerificate Marager!

Edit






OEBPS/images/cavalidity-after.png
Certificate Manager

List Requests

requestor_email [~ 1=
i = Email

Requestor

requestor_phone ~[3=d4

policy Information
caCertset

[Extensions / Fields

[This default populates a User-Supplied Certificate Subject Name.
to the request.

|Subject Name:  CN=Ceriificate Authority.0U=pki-ca.C

[2 [This default populates a Certificate Validity to the requdst. The
default values are Range=2922 in days

ot sefore:  wrzainas

Not After: 2020H12-2111:47:18

Bypass CA notafter e ~
constraint:

request.

Key Type: RSA - 1.2.840.113549.1.1.1






OEBPS/images/ca-user-revoke.png
Red Hat® Certificate Manager

User Certificate  User Certificate Revocation

Use this form to revoke your certificate automatically.

CMC Revoke

After you click the submit button, a window will pop up with a list of
certificates you can send to the server. Select the certificate you want to
revoke from this window.

Important: This is an irreversible operation. If you still want to continue,
be sure to request revocation on the computer where the
private key and certificate to be revoked are stored.

Revocation Reason
Select a revocation reason
© Unspecified
O Key Compromise
O Cessation of Operation
@ Affiliation Changed
O Superseded






OEBPS/Common_Content/images/7.png





OEBPS/images/ca-disable-profile.png
rtificate [Recora
Siles #0{Patter:srequest.req.
[Type:RFCB22Name Enable
rver [ [This default populates th
|algorithm. The default va
|algorithm=sHa1withRSA

Disable






OEBPS/images/cm9.png
Agent Services

Certificate Manager

Search for

Search for Certificates
Use this form to compose queries based on properties of the certificate.

Each section below filters the search. Check the box at the top of the section if
you want to use that filter in your search, then complete the fields. Leave a box
unchecked to ignore that filter. You can click more than one box to get a
combination of search criteria.

Serial Number Range
[ Show certificates that fall within the following range:

Lowest serial number: (leave blank for no lower limit)

Highest serial number: (leave blank for no upper limit)

Enter a range of certificate serial numbers in hexadecimal form (starting with 0x, as
in the certificate list), or in decimal form.

Status
[ Show certificates that are | VALID ]





OEBPS/images/publisher2.png
Select Publisher Plugin Implementation

LelapCaCentPublisher
LeapCertificatePairPublisher
LeapCriPublisher
LeapDehtaCriPublisher
LeapUserCertPublisher
OCSPPUblisher

Next






OEBPS/images/clone_arch.png
HTTP/HTTPS requests from end users

|

Load balancer
OCSP requests from end users

[

Load balancer

CRL publishing
Original CA

3 .3
oSlone i
Database

Load balancer

3 «— replication ——

Clone
Database e






OEBPS/images/11svauth.png
Client's list of

John Doe's Certificate trusted CAs
John Does public key &
3 s today's date within
Cerficate's Serial number ovahmw period?
Cerficates validity period Issuing CA's
@ s issuing CAa Certifacte

issuer's public key&

TR | O ok e
Elenativy Issuer's digital

Does the domain
name specified in
the serverts DN
match the server's
actual domain name?






OEBPS/images/crlhttp1.png
Console Edit View Hel

Configuration

Red Hat Certficate System: 92
), Users and Groups
@4 Access Control List
Log
@35ystem Keys and Certficat
@ Authentication
o @ Job Scheduler
¢ (3 Centficate Manager
Centificate Profiles
@4 Notification
o @ CRLIssuing Points
% & Publishing
Mappers
@

@ Flbiishers
Rules






OEBPS/images/ra-newagent-pin2.png
RA Services : Agent Enroliment
Agent Interface

“This form is for new RA agent to request a certificate.

u: smith
One-Time
Bine oPZPkCvaqy|

[submi ]





OEBPS/images/token.png
Token
Processing
System

0—0—

Enterprise

Security Clent /‘ \ Certifcate
Wanager

Token Key Data Recovery
Service Manager





OEBPS/Common_Content/images/19.png





OEBPS/images/tps-profile-select.png
Red Hat® TPS Services

Main Menu : Administrator Operations : Profile Configuration

UID:admin

Use this form to add or modify profils.
Either select an item to editin the drop-down box below and click "Edi”
orfillin the name of a new profile and click the Add" button.

Edit an existing Profile userkey S
Add a new Profle:






OEBPS/images/01pswd.png
e e e e

| 3R]

Server
authorizes
e T accessfor
Clent sends name and Serveruses  authenticated
password across netwark  © SeTveruees U

authenticate
users identity





OEBPS/images/tps-buttons.png





OEBPS/images/clone_q.png
Cloring
re you setting up a clone foran existing subsyster? For figh-avaiabilty, subsystern
can be clonedto provide mutlple access poits 1o the users.

@ Yes.

.

<Back s Concel Help






OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Bold.woff


OEBPS/images/pin.png
PIN Generator — g
LDAP.

|

DN that require PINs

Output file





OEBPS/Common_Content/images/10.png





OEBPS/images/signalg-profile.png
Centificate Profile Instance I

Certificate Profile Descriptios

Certificate Profile Policy ID:

Default | Constraint

Certificate Profile Rule Editor

Parameter

Value

signingAlg

IMD2withRSA
IMDSwithRSA
[SHALWIthRSA
[SHA2SGWithRSA
[sHAS12withRSA

Signing Algorithm

oK.

Cancel

Help






OEBPS/images/agent-editpolicy.png
Red Hat® TPS Services

Main Menu : Agent Operations : Edit Token

UID:admin
Token: 1234567890

User ID: admin

Status: uninitialized

Policy: RE_ENROLL=YES: PIN

Token Type: tokenKey






OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-MediumItalic.woff


OEBPS/Common_Content/images/watermark-draft.png





OEBPS/images/cm_generaltab.png
Configuration

Redl Hat Certificate System 9543
Users and Groups
Access Control List
Log
Syster Keys and Certificates
Authentication

& Job Scheduler.

o {Cerificate Marager!

General Settings | Connectors

Centificate Validity

[] Override validity nesting requirement

Centificate Serial Number
Next Serial Number: 0%
Ending Serial Number: @)

Default Signing Algorithm

Algorithm: [SHAIWIthRSA | v






OEBPS/images/fig-gfs-with-san.png





OEBPS/images/ra-html.png
O Red Hat* Certificate System

RA EE Services

SCEP Enroliment
Server Enroliment
User Enroliment
Agent Enrollment
Request Status Check

index.ym






OEBPS/images/cm_enabled_random_one_box_checked.png
ate System - instancelD

cal.example.com - Red Hat Cert

- Certificate System
[ Confiquration | Status |

Red Hat Certificate System:9445 | General Settings | Connectors |
@, Users and Groups
@ Access Control List Certificare validity
Log Override validity nesting requirement
@ Syatem Keys and Certficates | "y 9 req
@ Authentication
G Job Scheduler
- & Certficate Manager Enable serial number management

Help

Console Edit View

Certificate Serial Number

Enable random certificate serial numbers

Default Signing Algorithm

Algorithm: [SHAZ56withRSA






OEBPS/images/cm3.png
gent Services

Certificate Manager

List Requests. List Requests
Use this form to show a list of certificate requests.

Request type: | Show enrollment requests |
Request status: [ Show pending requests [

Starting request number: [g

first |20 records






OEBPS/images/Aep_wizard3.png
Certificate Request Wizard

Certifcate Friendly Name and Description

You can provide 3 name and descripton that help you quicky dentify a speciic
cortficate

Type a fiendly name and descripton for the new certficate,

Eriendly name:

—

Description






OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-RegularItalic.eot


OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Medium.woff


OEBPS/Common_Content/fonts/redhat/text/RedHatText-Regular.woff2


OEBPS/images/ca-ra.png
1) (2]

‘The RA approves
User _ Ausersendsa and the request
cert request fo and forwards it
the CA

tothe CA

( ===

The RA sends.
the cerl o the
user

Certificate Manager






OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Bold.eot


OEBPS/Common_Content/images/31.png





OEBPS/images/port.png
HTTP Engine
End-Entity (Non-SSL)
Non-SsL
— R e
HTML Forms

End-Entity (SSL)
‘Agent (ssL)

—

HTML Forms
€5 Cansale.

Certificate System

Serviets
invacation

aoepsaul
Saaims05 uaDY

€S Subsystem

Siamnses
uoneanuany
[rs—






OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-MediumItalic.eot


OEBPS/Common_Content/images/stock-go-forward.png





OEBPS/Common_Content/images/6.png





OEBPS/images/agent-edit.png
Red Hat® TPS Services

Main Menu : Agent Operations : Edit Token

UID:admin
Token: 1234567890

User ID: admin

Status: uninitialized

Policy: RENEW=YES

Token Type: tokenKey






OEBPS/images/aep-dcom1.png





OEBPS/images/recovery-options.png
synchronous asynchronous
recover
1

Agent
Eaes the

e el (2}

fhe P12 i KRAretums
3 reference
Aumber

Agent initiate
e key
E ey

rowser remains open

Browser updates -
Srowsr s v © W igsnzppe e
With Status Agents approve the
key recovery
recini®
B, (3] e et
PKCS#12 file i
to import o The infiating agent
Baes

retums
' the P12 fie
' tomport





OEBPS/images/ca-import3.png
Certificate Manager

Your Certificates People Servers Authorities

You have certificates on file that identify these certificate authorities

Certificate Name

~ AC Camerfirma S.A.

Security Device

Chambers of Commerce Root - 2008 Default Trust

Global Chambersign Root - 2008 Default Trust
~ AC Camerfirma SA CIF A82743287

Camerfirma Chambers of Commerce Root Default Trust

Camerfirma Global Chambersign Root Default Trust
vACCY

ACCVRAIZL Default Trust
~ Actalis S.p.A./03358520967

View. Edit Trust.. Import... Export. Delete or Distrust.

oK

a






OEBPS/images/csc_config.png
Console Edit_View Help

Configuration

Red Hat Certiicate System:9543 | “Internal Database | SMTP | Self Tests

Users and Groups

Access Control List Database Settings
Log .
System Keys and Certificates flostnamed ocalhost
Autnerrication Port number; [2025 ]
= Job Scheduler
o Centiicate Manager Directory manager DN: [en=Directory Manager ]






OEBPS/images/flatfileauth2_fixed.png
Authentication Instance Editor

Authentication Instance ID: flatFileAuth
Authentication Plugin ID: FlatFileAuth

fileName [/var/iio/pki/pki-ca/caj conf flatie txi
KeyAuributes [UID
authAttributes [PWD

deferOnFailure

Pathname of password file

oK. Cancel Help






OEBPS/Common_Content/images/25.png





OEBPS/images/10ssl.png
HTTP  LDAP  IMAP ...
Application Layer

Network Layer

TCP/IP layer





