
Red Hat Ceph Storage 7

Block Device Guide

Managing, creating, configuring, and using Red Hat Ceph Storage Block Devices

Last Updated: 2024-03-08

Red Hat Ceph Storage 7 Block Device Guide

Managing, creating, configuring, and using Red Hat Ceph Storage Block Devices

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to manage, create, configure, and use Red Hat Ceph Storage Block
Devices. Red Hat is committed to replacing problematic language in our code, documentation, and
web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist.
Because of the enormity of this endeavor, these changes will be implemented gradually over several
upcoming releases. For more details, see our CTO Chris Wright's message .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION TO CEPH BLOCK DEVICES

CHAPTER 2. CEPH BLOCK DEVICES
2.1. DISPLAYING THE COMMAND HELP
2.2. CREATING A BLOCK DEVICE POOL
2.3. CREATING A BLOCK DEVICE IMAGE
2.4. LISTING THE BLOCK DEVICE IMAGES
2.5. RETRIEVING THE BLOCK DEVICE IMAGE INFORMATION
2.6. RESIZING A BLOCK DEVICE IMAGE
2.7. REMOVING A BLOCK DEVICE IMAGE
2.8. MOVING A BLOCK DEVICE IMAGE TO THE TRASH
2.9. DEFINING AN AUTOMATIC TRASH PURGE SCHEDULE
2.10. ENABLING AND DISABLING IMAGE FEATURES
2.11. WORKING WITH IMAGE METADATA
2.12. MOVING IMAGES BETWEEN POOLS
2.13. MIGRATING POOLS
2.14. THE RBDMAP SERVICE
2.15. CONFIGURING THE RBDMAP SERVICE
2.16. PERSISTENT WRITE LOG CACHE
2.17. PERSISTENT WRITE LOG CACHE LIMITATIONS
2.18. ENABLING PERSISTENT WRITE LOG CACHE
2.19. CHECKING PERSISTENT WRITE LOG CACHE STATUS
2.20. FLUSHING PERSISTENT WRITE LOG CACHE
2.21. DISCARDING PERSISTENT WRITE LOG CACHE
2.22. MONITORING PERFORMANCE OF CEPH BLOCK DEVICES USING THE COMMAND-LINE INTERFACE

CHAPTER 3. LIVE MIGRATION OF IMAGES
3.1. THE LIVE MIGRATION PROCESS
3.2. FORMATS
3.3. STREAMS
3.4. PREPARING THE LIVE MIGRATION PROCESS
3.5. PREPARING IMPORT-ONLY MIGRATION
3.6. EXECUTING THE LIVE MIGRATION PROCESS
3.7. COMMITTING THE LIVE MIGRATION PROCESS
3.8. ABORTING THE LIVE MIGRATION PROCESS

CHAPTER 4. IMAGE ENCRYPTION
4.1. ENCRYPTION FORMAT
4.2. ENCRYPTION LOAD
4.3. SUPPORTED FORMATS
4.4. ADDING ENCRYPTION FORMAT TO IMAGES AND CLONES

CHAPTER 5. MANAGING SNAPSHOTS
5.1. CEPH BLOCK DEVICE SNAPSHOTS
5.2. THE CEPH USER AND KEYRING
5.3. CREATING A BLOCK DEVICE SNAPSHOT
5.4. LISTING THE BLOCK DEVICE SNAPSHOTS
5.5. ROLLING BACK A BLOCK DEVICE SNAPSHOT
5.6. DELETING A BLOCK DEVICE SNAPSHOT
5.7. PURGING THE BLOCK DEVICE SNAPSHOTS
5.8. RENAMING A BLOCK DEVICE SNAPSHOT

5

6
6
6
7
8
8
9
9

10
12
13
14
15
17
18
19

20
21
21
23
24
25

25

27
27
27
29
30
32
33
34
34

36
36
36
37
39

42
42
42
43
43
44
44
45
46

Table of Contents

1

. .

. .

. .

5.9. CEPH BLOCK DEVICE LAYERING
5.10. PROTECTING A BLOCK DEVICE SNAPSHOT
5.11. CLONING A BLOCK DEVICE SNAPSHOT
5.12. UNPROTECTING A BLOCK DEVICE SNAPSHOT
5.13. LISTING THE CHILDREN OF A SNAPSHOT
5.14. FLATTENING CLONED IMAGES

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES
6.1. CEPH BLOCK DEVICE MIRRORING

6.1.1. An overview of journal-based and snapshot-based mirroring
6.2. CONFIGURING ONE-WAY MIRRORING USING THE COMMAND-LINE INTERFACE
6.3. CONFIGURING TWO-WAY MIRRORING USING THE COMMAND-LINE INTERFACE
6.4. ADMINISTRATION FOR MIRRORING CEPH BLOCK DEVICES

6.4.1. Viewing information about peers
6.4.2. Enabling mirroring on a pool
6.4.3. Disabling mirroring on a pool
6.4.4. Enabling image mirroring
6.4.5. Disabling image mirroring
6.4.6. Image promotion and demotion
6.4.7. Image resynchronization
6.4.8. Adding a storage cluster peer
6.4.9. Removing a storage cluster peer
6.4.10. Getting mirroring status for a pool
6.4.11. Getting mirroring status for a single image
6.4.12. Delaying block device replication
6.4.13. Converting journal-based mirroring to snapshot-based mirrorring
6.4.14. Creating an image mirror-snapshot
6.4.15. Scheduling mirror-snapshots

6.4.15.1. Creating a mirror-snapshot schedule
6.4.15.2. Listing all snapshot schedules at a specific level
6.4.15.3. Removing a mirror-snapshot schedule
6.4.15.4. Viewing the status for the next snapshots to be created

6.5. RECOVER FROM A DISASTER
6.5.1. Disaster recovery
6.5.2. Recover from a disaster with one-way mirroring
6.5.3. Recover from a disaster with two-way mirroring
6.5.4. Failover after an orderly shutdown
6.5.5. Failover after a non-orderly shutdown
6.5.6. Prepare for fail back

6.5.6.1. Fail back to the primary storage cluster
6.5.7. Remove two-way mirroring

CHAPTER 7. MANAGEMENT OF CEPH-IMMUTABLE-OBJECT-CACHE DAEMONS
7.1. EXPLANATION OF CEPH-IMMUTABLE-OBJECT-CACHE DAEMONS
7.2. CONFIGURING THE CEPH-IMMUTABLE-OBJECT-CACHE DAEMON
7.3. GENERIC SETTINGS OF CEPH-IMMUTABLE-OBJECT-CACHE DAEMONS
7.4. QOS SETTINGS OF CEPH-IMMUTABLE-OBJECT-CACHE DAEMONS

CHAPTER 8. THE RBD KERNEL MODULE
8.1. CREATE A CEPH BLOCK DEVICE AND USE IT FROM A LINUX KERNEL MODULE CLIENT

8.1.1. Creating a Ceph block device for a Linux kernel module client using dashboard
8.1.2. Map and mount a Ceph Block Device on Linux using the command line

8.2. MAPPING A BLOCK DEVICE
8.3. DISPLAYING MAPPED BLOCK DEVICES

46
47
48
49
49
50

51
51

54
54
58
63
64
64
65
66
66
67
68
68
69
69
70
70
71
72
73
73
74
74
75
76
76
77
77
77
78
79
82
85

86
86
87
89
90

92
92
92
93
96
97

Red Hat Ceph Storage 7 Block Device Guide

2

. .

. .

8.4. UNMAPPING A BLOCK DEVICE
8.5. SEGREGATING IMAGES WITHIN ISOLATED NAMESPACES WITHIN THE SAME POOL

CHAPTER 9. USING THE CEPH BLOCK DEVICE PYTHON MODULE

APPENDIX A. CEPH BLOCK DEVICE CONFIGURATION REFERENCE
A.1. BLOCK DEVICE DEFAULT OPTIONS
A.2. BLOCK DEVICE GENERAL OPTIONS
A.3. BLOCK DEVICE CACHING OPTIONS
A.4. BLOCK DEVICE PARENT AND CHILD READ OPTIONS
A.5. BLOCK DEVICE READ AHEAD OPTIONS
A.6. BLOCK DEVICE BLOCKLIST OPTIONS
A.7. BLOCK DEVICE JOURNAL OPTIONS
A.8. BLOCK DEVICE CONFIGURATION OVERRIDE OPTIONS
A.9. BLOCK DEVICE INPUT AND OUTPUT OPTIONS

97
98

103

105
105
107
109
112
112
113
114
115
118

Table of Contents

3

Red Hat Ceph Storage 7 Block Device Guide

4

CHAPTER 1. INTRODUCTION TO CEPH BLOCK DEVICES
A block is a set length of bytes in a sequence, for example, a 512-byte block of data. Combining many
blocks together into a single file can be used as a storage device that you can read from and write to.
Block-based storage interfaces are the most common way to store data with rotating media such as:

Hard drives

CD/DVD discs

Floppy disks

Traditional 9-track tapes

The ubiquity of block device interfaces makes a virtual block device an ideal candidate for interacting
with a mass data storage system like Red Hat Ceph Storage.

Ceph block devices are thin-provisioned, resizable and store data striped over multiple Object Storage
Devices (OSD) in a Ceph storage cluster. Ceph block devices are also known as Reliable Autonomic
Distributed Object Store (RADOS) Block Devices (RBDs). Ceph block devices leverage RADOS
capabilities such as:

Snapshots

Replication

Data consistency

Ceph block devices interact with OSDs by using the librbd library.

Ceph block devices deliver high performance with infinite scalability to Kernel Virtual Machines (KVMs),
such as Quick Emulator (QEMU), and cloud-based computing systems, like OpenStack, that rely on the
libvirt and QEMU utilities to integrate with Ceph block devices. You can use the same storage cluster to
operate the Ceph Object Gateway and Ceph block devices simultaneously.

IMPORTANT

To use Ceph block devices, requires you to have access to a running Ceph storage
cluster. For details on installing a Red Hat Ceph Storage cluster, see the Red Hat
Ceph Storage Installation Guide.

CHAPTER 1. INTRODUCTION TO CEPH BLOCK DEVICES

5

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/installation_guide/

CHAPTER 2. CEPH BLOCK DEVICES
As a storage administrator, being familiar with Ceph’s block device commands can help you effectively
manage the Red Hat Ceph Storage cluster. You can create and manage block devices pools and images,
along with enabling and disabling the various features of Ceph block devices.

Prerequisites

A running Red Hat Ceph Storage cluster.

2.1. DISPLAYING THE COMMAND HELP

Display command, and sub-command online help from the command-line interface.

NOTE

The -h option still displays help for all available commands.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the client node.

Procedure

1. Use the rbd help command to display help for a particular rbd command and its subcommand:

Syntax

rbd help COMMAND SUBCOMMAND

2. To display help for the snap list command:

[root@rbd-client ~]# rbd help snap list

2.2. CREATING A BLOCK DEVICE POOL

Before using the block device client, ensure a pool for rbd exists, is enabled and initialized.

NOTE

You MUST create a pool first before you can specify it as a source.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the client node.

Procedure

Red Hat Ceph Storage 7 Block Device Guide

6

1. To create an rbd pool, execute the following:

Syntax

ceph osd pool create POOL_NAME PG_NUM
ceph osd pool application enable POOL_NAME rbd
rbd pool init -p POOL_NAME

Example

[root@rbd-client ~]# ceph osd pool create pool1
[root@rbd-client ~]# ceph osd pool application enable pool1 rbd
[root@rbd-client ~]# rbd pool init -p pool1

Additional Resources

See the Pools chapter in the Red Hat Ceph Storage Storage Strategies Guide for additional
details.

2.3. CREATING A BLOCK DEVICE IMAGE

Before adding a block device to a node, create an image for it in the Ceph storage cluster.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the client node.

Procedure

1. To create a block device image, execute the following command:

Syntax

rbd create IMAGE_NAME --size MEGABYTES --pool POOL_NAME

Example

[root@rbd-client ~]# rbd create image1 --size 1024 --pool pool1

This example creates a 1 GB image named image1 that stores information in a pool named
pool1.

NOTE

Ensure the pool exists before creating an image.

Additional Resources

See the Creating a block device pool section in the Red Hat Ceph Storage Block Device Guide
for additional details.

CHAPTER 2. CEPH BLOCK DEVICES

7

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/storage_strategies_guide/#pools-1
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#creating-a-block-device-pool_block

2.4. LISTING THE BLOCK DEVICE IMAGES

List the block device images.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the client node.

Procedure

1. To list block devices in the rbd pool, execute the following command:

NOTE

rbd is the default pool name.

Example

[root@rbd-client ~]# rbd ls

2. To list block devices in a specific pool:

Syntax

rbd ls POOL_NAME

Example

[root@rbd-client ~]# rbd ls pool1

2.5. RETRIEVING THE BLOCK DEVICE IMAGE INFORMATION

Retrieve information on the block device image.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the client node.

Procedure

1. To retrieve information from a particular image in the default rbd pool, run the following
command:

Syntax

rbd --image IMAGE_NAME info

Red Hat Ceph Storage 7 Block Device Guide

8

Example

[root@rbd-client ~]# rbd --image image1 info

2. To retrieve information from an image within a pool:

Syntax

rbd --image IMAGE_NAME -p POOL_NAME info

Example

[root@rbd-client ~]# rbd --image image1 -p pool1 info

2.6. RESIZING A BLOCK DEVICE IMAGE

Ceph block device images are thin-provisioned. They do not actually use any physical storage until you
begin saving data to them. However, they do have a maximum capacity that you set with the --size
option.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the client node.

Procedure

1. To increase or decrease the maximum size of a Ceph block device image for the default rbd
pool:

Syntax

rbd resize --image IMAGE_NAME --size SIZE

Example

[root@rbd-client ~]# rbd resize --image image1 --size 1024

2. To increase or decrease the maximum size of a Ceph block device image for a specific pool:

Syntax

rbd resize --image POOL_NAME/IMAGE_NAME --size SIZE

Example

[root@rbd-client ~]# rbd resize --image pool1/image1 --size 1024

2.7. REMOVING A BLOCK DEVICE IMAGE

CHAPTER 2. CEPH BLOCK DEVICES

9

Remove a block device image.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the client node.

Procedure

1. To remove a block device from the default rbd pool:

Syntax

rbd rm IMAGE_NAME

Example

[root@rbd-client ~]# rbd rm image1

2. To remove a block device from a specific pool:

Syntax

rbd rm IMAGE_NAME -p POOL_NAME

Example

[root@rbd-client ~]# rbd rm image1 -p pool1

2.8. MOVING A BLOCK DEVICE IMAGE TO THE TRASH

RADOS Block Device (RBD) images can be moved to the trash using the rbd trash command. This
command provides more options than the rbd rm command.

Once an image is moved to the trash, it can be removed from the trash at a later time. This helps to
avoid accidental deletion.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the client node.

Procedure

1. To move an image to the trash execute the following:

Syntax

rbd trash mv [POOL_NAME/] IMAGE_NAME

Red Hat Ceph Storage 7 Block Device Guide

10

Example

[root@rbd-client ~]# rbd trash mv pool1/image1

Once an image is in the trash, a unique image ID is assigned.

NOTE

You need this image ID to specify the image later if you need to use any of the
trash options.

2. Execute the rbd trash list POOL_NAME for a list of IDs of the images in the trash. This
command also returns the image’s pre-deletion name. In addition, there is an optional --image-
id argument that can be used with rbd info and rbd snap commands. Use --image-id with the
rbd info command to see the properties of an image in the trash, and with rbd snap to remove
an image’s snapshots from the trash.

3. To remove an image from the trash execute the following:

Syntax

rbd trash rm [POOL_NAME/] IMAGE_ID

Example

[root@rbd-client ~]# rbd trash rm pool1/d35ed01706a0

IMPORTANT

Once an image is removed from the trash, it cannot be restored.

4. Execute the rbd trash restore command to restore the image:

Syntax

rbd trash restore [POOL_NAME/] IMAGE_ID

Example

[root@rbd-client ~]# rbd trash restore pool1/d35ed01706a0

5. To remove all expired images from trash:

Syntax

rbd trash purge POOL_NAME

Example

[root@rbd-client ~]# rbd trash purge pool1
Removing images: 100% complete...done.

CHAPTER 2. CEPH BLOCK DEVICES

11

2.9. DEFINING AN AUTOMATIC TRASH PURGE SCHEDULE

You can schedule periodic trash purge operations on a pool.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the client node.

Procedure

1. To add a trash purge schedule, execute:

Syntax

rbd trash purge schedule add --pool POOL_NAME INTERVAL

Example

[ceph: root@host01 /]# rbd trash purge schedule add --pool pool1 10m

2. To list the trash purge schedule, execute:

Syntax

rbd trash purge schedule ls --pool POOL_NAME

Example

[ceph: root@host01 /]# rbd trash purge schedule ls --pool pool1
every 10m

3. To know the status of trash purge schedule, execute:

Example

[ceph: root@host01 /]# rbd trash purge schedule status
POOL NAMESPACE SCHEDULE TIME
pool1 2021-08-02 11:50:00

4. To remove the trash purge schedule, execute:

Syntax

rbd trash purge schedule remove --pool POOL_NAME INTERVAL

Example

[ceph: root@host01 /]# rbd trash purge schedule remove --pool pool1 10m

Red Hat Ceph Storage 7 Block Device Guide

12

2.10. ENABLING AND DISABLING IMAGE FEATURES

The block device images, such as fast-diff, exclusive-lock, object-map, or deep-flatten, are enabled by
default. You can enable or disable these image features on already existing images.

NOTE

The deep flatten feature can be only disabled on already existing images but not
enabled. To use deep flatten, enable it when creating images.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the client node.

Procedure

1. Retrieve information from a particular image in a pool:

Syntax

rbd --image POOL_NAME/IMAGE_NAME info

Example

[ceph: root@host01 /]# rbd --image pool1/image1 info

2. Enable a feature:

Syntax

rbd feature enable POOL_NAME/IMAGE_NAME FEATURE_NAME

a. To enable the exclusive-lock feature on the image1 image in the pool1 pool:

Example

[ceph: root@host01 /]# rbd feature enable pool1/image1 exclusive-lock

IMPORTANT

If you enable the fast-diff and object-map features, then rebuild the object
map:

+ .Syntax

rbd object-map rebuild POOL_NAME/IMAGE_NAME

3. Disable a feature:

CHAPTER 2. CEPH BLOCK DEVICES

13

Syntax

rbd feature disable POOL_NAME/IMAGE_NAME FEATURE_NAME

a. To disable the fast-diff feature on the image1 image in the pool1 pool:

Example

[ceph: root@host01 /]# rbd feature disable pool1/image1 fast-diff

2.11. WORKING WITH IMAGE METADATA

Ceph supports adding custom image metadata as key-value pairs. The pairs do not have any strict
format.

Also, by using metadata, you can set the RADOS Block Device (RBD) configuration parameters for
particular images.

Use the rbd image-meta commands to work with metadata.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the client node.

Procedure

1. To set a new metadata key-value pair:

Syntax

rbd image-meta set POOL_NAME/IMAGE_NAME KEY VALUE

Example

[ceph: root@host01 /]# rbd image-meta set pool1/image1 last_update 2021-06-06

This example sets the last_update key to the 2021-06-06 value on the image1 image in the
pool1 pool.

2. To view a value of a key:

Syntax

rbd image-meta get POOL_NAME/IMAGE_NAME KEY

Example

[ceph: root@host01 /]# rbd image-meta get pool1/image1 last_update

This example views the value of the last_update key.

Red Hat Ceph Storage 7 Block Device Guide

14

3. To show all metadata on an image:

Syntax

rbd image-meta list POOL_NAME/IMAGE_NAME

Example

[ceph: root@host01 /]# rbd image-meta list pool1/image1

This example lists the metadata set for the image1 image in the pool1 pool.

4. To remove a metadata key-value pair:

Syntax

rbd image-meta remove POOL_NAME/IMAGE_NAME KEY

Example

[ceph: root@host01 /]# rbd image-meta remove pool1/image1 last_update

This example removes the last_update key-value pair from the image1 image in the pool1
pool.

5. To override the RBD image configuration settings set in the Ceph configuration file for a
particular image:

Syntax

rbd config image set POOL_NAME/IMAGE_NAME PARAMETER VALUE

Example

[ceph: root@host01 /]# rbd config image set pool1/image1 rbd_cache false

This example disables the RBD cache for the image1 image in the pool1 pool.

Additional Resources

See the Block device general options section in the Red Hat Ceph Storage Block Device Guide
for a list of possible configuration options.

2.12. MOVING IMAGES BETWEEN POOLS

You can move RADOS Block Device (RBD) images between different pools within the same cluster.

During this process, the source image is copied to the target image with all snapshot history and
optionally with link to the source image’s parent to help preserve sparseness. The source image is read
only, the target image is writable. The target image is linked to the source image while the migration is in
progress.

You can safely run this process in the background while the new target image is in use. However, stop all

CHAPTER 2. CEPH BLOCK DEVICES

15

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#block-device-general-options_block

You can safely run this process in the background while the new target image is in use. However, stop all
clients using the target image before the preparation step to ensure that clients using the image are
updated to point to the new target image.

IMPORTANT

The krbd kernel module does not support live migration at this time.

Prerequisites

Stop all clients that use the source image.

Root-level access to the client node.

Procedure

1. Prepare for migration by creating the new target image that cross-links the source and target
images:

Syntax

rbd migration prepare SOURCE_IMAGE TARGET_IMAGE

Replace:

SOURCE_IMAGE with the name of the image to be moved. Use the POOL/IMAGE_NAME
format.

TARGET_IMAGE with the name of the new image. Use the POOL/IMAGE_NAME format.

Example

[root@rbd-client ~]# rbd migration prepare pool1/image1 pool2/image2

2. Verify the state of the new target image, which is supposed to be prepared:

Syntax

rbd status TARGET_IMAGE

Example

[root@rbd-client ~]# rbd status pool2/image2
Watchers: none
Migration:
 source: pool1/image1 (5e2cba2f62e)
 destination: pool2/image2 (5e2ed95ed806)
 state: prepared

3. Optionally, restart the clients using the new target image name.

4. Copy the source image to target image:

Red Hat Ceph Storage 7 Block Device Guide

16

Syntax

rbd migration execute TARGET_IMAGE

Example

[root@rbd-client ~]# rbd migration execute pool2/image2

5. Ensure that the migration is completed:

Example

[root@rbd-client ~]# rbd status pool2/image2
Watchers:
 watcher=1.2.3.4:0/3695551461 client.123 cookie=123
Migration:
 source: pool1/image1 (5e2cba2f62e)
 destination: pool2/image2 (5e2ed95ed806)
 state: executed

6. Commit the migration by removing the cross-link between the source and target images, and
this also removes the source image:

Syntax

rbd migration commit TARGET_IMAGE

Example

[root@rbd-client ~]# rbd migration commit pool2/image2

If the source image is a parent of one or more clones, use the --force option after ensuring that
the clone images are not in use:

Example

[root@rbd-client ~]# rbd migration commit pool2/image2 --force

7. If you did not restart the clients after the preparation step, restart them using the new target
image name.

2.13. MIGRATING POOLS

You can migrate or copy RADOS Block Device (RBD) images.

During this process, the source image is exported and then imported.

IMPORTANT

Use this migration process if the workload contains only RBD images. No rados cppool
images can exist in the workload. If rados cppool images exist in the workload, see
Migrating a pool in the Storage Strategies Guide .

CHAPTER 2. CEPH BLOCK DEVICES

17

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/storage_strategies_guide/#migrating-a-pool

IMPORTANT

While running the export and import commands, be sure that there is no active I/O in the
related RBD images. It is recommended to take production down during this pool
migration time.

Prerequisites

Stop all active I/O in the RBD images which are being exported and imported.

Root-level access to the client node.

Procedure

Migrate the volume.

Syntax

rbd export volumes/VOLUME_NAME - | rbd import --image-format 2 -
volumes_new/VOLUME_NAME

Example

[root@rbd-client ~]# rbd export volumes/volume-3c4c63e3-3208-436f-9585-fee4e2a3de16 - |
rbd import --image-format 2 - volumes_new/volume-3c4c63e3-3208-436f-9585-
fee4e2a3de16

If using the local drive for import or export is necessary, the commands can be divided, first
exporting to a local drive and then importing the files to a new pool.

Syntax

rbd export volume/VOLUME_NAME FILE_PATH
rbd import --image-format 2 FILE_PATH volumes_new/VOLUME_NAME

Example

[root@rbd-client ~]# rbd export volumes/volume-3c4c63e3-3208-436f-9585-fee4e2a3de16
<path of export file>
[root@rbd-client ~]# rbd import --image-format 2 <path> volumes_new/volume-3c4c63e3-
3208-436f-9585-fee4e2a3de16

2.14. THE RBDMAP SERVICE

The systemd unit file, rbdmap.service, is included with the ceph-common package. The
rbdmap.service unit executes the rbdmap shell script.

This script automates the mapping and unmapping of RADOS Block Devices (RBD) for one or more
RBD images. The script can be ran manually at any time, but the typical use case is to automatically
mount RBD images at boot time, and unmount at shutdown. The script takes a single argument, which
can be either map, for mounting or unmap, for unmounting RBD images. The script parses a
configuration file, the default is /etc/ceph/rbdmap, but can be overridden using an environment variable
called RBDMAPFILE. Each line of the configuration file corresponds to an RBD image.

Red Hat Ceph Storage 7 Block Device Guide

18

The format of the configuration file format is as follows:

IMAGE_SPEC RBD_OPTS

Where IMAGE_SPEC specifies the POOL_NAME / IMAGE_NAME, or just the IMAGE_NAME, in which
case the POOL_NAME defaults to rbd. The RBD_OPTS is an optional list of options to be passed to the
underlying rbd map command. These parameters and their values should be specified as a comma-
separated string:

OPT1=VAL1,OPT2=VAL2,… ,OPT_N=VAL_N

This will cause the script to issue an rbd map command like the following:

Syntax

rbd map POOLNAME/IMAGE_NAME --OPT1 VAL1 --OPT2 VAL2

NOTE

For options and values which contain commas or equality signs, a simple apostrophe can
be used to prevent replacing them.

When successful, the rbd map operation maps the image to a /dev/rbdX device, at which point a udev
rule is triggered to create a friendly device name symlink, for example,
/dev/rbd/POOL_NAME/IMAGE_NAME, pointing to the real mapped device. For mounting or
unmounting to succeed, the friendly device name must have a corresponding entry in /etc/fstab file.
When writing /etc/fstab entries for RBD images, it is a good idea to specify the noauto or nofail mount
option. This prevents the init system from trying to mount the device too early, before the device exists.

Additional Resources

See the rbd manpage for a full list of possible options.

2.15. CONFIGURING THE RBDMAP SERVICE

To automatically map and mount, or unmap and unmount, RADOS Block Devices (RBD) at boot time, or
at shutdown respectively.

Prerequisites

Root-level access to the node doing the mounting.

Installation of the ceph-common package.

Procedure

1. Open for editing the /etc/ceph/rbdmap configuration file.

2. Add the RBD image or images to the configuration file:

Example

foo/bar1 id=admin,keyring=/etc/ceph/ceph.client.admin.keyring

CHAPTER 2. CEPH BLOCK DEVICES

19

foo/bar2
id=admin,keyring=/etc/ceph/ceph.client.admin.keyring,options='lock_on_read,queue_depth=102
4'

3. Save changes to the configuration file.

4. Enable the RBD mapping service:

Example

[root@client ~]# systemctl enable rbdmap.service

Additional Resources

See the The rbdmap service section of the Red Hat Ceph Storage Block Device Guide for more
details on the RBD system service.

2.16. PERSISTENT WRITE LOG CACHE

In a Red Hat Ceph Storage cluster, Persistent Write Log (PWL) cache provides a persistent, fault-
tolerant write-back cache for librbd-based RBD clients.

PWL cache uses a log-ordered write-back design which maintains checkpoints internally so that writes
that get flushed back to the cluster are always crash consistent. If the client cache is lost entirely, the
disk image is still consistent but the data appears stale. You can use PWL cache with persistent memory
(PMEM) or solid-state disks (SSD) as cache devices.

For PMEM, the cache mode is replica write log (RWL) and for SSD, the cache mode is (SSD). Currently,
PWL cache supports RWL and SSD modes and is disabled by default.

Primary benefits of PWL cache are:

PWL cache can provide high performance when the cache is not full. The larger the cache, the
longer the duration of high performance.

PWL cache provides persistence and is not much slower than RBD cache. RBD cache is faster
but volatile and cannot guarantee data order and persistence.

In a steady state, where the cache is full, performance is affected by the number of I/Os in flight.
For example, PWL can provide higher performance at low io_depth, but at high io_depth, such
as when the number of I/Os is greater than 32, the performance is often worse than that in
cases without cache.

Use cases for PMEM caching are:

Different from RBD cache, PWL cache has non-volatile characteristics and is used in scenarios
where you do not want data loss and need performance.

RWL mode provides low latency. It has a stable low latency for burst I/Os and it is suitable for
those scenarios with high requirements for stable low latency.

RWL mode also has high continuous and stable performance improvement in scenarios with low
I/O depth or not too much inflight I/O.

Red Hat Ceph Storage 7 Block Device Guide

20

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#the-rbdmap-service_block

Use case for SSD caching is:

The advantages of SSD mode are similar to RWL mode. SSD hardware is relatively cheap and
popular, but its performance is slightly lower than PMEM.

2.17. PERSISTENT WRITE LOG CACHE LIMITATIONS

When using Persistent Write Log (PWL) cache, there are several limitations that should be considered.

The underlying implementation of persistent memory (PMEM) and solid-state disks (SSD) is
different, with PMEM having higher performance. At present, PMEM can provide "persist on
write" and SSD is "persist on flush or checkpoint". In future releases, these two modes will be
configurable.

When users switch frequently and open and close images repeatedly, Ceph displays poor
performance. If PWL cache is enabled, the performance is worse. It is not recommended to set
num_jobs in a Flexible I/O (fio) test, but instead setup multiple jobs to write different images.

2.18. ENABLING PERSISTENT WRITE LOG CACHE

You can enable persistent write log cache (PWL) on a Red Hat Ceph Storage cluster by setting the
Ceph RADOS block device (RBD) rbd_persistent_cache_mode and rbd_plugins options.

IMPORTANT

The exclusive-lock feature must be enabled to enable persistent write log cache. The
cache can be loaded only after the exclusive-lock is acquired. Exclusive-locks are enabled
on newly created images by default unless overridden by the rbd_default_features
configuration option or the --image-feature flag for the rbd create command. See the
Enabling and disabling image features section for more details on the exclusive-lock
feature.

Set the persistent write log cache options at the host level by using the ceph config set command. Set
the persistent write log cache options at the pool or image level by using the rbd config pool set or the
rbd config image set commands.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the monitor node.

The exclusive-lock feature is enabled.

Client-side disks are persistent memory (PMEM) or solid-state disks (SSD).

RBD cache is disabled.

Procedure

1. Enable PWL cache:

a. At the host level, use the ceph config set command:

Syntax

CHAPTER 2. CEPH BLOCK DEVICES

21

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#enabling-and-disabling-image-features_block

1

ceph config set client rbd_persistent_cache_mode CACHE_MODE
ceph config set client rbd_plugins pwl_cache

Replace CACHE_MODE with rwl or ssd.

Example

[ceph: root@host01 /]# ceph config set client rbd_persistent_cache_mode ssd
[ceph: root@host01 /]# ceph config set client rbd_plugins pwl_cache

b. At the pool level, use the rbd config pool set command:

Syntax

rbd config pool set POOL_NAME rbd_persistent_cache_mode CACHE_MODE
rbd config pool set POOL_NAME rbd_plugins pwl_cache

Replace CACHE_MODE with rwl or ssd.

Example

[ceph: root@host01 /]# rbd config pool set pool1 rbd_persistent_cache_mode ssd
[ceph: root@host01 /]# rbd config pool set pool1 rbd_plugins pwl_cache

c. At the image level, use the rbd config image set command:

Syntax

rbd config image set POOL_NAME/IMAGE_NAME rbd_persistent_cache_mode
CACHE_MODE
rbd config image set POOL_NAME/IMAGE_NAME rbd_plugins pwl_cache

Replace CACHE_MODE with rwl or ssd.

Example

[ceph: root@host01 /]# rbd config image set pool1/image1 rbd_persistent_cache_mode
ssd
[ceph: root@host01 /]# rbd config image set pool1/image1 rbd_plugins pwl_cache

2. Optional: Set the additional RBD options at the host, the pool, or the image level:

Syntax

rbd_persistent_cache_mode CACHE_MODE
rbd_plugins pwl_cache
rbd_persistent_cache_path /PATH_TO_CACHE_DIRECTORY 1
rbd_persistent_cache_size PERSISTENT_CACHE_SIZE 2

rbd_persistent_cache_path - A file folder to cache data that must have direct access (DAX)
enabled when using the rwl mode to avoid performance degradation.

Red Hat Ceph Storage 7 Block Device Guide

22

2 rbd_persistent_cache_size - The cache size per image, with a minimum cache size of 1 GB. The
larger the cache size, the better the performance.

a. Setting additional RBD options for rwl mode:

Example

rbd_cache false
rbd_persistent_cache_mode rwl
rbd_plugins pwl_cache
rbd_persistent_cache_path /mnt/pmem/cache/
rbd_persistent_cache_size 1073741824

b. Setting additional RBD options for ssd mode:

Example

rbd_cache false
rbd_persistent_cache_mode ssd
rbd_plugins pwl_cache
rbd_persistent_cache_path /mnt/nvme/cache
rbd_persistent_cache_size 1073741824

Additional Resources

See the Direct Access for files article on kernel.org for more details on using DAX.

2.19. CHECKING PERSISTENT WRITE LOG CACHE STATUS

You can check the status of the Persistent Write Log (PWL) cache. The cache is used when an exclusive
lock is acquired, and when the exclusive-lock is released, the persistent write log cache is closed. The
cache status shows information about the cache size, location, type, and other cache-related
information. Updates to the cache status are done when the cache is opened and closed.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the monitor node.

A running process with PWL cache enabled.

Procedure

View the PWL cache status:

Syntax

rbd status POOL_NAME/IMAGE_NAME

Example

CHAPTER 2. CEPH BLOCK DEVICES

23

https://www.kernel.org/doc/Documentation/filesystems/dax.txt

[ceph: root@host01 /]# rbd status pool1/image1
Watchers:
 watcher=10.10.0.102:0/1061883624 client.25496 cookie=140338056493088
Persistent cache state:
 host: host02
 path: /mnt/nvme0/rbd-pwl.rbd.101e5824ad9a.pool
 size: 1 GiB
 mode: ssd
 stats_timestamp: Mon Apr 18 13:26:32 2022
 present: true empty: false clean: false
 allocated: 509 MiB
 cached: 501 MiB
 dirty: 338 MiB
 free: 515 MiB
 hits_full: 1450 / 61%
 hits_partial: 0 / 0%
 misses: 924
 hit_bytes: 192 MiB / 66%
 miss_bytes: 97 MiB

2.20. FLUSHING PERSISTENT WRITE LOG CACHE

You can flush the cache file with the rbd command, specifying persistent-cache flush, the pool name,
and the image name before discarding the persistent write log (PWL) cache. The flush command can
explicitly write cache files back to the OSDs. If there is a cache interruption or the application dies
unexpectedly, all the entries in the cache are flushed to the OSDs so that you can manually flush the
data and then invalidate the cache.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the monitor node.

PWL cache is enabled.

Procedure

Flush the PWL cache:

Syntax

rbd persistent-cache flush POOL_NAME/IMAGE_NAME

Example

[ceph: root@host01 /]# rbd persistent-cache flush pool1/image1

Additional Resources

See the Discarding persistent write log cache section in the Red Hat Ceph Storage Block Device
Guide for more details.

Red Hat Ceph Storage 7 Block Device Guide

24

{https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#discarding-persistent-write-log-cache_block

2.21. DISCARDING PERSISTENT WRITE LOG CACHE

You might need to manually discard the Persistent Write Log (PWL) cache, for example, if the data in
the cache has expired. You can discard a cache file for an image by using the rbd persistent-cache
invalidate command. The command removes the cache metadata for the specified image, disables the
cache feature, and deletes the local cache file, if it exists.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the monitor node.

PWL cache is enabled.

Procedure

Discard PWL cache:

Syntax

rbd persistent-cache invalidate POOL_NAME/IMAGE_NAME

Example

[ceph: root@host01 /]# rbd persistent-cache invalidate pool1/image1

2.22. MONITORING PERFORMANCE OF CEPH BLOCK DEVICES USING
THE COMMAND-LINE INTERFACE

Starting with Red Hat Ceph Storage 4.1, a performance metrics gathering framework is integrated within
the Ceph OSD and Manager components. This framework provides a built-in method to generate and
process performance metrics upon which other Ceph Block Device performance monitoring solutions
are built.

A new Ceph Manager module,rbd_support, aggregates the performance metrics when enabled. The
rbd command has two new actions: iotop and iostat.

NOTE

The initial use of these actions can take around 30 seconds to populate the data fields.

Prerequisites

User-level access to a Ceph Monitor node.

Procedure

1. Ensure the rbd_support Ceph Manager module is enabled:

Example

CHAPTER 2. CEPH BLOCK DEVICES

25

[ceph: root@host01 /]# ceph mgr module ls

{
 "always_on_modules": [
 "balancer",
 "crash",
 "devicehealth",
 "orchestrator",
 "pg_autoscaler",
 "progress",
 "rbd_support", <--
 "status",
 "telemetry",
 "volumes"
}

2. To display an "iotop"-style of images:

Example

[user@mon ~]$ rbd perf image iotop

NOTE

The write ops, read-ops, write-bytes, read-bytes, write-latency, and read-
latency columns can be sorted dynamically by using the right and left arrow keys.

3. To display an "iostat"-style of images:

Example

[user@mon ~]$ rbd perf image iostat

NOTE

The output from this command can be in JSON or XML format, and then can be
sorted using other command-line tools.

Red Hat Ceph Storage 7 Block Device Guide

26

CHAPTER 3. LIVE MIGRATION OF IMAGES
As a storage administrator, you can live-migrate RBD images between different pools or even with the
same pool, within the same storage cluster. You can migrate between different images formats and
layouts and even from external data sources. When live migration is initiated, the source image is deep
copied to the destination image, pulling all snapshot history while preserving the sparse allocation of
data where possible.

IMPORTANT

Currently, the krbd kernel module does not support live migration.

Prerequisites

A running Red Hat Ceph Storage cluster.

3.1. THE LIVE MIGRATION PROCESS

By default, during the live migration of the RBD images with the same storage cluster, the source image
is marked read-only. All clients redirect the Input/Output (I/O) to the new target image. Additionally,
this mode can preserve the link to the source image’s parent to preserve sparseness, or it can flatten
the image during the migration to remove the dependency on the source image’s parent. You can use
the live migration process in an import-only mode, where the source image remains unmodified. You can
link the target image to an external data source, such as a backup file, HTTP(s) file, or an S3 object. The
live migration copy process can safely run in the background while the new target image is being used.

The live migration process consists of three steps:

Prepare Migration: The first step is to create new target image and link the target image to the source
image. If the import-only mode is not configured, the source image will also be linked to the target
image and marked read-only. Attempts to read uninitialized data extents within the target image will
internally redirect the read to the source image, and writes to uninitialized extents within the target
image will internally deep copy, the overlapping source image extents to the target image.

Execute Migration: This is a background operation that deep-copies all initialized blocks from the
source image to the target. You can run this step when clients are actively using the new target image.

Finish Migration: You can commit or abort the migration, once the background migration process is
completed. Committing the migration removes the cross-links between the source and target images,
and will remove the source image if not configured in the import-only mode. Aborting the migration
remove the cross-links, and will remove the target image.

3.2. FORMATS

You can use the native format to describe a native RBD image within a Red Hat Ceph Storage cluster as
the source image. The source-spec JSON document is encoded as:

Syntax

{
 "type": "native",
 "pool_name": "POOL_NAME",
 ["pool_id": "POOL_ID",] (optional, alternative to "POOL_NAME" key)
 ["pool_namespace": "POOL_NAMESPACE",] (optional)

CHAPTER 3. LIVE MIGRATION OF IMAGES

27

 "image_name": "IMAGE_NAME>",
 ["image_id": "IMAGE_ID",] (optional, useful if image is in trash)
 "snap_name": "SNAP_NAME",
 ["snap_id": "SNAP_ID",] (optional, alternative to "SNAP_NAME" key)
}

Note that the native format does not include the stream object since it utilizes native Ceph operations.
For example, to import from the image rbd/ns1/image1@snap1, the source-spec could be encoded
as:

Example

{
"type": "native",
"pool_name": "rbd",
"pool_namespace": "ns1",
"image_name": "image1",
"snap_name": "snap1"
}

You can use the qcow format to describe a QEMU copy-on-write (QCOW) block device. Both the
QCOW v1 and v2 formats are currently supported with the exception of advanced features such as
compression, encryption, backing files, and external data files. You can link the qcow format data to any
supported stream source:

Example

{
 "type": "qcow",
 "stream": {
 "type": "file",
 "file_path": "/mnt/image.qcow"
 }
}

You can use the raw format to describe a thick-provisioned, raw block device export that is rbd export
–export-format 1 SNAP_SPEC. You can link the raw format data to any supported stream source:

Example

{
 "type": "raw",
 "stream": {
 "type": "file",
 "file_path": "/mnt/image-head.raw"
 },
 "snapshots": [
 {
 "type": "raw",
 "name": "snap1",
 "stream": {
 "type": "file",
 "file_path": "/mnt/image-snap1.raw"
 }

Red Hat Ceph Storage 7 Block Device Guide

28

 },
] (optional oldest to newest ordering of snapshots)
}

The inclusion of the snapshots array is optional and currently only supports thick-provisioned raw
snapshot exports.

3.3. STREAMS

File stream

You can use the file stream to import from a locally accessible POSIX file source.

Syntax

{
 <format unique parameters>
 "stream": {
 "type": "file",
 "file_path": "FILE_PATH"
 }
}

For example, to import a raw-format image from a file located at /mnt/image.raw, the source-spec
JSON file is:

Example

{
 "type": "raw",
 "stream": {
 "type": "file",
 "file_path": "/mnt/image.raw"
 }
}

HTTP stream

You can use the HTTP stream to import from a remote HTTP or HTTPS web server.

Syntax

{
 <format unique parameters>
 "stream": {
 "type": "http",
 "url": "URL_PATH"
 }
}

For example, to import a raw-format image from a file located at
http://download.ceph.com/image.raw, the source-spec JSON file is:

Example

CHAPTER 3. LIVE MIGRATION OF IMAGES

29

{
 "type": "raw",
 "stream": {
 "type": "http",
 "url": "http://download.ceph.com/image.raw"
 }
}

S3 stream

You can use the s3 stream to import from a remote S3 bucket.

Syntax

{
 <format unique parameters>
 "stream": {
 "type": "s3",
 "url": "URL_PATH",
 "access_key": "ACCESS_KEY",
 "secret_key": "SECRET_KEY"
 }
}

For example, to import a raw-format image from a file located at
http://s3.ceph.com/bucket/image.raw, its source-spec JSON is encoded as follows:

Example

{
 "type": "raw",
 "stream": {
 "type": "s3",
 "url": "http://s3.ceph.com/bucket/image.raw",
 "access_key": "NX5QOQKC6BH2IDN8HC7A",
 "secret_key": "LnEsqNNqZIpkzauboDcLXLcYaWwLQ3Kop0zAnKIn"
 }
}

3.4. PREPARING THE LIVE MIGRATION PROCESS

You can prepare the default live migration process for RBD images within the same Red Hat
Ceph Storage cluster. The rbd migration prepare command accepts all the same layout options as the
rbd create command. The rbd create command allows changes to the on-disk layout of the immutable
image. If you only want to change the on-disk layout and want to keep the original image name, skip the
migration_target argument. All clients using the source image must be stopped before preparing a live
migration. The prepare step will fail if it finds any running clients with the image open in read/write
mode. You can restart the clients using the new target image once the prepare step is completed.

NOTE

You cannot restart the clients using the source image as it will result in a failure.

Red Hat Ceph Storage 7 Block Device Guide

30

Prerequisites

A running Red Hat Ceph Storage cluster.

Two block device pools.

One block device image.

Procedure

1. Prepare the live migration within the storage cluster:

Syntax

rbd migration prepare SOURCE_POOL_NAME/SOURCE_IMAGE_NAME
TARGET_POOL_NAME/SOURCE_IMAGE_NAME

Example

[ceph: root@rbd-client /]# rbd migration prepare sourcepool1/sourceimage1
targetpool1/sourceimage1

OR

If you want to rename the source image:

Syntax

rbd migration prepare SOURCE_POOL_NAME/SOURCE_IMAGE_NAME
TARGET_POOL_NAME/NEW_SOURCE_IMAGE_NAME

Example

[ceph: root@rbd-client /]# rbd migration prepare sourcepool1/sourceimage1
targetpool1/newsourceimage1

In the example, newsourceimage1 is the renamed source image.

2. You can check the current state of the live migration process with the following command:

Syntax

rbd status TARGET_POOL_NAME/SOURCE_IMAGE_NAME

Example

[ceph: root@rbd-client /]# rbd status targetpool1/sourceimage1
Watchers: none
Migration:
source: sourcepool1/sourceimage1 (adb429cb769a)
destination: targetpool2/testimage1 (add299966c63)
state: prepared

IMPORTANT

CHAPTER 3. LIVE MIGRATION OF IMAGES

31

IMPORTANT

During the migration process, the source image is moved into the RBD trash to
prevent mistaken usage.

Example

[ceph: root@rbd-client /]# rbd info sourceimage1
rbd: error opening image sourceimage1: (2) No such file or directory

Example

[ceph: root@rbd-client /]# rbd trash ls --all sourcepool1
adb429cb769a sourceimage1

3.5. PREPARING IMPORT-ONLY MIGRATION

You can initiate the import-only live migration process by running the rbd migration prepare command
with the --import-only and either, --source-spec or --source-spec-path options, passing a JSON
document that describes how to access the source image data directly on the command line or from a
file.

Prerequisites

A running Red Hat Ceph Storage cluster.

A bucket and an S3 object are created.

Procedure

1. Create a JSON file:

Example

[ceph: root@rbd-client /]# cat testspec.json
 {
 "type": "raw",
 "stream": {
 "type": "s3",
 "url": "http:10.74.253.18:80/testbucket1/image.raw",
 "access_key": "RLJOCP6345BGB38YQXI5",
 "secret_key": "oahWRB2ote2rnLy4dojYjDrsvaBADriDDgtSfk6o"
 }

2. Prepare the import-only live migration process:

Syntax

rbd migration prepare --import-only --source-spec-path "JSON_FILE"
TARGET_POOL_NAME

Example

Red Hat Ceph Storage 7 Block Device Guide

32

[ceph: root@rbd-client /]# rbd migration prepare --import-only --source-spec-path
"testspec.json" targetpool1

NOTE

The rbd migration prepare command accepts all the same image options as the
rbd create command.

3. You can check the status of the import-only live migration:

Example

[ceph: root@rbd-client /]# rbd status targetpool1/sourceimage1
Watchers: none
Migration:
source: {"stream":
{"access_key":"RLJOCP6345BGB38YQXI5","secret_key":"oahWRB2ote2rnLy4dojYjDrsvaBAD
riDDgtSfk6o","type":"s3","url":"http://10.74.253.18:80/testbucket1/image.raw"},"type":"raw"}
destination: targetpool1/sourceimage1 (b13865345e66)
state: prepared

3.6. EXECUTING THE LIVE MIGRATION PROCESS

After you prepare for the live migration, you must copy the image blocks from the source image to the
target image.

Prerequisites

A running Red Hat Ceph Storage cluster.

Two block device pools.

One block device image.

Procedure

1. Execute the live migration:

Syntax

rbd migration execute TARGET_POOL_NAME/SOURCE_IMAGE_NAME

Example

[ceph: root@rbd-client /]# rbd migration execute targetpool1/sourceimage1
Image migration: 100% complete...done.

2. You can check the feedback on the progress of the migration block deep-copy process:

Syntax

rbd status TARGET_POOL_NAME/SOURCE_IMAGE_NAME

CHAPTER 3. LIVE MIGRATION OF IMAGES

33

Example

[ceph: root@rbd-client /]# rbd status targetpool1/sourceimage1
Watchers: none
Migration:
source: sourcepool1/testimage1 (adb429cb769a)
destination: targetpool1/testimage1 (add299966c63)
state: executed

3.7. COMMITTING THE LIVE MIGRATION PROCESS

You can commit the migration, once the live migration has completed deep-copying all the data blocks
from the source image to the target image.

Prerequisites

A running Red Hat Ceph Storage cluster.

Two block device pools.

One block device image.

Procedure

1. Commit the migration, once deep-copying is completed:

Syntax

rbd migration commit TARGET_POOL_NAME/SOURCE_IMAGE_NAME

Example

[ceph: root@rbd-client /]# rbd migration commit targetpool1/sourceimage1
Commit image migration: 100% complete...done.

Verification

Committing the live migration will remove the cross-links between the source and target images, and
also removes the source image from the source pool:

Example

[ceph: root@rbd-client /]# rbd trash list --all sourcepool1

3.8. ABORTING THE LIVE MIGRATION PROCESS

You can revert the live migration process. Aborting live migration reverts the prepare and execute steps.

NOTE

You can abort only if you have not committed the live migration.

Red Hat Ceph Storage 7 Block Device Guide

34

Prerequisites

A running Red Hat Ceph Storage cluster.

Two block device pools.

One block device image.

Procedure

1. Abort the live migration process:

Syntax

rbd migration abort TARGET_POOL_NAME/SOURCE_IMAGE_NAME

Example

[ceph: root@rbd-client /]# rbd migration abort targetpool1/sourceimage1
Abort image migration: 100% complete...done.

Verification

When the live migration process is aborted, the target image is deleted and access to the original source
image is restored in the source pool:

Example

[ceph: root@rbd-client /]# rbd ls sourcepool1
sourceimage1

CHAPTER 3. LIVE MIGRATION OF IMAGES

35

CHAPTER 4. IMAGE ENCRYPTION
As a storage administrator, you can set a secret key that is used to encrypt a specific RBD image. Image
level encryption is handled internally by RBD clients.

NOTE

The krbd module does not support image level encryption.

NOTE

You can use external tools such as dm-crypt or QEMU to encrypt an RBD image.

Prerequisites

A running Red Hat Ceph Storage 7 cluster.

root level permissions.

4.1. ENCRYPTION FORMAT

RBD images are not encrypted by default. You can encrypt an RBD image by formatting to one of the
supported encryption formats. The format operation persists the encryption metadata to the RBD
image. The encryption metadata includes information such as the encryption format and version, cipher
algorithm and mode specifications, as well as the information used to secure the encryption key.

The encryption key is protected by a user kept secret that is a passphrase, which is never stored as
persistent data in the RBD image. The encryption format operation requires you to specify the
encryption format, cipher algorithm, and mode specification as well as a passphrase. The encryption
metadata is stored in the RBD image, currently as an encryption header that is written at the start of the
raw image. This means that the effective image size of the encrypted image would be lower than the
raw image size.

NOTE

Unless explicitly (re-)formatted, clones of an encrypted image are inherently encrypted
using the same format and secret.

NOTE

Any data written to the RBD image before formatting might become unreadable, even
though it might still occupy storage resources. RBD images with the journal feature
enabled cannot be encrypted.

4.2. ENCRYPTION LOAD

By default, all RBD APIs treat encrypted RBD images the same way as unencrypted RBD images. You
can read or write raw data anywhere in the image. Writing raw data into the image might risk the
integrity of the encryption format. For example, the raw data could override the encryption metadata
located at the beginning of the image. To safely perform encrypted Input/Output(I/O) or maintenance
operations on the encrypted RBD image, an additional encryption load operation must be applied
immediately after opening the image.

Red Hat Ceph Storage 7 Block Device Guide

36

The encryption load operation requires you to specify the encryption format and a passphrase for
unlocking the encryption key for the image itself and each of its explicitly formatted ancestor images.
All I/Os for the opened RBD image are encrypted or decrypted, for a cloned RBD image, this includes
IOs for the parent images. The encryption key is stored in memory by the RBD client until the image is
closed.

NOTE

Once the encryption is loaded on the RBD image, no other encryption load or format
operation can be applied. Additionally, API calls for retrieving the RBD image size and the
parent overlap using the opened image context returns the effective image size and the
effective parent overlap respectively. The encryption is loaded automatically when
mapping the RBD images as block devices through rbd-nbd.

NOTE

API calls for retrieving the image size and the parent overlap using the opened image
context returns the effective image size and the effective parent overlap.

NOTE

If a clone of an encrypted image is explicitly formatted, flattening or shrinking of the
cloned image ceases to be transparent since the parent data must be re-encrypted
according to the cloned image format as it is copied from the parent snapshot. If
encryption is not loaded before the flatten operation is issued, any parent data that was
previously accessible in the cloned image might become unreadable.

NOTE

If a clone of an encrypted image is explicitly formatted, the operation of shrinking the
cloned image ceases to be transparent. This is because, in scenarios such as the cloned
image containing snapshots or the cloned image being shrunk to a size that is not aligned
with the object size, the action of copying some data from the parent snapshot, similar to
flattening is involved. If encryption is not loaded before the shrink operation is issued, any
parent data that was previously accessible in the cloned image might become
unreadable.

4.3. SUPPORTED FORMATS

Both Linux Unified Key Setup (LUKS) 1 and 2 are supported. The data layout is fully compliant with the
LUKS specification. External LUKS compatible tools such as dm-crypt or QEMU can safely perform
encrypted Input/Output (I/O) on encrypted RBD images. Additionally, you can import existing LUKS
images created by external tools, by copying the raw LUKS data into the RBD image.

Currently, only Advanced Encryption Standards (AES) 128 and 256 encryption algorithms are supported.
xts-plain64 is currently the only supported encryption mode.

To use the LUKS format, format the RBD image with the following command:

NOTE

You need to create a file named passphrase.txt and enter a passphrase. You can
randomly generate the passphrase, which might contain NULL characters. If the
passphrase ends with a newline character, it is stripped off.

CHAPTER 4. IMAGE ENCRYPTION

37

Syntax

rbd encryption format POOL_NAME/LUKS_IMAGE luks1|luks2 PASSPHRASE_FILE

Example

[ceph: root@host01 /]# rbd encryption format pool1/luksimage1 luks1 passphrase.bin

NOTE

You can select either luks1 or luks encryption format.

The encryption format operation generates a LUKS header and writes it at the start of the RBD image. A
single keyslot is appended to the header. The keyslot holds a randomly generated encryption key, and is
protected by the passphrase read from the passphrase file. By default, AES-256 in xts-plain64 mode,
which is the current recommended mode and the default for other LUKS tools, is used. Adding or
removing additional passphrases is currently not supported natively, but can be achieved using LUKS
tools such as cryptsetup. The LUKS header size can vary that is upto 136MiB in LUKS, but it is usually
upto 16MiB, dependent on the version of libcryptsetup installed. For optimal performance, the
encryption format sets the data offset to be aligned with the image object size. For example, expect a
minimum overhead of 8MiB if using an image configured with an 8MiB object size.

In LUKS1, sectors, which are the minimal encryption units, are fixed at 512 bytes. LUKS2 supports larger
sectors, and for better performance, the default sector size is set to the maximum of 4KiB. Writes which
are either smaller than a sector, or are not aligned to a sector start, trigger a guarded read-modify-write
chain on the client, with a considerable latency penalty. A batch of such unaligned writes can lead to I/O
races which further deteriorates performance. Red Hat recommends to avoid using RBD encryption in
cases where incoming writes cannot be guaranteed to be LUKS sector aligned.

To map a LUKS encrypted image, run the following command:

Syntax

rbd device map -t nbd -o encryption-format=luks1|luks2,encryption-passphrase-file=passphrase.txt
POOL_NAME/LUKS_IMAGE

Example

[ceph: root@host01 /]# rbd device map -t nbd -o encryption-format=luks1,encryption-passphrase-
file=passphrase.txt pool1/luksimage1

NOTE

You can select either luks1 or luks2 encryption format.

NOTE

For security reasons, both the encryption format and encryption load operations are
CPU-intensive, and might take a few seconds to complete. For encrypted I/O, assuming
AES-NI is enabled, a relatively small microseconds latency might be added, as well as a
small increase in CPU utilization.

Red Hat Ceph Storage 7 Block Device Guide

38

4.4. ADDING ENCRYPTION FORMAT TO IMAGES AND CLONES

Layered-client-side encryption is supported. The cloned images can be encrypted with their own format
and passphrase, potentially different from that of the parent image.

Add encryption format to images and clones with the rbd encryption format command. Given a
LUKS2-formatted image, you can create both a LUKS2-formatted clone and a LUKS1-formatted clone.

Prerequisites

A running Red Hat Ceph Storage cluster with Block Device (RBD) configured.

Root-level access to the node.

Procedure

1. Create a LUKS2-formatted image:

Syntax

rbd create --size SIZE POOL_NAME/LUKS_IMAGE
rbd encryption format POOL_NAME/LUKS_IMAGE luks1|luks2 PASSPHRASE_FILE
rbd resize --size 50G --encryption-passphrase-file PASSPHRASE_FILE
POOL_NAME/LUKS_IMAGE

Example

[ceph: root@host01 /]# rbd create --size 50G mypool/myimage
[ceph: root@host01 /]# rbd encryption format mypool/myimage luks2 passphrase.txt
[ceph: root@host01 /]# rbd resize --size 50G --encryption-passphrase-file passphrase.txt
mypool/myimage

The rbd resize command grows the image to compensate for the overhead associated with the
LUKS2 header.

2. With the LUKS2-formatted image, create a LUKS2-formatted clone with the same effective
size:

Syntax

rbd snap create POOL_NAME/IMAGE_NAME@SNAP_NAME
rbd snap protect POOL_NAME/IMAGE_NAME@SNAP_NAME
rbd clone POOL_NAME/IMAGE_NAME@SNAP_NAME POOL_NAME/CLONE_NAME
rbd encryption format POOL_NAME/CLONE_NAME luks1 CLONE_PASSPHRASE_FILE

Example

[ceph: root@host01 /]# rbd snap create mypool/myimage@snap
[ceph: root@host01 /]# rbd snap protect mypool/myimage@snap
[ceph: root@host01 /]# rbd clone mypool/myimage@snap mypool/myclone
[ceph: root@host01 /]# rbd encryption format mypool/myclone luks1 clone-passphrase.bin

3. With the LUKS2-formatted image, create a LUKS1-formatted clone with the same effective

CHAPTER 4. IMAGE ENCRYPTION

39

3. With the LUKS2-formatted image, create a LUKS1-formatted clone with the same effective
size:

Syntax

rbd snap create POOL_NAME/IMAGE_NAME@SNAP_NAME
rbd snap protect POOL_NAME/IMAGE_NAME@SNAP_NAME
rbd clone POOL_NAME/IMAGE_NAME@SNAP_NAME POOL_NAME/CLONE_NAME
rbd encryption format POOL_NAME/CLONE_NAME luks1 CLONE_PASSPHRASE_FILE
rbd resize --size SIZE --allow-shrink --encryption-passphrase-file
CLONE_PASSPHRASE_FILE --encryption-passphrase-file PASSPHRASE_FILE
POOL_NAME/CLONE_NAME

Example

[ceph: root@host01 /]# rbd snap create mypool/myimage@snap
[ceph: root@host01 /]# rbd snap protect mypool/myimage@snap
[ceph: root@host01 /]# rbd clone mypool/myimage@snap mypool/myclone
[ceph: root@host01 /]# rbd encryption format mypool/myclone luks1 clone-passphrase.bin
[ceph: root@host01 /]# rbd resize --size 50G --allow-shrink --encryption-passphrase-file
clone-passphrase.bin --encryption-passphrase-file passphrase.bin mypool/myclone

Since LUKS1 header is usually smaller than LUKS2 header, the rbd resize command at the end
shrinks the cloned image to get rid of unwanted space allowance.

4. With the LUKS-1-formatted image, create a LUKS2-formatted clone with the same effective
size:

Syntax

rbd resize --size SIZE POOL_NAME/LUKS_IMAGE
rbd snap create POOL_NAME/IMAGE_NAME@SNAP_NAME
rbd snap protect POOL_NAME/IMAGE_NAME@SNAP_NAME
rbd clone POOL_NAME/IMAGE_NAME@SNAP_NAME POOL_NAME/CLONE_NAME
rbd encryption format POOL_NAME/CLONE_NAME luks2 CLONE_PASSPHRASE_FILE
rbd resize --size SIZE --allow-shrink --encryption-passphrase-file PASSPHRASE_FILE
POOL_NAME/LUKS_IMAGE
rbd resize --size SIZE --allow-shrink --encryption-passphrase-file
CLONE_PASSPHRASE_FILE --encryption-passphrase-file PASSPHRASE_FILE
POOL_NAME_/CLONE_NAME

Example

[ceph: root@host01 /]# rbd resize --size 51G mypool/myimage
[ceph: root@host01 /]# rbd snap create mypool/myimage@snap
[ceph: root@host01 /]# rbd snap protect mypool/myimage@snap
[ceph: root@host01 /]# rbd clone mypool/my-image@snap mypool/myclone
[ceph: root@host01 /]# rbd encryption format mypool/myclone luks2 clone-passphrase.bin
[ceph: root@host01 /]# rbd resize --size 50G --allow-shrink --encryption-passphrase-file
passphrase.bin mypool/myimage
[ceph: root@host01 /]# rbd resize --size 50G --allow-shrink --encryption-passphrase-file
clone-passphrase.bin --encryption-passphrase-file passphrase.bin mypool/myclone

Since LUKS2 header is usually bigger than LUKS1 header, the rbd resize command at the

Red Hat Ceph Storage 7 Block Device Guide

40

beginning temporarily grows the parent image to reserve some extra space in the parent
snapshot and consequently the cloned image. This is necessary to make all parent data
accessible in the cloned image. The rbd resize command at the end shrinks the parent image
back to its original size and does not impact the parent snapshot and the cloned image to get rid
of the unused reserved space

The same applies to creating a formatted clone of an unformatted image, since an unformatted
image does not have a header at all.

Additional Resources

See the Configuring Ansible inventory location section in the Red Hat Ceph Storage Installation
Guide for more details on adding clients to the cephadm-ansible inventory.

CHAPTER 4. IMAGE ENCRYPTION

41

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/installation_guide/#configuring-ansible-inventory-location-install

CHAPTER 5. MANAGING SNAPSHOTS
As a storage administrator, being familiar with Ceph’s snapshotting feature can help you manage the
snapshots and clones of images stored in the Red Hat Ceph Storage cluster.

Prerequisites

A running Red Hat Ceph Storage cluster.

5.1. CEPH BLOCK DEVICE SNAPSHOTS

A snapshot is a read-only copy of the state of an image at a particular point in time. One of the
advanced features of Ceph block devices is that you can create snapshots of the images to retain a
history of an image’s state. Ceph also supports snapshot layering, which allows you to clone images
quickly and easily, for example a virtual machine image. Ceph supports block device snapshots using the
rbd command and many higher level interfaces, including QEMU, libvirt, OpenStack and CloudStack.

NOTE

If a snapshot is taken while I/O is occurring, then the snapshot might not get the exact or
latest data of the image and the snapshot might have to be cloned to a new image to be
mountable. Red Hat recommends stopping I/O before taking a snapshot of an image. If
the image contains a filesystem, the filesystem must be in a consistent state before
taking a snapshot. To stop I/O you can use fsfreeze command. For virtual machines, the
qemu-guest-agent can be used to automatically freeze filesystems when creating a
snapshot.

Figure 5.1. Ceph Block device snapshots

Additional Resources

See the fsfreeze(8) man page for more details.

5.2. THE CEPH USER AND KEYRING

When cephx is enabled, you must specify a user name or ID and a path to the keyring containing the
corresponding key for the user.

NOTE

cephx is enabled by default.

You might also add the CEPH_ARGS environment variable to avoid re-entry of the following
parameters:

Syntax

Red Hat Ceph Storage 7 Block Device Guide

42

rbd --id USER_ID --keyring=/path/to/secret [commands]
rbd --name USERNAME --keyring=/path/to/secret [commands]

Example

[root@rbd-client ~]# rbd --id admin --keyring=/etc/ceph/ceph.keyring [commands]
[root@rbd-client ~]# rbd --name client.admin --keyring=/etc/ceph/ceph.keyring [commands]

TIP

Add the user and secret to the CEPH_ARGS environment variable so that you do not need to enter
them each time.

5.3. CREATING A BLOCK DEVICE SNAPSHOT

Create a snapshot of a Ceph block device.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. Specify the snap create option, the pool name and the image name:

Method 1:

Syntax

rbd --pool POOL_NAME snap create --snap SNAP_NAME IMAGE_NAME

Example

[root@rbd-client ~]# rbd --pool pool1 snap create --snap snap1 image1

Method 2:

Syntax

rbd snap create POOL_NAME/IMAGE_NAME@SNAP_NAME

Example

[root@rbd-client ~]# rbd snap create pool1/image1@snap1

5.4. LISTING THE BLOCK DEVICE SNAPSHOTS

List the block device snapshots.

CHAPTER 5. MANAGING SNAPSHOTS

43

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. Specify the pool name and the image name:

Syntax

rbd --pool POOL_NAME --image IMAGE_NAME snap ls
rbd snap ls POOL_NAME/IMAGE_NAME

Example

[root@rbd-client ~]# rbd --pool pool1 --image image1 snap ls
[root@rbd-client ~]# rbd snap ls pool1/image1

5.5. ROLLING BACK A BLOCK DEVICE SNAPSHOT

Rollback a block device snapshot.

NOTE

Rolling back an image to a snapshot means overwriting the current version of the image
with data from a snapshot. The time it takes to execute a rollback increases with the size
of the image. It is faster to clone from a snapshot than to rollback an image to a
snapshot, and it is the preferred method of returning to a pre-existing state.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. Specify the snap rollback option, the pool name, the image name and the snap name:

Syntax

rbd --pool POOL_NAME snap rollback --snap SNAP_NAME IMAGE_NAME
rbd snap rollback POOL_NAME/IMAGE_NAME@SNAP_NAME

Example

[root@rbd-client ~]# rbd --pool pool1 snap rollback --snap snap1 image1
[root@rbd-client ~]# rbd snap rollback pool1/image1@snap1

5.6. DELETING A BLOCK DEVICE SNAPSHOT

Red Hat Ceph Storage 7 Block Device Guide

44

Delete a snapshot for Ceph block devices.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. To delete a block device snapshot, specify the snap rm option, the pool name, the image name
and the snapshot name:

Syntax

rbd --pool POOL_NAME snap rm --snap SNAP_NAME IMAGE_NAME
rbd snap rm POOL_NAME-/IMAGE_NAME@SNAP_NAME

Example

[root@rbd-client ~]# rbd --pool pool1 snap rm --snap snap2 image1
[root@rbd-client ~]# rbd snap rm pool1/image1@snap1

IMPORTANT

If an image has any clones, the cloned images retain reference to the parent image
snapshot. To delete the parent image snapshot, you must flatten the child images first.

NOTE

Ceph OSD daemons delete data asynchronously, so deleting a snapshot does not free up
the disk space immediately.

Additional Resources

See the Flattening cloned images in the Red Hat Ceph Storage Block Device Guide for details.

5.7. PURGING THE BLOCK DEVICE SNAPSHOTS

Purge block device snapshots.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. Specify the snap purge option and the image name on a specific pool:

Syntax

CHAPTER 5. MANAGING SNAPSHOTS

45

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#flattening-cloned-images_block

rbd --pool POOL_NAME snap purge IMAGE_NAME
rbd snap purge POOL_NAME/IMAGE_NAME

Example

[root@rbd-client ~]# rbd --pool pool1 snap purge image1
[root@rbd-client ~]# rbd snap purge pool1/image1

5.8. RENAMING A BLOCK DEVICE SNAPSHOT

Rename a block device snapshot.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. To rename a snapshot:

Syntax

rbd snap rename POOL_NAME/IMAGE_NAME@ORIGINAL_SNAPSHOT_NAME
POOL_NAME/IMAGE_NAME@NEW_SNAPSHOT_NAME

Example

[root@rbd-client ~]# rbd snap rename data/dataset@snap1 data/dataset@snap2

This renames snap1 snapshot of the dataset image on the data pool to snap2.

2. Execute the rbd help snap rename command to display additional details on renaming
snapshots.

5.9. CEPH BLOCK DEVICE LAYERING

Ceph supports the ability to create many copy-on-write (COW) or copy-on-read (COR) clones of a
block device snapshot. Snapshot layering enables Ceph block device clients to create images very
quickly. For example, you might create a block device image with a Linux VM written to it. Then,
snapshot the image, protect the snapshot, and create as many clones as you like. A snapshot is read-
only, so cloning a snapshot simplifies semantics—making it possible to create clones rapidly.

Figure 5.2. Ceph Block device layering

NOTE

Red Hat Ceph Storage 7 Block Device Guide

46

NOTE

The terms parent and child mean a Ceph block device snapshot, parent, and the
corresponding image cloned from the snapshot, child. These terms are important for the
command line usage below.

Each cloned image, the child, stores a reference to its parent image, which enables the cloned image to
open the parent snapshot and read it. This reference is removed when the clone is flattened that is,
when information from the snapshot is completely copied to the clone.

A clone of a snapshot behaves exactly like any other Ceph block device image. You can read to, write
from, clone, and resize the cloned images. There are no special restrictions with cloned images.
However, the clone of a snapshot refers to the snapshot, so you MUST protect the snapshot before you
clone it.

A clone of a snapshot can be a copy-on-write (COW) or copy-on-read (COR) clone. Copy-on-write
(COW) is always enabled for clones while copy-on-read (COR) has to be enabled explicitly. Copy-on-
write (COW) copies data from the parent to the clone when it writes to an unallocated object within the
clone. Copy-on-read (COR) copies data from the parent to the clone when it reads from an unallocated
object within the clone. Reading data from a clone will only read data from the parent if the object does
not yet exist in the clone. Rados block device breaks up large images into multiple objects. The default
is set to 4 MB and all copy-on-write (COW) and copy-on-read (COR) operations occur on a full object,
that is writing 1 byte to a clone will result in a 4 MB object being read from the parent and written to the
clone if the destination object does not already exist in the clone from a previous COW/COR operation.

Whether or not copy-on-read (COR) is enabled, any reads that cannot be satisfied by reading an
underlying object from the clone will be rerouted to the parent. Since there is practically no limit to the
number of parents, meaning that you can clone a clone, this reroute continues until an object is found or
you hit the base parent image. If copy-on-read (COR) is enabled, any reads that fail to be satisfied
directly from the clone result in a full object read from the parent and writing that data to the clone so
that future reads of the same extent can be satisfied from the clone itself without the need of reading
from the parent.

This is essentially an on-demand, object-by-object flatten operation. This is specially useful when the
clone is in a high-latency connection away from it’s parent, that is the parent in a different pool, in
another geographical location. Copy-on-read (COR) reduces the amortized latency of reads. The first
few reads will have high latency because it will result in extra data being read from the parent, for
example, you read 1 byte from the clone but now 4 MB has to be read from the parent and written to the
clone, but all future reads will be served from the clone itself.

To create copy-on-read (COR) clones from snapshot you have to explicitly enable this feature by adding
rbd_clone_copy_on_read = true under [global] or [client] section in the ceph.conf file.

Additional Resources

For more information on flattening, see the Flattening cloned images section in the Red Hat
Ceph Storage Block Device Gudie.

5.10. PROTECTING A BLOCK DEVICE SNAPSHOT

Clones access the parent snapshots. All clones would break if a user inadvertently deleted the parent
snapshot.

You can set the set-require-min-compat-client parameter to greater than or equal to mimic versions
of Ceph.

CHAPTER 5. MANAGING SNAPSHOTS

47

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#flattening-cloned-images_block

Example

ceph osd set-require-min-compat-client mimic

This creates clone v2, by default. However, clients older than mimic cannot access those block device
images.

NOTE

Clone v2 does not require protection of snapshots.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. Specify POOL_NAME, IMAGE_NAME, and SNAP_SHOT_NAME in the following command:

Syntax

rbd --pool POOL_NAME snap protect --image IMAGE_NAME --snap SNAPSHOT_NAME
rbd snap protect POOL_NAME/IMAGE_NAME@SNAPSHOT_NAME

Example

[root@rbd-client ~]# rbd --pool pool1 snap protect --image image1 --snap snap1
[root@rbd-client ~]# rbd snap protect pool1/image1@snap1

NOTE

You cannot delete a protected snapshot.

5.11. CLONING A BLOCK DEVICE SNAPSHOT

Clone a block device snapshot to create a read or write child image of the snapshot within the same pool
or in another pool. One use case would be to maintain read-only images and snapshots as templates in
one pool, and writable clones in another pool.

NOTE

Clone v2 does not require protection of snapshots.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

Red Hat Ceph Storage 7 Block Device Guide

48

1. To clone a snapshot, you need to specify the parent pool, snapshot, child pool and image name:

Syntax

rbd snap --pool POOL_NAME --image PARENT_IMAGE --snap SNAP_NAME --dest-pool
POOL_NAME --dest CHILD_IMAGE_NAME
rbd clone POOL_NAME/PARENT_IMAGE@SNAP_NAME
POOL_NAME/CHILD_IMAGE_NAME

Example

[root@rbd-client ~]# rbd clone --pool pool1 --image image1 --snap snap2 --dest-pool pool2 --
dest childimage1
[root@rbd-client ~]# rbd clone pool1/image1@snap1 pool1/childimage1

5.12. UNPROTECTING A BLOCK DEVICE SNAPSHOT

Before you can delete a snapshot, you must unprotect it first. Additionally, you may NOT delete
snapshots that have references from clones. You must flatten each clone of a snapshot, before you can
delete the snapshot.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. Run the following commands:

Syntax

rbd --pool POOL_NAME snap unprotect --image IMAGE_NAME --snap SNAPSHOT_NAME
rbd snap unprotect POOL_NAME/IMAGE_NAME@SNAPSHOT_NAME

Example

[root@rbd-client ~]# rbd --pool pool1 snap unprotect --image image1 --snap snap1

[root@rbd-client ~]# rbd snap unprotect pool1/image1@snap1

5.13. LISTING THE CHILDREN OF A SNAPSHOT

List the children of a snapshot.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

CHAPTER 5. MANAGING SNAPSHOTS

49

Procedure

1. To list the children of a snapshot, execute the following:

Syntax

rbd --pool POOL_NAME children --image IMAGE_NAME --snap SNAP_NAME
rbd children POOL_NAME/IMAGE_NAME@SNAPSHOT_NAME

Example

[root@rbd-client ~]# rbd --pool pool1 children --image image1 --snap snap1
[root@rbd-client ~]# rbd children pool1/image1@snap1

5.14. FLATTENING CLONED IMAGES

Cloned images retain a reference to the parent snapshot. When you remove the reference from the
child clone to the parent snapshot, you effectively "flatten" the image by copying the information from
the snapshot to the clone. The time it takes to flatten a clone increases with the size of the snapshot.
Because a flattened image contains all the information from the snapshot, a flattened image will use
more storage space than a layered clone.

NOTE

If the deep flatten feature is enabled on an image, the image clone is dissociated from its
parent by default.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. To delete a parent image snapshot associated with child images, you must flatten the child
images first:

Syntax

rbd --pool POOL_NAME flatten --image IMAGE_NAME
rbd flatten POOL_NAME/IMAGE_NAME

Example

[root@rbd-client ~]# rbd --pool pool1 flatten --image childimage1
[root@rbd-client ~]# rbd flatten pool1/childimage1

Red Hat Ceph Storage 7 Block Device Guide

50

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES
As a storage administrator, you can add another layer of redundancy to Ceph block devices by mirroring
data images between Red Hat Ceph Storage clusters. Understanding and using Ceph block device
mirroring can provide you protection against data loss, such as a site failure. There are two
configurations for mirroring Ceph block devices, one-way mirroring or two-way mirroring, and you can
configure mirroring on pools and individual images.

Prerequisites

A minimum of two healthy running Red Hat Ceph Storage clusters.

Network connectivity between the two storage clusters.

Access to a Ceph client node for each Red Hat Ceph Storage cluster.

A CephX user with administrator-level capabilities.

6.1. CEPH BLOCK DEVICE MIRRORING

RADOS Block Device (RBD) mirroring is a process of asynchronous replication of Ceph block device
images between two or more Ceph storage clusters. By locating a Ceph storage cluster in different
geographic locations, RBD Mirroring can help you recover from a site disaster. Journal-based Ceph
block device mirroring ensures point-in-time consistent replicas of all changes to an image, including
reads and writes, block device resizing, snapshots, clones and flattening.

RBD mirroring uses exclusive locks and the journaling feature to record all modifications to an image in
the order in which they occur. This ensures that a crash-consistent mirror of an image is available.

IMPORTANT

The CRUSH hierarchies supporting primary and secondary pools that mirror block device
images must have the same capacity and performance characteristics, and must have
adequate bandwidth to ensure mirroring without excess latency. For example, if you have
X MB/s average write throughput to images in the primary storage cluster, the network
must support N * X throughput in the network connection to the secondary site plus a
safety factor of Y% to mirror N images.

The rbd-mirror daemon is responsible for synchronizing images from one Ceph storage cluster to
another Ceph storage cluster by pulling changes from the remote primary image and writes those
changes to the local, non-primary image. The rbd-mirror daemon can run either on a single Ceph
storage cluster for one-way mirroring or on two Ceph storage clusters for two-way mirroring that
participate in the mirroring relationship.

For RBD mirroring to work, either using one-way or two-way replication, a couple of assumptions are
made:

A pool with the same name exists on both storage clusters.

A pool contains journal-enabled images you want to mirror.

IMPORTANT

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES

51

IMPORTANT

In one-way or two-way replication, each instance of rbd-mirror must be able to connect
to the other Ceph storage cluster simultaneously. Additionally, the network must have
sufficient bandwidth between the two data center sites to handle mirroring.

One-way Replication

One-way mirroring implies that a primary image or pool of images in one storage cluster gets replicated
to a secondary storage cluster. One-way mirroring also supports replicating to multiple secondary
storage clusters.

On the secondary storage cluster, the image is the non-primary replicate; that is, Ceph clients cannot
write to the image. When data is mirrored from a primary storage cluster to a secondary storage cluster,
the rbd-mirror runs ONLY on the secondary storage cluster.

For one-way mirroring to work, a couple of assumptions are made:

You have two Ceph storage clusters and you want to replicate images from a primary storage
cluster to a secondary storage cluster.

The secondary storage cluster has a Ceph client node attached to it running the rbd-mirror
daemon. The rbd-mirror daemon will connect to the primary storage cluster to sync images to
the secondary storage cluster.

Figure 6.1. One-way mirroring

Two-way Replication

Two-way replication adds an rbd-mirror daemon on the primary cluster so images can be demoted on it
and promoted on the secondary cluster. Changes can then be made to the images on the secondary
cluster and they will be replicated in the reverse direction, from secondary to primary. Both clusters must
have rbd-mirror running to allow promoting and demoting images on either cluster. Currently, two-way
replication is only supported between two sites.

For two-way mirroring to work, a couple of assumptions are made:

You have two storage clusters and you want to be able to replicate images between them in
either direction.

Both storage clusters have a client node attached to them running the rbd-mirror daemon. The

Red Hat Ceph Storage 7 Block Device Guide

52

rbd-mirror daemon running on the secondary storage cluster will connect to the primary
storage cluster to synchronize images to secondary, and the rbd-mirror daemon running on the
primary storage cluster will connect to the secondary storage cluster to synchronize images to
primary.

Figure 6.2. Two-way mirroring

Mirroring Modes

Mirroring is configured on a per-pool basis with mirror peering storage clusters. Ceph supports two
mirroring modes, depending on the type of images in the pool.

Pool Mode

All images in a pool with the journaling feature enabled are mirrored.

Image Mode

Only a specific subset of images within a pool are mirrored. You must enable mirroring for each image
separately.

Image States

Whether or not an image can be modified depends on its state:

Images in the primary state can be modified.

Images in the non-primary state cannot be modified.

Images are automatically promoted to primary when mirroring is first enabled on an image. The
promotion can happen:

Implicitly by enabling mirroring in pool mode.

Explicitly by enabling mirroring of a specific image.

It is possible to demote primary images and promote non-primary images.

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES

53

Additional Resources

See the Enabling mirroring on a pool section of the Red Hat Ceph Storage Block Device Guide
for more details.

See the Enabling image mirroring section of the Red Hat Ceph Storage Block Device Guide for
more details.

See the Image promotion and demotion section of the Red Hat Ceph Storage Block Device
Guide for more details.

6.1.1. An overview of journal-based and snapshot-based mirroring

RADOS Block Device (RBD) images can be asynchronously mirrored between two Red Hat
Ceph Storage clusters through two modes:

Journal-based mirroring

This mode uses the RBD journaling image feature to ensure point-in-time and crash consistent
replication between two Red Hat Ceph Storage clusters. The actual image is not modified until every
write to the RBD image is first recorded to the associated journal. The remote cluster reads from this
journal and replays the updates to its local copy of the image. Because each write to the RBD images
results in two writes to the Ceph cluster, write latencies nearly double with the usage of the RBD
journaling image feature.

Snapshot-based mirroring

This mode uses periodic scheduled or manually created RBD image mirror snapshots to replicate crash
consistent RBD images between two Red Hat Ceph Storage clusters. The remote cluster determines
any data or metadata updates between two mirror snapshots and copies the deltas to its local copy of
the image. The RBD fast-diff image feature enables the quick determination of updated data blocks
without the need to scan the full RBD image. The complete delta between two snapshots needs to be
synchronized prior to use during a failover scenario. Any partially applied set of deltas are rolled back at
moment of failover.

6.2. CONFIGURING ONE-WAY MIRRORING USING THE COMMAND-
LINE INTERFACE

This procedure configures one-way replication of a pool from the primary storage cluster to a secondary
storage cluster.

NOTE

When using one-way replication you can mirror to multiple secondary storage clusters.

NOTE

Examples in this section will distinguish between two storage clusters by referring to the
primary storage cluster with the primary images as site-a, and the secondary storage
cluster you are replicating the images to, as site-b. The pool name used in these
examples is called data.

Prerequisites

A minimum of two healthy and running Red Hat Ceph Storage clusters.

Red Hat Ceph Storage 7 Block Device Guide

54

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#enabling-mirroring-on-a-pool_block
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#enabling-image-mirroring_block
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#image-promotion-and-demotion_block

Root-level access to a Ceph client node for each storage cluster.

A CephX user with administrator-level capabilities.

Procedure

1. Log into the cephadm shell on both the sites:

Example

[root@site-a ~]# cephadm shell
[root@site-b ~]# cephadm shell

2. On site-b, schedule the deployment of mirror daemon on the secondary cluster:

Syntax

ceph orch apply rbd-mirror --placement=NODENAME

Example

[ceph: root@site-b /]# ceph orch apply rbd-mirror --placement=host04

NOTE

The nodename is the host where you want to configure mirroring in the
secondary cluster.

3. Enable journaling features on an image on site-a.

a. For new images, use the --image-feature option:

Syntax

rbd create IMAGE_NAME --size MEGABYTES --pool POOL_NAME --image-feature
FEATURE FEATURE

Example

[ceph: root@site-a /]# rbd create image1 --size 1024 --pool data --image-feature
exclusive-lock,journaling

NOTE

If exclusive-lock is already enabled, use journaling as the only argument,
else it returns the following error:

one or more requested features are already enabled
(22) Invalid argument

b. For existing images, use the rbd feature enable command:

Syntax

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES

55

Syntax

rbd feature enable POOL_NAME/IMAGE_NAME FEATURE, FEATURE

Example

[ceph: root@site-a /]# rbd feature enable data/image1 exclusive-lock, journaling

c. To enable journaling on all new images by default, set the configuration parameter using
ceph config set command:

Example

[ceph: root@site-a /]# ceph config set global rbd_default_features 125
[ceph: root@site-a /]# ceph config show mon.host01 rbd_default_features

4. Choose the mirroring mode, either pool or image mode, on both the storage clusters.

a. Enabling pool mode:

Syntax

rbd mirror pool enable POOL_NAME MODE

Example

[ceph: root@site-a /]# rbd mirror pool enable data pool
[ceph: root@site-b /]# rbd mirror pool enable data pool

This example enables mirroring of the whole pool named data.

b. Enabling image mode:

Syntax

rbd mirror pool enable POOL_NAME MODE

Example

[ceph: root@site-a /]# rbd mirror pool enable data image
[ceph: root@site-b /]# rbd mirror pool enable data image

This example enables image mode mirroring on the pool named data.

NOTE

To enable mirroring on specific images in a pool, see the Enabling image
mirroring section in the Red Hat Ceph Storage Block Device Guide for more
details.

c. Verify that mirroring has been successfully enabled at both the sites:

Syntax

Red Hat Ceph Storage 7 Block Device Guide

56

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#enabling-image-mirroring_block

Syntax

rbd mirror pool info POOL_NAME

Example

[ceph: root@site-a /]# rbd mirror pool info data
Mode: pool
Site Name: c13d8065-b33d-4cb5-b35f-127a02768e7f

Peer Sites: none

[ceph: root@site-b /]# rbd mirror pool info data
Mode: pool
Site Name: a4c667e2-b635-47ad-b462-6faeeee78df7

Peer Sites: none

5. On a Ceph client node, bootstrap the storage cluster peers.

a. Create Ceph user accounts, and register the storage cluster peer to the pool:

Syntax

rbd mirror pool peer bootstrap create --site-name PRIMARY_LOCAL_SITE_NAME
POOL_NAME > PATH_TO_BOOTSTRAP_TOKEN

Example

[ceph: root@rbd-client-site-a /]# rbd mirror pool peer bootstrap create --site-name site-a
data > /root/bootstrap_token_site-a

NOTE

This example bootstrap command creates the client.rbd-mirror.site-a and
the client.rbd-mirror-peer Ceph users.

b. Copy the bootstrap token file to the site-b storage cluster.

c. Import the bootstrap token on the site-b storage cluster:

Syntax

rbd mirror pool peer bootstrap import --site-name SECONDARY_LOCAL_SITE_NAME --
direction rx-only POOL_NAME PATH_TO_BOOTSTRAP_TOKEN

Example

[ceph: root@rbd-client-site-b /]# rbd mirror pool peer bootstrap import --site-name site-b -
-direction rx-only data /root/bootstrap_token_site-a

NOTE

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES

57

NOTE

For one-way RBD mirroring, you must use the --direction rx-only argument,
as two-way mirroring is the default when bootstrapping peers.

6. To verify the mirroring status, run the following command from a Ceph Monitor node on the
primary and secondary sites:

Syntax

rbd mirror image status POOL_NAME/IMAGE_NAME

Example

[ceph: root@mon-site-a /]# rbd mirror image status data/image1
image1:
 global_id: c13d8065-b33d-4cb5-b35f-127a02768e7f
 state: up+stopped
 description: remote image is non-primary
 service: host03.yuoosv on host03
 last_update: 2021-10-06 09:13:58

Here, up means the rbd-mirror daemon is running, and stopped means this image is not the
target for replication from another storage cluster. This is because the image is primary on this
storage cluster.

Example

[ceph: root@mon-site-b /]# rbd mirror image status data/image1
image1:
 global_id: c13d8065-b33d-4cb5-b35f-127a02768e7f

Additional Resources

See the Ceph block device mirroring section in the Red Hat Ceph Storage Block Device Guide for
more details.

See the User Management section in the Red Hat Ceph Storage Administration Guide for more
details on Ceph users.

6.3. CONFIGURING TWO-WAY MIRRORING USING THE COMMAND-
LINE INTERFACE

This procedure configures two-way replication of a pool between the primary storage cluster, and a
secondary storage cluster.

NOTE

When using two-way replication you can only mirror between two storage clusters.

NOTE

Red Hat Ceph Storage 7 Block Device Guide

58

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#ceph-block-device-mirroring_block
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#ceph-user-management

NOTE

Examples in this section will distinguish between two storage clusters by referring to the
primary storage cluster with the primary images as site-a, and the secondary storage
cluster you are replicating the images to, as site-b. The pool name used in these
examples is called data.

Prerequisites

A minimum of two healthy and running Red Hat Ceph Storage clusters.

Root-level access to a Ceph client node for each storage cluster.

A CephX user with administrator-level capabilities.

Procedure

1. Log into the cephadm shell on both the sites:

Example

[root@site-a ~]# cephadm shell
[root@site-b ~]# cephadm shell

2. On the site-a primary cluster, run the following command:

Example

[ceph: root@site-a /]# ceph orch apply rbd-mirror --placement=host01

NOTE

The nodename is the host where you want to configure mirroring.

3. On site-b, schedule the deployment of mirror daemon on the secondary cluster:

Syntax

ceph orch apply rbd-mirror --placement=NODENAME

Example

[ceph: root@site-b /]# ceph orch apply rbd-mirror --placement=host04

NOTE

The nodename is the host where you want to configure mirroring in the
secondary cluster.

4. Enable journaling features on an image on site-a.

a. For new images, use the --image-feature option:

Syntax

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES

59

Syntax

rbd create IMAGE_NAME --size MEGABYTES --pool POOL_NAME --image-feature
FEATURE FEATURE

Example

[ceph: root@site-a /]# rbd create image1 --size 1024 --pool data --image-feature
exclusive-lock,journaling

NOTE

If exclusive-lock is already enabled, use journaling as the only argument,
else it returns the following error:

one or more requested features are already enabled
(22) Invalid argument

b. For existing images, use the rbd feature enable command:

Syntax

rbd feature enable POOL_NAME/IMAGE_NAME FEATURE, FEATURE

Example

[ceph: root@site-a /]# rbd feature enable data/image1 exclusive-lock, journaling

c. To enable journaling on all new images by default, set the configuration parameter using
ceph config set command:

Example

[ceph: root@site-a /]# ceph config set global rbd_default_features 125
[ceph: root@site-a /]# ceph config show mon.host01 rbd_default_features

5. Choose the mirroring mode, either pool or image mode, on both the storage clusters.

a. Enabling pool mode:

Syntax

rbd mirror pool enable POOL_NAME MODE

Example

[ceph: root@site-a /]# rbd mirror pool enable data pool
[ceph: root@site-b /]# rbd mirror pool enable data pool

This example enables mirroring of the whole pool named data.

Red Hat Ceph Storage 7 Block Device Guide

60

b. Enabling image mode:

Syntax

rbd mirror pool enable POOL_NAME MODE

Example

[ceph: root@site-a /]# rbd mirror pool enable data image
[ceph: root@site-b /]# rbd mirror pool enable data image

This example enables image mode mirroring on the pool named data.

NOTE

To enable mirroring on specific images in a pool, see the Enabling image
mirroring section in the Red Hat Ceph Storage Block Device Guide for more
details.

c. Verify that mirroring has been successfully enabled at both the sites:

Syntax

rbd mirror pool info POOL_NAME

Example

[ceph: root@site-a /]# rbd mirror pool info data
Mode: pool
Site Name: c13d8065-b33d-4cb5-b35f-127a02768e7f

Peer Sites: none

[ceph: root@site-b /]# rbd mirror pool info data
Mode: pool
Site Name: a4c667e2-b635-47ad-b462-6faeeee78df7

Peer Sites: none

6. On a Ceph client node, bootstrap the storage cluster peers.

a. Create Ceph user accounts, and register the storage cluster peer to the pool:

Syntax

rbd mirror pool peer bootstrap create --site-name PRIMARY_LOCAL_SITE_NAME
POOL_NAME > PATH_TO_BOOTSTRAP_TOKEN

Example

[ceph: root@rbd-client-site-a /]# rbd mirror pool peer bootstrap create --site-name site-a
data > /root/bootstrap_token_site-a

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES

61

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#enabling-image-mirroring_block

NOTE

This example bootstrap command creates the client.rbd-mirror.site-a and
the client.rbd-mirror-peer Ceph users.

b. Copy the bootstrap token file to the site-b storage cluster.

c. Import the bootstrap token on the site-b storage cluster:

Syntax

rbd mirror pool peer bootstrap import --site-name SECONDARY_LOCAL_SITE_NAME --
direction rx-tx POOL_NAME PATH_TO_BOOTSTRAP_TOKEN

Example

[ceph: root@rbd-client-site-b /]# rbd mirror pool peer bootstrap import --site-name site-b -
-direction rx-tx data /root/bootstrap_token_site-a

NOTE

The --direction argument is optional, as two-way mirroring is the default
when bootstrapping peers.

7. To verify the mirroring status, run the following command from a Ceph Monitor node on the
primary and secondary sites:

Syntax

rbd mirror image status POOL_NAME/IMAGE_NAME

Example

[ceph: root@mon-site-a /]# rbd mirror image status data/image1
image1:
 global_id: a4c667e2-b635-47ad-b462-6faeeee78df7
 state: up+stopped
 description: local image is primary
 service: host03.glsdbv on host03.ceph.redhat.com
 last_update: 2021-09-16 10:55:58
 peer_sites:
 name: a
 state: up+stopped
 description: replaying,
{"bytes_per_second":0.0,"entries_behind_primary":0,"entries_per_second":0.0,"non_primary_p
osition":{"entry_tid":3,"object_number":3,"tag_tid":1},"primary_position":
{"entry_tid":3,"object_number":3,"tag_tid":1}}
 last_update: 2021-09-16 10:55:50

Here, up means the rbd-mirror daemon is running, and stopped means this image is not the
target for replication from another storage cluster. This is because the image is primary on this
storage cluster.

Red Hat Ceph Storage 7 Block Device Guide

62

Example

[ceph: root@mon-site-b /]# rbd mirror image status data/image1
image1:
 global_id: a4c667e2-b635-47ad-b462-6faeeee78df7
 state: up+replaying
 description: replaying,
{"bytes_per_second":0.0,"entries_behind_primary":0,"entries_per_second":0.0,"non_primary_p
osition":{"entry_tid":3,"object_number":3,"tag_tid":1},"primary_position":
{"entry_tid":3,"object_number":3,"tag_tid":1}}
 service: host05.dtisty on host05
 last_update: 2021-09-16 10:57:20
 peer_sites:
 name: b
 state: up+stopped
 description: local image is primary
 last_update: 2021-09-16 10:57:28

If images are in the state up+replaying, then mirroring is functioning properly. Here, up means
the rbd-mirror daemon is running, and replaying means this image is the target for replication
from another storage cluster.

NOTE

Depending on the connection between the sites, mirroring can take a long time
to sync the images.

Additional Resources

See the Ceph block device mirroring section in the Red Hat Ceph Storage Block Device Guide for
more details.

See the User Management section in the Red Hat Ceph Storage Administration Guide for more
details on Ceph users.

6.4. ADMINISTRATION FOR MIRRORING CEPH BLOCK DEVICES

As a storage administrator, you can do various tasks to help you manage the Ceph block device
mirroring environment. You can do the following tasks:

Viewing information about storage cluster peers.

Add or remove a storage cluster peer.

Getting mirroring status for a pool or image.

Enabling mirroring on a pool or image.

Disabling mirroring on a pool or image.

Delaying block device replication.

Promoting and demoting an image.

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES

63

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#ceph-block-device-mirroring_block
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#ceph-user-management

Prerequisites

A minimum of two healthy running Red Hat Ceph Storage cluster.

Root-level access to the Ceph client nodes.

A one-way or two-way Ceph block device mirroring relationship.

A CephX user with administrator-level capabilities.

6.4.1. Viewing information about peers

View information about storage cluster peers.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. To view information about the peers:

Syntax

rbd mirror pool info POOL_NAME

Example

[root@rbd-client ~]# rbd mirror pool info data
Mode: pool
Site Name: a

Peer Sites:

UUID: 950ddadf-f995-47b7-9416-b9bb233f66e3
Name: b
Mirror UUID: 4696cd9d-1466-4f98-a97a-3748b6b722b3
Direction: rx-tx
Client: client.rbd-mirror-peer

6.4.2. Enabling mirroring on a pool

Enable mirroring on a pool by running the following commands on both peer clusters.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

Red Hat Ceph Storage 7 Block Device Guide

64

1. To enable mirroring on a pool:

Syntax

rbd mirror pool enable POOL_NAME MODE

Example

[root@rbd-client ~]# rbd mirror pool enable data pool

This example enables mirroring of the whole pool named data.

Example

[root@rbd-client ~]# rbd mirror pool enable data image

This example enables image mode mirroring on the pool named data.

Additional Resources

See the Mirroring Ceph block devices section in the Red Hat Ceph Storage Block Device Guide
for details.

6.4.3. Disabling mirroring on a pool

Before disabling mirroring, remove the peer clusters.

NOTE

When you disable mirroring on a pool, you also disable it on any images within the pool for
which mirroring was enabled separately in image mode.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. To disable mirroring on a pool:

Syntax

rbd mirror pool disable POOL_NAME

Example

[root@rbd-client ~]# rbd mirror pool disable data

This example disables mirroring of a pool named data.

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES

65

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#mirroring-ceph-block-devices

6.4.4. Enabling image mirroring

Enable mirroring on the whole pool in image mode on both peer storage clusters.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. Enable mirroring for a specific image within the pool:

Syntax

rbd mirror image enable POOL_NAME/IMAGE_NAME

Example

[root@rbd-client ~]# rbd mirror image enable data/image2

This example enables mirroring for the image2 image in the data pool.

Additional Resources

See the Enabling mirroring on a pool section in the Red Hat Ceph Storage Block Device Guide
for details.

6.4.5. Disabling image mirroring

You can disable Ceph Block Device mirroring on images.

Prerequisites

A running Red Hat Ceph Storage cluster with snapshot-based mirroring configured.

Root-level access to the node.

Procedure

1. To disable mirroring for a specific image:

Syntax

rbd mirror image disable POOL_NAME/IMAGE_NAME

Example

[root@rbd-client ~]# rbd mirror image disable data/image2

This example disables mirroring of the image2 image in the data pool.

Red Hat Ceph Storage 7 Block Device Guide

66

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#enabling-mirroring-on-a-pool_block

Additional Resources

See the Configuring Ansible inventory location section in the Red Hat Ceph Storage Installation
Guide for more details on adding clients to the cephadm-ansible inventory.

6.4.6. Image promotion and demotion

You can promote or demote an image in a pool.

NOTE

Do not force promote non-primary images that are still syncing, because the images will
not be valid after the promotion.

Prerequisites

A running Red Hat Ceph Storage cluster with snapshot-based mirroring configured.

Root-level access to the node.

Procedure

1. To demote an image to non-primary:

Syntax

rbd mirror image demote POOL_NAME/IMAGE_NAME

Example

[root@rbd-client ~]# rbd mirror image demote data/image2

This example demotes the image2 image in the data pool.

2. To promote an image to primary:

Syntax

rbd mirror image promote POOL_NAME/IMAGE_NAME

Example

[root@rbd-client ~]# rbd mirror image promote data/image2

This example promotes image2 in the data pool.

Depending on which type of mirroring you are using, see either Recover from a disaster with
one-way mirroring or Recover from a disaster with two-way mirroring for details.

Syntax

rbd mirror image promote --force POOL_NAME/IMAGE_NAME

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES

67

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/installation_guide/#configuring-ansible-inventory-location-install
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#recover-from-a-disaster-with-one-way-mirroring_block
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#recover-from-a-disaster-with-two-way-mirroring_block

Example

[root@rbd-client ~]# rbd mirror image promote --force data/image2

Use forced promotion when the demotion cannot be propagated to the peer Ceph storage
cluster. For example, because of cluster failure or communication outage.

Additional Resources

See the Failover after a non-orderly shutdown section in the Red Hat Ceph Storage Block Device
Guide for details.

6.4.7. Image resynchronization

You can re-synchronize an image. In case of an inconsistent state between the two peer clusters, the
rbd-mirror daemon does not attempt to mirror the image that is causing the inconsistency.

Prerequisites

A running Red Hat Ceph Storage cluster with snapshot-based mirroring configured.

Root-level access to the node.

Procedure

1. To request a re-synchronization to the primary image:

Syntax

rbd mirror image resync POOL_NAME/IMAGE_NAME

Example

[root@rbd-client ~]# rbd mirror image resync data/image2

This example requests resynchronization of image2 in the data pool.

Additional Resources

To recover from an inconsistent state because of a disaster, see either Recover from a disaster
with one-way mirroring or Recover from a disaster with two-way mirroring for details.

6.4.8. Adding a storage cluster peer

Add a storage cluster peer for the rbd-mirror daemon to discover its peer storage cluster. For example,
to add the site-a storage cluster as a peer to the site-b storage cluster, then follow this procedure from
the client node in the site-b storage cluster.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Red Hat Ceph Storage 7 Block Device Guide

68

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#failover-after-a-non-orderly-shutdown_block
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#recover-from-a-disaster-with-one-way-mirroring_block
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#recover-from-a-disaster-with-two-way-mirroring_block

Procedure

1. Register the peer to the pool:

Syntax

rbd --cluster CLUSTER_NAME mirror pool peer add POOL_NAME
PEER_CLIENT_NAME@PEER_CLUSTER_NAME -n CLIENT_NAME

Example

[root@rbd-client ~]# rbd --cluster site-b mirror pool peer add data client.site-a@site-a -n
client.site-b

6.4.9. Removing a storage cluster peer

Remove a storage cluster peer by specifying the peer UUID.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. Specify the pool name and the peer Universally Unique Identifier (UUID).

Syntax

rbd mirror pool peer remove POOL_NAME PEER_UUID

Example

[root@rbd-client ~]# rbd mirror pool peer remove data 7e90b4ce-e36d-4f07-8cbc-
42050896825d

TIP

To view the peer UUID, use the rbd mirror pool info command.

6.4.10. Getting mirroring status for a pool

You can get the mirror status for a pool on the storage clusters.

Prerequisites

A running Red Hat Ceph Storage cluster with snapshot-based mirroring configured.

Root-level access to the node.

Procedure

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES

69

1. To get the mirroring pool summary:

Syntax

rbd mirror pool status POOL_NAME

Example

[root@site-a ~]# rbd mirror pool status data
health: OK
daemon health: OK
image health: OK
images: 1 total
 1 replaying

TIP

To output status details for every mirroring image in a pool, use the --verbose option.

6.4.11. Getting mirroring status for a single image

You can get the mirror status for an image by running the mirror image status command.

Prerequisites

A running Red Hat Ceph Storage cluster with snapshot-based mirroring configured.

Root-level access to the node.

Procedure

1. To get the status of a mirrored image:

Syntax

rbd mirror image status POOL_NAME/IMAGE_NAME

Example

[root@site-a ~]# rbd mirror image status data/image2
image2:
 global_id: 1e3422a2-433e-4316-9e43-1827f8dbe0ef
 state: up+unknown
 description: remote image is non-primary
 service: pluto008.yuoosv on pluto008
 last_update: 2021-10-06 09:37:58

This example gets the status of the image2 image in the data pool.

6.4.12. Delaying block device replication

Whether you are using one- or two-way replication, you can delay replication between RADOS Block

Red Hat Ceph Storage 7 Block Device Guide

70

Device (RBD) mirroring images. You might want to implement delayed replication if you want a window
of cushion time in case an unwanted change to the primary image needs to be reverted before being
replicated to the secondary image.

NOTE

Delaying block device replication is only applicable with journal-based mirroring.

To implement delayed replication, the rbd-mirror daemon within the destination storage cluster should
set the rbd_mirroring_replay_delay = MINIMUM_DELAY_IN_SECONDS configuration option. This
setting can either be applied globally within the ceph.conf file utilized by the rbd-mirror daemons, or on
an individual image basis.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. To utilize delayed replication for a specific image, on the primary image, run the following rbd
CLI command:

Syntax

rbd image-meta set POOL_NAME/IMAGE_NAME conf_rbd_mirroring_replay_delay
MINIMUM_DELAY_IN_SECONDS

Example

[root@rbd-client ~]# rbd image-meta set vms/vm-1 conf_rbd_mirroring_replay_delay 600

This example sets a 10 minute minimum replication delay on image vm-1 in the vms pool.

6.4.13. Converting journal-based mirroring to snapshot-based mirrorring

You can convert journal-based mirroring to snapshot-based mirroring by disabling mirroring and
enabling snapshot.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. Log into the Cephadm shell:

Example

[root@rbd-client ~]# cephadm shell

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES

71

2. Disable mirroring for a specific image within the pool:

Syntax

rbd mirror image disable POOL_NAME/IMAGE_NAME

Example

[ceph: root@rbd-client /]# rbd mirror image disable mirror_pool/mirror_image
Mirroring disabled

3. Enable snapshot-based mirroring for the image:

Syntax

rbd mirror image enable POOL_NAME/IMAGE_NAME snapshot

Example

[ceph: root@rbd-client /]# rbd mirror image enable mirror_pool/mirror_image snapshot
Mirroring enabled

This example enables snapshot-based mirroring for the mirror_image image in the
mirror_pool pool.

6.4.14. Creating an image mirror-snapshot

Create an image mirror-snapshot when it is required to mirror the changed contents of an RBD image
when using snapshot-based mirroring.

Prerequisites

A minimum of two healthy running Red Hat Ceph Storage clusters.

Root-level access to the Ceph client nodes for the Red Hat Ceph Storage clusters.

A CephX user with administrator-level capabilities.

Access to the Red Hat Ceph Storage cluster where a snapshot mirror will be created.

IMPORTANT

By default, a maximum of 5 image mirror-snapshots are retained. The most recent image
mirror-snapshot is automatically removed if the limit is reached. If required, the limit can
be overridden through the rbd_mirroring_max_mirroring_snapshots configuration.
Image mirror-snapshots are automatically deleted when the image is removed or when
mirroring is disabled.

Procedure

To create an image-mirror snapshot:

Syntax

Red Hat Ceph Storage 7 Block Device Guide

72

Syntax

rbd --cluster CLUSTER_NAME mirror image snapshot POOL_NAME/IMAGE_NAME

Example

[root@site-a ~]# rbd mirror image snapshot data/image1

Additional Resources

See the Mirroring Ceph block devices section in the Red Hat Ceph Storage Block Device Guide
for details.

6.4.15. Scheduling mirror-snapshots

Mirror-snapshots can be automatically created when mirror-snapshot schedules are defined. The
mirror-snapshot can be scheduled globally, per-pool or per-image levels. Multiple mirror-snapshot
schedules can be defined at any level but only the most specific snapshot schedules that match an
individual mirrored image will run.

6.4.15.1. Creating a mirror-snapshot schedule

You can create a mirror-snapshot schedule using the snapshot schedule command.

Prerequisites

A minimum of two healthy running Red Hat Ceph Storage clusters.

Root-level access to the Ceph client nodes for the Red Hat Ceph Storage clusters.

A CephX user with administrator-level capabilities.

Access to the Red Hat Ceph Storage cluster where the mirror image needs to be scheduled.

Procedure

1. To create a mirror-snapshot schedule:

Syntax

rbd --cluster CLUSTER_NAME mirror snapshot schedule add --pool POOL_NAME --image
IMAGE_NAME INTERVAL [START_TIME]

The CLUSTER_NAME should be used only when the cluster name is different from the default
name ceph. The interval can be specified in days, hours, or minutes using d, h, or m suffix
respectively. The optional START_TIME can be specified using the ISO 8601 time format.

Example

[root@site-a ~]# rbd mirror snapshot schedule add --pool data --image image1 6h

Example

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES

73

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#mirroring-ceph-block-devices

[root@site-a ~]# rbd mirror snapshot schedule add --pool data --image image1 24h 14:00:00-
05:00

Additional Resources

See the Mirroring Ceph block devices section in the Red Hat Ceph Storage Block Device Guide
for details.

6.4.15.2. Listing all snapshot schedules at a specific level

You can list all snapshot schedules at a specific level.

Prerequisites

A minimum of two healthy running Red Hat Ceph Storage clusters.

Root-level access to the Ceph client nodes for the Red Hat Ceph Storage clusters.

A CephX user with administrator-level capabilities.

Access to the Red Hat Ceph Storage cluster where the mirror image needs to be scheduled.

Procedure

1. To list all snapshot schedules for a specific global, pool or image level, with an optional pool or
image name:

Syntax

rbd --cluster site-a mirror snapshot schedule ls --pool POOL_NAME --recursive

Additionally, the --recursive option can be specified to list all schedules at the specified level as
shown below:

Example

[root@rbd-client ~]# rbd mirror snapshot schedule ls --pool data --recursive
POOL NAMESPACE IMAGE SCHEDULE
data - - every 1d starting at 14:00:00-05:00
data - image1 every 6h

Additional Resources

See the Mirroring Ceph block devices section in the Red Hat Ceph Storage Block Device Guide
for details.

6.4.15.3. Removing a mirror-snapshot schedule

You can remove a mirror-snapshot schedule using the snapshot schedule remove command.

Prerequisites

A minimum of two healthy running Red Hat Ceph Storage clusters.

Red Hat Ceph Storage 7 Block Device Guide

74

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#mirroring-ceph-block-devices
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#mirroring-ceph-block-devices

Root-level access to the Ceph client nodes for the Red Hat Ceph Storage clusters.

A CephX user with administrator-level capabilities.

Access to the Red Hat Ceph Storage cluster where the mirror image needs to be scheduled.

Procedure

1. To remove a mirror-snapshot schedule:

Syntax

rbd --cluster CLUSTER_NAME mirror snapshot schedule remove --pool POOL_NAME --
image IMAGE_NAME INTERVAL START_TIME

The interval can be specified in days, hours, or minutes using d, h, m suffix respectively. The
optional START_TIME can be specified using the ISO 8601 time format.

Example

[root@site-a ~]# rbd mirror snapshot schedule remove --pool data --image image1 6h

Example

[root@site-a ~]# rbd mirror snapshot schedule remove --pool data --image image1 24h
14:00:00-05:00

Additional Resources

See the Mirroring Ceph block devices section in the Red Hat Ceph Storage Block Device Guide
for details.

6.4.15.4. Viewing the status for the next snapshots to be created

You can view the status for the next snapshots to be created for snapshot-based mirroring RBD images.

Prerequisites

A minimum of two healthy running Red Hat Ceph Storage clusters.

Root-level access to the Ceph client nodes for the Red Hat Ceph Storage clusters.

A CephX user with administrator-level capabilities.

Access to the Red Hat Ceph Storage cluster where the mirror image needs to be scheduled.

Procedure

1. To view the status for the next snapshots to be created:

Syntax

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES

75

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#mirroring-ceph-block-devices

rbd --cluster site-a mirror snapshot schedule status [--pool POOL_NAME] [--image
IMAGE_NAME]

Example

[root@rbd-client ~]# rbd mirror snapshot schedule status
SCHEDULE TIME IMAGE
2021-09-21 18:00:00 data/image1

Additional Resources

See the Mirroring Ceph block devices section in the Red Hat Ceph Storage Block Device Guide
for details.

6.5. RECOVER FROM A DISASTER

As a storage administrator, you can be prepared for eventual hardware failure by knowing how to
recover the data from another storage cluster where mirroring was configured.

In the examples, the primary storage cluster is known as the site-a, and the secondary storage cluster is
known as the site-b. Additionally, the storage clusters both have a data pool with two images, image1
and image2.

Prerequisites

A running Red Hat Ceph Storage cluster.

One-way or two-way mirroring was configured.

6.5.1. Disaster recovery

Asynchronous replication of block data between two or more Red Hat Ceph Storage clusters reduces
downtime and prevents data loss in the event of a significant data center failure. These failures have a
widespread impact, also referred as a large blast radius, and can be caused by impacts to the power grid
and natural disasters.

Customer data needs to be protected during these scenarios. Volumes must be replicated with
consistency and efficiency and also within Recovery Point Objective (RPO) and Recovery Time
Objective (RTO) targets. This solution is called a Wide Area Network- Disaster Recovery (WAN-DR).

In such scenarios it is hard to restore the primary system and the data center. The quickest way to
recover is to failover the applications to an alternate Red Hat Ceph Storage cluster (disaster recovery
site) and make the cluster operational with the latest copy of the data available. The solutions that are
used to recover from these failure scenarios are guided by the application:

Recovery Point Objective (RPO): The amount of data loss, an application tolerate in the worst
case.

Recovery Time Objective (RTO): The time taken to get the application back on line with the
latest copy of the data available.

Additional Resources

See the Mirroring Ceph block devices Chapter in the Red Hat Ceph Storage Block Device Guide

Red Hat Ceph Storage 7 Block Device Guide

76

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#mirroring-ceph-block-devices

See the Mirroring Ceph block devices Chapter in the Red Hat Ceph Storage Block Device Guide
for details.

See the Encryption in transit section in the Red Hat Ceph Storage Data Security and Hardening
Guide to know more about data transmission over the wire in an encrypted state.

6.5.2. Recover from a disaster with one-way mirroring

To recover from a disaster when using one-way mirroring use the following procedures. They show how
to fail over to the secondary cluster after the primary cluster terminates, and how to fail back. The
shutdown can be orderly or non-orderly.

IMPORTANT

One-way mirroring supports multiple secondary sites. If you are using additional
secondary clusters, choose one of the secondary clusters to fail over to. Synchronize
from the same cluster during fail back.

6.5.3. Recover from a disaster with two-way mirroring

To recover from a disaster when using two-way mirroring use the following procedures. They show how
to fail over to the mirrored data on the secondary cluster after the primary cluster terminates, and how
to failback. The shutdown can be orderly or non-orderly.

6.5.4. Failover after an orderly shutdown

Failover to the secondary storage cluster after an orderly shutdown.

Prerequisites

Minimum of two running Red Hat Ceph Storage clusters.

Root-level access to the node.

Pool mirroring or image mirroring configured with one-way mirroring.

Procedure

1. Stop all clients that use the primary image. This step depends on which clients use the image.
For example, detach volumes from any OpenStack instances that use the image.

2. Demote the primary images located on the site-a cluster by running the following commands on
a monitor node in the site-a cluster:

Syntax

rbd mirror image demote POOL_NAME/IMAGE_NAME

Example

[root@rbd-client ~]# rbd mirror image demote data/image1
[root@rbd-client ~]# rbd mirror image demote data/image2

3. Promote the non-primary images located on the site-b cluster by running the following

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES

77

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#mirroring-ceph-block-devices
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/data_security_and_hardening_guide/#encryption-in-transit_sec

3. Promote the non-primary images located on the site-b cluster by running the following
commands on a monitor node in the site-b cluster:

Syntax

rbd mirror image promote POOL_NAME/IMAGE_NAME

Example

[root@rbd-client ~]# rbd mirror image promote data/image1
[root@rbd-client ~]# rbd mirror image promote data/image2

4. After some time, check the status of the images from a monitor node in the site-b cluster. They
should show a state of up+stopped and be listed as primary:

[root@rbd-client ~]# rbd mirror image status data/image1
image1:
 global_id: 08027096-d267-47f8-b52e-59de1353a034
 state: up+stopped
 description: local image is primary
 last_update: 2019-04-17 16:04:37
[root@rbd-client ~]# rbd mirror image status data/image2
image2:
 global_id: 596f41bc-874b-4cd4-aefe-4929578cc834
 state: up+stopped
 description: local image is primary
 last_update: 2019-04-17 16:04:37

5. Resume the access to the images. This step depends on which clients use the image.

Additional Resources

See the Block Storage and Volumes chapter in the Red Hat OpenStack Platform Storage Guide .

6.5.5. Failover after a non-orderly shutdown

Failover to secondary storage cluster after a non-orderly shutdown.

Prerequisites

Minimum of two running Red Hat Ceph Storage clusters.

Root-level access to the node.

Pool mirroring or image mirroring configured with one-way mirroring.

Procedure

1. Verify that the primary storage cluster is down.

2. Stop all clients that use the primary image. This step depends on which clients use the image.
For example, detach volumes from any OpenStack instances that use the image.

3. Promote the non-primary images from a Ceph Monitor node in the site-b storage cluster. Use

Red Hat Ceph Storage 7 Block Device Guide

78

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/storage_guide/#ch-cinder

3. Promote the non-primary images from a Ceph Monitor node in the site-b storage cluster. Use
the --force option, because the demotion cannot be propagated to the site-a storage cluster:

Syntax

rbd mirror image promote --force POOL_NAME/IMAGE_NAME

Example

[root@rbd-client ~]# rbd mirror image promote --force data/image1
[root@rbd-client ~]# rbd mirror image promote --force data/image2

4. Check the status of the images from a Ceph Monitor node in the site-b storage cluster. They
should show a state of up+stopping_replay. The description should say force promoted,
meaning it is in the intermittent state. Wait until the state comes to up+stopped to validate the
site is successfully promoted.

Example

[root@rbd-client ~]# rbd mirror image status data/image1
image1:
 global_id: 08027096-d267-47f8-b52e-59de1353a034
 state: up+stopping_replay
 description: force promoted
 last_update: 2023-04-17 13:25:06

[root@rbd-client ~]# rbd mirror image status data/image1
image1:
 global_id: 08027096-d267-47f8-b52e-59de1353a034
 state: up+stopped
 description: force promoted
 last_update: 2023-04-17 13:25:06

Additional Resources

See the Block Storage and Volumes chapter in the Red Hat OpenStack Platform Storage Guide .

6.5.6. Prepare for fail back

If two storage clusters were originally configured only for one-way mirroring, in order to fail back,
configure the primary storage cluster for mirroring in order to replicate the images in the opposite
direction.

During failback scenario, the existing peer that is inaccessible must be removed before adding a new
peer to an existing cluster.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the client node.

Procedure

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES

79

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/storage_guide/#ch-cinder

1. Log into the Cephadm shell:

Example

[root@rbd-client ~]# cephadm shell

2. On the site-a storage cluster , run the following command:

Example

[ceph: root@rbd-client /]# ceph orch apply rbd-mirror --placement=host01

3. Remove any inaccessible peers.

IMPORTANT

This step must be run on the peer site which is up and running.

NOTE

Multiple peers are supported only for one way mirroring.

a. Get the pool UUID:

Syntax

rbd mirror pool info POOL_NAME

Example

[ceph: root@host01 /]# rbd mirror pool info pool_failback

b. Remove the inaccessible peer:

Syntax

rbd mirror pool peer remove POOL_NAME PEER_UUID

Example

[ceph: root@host01 /]# rbd mirror pool peer remove pool_failback f055bb88-6253-4041-
923d-08c4ecbe799a

4. Create a block device pool with a name same as its peer mirror pool.

a. To create an rbd pool, execute the following:

Syntax

Red Hat Ceph Storage 7 Block Device Guide

80

ceph osd pool create POOL_NAME PG_NUM
ceph osd pool application enable POOL_NAME rbd
rbd pool init -p POOL_NAME

Example

[root@rbd-client ~]# ceph osd pool create pool1
[root@rbd-client ~]# ceph osd pool application enable pool1 rbd
[root@rbd-client ~]# rbd pool init -p pool1

5. On a Ceph client node, bootstrap the storage cluster peers.

a. Create Ceph user accounts, and register the storage cluster peer to the pool:

Syntax

rbd mirror pool peer bootstrap create --site-name LOCAL_SITE_NAME POOL_NAME >
PATH_TO_BOOTSTRAP_TOKEN

Example

[ceph: root@rbd-client-site-a /]# rbd mirror pool peer bootstrap create --site-name site-a
data > /root/bootstrap_token_site-a

NOTE

This example bootstrap command creates the client.rbd-mirror.site-a and
the client.rbd-mirror-peer Ceph users.

b. Copy the bootstrap token file to the site-b storage cluster.

c. Import the bootstrap token on the site-b storage cluster:

Syntax

rbd mirror pool peer bootstrap import --site-name LOCAL_SITE_NAME --direction rx-
only POOL_NAME PATH_TO_BOOTSTRAP_TOKEN

Example

[ceph: root@rbd-client-site-b /]# rbd mirror pool peer bootstrap import --site-name site-b -
-direction rx-only data /root/bootstrap_token_site-a

NOTE

For one-way RBD mirroring, you must use the --direction rx-only argument,
as two-way mirroring is the default when bootstrapping peers.

6. From a monitor node in the site-a storage cluster, verify the site-b storage cluster was
successfully added as a peer:

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES

81

Example

[ceph: root@rbd-client /]# rbd mirror pool info -p data
Mode: image
Peers:
 UUID NAME CLIENT
 d2ae0594-a43b-4c67-a167-a36c646e8643 site-b client.site-b

Additional Resources

For detailed information, see the User Management chapter in the Red Hat Ceph Storage
Administration Guide.

6.5.6.1. Fail back to the primary storage cluster

When the formerly primary storage cluster recovers, fail back to the primary storage cluster.

NOTE

If you have scheduled snapshots at the image level, then you need to re-add the
schedule as image resync operations changes the RBD Image ID and the previous
schedule becomes obsolete.

Prerequisites

Minimum of two running Red Hat Ceph Storage clusters.

Root-level access to the node.

Pool mirroring or image mirroring configured with one-way mirroring.

Procedure

1. Check the status of the images from a monitor node in the site-b cluster again. They should
show a state of up-stopped and the description should say local image is primary:

Example

[root@rbd-client ~]# rbd mirror image status data/image1
image1:
 global_id: 08027096-d267-47f8-b52e-59de1353a034
 state: up+stopped
 description: local image is primary
 last_update: 2019-04-22 17:37:48
[root@rbd-client ~]# rbd mirror image status data/image2
image2:
 global_id: 08027096-d267-47f8-b52e-59de1353a034
 state: up+stopped
 description: local image is primary
 last_update: 2019-04-22 17:38:18

2. From a Ceph Monitor node on the site-a storage cluster determine if the images are still
primary:

Red Hat Ceph Storage 7 Block Device Guide

82

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#ceph-user-management

Syntax

rbd mirror pool info POOL_NAME/IMAGE_NAME

Example

[root@rbd-client ~]# rbd info data/image1
[root@rbd-client ~]# rbd info data/image2

In the output from the commands, look for mirroring primary: true or mirroring primary:
false, to determine the state.

3. Demote any images that are listed as primary by running a command like the following from a
Ceph Monitor node in the site-a storage cluster:

Syntax

rbd mirror image demote POOL_NAME/IMAGE_NAME

Example

[root@rbd-client ~]# rbd mirror image demote data/image1

4. Resynchronize the images ONLY if there was a non-orderly shutdown. Run the following
commands on a monitor node in the site-a storage cluster to resynchronize the images from
site-b to site-a:

Syntax

rbd mirror image resync POOL_NAME/IMAGE_NAME

Example

[root@rbd-client ~]# rbd mirror image resync data/image1
Flagged image for resync from primary
[root@rbd-client ~]# rbd mirror image resync data/image2
Flagged image for resync from primary

5. After some time, ensure resynchronization of the images is complete by verifying they are in the
up+replaying state. Check their state by running the following commands on a monitor node in
the site-a storage cluster:

Syntax

rbd mirror image status POOL_NAME/IMAGE_NAME

Example

[root@rbd-client ~]# rbd mirror image status data/image1
[root@rbd-client ~]# rbd mirror image status data/image2

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES

83

6. Demote the images on the site-b storage cluster by running the following commands on a Ceph
Monitor node in the site-b storage cluster:

Syntax

rbd mirror image demote POOL_NAME/IMAGE_NAME

Example

[root@rbd-client ~]# rbd mirror image demote data/image1
[root@rbd-client ~]# rbd mirror image demote data/image2

NOTE

If there are multiple secondary storage clusters, this only needs to be done from
the secondary storage cluster where it was promoted.

7. Promote the formerly primary images located on the site-a storage cluster by running the
following commands on a Ceph Monitor node in the site-a storage cluster:

Syntax

rbd mirror image promote POOL_NAME/IMAGE_NAME

Example

[root@rbd-client ~]# rbd mirror image promote data/image1
[root@rbd-client ~]# rbd mirror image promote data/image2

8. Check the status of the images from a Ceph Monitor node in the site-a storage cluster. They
should show a status of up+stopped and the description should say local image is primary:

Syntax

rbd mirror image status POOL_NAME/IMAGE_NAME

Example

[root@rbd-client ~]# rbd mirror image status data/image1
image1:
 global_id: 08027096-d267-47f8-b52e-59de1353a034
 state: up+stopped
 description: local image is primary
 last_update: 2019-04-22 11:14:51
[root@rbd-client ~]# rbd mirror image status data/image2
image2:
 global_id: 596f41bc-874b-4cd4-aefe-4929578cc834
 state: up+stopped
 description: local image is primary
 last_update: 2019-04-22 11:14:51

Red Hat Ceph Storage 7 Block Device Guide

84

6.5.7. Remove two-way mirroring

After fail back is complete, you can remove two-way mirroring and disable the Ceph block device
mirroring service.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. Remove the site-b storage cluster as a peer from the site-a storage cluster:

Example

[root@rbd-client ~]# rbd mirror pool peer remove data client.remote@remote --cluster local
[root@rbd-client ~]# rbd --cluster site-a mirror pool peer remove data client.site-b@site-b -n
client.site-a

2. Stop and disable the rbd-mirror daemon on the site-a client:

Syntax

systemctl stop ceph-rbd-mirror@CLIENT_ID
systemctl disable ceph-rbd-mirror@CLIENT_ID
systemctl disable ceph-rbd-mirror.target

Example

[root@rbd-client ~]# systemctl stop ceph-rbd-mirror@site-a
[root@rbd-client ~]# systemctl disable ceph-rbd-mirror@site-a
[root@rbd-client ~]# systemctl disable ceph-rbd-mirror.target

CHAPTER 6. MIRRORING CEPH BLOCK DEVICES

85

CHAPTER 7. MANAGEMENT OF CEPH-IMMUTABLE-OBJECT-CACHE

DAEMONS
As a storage administrator, use the ceph-immutable-object-cache daemons to cache the parent image
content on the local disk. This cache is in the local caching directory. Future reads on that data use the
local cache.

Figure 7.1. Ceph immutable cache daemon

7.1. EXPLANATION OF CEPH-IMMUTABLE-OBJECT-CACHE DAEMONS

Cloned Block device images usually modify only a small fraction of the parent image. For example, in a
virtual desktop interface (VDI), the virtual machines are cloned from the same base image and initially
differ only by the hostname and the IP address. During the bootup, if you use a local cache of the parent
image, this speeds up reads on the caching host. This change reduces the client to cluster network
traffic.

Reasons to use ceph-immutable-object-cache daemons

The ceph-immutable-object-cache daemon is a part of Red Hat Ceph Storage. It is a scalable, open-
source, and distributed storage system. It connects to local clusters with the RADOS protocol, relying on
default search paths to find ceph.conf files, monitor addresses and authentication information for them
such as /etc/ceph/CLUSTER.conf, /etc/ceph/CLUSTER.keyring, and
/etc/ceph/CLUSTER.NAME.keyring, where CLUSTER is the human-friendly name of the cluster, and
NAME is the RADOS user to connect as an example, client.ceph-immutable-object-cache.

Key components of the daemon

The ceph-immutable-object-cache daemon has the following parts:

Domain socket based inter-process communication (IPC): The daemon listens on a local domain

Red Hat Ceph Storage 7 Block Device Guide

86

Domain socket based inter-process communication (IPC): The daemon listens on a local domain
socket on start-up and waits for connections from librbd clients.

Least recently used (LRU) based promotion or demotion policy: The daemon maintains in-
memory statistics of cache-hits on each cache file. It demotes the cold cache if capacity
reaches to the configured threshold.

File-based caching store: The daemon maintains a simple file based cache store. On promotion
the RADOS objects are fetched from RADOS cluster and stored in the local caching directory.

When you open each cloned RBD image, librbd tries to connect to the cache daemon through its Unix
domain socket. Once successfully connected, librbd coordinates with the daemon on the subsequent
reads. If there is a read that is not cached, the daemon promotes the RADOS object to the local caching
directory, so the next read on that object is serviced from cache. The daemon also maintains simple
LRU statistics so that under capacity pressure it evicts cold cache files as needed.

NOTE

For better performance, use SSDs as the underlying storage.

7.2. CONFIGURING THE CEPH-IMMUTABLE-OBJECT-CACHE DAEMON

The ceph-immutable-object-cache is a daemon for object cache of RADOS objects among Ceph
clusters.

IMPORTANT

To use the ceph-immutable-object-cache daemon, you must be able to connect RADOS
clusters.

The daemon promotes the objects to a local directory. These cache objects service the future reads.
You can configure the daemon by installing the ceph-immutable-object-cache package.

Prerequisites

A running Red Hat Ceph Storage cluster.

At least one SSD for the cache.

Procedure

1. Enable the RBD shared read only parent image cache. Add the following parameters under
[client] in the /etc/ceph/ceph.conf file:

Example

[root@ceph-host01 ~]# vi /etc/ceph/ceph.conf

[client]
rbd parent cache enabled = true
rbd plugins = parent_cache

Restart the cluster.

CHAPTER 7. MANAGEMENT OF CEPH-IMMUTABLE-OBJECT-CACHE DAEMONS

87

2. Install the ceph-immutable-object-cache package:

Example

[root@ceph-host1 ~]# dnf install ceph-immutable-object-cache

3. Create a unique Ceph user ID, the keyring:

Syntax

ceph auth get-or-create client.ceph-immutable-object-cache.USER_NAME mon 'profile rbd'
osd 'profile rbd-read-only'

Example

[root@ceph-host1 ~]# ceph auth get-or-create client.ceph-immutable-object-cache.user mon
'profile rbd' osd 'profile rbd-read-only'

[client.ceph-immutable-object-cache.user]
 key = AQCVPH1gFgHRAhAAp8ExRIsoxQK4QSYSRoVJLw==

Copy this keyring.

4. In the /etc/ceph directory, create a file and paste the keyring:

Example

[root@ceph-host1]# vi /etc/ceph/ceph.client.ceph-immutable-object-cache.user.keyring

[client.ceph-immutable-object-cache.user]
 key = AQCVPH1gFgHRAhAAp8ExRIsoxQK4QSYSRoVJLw

5. Enable the daemon:

Syntax

systemctl enable ceph-immutable-object-cache@ceph-immutable-object-
cache.USER_NAME

Specify the USER_NAME as the daemon instance.

Example

[root@ceph-host1 ~]# systemctl enable ceph-immutable-object-cache@ceph-immutable-
object-cache.user

Created symlink /etc/systemd/system/ceph-immutable-object-cache.target.wants/ceph-
immutable-object-cache@ceph-immutable-object-cache.user.service →
/usr/lib/systemd/system/ceph-immutable-object-cache@.service.

6. Start the ceph-immutable-object-cache daemon:

Syntax

Red Hat Ceph Storage 7 Block Device Guide

88

systemctl start ceph-immutable-object-cache@ceph-immutable-object-cache.USER_NAME

Example

[root@ceph-host1 ~]# systemctl start ceph-immutable-object-cache@ceph-immutable-object-
cache.user

Verification

Check the status of the configuration:

Syntax

systemctl status ceph-immutable-object-cache@ceph-immutable-object-cache.USER_NAME

Example

[root@ceph-host1 ~]# systemctl status ceph-immutable-object-cache@ceph-immutable-
object-cache.user

● ceph-immutable-object-cache@ceph-immutable-object-cache.user>
 Loaded: loaded (/usr/lib/systemd/system/ceph-immutable-objec>
 Active: active (running) since Mon 2021-04-19 13:49:06 IST; >
Main PID: 85020 (ceph-immutable-)
 Tasks: 15 (limit: 49451)
 Memory: 8.3M
 CGroup: /system.slice/system-ceph\x2dimmutable\x2dobject\x2d>
 └─85020 /usr/bin/ceph-immutable-object-cache -f --cl>

7.3. GENERIC SETTINGS OF CEPH-IMMUTABLE-OBJECT-CACHE DAEMONS

A few important generic settings of ceph-immutable-object-cache daemons are listed.

immutable_object_cache_sock

Description

The path to the domain socket used for communication between librbd clients and the ceph-
immutable-object-cache daemon.

Type

String

Default

/var/run/ceph/immutable_object_cache_sock

immutable_object_cache_path

Description

The immutable object cache data directory.

Type

String

Default

CHAPTER 7. MANAGEMENT OF CEPH-IMMUTABLE-OBJECT-CACHE DAEMONS

89

/tmp/ceph_immutable_object_cache

immutable_object_cache_max_size

Description

The maximum size for immutable cache.

Type

Size

Default

1G

immutable_object_cache_watermark

Description

The high-water mark for the cache. The value is between zero and one. If the cache size reaches
this threshold the daemon starts to delete cold cache based on LRU statistics.

Type

Float

Default

0.9

7.4. QOS SETTINGS OF CEPH-IMMUTABLE-OBJECT-CACHE DAEMONS

The ceph-immutable-object-cache daemons supports throttling which supports the settings
described.

immutable_object_cache_qos_schedule_tick_min

Description

Minimum schedule tick for immutable object cache.

Type

Milliseconds

Default

50

immutable_object_cache_qos_iops_limit

Description

User-defined immutable object cache IO operations limit per second.

Type

Integer

Default

0

immutable_object_cache_qos_iops_burst

Description

User-defined burst limit of immutable object cache IO operations.

Type

Red Hat Ceph Storage 7 Block Device Guide

90

Integer

Default

0

immutable_object_cache_qos_iops_burst_seconds

Description

User-defined burst duration in seconds of immutable object cache IO operations.

Type

Seconds

Default

1

immutable_object_cache_qos_bps_limit

Description

User-defined immutable object cache IO bytes limit per second.

Type

Integer

Default

0

immutable_object_cache_qos_bps_burst

Description

User-defined burst limit of immutable object cache IO bytes.

Type

Integer

Default

0

immutable_object_cache_qos_bps_burst_seconds

Description

The desired burst limit of read operations.

Type

Seconds

Default

1

CHAPTER 7. MANAGEMENT OF CEPH-IMMUTABLE-OBJECT-CACHE DAEMONS

91

CHAPTER 8. THE RBD KERNEL MODULE

As a storage administrator, you can access Ceph block devices through the rbd kernel module. You can
map and unmap a block device, and displaying those mappings. Also, you can get a list of images
through the rbd kernel module.

IMPORTANT

Kernel clients on Linux distributions other than Red Hat Enterprise Linux (RHEL) are
permitted but not supported. If issues are found in the storage cluster when using these
kernel clients, Red Hat will address them, but if the root cause is found to be on the
kernel client side, the issue will have to be addressed by the software vendor.

Prerequisites

A running Red Hat Ceph Storage cluster.

8.1. CREATE A CEPH BLOCK DEVICE AND USE IT FROM A LINUX
KERNEL MODULE CLIENT

As a storage administrator, you can create a Ceph Block Device for a Linux kernel module client in the
Red Hat Ceph Storage Dashboard. As a system administrator, you can map that block device on a Linux
client, and partition, format, and mount it, using the command line. After this, you can read and write
files to it.

Prerequisites

A running Red Hat Ceph Storage cluster.

A Red Hat Enterprise Linux client.

8.1.1. Creating a Ceph block device for a Linux kernel module client using dashboard

You can create a Ceph block device specifically for a Linux kernel module client using the dashboard
web interface by enabling only the features it supports.

Kernel module client supports features like Deep flatten, Layering, Exclusive lock, Object map, and Fast
diff.

Object map, Fast diff, and Deep flatten features require Red Hat Enterprise Linux 8.2 and later.

Prerequisites

A running Red Hat Ceph Storage cluster.

A replicated RBD pool created and enabled.

Procedure

1. From the Block drop-down menu, select Images.

2. Click Create.

3. In the Create RBD window, enter a image name, select the RBD enabled pool, select the

Red Hat Ceph Storage 7 Block Device Guide

92

3. In the Create RBD window, enter a image name, select the RBD enabled pool, select the
supported features:

4. Click Create RBD.

Verification

You will get a notification that the image is created successfully.

Additional Resources

For more information, see Map and mount a Ceph Block Device on Linux using the command line
in the Red Hat Ceph Storage Block Device Guide .

For more information, see the Red Hat Ceph Storage Dashboard Guide .

8.1.2. Map and mount a Ceph Block Device on Linux using the command line

You can map a Ceph Block Device from a Red Hat Enterprise Linux client using the Linux rbd kernel
module. After mapping it, you can partition, format, and mount it, so you can write files to it.

Prerequisites

A running Red Hat Ceph Storage cluster.

A Ceph block device for a Linux kernel module client using the dashboard is created.

A Red Hat Enterprise Linux client.

Procedure

1. On the Red Hat Enterprise Linux client node, enable the Red Hat Ceph Storage 6 Tools
repository:

CHAPTER 8. THE RBD KERNEL MODULE

93

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#map-and-mount-a-ceph-block-device-on-linux-using-the-command-line_block
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/dashboard_guide/

[root@rbd-client ~]# subscription-manager repos --enable=rhceph-6-tools-for-rhel-9-x86_64-
rpms

2. Install the ceph-common RPM package:

[root@rbd-client ~]# dnf install ceph-common

3. Copy the Ceph configuration file from a Monitor node to the Client node:

Syntax

scp root@MONITOR_NODE:/etc/ceph/ceph.conf /etc/ceph/ceph.conf

Example

[root@rbd-client ~]# scp root@cluster1-node2:/etc/ceph/ceph.conf /etc/ceph/ceph.conf
root@192.168.0.32's password:
ceph.conf 100% 497 724.9KB/s 00:00
[root@client1 ~]#

4. Copy the key file from a Monitor node to the Client node:

Syntax

scp root@MONITOR_NODE:/etc/ceph/ceph.client.admin.keyring
/etc/ceph/ceph.client.admin.keyring

Example

[root@rbd-client ~]# scp root@cluster1-node2:/etc/ceph/ceph.client.admin.keyring
/etc/ceph/ceph.client.admin.keyring
root@192.168.0.32's password:
ceph.client.admin.keyring 100% 151 265.0KB/s 00:00
[root@client1 ~]#

5. Map the image:

Syntax

rbd map --pool POOL_NAME IMAGE_NAME --id admin

Example

[root@rbd-client ~]# rbd map --pool block-device-pool image1 --id admin
/dev/rbd0
[root@client1 ~]#

6. Create a partition table on the block device:

Syntax

Red Hat Ceph Storage 7 Block Device Guide

94

parted /dev/MAPPED_BLOCK_DEVICE mklabel msdos

Example

[root@rbd-client ~]# parted /dev/rbd0 mklabel msdos
Information: You may need to update /etc/fstab.

7. Create a partition for an XFS file system:

Syntax

parted /dev/MAPPED_BLOCK_DEVICE mkpart primary xfs 0% 100%

Example

[root@rbd-client ~]# parted /dev/rbd0 mkpart primary xfs 0% 100%
Information: You may need to update /etc/fstab.

8. Format the partition:

Syntax

mkfs.xfs /dev/MAPPED_BLOCK_DEVICE_WITH_PARTITION_NUMBER

Example

[root@rbd-client ~]# mkfs.xfs /dev/rbd0p1
meta-data=/dev/rbd0p1 isize=512 agcount=16, agsize=163824 blks
 = sectsz=512 attr=2, projid32bit=1
 = crc=1 finobt=1, sparse=1, rmapbt=0
 = reflink=1
data = bsize=4096 blocks=2621184, imaxpct=25
 = sunit=16 swidth=16 blks
naming =version 2 bsize=4096 ascii-ci=0, ftype=1
log =internal log bsize=4096 blocks=2560, version=2
 = sectsz=512 sunit=16 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0

9. Create a directory to mount the new file system on:

Syntax

mkdir PATH_TO_DIRECTORY

Example

[root@rbd-client ~]# mkdir /mnt/ceph

10. Mount the file system:

Syntax

CHAPTER 8. THE RBD KERNEL MODULE

95

mount /dev/MAPPED_BLOCK_DEVICE_WITH_PARTITION_NUMBER
PATH_TO_DIRECTORY

Example

[root@rbd-client ~]# mount /dev/rbd0p1 /mnt/ceph/

11. Verify that the file system is mounted and showing the correct size:

Syntax

df -h PATH_TO_DIRECTORY

Example

[root@rbd-client ~]# df -h /mnt/ceph/
Filesystem Size Used Avail Use% Mounted on
/dev/rbd0p1 10G 105M 9.9G 2% /mnt/ceph

Additional Resources

For more information, see Creating a Ceph Block Device for a Linux kernel module client using
Dashboard.

For more information, see Managing file systems for Red Hat Enterprise Linux 8.

For more information, see Storage Administration Guide for Red Hat Enterprise Linux 7.

8.2. MAPPING A BLOCK DEVICE

Use rbd to map an image name to a kernel module. You must specify the image name, the pool name
and the user name. rbd will load the RBD kernel module if it is not already loaded.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. Return a list of the images:

Example

[root@rbd-client ~]# rbd list

2. Following are the two options to map the image:

Map an image name to a kernel module:

Syntax

Red Hat Ceph Storage 7 Block Device Guide

96

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#creating-a-ceph-block-device-for-a-linux-kernel-module-client-using-dashboard_block
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_file_systems/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/index

rbd device map POOL_NAME/IMAGE_NAME --id USER_NAME

Example

[root@rbd-client ~]# rbd device map rbd/myimage --id admin

Specify a secret when using cephx authentication by either the keyring or a file containing
the secret:

Syntax

[root@rbd-client ~]# rbd device map POOL_NAME/IMAGE_NAME --id USER_NAME --
keyring PATH_TO_KEYRING

or

[root@rbd-client ~]# rbd device map POOL_NAME/IMAGE_NAME --id USER_NAME --
keyfile PATH_TO_FILE

8.3. DISPLAYING MAPPED BLOCK DEVICES

You can display which block device images are mapped to the kernel module with the rbd command.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. Display the mapped block devices:

[root@rbd-client ~]# rbd device list

8.4. UNMAPPING A BLOCK DEVICE

You can unmap a block device image with the rbd command, by using the unmap option and providing
the device name.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

An image that is mapped.

Procedure

1. Get the specification of the device.

Example

CHAPTER 8. THE RBD KERNEL MODULE

97

Example

[root@rbd-client ~]# rbd device list

2. Unmap the block device image:

Syntax

rbd device unmap /dev/rbd/POOL_NAME/IMAGE_NAME

Example

[root@rbd-client ~]# rbd device unmap /dev/rbd/pool1/image1

8.5. SEGREGATING IMAGES WITHIN ISOLATED NAMESPACES WITHIN
THE SAME POOL

When using Ceph Block Devices directly without a higher-level system, such as OpenStack or OpenShift
Container Storage, it was not possible to restrict user access to specific block device images. When
combined with CephX capabilities, users can be restricted to specific pool namespaces to restrict
access to the images.

You can use RADOS namespaces, a new level of identity to identify an object, to provide isolation
between rados clients within a pool. For example, a client can only have full permissions on a namespace
specific to them. This makes using a different RADOS client for each tenant feasible, which is particularly
useful for a block device where many different tenants are accessing their own block device images.

You can segregate block device images within isolated namespaces within the same pool.

Prerequisites

A running Red Hat Ceph Storage cluster.

Upgrade all the kernels to 4x and to librbd and librados on all clients.

Root-level access to the monitor and client nodes.

Procedure

1. Create an rbd pool:

Syntax

ceph osd pool create POOL_NAME PG_NUM

Example

[ceph: root@host01 /]# ceph osd pool create mypool 100
pool 'mypool' created

2. Associate the rbd pool with the RBD application:

Red Hat Ceph Storage 7 Block Device Guide

98

Syntax

ceph osd pool application enable POOL_NAME rbd

Example

[ceph: root@host01 /]# ceph osd pool application enable mypool rbd
enabled application 'rbd' on pool 'mypool'

3. Initialize the pool with the RBD application:

Syntax

rbd pool init -p POOL_NAME

Example

[ceph: root@host01 /]# rbd pool init -p mypool

4. Create two namespaces:

Syntax

rbd namespace create --namespace NAMESPACE

Example

[ceph: root@host01 /]# rbd namespace create --namespace namespace1

[ceph: root@host01 /]# rbd namespace create --namespace namespace2

[ceph: root@host01 /]# rbd namespace ls --format=json
[{"name":"namespace2"},{"name":"namespace1"}]

5. Provide access to the namespaces for two users:

Syntax

ceph auth get-or-create client.USER_NAME mon 'profile rbd' osd 'profile rbd pool=rbd
namespace=NAMESPACE' -o /etc/ceph/client.USER_NAME.keyring

Example

[ceph: root@host01 /]# ceph auth get-or-create client.testuser mon 'profile rbd' osd 'profile
rbd pool=rbd namespace=namespace1' -o /etc/ceph/client.testuser.keyring

[ceph: root@host01 /]# ceph auth get-or-create client.newuser mon 'profile rbd' osd 'profile
rbd pool=rbd namespace=namespace2' -o /etc/ceph/client.newuser.keyring

6. Get the key of the clients:

CHAPTER 8. THE RBD KERNEL MODULE

99

Syntax

ceph auth get client.USER_NAME

Example

[ceph: root@host01 /]# ceph auth get client.testuser

[client.testuser]
 key = AQDMp61hBf5UKRAAgjQ2In0Z3uwAase7mrlKnQ==
 caps mon = "profile rbd"
 caps osd = "profile rbd pool=rbd namespace=namespace1"
exported keyring for client.testuser

[ceph: root@host01 /]# ceph auth get client.newuser

[client.newuser]
 key = AQDfp61hVfLFHRAA7D80ogmZl80ROY+AUG4A+Q==
 caps mon = "profile rbd"
 caps osd = "profile rbd pool=rbd namespace=namespace2"
exported keyring for client.newuser

7. Create the block device images and use the pre-defined namespace within a pool:

Syntax

rbd create --namespace NAMESPACE IMAGE_NAME --size SIZE_IN_GB

Example

[ceph: root@host01 /]# rbd create --namespace namespace1 image01 --size 1G

[ceph: root@host01 /]# rbd create --namespace namespace2 image02 --size 1G

8. Optional: Get the details of the namespace and the associated image:

Syntax

rbd --namespace NAMESPACE ls --long

Example

[ceph: root@host01 /]# rbd --namespace namespace1 ls --long
NAME SIZE PARENT FMT PROT LOCK
image01 1 GiB 2

[ceph: root@host01 /]# rbd --namespace namespace2 ls --long
NAME SIZE PARENT FMT PROT LOCK
image02 1 GiB 2

9. Copy the Ceph configuration file from the Ceph Monitor node to the client node:

Red Hat Ceph Storage 7 Block Device Guide

100

scp /etc/ceph/ceph.conf root@CLIENT_NODE:/etc/ceph/

Example

[ceph: root@host01 /]# scp /etc/ceph/ceph.conf root@host02:/etc/ceph/

root@host02's password:
ceph.conf 100% 497 724.9KB/s 00:00

10. Copy the admin keyring from the Ceph Monitor node to the client node:

Syntax

scp /etc/ceph/ceph.client.admin.keyring root@CLIENT_NODE:/etc/ceph

Example

[ceph: root@host01 /]# scp /etc/ceph/ceph.client.admin.keyring root@host02:/etc/ceph/

root@host02's password:
ceph.client.admin.keyring 100% 151 265.0KB/s 00:00

11. Copy the keyrings of the users from the Ceph Monitor node to the client node:

Syntax

scp /etc/ceph/ceph.client.USER_NAME.keyring root@CLIENT_NODE:/etc/ceph/

Example

[ceph: root@host01 /]# scp /etc/ceph/client.newuser.keyring root@host02:/etc/ceph/

[ceph: root@host01 /]# scp /etc/ceph/client.testuser.keyring root@host02:/etc/ceph/

12. Map the block device image:

Syntax

rbd map --name NAMESPACE IMAGE_NAME -n client.USER_NAME --keyring
/etc/ceph/client.USER_NAME.keyring

Example

[ceph: root@host01 /]# rbd map --namespace namespace1 image01 -n client.testuser --
keyring=/etc/ceph/client.testuser.keyring

/dev/rbd0

[ceph: root@host01 /]# rbd map --namespace namespace2 image02 -n client.newuser --
keyring=/etc/ceph/client.newuser.keyring

/dev/rbd1

CHAPTER 8. THE RBD KERNEL MODULE

101

This does not allow access to users in the other namespaces in the same pool.

Example

[ceph: root@host01 /]# rbd map --namespace namespace2 image02 -n client.testuser --
keyring=/etc/ceph/client.testuser.keyring

rbd: warning: image already mapped as /dev/rbd1
rbd: sysfs write failed
rbd: error asserting namespace: (1) Operation not permitted
In some cases useful info is found in syslog - try "dmesg | tail".
2021-12-06 02:49:08.106 7f8d4fde2500 -1 librbd::api::Namespace: exists: error asserting
namespace: (1) Operation not permitted
rbd: map failed: (1) Operation not permitted

[ceph: root@host01 /]# rbd map --namespace namespace1 image01 -n client.newuser --
keyring=/etc/ceph/client.newuser.keyring

rbd: warning: image already mapped as /dev/rbd0
rbd: sysfs write failed
rbd: error asserting namespace: (1) Operation not permitted
In some cases useful info is found in syslog - try "dmesg | tail".
2021-12-03 12:16:24.011 7fcad776a040 -1 librbd::api::Namespace: exists: error asserting
namespace: (1) Operation not permitted
rbd: map failed: (1) Operation not permitted

13. Verify the device:

Example

[ceph: root@host01 /]# rbd showmapped

id pool namespace image snap device
0 rbd namespace1 image01 - /dev/rbd0
1 rbd namespace2 image02 - /dev/rbd1

Red Hat Ceph Storage 7 Block Device Guide

102

CHAPTER 9. USING THE CEPH BLOCK DEVICE PYTHON
MODULE

The rbd python module provides file-like access to Ceph block device images. In order to use this built-
in tool, import the rbd and rados Python modules.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. Connect to RADOS and open an IO context:

2. Instantiate an :class:rbd.RBD object, which you use to create the image:

rbd_inst = rbd.RBD()
size = 4 * 1024**3 # 4 GiB
rbd_inst.create(ioctx, 'myimage', size)

3. To perform I/O on the image, instantiate an :class:rbd.Image object:

image = rbd.Image(ioctx, 'myimage')
data = 'foo' * 200
image.write(data, 0)

This writes 'foo' to the first 600 bytes of the image. Note that data cannot be :type:unicode -
librbd does not know how to deal with characters wider than a :c:type:char.

4. Close the image, the IO context and the connection to RADOS:

image.close()
ioctx.close()
cluster.shutdown()

To be safe, each of these calls must to be in a separate :finally block:

import rados
import rbd

cluster = rados.Rados(conffile='my_ceph_conf')
try:
 ioctx = cluster.open_ioctx('my_pool')
 try:
 rbd_inst = rbd.RBD()
 size = 4 * 1024**3 # 4 GiB
 rbd_inst.create(ioctx, 'myimage', size)

cluster = rados.Rados(conffile='my_ceph.conf')
cluster.connect()
ioctx = cluster.open_ioctx('mypool')

CHAPTER 9. USING THE CEPH BLOCK DEVICE PYTHON MODULE

103

 image = rbd.Image(ioctx, 'myimage')
 try:
 data = 'foo' * 200
 image.write(data, 0)
 finally:
 image.close()
 finally:
 ioctx.close()
finally:
 cluster.shutdown()

This can be cumbersome, so the Rados, Ioctx, and Image classes can be used as context
managers that close or shut down automatically. Using them as context managers, the above
example becomes:

with rados.Rados(conffile='my_ceph.conf') as cluster:
 with cluster.open_ioctx('mypool') as ioctx:
 rbd_inst = rbd.RBD()
 size = 4 * 1024**3 # 4 GiB
 rbd_inst.create(ioctx, 'myimage', size)
 with rbd.Image(ioctx, 'myimage') as image:
 data = 'foo' * 200
 image.write(data, 0)

Red Hat Ceph Storage 7 Block Device Guide

104

APPENDIX A. CEPH BLOCK DEVICE CONFIGURATION
REFERENCE

As a storage administrator, you can fine tune the behavior of Ceph block devices through the various
options that are available. You can use this reference for viewing such things as the default Ceph block
device options, and Ceph block device caching options.

Prerequisites

A running Red Hat Ceph Storage cluster.

A.1. BLOCK DEVICE DEFAULT OPTIONS

It is possible to override the default settings for creating an image. Ceph will create images with format
2 and no striping.

rbd_default_format

Description

The default format (2) if no other format is specified. Format 1 is the original format for a new
image, which is compatible with all versions of librbd and the kernel module, but does not support
newer features like cloning. Format 2 is supported by librbd and the kernel module since version
3.11 (except for striping). Format 2 adds support for cloning and is more easily extensible to allow
more features in the future.

Type

Integer

Default

2

rbd_default_order

Description

The default order if no other order is specified.

Type

Integer

Default

22

rbd_default_stripe_count

Description

The default stripe count if no other stripe count is specified. Changing the default value requires
striping v2 feature.

Type

64-bit Unsigned Integer

Default

0

rbd_default_stripe_unit

Description

APPENDIX A. CEPH BLOCK DEVICE CONFIGURATION REFERENCE

105

The default stripe unit if no other stripe unit is specified. Changing the unit from 0 (that is, the
object size) requires the striping v2 feature.

Type

64-bit Unsigned Integer

Default

0

rbd_default_features

Description

The default features enabled when creating an block device image. This setting only applies to
format 2 images. The settings are:
1: Layering support. Layering enables you to use cloning.

2: Striping v2 support. Striping spreads data across multiple objects. Striping helps with
parallelism for sequential read/write workloads.

4: Exclusive locking support. When enabled, it requires a client to get a lock on an object before
making a write.

8: Object map support. Block devices are thin-provisioned—meaning, they only store data that
actually exists. Object map support helps track which objects actually exist (have data stored on a
drive). Enabling object map support speeds up I/O operations for cloning, or importing and
exporting a sparsely populated image.

16: Fast-diff support. Fast-diff support depends on object map support and exclusive lock
support. It adds another property to the object map, which makes it much faster to generate diffs
between snapshots of an image, and the actual data usage of a snapshot much faster.

32: Deep-flatten support. Deep-flatten makes rbd flatten work on all the snapshots of an image,
in addition to the image itself. Without it, snapshots of an image will still rely on the parent, so the
parent will not be delete-able until the snapshots are deleted. Deep-flatten makes a parent
independent of its clones, even if they have snapshots.

64: Journaling support. Journaling records all modifications to an image in the order they occur.
This ensures that a crash-consistent mirror of the remote image is available locally

The enabled features are the sum of the numeric settings.

Type

Integer

Default

61 - layering, exclusive-lock, object-map, fast-diff, and deep-flatten are enabled

IMPORTANT

The current default setting is not compatible with the RBD kernel driver nor older
RBD clients.

rbd_default_map_options

Description

Red Hat Ceph Storage 7 Block Device Guide

106

Most of the options are useful mainly for debugging and benchmarking. See man rbd under Map
Options for details.

Type

String

Default

""

A.2. BLOCK DEVICE GENERAL OPTIONS

rbd_op_threads

Description

The number of block device operation threads.

Type

Integer

Default

1

WARNING

Do not change the default value of rbd_op_threads because setting it to a number
higher than 1 might cause data corruption.

rbd_op_thread_timeout

Description

The timeout (in seconds) for block device operation threads.

Type

Integer

Default

60

rbd_non_blocking_aio

Description

If true, Ceph will process block device asynchronous I/O operations from a worker thread to
prevent blocking.

Type

Boolean

Default

true

rbd_concurrent_management_ops

APPENDIX A. CEPH BLOCK DEVICE CONFIGURATION REFERENCE

107

Description

The maximum number of concurrent management operations in flight (for example, deleting or
resizing an image).

Type

Integer

Default

10

rbd_request_timed_out_seconds

Description

The number of seconds before a maintenance request times out.

Type

Integer

Default

30

rbd_clone_copy_on_read

Description

When set to true, copy-on-read cloning is enabled.

Type

Boolean

Default

false

rbd_enable_alloc_hint

Description

If true, allocation hinting is enabled, and the block device will issue a hint to the OSD back end to
indicate the expected size object.

Type

Boolean

Default

true

rbd_skip_partial_discard

Description

If true, the block device will skip zeroing a range when trying to discard a range inside an object.

Type

Boolean

Default

false

rbd_tracing

Description

Set this option to true to enable the Linux Trace Toolkit Next Generation User Space Tracer

Red Hat Ceph Storage 7 Block Device Guide

108

Set this option to true to enable the Linux Trace Toolkit Next Generation User Space Tracer
(LTTng-UST) tracepoints. See Tracing RADOS Block Device (RBD) Workloads with the RBD
Replay Feature for details.

Type

Boolean

Default

false

rbd_validate_pool

Description

Set this option to true to validate empty pools for RBD compatibility.

Type

Boolean

Default

true

rbd_validate_names

Description

Set this option to true to validate image specifications.

Type

Boolean

Default

true

A.3. BLOCK DEVICE CACHING OPTIONS

The user space implementation of the Ceph block device, that is, librbd, cannot take advantage of the
Linux page cache, so it includes its own in-memory caching, called RBD caching. Ceph block device
caching behaves just like well-behaved hard disk caching. When the operating system sends a barrier or
a flush request, all dirty data is written to the Ceph OSDs. This means that using write-back caching is
just as safe as using a well-behaved physical hard disk with a virtual machine that properly sends flushes,
that is, Linux kernel version 2.6.32 or higher. The cache uses a Least Recently Used (LRU) algorithm,
and in write-back mode it can coalesce contiguous requests for better throughput.

Ceph block devices support write-back caching. To enable write-back caching, set rbd_cache = true to
the [client] section of the Ceph configuration file. By default, librbd does not perform any caching.
Writes and reads go directly to the storage cluster, and writes return only when the data is on disk on all
replicas. With caching enabled, writes return immediately, unless there are more than
rbd_cache_max_dirty unflushed bytes. In this case, the write triggers write-back and blocks until
enough bytes are flushed.

Ceph block devices support write-through caching. You can set the size of the cache, and you can set
targets and limits to switch from write-back caching to write-through caching. To enable write-through
mode, set rbd_cache_max_dirty to 0. This means writes return only when the data is on disk on all
replicas, but reads may come from the cache. The cache is in memory on the client, and each Ceph
block device image has its own. Since the cache is local to the client, there is no coherency if there are
others accessing the image. Running other file systems, such as GFS or OCFS, on top of Ceph block
devices will not work with caching enabled.

APPENDIX A. CEPH BLOCK DEVICE CONFIGURATION REFERENCE

109

https://access.redhat.com/articles/1605163

The Ceph configuration settings for Ceph block devices must be set in the [client] section of the Ceph
configuration file, by default, /etc/ceph/ceph.conf.

The settings include:

rbd_cache

Description

Enable caching for RADOS Block Device (RBD).

Type

Boolean

Required

No

Default

true

rbd_cache_size

Description

The RBD cache size in bytes.

Type

64-bit Integer

Required

No

Default

32 MiB

rbd_cache_max_dirty

Description

The dirty limit in bytes at which the cache triggers write-back. If 0, uses write-through caching.

Type

64-bit Integer

Required

No

Constraint

Must be less than rbd cache size.

Default

24 MiB

rbd_cache_target_dirty

Description

The dirty target before the cache begins writing data to the data storage. Does not block writes
to the cache.

Type

64-bit Integer

Required

Red Hat Ceph Storage 7 Block Device Guide

110

No

Constraint

Must be less than rbd cache max dirty.

Default

16 MiB

rbd_cache_max_dirty_age

Description

The number of seconds dirty data is in the cache before writeback starts.

Type

Float

Required

No

Default

1.0

rbd_cache_max_dirty_object

Description

The dirty limit for objects - set to 0 for auto calculate from rbd_cache_size.

Type

Integer

Default

0

rbd_cache_block_writes_upfront

Description

If true, it will block writes to the cache before the aio_write call completes. If false, it will block
before the aio_completion is called.

Type

Boolean

Default

false

rbd_cache_writethrough_until_flush

Description

Start out in write-through mode, and switch to write-back after the first flush request is received.
Enabling this is a conservative but safe setting in case VMs running on rbd are too old to send
flushes, like the virtio driver in Linux before 2.6.32.

Type

Boolean

Required

No

Default

true

APPENDIX A. CEPH BLOCK DEVICE CONFIGURATION REFERENCE

111

A.4. BLOCK DEVICE PARENT AND CHILD READ OPTIONS

rbd_balance_snap_reads

Description

Ceph typically reads objects from the primary OSD. Since reads are immutable, you may enable
this feature to balance snap reads between the primary OSD and the replicas.

Type

Boolean

Default

false

rbd_localize_snap_reads

Description

Whereas rbd_balance_snap_reads will randomize the replica for reading a snapshot. If you
enable rbd_localize_snap_reads, the block device will look to the CRUSH map to find the
closest or local OSD for reading the snapshot.

Type

Boolean

Default

false

rbd_balance_parent_reads

Description

Ceph typically reads objects from the primary OSD. Since reads are immutable, you may enable
this feature to balance parent reads between the primary OSD and the replicas.

Type

Boolean

Default

false

rbd_localize_parent_reads

Description

Whereas rbd_balance_parent_reads will randomize the replica for reading a parent. If you
enable rbd_localize_parent_reads, the block device will look to the CRUSH map to find the
closest or local OSD for reading the parent.

Type

Boolean

Default

true

A.5. BLOCK DEVICE READ AHEAD OPTIONS

RBD supports read-ahead/prefetching to optimize small, sequential reads. This should normally be
handled by the guest OS in the case of a VM, but boot loaders may not issue efficient reads. Read-
ahead is automatically disabled if caching is disabled.

Red Hat Ceph Storage 7 Block Device Guide

112

rbd_readahead_trigger_requests

Description

Number of sequential read requests necessary to trigger read-ahead.

Type

Integer

Required

No

Default

10

rbd_readahead_max_bytes

Description

Maximum size of a read-ahead request. If zero, read-ahead is disabled.

Type

64-bit Integer

Required

No

Default

512 KiB

rbd_readahead_disable_after_bytes

Description

After this many bytes have been read from an RBD image, read-ahead is disabled for that image
until it is closed. This allows the guest OS to take over read-ahead once it is booted. If zero, read-
ahead stays enabled.

Type

64-bit Integer

Required

No

Default

50 MiB

A.6. BLOCK DEVICE BLOCKLIST OPTIONS

rbd_blocklist_on_break_lock

Description

Whether to blocklist clients whose lock was broken.

Type

Boolean

Default

true

rbd_blocklist_expire_seconds

APPENDIX A. CEPH BLOCK DEVICE CONFIGURATION REFERENCE

113

Description

The number of seconds to blocklist - set to 0 for OSD default.

Type

Integer

Default

0

A.7. BLOCK DEVICE JOURNAL OPTIONS

rbd_journal_order

Description

The number of bits to shift to compute the journal object maximum size. The value is between 12
and 64.

Type

32-bit Unsigned Integer

Default

24

rbd_journal_splay_width

Description

The number of active journal objects.

Type

32-bit Unsigned Integer

Default

4

rbd_journal_commit_age

Description

The commit time interval in seconds.

Type

Double Precision Floating Point Number

Default

5

rbd_journal_object_flush_interval

Description

The maximum number of pending commits per a journal object.

Type

Integer

Default

0

rbd_journal_object_flush_bytes

Red Hat Ceph Storage 7 Block Device Guide

114

Description

The maximum number of pending bytes per a journal object.

Type

Integer

Default

0

rbd_journal_object_flush_age

Description

The maximum time interval in seconds for pending commits.

Type

Double Precision Floating Point Number

Default

0

rbd_journal_pool

Description

Specifies a pool for journal objects.

Type

String

Default

""

A.8. BLOCK DEVICE CONFIGURATION OVERRIDE OPTIONS

Block device configuration override options for global and pool levels.

Global level

Available keys

rbd_qos_bps_burst

Description

The desired burst limit of IO bytes.

Type

Integer

Default

0

rbd_qos_bps_limit

Description

The desired limit of IO bytes per second.

Type

Integer

APPENDIX A. CEPH BLOCK DEVICE CONFIGURATION REFERENCE

115

Default

0

rbd_qos_iops_burst

Description

The desired burst limit of IO operations.

Type

Integer

Default

0

rbd_qos_iops_limit

Description

The desired limit of IO operations per second.

Type

Integer

Default

0

rbd_qos_read_bps_burst

Description

The desired burst limit of read bytes.

Type

Integer

Default

0

rbd_qos_read_bps_limit

Description

The desired limit of read bytes per second.

Type

Integer

Default

0

rbd_qos_read_iops_burst

Description

The desired burst limit of read operations.

Type

Integer

Default

0

Red Hat Ceph Storage 7 Block Device Guide

116

rbd_qos_read_iops_limit

Description

The desired limit of read operations per second.

Type

Integer

Default

0

rbd_qos_write_bps_burst

Description

The desired burst limit of write bytes.

Type

Integer

Default

0

rbd_qos_write_bps_limit

Description

The desired limit of write bytes per second.

Type

Integer

Default

0

rbd_qos_write_iops_burst

Description

The desired burst limit of write operations.

Type

Integer

Default

0

rbd_qos_write_iops_limit

Description

The desired burst limit of write operations per second.

Type

Integer

Default

0

The above keys can be used for the following:

rbd config global set CONFIG_ENTITY KEY VALUE

APPENDIX A. CEPH BLOCK DEVICE CONFIGURATION REFERENCE

117

Description

Set a global level configuration override.

rbd config global get CONFIG_ENTITY KEY

Description

Get a global level configuration override.

rbd config global list CONFIG_ENTITY

Description

List the global level configuration overrides.

rbd config global remove CONFIG_ENTITY KEY

Description

Remove a global level configuration override.

Pool level

rbd config pool set POOL_NAME KEY VALUE

Description

Set a pool level configuration override.

rbd config pool get POOL_NAME KEY

Description

Get a pool level configuration override.

rbd config pool list POOL_NAME

Description

List the pool level configuration overrides.

rbd config pool remove POOL_NAME KEY

Description

Remove a pool level configuration override.

NOTE

CONFIG_ENTITY is global, client or client id. KEY is the config key. VALUE is the config
value. POOL_NAME is the name of the pool.

A.9. BLOCK DEVICE INPUT AND OUTPUT OPTIONS

General input and output options for Red Hat Ceph Storage.

rbd_compression_hint

Description

Hint to send to the OSDs on write operations. If set to compressible and the OSD

Red Hat Ceph Storage 7 Block Device Guide

118

bluestore_compression_mode setting is passive, the OSD attempts to compress data. If set to
incompressible and the OSD bluestore_compression_mode setting is aggressive, the OSD
will not attempt to compress data.

Type

Enum

Required

No

Default

none

Values

none, compressible, incompressible

rbd_read_from_replica_policy

Description

Policy for determining which OSD receives read operations. If set to default, each PG’s primary
OSD will always be used for read operations. If set to balance, read operations will be sent to a
randomly selected OSD within the replica set. If set to localize, read operations will be sent to the
closest OSD as determined by the CRUSH map and the crush_location configuration option,
where the crush_location is denoted using key=value. The key aligns with the CRUSH map keys.

NOTE

This feature requires the storage cluster to be configured with a minimum
compatible OSD release of the latest version of Red Hat Ceph Storage.

Type

Enum

Required

No

Default

default

Values

default, balance, localize

APPENDIX A. CEPH BLOCK DEVICE CONFIGURATION REFERENCE

119

	Table of Contents
	CHAPTER 1. INTRODUCTION TO CEPH BLOCK DEVICES
	CHAPTER 2. CEPH BLOCK DEVICES
	2.1. DISPLAYING THE COMMAND HELP
	2.2. CREATING A BLOCK DEVICE POOL
	2.3. CREATING A BLOCK DEVICE IMAGE
	2.4. LISTING THE BLOCK DEVICE IMAGES
	2.5. RETRIEVING THE BLOCK DEVICE IMAGE INFORMATION
	2.6. RESIZING A BLOCK DEVICE IMAGE
	2.7. REMOVING A BLOCK DEVICE IMAGE
	2.8. MOVING A BLOCK DEVICE IMAGE TO THE TRASH
	2.9. DEFINING AN AUTOMATIC TRASH PURGE SCHEDULE
	2.10. ENABLING AND DISABLING IMAGE FEATURES
	2.11. WORKING WITH IMAGE METADATA
	2.12. MOVING IMAGES BETWEEN POOLS
	2.13. MIGRATING POOLS
	2.14. THE RBDMAP SERVICE
	2.15. CONFIGURING THE RBDMAP SERVICE
	2.16. PERSISTENT WRITE LOG CACHE
	2.17. PERSISTENT WRITE LOG CACHE LIMITATIONS
	2.18. ENABLING PERSISTENT WRITE LOG CACHE
	2.19. CHECKING PERSISTENT WRITE LOG CACHE STATUS
	2.20. FLUSHING PERSISTENT WRITE LOG CACHE
	2.21. DISCARDING PERSISTENT WRITE LOG CACHE
	2.22. MONITORING PERFORMANCE OF CEPH BLOCK DEVICES USING THE COMMAND-LINE INTERFACE

	CHAPTER 3. LIVE MIGRATION OF IMAGES
	3.1. THE LIVE MIGRATION PROCESS
	3.2. FORMATS
	3.3. STREAMS
	3.4. PREPARING THE LIVE MIGRATION PROCESS
	3.5. PREPARING IMPORT-ONLY MIGRATION
	3.6. EXECUTING THE LIVE MIGRATION PROCESS
	3.7. COMMITTING THE LIVE MIGRATION PROCESS
	3.8. ABORTING THE LIVE MIGRATION PROCESS

	CHAPTER 4. IMAGE ENCRYPTION
	4.1. ENCRYPTION FORMAT
	4.2. ENCRYPTION LOAD
	4.3. SUPPORTED FORMATS
	4.4. ADDING ENCRYPTION FORMAT TO IMAGES AND CLONES

	CHAPTER 5. MANAGING SNAPSHOTS
	5.1. CEPH BLOCK DEVICE SNAPSHOTS
	5.2. THE CEPH USER AND KEYRING
	5.3. CREATING A BLOCK DEVICE SNAPSHOT
	5.4. LISTING THE BLOCK DEVICE SNAPSHOTS
	5.5. ROLLING BACK A BLOCK DEVICE SNAPSHOT
	5.6. DELETING A BLOCK DEVICE SNAPSHOT
	5.7. PURGING THE BLOCK DEVICE SNAPSHOTS
	5.8. RENAMING A BLOCK DEVICE SNAPSHOT
	5.9. CEPH BLOCK DEVICE LAYERING
	5.10. PROTECTING A BLOCK DEVICE SNAPSHOT
	5.11. CLONING A BLOCK DEVICE SNAPSHOT
	5.12. UNPROTECTING A BLOCK DEVICE SNAPSHOT
	5.13. LISTING THE CHILDREN OF A SNAPSHOT
	5.14. FLATTENING CLONED IMAGES

	CHAPTER 6. MIRRORING CEPH BLOCK DEVICES
	6.1. CEPH BLOCK DEVICE MIRRORING
	6.1.1. An overview of journal-based and snapshot-based mirroring

	6.2. CONFIGURING ONE-WAY MIRRORING USING THE COMMAND-LINE INTERFACE
	6.3. CONFIGURING TWO-WAY MIRRORING USING THE COMMAND-LINE INTERFACE
	6.4. ADMINISTRATION FOR MIRRORING CEPH BLOCK DEVICES
	6.4.1. Viewing information about peers
	6.4.2. Enabling mirroring on a pool
	6.4.3. Disabling mirroring on a pool
	6.4.4. Enabling image mirroring
	6.4.5. Disabling image mirroring
	6.4.6. Image promotion and demotion
	6.4.7. Image resynchronization
	6.4.8. Adding a storage cluster peer
	6.4.9. Removing a storage cluster peer
	6.4.10. Getting mirroring status for a pool
	6.4.11. Getting mirroring status for a single image
	6.4.12. Delaying block device replication
	6.4.13. Converting journal-based mirroring to snapshot-based mirrorring
	6.4.14. Creating an image mirror-snapshot
	6.4.15. Scheduling mirror-snapshots
	6.4.15.1. Creating a mirror-snapshot schedule
	6.4.15.2. Listing all snapshot schedules at a specific level
	6.4.15.3. Removing a mirror-snapshot schedule
	6.4.15.4. Viewing the status for the next snapshots to be created

	6.5. RECOVER FROM A DISASTER
	6.5.1. Disaster recovery
	6.5.2. Recover from a disaster with one-way mirroring
	6.5.3. Recover from a disaster with two-way mirroring
	6.5.4. Failover after an orderly shutdown
	6.5.5. Failover after a non-orderly shutdown
	6.5.6. Prepare for fail back
	6.5.6.1. Fail back to the primary storage cluster

	6.5.7. Remove two-way mirroring

	CHAPTER 7. MANAGEMENT OF CEPH-IMMUTABLE-OBJECT-CACHE DAEMONS
	7.1. EXPLANATION OF CEPH-IMMUTABLE-OBJECT-CACHE DAEMONS
	7.2. CONFIGURING THE CEPH-IMMUTABLE-OBJECT-CACHE DAEMON
	7.3. GENERIC SETTINGS OF CEPH-IMMUTABLE-OBJECT-CACHE DAEMONS
	7.4. QOS SETTINGS OF CEPH-IMMUTABLE-OBJECT-CACHE DAEMONS

	CHAPTER 8. THE RBD KERNEL MODULE
	8.1. CREATE A CEPH BLOCK DEVICE AND USE IT FROM A LINUX KERNEL MODULE CLIENT
	8.1.1. Creating a Ceph block device for a Linux kernel module client using dashboard
	8.1.2. Map and mount a Ceph Block Device on Linux using the command line

	8.2. MAPPING A BLOCK DEVICE
	8.3. DISPLAYING MAPPED BLOCK DEVICES
	8.4. UNMAPPING A BLOCK DEVICE
	8.5. SEGREGATING IMAGES WITHIN ISOLATED NAMESPACES WITHIN THE SAME POOL

	CHAPTER 9. USING THE CEPH BLOCK DEVICE PYTHON MODULE
	APPENDIX A. CEPH BLOCK DEVICE CONFIGURATION REFERENCE
	A.1. BLOCK DEVICE DEFAULT OPTIONS
	A.2. BLOCK DEVICE GENERAL OPTIONS
	A.3. BLOCK DEVICE CACHING OPTIONS
	A.4. BLOCK DEVICE PARENT AND CHILD READ OPTIONS
	A.5. BLOCK DEVICE READ AHEAD OPTIONS
	A.6. BLOCK DEVICE BLOCKLIST OPTIONS
	A.7. BLOCK DEVICE JOURNAL OPTIONS
	A.8. BLOCK DEVICE CONFIGURATION OVERRIDE OPTIONS
	A.9. BLOCK DEVICE INPUT AND OUTPUT OPTIONS

