
Red Hat Ceph Storage 7

Administration Guide

Administration of Red Hat Ceph Storage

Last Updated: 2024-03-06

Red Hat Ceph Storage 7 Administration Guide

Administration of Red Hat Ceph Storage

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to manage processes, monitor cluster states, manage users, and add
and remove daemons for Red Hat Ceph Storage. Red Hat is committed to replacing problematic
language in our code, documentation, and web properties. We are beginning with these four terms:
master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will
be implemented gradually over several upcoming releases. For more details, see our CTO Chris
Wright's message.

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. CEPH ADMINISTRATION

CHAPTER 2. UNDERSTANDING PROCESS MANAGEMENT FOR CEPH
2.1. CEPH PROCESS MANAGEMENT
2.2. STARTING, STOPPING, AND RESTARTING ALL CEPH DAEMONS USING SYSTEMCTL COMMAND
2.3. STARTING, STOPPING, AND RESTARTING ALL CEPH SERVICES
2.4. VIEWING LOG FILES OF CEPH DAEMONS THAT RUN IN CONTAINERS
2.5. POWERING DOWN AND REBOOTING RED HAT CEPH STORAGE CLUSTER

2.5.1. Powering down and rebooting the cluster using the systemctl commands
2.5.2. Powering down and rebooting the cluster using the Ceph Orchestrator

CHAPTER 3. MONITORING A CEPH STORAGE CLUSTER
3.1. HIGH-LEVEL MONITORING OF A CEPH STORAGE CLUSTER

3.1.1. Checking the storage cluster health
3.1.2. Watching storage cluster events
3.1.3. How Ceph calculates data usage
3.1.4. Understanding the storage clusters usage stats
3.1.5. Understanding the OSD usage stats
3.1.6. Checking the storage cluster status
3.1.7. Checking the Ceph Monitor status
3.1.8. Using the Ceph administration socket
3.1.9. Understanding the Ceph OSD status

3.2. LOW-LEVEL MONITORING OF A CEPH STORAGE CLUSTER
3.2.1. Monitoring Placement Group Sets
3.2.2. Ceph OSD peering
3.2.3. Placement Group States
3.2.4. Placement Group creating state
3.2.5. Placement group peering state
3.2.6. Placement group active state
3.2.7. Placement Group clean state
3.2.8. Placement Group degraded state
3.2.9. Placement Group recovering state
3.2.10. Back fill state
3.2.11. Placement Group remapped state
3.2.12. Placement Group stale state
3.2.13. Placement Group misplaced state
3.2.14. Placement Group incomplete state
3.2.15. Identifying stuck Placement Groups
3.2.16. Finding an object’s location

CHAPTER 4. STRETCH CLUSTERS FOR CEPH STORAGE
4.1. STRETCH MODE FOR A STORAGE CLUSTER

4.1.1. Setting the CRUSH location for the daemons
4.1.2. Entering the stretch mode
4.1.3. Adding OSD hosts in stretch mode

CHAPTER 5. OVERRIDE CEPH BEHAVIOR
5.1. SETTING AND UNSETTING CEPH OVERRIDE OPTIONS
5.2. CEPH OVERRIDE USE CASES

CHAPTER 6. CEPH USER MANAGEMENT
6.1. CEPH USER MANAGEMENT BACKGROUND

6

7
7
7
8

10
11
11

14

19
19
19

20
21
21

24
24
26
29
34
36
36
37
38
41
41

42
42
42
42
43
43
43
44
44
44
45

46
46
48
51
55

57
57
58

60
60

Table of Contents

1

. .

. .

. .

. .

. .

6.2. MANAGING CEPH USERS
6.2.1. Listing Ceph users
6.2.2. Display Ceph user information
6.2.3. Add a new Ceph user
6.2.4. Modifying a Ceph User
6.2.5. Deleting a Ceph user
6.2.6. Print a Ceph user key

CHAPTER 7. THE CEPH-VOLUME UTILITY
7.1. CEPH VOLUME LVM PLUGIN
7.2. WHY DOES CEPH-VOLUME REPLACE CEPH-DISK?
7.3. PREPARING CEPH OSDS USING CEPH-VOLUME
7.4. LISTING DEVICES USING CEPH-VOLUME
7.5. ACTIVATING CEPH OSDS USING CEPH-VOLUME
7.6. DEACTIVATING CEPH OSDS USING CEPH-VOLUME
7.7. CREATING CEPH OSDS USING CEPH-VOLUME
7.8. MIGRATING BLUEFS DATA
7.9. USING BATCH MODE WITH CEPH-VOLUME
7.10. ZAPPING DATA USING CEPH-VOLUME

CHAPTER 8. CEPH PERFORMANCE BENCHMARK
8.1. PERFORMANCE BASELINE
8.2. BENCHMARKING CEPH PERFORMANCE
8.3. BENCHMARKING CEPH BLOCK PERFORMANCE

CHAPTER 9. CEPH PERFORMANCE COUNTERS
9.1. ACCESS TO CEPH PERFORMANCE COUNTERS
9.2. DISPLAY THE CEPH PERFORMANCE COUNTERS
9.3. DUMP THE CEPH PERFORMANCE COUNTERS
9.4. AVERAGE COUNT AND SUM
9.5. CEPH MONITOR METRICS
9.6. CEPH OSD METRICS
9.7. CEPH OBJECT GATEWAY METRICS

CHAPTER 10. THE MCLOCK OSD SCHEDULER
10.1. COMPARISON OF MCLOCK OSD SCHEDULER WITH WPQ OSD SCHEDULER
10.2. THE ALLOCATION OF INPUT AND OUTPUT RESOURCES
10.3. FACTORS THAT IMPACT MCLOCK OPERATION QUEUES
10.4. THE MCLOCK CONFIGURATION
10.5. MCLOCK CLIENTS
10.6. MCLOCK PROFILES

10.6.1. mClock profile types
10.6.2. Changing an mClock profile
10.6.3. Switching between built-in and custom profiles
10.6.4. Switching temporarily between mClock profiles
10.6.5. Degraded and Misplaced Object Recovery Rate With mClock Profiles
10.6.6. Modifying backfills and recovery options

10.7. THE CEPH OSD CAPACITY DETERMINATION
10.7.1. Verifying the capacity of an OSD
10.7.2. Manually benchmarking OSDs
10.7.3. Determining the correct BlueStore throttle values
10.7.4. Specifying maximum OSD capacity

CHAPTER 11. BLUESTORE

63
63
65
66
66
67
67

69
69
70
71
72
74
75
76
76
79
80

82
82
82
85

87
87
87
89
89
90
94

104

110
110
110
112
113
114
114
114
119

120
123
124
125
126
128
128
129
131

133

Red Hat Ceph Storage 7 Administration Guide

2

. .

. .

. .

. .

. .

11.1. CEPH BLUESTORE
11.2. CEPH BLUESTORE DEVICES
11.3. CEPH BLUESTORE CACHING
11.4. SIZING CONSIDERATIONS FOR CEPH BLUESTORE
11.5. TUNING CEPH BLUESTORE USING BLUESTORE_MIN_ALLOC_SIZE PARAMETER
11.6. RESHARDING THE ROCKSDB DATABASE USING THE BLUESTORE ADMIN TOOL

11.6.1. Use the rocksdb-resharding.yml playbook
11.6.2. Manually resharding the OSDs

11.7. THE BLUESTORE FRAGMENTATION TOOL
11.7.1. What is the BlueStore fragmentation tool?
11.7.2. Checking for fragmentation

11.8. CEPH BLUESTORE BLUEFS
11.8.1. Viewing the bluefs_buffered_io setting
11.8.2. Viewing Ceph BlueFS statistics for Ceph OSDs

CHAPTER 12. CRIMSON (TECHNOLOGY PREVIEW)
12.1. CRIMSON OVERVIEW
12.2. DIFFERENCE BETWEEN CRIMSON AND CLASSIC CEPH OSD ARCHITECTURE
12.3. CRIMSON METRICS
12.4. CRIMSON CONFIGURATION OPTIONS
12.5. CONFIGURING CRIMSON
12.6. CRIMSON CONFIGURATION PARAMETERS
12.7. PROFILING CRIMSON

CHAPTER 13. CEPHADM TROUBLESHOOTING
13.1. PAUSE OR DISABLE CEPHADM
13.2. PER SERVICE AND PER DAEMON EVENT
13.3. CHECK CEPHADM LOGS
13.4. GATHER LOG FILES
13.5. COLLECT SYSTEMD STATUS
13.6. LIST ALL DOWNLOADED CONTAINER IMAGES
13.7. MANUALLY RUN CONTAINERS
13.8. CIDR NETWORK ERROR
13.9. ACCESS THE ADMIN SOCKET
13.10. MANUALLY DEPLOYING A MGR DAEMON

CHAPTER 14. CEPHADM OPERATIONS
14.1. MONITOR CEPHADM LOG MESSAGES
14.2. CEPH DAEMON LOGS
14.3. DATA LOCATION
14.4. CEPHADM CUSTOM CONFIG FILES

CHAPTER 15. CEPHADM HEALTH CHECKS
15.1. CEPHADM OPERATIONS HEALTH CHECKS
15.2. CEPHADM CONFIGURATION HEALTH CHECKS

CHAPTER 16. MANAGING A RED HAT CEPH STORAGE CLUSTER USING CEPHADM-ANSIBLE MODULES

16.1. THE CEPHADM-ANSIBLE MODULES
16.2. THE CEPHADM-ANSIBLE MODULES OPTIONS
16.3. BOOTSTRAPPING A STORAGE CLUSTER USING THE CEPHADM_BOOTSTRAP AND
CEPHADM_REGISTRY_LOGIN MODULES
16.4. ADDING OR REMOVING HOSTS USING THE CEPH_ORCH_HOST MODULE
16.5. SETTING CONFIGURATION OPTIONS USING THE CEPH_CONFIG MODULE

133
134
135
135
136
137
138
140
142
142
142
144
145
146

149
149
150
151
152
153
154
158

161
161
161

162
162
163
164
164
165
165
166

168
168
169
170
170

172
172
173

175
175
175

179
182
187

Table of Contents

3

. .

16.6. APPLYING A SERVICE SPECIFICATION USING THE CEPH_ORCH_APPLY MODULE
16.7. MANAGING CEPH DAEMON STATES USING THE CEPH_ORCH_DAEMON MODULE

APPENDIX A. THE MCLOCK CONFIGURATION OPTIONS

189
191

193

Red Hat Ceph Storage 7 Administration Guide

4

Table of Contents

5

CHAPTER 1. CEPH ADMINISTRATION
A Red Hat Ceph Storage cluster is the foundation for all Ceph deployments. After deploying a Red Hat
Ceph Storage cluster, there are administrative operations for keeping a Red Hat Ceph Storage cluster
healthy and performing optimally.

The Red Hat Ceph Storage Administration Guide helps storage administrators to perform such tasks as:

How do I check the health of my Red Hat Ceph Storage cluster?

How do I start and stop the Red Hat Ceph Storage cluster services?

How do I add or remove an OSD from a running Red Hat Ceph Storage cluster?

How do I manage user authentication and access controls to the objects stored in a Red Hat
Ceph Storage cluster?

I want to understand how to use overrides with a Red Hat Ceph Storage cluster.

I want to monitor the performance of the Red Hat Ceph Storage cluster.

A basic Ceph storage cluster consist of two types of daemons:

A Ceph Object Storage Device (OSD) stores data as objects within placement groups assigned
to the OSD

A Ceph Monitor maintains a master copy of the cluster map

A production system will have three or more Ceph Monitors for high availability and typically a minimum
of 50 OSDs for acceptable load balancing, data re-balancing and data recovery.

Red Hat Ceph Storage 7 Administration Guide

6

CHAPTER 2. UNDERSTANDING PROCESS MANAGEMENT FOR
CEPH

As a storage administrator, you can manipulate the various Ceph daemons by type or instance in a
Red Hat Ceph Storage cluster. Manipulating these daemons allows you to start, stop and restart all of
the Ceph services as needed.

2.1. CEPH PROCESS MANAGEMENT

In Red Hat Ceph Storage, all process management is done through the Systemd service. Each time you
want to start, restart, and stop the Ceph daemons, you must specify the daemon type or the daemon
instance.

Additional Resources

For more information on using systemd, see Managing system services with systemctl .

2.2. STARTING, STOPPING, AND RESTARTING ALL CEPH DAEMONS
USING SYSTEMCTL COMMAND

You can start, stop, and restart all Ceph daemons as the root user from the host where you want to stop
the Ceph daemons.

Prerequisites

A running Red Hat Ceph Storage cluster.

Having root access to the node.

Procedure

1. On the host where you want to start, stop, and restart the daemons, run the systemctl service to
get the SERVICE_ID of the service.

Example

[root@host01 ~]# systemctl --type=service
ceph-499829b4-832f-11eb-8d6d-001a4a000635@mon.host01.service

2. Starting all Ceph daemons:

Syntax

systemctl start SERVICE_ID

Example

[root@host01 ~]# systemctl start ceph-499829b4-832f-11eb-8d6d-
001a4a000635@mon.host01.service

3. Stopping all Ceph daemons:

Syntax

CHAPTER 2. UNDERSTANDING PROCESS MANAGEMENT FOR CEPH

7

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/managing-system-services-with-systemctl_configuring-basic-system-settings

Syntax

systemctl stop SERVICE_ID

Example

[root@host01 ~]# systemctl stop ceph-499829b4-832f-11eb-8d6d-
001a4a000635@mon.host01.service

4. Restarting all Ceph daemons:

Syntax

systemctl restart SERVICE_ID

Example

[root@host01 ~]# systemctl restart ceph-499829b4-832f-11eb-8d6d-
001a4a000635@mon.host01.service

2.3. STARTING, STOPPING, AND RESTARTING ALL CEPH SERVICES

Ceph services are logical groups of Ceph daemons of the same type, configured to run in the same
Red Hat Ceph Storage cluster. The orchestration layer in Ceph allows the user to manage these services
in a centralized way, making it easy to execute operations that affect all the Ceph daemons that belong
to the same logical service. The Ceph daemons running in each host are managed through the Systemd
service. You can start, stop, and restart all Ceph services from the host where you want to manage the
Ceph services.

IMPORTANT

If you want to start,stop, or restart a specific Ceph daemon in a specific host, you need to
use the SystemD service. To obtain a list of the SystemD services running in a specific
host, connect to the host, and run the following command:

Example

[root@host01 ~]# systemctl list-units “ceph*”

The output will give you a list of the service names that you can use, to manage each
Ceph daemon.

Prerequisites

A running Red Hat Ceph Storage cluster.

Having root access to the node.

Procedure

1. Log into the Cephadm shell:

Red Hat Ceph Storage 7 Administration Guide

8

Example

[root@host01 ~]# cephadm shell

2. Run the ceph orch ls command to get a list of Ceph services configured in the Red Hat
Ceph Storage cluster and to get the specific service ID.

Example

[ceph: root@host01 /]# ceph orch ls
NAME RUNNING REFRESHED AGE PLACEMENT IMAGE NAME
IMAGE ID
alertmanager 1/1 4m ago 4M count:1 registry.redhat.io/openshift4/ose-
prometheus-alertmanager:v4.5 b7bae610cd46
crash 3/3 4m ago 4M * registry.redhat.io/rhceph-alpha/rhceph-6-
rhel9:latest c88a5d60f510
grafana 1/1 4m ago 4M count:1 registry.redhat.io/rhceph-alpha/rhceph-6-
dashboard-rhel9:latest bd3d7748747b
mgr 2/2 4m ago 4M count:2 registry.redhat.io/rhceph-alpha/rhceph-6-
rhel9:latest c88a5d60f510
mon 2/2 4m ago 10w count:2 registry.redhat.io/rhceph-alpha/rhceph-6-
rhel9:latest c88a5d60f510
nfs.foo 0/1 - - count:1 <unknown>
<unknown>
node-exporter 1/3 4m ago 4M * registry.redhat.io/openshift4/ose-
prometheus-node-exporter:v4.5 mix
osd.all-available-devices 5/5 4m ago 3M * registry.redhat.io/rhceph-
alpha/rhceph-6-rhel9:latest c88a5d60f510
prometheus 1/1 4m ago 4M count:1 registry.redhat.io/openshift4/ose-
prometheus:v4.6 bebb0ddef7f0
rgw.test_realm.test_zone 2/2 4m ago 3M count:2 registry.redhat.io/rhceph-
alpha/rhceph-6-rhel9:latest c88a5d60f510

3. To start a specific service, run the following command:

Syntax

ceph orch start SERVICE_ID

Example

[ceph: root@host01 /]# ceph orch start node-exporter

4. To stop a specific service, run the following command:

IMPORTANT

The ceph orch stop SERVICE_ID command results in the Red Hat
Ceph Storage cluster being inaccessible, only for the MON and MGR service. It is
recommended to use the systemctl stop SERVICE_ID command to stop a
specific daemon in the host.

Syntax

CHAPTER 2. UNDERSTANDING PROCESS MANAGEMENT FOR CEPH

9

ceph orch stop SERVICE_ID

Example

[ceph: root@host01 /]# ceph orch stop node-exporter

In the example the ceph orch stop node-exporter command removes all the daemons of the
node exporter service.

5. To restart a specific service, run the following command:

Syntax

ceph orch restart SERVICE_ID

Example

[ceph: root@host01 /]# ceph orch restart node-exporter

2.4. VIEWING LOG FILES OF CEPH DAEMONS THAT RUN IN
CONTAINERS

Use the journald daemon from the container host to view a log file of a Ceph daemon from a container.

Prerequisites

Installation of the Red Hat Ceph Storage software.

Root-level access to the node.

Procedure

1. To view the entire Ceph log file, run a journalctl command as root composed in the following
format:

Syntax

journalctl -u ceph SERVICE_ID

Example

[root@host01 ~]# journalctl -u ceph-499829b4-832f-11eb-8d6d-
001a4a000635@osd.8.service

In the above example, you can view the entire log for the OSD with ID osd.8.

2. To show only the recent journal entries, use the -f option.

Syntax

journalctl -fu SERVICE_ID

Red Hat Ceph Storage 7 Administration Guide

10

Example

[root@host01 ~]# journalctl -fu ceph-499829b4-832f-11eb-8d6d-
001a4a000635@osd.8.service

NOTE

You can also use the sosreport utility to view the journald logs. For more details about
SOS reports, see the What is an sosreport and how to create one in Red Hat Enterprise
Linux? solution on the Red Hat Customer Portal.

Additional Resources

The journalctl manual page.

2.5. POWERING DOWN AND REBOOTING RED HAT CEPH STORAGE
CLUSTER

You can power down and reboot the Red Hat Ceph Storage cluster using two different approaches:
systemctl commands and the Ceph Orchestrator. You can choose either approach to power down and
reboot the cluster.

2.5.1. Powering down and rebooting the cluster using the systemctl commands

You can use the systemctl commands approach to power down and reboot the Red Hat Ceph Storage
cluster. This approach follows the Linux way of stopping the services.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access.

Procedure

Powering down the Red Hat Ceph Storage cluster

1. Stop the clients from using the Block Device images RADOS Gateway - Ceph Object Gateway
on this cluster and any other clients.

2. Log into the Cephadm shell:

Example

[root@host01 ~]# cephadm shell

3. The cluster must be in healthy state (Health_OK and all PGs active+clean) before proceeding.
Run ceph status on the host with the client keyrings, for example, the Ceph Monitor or
OpenStack controller nodes, to ensure the cluster is healthy.

Example

[ceph: root@host01 /]# ceph -s

CHAPTER 2. UNDERSTANDING PROCESS MANAGEMENT FOR CEPH

11

https://access.redhat.com/solutions/3592

4. If you use the Ceph File System (CephFS), bring down the CephFS cluster:

Syntax

ceph fs set FS_NAME max_mds 1
ceph fs fail FS_NAME
ceph status
ceph fs set FS_NAME joinable false

Example

[ceph: root@host01 /]# ceph fs set cephfs max_mds 1
[ceph: root@host01 /]# ceph fs fail cephfs
[ceph: root@host01 /]# ceph status
[ceph: root@host01 /]# ceph fs set cephfs joinable false

5. Set the noout, norecover, norebalance, nobackfill, nodown, and pause flags. Run the
following on a node with the client keyrings, for example, the Ceph Monitor or OpenStack
controller node:

Example

[ceph: root@host01 /]# ceph osd set noout
[ceph: root@host01 /]# ceph osd set norecover
[ceph: root@host01 /]# ceph osd set norebalance
[ceph: root@host01 /]# ceph osd set nobackfill
[ceph: root@host01 /]# ceph osd set nodown
[ceph: root@host01 /]# ceph osd set pause

IMPORTANT

The above example is only for stopping the service and each OSD in the OSD
node and it needs to be repeated on each OSD node.

6. If the MDS and Ceph Object Gateway nodes are on their own dedicated nodes, power them off.

7. Shut down the OSD nodes one by one:

Example

[root@host01 ~]# systemctl stop ceph-499829b4-832f-11eb-8d6d-
001a4a000635@osd.2.service

8. Shut down the monitor nodes one by one:

Example

[root@host01 ~]# systemctl stop ceph-499829b4-832f-11eb-8d6d-
001a4a000635@mon.host01.service

9. Shut down the admin node.

Red Hat Ceph Storage 7 Administration Guide

12

Rebooting the Red Hat Ceph Storage cluster

1. If network equipment was involved, ensure it is powered ON and stable prior to powering ON
any Ceph hosts or nodes.

2. Power ON the administration node.

3. Power ON the monitor nodes:

Example

[root@host01 ~]# systemctl start ceph-499829b4-832f-11eb-8d6d-
001a4a000635@mon.host01.service

IMPORTANT

The above example is only for stopping the service and each OSD in the OSD
node and it needs to be repeated on each OSD node.

4. Power ON the OSD nodes:

Example

[root@host01 ~]# systemctl start ceph-499829b4-832f-11eb-8d6d-
001a4a000635@osd.2.service

5. Wait for all the nodes to come up. Verify all the services are up and there are no connectivity
issues between the nodes.

6. Unset the noout, norecover, norebalance, nobackfill, nodown and pause flags. Run the
following on a node with the client keyrings, for example, the Ceph Monitor or OpenStack
controller node:

Example

[ceph: root@host01 /]# ceph osd unset noout
[ceph: root@host01 /]# ceph osd unset norecover
[ceph: root@host01 /]# ceph osd unset norebalance
[ceph: root@host01 /]# ceph osd unset nobackfill
[ceph: root@host01 /]# ceph osd unset nodown
[ceph: root@host01 /]# ceph osd unset pause

7. If you use the Ceph File System (CephFS), bring the CephFS cluster back up by setting the
joinable flag to true:

Syntax

ceph fs set FS_NAME joinable true

Example

[ceph: root@host01 /]# ceph fs set cephfs joinable true

CHAPTER 2. UNDERSTANDING PROCESS MANAGEMENT FOR CEPH

13

Verification

Verify the cluster is in healthy state (Health_OK and all PGs active+clean). Run ceph status
on a node with the client keyrings, for example, the Ceph Monitor or OpenStack controller
nodes, to ensure the cluster is healthy.

Example

[ceph: root@host01 /]# ceph -s

Additional Resources

For more information on installing Ceph, see the Red Hat Ceph Storage Installation Guide.

2.5.2. Powering down and rebooting the cluster using the Ceph Orchestrator

You can also use the capabilities of the Ceph Orchestrator to power down and reboot the Red Hat
Ceph Storage cluster. In most cases, it is a single system login that can help in powering off the cluster.

The Ceph Orchestrator supports several operations, such as start, stop, and restart. You can use these
commands with systemctl, for some cases, in powering down or rebooting the cluster.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

Powering down the Red Hat Ceph Storage cluster

1. Stop the clients from using the user Block Device Image and Ceph Object Gateway on this
cluster and any other clients.

2. Log into the Cephadm shell:

Example

[root@host01 ~]# cephadm shell

3. The cluster must be in healthy state (Health_OK and all PGs active+clean) before proceeding.
Run ceph status on the host with the client keyrings, for example, the Ceph Monitor or
OpenStack controller nodes, to ensure the cluster is healthy.

Example

[ceph: root@host01 /]# ceph -s

4. If you use the Ceph File System (CephFS), bring down the CephFS cluster:

Syntax

ceph fs set FS_NAME max_mds 1

Red Hat Ceph Storage 7 Administration Guide

14

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/installation_guide/

ceph fs fail FS_NAME
ceph status
ceph fs set FS_NAME joinable false
ceph mds fail FS_NAME:N

Example

[ceph: root@host01 /]# ceph fs set cephfs max_mds 1
[ceph: root@host01 /]# ceph fs fail cephfs
[ceph: root@host01 /]# ceph status
[ceph: root@host01 /]# ceph fs set cephfs joinable false
[ceph: root@host01 /]# ceph mds fail cephfs:1

5. Set the noout, norecover, norebalance, nobackfill, nodown, and pause flags. Run the
following on a node with the client keyrings, for example, the Ceph Monitor or OpenStack
controller node:

Example

[ceph: root@host01 /]# ceph osd set noout
[ceph: root@host01 /]# ceph osd set norecover
[ceph: root@host01 /]# ceph osd set norebalance
[ceph: root@host01 /]# ceph osd set nobackfill
[ceph: root@host01 /]# ceph osd set nodown
[ceph: root@host01 /]# ceph osd set pause

6. Stop the MDS service.

a. Fetch the MDS service name:

Example

[ceph: root@host01 /]# ceph orch ls --service-type mds

b. Stop the MDS service using the fetched name in the previous step:

Syntax

ceph orch stop SERVICE-NAME

7. Stop the Ceph Object Gateway services. Repeat for each deployed service.

a. Fetch the Ceph Object Gateway service names:

Example

[ceph: root@host01 /]# ceph orch ls --service-type rgw

b. Stop the Ceph Object Gateway service using the fetched name:

Syntax

ceph orch stop SERVICE-NAME

CHAPTER 2. UNDERSTANDING PROCESS MANAGEMENT FOR CEPH

15

8. Stop the Alertmanager service:

Example

[ceph: root@host01 /]# ceph orch stop alertmanager

9. Stop the node-exporter service which is a part of the monitoring stack:

Example

[ceph: root@host01 /]# ceph orch stop node-exporter

10. Stop the Prometheus service:

Example

[ceph: root@host01 /]# ceph orch stop prometheus

11. Stop the Grafana dashboard service:

Example

[ceph: root@host01 /]# ceph orch stop grafana

12. Stop the crash service:

Example

[ceph: root@host01 /]# ceph orch stop crash

13. Shut down the OSD nodes from the cephadm node, one by one. Repeat this step for all the
OSDs in the cluster.

a. Fetch the OSD ID:

Example

[ceph: root@host01 /]# ceph orch ps --daemon-type=osd

b. Shut down the OSD node using the OSD ID you fetched:

Example

[ceph: root@host01 /]# ceph orch daemon stop osd.1
Scheduled to stop osd.1 on host 'host02'

14. Stop the monitors one by one.

a. Identify the hosts hosting the monitors:

Example

Red Hat Ceph Storage 7 Administration Guide

16

[ceph: root@host01 /]# ceph orch ps --daemon-type mon

b. On each host, stop the monitor.

i. Identify the systemctl unit name:

Example

[ceph: root@host01 /]# systemctl list-units ceph-* | grep mon

ii. Stop the service:

Syntax

systemct stop SERVICE-NAME

15. Shut down all the hosts.

Rebooting the Red Hat Ceph Storage cluster

1. If network equipment was involved, ensure it is powered ON and stable prior to powering ON
any Ceph hosts or nodes.

2. Power ON all the Ceph hosts.

3. Log into the administration node from the Cephadm shell:

Example

[root@host01 ~]# cephadm shell

4. Verify all the services are in running state:

Example

[ceph: root@host01 /]# ceph orch ls

5. Ensure the cluster health is `Health_OK`status:

Example

[ceph: root@host01 /]# ceph -s

6. Unset the noout, norecover, norebalance, nobackfill, nodown and pause flags. Run the
following on a node with the client keyrings, for example, the Ceph Monitor or OpenStack
controller node:

Example

[ceph: root@host01 /]# ceph osd unset noout
[ceph: root@host01 /]# ceph osd unset norecover
[ceph: root@host01 /]# ceph osd unset norebalance

CHAPTER 2. UNDERSTANDING PROCESS MANAGEMENT FOR CEPH

17

[ceph: root@host01 /]# ceph osd unset nobackfill
[ceph: root@host01 /]# ceph osd unset nodown
[ceph: root@host01 /]# ceph osd unset pause

7. If you use the Ceph File System (CephFS), bring the CephFS cluster back up by setting the
joinable flag to true:

Syntax

ceph fs set FS_NAME joinable true

Example

[ceph: root@host01 /]# ceph fs set cephfs joinable true

Verification

Verify the cluster is in healthy state (Health_OK and all PGs active+clean). Run ceph status
on a node with the client keyrings, for example, the Ceph Monitor or OpenStack controller
nodes, to ensure the cluster is healthy.

Example

[ceph: root@host01 /]# ceph -s

Additional Resources

For more information on installing Ceph see the Red Hat Ceph Storage Installation Guide

Red Hat Ceph Storage 7 Administration Guide

18

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/installation_guide/

CHAPTER 3. MONITORING A CEPH STORAGE CLUSTER
As a storage administrator, you can monitor the overall health of the Red Hat Ceph Storage cluster,
along with monitoring the health of the individual components of Ceph.

Once you have a running Red Hat Ceph Storage cluster, you might begin monitoring the storage cluster
to ensure that the Ceph Monitor and Ceph OSD daemons are running, at a high-level. Ceph storage
cluster clients connect to a Ceph Monitor and receive the latest version of the storage cluster map
before they can read and write data to the Ceph pools within the storage cluster. So the monitor cluster
must have agreement on the state of the cluster before Ceph clients can read and write data.

Ceph OSDs must peer the placement groups on the primary OSD with the copies of the placement
groups on secondary OSDs. If faults arise, peering will reflect something other than the active + clean
state.

3.1. HIGH-LEVEL MONITORING OF A CEPH STORAGE CLUSTER

As a storage administrator, you can monitor the health of the Ceph daemons to ensure that they are up
and running. High level monitoring also involves checking the storage cluster capacity to ensure that the
storage cluster does not exceed its full ratio. The Red Hat Ceph Storage Dashboard is the most
common way to conduct high-level monitoring. However, you can also use the command-line interface,
the Ceph admin socket or the Ceph API to monitor the storage cluster.

3.1.1. Checking the storage cluster health

After you start the Ceph storage cluster, and before you start reading or writing data, check the storage
cluster’s health first.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. Log into the Cephadm shell:

Example

root@host01 ~]# cephadm shell

2. You can check on the health of the Ceph storage cluster with the following command:

Example

[ceph: root@host01 /]# ceph health
HEALTH_OK

3. You can check the status of the Ceph storage cluster by running ceph status command:

Example

CHAPTER 3. MONITORING A CEPH STORAGE CLUSTER

19

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/dashboard_guide/

[ceph: root@host01 /]# ceph status

The output provides the following information:

Cluster ID

Cluster health status

The monitor map epoch and the status of the monitor quorum.

The OSD map epoch and the status of OSDs.

The status of Ceph Managers.

The status of Object Gateways.

The placement group map version.

The number of placement groups and pools.

The notional amount of data stored and the number of objects stored.

The total amount of data stored.

The IO client operations.

An update on the upgrade process if the cluster is upgrading.
Upon starting the Ceph cluster, you will likely encounter a health warning such as
HEALTH_WARN XXX num placement groups stale. Wait a few moments and check it
again. When the storage cluster is ready, ceph health should return a message such as
HEALTH_OK. At that point, it is okay to begin using the cluster.

3.1.2. Watching storage cluster events

You can watch events that are happening with the Ceph storage cluster using the command-line
interface.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. Log into the Cephadm shell:

Example

root@host01 ~]# cephadm shell

2. To watch the cluster’s ongoing events, run the following command:

Example

Red Hat Ceph Storage 7 Administration Guide

20

[ceph: root@host01 /]# ceph -w
 cluster:
 id: 8c9b0072-67ca-11eb-af06-001a4a0002a0
 health: HEALTH_OK

 services:
 mon: 2 daemons, quorum Ceph5-2,Ceph5-adm (age 3d)
 mgr: Ceph5-1.nqikfh(active, since 3w), standbys: Ceph5-adm.meckej
 osd: 5 osds: 5 up (since 2d), 5 in (since 8w)
 rgw: 2 daemons active (test_realm.test_zone.Ceph5-2.bfdwcn,
test_realm.test_zone.Ceph5-adm.acndrh)

 data:
 pools: 11 pools, 273 pgs
 objects: 459 objects, 32 KiB
 usage: 2.6 GiB used, 72 GiB / 75 GiB avail
 pgs: 273 active+clean

 io:
 client: 170 B/s rd, 730 KiB/s wr, 0 op/s rd, 729 op/s wr

2021-06-02 15:45:21.655871 osd.0 [INF] 17.71 deep-scrub ok
2021-06-02 15:45:47.880608 osd.1 [INF] 1.0 scrub ok
2021-06-02 15:45:48.865375 osd.1 [INF] 1.3 scrub ok
2021-06-02 15:45:50.866479 osd.1 [INF] 1.4 scrub ok
2021-06-02 15:45:01.345821 mon.0 [INF] pgmap v41339: 952 pgs: 952 active+clean; 17130
MB data, 115 GB used, 167 GB / 297 GB avail
2021-06-02 15:45:05.718640 mon.0 [INF] pgmap v41340: 952 pgs: 1
active+clean+scrubbing+deep, 951 active+clean; 17130 MB data, 115 GB used, 167 GB /
297 GB avail
2021-06-02 15:45:53.997726 osd.1 [INF] 1.5 scrub ok
2021-06-02 15:45:06.734270 mon.0 [INF] pgmap v41341: 952 pgs: 1
active+clean+scrubbing+deep, 951 active+clean; 17130 MB data, 115 GB used, 167 GB /
297 GB avail
2021-06-02 15:45:15.722456 mon.0 [INF] pgmap v41342: 952 pgs: 952 active+clean; 17130
MB data, 115 GB used, 167 GB / 297 GB avail
2021-06-02 15:46:06.836430 osd.0 [INF] 17.75 deep-scrub ok
2021-06-02 15:45:55.720929 mon.0 [INF] pgmap v41343: 952 pgs: 1
active+clean+scrubbing+deep, 951 active+clean; 17130 MB data, 115 GB used, 167 GB /
297 GB avail

3.1.3. How Ceph calculates data usage

The used value reflects the actual amount of raw storage used. The xxx GB / xxx GB value means the
amount available, the lesser of the two numbers, of the overall storage capacity of the cluster. The
notional number reflects the size of the stored data before it is replicated, cloned or snapshotted.
Therefore, the amount of data actually stored typically exceeds the notional amount stored, because
Ceph creates replicas of the data and may also use storage capacity for cloning and snapshotting.

3.1.4. Understanding the storage clusters usage stats

To check a cluster’s data usage and data distribution among pools, use the df option. It is similar to the
Linux df command.

The SIZE/AVAIL/RAW USED in the ceph df and ceph status command output are different if some

CHAPTER 3. MONITORING A CEPH STORAGE CLUSTER

21

OSDs are marked OUT of the cluster compared to when all OSDs are IN. The SIZE/AVAIL/RAW USED
is calculated from sum of SIZE (osd disk size), RAW USE (total used space on disk), and AVAIL of all
OSDs which are in IN state. You can see the total of SIZE/AVAIL/RAW USED for all OSDs in ceph osd
df tree command output.

Example

[ceph: root@host01 /]#ceph df
--- RAW STORAGE ---
CLASS SIZE AVAIL USED RAW USED %RAW USED
hdd 5 TiB 2.9 TiB 2.1 TiB 2.1 TiB 42.98
TOTAL 5 TiB 2.9 TiB 2.1 TiB 2.1 TiB 42.98

--- POOLS ---
POOL ID PGS STORED OBJECTS USED %USED MAX AVAIL
.mgr 1 1 5.3 MiB 3 16 MiB 0 629 GiB
.rgw.root 2 32 1.3 KiB 4 48 KiB 0 629 GiB
default.rgw.log 3 32 3.6 KiB 209 408 KiB 0 629 GiB
default.rgw.control 4 32 0 B 8 0 B 0 629 GiB
default.rgw.meta 5 32 1.7 KiB 10 96 KiB 0 629 GiB
default.rgw.buckets.index 7 32 5.5 MiB 22 17 MiB 0 629 GiB
default.rgw.buckets.data 8 32 807 KiB 3 2.4 MiB 0 629 GiB
default.rgw.buckets.non-ec 9 32 1.0 MiB 1 3.1 MiB 0 629 GiB
source-ecpool-86 11 32 1.2 TiB 391.13k 2.1 TiB 53.49 1.1 TiB

The ceph df detail command gives more details about other pool statistics such as quota objects, quota
bytes, used compression, and under compression.

The RAW STORAGE section of the output provides an overview of the amount of storage the storage
cluster manages for data.

CLASS: The class of OSD device.

SIZE: The amount of storage capacity managed by the storage cluster.
In the above example, if the SIZE is 90 GiB, it is the total size without the replication factor,
which is three by default. The total available capacity with the replication factor is 90 GiB/3 = 30
GiB. Based on the full ratio, which is 0.85% by default, the maximum available space is 30 GiB *
0.85 = 25.5 GiB

AVAIL: The amount of free space available in the storage cluster.
In the above example, if the SIZE is 90 GiB and the USED space is 6 GiB, then the AVAIL space
is 84 GiB. The total available space with the replication factor, which is three by default, is 84
GiB/3 = 28 GiB

USED: The amount of raw storage consumed by user data.
In the above example, 100 MiB is the total space available after considering the replication
factor. The actual available size is 33 MiB. RAW USED: The amount of raw storage consumed by
user data, internal overhead, or reserved capacity.

% RAW USED: The percentage of RAW USED. Use this number in conjunction with the full ratio
and near full ratio to ensure that you are not reaching the storage cluster’s capacity.

The POOLS section of the output provides a list of pools and the notional usage of each pool. The
output from this section DOES NOT reflect replicas, clones or snapshots. For example, if you store an
object with 1 MB of data, the notional usage will be 1 MB, but the actual usage may be 3 MB or more
depending on the number of replicas for example, size = 3, clones and snapshots.

Red Hat Ceph Storage 7 Administration Guide

22

POOL: The name of the pool.

ID: The pool ID.

STORED: The actual amount of data stored by the user in the pool. This value changes based
on the raw usage data based on (k+M)/K values, number of object copies, and the number of
objects degraded at the time of pool stats calculation.

OBJECTS: The notional number of objects stored per pool. It is STORED size * replication
factor.

USED: The notional amount of data stored in kilobytes, unless the number appends M for
megabytes or G for gigabytes.

%USED: The notional percentage of storage used per pool.

MAX AVAIL: An estimate of the notional amount of data that can be written to this pool. It is
the amount of data that can be used before the first OSD becomes full. It considers the
projected distribution of data across disks from the CRUSH map and uses the first OSD to fill up
as the target.
In the above example, MAX AVAIL is 153.85 MB without considering the replication factor,
which is three by default.

See the Red Hat Knowledgebase article titled ceph df MAX AVAIL is incorrect for simple
replicated pool to calculate the value of MAX AVAIL.

QUOTA OBJECTS: The number of quota objects.

QUOTA BYTES: The number of bytes in the quota objects.

USED COMPR: The amount of space allocated for compressed data including his includes
compressed data, allocation, replication and erasure coding overhead.

UNDER COMPR: The amount of data passed through compression and beneficial enough to be
stored in a compressed form.

NOTE

The numbers in the POOLS section are notional. They are not inclusive of the number of
replicas, snapshots or clones. As a result, the sum of the USED and %USED amounts will
not add up to the RAW USED and %RAW USED amounts in the GLOBAL section of the
output.

NOTE

The MAX AVAIL value is a complicated function of the replication or erasure code used,
the CRUSH rule that maps storage to devices, the utilization of those devices, and the
configured mon_osd_full_ratio.

Additional Resources

See How Ceph calculates data usage for details.

See Understanding the OSD usage stats for details.

CHAPTER 3. MONITORING A CEPH STORAGE CLUSTER

23

https://access.redhat.com/solutions/2273951
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#how-ceph-calculates-data-usage_admin
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#understanding-the-osd-usage-stats_admin

3.1.5. Understanding the OSD usage stats

Use the ceph osd df command to view OSD utilization stats.

Example

[ceph: root@host01 /]# ceph osd df
ID CLASS WEIGHT REWEIGHT SIZE USE DATA OMAP META AVAIL %USE VAR
PGS
 3 hdd 0.90959 1.00000 931GiB 70.1GiB 69.1GiB 0B 1GiB 861GiB 7.53 2.93 66
 4 hdd 0.90959 1.00000 931GiB 1.30GiB 308MiB 0B 1GiB 930GiB 0.14 0.05 59
 0 hdd 0.90959 1.00000 931GiB 18.1GiB 17.1GiB 0B 1GiB 913GiB 1.94 0.76 57
MIN/MAX VAR: 0.02/2.98 STDDEV: 2.91

ID: The name of the OSD.

CLASS: The type of devices the OSD uses.

WEIGHT: The weight of the OSD in the CRUSH map.

REWEIGHT: The default reweight value.

SIZE: The overall storage capacity of the OSD.

USE: The OSD capacity.

DATA: The amount of OSD capacity that is used by user data.

OMAP: An estimate value of the bluefs storage that is being used to store object map (omap)
data (key value pairs stored in rocksdb).

META: The bluefs space allocated, or the value set in the bluestore_bluefs_min parameter,
whichever is larger, for internal metadata which is calculated as the total space allocated in
bluefs minus the estimated omap data size.

AVAIL: The amount of free space available on the OSD.

%USE: The notional percentage of storage used by the OSD

VAR: The variation above or below average utilization.

PGS: The number of placement groups in the OSD.

MIN/MAX VAR: The minimum and maximum variation across all OSDs.

Additional Resources

See How Ceph calculates data usage for details.

See Understanding the OSD usage stats for details.

See CRUSH Weights in Red Hat Ceph Storage Storage Strategies Guide for details.

3.1.6. Checking the storage cluster status

You can check the status of the Red Hat Ceph Storage cluster from the command-line interface. The

Red Hat Ceph Storage 7 Administration Guide

24

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#how-ceph-calculates-data-usage_admin
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#understanding-the-osd-usage-stats_admin
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/storage_strategies_guide/#crush_weights

You can check the status of the Red Hat Ceph Storage cluster from the command-line interface. The
status sub command or the -s argument will display the current status of the storage cluster.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. Log into the Cephadm shell:

Example

[root@host01 ~]# cephadm shell

2. To check a storage cluster’s status, execute the following:

Example

[ceph: root@host01 /]# ceph status

Or

Example

[ceph: root@host01 /]# ceph -s

3. In interactive mode, type ceph and press Enter:

Example

[ceph: root@host01 /]# ceph
ceph> status
 cluster:
 id: 499829b4-832f-11eb-8d6d-001a4a000635
 health: HEALTH_WARN
 1 stray daemon(s) not managed by cephadm
 1/3 mons down, quorum host03,host02
 too many PGs per OSD (261 > max 250)

 services:
 mon: 3 daemons, quorum host03,host02 (age 3d), out of quorum: host01
 mgr: host01.hdhzwn(active, since 9d), standbys: host05.eobuuv, host06.wquwpj
 osd: 12 osds: 11 up (since 2w), 11 in (since 5w)
 rgw: 2 daemons active (test_realm.test_zone.host04.hgbvnq,
test_realm.test_zone.host05.yqqilm)
 rgw-nfs: 1 daemon active (nfs.foo.host06-rgw)

 data:
 pools: 8 pools, 960 pgs
 objects: 414 objects, 1.0 MiB
 usage: 5.7 GiB used, 214 GiB / 220 GiB avail

CHAPTER 3. MONITORING A CEPH STORAGE CLUSTER

25

 pgs: 960 active+clean

 io:
 client: 41 KiB/s rd, 0 B/s wr, 41 op/s rd, 27 op/s wr

ceph> health
HEALTH_WARN 1 stray daemon(s) not managed by cephadm; 1/3 mons down, quorum
host03,host02; too many PGs per OSD (261 > max 250)

ceph> mon stat
e3: 3 mons at {host01=[v2:10.74.255.0:3300/0,v1:10.74.255.0:6789/0],host02=
[v2:10.74.249.253:3300/0,v1:10.74.249.253:6789/0],host03=
[v2:10.74.251.164:3300/0,v1:10.74.251.164:6789/0]}, election epoch 6688, leader 1 host03,
quorum 1,2 host03,host02

3.1.7. Checking the Ceph Monitor status

If the storage cluster has multiple Ceph Monitors, which is a requirement for a production Red Hat
Ceph Storage cluster, then you can check the Ceph Monitor quorum status after starting the storage
cluster, and before doing any reading or writing of data.

A quorum must be present when multiple Ceph Monitors are running.

Check the Ceph Monitor status periodically to ensure that they are running. If there is a problem with the
Ceph Monitor, that prevents an agreement on the state of the storage cluster, the fault can prevent
Ceph clients from reading and writing data.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. Log into the Cephadm shell:

Example

[root@host01 ~]# cephadm shell

2. To display the Ceph Monitor map, execute the following:

Example

[ceph: root@host01 /]# ceph mon stat

or

Example

[ceph: root@host01 /]# ceph mon dump

3. To check the quorum status for the storage cluster, execute the following:

Red Hat Ceph Storage 7 Administration Guide

26

[ceph: root@host01 /]# ceph quorum_status -f json-pretty

Ceph returns the quorum status.

Example

{
 "election_epoch": 6686,
 "quorum": [
 0,
 1,
 2
],
 "quorum_names": [
 "host01",
 "host03",
 "host02"
],
 "quorum_leader_name": "host01",
 "quorum_age": 424884,
 "features": {
 "quorum_con": "4540138297136906239",
 "quorum_mon": [
 "kraken",
 "luminous",
 "mimic",
 "osdmap-prune",
 "nautilus",
 "octopus",
 "pacific",
 "elector-pinging"
]
 },
 "monmap": {
 "epoch": 3,
 "fsid": "499829b4-832f-11eb-8d6d-001a4a000635",
 "modified": "2021-03-15T04:51:38.621737Z",
 "created": "2021-03-12T12:35:16.911339Z",
 "min_mon_release": 16,
 "min_mon_release_name": "pacific",
 "election_strategy": 1,
 "disallowed_leaders: ": "",
 "stretch_mode": false,
 "features": {
 "persistent": [
 "kraken",
 "luminous",
 "mimic",
 "osdmap-prune",
 "nautilus",
 "octopus",
 "pacific",
 "elector-pinging"
],
 "optional": []

CHAPTER 3. MONITORING A CEPH STORAGE CLUSTER

27

 },
 "mons": [
 {
 "rank": 0,
 "name": "host01",
 "public_addrs": {
 "addrvec": [
 {
 "type": "v2",
 "addr": "10.74.255.0:3300",
 "nonce": 0
 },
 {
 "type": "v1",
 "addr": "10.74.255.0:6789",
 "nonce": 0
 }
]
 },
 "addr": "10.74.255.0:6789/0",
 "public_addr": "10.74.255.0:6789/0",
 "priority": 0,
 "weight": 0,
 "crush_location": "{}"
 },
 {
 "rank": 1,
 "name": "host03",
 "public_addrs": {
 "addrvec": [
 {
 "type": "v2",
 "addr": "10.74.251.164:3300",
 "nonce": 0
 },
 {
 "type": "v1",
 "addr": "10.74.251.164:6789",
 "nonce": 0
 }
]
 },
 "addr": "10.74.251.164:6789/0",
 "public_addr": "10.74.251.164:6789/0",
 "priority": 0,
 "weight": 0,
 "crush_location": "{}"
 },
 {
 "rank": 2,
 "name": "host02",
 "public_addrs": {
 "addrvec": [
 {
 "type": "v2",
 "addr": "10.74.249.253:3300",

Red Hat Ceph Storage 7 Administration Guide

28

 "nonce": 0
 },
 {
 "type": "v1",
 "addr": "10.74.249.253:6789",
 "nonce": 0
 }
]
 },
 "addr": "10.74.249.253:6789/0",
 "public_addr": "10.74.249.253:6789/0",
 "priority": 0,
 "weight": 0,
 "crush_location": "{}"
 }
]
 }
}

3.1.8. Using the Ceph administration socket

Use the administration socket to interact with a given daemon directly by using a UNIX socket file. For
example, the socket enables you to:

List the Ceph configuration at runtime

Set configuration values at runtime directly without relying on Monitors. This is useful when
Monitors are down.

Dump historic operations

Dump the operation priority queue state

Dump operations without rebooting

Dump performance counters

In addition, using the socket is helpful when troubleshooting problems related to Ceph Monitors or
OSDs.

Regardless, if the daemon is not running, a following error is returned when attempting to use the
administration socket:

Error 111: Connection Refused

IMPORTANT

The administration socket is only available while a daemon is running. When you shut
down the daemon properly, the administration socket is removed. However, if the
daemon terminates unexpectedly, the administration socket might persist.

Prerequisites

A running Red Hat Ceph Storage cluster.

CHAPTER 3. MONITORING A CEPH STORAGE CLUSTER

29

Root-level access to the node.

Procedure

1. Log into the Cephadm shell:

Example

[root@host01 ~]# cephadm shell

2. To use the socket:

Syntax

ceph daemon MONITOR_ID COMMAND

Replace:

MONITOR_ID of the daemon

COMMAND with the command to run. Use help to list the available commands for a given
daemon.
To view the status of a Ceph Monitor:

Example

[ceph: root@host01 /]# ceph daemon mon.host01 help
{
 "add_bootstrap_peer_hint": "add peer address as potential bootstrap peer for cluster
bringup",
 "add_bootstrap_peer_hintv": "add peer address vector as potential bootstrap peer for
cluster bringup",
 "compact": "cause compaction of monitor's leveldb/rocksdb storage",
 "config diff": "dump diff of current config and default config",
 "config diff get": "dump diff get <field>: dump diff of current and default config setting
<field>",
 "config get": "config get <field>: get the config value",
 "config help": "get config setting schema and descriptions",
 "config set": "config set <field> <val> [<val> ...]: set a config variable",
 "config show": "dump current config settings",
 "config unset": "config unset <field>: unset a config variable",
 "connection scores dump": "show the scores used in connectivity-based elections",
 "connection scores reset": "reset the scores used in connectivity-based elections",
 "counter dump": "dump all labeled and non-labeled counters and their values",
 "counter schema": "dump all labeled and non-labeled counters schemas",
 "dump_historic_ops": "show recent ops",
 "dump_historic_slow_ops": "show recent slow ops",
 "dump_mempools": "get mempool stats",
 "get_command_descriptions": "list available commands",
 "git_version": "get git sha1",
 "heap": "show heap usage info (available only if compiled with tcmalloc)",
 "help": "list available commands",
 "injectargs": "inject configuration arguments into running daemon",
 "log dump": "dump recent log entries to log file",
 "log flush": "flush log entries to log file",

Red Hat Ceph Storage 7 Administration Guide

30

 "log reopen": "reopen log file",
 "mon_status": "report status of monitors",
 "ops": "show the ops currently in flight",
 "perf dump": "dump non-labeled counters and their values",
 "perf histogram dump": "dump perf histogram values",
 "perf histogram schema": "dump perf histogram schema",
 "perf reset": "perf reset <name>: perf reset all or one perfcounter name",
 "perf schema": "dump non-labeled counters schemas",
 "quorum enter": "force monitor back into quorum",
 "quorum exit": "force monitor out of the quorum",
 "sessions": "list existing sessions",
 "smart": "Query health metrics for underlying device",
 "sync_force": "force sync of and clear monitor store",
 "version": "get ceph version"
}

Example

[ceph: root@host01 /]# ceph daemon mon.host01 mon_status

{
 "name": "host01",
 "rank": 0,
 "state": "leader",
 "election_epoch": 120,
 "quorum": [
 0,
 1,
 2
],
 "quorum_age": 206358,
 "features": {
 "required_con": "2449958747317026820",
 "required_mon": [
 "kraken",
 "luminous",
 "mimic",
 "osdmap-prune",
 "nautilus",
 "octopus",
 "pacific",
 "elector-pinging"
],
 "quorum_con": "4540138297136906239",
 "quorum_mon": [
 "kraken",
 "luminous",
 "mimic",
 "osdmap-prune",
 "nautilus",
 "octopus",
 "pacific",
 "elector-pinging"
]
 },
 "outside_quorum": [],

CHAPTER 3. MONITORING A CEPH STORAGE CLUSTER

31

 "extra_probe_peers": [],
 "sync_provider": [],
 "monmap": {
 "epoch": 3,
 "fsid": "81a4597a-b711-11eb-8cb8-001a4a000740",
 "modified": "2021-05-18T05:50:17.782128Z",
 "created": "2021-05-17T13:13:13.383313Z",
 "min_mon_release": 16,
 "min_mon_release_name": "pacific",
 "election_strategy": 1,
 "disallowed_leaders: ": "",
 "stretch_mode": false,
 "features": {
 "persistent": [
 "kraken",
 "luminous",
 "mimic",
 "osdmap-prune",
 "nautilus",
 "octopus",
 "pacific",
 "elector-pinging"
],
 "optional": []
 },
 "mons": [
 {
 "rank": 0,
 "name": "host01",
 "public_addrs": {
 "addrvec": [
 {
 "type": "v2",
 "addr": "10.74.249.41:3300",
 "nonce": 0
 },
 {
 "type": "v1",
 "addr": "10.74.249.41:6789",
 "nonce": 0
 }
]
 },
 "addr": "10.74.249.41:6789/0",
 "public_addr": "10.74.249.41:6789/0",
 "priority": 0,
 "weight": 0,
 "crush_location": "{}"
 },
 {
 "rank": 1,
 "name": "host02",
 "public_addrs": {
 "addrvec": [
 {
 "type": "v2",

Red Hat Ceph Storage 7 Administration Guide

32

 "addr": "10.74.249.55:3300",
 "nonce": 0
 },
 {
 "type": "v1",
 "addr": "10.74.249.55:6789",
 "nonce": 0
 }
]
 },
 "addr": "10.74.249.55:6789/0",
 "public_addr": "10.74.249.55:6789/0",
 "priority": 0,
 "weight": 0,
 "crush_location": "{}"
 },
 {
 "rank": 2,
 "name": "host03",
 "public_addrs": {
 "addrvec": [
 {
 "type": "v2",
 "addr": "10.74.249.49:3300",
 "nonce": 0
 },
 {
 "type": "v1",
 "addr": "10.74.249.49:6789",
 "nonce": 0
 }
]
 },
 "addr": "10.74.249.49:6789/0",
 "public_addr": "10.74.249.49:6789/0",
 "priority": 0,
 "weight": 0,
 "crush_location": "{}"
 }
]
 },
 "feature_map": {
 "mon": [
 {
 "features": "0x3f01cfb9fffdffff",
 "release": "luminous",
 "num": 1
 }
],
 "osd": [
 {
 "features": "0x3f01cfb9fffdffff",
 "release": "luminous",
 "num": 3
 }
]

CHAPTER 3. MONITORING A CEPH STORAGE CLUSTER

33

 },
 "stretch_mode": false
}

3. Alternatively, specify the Ceph daemon by using its socket file:

Syntax

ceph daemon /var/run/ceph/SOCKET_FILE COMMAND

4. To view the status of a Ceph OSD named osd.0 on the specific host:

Example

[ceph: root@host01 /]# ceph daemon /var/run/ceph/ceph-osd.0.asok status
{
 "cluster_fsid": "9029b252-1668-11ee-9399-001a4a000429",
 "osd_fsid": "1de9b064-b7a5-4c54-9395-02ccda637d21",
 "whoami": 0,
 "state": "active",
 "oldest_map": 1,
 "newest_map": 58,
 "num_pgs": 33
}

NOTE

You can use help instead of status for the various options that are available for
the specific daemon.

5. To list all socket files for the Ceph processes:

Example

[ceph: root@host01 /]# ls /var/run/ceph

Additional Resources

See the Red Hat Ceph Storage Troubleshooting Guide for more information.

3.1.9. Understanding the Ceph OSD status

A Ceph OSD’s status is either in the storage cluster, or out of the storage cluster. It is either up and
running, or it is down and not running. If a Ceph OSD is up, it can be either in the storage cluster, where
data can be read and written, or it is out of the storage cluster. If it was in the storage cluster and
recently moved out of the storage cluster, Ceph starts migrating placement groups to other Ceph
OSDs. If a Ceph OSD is out of the storage cluster, CRUSH will not assign placement groups to the Ceph
OSD. If a Ceph OSD is down, it should also be out.

NOTE

Red Hat Ceph Storage 7 Administration Guide

34

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/troubleshooting_guide/

NOTE

If a Ceph OSD is down and in, there is a problem, and the storage cluster will not be in a
healthy state.

If you execute a command such as ceph health, ceph -s or ceph -w, you might notice that the storage
cluster does not always echo back HEALTH OK. Do not panic. With respect to Ceph OSDs, you can
expect that the storage cluster will NOT echo HEALTH OK in a few expected circumstances:

You have not started the storage cluster yet, and it is not responding.

You have just started or restarted the storage cluster, and it is not ready yet, because the
placement groups are getting created and the Ceph OSDs are in the process of peering.

You just added or removed a Ceph OSD.

You just modified the storage cluster map.

An important aspect of monitoring Ceph OSDs is to ensure that when the storage cluster is up and
running that all Ceph OSDs that are in the storage cluster are up and running, too.

To see if all OSDs are running, execute:

Example

[ceph: root@host01 /]# ceph osd stat

or

Example

[ceph: root@host01 /]# ceph osd dump

The result should tell you the map epoch, eNNNN, the total number of OSDs, x, how many, y, are up, and
how many, z, are in:

eNNNN: x osds: y up, z in

If the number of Ceph OSDs that are in the storage cluster are more than the number of Ceph OSDs
that are up. Execute the following command to identify the ceph-osd daemons that are not running:

Example

CHAPTER 3. MONITORING A CEPH STORAGE CLUSTER

35

[ceph: root@host01 /]# ceph osd tree

id weight type name up/down reweight
-1 3 pool default
-3 3 rack mainrack
-2 3 host osd-host
0 1 osd.0 up 1
1 1 osd.1 up 1
2 1 osd.2 up 1

TIP

The ability to search through a well-designed CRUSH hierarchy can help you troubleshoot the storage
cluster by identifying the physical locations faster.

If a Ceph OSD is down, connect to the node and start it. You can use Red Hat Storage Console to
restart the Ceph OSD daemon, or you can use the command line.

Syntax

systemctl start CEPH_OSD_SERVICE_ID

Example

[root@host01 ~]# systemctl start ceph-499829b4-832f-11eb-8d6d-001a4a000635@osd.6.service

Additional Resources

See the Red Hat Ceph Storage Dashboard Guide for more details.

3.2. LOW-LEVEL MONITORING OF A CEPH STORAGE CLUSTER

As a storage administrator, you can monitor the health of a Red Hat Ceph Storage cluster from a low-
level perspective. Low-level monitoring typically involves ensuring that Ceph OSDs are peering
properly. When peering faults occur, placement groups operate in a degraded state. This degraded state
can be the result of many different things, such as hardware failure, a hung or crashed Ceph daemon,
network latency, or a complete site outage.

3.2.1. Monitoring Placement Group Sets

When CRUSH assigns placement groups to Ceph OSDs, it looks at the number of replicas for the pool
and assigns the placement group to Ceph OSDs such that each replica of the placement group gets
assigned to a different Ceph OSD. For example, if the pool requires three replicas of a placement group,
CRUSH may assign them to osd.1, osd.2 and osd.3 respectively. CRUSH actually seeks a pseudo-
random placement that will take into account failure domains you set in the CRUSH map, so you will
rarely see placement groups assigned to nearest neighbor Ceph OSDs in a large cluster. We refer to the
set of Ceph OSDs that should contain the replicas of a particular placement group as the Acting Set. In
some cases, an OSD in the Acting Set is down or otherwise not able to service requests for objects in
the placement group. When these situations arise, do not panic. Common examples include:

You added or removed an OSD. Then, CRUSH reassigned the placement group to other Ceph

Red Hat Ceph Storage 7 Administration Guide

36

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/dashboard_guide/

You added or removed an OSD. Then, CRUSH reassigned the placement group to other Ceph
OSDs, thereby changing the composition of the acting set and spawning the migration of data
with a "backfill" process.

A Ceph OSD was down, was restarted and is now recovering.

A Ceph OSD in the acting set is down or unable to service requests, and another Ceph OSD has
temporarily assumed its duties.

Ceph processes a client request using the Up Set, which is the set of Ceph OSDs that actually handle
the requests. In most cases, the up set and the Acting Set are virtually identical. When they are not, it can
indicate that Ceph is migrating data, an Ceph OSD is recovering, or that there is a problem, that is, Ceph
usually echoes a HEALTH WARN state with a "stuck stale" message in such scenarios.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. Log into the Cephadm shell:

Example

[root@host01 ~]# cephadm shell

2. To retrieve a list of placement groups:

Example

[ceph: root@host01 /]# ceph pg dump

3. View which Ceph OSDs are in the Acting Set or in the Up Set for a given placement group:

Syntax

ceph pg map PG_NUM

Example

[ceph: root@host01 /]# ceph pg map 128

NOTE

If the Up Set and Acting Set do not match, this may be an indicator that the
storage cluster rebalancing itself or of a potential problem with the storage
cluster.

3.2.2. Ceph OSD peering

Before you can write data to a placement group, it must be in an active state, and it should be in a clean

CHAPTER 3. MONITORING A CEPH STORAGE CLUSTER

37

state. For Ceph to determine the current state of a placement group, the primary OSD of the
placement group that is, the first OSD in the acting set, peers with the secondary and tertiary OSDs to
establish agreement on the current state of the placement group. Assuming a pool with three replicas of
the PG.

Figure 3.1. Peering

3.2.3. Placement Group States

If you execute a command such as ceph health, ceph -s or ceph -w, you may notice that the cluster
does not always echo back HEALTH OK. After you check to see if the OSDs are running, you should also
check placement group states. You should expect that the cluster will NOT echo HEALTH OK in a
number of placement group peering-related circumstances:

You have just created a pool and placement groups haven’t peered yet.

The placement groups are recovering.

You have just added an OSD to or removed an OSD from the cluster.

You have just modified the CRUSH map and the placement groups are migrating.

There is inconsistent data in different replicas of a placement group.

Ceph is scrubbing a placement group’s replicas.

Ceph doesn’t have enough storage capacity to complete backfilling operations.

If one of the foregoing circumstances causes Ceph to echo HEALTH WARN, don’t panic. In many cases,
the cluster will recover on its own. In some cases, you may need to take action. An important aspect of
monitoring placement groups is to ensure that when the cluster is up and running that all placement
groups are active, and preferably in the clean state.

To see the status of all placement groups, execute:

Example

[ceph: root@host01 /]# ceph pg stat

The result should tell you the placement group map version, vNNNNNN, the total number of placement
groups, x, and how many placement groups, y, are in a particular state such as active+clean:

vNNNNNN: x pgs: y active+clean; z bytes data, aa MB used, bb GB / cc GB avail

Red Hat Ceph Storage 7 Administration Guide

38

NOTE

It is common for Ceph to report multiple states for placement groups.

Snapshot Trimming PG States

When snapshots exist, two additional PG states will be reported.

snaptrim : The PGs are currently being trimmed

snaptrim_wait : The PGs are waiting to be trimmed

Example Output:

244 active+clean+snaptrim_wait
 32 active+clean+snaptrim

In addition to the placement group states, Ceph will also echo back the amount of data used, aa, the
amount of storage capacity remaining, bb, and the total storage capacity for the placement group.
These numbers can be important in a few cases:

You are reaching the near full ratio or full ratio.

Your data isn’t getting distributed across the cluster due to an error in the CRUSH
configuration.

Placement Group IDs

Placement group IDs consist of the pool number, and not the pool name, followed by a period (.) and the
placement group ID—a hexadecimal number. You can view pool numbers and their names from the
output of ceph osd lspools. The default pool names data, metadata and rbd correspond to pool
numbers 0, 1 and 2 respectively. A fully qualified placement group ID has the following form:

Syntax

POOL_NUM.PG_ID

Example output:

0.1f

To retrieve a list of placement groups:

Example

[ceph: root@host01 /]# ceph pg dump

To format the output in JSON format and save it to a file:

Syntax

ceph pg dump -o FILE_NAME --format=json

Example

CHAPTER 3. MONITORING A CEPH STORAGE CLUSTER

39

[ceph: root@host01 /]# ceph pg dump -o test --format=json

Query a particular placement group:

Syntax

ceph pg POOL_NUM.PG_ID query

Example

[ceph: root@host01 /]# ceph pg 5.fe query
{
 "snap_trimq": "[]",
 "snap_trimq_len": 0,
 "state": "active+clean",
 "epoch": 2449,
 "up": [
 3,
 8,
 10
],
 "acting": [
 3,
 8,
 10
],
 "acting_recovery_backfill": [
 "3",
 "8",
 "10"
],
 "info": {
 "pgid": "5.ff",
 "last_update": "0'0",
 "last_complete": "0'0",
 "log_tail": "0'0",
 "last_user_version": 0,
 "last_backfill": "MAX",
 "purged_snaps": [],
 "history": {
 "epoch_created": 114,
 "epoch_pool_created": 82,
 "last_epoch_started": 2402,
 "last_interval_started": 2401,
 "last_epoch_clean": 2402,
 "last_interval_clean": 2401,
 "last_epoch_split": 114,
 "last_epoch_marked_full": 0,
 "same_up_since": 2401,
 "same_interval_since": 2401,
 "same_primary_since": 2086,
 "last_scrub": "0'0",
 "last_scrub_stamp": "2021-06-17T01:32:03.763988+0000",
 "last_deep_scrub": "0'0",
 "last_deep_scrub_stamp": "2021-06-17T01:32:03.763988+0000",

Red Hat Ceph Storage 7 Administration Guide

40

 "last_clean_scrub_stamp": "2021-06-17T01:32:03.763988+0000",
 "prior_readable_until_ub": 0
 },
 "stats": {
 "version": "0'0",
 "reported_seq": "2989",
 "reported_epoch": "2449",
 "state": "active+clean",
 "last_fresh": "2021-06-18T05:16:59.401080+0000",
 "last_change": "2021-06-17T01:32:03.764162+0000",
 "last_active": "2021-06-18T05:16:59.401080+0000",
....

Additional Resources

See the chapter Object Storage Daemon (OSD) configuration options in the OSD Object
storage daemon configuratopn options section in Red Hat Ceph Storage Configuration Guide for
more details on the snapshot trimming settings.

3.2.4. Placement Group creating state

When you create a pool, it will create the number of placement groups you specified. Ceph will echo
creating when it is creating one or more placement groups. Once they are created, the OSDs that are
part of a placement group’s Acting Set will peer. Once peering is complete, the placement group status
should be active+clean, which means a Ceph client can begin writing to the placement group.

3.2.5. Placement group peering state

When Ceph is Peering a placement group, Ceph is bringing the OSDs that store the replicas of the
placement group into agreement about the state of the objects and metadata in the placement group.
When Ceph completes peering, this means that the OSDs that store the placement group agree about
the current state of the placement group. However, completion of the peering process does NOT mean
that each replica has the latest contents.

Authoritative History

Ceph will NOT acknowledge a write operation to a client, until all OSDs of the acting set persist the write
operation. This practice ensures that at least one member of the acting set will have a record of every
acknowledged write operation since the last successful peering operation.

With an accurate record of each acknowledged write operation, Ceph can construct and disseminate a
new authoritative history of the placement group. A complete, and fully ordered set of operations that, if
performed, would bring an OSD’s copy of a placement group up to date.

CHAPTER 3. MONITORING A CEPH STORAGE CLUSTER

41

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/configuration_guide/#osd-object-storage-daemon-configuration-options_conf

3.2.6. Placement group active state

Once Ceph completes the peering process, a placement group may become active. The active state
means that the data in the placement group is generally available in the primary placement group and
the replicas for read and write operations.

3.2.7. Placement Group clean state

When a placement group is in the clean state, the primary OSD and the replica OSDs have successfully
peered and there are no stray replicas for the placement group. Ceph replicated all objects in the
placement group the correct number of times.

3.2.8. Placement Group degraded state

When a client writes an object to the primary OSD, the primary OSD is responsible for writing the
replicas to the replica OSDs. After the primary OSD writes the object to storage, the placement group
will remain in a degraded state until the primary OSD has received an acknowledgement from the
replica OSDs that Ceph created the replica objects successfully.

The reason a placement group can be active+degraded is that an OSD may be active even though it
doesn’t hold all of the objects yet. If an OSD goes down, Ceph marks each placement group assigned to
the OSD as degraded. The Ceph OSDs must peer again when the Ceph OSD comes back online.
However, a client can still write a new object to a degraded placement group if it is active.

If an OSD is down and the degraded condition persists, Ceph may mark the down OSD as out of the
cluster and remap the data from the down OSD to another OSD. The time between being marked
down and being marked out is controlled by mon_osd_down_out_interval, which is set to 600 seconds
by default.

A placement group can also be degraded, because Ceph cannot find one or more objects that Ceph
thinks should be in the placement group. While you cannot read or write to unfound objects, you can still
access all of the other objects in the degraded placement group.

For example, if there are nine OSDs in a three way replica pool. If OSD number 9 goes down, the PGs
assigned to OSD 9 goes into a degraded state. If OSD 9 does not recover, it goes out of the storage
cluster and the storage cluster rebalances. In that scenario, the PGs are degraded and then recover to
an active state.

3.2.9. Placement Group recovering state

Ceph was designed for fault-tolerance at a scale where hardware and software problems are ongoing.
When an OSD goes down, its contents may fall behind the current state of other replicas in the
placement groups. When the OSD is back up, the contents of the placement groups must be updated to
reflect the current state. During that time period, the OSD may reflect a recovering state.

Recovery is not always trivial, because a hardware failure might cause a cascading failure of multiple
Ceph OSDs. For example, a network switch for a rack or cabinet may fail, which can cause the OSDs of a
number of host machines to fall behind the current state of the storage cluster. Each one of the OSDs
must recover once the fault is resolved.

Ceph provides a number of settings to balance the resource contention between new service requests
and the need to recover data objects and restore the placement groups to the current state. The osd
recovery delay start setting allows an OSD to restart, re-peer and even process some replay requests
before starting the recovery process. The osd recovery threads setting limits the number of threads
for the recovery process, by default one thread. The osd recovery thread timeout sets a thread
timeout, because multiple Ceph OSDs can fail, restart and re-peer at staggered rates. The osd

Red Hat Ceph Storage 7 Administration Guide

42

recovery max active setting limits the number of recovery requests a Ceph OSD works on
simultaneously to prevent the Ceph OSD from failing to serve . The osd recovery max chunk setting
limits the size of the recovered data chunks to prevent network congestion.

3.2.10. Back fill state

When a new Ceph OSD joins the storage cluster, CRUSH will reassign placement groups from OSDs in
the cluster to the newly added Ceph OSD. Forcing the new OSD to accept the reassigned placement
groups immediately can put excessive load on the new Ceph OSD. Backfilling the OSD with the
placement groups allows this process to begin in the background. Once backfilling is complete, the new
OSD will begin serving requests when it is ready.

During the backfill operations, you might see one of several states:

backfill_wait indicates that a backfill operation is pending, but isn’t underway yet

backfill indicates that a backfill operation is underway

backfill_too_full indicates that a backfill operation was requested, but couldn’t be completed
due to insufficient storage capacity.

When a placement group cannot be backfilled, it can be considered incomplete.

Ceph provides a number of settings to manage the load spike associated with reassigning placement
groups to a Ceph OSD, especially a new Ceph OSD. By default, osd_max_backfills sets the maximum
number of concurrent backfills to or from a Ceph OSD to 10. The osd backfill full ratio enables a Ceph
OSD to refuse a backfill request if the OSD is approaching its full ratio, by default 85%. If an OSD
refuses a backfill request, the osd backfill retry interval enables an OSD to retry the request, by default
after 10 seconds. OSDs can also set osd backfill scan min and osd backfill scan max to manage scan
intervals, by default 64 and 512.

For some workloads, it is beneficial to avoid regular recovery entirely and use backfill instead. Since
backfilling occurs in the background, this allows I/O to proceed on the objects in the OSD. You can force
a backfill rather than a recovery by setting the osd_min_pg_log_entries option to 1, and setting the
osd_max_pg_log_entries option to 2. Contact your Red Hat Support account team for details on when
this situation is appropriate for your workload.

3.2.11. Placement Group remapped state

When the Acting Set that services a placement group changes, the data migrates from the old acting
set to the new acting set. It may take some time for a new primary OSD to service requests. So it may
ask the old primary to continue to service requests until the placement group migration is complete.
Once data migration completes, the mapping uses the primary OSD of the new acting set.

3.2.12. Placement Group stale state

While Ceph uses heartbeats to ensure that hosts and daemons are running, the ceph-osd daemons may
also get into a stuck state where they aren’t reporting statistics in a timely manner. For example, a
temporary network fault. By default, OSD daemons report their placement group, up thru, boot and
failure statistics every half second, that is, 0.5, which is more frequent than the heartbeat thresholds. If
the Primary OSD of a placement group’s acting set fails to report to the monitor or if other OSDs have
reported the primary OSD down, the monitors will mark the placement group stale.

When you start the storage cluster, it is common to see the stale state until the peering process
completes. After the storage cluster has been running for awhile, seeing placement groups in the stale
state indicates that the primary OSD for those placement groups is down or not reporting placement

CHAPTER 3. MONITORING A CEPH STORAGE CLUSTER

43

group statistics to the monitor.

3.2.13. Placement Group misplaced state

There are some temporary backfilling scenarios where a PG gets mapped temporarily to an OSD. When
that temporary situation should no longer be the case, the PGs might still reside in the temporary
location and not in the proper location. In which case, they are said to be misplaced. That’s because the
correct number of extra copies actually exist, but one or more copies is in the wrong place.

For example, there are 3 OSDs: 0,1,2 and all PGs map to some permutation of those three. If you add
another OSD (OSD 3), some PGs will now map to OSD 3 instead of one of the others. However, until
OSD 3 is backfilled, the PG will have a temporary mapping allowing it to continue to serve I/O from the
old mapping. During that time, the PG is misplaced, because it has a temporary mapping, but not
degraded, since there are 3 copies.

Example

pg 1.5: up=acting: [0,1,2]
ADD_OSD_3
pg 1.5: up: [0,3,1] acting: [0,1,2]

[0,1,2] is a temporary mapping, so the up set is not equal to the acting set and the PG is misplaced but
not degraded since [0,1,2] is still three copies.

Example

pg 1.5: up=acting: [0,3,1]

OSD 3 is now backfilled and the temporary mapping is removed, not degraded and not misplaced.

3.2.14. Placement Group incomplete state

A PG goes into a incomplete state when there is incomplete content and peering fails, that is, when
there are no complete OSDs which are current enough to perform recovery.

Lets say OSD 1, 2, and 3 are the acting OSD set and it switches to OSD 1, 4, and 3, then osd.1 will
request a temporary acting set of OSD 1, 2, and 3 while backfilling 4. During this time, if OSD 1, 2, and 3 all
go down, osd.4 will be the only one left which might not have fully backfilled all the data. At this time, the
PG will go incomplete indicating that there are no complete OSDs which are current enough to perform
recovery.

Alternately, if osd.4 is not involved and the acting set is simply OSD 1, 2, and 3 when OSD 1, 2, and 3 go
down, the PG would likely go stale indicating that the mons have not heard anything on that PG since
the acting set changed. The reason being there are no OSDs left to notify the new OSDs.

3.2.15. Identifying stuck Placement Groups

A placement group is not necessarily problematic just because it is not in a active+clean state.
Generally, Ceph’s ability to self repair might not be working when placement groups get stuck. The stuck
states include:

Unclean: Placement groups contain objects that are not replicated the desired number of times.
They should be recovering.

Inactive: Placement groups cannot process reads or writes because they are waiting for an OSD

Red Hat Ceph Storage 7 Administration Guide

44

Inactive: Placement groups cannot process reads or writes because they are waiting for an OSD
with the most up-to-date data to come back up.

Stale: Placement groups are in an unknown state, because the OSDs that host them have not
reported to the monitor cluster in a while, and can be configured with the mon osd report
timeout setting.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. To identify stuck placement groups, execute the following:

Syntax

ceph pg dump_stuck {inactive|unclean|stale|undersized|degraded
[inactive|unclean|stale|undersized|degraded...]} {<int>}

Example

[ceph: root@host01 /]# ceph pg dump_stuck stale
OK

3.2.16. Finding an object’s location

The Ceph client retrieves the latest cluster map and the CRUSH algorithm calculates how to map the
object to a placement group, and then calculates how to assign the placement group to an OSD
dynamically.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. To find the object location, all you need is the object name and the pool name:

Syntax

ceph osd map POOL_NAME OBJECT_NAME

Example

[ceph: root@host01 /]# ceph osd map mypool myobject

CHAPTER 3. MONITORING A CEPH STORAGE CLUSTER

45

CHAPTER 4. STRETCH CLUSTERS FOR CEPH STORAGE
As a storage administrator, you can configure stretch clusters by entering stretch mode with 2-site
clusters.

Red Hat Ceph Storage is capable of withstanding the loss of Ceph OSDs because of its network and
cluster, which are equally reliable with failures randomly distributed across the CRUSH map. If a number
of OSDs is shut down, the remaining OSDs and monitors still manage to operate.

However, this might not be the best solution for some stretched cluster configurations where a
significant part of the Ceph cluster can use only a single network component. The example is a single
cluster located in multiple data centers, for which the user wants to sustain a loss of a full data center.

The standard configuration is with two data centers. Other configurations are in clouds or availability
zones. Each site holds two copies of the data, therefore, the replication size is four. The third site should
have a tiebreaker monitor, this can be a virtual machine or high-latency compared to the main sites. This
monitor chooses one of the sites to restore data if the network connection fails and both data centers
remain active.

NOTE

The standard Ceph configuration survives many failures of the network or data centers
and it never compromises data consistency. If you restore enough Ceph servers following
a failure, it recovers. Ceph maintains availability if you lose a data center, but can still form
a quorum of monitors and have all the data available with enough copies to satisfy pools’
min_size, or CRUSH rules that replicate again to meet the size.

NOTE

There are no additional steps to power down a stretch cluster. You can see the Powering
down and rebooting Red Hat Ceph Storage cluster for more information.

Stretch cluster failures

Red Hat Ceph Storage never compromises on data integrity and consistency. If there is a network failure
or a loss of nodes and the services can still be restored, Ceph returns to normal functionality on its own.

However, there are situations where you lose data availability even if you have enough servers available
to meet Ceph’s consistency and sizing constraints, or where you unexpectedly do not meet the
constraints.

First important type of failure is caused by inconsistent networks. If there is a network split, Ceph might
be unable to mark OSD as down to remove it from the acting placement group (PG) sets despite the
primary OSD being unable to replicate data. When this happens, the I/O is not permitted because Ceph
cannot meet its durability guarantees.

The second important category of failures is when it appears that you have data replicated across data
enters, but the constraints are not sufficient to guarantee this. For example, you might have data
centers A and B, and the CRUSH rule targets three copies and places a copy in each data center with a
min_size of 2. The PG might go active with two copies in site A and no copies in site B, which means that
if you lose site A, you lose the data and Ceph cannot operate on it. This situation is difficult to avoid with
standard CRUSH rules.

4.1. STRETCH MODE FOR A STORAGE CLUSTER

Red Hat Ceph Storage 7 Administration Guide

46

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#powering-down-and-rebooting-a-red-hat-ceph-storage-cluster_admin

To configure stretch clusters, you must enter the stretch mode. When stretch mode is enabled, the Ceph
OSDs only take PGs as active when they peer across data centers, or whichever other CRUSH bucket
type you specified, assuming both are active. Pools increase in size from the default three to four, with
two copies on each site.

In stretch mode, Ceph OSDs are only allowed to connect to monitors within the same data center. New
monitors are not allowed to join the cluster without specified location.

If all the OSDs and monitors from a data center become inaccessible at once, the surviving data center
will enter a degraded stretch mode. This issues a warning, reduces the min_size to 1, and allows the
cluster to reach an active state with the data from the remaining site.

NOTE

The degraded state also triggers warnings that the pools are too small, because the pool
size does not get changed. However, a special stretch mode flag prevents the OSDs from
creating extra copies in the remaining data center, therefore it still keeps 2 copies.

When the missing data center becomes accesible again, the cluster enters recovery stretch mode. This
changes the warning and allows peering, but still requires only the OSDs from the data center, which was
up the whole time.

When all PGs are in a known state and are not degraded or incomplete, the cluster goes back to the
regular stretch mode, ends the warning, and restores min_size to its starting value 2. The cluster again
requires both sites to peer, not only the site that stayed up the whole time, therefore you can fail over to
the other site, if necessary.

Stretch mode limitations

It is not possible to exit from stretch mode once it is entered.

You cannot use erasure-coded pools with clusters in stretch mode. You can neither enter the
stretch mode with erasure-coded pools, nor create an erasure-coded pool when the stretch
mode is active.

Stretch mode with no more than two sites is supported.

The weights of the two sites should be the same. If they are not, you receive the following error:

Example

[ceph: root@host01 /]# ceph mon enable_stretch_mode host05 stretch_rule datacenter

Error EINVAL: the 2 datacenter instances in the cluster have differing weights 25947 and
15728 but stretch mode currently requires they be the same!

To achieve same weights on both sites, the Ceph OSDs deployed in the two sites should be of
equal size, that is, storage capacity in the first site is equivalent to storage capacity in the
second site.

While it is not enforced, you should run two Ceph monitors on each site and a tiebreaker, for a
total of five. This is because OSDs can only connect to monitors in their own site when in stretch
mode.

You have to create your own CRUSH rule, which provides two copies on each site, which totals

CHAPTER 4. STRETCH CLUSTERS FOR CEPH STORAGE

47

You have to create your own CRUSH rule, which provides two copies on each site, which totals
to four on both sites.

You cannot enable stretch mode if you have existing pools with non-default size or min_size.

Because the cluster runs with min_size 1 when degraded, you should only use stretch mode
with all-flash OSDs. This minimizes the time needed to recover once connectivity is restored,
and minimizes the potential for data loss.

Additional Resources

See Troubleshooting clusters in stretch mode for troubleshooting steps.

4.1.1. Setting the CRUSH location for the daemons

Before you enter the stretch mode, you need to prepare the cluster by setting the CRUSH location to
the daemons in the Red Hat Ceph Storage cluster. There are two ways to do this:

Bootstrap the cluster through a service configuration file, where the locations are added to the
hosts as part of deployment.

Set the locations manually through ceph osd crush add-bucket and ceph osd crush move
commands after the cluster is deployed.

Method 1: Bootstrapping the cluster

Prerequisites

Root-level access to the nodes.

Procedure

1. If you are bootstrapping your new storage cluster, you can create the service configuration
.yaml file that adds the nodes to the Red Hat Ceph Storage cluster and also sets specific labels
for where the services should run:

Example

service_type: host
addr: host01
hostname: host01
location:
 root: default
 datacenter: DC1
labels:
 - osd
 - mon
 - mgr

service_type: host
addr: host02
hostname: host02
location:
 datacenter: DC1
labels:

Red Hat Ceph Storage 7 Administration Guide

48

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/troubleshooting_guide/#troubleshooting-clusters-in-stretch-mode

 - osd
 - mon

service_type: host
addr: host03
hostname: host03
location:
 datacenter: DC1
labels:
 - osd
 - mds
 - rgw

service_type: host
addr: host04
hostname: host04
location:
 root: default
 datacenter: DC2
labels:
 - osd
 - mon
 - mgr

service_type: host
addr: host05
hostname: host05
location:
 datacenter: DC2
labels:
 - osd
 - mon

service_type: host
addr: host06
hostname: host06
location:
 datacenter: DC2
labels:
 - osd
 - mds
 - rgw

service_type: host
addr: host07
hostname: host07
labels:
 - mon

service_type: mon
placement:
 label: "mon"

service_id: cephfs
placement:
 label: "mds"

CHAPTER 4. STRETCH CLUSTERS FOR CEPH STORAGE

49

service_type: mgr
service_name: mgr
placement:
 label: "mgr"

service_type: osd
service_id: all-available-devices
service_name: osd.all-available-devices
placement:
 label: "osd"
spec:
 data_devices:
 all: true

service_type: rgw
service_id: objectgw
service_name: rgw.objectgw
placement:
 count: 2
 label: "rgw"
spec:
 rgw_frontend_port: 8080

2. Bootstrap the storage cluster with the --apply-spec option:

Syntax

cephadm bootstrap --apply-spec CONFIGURATION_FILE_NAME --mon-ip
MONITOR_IP_ADDRESS --ssh-private-key PRIVATE_KEY --ssh-public-key PUBLIC_KEY -
-registry-url REGISTRY_URL --registry-username USER_NAME --registry-password
PASSWORD

Example

[root@host01 ~]# cephadm bootstrap --apply-spec initial-config.yaml --mon-ip 10.10.128.68 -
-ssh-private-key /home/ceph/.ssh/id_rsa --ssh-public-key /home/ceph/.ssh/id_rsa.pub --
registry-url registry.redhat.io --registry-username myuser1 --registry-password mypassword1

IMPORTANT

You can use different command options with the cephadm bootstrap command.
However, always include the --apply-spec option to use the service configuration
file and configure the host locations.

Additional Resources

See Bootstrapping a new storage cluster for more information about Ceph bootstrapping and
different cephadm bootstrap command options.

Method 2: Setting the locations after the deployment

Prerequisites

Red Hat Ceph Storage 7 Administration Guide

50

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/installation_guide/#bootstrapping-a-new-storage-cluster_install

Root-level access to the nodes.

Procedure

1. Add two buckets to which you plan to set the location of your non-tiebreaker monitors to the
CRUSH map, specifying the bucket type as as datacenter:

Syntax

ceph osd crush add-bucket BUCKET_NAME BUCKET_TYPE

Example

[ceph: root@host01 /]# ceph osd crush add-bucket DC1 datacenter
[ceph: root@host01 /]# ceph osd crush add-bucket DC2 datacenter

2. Move the buckets under root=default:

Syntax

ceph osd crush move BUCKET_NAME root=default

Example

[ceph: root@host01 /]# ceph osd crush move DC1 root=default
[ceph: root@host01 /]# ceph osd crush move DC2 root=default

3. Move the OSD hosts according to the required CRUSH placement:

Syntax

ceph osd crush move HOST datacenter=DATACENTER

Example

[ceph: root@host01 /]# ceph osd crush move host01 datacenter=DC1

4.1.2. Entering the stretch mode

The new stretch mode is designed to handle two sites. There is a lower risk of component availability
outages with 2-site clusters.

Prerequisites

Root-level access to the nodes.

The CRUSH location is set to the hosts.

Procedure

1. Set the location of each monitor, matching your CRUSH map:

Syntax

CHAPTER 4. STRETCH CLUSTERS FOR CEPH STORAGE

51

1

2 3

Syntax

ceph mon set_location HOST datacenter=DATACENTER

Example

[ceph: root@host01 /]# ceph mon set_location host01 datacenter=DC1
[ceph: root@host01 /]# ceph mon set_location host02 datacenter=DC1
[ceph: root@host01 /]# ceph mon set_location host04 datacenter=DC2
[ceph: root@host01 /]# ceph mon set_location host05 datacenter=DC2
[ceph: root@host01 /]# ceph mon set_location host07 datacenter=DC3

2. Generate a CRUSH rule which places two copies on each data center:

Syntax

ceph osd getcrushmap > COMPILED_CRUSHMAP_FILENAME
crushtool -d COMPILED_CRUSHMAP_FILENAME -o
DECOMPILED_CRUSHMAP_FILENAME

Example

[ceph: root@host01 /]# ceph osd getcrushmap > crush.map.bin
[ceph: root@host01 /]# crushtool -d crush.map.bin -o crush.map.txt

a. Edit the decompiled CRUSH map file to add a new rule:

Example

rule stretch_rule {
 id 1 1
 type replicated
 min_size 1
 max_size 10
 step take DC1 2
 step chooseleaf firstn 2 type host
 step emit
 step take DC2 3
 step chooseleaf firstn 2 type host
 step emit
}

The rule id has to be unique. In this example, there is only one more rule with id 0,
thereby the id 1 is used, however you might need to use a different rule ID depending
on the number of existing rules.

In this example, there are two data center buckets named DC1 and DC2.

NOTE

Red Hat Ceph Storage 7 Administration Guide

52

NOTE

This rule makes the cluster have read-affinity towards data center DC1.
Therefore, all the reads or writes happen through Ceph OSDs placed in DC1.

If this is not desirable, and reads or writes are to be distributed evenly across
the zones, the CRUSH rule is the following:

Example

rule stretch_rule {
id 1
type replicated
min_size 1
max_size 10
step take default
step choose firstn 0 type datacenter
step chooseleaf firstn 2 type host
step emit
}

In this rule, the data center is selected randomly and automatically.

See CRUSH rules for more information on firstn and indep options.

3. Inject the CRUSH map to make the rule available to the cluster:

Syntax

crushtool -c DECOMPILED_CRUSHMAP_FILENAME -o
COMPILED_CRUSHMAP_FILENAME
ceph osd setcrushmap -i COMPILED_CRUSHMAP_FILENAME

Example

[ceph: root@host01 /]# crushtool -c crush.map.txt -o crush2.map.bin
[ceph: root@host01 /]# ceph osd setcrushmap -i crush2.map.bin

4. If you do not run the monitors in connectivity mode, set the election strategy to connectivity:

Example

[ceph: root@host01 /]# ceph mon set election_strategy connectivity

5. Enter stretch mode by setting the location of the tiebreaker monitor to split across the data
centers:

Syntax

ceph mon set_location HOST datacenter=DATACENTER
ceph mon enable_stretch_mode HOST stretch_rule datacenter

Example

CHAPTER 4. STRETCH CLUSTERS FOR CEPH STORAGE

53

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/storage_strategies_guide/#crush-rules

[ceph: root@host01 /]# ceph mon set_location host07 datacenter=DC3
[ceph: root@host01 /]# ceph mon enable_stretch_mode host07 stretch_rule datacenter

In this example the monitor mon.host07 is the tiebreaker.

IMPORTANT

The location of the tiebreaker monitor should differ from the data centers to
which you previously set the non-tiebreaker monitors. In the example above, it is
data center DC3.

IMPORTANT

Do not add this data center to the CRUSH map as it results in the following error
when you try to enter stretch mode:

Error EINVAL: there are 3 datacenters in the cluster but stretch mode currently
only works with 2!

NOTE

If you are writing your own tooling for deploying Ceph, you can use a new --set-
crush-location option when booting monitors, instead of running the ceph mon
set_location command. This option accepts only a single bucket=location pair,
for example ceph-mon --set-crush-location 'datacenter=DC1', which must
match the bucket type you specified when running the enable_stretch_mode
command.

6. Verify that the stretch mode is enabled successfully:

Example

[ceph: root@host01 /]# ceph osd dump

epoch 361
fsid 1234ab78-1234-11ed-b1b1-de456ef0a89d
created 2023-01-16T05:47:28.482717+0000
modified 2023-01-17T17:36:50.066183+0000
flags sortbitwise,recovery_deletes,purged_snapdirs,pglog_hardlimit
crush_version 31
full_ratio 0.95
backfillfull_ratio 0.92
nearfull_ratio 0.85
require_min_compat_client luminous
min_compat_client luminous
require_osd_release quincy
stretch_mode_enabled true
stretch_bucket_count 2
degraded_stretch_mode 0
recovering_stretch_mode 0
stretch_mode_bucket 8

The stretch_mode_enabled should be set to true. You can also see the number of stretch

Red Hat Ceph Storage 7 Administration Guide

54

The stretch_mode_enabled should be set to true. You can also see the number of stretch
buckets, stretch mode buckets, and if the stretch mode is degraded or recovering.

7. Verify that the monitors are in an appropriate locations:

Example

[ceph: root@host01 /]# ceph mon dump

epoch 19
fsid 1234ab78-1234-11ed-b1b1-de456ef0a89d
last_changed 2023-01-17T04:12:05.709475+0000
created 2023-01-16T05:47:25.631684+0000
min_mon_release 16 (pacific)
election_strategy: 3
stretch_mode_enabled 1
tiebreaker_mon host07
disallowed_leaders host07
0: [v2:132.224.169.63:3300/0,v1:132.224.169.63:6789/0] mon.host07; crush_location
{datacenter=DC3}
1: [v2:220.141.179.34:3300/0,v1:220.141.179.34:6789/0] mon.host04; crush_location
{datacenter=DC2}
2: [v2:40.90.220.224:3300/0,v1:40.90.220.224:6789/0] mon.host01; crush_location
{datacenter=DC1}
3: [v2:60.140.141.144:3300/0,v1:60.140.141.144:6789/0] mon.host02; crush_location
{datacenter=DC1}
4: [v2:186.184.61.92:3300/0,v1:186.184.61.92:6789/0] mon.host05; crush_location
{datacenter=DC2}
dumped monmap epoch 19

You can also see which monitor is the tiebreaker, and the monitor election strategy.

Additional Resources

See Configuring monitor election strategy for more information about monitor election strategy.

4.1.3. Adding OSD hosts in stretch mode

You can add Ceph OSDs in the stretch mode. The procedure is similar to the addition of the OSD hosts
on a cluster where stretch mode is not enabled.

Prerequisites

A running Red Hat Ceph Storage cluster.

Stretch mode in enabled on a cluster.

Root-level access to the nodes.

Procedure

1. List the available devices to deploy OSDs:

Syntax

CHAPTER 4. STRETCH CLUSTERS FOR CEPH STORAGE

55

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/operations_guide/#configuring-monitor-election-strategy_ops

ceph orch device ls [--hostname=HOST_1 HOST_2] [--wide] [--refresh]

Example

[ceph: root@host01 /]# ceph orch device ls

2. Deploy the OSDs on specific hosts or on all the available devices:

Create an OSD from a specific device on a specific host:

Syntax

ceph orch daemon add osd HOST:DEVICE_PATH

Example

[ceph: root@host01 /]# ceph orch daemon add osd host03:/dev/sdb

Deploy OSDs on any available and unused devices:

IMPORTANT

This command creates collocated WAL and DB devices. If you want to create
non-collocated devices, do not use this command.

Example

[ceph: root@host01 /]# ceph orch apply osd --all-available-devices

3. Move the OSD hosts under the CRUSH bucket:

Syntax

ceph osd crush move HOST datacenter=DATACENTER

Example

[ceph: root@host01 /]# ceph osd crush move host03 datacenter=DC1
[ceph: root@host01 /]# ceph osd crush move host06 datacenter=DC2

NOTE

Ensure you add the same topology nodes on both sites. Issues might arise if
hosts are added only on one site.

Additional Resources

See Adding OSDs for more information about the addition of Ceph OSDs.

Red Hat Ceph Storage 7 Administration Guide

56

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/installation_guide/#adding-osds_install

CHAPTER 5. OVERRIDE CEPH BEHAVIOR
As a storage administrator, you need to understand how to use overrides for the Red Hat Ceph Storage
cluster to change Ceph options during runtime.

5.1. SETTING AND UNSETTING CEPH OVERRIDE OPTIONS

You can set and unset Ceph options to override Ceph’s default behavior.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. To override Ceph’s default behavior, use the ceph osd set command and the behavior you wish
to override:

Syntax

ceph osd set FLAG

Once you set the behavior, ceph health will reflect the override(s) that you have set for the
cluster.

Example

[ceph: root@host01 /]# ceph osd set noout

2. To cease overriding Ceph’s default behavior, use the ceph osd unset command and the
override you wish to cease.

Syntax

ceph osd unset FLAG

Example

[ceph: root@host01 /]# ceph osd unset noout

Flag Description

noin Prevents OSDs from being treated as in the cluster.

noout Prevents OSDs from being treated as out of the cluster.

noup Prevents OSDs from being treated as up and running.

CHAPTER 5. OVERRIDE CEPH BEHAVIOR

57

nodown Prevents OSDs from being treated as down.

full Makes a cluster appear to have reached its full_ratio, and thereby prevents write
operations.

pause Ceph will stop processing read and write operations, but will not affect OSD in, out, up
or down statuses.

nobackfill Ceph will prevent new backfill operations.

norebalance Ceph will prevent new rebalancing operations.

norecover Ceph will prevent new recovery operations.

noscrub Ceph will prevent new scrubbing operations.

nodeep-scrub Ceph will prevent new deep scrubbing operations.

notieragent Ceph will disable the process that is looking for cold/dirty objects to flush and evict.

Flag Description

5.2. CEPH OVERRIDE USE CASES

noin: Commonly used with noout to address flapping OSDs.

noout: If the mon osd report timeout is exceeded and an OSD has not reported to the
monitor, the OSD will get marked out. If this happens erroneously, you can set noout to prevent
the OSD(s) from getting marked out while you troubleshoot the issue.

noup: Commonly used with nodown to address flapping OSDs.

nodown: Networking issues may interrupt Ceph 'heartbeat' processes, and an OSD may be up
but still get marked down. You can set nodown to prevent OSDs from getting marked down
while troubleshooting the issue.

full: If a cluster is reaching its full_ratio, you can pre-emptively set the cluster to full and expand
capacity.

NOTE

Setting the cluster to full will prevent write operations.

pause: If you need to troubleshoot a running Ceph cluster without clients reading and writing
data, you can set the cluster to pause to prevent client operations.

nobackfill: If you need to take an OSD or node down temporarily, for example, upgrading
daemons, you can set nobackfill so that Ceph will not backfill while the OSDs is down.

norecover: If you need to replace an OSD disk and don’t want the PGs to recover to another

Red Hat Ceph Storage 7 Administration Guide

58

norecover: If you need to replace an OSD disk and don’t want the PGs to recover to another
OSD while you are hotswapping disks, you can set norecover to prevent the other OSDs from
copying a new set of PGs to other OSDs.

noscrub and nodeep-scrubb: If you want to prevent scrubbing for example, to reduce
overhead during high loads, recovery, backfilling, and rebalancing you can set noscrub and/or
nodeep-scrub to prevent the cluster from scrubbing OSDs.

notieragent: If you want to stop the tier agent process from finding cold objects to flush to the
backing storage tier, you may set notieragent.

CHAPTER 5. OVERRIDE CEPH BEHAVIOR

59

CHAPTER 6. CEPH USER MANAGEMENT
As a storage administrator, you can manage the Ceph user base by providing authentication, and access
control to objects in the Red Hat Ceph Storage cluster.

IMPORTANT

Cephadm manages the client keyrings for the Red Hat Ceph Storage cluster as long as
the clients are within the scope of Cephadm. Users should not modify the keyrings that
are managed by Cephadm, unless there is troubleshooting.

6.1. CEPH USER MANAGEMENT BACKGROUND

When Ceph runs with authentication and authorization enabled, you must specify a user name. If you do
not specify a user name, Ceph will use the client.admin administrative user as the default user name.

Alternatively, you may use the CEPH_ARGS environment variable to avoid re-entry of the user name
and secret.

Irrespective of the type of Ceph client, for example, block device, object store, file system, native API, or
the Ceph command line, Ceph stores all data as objects within pools. Ceph users must have access to
pools in order to read and write data. Additionally, administrative Ceph users must have permissions to
execute Ceph’s administrative commands.

The following concepts can help you understand Ceph user management.

Storage Cluster Users

A user of the Red Hat Ceph Storage cluster is either an individual or as an application. Creating users
allows you to control who can access the storage cluster, its pools, and the data within those pools.

Ceph has the notion of a type of user. For the purposes of user management, the type will always be
client. Ceph identifies users in period (.) delimited form consisting of the user type and the user ID. For
example, TYPE.ID, client.admin, or client.user1. The reason for user typing is that Ceph Monitors, and
OSDs also use the Cephx protocol, but they are not clients. Distinguishing the user type helps to
distinguish between client users and other users—streamlining access control, user monitoring and
traceability.

Sometimes Ceph’s user type may seem confusing, because the Ceph command line allows you to
specify a user with or without the type, depending upon the command line usage. If you specify --user or
--id, you can omit the type. So client.user1 can be entered simply as user1. If you specify --name or -n,
you must specify the type and name, such as client.user1. Red Hat recommends using the type and
name as a best practice wherever possible.

NOTE

Red Hat Ceph Storage 7 Administration Guide

60

NOTE

A Red Hat Ceph Storage cluster user is not the same as a Ceph Object Gateway user.
The object gateway uses a Red Hat Ceph Storage cluster user to communicate between
the gateway daemon and the storage cluster, but the gateway has its own user
management functionality for its end users.

Authorization capabilities

Ceph uses the term "capabilities" (caps) to describe authorizing an authenticated user to exercise the
functionality of the Ceph Monitors and OSDs. Capabilities can also restrict access to data within a pool
or a namespace within a pool. A Ceph administrative user sets a user’s capabilities when creating or
updating a user. Capability syntax follows the form:

Syntax

DAEMON_TYPE 'allow CAPABILITY' [DAEMON_TYPE 'allow CAPABILITY']

Monitor Caps: Monitor capabilities include r, w, x, allow profile CAP, and profile rbd.

Example

mon 'allow rwx`
mon 'allow profile osd'

OSD Caps: OSD capabilities include r, w, x, class-read, class-write, profile osd, profile rbd,
and profile rbd-read-only. Additionally, OSD capabilities also allow for pool and namespace
settings. :

Syntax

osd 'allow CAPABILITY' [pool=POOL_NAME] [namespace=NAMESPACE_NAME]

NOTE

The Ceph Object Gateway daemon (radosgw) is a client of the Ceph storage cluster, so
it isn’t represented as a Ceph storage cluster daemon type.

The following entries describe each capability.

allow Precedes access settings for a daemon.

r Gives the user read access. Required with monitors to retrieve the CRUSH map.

w Gives the user write access to objects.

x Gives the user the capability to call class methods (that is, both read and write) and to
conduct auth operations on monitors.

class-read Gives the user the capability to call class read methods. Subset of x.

CHAPTER 6. CEPH USER MANAGEMENT

61

class-write Gives the user the capability to call class write methods. Subset of x.

* Gives the user read, write and execute permissions for a particular daemon or pool, and the
ability to execute admin commands.

profile osd Gives a user permissions to connect as an OSD to other OSDs or monitors. Conferred on
OSDs to enable OSDs to handle replication heartbeat traffic and status reporting.

profile
bootstrap-
osd

Gives a user permissions to bootstrap an OSD, so that they have permissions to add keys
when bootstrapping an OSD.

profile rbd Gives a user read-write access to the Ceph Block Devices.

profile rbd-
read-only

Gives a user read-only access to the Ceph Block Devices.

Pool

A pool defines a storage strategy for Ceph clients, and acts as a logical partition for that strategy.

In Ceph deployments, it is common to create a pool to support different types of use cases. For
example, cloud volumes or images, object storage, hot storage, cold storage, and so on. When deploying
Ceph as a back end for OpenStack, a typical deployment would have pools for volumes, images, backups
and virtual machines, and users such as client.glance, client.cinder, and so on.

Namespace

Objects within a pool can be associated to a namespace—a logical group of objects within the pool. A
user’s access to a pool can be associated with a namespace such that reads and writes by the user take
place only within the namespace. Objects written to a namespace within the pool can only be accessed
by users who have access to the namespace.

NOTE

Currently, namespaces are only useful for applications written on top of librados. Ceph
clients such as block device and object storage do not currently support this feature.

The rationale for namespaces is that pools can be a computationally expensive method of segregating
data by use case, because each pool creates a set of placement groups that get mapped to OSDs. If
multiple pools use the same CRUSH hierarchy and ruleset, OSD performance may degrade as load
increases.

For example, a pool should have approximately 100 placement groups per OSD. So an exemplary cluster
with 1000 OSDs would have 100,000 placement groups for one pool. Each pool mapped to the same
CRUSH hierarchy and ruleset would create another 100,000 placement groups in the exemplary cluster.
By contrast, writing an object to a namespace simply associates the namespace to the object name with
out the computational overhead of a separate pool. Rather than creating a separate pool for a user or
set of users, you may use a namespace.

NOTE

Red Hat Ceph Storage 7 Administration Guide

62

NOTE

Only available using librados at this time.

Additional Resources

See the Red Hat Ceph Storage Configuration Guide for details on configuring the use of
authentication.

6.2. MANAGING CEPH USERS

As a storage administrator, you can manage Ceph users by creating, modifying, deleting, and importing
users. A Ceph client user can be either individuals or applications, which use Ceph clients to interact with
the Red Hat Ceph Storage cluster daemons.

6.2.1. Listing Ceph users

You can list the users in the storage cluster using the command-line interface.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. To list the users in the storage cluster, execute the following:

Example

[ceph: root@host01 /]# ceph auth list
installed auth entries:

osd.10
 key: AQBW7U5gqOsEExAAg/CxSwZ/gSh8iOsDV3iQOA==
 caps: [mgr] allow profile osd
 caps: [mon] allow profile osd
 caps: [osd] allow *
osd.11
 key: AQBX7U5gtj/JIhAAPsLBNG+SfC2eMVEFkl3vfA==
 caps: [mgr] allow profile osd
 caps: [mon] allow profile osd
 caps: [osd] allow *
osd.9
 key: AQBV7U5g1XDULhAAKo2tw6ZhH1jki5aVui2v7g==
 caps: [mgr] allow profile osd
 caps: [mon] allow profile osd
 caps: [osd] allow *
client.admin
 key: AQADYEtgFfD3ExAAwH+C1qO7MSLE4TWRfD2g6g==
 caps: [mds] allow *
 caps: [mgr] allow *
 caps: [mon] allow *

CHAPTER 6. CEPH USER MANAGEMENT

63

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/configuration_guide/

 caps: [osd] allow *
client.bootstrap-mds
 key: AQAHYEtgpbkANBAANqoFlvzEXFwD8oB0w3TF4Q==
 caps: [mon] allow profile bootstrap-mds
client.bootstrap-mgr
 key: AQAHYEtg3dcANBAAVQf6brq3sxTSrCrPe0pKVQ==
 caps: [mon] allow profile bootstrap-mgr
client.bootstrap-osd
 key: AQAHYEtgD/QANBAATS9DuP3DbxEl86MTyKEmdw==
 caps: [mon] allow profile bootstrap-osd
client.bootstrap-rbd
 key: AQAHYEtgjxEBNBAANho25V9tWNNvIKnHknW59A==
 caps: [mon] allow profile bootstrap-rbd
client.bootstrap-rbd-mirror
 key: AQAHYEtgdE8BNBAAr6rLYxZci0b2hoIgH9GXYw==
 caps: [mon] allow profile bootstrap-rbd-mirror
client.bootstrap-rgw
 key: AQAHYEtgwGkBNBAAuRzI4WSrnowBhZxr2XtTFg==
 caps: [mon] allow profile bootstrap-rgw
client.crash.host04
 key: AQCQYEtgz8lGGhAAy5bJS8VH9fMdxuAZ3CqX5Q==
 caps: [mgr] profile crash
 caps: [mon] profile crash
client.crash.host02
 key: AQDuYUtgqgfdOhAAsyX+Mo35M+HFpURGad7nJA==
 caps: [mgr] profile crash
 caps: [mon] profile crash
client.crash.host03
 key: AQB98E5g5jHZAxAAklWSvmDsh2JaL5G7FvMrrA==
 caps: [mgr] profile crash
 caps: [mon] profile crash
client.nfs.foo.host03
 key: AQCgTk9gm+HvMxAAHbjG+XpdwL6prM/uMcdPdQ==
 caps: [mon] allow r
 caps: [osd] allow rw pool=nfs-ganesha namespace=foo
client.nfs.foo.host03-rgw
 key: AQCgTk9g8sJQNhAAPykcoYUuPc7IjubaFx09HQ==
 caps: [mon] allow r
 caps: [osd] allow rwx tag rgw *=*
client.rgw.test_realm.test_zone.host01.hgbvnq
 key: AQD5RE9gAQKdCRAAJzxDwD/dJObbInp9J95sXw==
 caps: [mgr] allow rw
 caps: [mon] allow *
 caps: [osd] allow rwx tag rgw *=*
client.rgw.test_realm.test_zone.host02.yqqilm
 key: AQD0RE9gkxA4ExAAFXp3pLJWdIhsyTe2ZR6Ilw==
 caps: [mgr] allow rw
 caps: [mon] allow *
 caps: [osd] allow rwx tag rgw *=*
mgr.host01.hdhzwn
 key: AQAEYEtg3lhIBxAAmHodoIpdvnxK0llWF80ltQ==
 caps: [mds] allow *
 caps: [mon] profile mgr
 caps: [osd] allow *
mgr.host02.eobuuv
 key: AQAn6U5gzUuiABAA2Fed+jPM1xwb4XDYtrQxaQ==

Red Hat Ceph Storage 7 Administration Guide

64

 caps: [mds] allow *
 caps: [mon] profile mgr
 caps: [osd] allow *
mgr.host03.wquwpj
 key: AQAd6U5gIzWsLBAAbOKUKZlUcAVe9kBLfajMKw==
 caps: [mds] allow *
 caps: [mon] profile mgr
 caps: [osd] allow *

NOTE

The TYPE.ID notation for users applies such that osd.0 is a user of type osd and its ID is
0, client.admin is a user of type client and its ID is admin, that is, the default
client.admin user. Note also that each entry has a key: VALUE entry, and one or more
caps: entries.

You may use the -o FILE_NAME option with ceph auth list to save the output to a file.

6.2.2. Display Ceph user information

You can display a Ceph’s user information using the command-line interface.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. To retrieve a specific user, key and capabilities, execute the following:

Syntax

ceph auth export TYPE.ID

Example

[ceph: root@host01 /]# ceph auth export mgr.host02.eobuuv

2. You can also use the -o FILE_NAME option.

Syntax

ceph auth export TYPE.ID -o FILE_NAME

Example

[ceph: root@host01 /]# ceph auth export osd.9 -o filename
export auth(key=AQBV7U5g1XDULhAAKo2tw6ZhH1jki5aVui2v7g==)

The auth export command is identical to auth get, but also prints out the internal auid, which isn’t

CHAPTER 6. CEPH USER MANAGEMENT

65

The auth export command is identical to auth get, but also prints out the internal auid, which isn’t
relevant to end users.

6.2.3. Add a new Ceph user

Adding a user creates a username, that is, TYPE.ID, a secret key and any capabilities included in the
command you use to create the user.

A user’s key enables the user to authenticate with the Ceph storage cluster. The user’s capabilities
authorize the user to read, write, or execute on Ceph monitors (mon), Ceph OSDs (osd) or Ceph
Metadata Servers (mds).

There are a few ways to add a user:

ceph auth add: This command is the canonical way to add a user. It will create the user,
generate a key and add any specified capabilities.

ceph auth get-or-create: This command is often the most convenient way to create a user,
because it returns a keyfile format with the user name (in brackets) and the key. If the user
already exists, this command simply returns the user name and key in the keyfile format. You
may use the -o FILE_NAME option to save the output to a file.

ceph auth get-or-create-key: This command is a convenient way to create a user and return the
user’s key only. This is useful for clients that need the key only, for example, libvirt. If the user
already exists, this command simply returns the key. You may use the -o FILE_NAME option to
save the output to a file.

When creating client users, you may create a user with no capabilities. A user with no capabilities is
useless beyond mere authentication, because the client cannot retrieve the cluster map from the
monitor. However, you can create a user with no capabilities if you wish to defer adding capabilities later
using the ceph auth caps command.

A typical user has at least read capabilities on the Ceph monitor and read and write capability on Ceph
OSDs. Additionally, a user’s OSD permissions are often restricted to accessing a particular pool. :

[ceph: root@host01 /]# ceph auth add client.john mon 'allow r' osd 'allow rw pool=mypool'
[ceph: root@host01 /]# ceph auth get-or-create client.paul mon 'allow r' osd 'allow rw pool=mypool'
[ceph: root@host01 /]# ceph auth get-or-create client.george mon 'allow r' osd 'allow rw pool=mypool'
-o george.keyring
[ceph: root@host01 /]# ceph auth get-or-create-key client.ringo mon 'allow r' osd 'allow rw
pool=mypool' -o ringo.key

IMPORTANT

If you provide a user with capabilities to OSDs, but you DO NOT restrict access to
particular pools, the user will have access to ALL pools in the cluster!

6.2.4. Modifying a Ceph User

The ceph auth caps command allows you to specify a user and change the user’s capabilities.

Prerequisites

A running Red Hat Ceph Storage cluster.

Red Hat Ceph Storage 7 Administration Guide

66

Root-level access to the node.

Procedure

1. To add capabilities, use the form:

Syntax

ceph auth caps USERTYPE.USERID DAEMON 'allow [r|w|x|*|...] [pool=POOL_NAME]
[namespace=NAMESPACE_NAME]'

Example

[ceph: root@host01 /]# ceph auth caps client.john mon 'allow r' osd 'allow rw pool=mypool'
[ceph: root@host01 /]# ceph auth caps client.paul mon 'allow rw' osd 'allow rwx pool=mypool'
[ceph: root@host01 /]# ceph auth caps client.brian-manager mon 'allow *' osd 'allow *'

2. To remove a capability, you may reset the capability. If you want the user to have no access to a
particular daemon that was previously set, specify an empty string:

Example

[ceph: root@host01 /]# ceph auth caps client.ringo mon ' ' osd ' '

Additional Resources

See Authorization capabilities for additional details on capabilities.

6.2.5. Deleting a Ceph user

You can delete a user from the Ceph storage cluster using the command-line interface.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. To delete a user, use ceph auth del:

Syntax

ceph auth del TYPE.ID

Example

[ceph: root@host01 /]# ceph auth del osd.6

6.2.6. Print a Ceph user key

CHAPTER 6. CEPH USER MANAGEMENT

67

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#ceph-user-management-background_admin

You can display a Ceph user’s key information using the command-line interface.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

Print a user’s authentication key to standard output:

Syntax

ceph auth print-key TYPE.ID

Example

[ceph: root@host01 /]# ceph auth print-key osd.6

AQBQ7U5gAry3JRAA3NoPrqBBThpFMcRL6Sr+5w==[ceph: root@host01 /]#

Red Hat Ceph Storage 7 Administration Guide

68

CHAPTER 7. THE CEPH-VOLUME UTILITY

As a storage administrator, you can prepare, list, create, activate, deactivate, batch, trigger, zap, and
migrate Ceph OSDs using the ceph-volume utility. The ceph-volume utility is a single-purpose
command-line tool to deploy logical volumes as OSDs. It uses a plugin-type framework to deploy OSDs
with different device technologies. The ceph-volume utility follows a similar workflow of the ceph-disk
utility for deploying OSDs, with a predictable, and robust way of preparing, activating, and starting
OSDs. Currently, the ceph-volume utility only supports the lvm plugin, with the plan to support others
technologies in the future.

IMPORTANT

The ceph-disk command is deprecated.

7.1. CEPH VOLUME LVM PLUGIN

By making use of LVM tags, the lvm sub-command is able to store and re-discover by querying devices
associated with OSDs so they can be activated. This includes support for lvm-based technologies like
dm-cache as well.

When using ceph-volume, the use of dm-cache is transparent, and treats dm-cache like a logical
volume. The performance gains and losses when using dm-cache will depend on the specific workload.
Generally, random and sequential reads will see an increase in performance at smaller block sizes. While
random and sequential writes will see a decrease in performance at larger block sizes.

To use the LVM plugin, add lvm as a subcommand to the ceph-volume command within the cephadm
shell:

[ceph: root@host01 /]# ceph-volume lvm

Following are the lvm subcommands:

prepare - Format an LVM device and associate it with an OSD.

activate - Discover and mount the LVM device associated with an OSD ID and start the Ceph
OSD.

list - List logical volumes and devices associated with Ceph.

batch - Automatically size devices for multi-OSD provisioning with minimal interaction.

deactivate - Deactivate OSDs.

create - Create a new OSD from an LVM device.

trigger - A systemd helper to activate an OSD.

zap - Removes all data and filesystems from a logical volume or partition.

migrate - Migrate BlueFS data from to another LVM device.

new-wal - Allocate new WAL volume for the OSD at specified logical volume.

new-db - Allocate new DB volume for the OSD at specified logical volume.

NOTE

CHAPTER 7. THE CEPH-VOLUME UTILITY

69

NOTE

Using the create subcommand combines the prepare and activate subcommands into
one subcommand.

Additional Resources

See the create subcommand section for more details.

7.2. WHY DOES CEPH-VOLUME REPLACE CEPH-DISK?

Up to Red Hat Ceph Storage 4, ceph-disk utility was used to prepare, activate, and create OSDs.
Starting with Red Hat Ceph Storage 4, ceph-disk is replaced by the ceph-volume utility that aims to be
a single purpose command-line tool to deploy logical volumes as OSDs, while maintaining a similar API to
ceph-disk when preparing, activating, and creating OSDs.

How does ceph-volume work?

The ceph-volume is a modular tool that currently supports two ways of provisioning hardware devices,
legacy ceph-disk devices and LVM (Logical Volume Manager) devices. The ceph-volume lvm
command uses the LVM tags to store information about devices specific to Ceph and its relationship
with OSDs. It uses these tags to later re-discover and query devices associated with OSDS so that it can
activate them. It supports technologies based on LVM and dm-cache as well.

The ceph-volume utility uses dm-cache transparently and treats it as a logical volume. You might
consider the performance gains and losses when using dm-cache, depending on the specific workload
you are handling. Generally, the performance of random and sequential read operations increases at
smaller block sizes; while the performance of random and sequential write operations decreases at
larger block sizes. Using ceph-volume does not introduce any significant performance penalties.

IMPORTANT

The ceph-disk utility is deprecated.

NOTE

The ceph-volume simple command can handle legacy ceph-disk devices, if these
devices are still in use.

How does ceph-disk work?

The ceph-disk utility was required to support many different types of init systems, such as upstart or
sysvinit, while being able to discover devices. For this reason, ceph-disk concentrates only on GUID
Partition Table (GPT) partitions. Specifically on GPT GUIDs that label devices in a unique way to answer
questions like:

Is this device a journal?

Is this device an encrypted data partition?

Was the device left partially prepared?

To solve these questions, ceph-disk uses UDEV rules to match the GUIDs.

What are disadvantages of using ceph-disk?

Red Hat Ceph Storage 7 Administration Guide

70

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#creating-osds_admin

Using the UDEV rules to call ceph-disk can lead to a back-and-forth between the ceph-disk systemd
unit and the ceph-disk executable. The process is very unreliable and time consuming and can cause
OSDs to not come up at all during the boot process of a node. Moreover, it is hard to debug, or even
replicate these problems given the asynchronous behavior of UDEV.

Because ceph-disk works with GPT partitions exclusively, it cannot support other technologies, such as
Logical Volume Manager (LVM) volumes, or similar device mapper devices.

To ensure the GPT partitions work correctly with the device discovery workflow, ceph-disk requires a
large number of special flags to be used. In addition, these partitions require devices to be exclusively
owned by Ceph.

7.3. PREPARING CEPH OSDS USING CEPH-VOLUME

The prepare subcommand prepares an OSD back-end object store and consumes logical volumes (LV)
for both the OSD data and journal. It does not modify the logical volumes, except for adding some extra
metadata tags using LVM. These tags make volumes easier to discover, and they also identify the
volumes as part of the Ceph Storage Cluster and the roles of those volumes in the storage cluster.

The BlueStore OSD backend supports the following configurations:

A block device, a block.wal device, and a block.db device

A block device and a block.wal device

A block device and a block.db device

A single block device

The prepare subcommand accepts a whole device or partition, or a logical volume for block.

Prerequisites

Root-level access to the OSD nodes.

Optionally, create logical volumes. If you provide a path to a physical device, the subcommand
turns the device into a logical volume. This approach is simpler, but you cannot configure or
change the way the logical volume is created.

Procedure

1. Extract the Ceph keyring:

Syntax

ceph auth get client.ID -o ceph.client.ID.keyring

Example

[ceph: root@host01 /]# ceph auth get client.bootstrap-osd -o /var/lib/ceph/bootstrap-
osd/ceph.keyring

2. Prepare the LVM volumes:

CHAPTER 7. THE CEPH-VOLUME UTILITY

71

Syntax

ceph-volume lvm prepare --bluestore --data VOLUME_GROUP/LOGICAL_VOLUME

Example

[ceph: root@host01 /]# ceph-volume lvm prepare --bluestore --data example_vg/data_lv

a. Optionally, if you want to use a separate device for RocksDB, specify the --block.db and --
block.wal options:

Syntax

ceph-volume lvm prepare --bluestore --block.db BLOCK_DB_DEVICE --block.wal
BLOCK_WAL_DEVICE --data DATA_DEVICE

Example

[ceph: root@host01 /]# ceph-volume lvm prepare --bluestore --block.db /dev/sda --
block.wal /dev/sdb --data /dev/sdc

b. Optionally, to encrypt data, use the --dmcrypt flag:

Syntax

ceph-volume lvm prepare --bluestore --dmcrypt --data
VOLUME_GROUP/LOGICAL_VOLUME

Example

[ceph: root@host01 /]# ceph-volume lvm prepare --bluestore --dmcrypt --data
example_vg/data_lv

Additional Resources

See the Activating Ceph OSDs using `ceph-volume` section in the Red Hat Ceph Storage
Administration Guide for more details.

See the Creating Ceph OSDs using `ceph-volume` section in the Red Hat Ceph Storage
Administration Guide for more details.

7.4. LISTING DEVICES USING CEPH-VOLUME

You can use the ceph-volume lvm list subcommand to list logical volumes and devices associated with
a Ceph cluster, as long as they contain enough metadata to allow for that discovery. The output is
grouped by the OSD ID associated with the devices. For logical volumes, the devices key is populated
with the physical devices associated with the logical volume.

In some cases, the output of the ceph -s command shows the following error message:

1 devices have fault light turned on

Red Hat Ceph Storage 7 Administration Guide

72

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#activating-ceph-osds-using-ceph-volume_admin
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#creating-ceph-osds-using-ceph-volume_admin

In such cases, you can list the devices with ceph device ls-lights command which gives the details
about the lights on the devices. Based on the information, you can turn off the lights on the devices.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the Ceph OSD node.

Procedure

List the devices in the Ceph cluster:

Example

[ceph: root@host01 /]# ceph-volume lvm list

====== osd.6 =======

 [block] /dev/ceph-83909f70-95e9-4273-880e-5851612cbe53/osd-block-7ce687d9-07e7-
4f8f-a34e-d1b0efb89920

 block device /dev/ceph-83909f70-95e9-4273-880e-5851612cbe53/osd-block-
7ce687d9-07e7-4f8f-a34e-d1b0efb89920
 block uuid 4d7gzX-Nzxp-UUG0-bNxQ-Jacr-l0mP-IPD8cX
 cephx lockbox secret
 cluster fsid 1ca9f6a8-d036-11ec-8263-fa163ee967ad
 cluster name ceph
 crush device class None
 encrypted 0
 osd fsid 7ce687d9-07e7-4f8f-a34e-d1b0efb89920
 osd id 6
 osdspec affinity all-available-devices
 type block
 vdo 0
 devices /dev/vdc

Optional: List the devices in the storage cluster with the lights:

Example

[ceph: root@host01 /]# ceph device ls-lights

{
 "fault": [
 "SEAGATE_ST12000NM002G_ZL2KTGCK0000C149"
],
 "ident": []
}

a. Optional: Turn off the lights on the device:

Syntax

CHAPTER 7. THE CEPH-VOLUME UTILITY

73

ceph device light off DEVICE_NAME FAULT/INDENT --force

Example

[ceph: root@host01 /]# ceph device light off
SEAGATE_ST12000NM002G_ZL2KTGCK0000C149 fault --force

7.5. ACTIVATING CEPH OSDS USING CEPH-VOLUME

The activation process enables a systemd unit at boot time, which allows the correct OSD identifier and
its UUID to be enabled and mounted.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the Ceph OSD node.

Ceph OSDs prepared by the ceph-volume utility.

Procedure

1. Get the OSD ID and OSD FSID from an OSD node:

[ceph: root@host01 /]# ceph-volume lvm list

2. Activate the OSD:

Syntax

ceph-volume lvm activate --bluestore OSD_ID OSD_FSID

Example

[ceph: root@host01 /]# ceph-volume lvm activate --bluestore 10 7ce687d9-07e7-4f8f-a34e-
d1b0efb89920

To activate all OSDs that are prepared for activation, use the --all option:

Example

[ceph: root@host01 /]# ceph-volume lvm activate --all

3. Optionally, you can use the trigger subcommand. This command cannot be used directly, and it
is used by systemd so that it proxies input to ceph-volume lvm activate. This parses the
metadata coming from systemd and startup, detecting the UUID and ID associated with an
OSD.

Syntax

ceph-volume lvm trigger SYSTEMD_DATA

Red Hat Ceph Storage 7 Administration Guide

74

Here the SYSTEMD_DATA is in OSD_ID-OSD_FSID format.

Example

[ceph: root@host01 /]# ceph-volume lvm trigger 10 7ce687d9-07e7-4f8f-a34e-d1b0efb89920

Additional Resources

See the Preparing Ceph OSDs using `ceph-volume` section in the Red Hat Ceph Storage
Administration Guide for more details.

See the Creating Ceph OSDs using `ceph-volume` section in the Red Hat Ceph Storage
Administration Guide for more details.

7.6. DEACTIVATING CEPH OSDS USING CEPH-VOLUME

You can deactivate the Ceph OSDs using the ceph-volume lvm subcommand. This subcommand
removes the volume groups and the logical volume.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the Ceph OSD node.

The Ceph OSDs are activated using the ceph-volume utility.

Procedure

1. Get the OSD ID from the OSD node:

[ceph: root@host01 /]# ceph-volume lvm list

2. Deactivate the OSD:

Syntax

ceph-volume lvm deactivate OSD_ID

Example

[ceph: root@host01 /]# ceph-volume lvm deactivate 16

Additional Resources

See the Activating Ceph OSDs using `ceph-volume` section in the Red Hat Ceph Storage
Administration Guide for more details.

See the Preparing Ceph OSDs using `ceph-volume` section in the Red Hat Ceph Storage
Administration Guide for more details.

See the Creating Ceph OSDs using `ceph-volume` section in the Red Hat Ceph Storage
Administration Guide for more details.

CHAPTER 7. THE CEPH-VOLUME UTILITY

75

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#preparing-ceph-osds-using-ceph-volume_admin
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#creating-ceph-osds-using-ceph-volume_admin
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#activating-ceph-osds-using-ceph-volume_admin
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#preparing-ceph-osds-using-ceph-volume_admin
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#creating-ceph-osds-using-ceph-volume_admin

7.7. CREATING CEPH OSDS USING CEPH-VOLUME

The create subcommand calls the prepare subcommand, and then calls the activate subcommand.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the Ceph OSD nodes.

NOTE

If you prefer to have more control over the creation process, you can use the prepare and
activate subcommands separately to create the OSD, instead of using create. You can
use the two subcommands to gradually introduce new OSDs into a storage cluster, while
avoiding having to rebalance large amounts of data. Both approaches work the same way,
except that using the create subcommand causes the OSD to become up and in
immediately after completion.

Procedure

1. To create a new OSD:

Syntax

ceph-volume lvm create --bluestore --data VOLUME_GROUP/LOGICAL_VOLUME

Example

[root@osd ~]# ceph-volume lvm create --bluestore --data example_vg/data_lv

Additional Resources

See the Preparing Ceph OSDs using `ceph-volume` section in the Red Hat Ceph Storage
Administration Guide for more details.

See the Activating Ceph OSDs using `ceph-volume` section in the Red Hat Ceph Storage
Administration Guide for more details.

7.8. MIGRATING BLUEFS DATA

You can migrate the BlueStore file system (BlueFS) data, that is the RocksDB data, from the source
volume to the target volume using the migrate LVM subcommand. The source volume, except the main
one, is removed on success.

LVM volumes are primarily for the target only.

The new volumes are attached to the OSD, replacing one of the source drives.

Following are the placement rules for the LVM volumes:

If source list has DB or WAL volume, then the target device replaces it.

if source list has slow volume only, then explicit allocation using the new-db or new-wal

Red Hat Ceph Storage 7 Administration Guide

76

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#preparing-ceph-osds-using-ceph-volume_admin
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#activating-ceph-osds-using-ceph-volume_admin

if source list has slow volume only, then explicit allocation using the new-db or new-wal
command is needed.

The new-db and new-wal commands attaches the given logical volume to the given OSD as a DB or a
WAL volume respectively.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the Ceph OSD node.

Ceph OSDs prepared by the ceph-volume utility.

Volume groups and Logical volumes are created.

Procedure

1. Log in the cephadm shell:

Example

[root@host01 ~]# cephadm shell

2. Stop the OSD to which you have to add the DB or the WAL device:

Example

[ceph: root@host01 /]# ceph orch daemon stop osd.1

3. Mount the new devices to the container:

Example

[root@host01 ~]# cephadm shell --mount /var/lib/ceph/72436d46-ca06-11ec-9809-
ac1f6b5635ee/osd.1:/var/lib/ceph/osd/ceph-1

4. Attach the given logical volume to OSD as a DB/WAL device:

NOTE

This command fails if the OSD has an attached DB.

Syntax

ceph-volume lvm new-db --osd-id OSD_ID --osd-fsid OSD_FSID --target
VOLUME_GROUP_NAME/LOGICAL_VOLUME_NAME

Example

[ceph: root@host01 /]# ceph-volume lvm new-db --osd-id 1 --osd-fsid 7ce687d9-07e7-4f8f-
a34e-d1b0efb89921 --target vgname/new_db
[ceph: root@host01 /]# ceph-volume lvm new-wal --osd-id 1 --osd-fsid 7ce687d9-07e7-4f8f-

CHAPTER 7. THE CEPH-VOLUME UTILITY

77

a34e-d1b0efb89921 --target vgname/new_wal

5. You can migrate BlueFS data in the following ways:

Move BlueFS data from main device to LV that is already attached as DB:

Syntax

ceph-volume lvm migrate --osd-id OSD_ID --osd-fsid OSD_UUID --from data --target
VOLUME_GROUP_NAME/LOGICAL_VOLUME_NAME

Example

[ceph: root@host01 /]# ceph-volume lvm migrate --osd-id 1 --osd-fsid 0263644D-0BF1-
4D6D-BC34-28BD98AE3BC8 --from data --target vgname/db

Move BlueFS data from shared main device to LV which shall be attached as a new DB:

Syntax

ceph-volume lvm migrate --osd-id OSD_ID --osd-fsid OSD_UUID --from data --target
VOLUME_GROUP_NAME/LOGICAL_VOLUME_NAME

Example

[ceph: root@host01 /]# ceph-volume lvm migrate --osd-id 1 --osd-fsid 0263644D-0BF1-
4D6D-BC34-28BD98AE3BC8 --from data --target vgname/new_db

Move BlueFS data from DB device to new LV, and replace the DB device:

Syntax

ceph-volume lvm migrate --osd-id OSD_ID --osd-fsid OSD_UUID --from db --target
VOLUME_GROUP_NAME/LOGICAL_VOLUME_NAME

Example

[ceph: root@host01 /]# ceph-volume lvm migrate --osd-id 1 --osd-fsid 0263644D-0BF1-
4D6D-BC34-28BD98AE3BC8 --from db --target vgname/new_db

Move BlueFS data from main and DB devices to new LV, and replace the DB device:

Syntax

ceph-volume lvm migrate --osd-id OSD_ID --osd-fsid OSD_UUID --from data db --target
VOLUME_GROUP_NAME/LOGICAL_VOLUME_NAME

Example

[ceph: root@host01 /]# ceph-volume lvm migrate --osd-id 1 --osd-fsid 0263644D-0BF1-
4D6D-BC34-28BD98AE3BC8 --from data db --target vgname/new_db

Red Hat Ceph Storage 7 Administration Guide

78

Move BlueFS data from main, DB, and WAL devices to new LV, remove the WAL device, and
replace the the DB device:

Syntax

ceph-volume lvm migrate --osd-id OSD_ID --osd-fsid OSD_UUID --from data db wal --
target VOLUME_GROUP_NAME/LOGICAL_VOLUME_NAME

Example

[ceph: root@host01 /]# ceph-volume lvm migrate --osd-id 1 --osd-fsid 0263644D-0BF1-
4D6D-BC34-28BD98AE3BC8 --from data db --target vgname/new_db

Move BlueFS data from main, DB, and WAL devices to the main device, remove the WAL
and DB devices:

Syntax

ceph-volume lvm migrate --osd-id OSD_ID --osd-fsid OSD_UUID --from db wal --target
VOLUME_GROUP_NAME/LOGICAL_VOLUME_NAME

Example

[ceph: root@host01 /]# ceph-volume lvm migrate --osd-id 1 --osd-fsid 0263644D-0BF1-
4D6D-BC34-28BD98AE3BC8 --from db wal --target vgname/data

7.9. USING BATCH MODE WITH CEPH-VOLUME

The batch subcommand automates the creation of multiple OSDs when single devices are provided.

The ceph-volume command decides the best method to use to create the OSDs, based on drive type.
Ceph OSD optimization depends on the available devices:

If all devices are traditional hard drives, batch creates one OSD per device.

If all devices are solid state drives, batch creates two OSDs per device.

If there is a mix of traditional hard drives and solid state drives, batch uses the traditional hard
drives for data, and creates the largest possible journal (block.db) on the solid state drive.

NOTE

The batch subcommand does not support the creation of a separate logical volume for
the write-ahead-log (block.wal) device.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the Ceph OSD nodes.

Procedure

CHAPTER 7. THE CEPH-VOLUME UTILITY

79

1. To create OSDs on several drives:

Syntax

ceph-volume lvm batch --bluestore PATH_TO_DEVICE [PATH_TO_DEVICE]

Example

[ceph: root@host01 /]# ceph-volume lvm batch --bluestore /dev/sda /dev/sdb /dev/nvme0n1

Additional Resources

See the Creating Ceph OSDs using `ceph-volume` section in the Red Hat Ceph Storage
Administration Guide for more details.

7.10. ZAPPING DATA USING CEPH-VOLUME

The zap subcommand removes all data and filesystems from a logical volume or partition.

You can use the zap subcommand to zap logical volumes, partitions, or raw devices that are used by
Ceph OSDs for reuse. Any filesystems present on the given logical volume or partition are removed and
all data is purged.

Optionally, you can use the --destroy flag for complete removal of a logical volume, partition, or the
physical device.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the Ceph OSD node.

Procedure

Zap the logical volume:

Syntax

ceph-volume lvm zap VOLUME_GROUP_NAME/LOGICAL_VOLUME_NAME [--destroy]

Example

[ceph: root@host01 /]# ceph-volume lvm zap osd-vg/data-lv

Zap the partition:

Syntax

ceph-volume lvm zap DEVICE_PATH_PARTITION [--destroy]

Example

Red Hat Ceph Storage 7 Administration Guide

80

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#creating-ceph-osds-using-ceph-volume_admin

[ceph: root@host01 /]# ceph-volume lvm zap /dev/sdc1

Zap the raw device:

Syntax

ceph-volume lvm zap DEVICE_PATH --destroy

Example

[ceph: root@host01 /]# ceph-volume lvm zap /dev/sdc --destroy

Purge multiple devices with the OSD ID:

Syntax

ceph-volume lvm zap --destroy --osd-id OSD_ID

Example

[ceph: root@host01 /]# ceph-volume lvm zap --destroy --osd-id 16

NOTE

All the relative devices are zapped.

Purge OSDs with the FSID:

Syntax

ceph-volume lvm zap --destroy --osd-fsid OSD_FSID

Example

[ceph: root@host01 /]# ceph-volume lvm zap --destroy --osd-fsid 65d7b6b1-e41a-4a3c-b363-
83ade63cb32b

NOTE

All the relative devices are zapped.

CHAPTER 7. THE CEPH-VOLUME UTILITY

81

CHAPTER 8. CEPH PERFORMANCE BENCHMARK
As a storage administrator, you can benchmark performance of the Red Hat Ceph Storage cluster. The
purpose of this section is to give Ceph administrators a basic understanding of Ceph’s native
benchmarking tools. These tools will provide some insight into how the Ceph storage cluster is
performing. This is not the definitive guide to Ceph performance benchmarking, nor is it a guide on how
to tune Ceph accordingly.

8.1. PERFORMANCE BASELINE

The OSD, including the journal, disks and the network throughput should each have a performance
baseline to compare against. You can identify potential tuning opportunities by comparing the baseline
performance data with the data from Ceph’s native tools. Red Hat Enterprise Linux has many built-in
tools, along with a plethora of open source community tools, available to help accomplish these tasks.

Additional Resources

For more details about some of the available tools, see this Knowledgebase article.

8.2. BENCHMARKING CEPH PERFORMANCE

Ceph includes the rados bench command to do performance benchmarking on a RADOS storage
cluster. The command will execute a write test and two types of read tests. The --no-cleanup option is
important to use when testing both read and write performance. By default the rados bench command
will delete the objects it has written to the storage pool. Leaving behind these objects allows the two
read tests to measure sequential and random read performance.

NOTE

Before running these performance tests, drop all the file system caches by running the
following:

Example

[ceph: root@host01 /]# echo 3 | sudo tee /proc/sys/vm/drop_caches && sudo sync

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. Create a new storage pool:

Example

[ceph: root@host01 /]# ceph osd pool create testbench 100 100

2. Execute a write test for 10 seconds to the newly created storage pool:

Red Hat Ceph Storage 7 Administration Guide

82

https://access.redhat.com/solutions/173863

Example

[ceph: root@host01 /]# rados bench -p testbench 10 write --no-cleanup

Maintaining 16 concurrent writes of 4194304 bytes for up to 10 seconds or 0 objects
 Object prefix: benchmark_data_cephn1.home.network_10510
 sec Cur ops started finished avg MB/s cur MB/s last lat avg lat
 0 0 0 0 0 0 - 0
 1 16 16 0 0 0 - 0
 2 16 16 0 0 0 - 0
 3 16 16 0 0 0 - 0
 4 16 17 1 0.998879 1 3.19824 3.19824
 5 16 18 2 1.59849 4 4.56163 3.87993
 6 16 18 2 1.33222 0 - 3.87993
 7 16 19 3 1.71239 2 6.90712 4.889
 8 16 25 9 4.49551 24 7.75362 6.71216
 9 16 25 9 3.99636 0 - 6.71216
 10 16 27 11 4.39632 4 9.65085 7.18999
 11 16 27 11 3.99685 0 - 7.18999
 12 16 27 11 3.66397 0 - 7.18999
 13 16 28 12 3.68975 1.33333 12.8124 7.65853
 14 16 28 12 3.42617 0 - 7.65853
 15 16 28 12 3.19785 0 - 7.65853
 16 11 28 17 4.24726 6.66667 12.5302 9.27548
 17 11 28 17 3.99751 0 - 9.27548
 18 11 28 17 3.77546 0 - 9.27548
 19 11 28 17 3.57683 0 - 9.27548
 Total time run: 19.505620
Total writes made: 28
Write size: 4194304
Bandwidth (MB/sec): 5.742

Stddev Bandwidth: 5.4617
Max bandwidth (MB/sec): 24
Min bandwidth (MB/sec): 0
Average Latency: 10.4064
Stddev Latency: 3.80038
Max latency: 19.503
Min latency: 3.19824

3. Execute a sequential read test for 10 seconds to the storage pool:

Example

[ceph: root@host01 /]# rados bench -p testbench 10 seq

sec Cur ops started finished avg MB/s cur MB/s last lat avg lat
 0 0 0 0 0 0 - 0
Total time run: 0.804869
Total reads made: 28
Read size: 4194304
Bandwidth (MB/sec): 139.153

CHAPTER 8. CEPH PERFORMANCE BENCHMARK

83

Average Latency: 0.420841
Max latency: 0.706133
Min latency: 0.0816332

4. Execute a random read test for 10 seconds to the storage pool:

Example

[ceph: root@host01 /]# rados bench -p testbench 10 rand

sec Cur ops started finished avg MB/s cur MB/s last lat avg lat
 0 0 0 0 0 0 - 0
 1 16 46 30 119.801 120 0.440184 0.388125
 2 16 81 65 129.408 140 0.577359 0.417461
 3 16 120 104 138.175 156 0.597435 0.409318
 4 15 157 142 141.485 152 0.683111 0.419964
 5 16 206 190 151.553 192 0.310578 0.408343
 6 16 253 237 157.608 188 0.0745175 0.387207
 7 16 287 271 154.412 136 0.792774 0.39043
 8 16 325 309 154.044 152 0.314254 0.39876
 9 16 362 346 153.245 148 0.355576 0.406032
 10 16 405 389 155.092 172 0.64734 0.398372
Total time run: 10.302229
Total reads made: 405
Read size: 4194304
Bandwidth (MB/sec): 157.248

Average Latency: 0.405976
Max latency: 1.00869
Min latency: 0.0378431

5. To increase the number of concurrent reads and writes, use the -t option, which the default is 16
threads. Also, the -b parameter can adjust the size of the object being written. The default
object size is 4 MB. A safe maximum object size is 16 MB. Red Hat recommends running multiple
copies of these benchmark tests to different pools. Doing this shows the changes in
performance from multiple clients.
Add the --run-name LABEL option to control the names of the objects that get written during
the benchmark test. Multiple rados bench commands might be ran simultaneously by changing
the --run-name label for each running command instance. This prevents potential I/O errors
that can occur when multiple clients are trying to access the same object and allows for
different clients to access different objects. The --run-name option is also useful when trying to
simulate a real world workload.

Example

[ceph: root@host01 /]# rados bench -p testbench 10 write -t 4 --run-name client1

Maintaining 4 concurrent writes of 4194304 bytes for up to 10 seconds or 0 objects
 Object prefix: benchmark_data_node1_12631
 sec Cur ops started finished avg MB/s cur MB/s last lat avg lat
 0 0 0 0 0 0 - 0
 1 4 4 0 0 0 - 0
 2 4 6 2 3.99099 4 1.94755 1.93361
 3 4 8 4 5.32498 8 2.978 2.44034
 4 4 8 4 3.99504 0 - 2.44034

Red Hat Ceph Storage 7 Administration Guide

84

 5 4 10 6 4.79504 4 2.92419 2.4629
 6 3 10 7 4.64471 4 3.02498 2.5432
 7 4 12 8 4.55287 4 3.12204 2.61555
 8 4 14 10 4.9821 8 2.55901 2.68396
 9 4 16 12 5.31621 8 2.68769 2.68081
 10 4 17 13 5.18488 4 2.11937 2.63763
 11 4 17 13 4.71431 0 - 2.63763
 12 4 18 14 4.65486 2 2.4836 2.62662
 13 4 18 14 4.29757 0 - 2.62662
Total time run: 13.123548
Total writes made: 18
Write size: 4194304
Bandwidth (MB/sec): 5.486

Stddev Bandwidth: 3.0991
Max bandwidth (MB/sec): 8
Min bandwidth (MB/sec): 0
Average Latency: 2.91578
Stddev Latency: 0.956993
Max latency: 5.72685
Min latency: 1.91967

6. Remove the data created by the rados bench command:

Example

[ceph: root@host01 /]# rados -p testbench cleanup

8.3. BENCHMARKING CEPH BLOCK PERFORMANCE

Ceph includes the rbd bench-write command to test sequential writes to the block device measuring
throughput and latency. The default byte size is 4096, the default number of I/O threads is 16, and the
default total number of bytes to write is 1 GB. These defaults can be modified by the --io-size, --io-
threads and --io-total options respectively.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

Run the write performance test against the block device

Example

[root@host01 ~]# rbd bench --io-type write image01 --pool=testbench

bench-write io_size 4096 io_threads 16 bytes 1073741824 pattern seq
 SEC OPS OPS/SEC BYTES/SEC
 2 11127 5479.59 22444382.79
 3 11692 3901.91 15982220.33
 4 12372 2953.34 12096895.42

CHAPTER 8. CEPH PERFORMANCE BENCHMARK

85

 5 12580 2300.05 9421008.60
 6 13141 2101.80 8608975.15
 7 13195 356.07 1458459.94
 8 13820 390.35 1598876.60
 9 14124 325.46 1333066.62
 ..

Additional Resources

See the Ceph block devices chapter in the Red Hat Ceph Storage Block Device Guide for more
information on the rbd command.

Red Hat Ceph Storage 7 Administration Guide

86

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/block_device_guide/#ceph-block-devices

CHAPTER 9. CEPH PERFORMANCE COUNTERS
As a storage administrator, you can gather performance metrics of the Red Hat Ceph Storage cluster.
The Ceph performance counters are a collection of internal infrastructure metrics. The collection,
aggregation, and graphing of this metric data can be done by an assortment of tools and can be useful
for performance analytics.

9.1. ACCESS TO CEPH PERFORMANCE COUNTERS

The performance counters are available through a socket interface for the Ceph Monitors and the
OSDs. The socket file for each respective daemon is located under /var/run/ceph, by default. The
performance counters are grouped together into collection names. These collections names represent a
subsystem or an instance of a subsystem.

Here is the full list of the Monitor and the OSD collection name categories with a brief description for
each :

Monitor Collection Name Categories

Cluster Metrics - Displays information about the storage cluster: Monitors, OSDs, Pools, and
PGs

Level Database Metrics - Displays information about the back-end KeyValueStore database

Monitor Metrics - Displays general monitor information

Paxos Metrics - Displays information on cluster quorum management

Throttle Metrics - Displays the statistics on how the monitor is throttling

OSD Collection Name Categories

Write Back Throttle Metrics - Displays the statistics on how the write back throttle is tracking
unflushed IO

Level Database Metrics - Displays information about the back-end KeyValueStore database

Objecter Metrics - Displays information on various object-based operations

Read and Write Operations Metrics - Displays information on various read and write operations

Recovery State Metrics - Displays - Displays latencies on various recovery states

OSD Throttle Metrics - Display the statistics on how the OSD is throttling

RADOS Gateway Collection Name Categories

Object Gateway Client Metrics - Displays statistics on GET and PUT requests

Objecter Metrics - Displays information on various object-based operations

Object Gateway Throttle Metrics - Display the statistics on how the OSD is throttling

9.2. DISPLAY THE CEPH PERFORMANCE COUNTERS

CHAPTER 9. CEPH PERFORMANCE COUNTERS

87

The ceph daemon DAEMON_NAME perf schema command outputs the available metrics. Each metric
has an associated bit field value type.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. To view the metric’s schema:

Synatx

ceph daemon DAEMON_NAME perf schema

NOTE

You must run the ceph daemon command from the node running the daemon.

2. Executing ceph daemon DAEMON_NAME perf schema command from the monitor node:

Example

[ceph: root@host01 /]# ceph daemon mon.host01 perf schema

3. Executing the ceph daemon DAEMON_NAME perf schema command from the OSD node:

Example

[ceph: root@host01 /]# ceph daemon osd.11 perf schema

Table 9.1. The bit field value definitions

Bit Meaning

1 Floating point value

2 Unsigned 64-bit integer value

4 Average (Sum + Count)

8 Counter

Each value will have bit 1 or 2 set to indicate the type, either a floating point or an integer value. When bit
4 is set, there will be two values to read, a sum and a count. When bit 8 is set, the average for the
previous interval would be the sum delta, since the previous read, divided by the count delta.
Alternatively, dividing the values outright would provide the lifetime average value. Typically these are
used to measure latencies, the number of requests and a sum of request latencies. Some bit values are
combined, for example 5, 6 and 10. A bit value of 5 is a combination of bit 1 and bit 4. This means the

Red Hat Ceph Storage 7 Administration Guide

88

average will be a floating point value. A bit value of 6 is a combination of bit 2 and bit 4. This means the
average value will be an integer. A bit value of 10 is a combination of bit 2 and bit 8. This means the
counter value will be an integer value.

Additional Resources

See Average count and sum section in the Red Hat Ceph Storage Administration Guide for more
details.

9.3. DUMP THE CEPH PERFORMANCE COUNTERS

The ceph daemon .. perf dump command outputs the current values and groups the metrics under the
collection name for each subsystem.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the node.

Procedure

1. To view the current metric data:

Syntax

ceph daemon DAEMON_NAME perf dump

NOTE

You must run the ceph daemon command from the node running the daemon.

2. Executing ceph daemon .. perf dump command from the Monitor node:

[ceph: root@host01 /]# ceph daemon mon.host01 perf dump

3. Executing the ceph daemon .. perf dump command from the OSD node:

[ceph: root@host01 /]# ceph daemon osd.11 perf dump

Additional Resources

To view a short description of each Monitor metric available, please see the Ceph monitor
metrics table.

9.4. AVERAGE COUNT AND SUM

All latency numbers have a bit field value of 5. This field contains floating point values for the average
count and sum. The avgcount is the number of operations within this range and the sum is the total
latency in seconds. When dividing the sum by the avgcount this will provide you with an idea of the
latency per operation.

CHAPTER 9. CEPH PERFORMANCE COUNTERS

89

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#average-count-and-sum_admin
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#ceph-monitor-metrics_admin

Additional Resources

To view a short description of each OSD metric available, please see the Ceph OSD table.

9.5. CEPH MONITOR METRICS

Cluster Metrics Table

Level Database Metrics Table

General Monitor Metrics Table

Paxos Metrics Table

Throttle Metrics Table

Table 9.2. Cluster Metrics Table

Collection Name Metric Name Bit Field Value Short Description

cluster num_mon 2 Number of monitors

 num_mon_quorum 2 Number of monitors in quorum

 num_osd 2 Total number of OSD

 num_osd_up 2 Number of OSDs that are up

 num_osd_in 2 Number of OSDs that are in
cluster

 osd_epoch 2 Current epoch of OSD map

 osd_bytes 2 Total capacity of cluster in
bytes

 osd_bytes_used 2 Number of used bytes on
cluster

 osd_bytes_avail 2 Number of available bytes on
cluster

 num_pool 2 Number of pools

 num_pg 2 Total number of placement
groups

 num_pg_active_clea
n

2 Number of placement groups
in active+clean state

Red Hat Ceph Storage 7 Administration Guide

90

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#ceph-osd-metrics_admin
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#mon-cluster-table
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#mon-leveldb-table
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#mon-general-table
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#mon-paxos-table
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#mon-throttle-table

 num_pg_active 2 Number of placement groups
in active state

 num_pg_peering 2 Number of placement groups
in peering state

 num_object 2 Total number of objects on
cluster

 num_object_degrad
ed

2 Number of degraded (missing
replicas) objects

 num_object_misplac
ed

2 Number of misplaced (wrong
location in the cluster) objects

 num_object_unfoun
d

2 Number of unfound objects

 num_bytes 2 Total number of bytes of all
objects

 num_mds_up 2 Number of MDSs that are up

 num_mds_in 2 Number of MDS that are in
cluster

 num_mds_failed 2 Number of failed MDS

 mds_epoch 2 Current epoch of MDS map

Collection Name Metric Name Bit Field Value Short Description

Table 9.3. Level Database Metrics Table

Collection Name Metric Name Bit Field Value Short Description

leveldb leveldb_get 10 Gets

 leveldb_transaction 10 Transactions

 leveldb_compact 10 Compactions

 leveldb_compact_ra
nge

10 Compactions by range

 leveldb_compact_qu
eue_merge

10 Mergings of ranges in
compaction queue

CHAPTER 9. CEPH PERFORMANCE COUNTERS

91

 leveldb_compact_qu
eue_len

2 Length of compaction queue

Collection Name Metric Name Bit Field Value Short Description

Table 9.4. General Monitor Metrics Table

Collection Name Metric Name Bit Field Value Short Description

mon num_sessions 2 Current number of opened
monitor sessions

 session_add 10 Number of created monitor
sessions

 session_rm 10 Number of remove_session
calls in monitor

 session_trim 10 Number of trimed monitor
sessions

 num_elections 10 Number of elections monitor
took part in

 election_call 10 Number of elections started by
monitor

 election_win 10 Number of elections won by
monitor

 election_lose 10 Number of elections lost by
monitor

Table 9.5. Paxos Metrics Table

Collection Name Metric Name Bit Field Value Short Description

paxos start_leader 10 Starts in leader role

 start_peon 10 Starts in peon role

 restart 10 Restarts

 refresh 10 Refreshes

 refresh_latency 5 Refresh latency

Red Hat Ceph Storage 7 Administration Guide

92

 begin 10 Started and handled begins

 begin_keys 6 Keys in transaction on begin

 begin_bytes 6 Data in transaction on begin

 begin_latency 5 Latency of begin operation

 commit 10 Commits

 commit_keys 6 Keys in transaction on commit

 commit_bytes 6 Data in transaction on commit

 commit_latency 5 Commit latency

 collect 10 Peon collects

 collect_keys 6 Keys in transaction on peon
collect

 collect_bytes 6 Data in transaction on peon
collect

 collect_latency 5 Peon collect latency

 collect_uncommitted 10 Uncommitted values in started
and handled collects

 collect_timeout 10 Collect timeouts

 accept_timeout 10 Accept timeouts

 lease_ack_timeout 10 Lease acknowledgement
timeouts

 lease_timeout 10 Lease timeouts

 store_state 10 Store a shared state on disk

 store_state_keys 6 Keys in transaction in stored
state

 store_state_bytes 6 Data in transaction in stored
state

Collection Name Metric Name Bit Field Value Short Description

CHAPTER 9. CEPH PERFORMANCE COUNTERS

93

 store_state_latency 5 Storing state latency

 share_state 10 Sharings of state

 share_state_keys 6 Keys in shared state

 share_state_bytes 6 Data in shared state

 new_pn 10 New proposal number queries

 new_pn_latency 5 New proposal number getting
latency

Collection Name Metric Name Bit Field Value Short Description

Table 9.6. Throttle Metrics Table

Collection Name Metric Name Bit Field Value Short Description

throttle-* val 10 Currently available throttle

 max 10 Max value for throttle

 get 10 Gets

 get_sum 10 Got data

 get_or_fail_fail 10 Get blocked during get_or_fail

 get_or_fail_success 10 Successful get during
get_or_fail

 take 10 Takes

 take_sum 10 Taken data

 put 10 Puts

 put_sum 10 Put data

 wait 5 Waiting latency

9.6. CEPH OSD METRICS

Write Back Throttle Metrics Table

Level Database Metrics Table

Red Hat Ceph Storage 7 Administration Guide

94

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#osd-wbthrottle-table
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#osd-leveldb-table

Objecter Metrics Table

Read and Write Operations Metrics Table

Recovery State Metrics Table

OSD Throttle Metrics Table

Table 9.7. Write Back Throttle Metrics Table

Collection Name Metric Name Bit Field Value Short Description

WBThrottle bytes_dirtied 2 Dirty data

 bytes_wb 2 Written data

 ios_dirtied 2 Dirty operations

 ios_wb 2 Written operations

 inodes_dirtied 2 Entries waiting for write

 inodes_wb 2 Written entries

Table 9.8. Level Database Metrics Table

Collection Name Metric Name Bit Field Value Short Description

leveldb leveldb_get 10 Gets

 leveldb_transaction 10 Transactions

 leveldb_compact 10 Compactions

 leveldb_compact_ra
nge

10 Compactions by range

 leveldb_compact_qu
eue_merge

10 Mergings of ranges in
compaction queue

 leveldb_compact_qu
eue_len

2 Length of compaction queue

Table 9.9. Objecter Metrics Table

Collection Name Metric Name Bit Field Value Short Description

objecter op_active 2 Active operations

CHAPTER 9. CEPH PERFORMANCE COUNTERS

95

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#osd-objecter-table
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#osd-rw-ops-table
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#osd-recovery-table
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#osd-throttle-table

 op_laggy 2 Laggy operations

 op_send 10 Sent operations

 op_send_bytes 10 Sent data

 op_resend 10 Resent operations

 op_ack 10 Commit callbacks

 op_commit 10 Operation commits

 op 10 Operation

 op_r 10 Read operations

 op_w 10 Write operations

 op_rmw 10 Read-modify-write operations

 op_pg 10 PG operation

 osdop_stat 10 Stat operations

 osdop_create 10 Create object operations

 osdop_read 10 Read operations

 osdop_write 10 Write operations

 osdop_writefull 10 Write full object operations

 osdop_append 10 Append operation

 osdop_zero 10 Set object to zero operations

 osdop_truncate 10 Truncate object operations

 osdop_delete 10 Delete object operations

 osdop_mapext 10 Map extent operations

 osdop_sparse_read 10 Sparse read operations

Collection Name Metric Name Bit Field Value Short Description

Red Hat Ceph Storage 7 Administration Guide

96

 osdop_clonerange 10 Clone range operations

 osdop_getxattr 10 Get xattr operations

 osdop_setxattr 10 Set xattr operations

 osdop_cmpxattr 10 Xattr comparison operations

 osdop_rmxattr 10 Remove xattr operations

 osdop_resetxattrs 10 Reset xattr operations

 osdop_tmap_up 10 TMAP update operations

 osdop_tmap_put 10 TMAP put operations

 osdop_tmap_get 10 TMAP get operations

 osdop_call 10 Call (execute) operations

 osdop_watch 10 Watch by object operations

 osdop_notify 10 Notify about object operations

 osdop_src_cmpxattr 10 Extended attribute comparison
in multi operations

 osdop_other 10 Other operations

 linger_active 2 Active lingering operations

 linger_send 10 Sent lingering operations

 linger_resend 10 Resent lingering operations

 linger_ping 10 Sent pings to lingering
operations

 poolop_active 2 Active pool operations

 poolop_send 10 Sent pool operations

 poolop_resend 10 Resent pool operations

Collection Name Metric Name Bit Field Value Short Description

CHAPTER 9. CEPH PERFORMANCE COUNTERS

97

 poolstat_active 2 Active get pool stat operations

 poolstat_send 10 Pool stat operations sent

 poolstat_resend 10 Resent pool stats

 statfs_active 2 Statfs operations

 statfs_send 10 Sent FS stats

 statfs_resend 10 Resent FS stats

 command_active 2 Active commands

 command_send 10 Sent commands

 command_resend 10 Resent commands

 map_epoch 2 OSD map epoch

 map_full 10 Full OSD maps received

 map_inc 10 Incremental OSD maps
received

 osd_sessions 2 Open sessions

 osd_session_open 10 Sessions opened

 osd_session_close 10 Sessions closed

 osd_laggy 2 Laggy OSD sessions

Collection Name Metric Name Bit Field Value Short Description

Table 9.10. Read and Write Operations Metrics Table

Collection Name Metric Name Bit Field Value Short Description

osd op_wip 2 Replication operations
currently being processed
(primary)

 op_in_bytes 10 Client operations total write
size

Red Hat Ceph Storage 7 Administration Guide

98

 op_out_bytes 10 Client operations total read
size

 op_latency 5 Latency of client operations
(including queue time)

 op_process_latency 5 Latency of client operations
(excluding queue time)

 op_r 10 Client read operations

 op_r_out_bytes 10 Client data read

 op_r_latency 5 Latency of read operation
(including queue time)

 op_r_process_latenc
y

5 Latency of read operation
(excluding queue time)

 op_w 10 Client write operations

 op_w_in_bytes 10 Client data written

 op_w_rlat 5 Client write operation
readable/applied latency

 op_w_latency 5 Latency of write operation
(including queue time)

 op_w_process_laten
cy

5 Latency of write operation
(excluding queue time)

 op_rw 10 Client read-modify-write
operations

 op_rw_in_bytes 10 Client read-modify-write
operations write in

 op_rw_out_bytes 10 Client read-modify-write
operations read out

 op_rw_rlat 5 Client read-modify-write
operation readable/applied
latency

Collection Name Metric Name Bit Field Value Short Description

CHAPTER 9. CEPH PERFORMANCE COUNTERS

99

 op_rw_latency 5 Latency of read-modify-write
operation (including queue
time)

 op_rw_process_late
ncy

5 Latency of read-modify-write
operation (excluding queue
time)

 subop 10 Suboperations

 subop_in_bytes 10 Suboperations total size

 subop_latency 5 Suboperations latency

 subop_w 10 Replicated writes

 subop_w_in_bytes 10 Replicated written data size

 subop_w_latency 5 Replicated writes latency

 subop_pull 10 Suboperations pull requests

 subop_pull_latency 5 Suboperations pull latency

 subop_push 10 Suboperations push messages

 subop_push_in_byte
s

10 Suboperations pushed size

 subop_push_latency 5 Suboperations push latency

 pull 10 Pull requests sent

 push 10 Push messages sent

 push_out_bytes 10 Pushed size

 push_in 10 Inbound push messages

 push_in_bytes 10 Inbound pushed size

 recovery_ops 10 Started recovery operations

 loadavg 2 CPU load

Collection Name Metric Name Bit Field Value Short Description

Red Hat Ceph Storage 7 Administration Guide

100

 buffer_bytes 2 Total allocated buffer size

 numpg 2 Placement groups

 numpg_primary 2 Placement groups for which
this osd is primary

 numpg_replica 2 Placement groups for which
this osd is replica

 numpg_stray 2 Placement groups ready to be
deleted from this osd

 heartbeat_to_peers 2 Heartbeat (ping) peers we
send to

 heartbeat_from_peer
s

2 Heartbeat (ping) peers we recv
from

 map_messages 10 OSD map messages

 map_message_epoc
hs

10 OSD map epochs

 map_message_epoc
h_dups

10 OSD map duplicates

 stat_bytes 2 OSD size

 stat_bytes_used 2 Used space

 stat_bytes_avail 2 Available space

 copyfrom 10 Rados 'copy-from' operations

 tier_promote 10 Tier promotions

 tier_flush 10 Tier flushes

 tier_flush_fail 10 Failed tier flushes

 tier_try_flush 10 Tier flush attempts

 tier_try_flush_fail 10 Failed tier flush attempts

Collection Name Metric Name Bit Field Value Short Description

CHAPTER 9. CEPH PERFORMANCE COUNTERS

101

 tier_evict 10 Tier evictions

 tier_whiteout 10 Tier whiteouts

 tier_dirty 10 Dirty tier flag set

 tier_clean 10 Dirty tier flag cleaned

 tier_delay 10 Tier delays (agent waiting)

 tier_proxy_read 10 Tier proxy reads

 agent_wake 10 Tiering agent wake up

 agent_skip 10 Objects skipped by agent

 agent_flush 10 Tiering agent flushes

 agent_evict 10 Tiering agent evictions

 object_ctx_cache_hi
t

10 Object context cache hits

 object_ctx_cache_to
tal

10 Object context cache lookups

 ceph_cluster_osd_bl
ocklist_count

2 Number of clients blocklisted

Collection Name Metric Name Bit Field Value Short Description

Table 9.11. Recovery State Metrics Table

Collection Name Metric Name Bit Field Value Short Description

recoverystate_
perf

initial_latency 5 Initial recovery state latency

 started_latency 5 Started recovery state latency

 reset_latency 5 Reset recovery state latency

 start_latency 5 Start recovery state latency

 primary_latency 5 Primary recovery state latency

 peering_latency 5 Peering recovery state latency

Red Hat Ceph Storage 7 Administration Guide

102

 backfilling_latency 5 Backfilling recovery state
latency

 waitremotebackfillre
served_latency

5 Wait remote backfill reserved
recovery state latency

 waitlocalbackfillrese
rved_latency

5 Wait local backfill reserved
recovery state latency

 notbackfilling_latenc
y

5 Notbackfilling recovery state
latency

 repnotrecovering_lat
ency

5 Repnotrecovering recovery
state latency

 repwaitrecoveryreser
ved_latency

5 Rep wait recovery reserved
recovery state latency

 repwaitbackfillreserv
ed_latency

5 Rep wait backfill reserved
recovery state latency

 RepRecovering_late
ncy

5 RepRecovering recovery state
latency

 activating_latency 5 Activating recovery state
latency

 waitlocalrecoveryres
erved_latency

5 Wait local recovery reserved
recovery state latency

 waitremoterecoveryr
eserved_latency

5 Wait remote recovery reserved
recovery state latency

 recovering_latency 5 Recovering recovery state
latency

 recovered_latency 5 Recovered recovery state
latency

 clean_latency 5 Clean recovery state latency

 active_latency 5 Active recovery state latency

 replicaactive_latency 5 Replicaactive recovery state
latency

 stray_latency 5 Stray recovery state latency

Collection Name Metric Name Bit Field Value Short Description

CHAPTER 9. CEPH PERFORMANCE COUNTERS

103

 getinfo_latency 5 Getinfo recovery state latency

 getlog_latency 5 Getlog recovery state latency

 waitactingchange_la
tency

5 Waitactingchange recovery
state latency

 incomplete_latency 5 Incomplete recovery state
latency

 getmissing_latency 5 Getmissing recovery state
latency

 waitupthru_latency 5 Waitupthru recovery state
latency

Collection Name Metric Name Bit Field Value Short Description

Table 9.12. OSD Throttle Metrics Table

Collection Name Metric Name Bit Field Value Short Description

throttle-* val 10 Currently available throttle

 max 10 Max value for throttle

 get 10 Gets

 get_sum 10 Got data

 get_or_fail_fail 10 Get blocked during get_or_fail

 get_or_fail_success 10 Successful get during
get_or_fail

 take 10 Takes

 take_sum 10 Taken data

 put 10 Puts

 put_sum 10 Put data

 wait 5 Waiting latency

9.7. CEPH OBJECT GATEWAY METRICS

Red Hat Ceph Storage 7 Administration Guide

104

Ceph Object Gateway Client Table

Objecter Metrics Table

Ceph Object Gateway Throttle Metrics Table

Table 9.13. Ceph Object Gateway Client Metrics Table

Collection Name Metric Name Bit Field Value Short Description

client.rgw.
<rgw_node_na

me>

req 10 Requests

 failed_req 10 Aborted requests

 copy_obj_ops 10 Copy objects

 copy_obj_bytes 10 Size of copy objects

 copy_obj_lat 10 Copy object latency

 del_obj_ops 10 Delete objects

 del_obj_bytes 10 Size of delete objects

 del_obj_lat 10 Delete object latency

 del_bucket_ops 10 Delete Buckets

 del_bucket_lat 10 Delete bucket latency

 get 10 Gets

 get_b 10 Size of gets

 get_initial_lat 5 Get latency

 list_obj_ops 10 List objects

 list_obj_lat 10 List object latency

 list_buckets_ops 10 List buckets

 list_buckets_lat 10 List buckets latency

 put 10 Puts

 put_b 10 Size of puts

CHAPTER 9. CEPH PERFORMANCE COUNTERS

105

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#rgw-client-table
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#rgw-objecter-table
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#rgw-throttle-table

 put_initial_lat 5 Put latency

 qlen 2 Queue length

 qactive 2 Active requests queue

 cache_hit 10 Cache hits

 cache_miss 10 Cache miss

 keystone_token_cac
he_hit

10 Keystone token cache hits

 keystone_token_cac
he_miss

10 Keystone token cache miss

Collection Name Metric Name Bit Field Value Short Description

Table 9.14. Objecter Metrics Table

Collection Name Metric Name Bit Field Value Short Description

objecter op_active 2 Active operations

 op_laggy 2 Laggy operations

 op_send 10 Sent operations

 op_send_bytes 10 Sent data

 op_resend 10 Resent operations

 op_ack 10 Commit callbacks

 op_commit 10 Operation commits

 op 10 Operation

 op_r 10 Read operations

 op_w 10 Write operations

 op_rmw 10 Read-modify-write operations

 op_pg 10 PG operation

 osdop_stat 10 Stat operations

Red Hat Ceph Storage 7 Administration Guide

106

 osdop_create 10 Create object operations

 osdop_read 10 Read operations

 osdop_write 10 Write operations

 osdop_writefull 10 Write full object operations

 osdop_append 10 Append operation

 osdop_zero 10 Set object to zero operations

 osdop_truncate 10 Truncate object operations

 osdop_delete 10 Delete object operations

 osdop_mapext 10 Map extent operations

 osdop_sparse_read 10 Sparse read operations

 osdop_clonerange 10 Clone range operations

 osdop_getxattr 10 Get xattr operations

 osdop_setxattr 10 Set xattr operations

 osdop_cmpxattr 10 Xattr comparison operations

 osdop_rmxattr 10 Remove xattr operations

 osdop_resetxattrs 10 Reset xattr operations

 osdop_tmap_up 10 TMAP update operations

 osdop_tmap_put 10 TMAP put operations

 osdop_tmap_get 10 TMAP get operations

 osdop_call 10 Call (execute) operations

 osdop_watch 10 Watch by object operations

 osdop_notify 10 Notify about object operations

Collection Name Metric Name Bit Field Value Short Description

CHAPTER 9. CEPH PERFORMANCE COUNTERS

107

 osdop_src_cmpxattr 10 Extended attribute comparison
in multi operations

 osdop_other 10 Other operations

 linger_active 2 Active lingering operations

 linger_send 10 Sent lingering operations

 linger_resend 10 Resent lingering operations

 linger_ping 10 Sent pings to lingering
operations

 poolop_active 2 Active pool operations

 poolop_send 10 Sent pool operations

 poolop_resend 10 Resent pool operations

 poolstat_active 2 Active get pool stat operations

 poolstat_send 10 Pool stat operations sent

 poolstat_resend 10 Resent pool stats

 statfs_active 2 Statfs operations

 statfs_send 10 Sent FS stats

 statfs_resend 10 Resent FS stats

 command_active 2 Active commands

 command_send 10 Sent commands

 command_resend 10 Resent commands

 map_epoch 2 OSD map epoch

 map_full 10 Full OSD maps received

 map_inc 10 Incremental OSD maps
received

Collection Name Metric Name Bit Field Value Short Description

Red Hat Ceph Storage 7 Administration Guide

108

 osd_sessions 2 Open sessions

 osd_session_open 10 Sessions opened

 osd_session_close 10 Sessions closed

 osd_laggy 2 Laggy OSD sessions

Collection Name Metric Name Bit Field Value Short Description

Table 9.15. Ceph Object Gateway Throttle Metrics Table

Collection Name Metric Name Bit Field Value Short Description

throttle-* val 10 Currently available throttle

 max 10 Max value for throttle

 get 10 Gets

 get_sum 10 Got data

 get_or_fail_fail 10 Get blocked during get_or_fail

 get_or_fail_success 10 Successful get during
get_or_fail

 take 10 Takes

 take_sum 10 Taken data

 put 10 Puts

 put_sum 10 Put data

 wait 5 Waiting latency

CHAPTER 9. CEPH PERFORMANCE COUNTERS

109

CHAPTER 10. THE MCLOCK OSD SCHEDULER
As a storage administrator, you can implement the Red Hat Ceph Storage’s quality of service (QoS)
using mClock queueing scheduler. This is based on an adaptation of the mClock algorithm called
dmClock.

The mClock OSD scheduler provides the desired QoS using configuration profiles to allocate proper
reservation, weight, and limit tags to the service types.

The mClock OSD scheduler performs the QoS calculations for the different device types, that is SSD or
HDD, by using the OSD’s IOPS capability (determined automatically) and maximum sequential
bandwidth capability (See osd_mclock_max_sequential_bandwidth_hdd and
osd_mclock_max_sequential_bandwidth_ssd in The mclock configuration options section).

10.1. COMPARISON OF MCLOCK OSD SCHEDULER WITH WPQ OSD
SCHEDULER

The mClock OSD scheduler replaces the Weighted Priority Queue (WPQ) OSD scheduler as a default
scheduler in Red Hat Ceph Storage 6.1.

IMPORTANT

The mClock scheduler is supported for BlueStore OSDs.

The mClock OSD scheduler currently features an immediate queue, into which operations that require
immediate response are queued. The immediate queue is not handled by mClock and functions as a
simple first in, first out queue and is given the first priority.

Operations, such as OSD replication operations, OSD operation replies, peering, recoveries marked with
the highest priority, and so forth, are queued into the immediate queue. All other operations are
enqueued into the mClock queue that works according to the mClock algorithm.

The mClock queue, mclock_scheduler, prioritizes operations based on which bucket they belong to,
that is pg recovery, pg scrub, snap trim, client op, and pg deletion.

With background operations in progress, the average client throughput, that is the input and output
operations per second (IOPS), are significantly higher and latencies are lower with the mClock profiles
when compared to the WPQ scheduler. That is because of mClock’s effective allocation of the QoS
parameters.

Additional Resources

See the mClock profiles section for more information.

10.2. THE ALLOCATION OF INPUT AND OUTPUT RESOURCES

This section describes how the QoS controls work internally with reservation, limit, and weight allocation.
The user is not expected to set these controls as the mClock profiles automatically set them. Tuning
these controls can only be performed using the available mClock profiles.

The dmClock algorithm allocates the input and output (I/O) resources of the Ceph cluster in proportion
to weights. It implements the constraints of minimum reservation and maximum limitation to ensure the
services can compete for the resources fairly.

Red Hat Ceph Storage 7 Administration Guide

110

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#the-mclock-configuration-options_admin
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#mclock-profiles_admin

Currently, the mclock_scheduler operation queue divides Ceph services involving I/O resources into
following buckets:

client op: the input and output operations per second (IOPS) issued by a client.

pg deletion: the IOPS issued by primary Ceph OSD.

snap trim: the snapshot trimming-related requests.

pg recovery: the recovery-related requests.

pg scrub: the scrub-related requests.

The resources are partitioned using the following three sets of tags, meaning that the share of each
type of service is controlled by these three tags:

Reservation

Limit

Weight

Reservation

The minimum IOPS allocated for the service. The more reservation a service has, the more resources it
is guaranteed to possess, as long as it requires so.

For example, a service with the reservation set to 0.1 (or 10%) always has 10% of the OSD’s IOPS
capacity allocated for itself. Therefore, even if the clients start to issue large amounts of I/O requests,
they do not exhaust all the I/O resources and the service’s operations are not depleted even in a cluster
with high load.

Limit

The maximum IOPS allocated for the service. The service does not get more than the set number of
requests per second serviced, even if it requires so and no other services are competing with it. If a
service crosses the enforced limit, the operation remains in the operation queue until the limit is
restored.

NOTE

If the value is set to 0 (disabled), the service is not restricted by the limit setting and it can
use all the resources if there is no other competing operation. This is represented as
"MAX" in the mClock profiles.

NOTE

The reservation and limit parameter allocations are per-shard, based on the type of
backing device, that is HDD or SSD, under the Ceph OSD. See OSD Object storage
daemon configuration options for more details about osd_op_num_shards_hdd and
osd_op_num_shards_ssd parameters.

Weight

The proportional share of capacity if extra capacity or system is not enough. The service can use a larger
portion of the I/O resource, if its weight is higher than its competitor’s.

CHAPTER 10. THE MCLOCK OSD SCHEDULER

111

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/configuration_guide/#osd-object-storage-daemon-configuration-options_conf

NOTE

The reservation and limit values for a service are specified in terms of a proportion of the
total IOPS capacity of the OSD. The proportion is represented as a percentage in the
mClock profiles. The weight does not have a unit. The weights are relative to one another,
so if one class of requests has a weight of 9 and another a weight of 1, then the requests
are performed at a 9 to 1 ratio. However, that only happens once the reservations are met
and those values include the operations performed under the reservation phase.

IMPORTANT

If the weight is set to W, then for a given class of requests the next one that enters has a
weight tag of 1/W and the previous weight tag, or the current time, whichever is larger.
That means, if W is too large and thus 1/W is too small, the calculated tag might never be
assigned as it gets a value of the current time.

Therefore, values for weight should be always under the number of requests expected to
be serviced each second.

10.3. FACTORS THAT IMPACT MCLOCK OPERATION QUEUES

There are three factors that can reduce the impact of the mClock operation queues within Red Hat
Ceph Storage:

The number of shards for client operations.

The number of operations in the operation sequencer.

The usage of distributed system for Ceph OSDs

The number of shards for client operations

Requests to a Ceph OSD are sharded by their placement group identifier. Each shard has its own
mClock queue and these queues neither interact, nor share information amongst them.

The number of shards can be controlled with these configuration options:

osd_op_num_shards

osd_op_num_shards_hdd

osd_op_num_shards_ssd

A lower number of shards increase the impact of the mClock queues, but might have other damaging
effects.

NOTE

Use the default number of shards as defined by the configuration options
osd_op_num_shards, osd_op_num_shards_hdd, and osd_op_num_shards_ssd.

The number of operations in the operation sequencer

Requests are transferred from the operation queue to the operation sequencer, in which they are
processed. The mClock scheduler is located in the operation queue. It determines which operation to
transfer to the operation sequencer.

Red Hat Ceph Storage 7 Administration Guide

112

The number of operations allowed in the operation sequencer is a complex issue. The aim is to keep
enough operations in the operation sequencer so it always works on some, while it waits for disk and
network access to complete other operations.

However, mClock no longer has control over an operation that is transferred to the operation sequencer.
Therefore, to maximize the impact of mClock, the goal is also to keep as few operations in the operation
sequencer as possible.

The configuration options that influence the number of operations in the operation sequencer are:

bluestore_throttle_bytes

bluestore_throttle_deferred_bytes

bluestore_throttle_cost_per_io

bluestore_throttle_cost_per_io_hdd

bluestore_throttle_cost_per_io_ssd

NOTE

Use the default values as defined by the bluestore_throttle_bytes and
bluestore_throttle_deferred_bytes options. However, these options can be determined
during the benchmarking phase.

The usage of distributed system for Ceph OSDs

The third factor that affects the impact of the mClock algorithm is the usage of a distributed system,
where requests are made to multiple Ceph OSDs, and each Ceph OSD can have multiple shards.
However, Red Hat Ceph Storage currently uses the mClock algorithm, which is not a distributed version
of mClock.

NOTE

dmClock is the distributed version of mClock.

Additional Resources

See Object Storage Daemon (OSD) configuration options for more details about
osd_op_num_shards_hdd and osd_op_num_shards_ssd parameters.

See BlueStore configuration options for more details about BlueStore throttle parameters.

See Manually benchmarking OSDs for more information.

10.4. THE MCLOCK CONFIGURATION

To make the mClock more user-friendly and intuitive, the mClock configuration profiles are introduced
in Red Hat Ceph Storage 6. The mClock profiles hide the low-level details from users, making it easier
to configure and use mClock.

The following input parameters are required for an mClock profile to configure the quality of service
(QoS) related parameters:

The total capacity of input and output operations per second (IOPS) for each Ceph OSD. This is

CHAPTER 10. THE MCLOCK OSD SCHEDULER

113

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/configuration_guide/#osd-object-storage-daemon-configuration-options_conf
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/configuration_guide/#bluestore-configuration-options_conf
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#manually-benchmarking-osds_admin

The total capacity of input and output operations per second (IOPS) for each Ceph OSD. This is
determined automatically.

The maximum sequential bandwidth capacity (MiB/s) of each OS. See
osd_mclock_max_sequential_bandwidth_[hdd/ssd] option

An mClock profile type to be enabled. The default is balanced.

Using the settings in the specified profile, a Ceph OSD determines and applies the lower-level mClock
and Ceph parameters. The parameters applied by the mClock profile make it possible to tune the QoS
between the client I/O and background operations in the OSD.

Additional Resources

See The Ceph OSD capacity determination for more information about the automated OSD
capacity determination.

10.5. MCLOCK CLIENTS

The mClock scheduler handles requests from different types of Ceph services. Each service is
considered by mClock as a type of client. Depending on the type of requests handled, mClock clients are
classified into the buckets:

Client - Handles input and output (I/O) requests issued by external clients of Ceph.

Background recovery - Handles internal recovery requests.

Background best-effort - Handles internal backfill, scrub, snap trim, and placement group (PG)
deletion requests.

The mClock scheduler derives the cost of an operation used in the QoS calculations from
osd_mclock_max_capacity_iops_hdd | osd_mclock_max_capacity_iops_ssd,
osd_mclock_max_sequential_bandwidth_hdd | osd_mclock_max_sequential_bandwidth_ssd and
osd_op_num_shards_hdd | osd_op_num_shards_ssd parameters.

10.6. MCLOCK PROFILES

An mClock profile is a configuration setting. When applied to a running Red Hat Ceph Storage cluster, it
enables the throttling of the IOPS operations belonging to different client classes, such as background
recovery, scrub, snap trim, client op, and pg deletion.

The mClock profile uses the capacity limits and the mClock profile type selected by the user to
determine the low-level mClock resource control configuration parameters and applies them
transparently. Other Red Hat Ceph Storage configuration parameters are also applied. The low-level
mClock resource control parameters are the reservation, limit, and weight that provide control of the
resource shares. The mClock profiles allocate these parameters differently for each client type.

10.6.1. mClock profile types

mClock profiles can be classified into built-in and custom profiles.

If any mClock profile is active, the following Red Hat Ceph Storage configuration sleep options get
disabled, which means they are set to 0:

osd_recovery_sleep

Red Hat Ceph Storage 7 Administration Guide

114

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#the-ceph-osd-capacity-determination_admin

osd_recovery_sleep_hdd

osd_recovery_sleep_ssd

osd_recovery_sleep_hybrid

osd_scrub_sleep

osd_delete_sleep

osd_delete_sleep_hdd

osd_delete_sleep_ssd

osd_delete_sleep_hybrid

osd_snap_trim_sleep

osd_snap_trim_sleep_hdd

osd_snap_trim_sleep_ssd

osd_snap_trim_sleep_hybrid

It is to ensure that mClock scheduler is able to determine when to pick the next operation from its
operation queue and transfer it to the operation sequencer. This results in the desired QoS being
provided across all its clients.

Custom profile

This profile gives users complete control over all the mClock configuration parameters. It should be used
with caution and is meant for advanced users, who understand mClock and Red Hat Ceph Storage
related configuration options.

Built-in profiles

When a built-in profile is enabled, the mClock scheduler calculates the low-level mClock parameters,
that is, reservation, weight, and limit, based on the profile enabled for each client type.

The mClock parameters are calculated based on the maximum Ceph OSD capacity provided
beforehand. Therefore, the following mClock configuration options cannot be modified when using any
of the built-in profiles:

osd_mclock_scheduler_client_res

osd_mclock_scheduler_client_wgt

osd_mclock_scheduler_client_lim

osd_mclock_scheduler_background_recovery_res

osd_mclock_scheduler_background_recovery_wgt

osd_mclock_scheduler_background_recovery_lim

osd_mclock_scheduler_background_best_effort_res

osd_mclock_scheduler_background_best_effort_wgt

CHAPTER 10. THE MCLOCK OSD SCHEDULER

115

osd_mclock_scheduler_background_best_effort_lim

NOTE

These defaults cannot be changed using any of the config subsystem commands
like config set, config daemon or config tell commands. Although the above
command(s) report success, the mclock QoS parameters are reverted to their
respective built-in profile defaults.

The following recovery and backfill related Ceph options are overridden to mClock defaults:

WARNING

Do not change these options as the built-in profiles are optimized based on them.
Changing these defaults can result in unexpected performance outcomes.

osd_max_backfills

osd_recovery_max_active

osd_recovery_max_active_hdd

osd_recovery_max_active_ssd

The following options show the mClock defaults which is same as the current defaults to maximize the
performance of the foreground client operations:

osd_max_backfills

Original default

1

mClock default

1

osd_recovery_max_active

Original default

0

mClock default

0

osd_recovery_max_active_hdd

Original default

3

mClock default

3

Red Hat Ceph Storage 7 Administration Guide

116

osd_recovery_max_active_sdd

Original default

10

mClock default

10

NOTE

The above mClock defaults can be modified, only if necessary, by enabling
osd_mclock_override_recovery_settings that is by default set as false. See Modifying
backfill and recovery options to modify these parameters.

Built-in profile types

Users can choose from the following built-in profile types:

balanced (default)

high_client_ops

high_recovery_ops

NOTE

The values mentioned in the list below represent the proportion of the total IOPS
capacity of the Ceph OSD allocated for the service type.

balanced:

The default mClock profile is set to balanced because it represents a compromise between prioritizing
client IO or recovery IO. It allocates equal reservation or priority to client operations and background
recovery operations. Background best-effort operations are given lower reservation and therefore take
longer to complete when there are competing operations. This profile meets the normal or steady state
requirements of the cluster which is the case when external client performance requirements is not
critical and there are other background operations that still need attention within the OSD.

There might be instances that necessitate giving higher priority to either client operations or recovery
operations. To meet such requirements you can choose either the high_client_ops profile to prioritize
client IO or the high_recovery_ops profile to prioritize recovery IO. These profiles are discussed further
below.

Service type: client

Reservation

50%

Limit

MAX

Weight

1

Service type: background recovery

CHAPTER 10. THE MCLOCK OSD SCHEDULER

117

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#modifying-backfill-and-recovery-options_admin

Reservation

50%

Limit

MAX

Weight

1

Service type: background best-effort

Reservation

MIN

Limit

90%

Weight

1

high_client_ops

This profile optimizes client performance over background activities by allocating more reservation and
limit to client operations as compared to background operations in the Ceph OSD. This profile, for
example, can be enabled to provide the needed performance for I/O intensive applications for a
sustained period of time at the cost of slower recoveries. The list below shows the resource control
parameters set by the profile:

Service type: client

Reservation

60%

Limit

MAX

Weight

2

Service type: background recovery

Reservation

40%

Limit

MAX

Weight

1

Service type: background best-effort

Reservation

MIN

Limit

70%

Red Hat Ceph Storage 7 Administration Guide

118

Weight

1

high_recovery_ops

This profile optimizes background recovery performance as compared to external clients and other
background operations within the Ceph OSD.

For example, it could be temporarily enabled by an administrator to accelerate background recoveries
during non-peak hours. The list below shows the resource control parameters set by the profile:

Service type: client

Reservation

30%

Limit

MAX

Weight

1

Service type: background recovery

Reservation

70%

Limit

MAX

Weight

2

Service type: background best-effort

Reservation

MIN

Limit

MAX

Weight

1

Additional Resources

See the The mClock configuration options for more information about mClock configuration
options.

10.6.2. Changing an mClock profile

The default mClock profile is set to balanced. The other types of the built-in profile are
high_client_ops and high_recovery_ops.

NOTE

CHAPTER 10. THE MCLOCK OSD SCHEDULER

119

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#the-mclock-configuration-options_admin

NOTE

The custom profile is not recommended unless you are an advanced user.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the Ceph Monitor host.

Procedure

1. Log into the Cephadm shell:

Example

[root@host01 ~]# cephadm shell

2. Set the osd_mclock_profile option:

Syntax

ceph config set osd.OSD_ID osd_mclock_profile VALUE

Example

[ceph: root@host01 /]# ceph config set osd.0 osd_mclock_profile high_recovery_ops

This example changes the profile to allow faster recoveries on osd.0.

NOTE

For optimal performance the profile must be set on all Ceph OSDs by using the
following command:

Syntax

ceph config set osd osd_mclock_profile VALUE

10.6.3. Switching between built-in and custom profiles

The following steps describe switching from built-in profile to custom profile and vice-versa.

You might want to switch to the custom profile if you want complete control over all the mClock
configuration options. However, it is recommended not to use the custom profile unless you are an
advanced user.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the Ceph Monitor host.

Red Hat Ceph Storage 7 Administration Guide

120

Switch from built-in profile to custom profile

1. Log into the Cephadm shell:

Example

[root@host01 ~]# cephadm shell

2. Switch to the custom profile:

Syntax

ceph config set osd.OSD_ID osd_mclock_profile custom

Example

[ceph: root@host01 /]# ceph config set osd.0 osd_mclock_profile custom

NOTE

For optimal performance the profile must be set on all Ceph OSDs by using the
following command:

Example

[ceph: root@host01 /]# ceph config set osd osd_mclock_profile custom

3. Optional: After switching to the custom profile, modify the desired mClock configuration
options:

Syntax

ceph config set osd.OSD_ID MCLOCK_CONFIGURATION_OPTION VALUE

Example

[ceph: root@host01 /]# ceph config set osd.0 osd_mclock_scheduler_client_res 0.5

This example changes the client reservation IOPS ratio for a specific OSD osd.0 to 0.5 (50%)

IMPORTANT

Change the reservations of other services, such as background recovery and
background best-effort accordingly to ensure that the sum of the reservations
does not exceed the maximum proportion (1.0) of the IOPS capacity of the OSD.

Switch from custom profile to built-in profile

1. Log into the cephadm shell:

Example

CHAPTER 10. THE MCLOCK OSD SCHEDULER

121

[root@host01 ~]# cephadm shell

2. Set the desired built-in profile:

Syntax

ceph config set osd osd_mclock_profile MCLOCK_PROFILE

Example

[ceph: root@host01 /]# ceph config set osd osd_mclock_profile high_client_ops

This example sets the built-in profile to high_client_ops on all Ceph OSDs.

3. Determine the existing custom mClock configuration settings in the database:

Example

[ceph: root@host01 /]# ceph config dump

4. Remove the custom mClock configuration settings determined earlier:

Syntax

ceph config rm osd MCLOCK_CONFIGURATION_OPTION

Example

[ceph: root@host01 /]# ceph config rm osd osd_mclock_scheduler_client_res

This example removes the configuration option osd_mclock_scheduler_client_res that was
set on all Ceph OSDs.

After all existing custom mClock configuration settings are removed from the central
configuration database, the configuration settings related to high_client_ops are applied.

5. Verify the settings on Ceph OSDs:

Syntax

ceph config show osd.OSD_ID

Example

[ceph: root@host01 /]# ceph config show osd.0

Additional Resources

See mClock profile types for the list of the mClock configuration options that cannot be
modified with built-in profiles.

Red Hat Ceph Storage 7 Administration Guide

122

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#mclock-profile-types_admin

10.6.4. Switching temporarily between mClock profiles

This section contains steps to temporarily switch between mClock profiles.

WARNING

This section is for advanced users or for experimental testing. Do not use the below
commands on a running storage cluster as it could have unexpected outcomes.

NOTE

The configuration changes on a Ceph OSD using the below commands are temporary and
are lost when the Ceph OSD is restarted.

IMPORTANT

The configuration options that are overridden using the commands described in this
section cannot be modified further using the ceph config set osd.OSD_ID command.
The changes do not take effect until a given Ceph OSD is restarted. This is intentional, as
per the configuration subsystem design. However, any further modifications can still be
made temporarily using these commands.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the Ceph Monitor host.

Procedure

1. Log into the Cephadm shell:

Example

[root@host01 ~]# cephadm shell

2. Run the following command to override the mClock settings:

Syntax

ceph tell osd.OSD_ID injectargs '--MCLOCK_CONFIGURATION_OPTION=VALUE'

Example

[ceph: root@host01 /]# ceph tell osd.0 injectargs '--osd_mclock_profile=high_recovery_ops'

This example overrides the osd_mclock_profile option on osd.0.

3. Optional: You can use the alternative to the previous ceph tell osd.OSD_ID injectargs

CHAPTER 10. THE MCLOCK OSD SCHEDULER

123

3. Optional: You can use the alternative to the previous ceph tell osd.OSD_ID injectargs
command:

Syntax

ceph daemon osd.OSD_ID config set MCLOCK_CONFIGURATION_OPTION VALUE

Example

[ceph: root@host01 /]# ceph daemon osd.0 config set osd_mclock_profile
high_recovery_ops

NOTE

The individual QoS related configuration options for the custom profile can also be
modified temporarily using the above commands.

10.6.5. Degraded and Misplaced Object Recovery Rate With mClock Profiles

Degraded object recovery is categorized into the background recovery bucket. Across all mClock
profiles, degraded object recovery is given higher priority when compared to misplaced object recovery
because degraded objects present a data safety issue not present with objects that are merely
misplaced.

Backfill or the misplaced object recovery operation is categorized into the background best-effort
bucket. According to the balanced and high_client_ops mClock profiles, background best-effort
client is not constrained by reservation (set to zero) but is limited to use a fraction of the participating
OSD’s capacity if there are no other competing services.

Therefore, with the balanced or high_client_ops profile and with other background competing
services active, backfilling rates are expected to be slower when compared to the previous
WeightedPriorityQueue (WPQ) scheduler.

If higher backfill rates are desired, please follow the steps mentioned in the section below.

Improving backfilling rates

For faster backfilling rate when using either balanced or high_client_ops profile, follow the below
steps:

Switch to the 'high_recovery_ops' mClock profile for the duration of the backfills. See Changing
an mClock profile to achieve this. Once the backfilling phase is complete, switch the mClock
profile to the previously active profile. In case there is no significant improvement in the
backfilling rate with the 'high_recovery_ops' profile, continue to the next step.

Switch the mClock profile back to the previously active profile.

Modify 'osd_max_backfills' to a higher value, for example, 3. See Modifying backfills and recovery
options to achieve this.

Once the backfilling is complete, 'osd_max_backfills' can be reset to the default value of 1 by
following the same procedure mentioned in step 3.

Red Hat Ceph Storage 7 Administration Guide

124

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#changing-an-mclock-profile_admin
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#modifying-backfills-and-recovery-options_admin

WARNING

Please note that modifying osd_max_backfills may result in other operations, for
example, client operations may experience higher latency during the backfilling
phase. Therefore, users are recommended to increase osd_max_backfills in small
increments to minimize performance impact to other operations in the cluster.

10.6.6. Modifying backfills and recovery options

Modify the backfills and recovery options with the ceph config set command.

The backfill or recovery options that can be modified are listed in mClock profile types .

WARNING

This section is for advanced users or for experimental testing. Do not use the below
commands on a running storage cluster as it could have unexpected outcomes.

Modify the values only for experimental testing, or if the cluster is unable to handle
the values or it shows poor performance with the default settings.

IMPORTANT

The modification of the mClock default backfill or recovery options is restricted by the
osd_mclock_override_recovery_settings option, which is set to false by default.

If you attempt to modify any default backfill or recovery options without setting
osd_mclock_override_recovery_settings to true, it resets the options back to the
mClock defaults along with a warning message logged in the cluster log.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the Ceph Monitor host.

Procedure

1. Log into the Cephadm shell:

Example

[root@host01 ~]# cephadm shell

2. Set the osd_mclock_override_recovery_settings configuration option to true on all Ceph

CHAPTER 10. THE MCLOCK OSD SCHEDULER

125

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#mclock-profile-types_admin

2. Set the osd_mclock_override_recovery_settings configuration option to true on all Ceph
OSDs:

Example

[ceph: root@host01 /]# ceph config set osd osd_mclock_override_recovery_settings true

3. Set the desired backfills or recovery option:

Syntax

ceph config set osd OPTION VALUE

Example

[ceph: root@host01 /]# ceph config set osd osd_max_backfills_ 5

4. Wait a few seconds and verify the configuration for the specific OSD:

Syntax

ceph config show osd.OSD_ID_ | grep OPTION

Example

[ceph: root@host01 /]# ceph config show osd.0 | grep osd_max_backfills

5. Reset the osd_mclock_override_recovery_settings configuration option to false on all OSDs:

Example

[ceph: root@host01 /]# ceph config set osd osd_mclock_override_recovery_settings false

10.7. THE CEPH OSD CAPACITY DETERMINATION

The Ceph OSD capacity in terms of total IOPS is determined automatically during the Ceph OSD
initialization. This is achieved by running the Ceph OSD bench tool and overriding the default value of
osd_mclock_max_capacity_iops_[hdd, ssd] option depending on the device type. No other action or
input is expected from the user to set the Ceph OSD capacity.

Mitigation of unrealistic Ceph OSD capacity from the automated procedure

In certain conditions, the Ceph OSD bench tool might show unrealistic or inflated results depending on
the drive configuration and other environment related conditions.

To mitigate the performance impact due to this unrealistic capacity, a couple of threshold configuration
options depending on the OSD device type are defined and used:

osd_mclock_iops_capacity_threshold_hdd = 500

osd_mclock_iops_capacity_threshold_ssd = 80000

You can verify these parameters by running the following commands:

Red Hat Ceph Storage 7 Administration Guide

126

[ceph: root@host01 /]# ceph config show osd.0 osd_mclock_iops_capacity_threshold_hdd
500.000000
[ceph: root@host01 /]# ceph config show osd.0 osd_mclock_iops_capacity_threshold_ssd
80000.000000

NOTE

If you want to manually benchmark OSD(s) or manually tune the BlueStore throttle
parameters, see Manually benchmarking OSDs .

You can verify the capacity of an OSD after the cluster is up by running the following command:

Syntax

ceph config show osd.N osd_mclock_max_capacity_iops_[hdd, ssd]

Example

[ceph: root@host01 /]# ceph config show osd.0 osd_mclock_max_capacity_iops_ssd

In the above example, you can view the maximum capacity for osd.0 on a Red Hat Ceph Storage node
whose underlying device is an SSD.

The following automated step is performed:

Fallback to using default OSD capacity

If the Ceph OSD bench tool reports a measurement that exceeds the above threshold values, the
fallback mechanism reverts to the default value of osd_mclock_max_capacity_iops_hdd or
osd_mclock_max_capacity_iops_ssd. The threshold configuration options can be reconfigured based
on the type of drive used.

A cluster warning is logged in case the measurement exceeds the threshold:

Example

3403 Sep 11 11:52:50 dell-r640-039.dsal.lab.eng.rdu2.redhat.com ceph-osd[70342]:
log_channel(cluster) log [WRN] : OSD bench result of 49691.213005 IOPS exceeded the threshold
limit of 500.000000 IOPS for osd.27. IOPS capacity is unchanged at 315.000000 IOPS. The
recommendation is to establish the osd's IOPS capacity using other benchmark tools (e.g. Fio) and
then override osd_mclock_max_capacity_iops_[hdd|ssd].

IMPORTANT

If the default capacity does not accurately represent the Ceph OSD capacity, it is highly
recommended to run a custom benchmark using the preferred tool, for example Fio, on
the drive and then override the osd_mclock_max_capacity_iops_[hdd, ssd] option as
described in Specifying maximum OSD capacity .

Additional Resources

See Manually benchmarking OSDs to manually benchmark Ceph OSDs or manually tune the
BlueStore throttle parameters.

CHAPTER 10. THE MCLOCK OSD SCHEDULER

127

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#manually-benchmarking-osds_admin
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#specifying-maximum-osd-capacity_admin
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#manually-benchmarking-osds_admin

See The mClock configuration options for more information about the
osd_mclock_max_capacity_iops_[hdd, ssd] and
osd_mclock_iops_capacity_threshold_[hdd, ssd] options.

10.7.1. Verifying the capacity of an OSD

You can verify the capacity of a Ceph OSD after setting up the storage cluster.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the Ceph Monitor host.

Procedure

1. Log into the Cephadm shell:

Example

[root@host01 ~]# cephadm shell

2. Verify the capacity of a Ceph OSD:

Syntax

ceph config show osd.OSD_ID osd_mclock_max_capacity_iops_[hdd, ssd]

Example

[ceph: root@host01 /]# ceph config show osd.0 osd_mclock_max_capacity_iops_ssd

21500.000000

10.7.2. Manually benchmarking OSDs

To manually benchmark a Ceph OSD, any existing benchmarking tool, for example Fio, can be used.
Regardless of the tool or command used, the steps below remain the same.

IMPORTANT

The number of shards and BlueStore throttle parameters have an impact on the mClock
operation queues. Therefore, it is critical to set these values carefully in order to maximize
the impact of the mclock scheduler. See Factors that impact mClock operation queues for
more information about these values.

NOTE

The steps in this section are only necessary if you want to override the Ceph OSD
capacity determined automatically during the OSD initialization.

NOTE

Red Hat Ceph Storage 7 Administration Guide

128

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#the-mclock-configuration-options_admin
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#factors-that-impact-mclock-operation-queues_admin

NOTE

If you have already determined the benchmark data and wish to manually override the
maximum OSD capacity for a Ceph OSD, skip to the Specifying maximum OSD capacity
section.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the Ceph Monitor host.

Procedure

1. Log into the Cephadm shell:

Example

[root@host01 ~]# cephadm shell

2. Benchmark a Ceph OSD:

Syntax

ceph tell osd.OSD_ID bench [TOTAL_BYTES] [BYTES_PER_WRITE] [OBJ_SIZE]
[NUM_OBJS]

where:

TOTAL_BYTES: Total number of bytes to write.

BYTES_PER_WRITE: Block size per write.

OBJ_SIZE: Bytes per object.

NUM_OBJS: Number of objects to write.

Example

[ceph: root@host01 /]# ceph tell osd.0 bench 12288000 4096 4194304 100
{
 "bytes_written": 12288000,
 "blocksize": 4096,
 "elapsed_sec": 1.3718913019999999,
 "bytes_per_sec": 8956977.8466311768,
 "iops": 2186.7621695876896
}

10.7.3. Determining the correct BlueStore throttle values

This optional section details the steps used to determine the correct BlueStore throttle values. The
steps use the default shards.

IMPORTANT

CHAPTER 10. THE MCLOCK OSD SCHEDULER

129

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#specifying-maximum-osd-capacity_admin

1

IMPORTANT

Before running the test, clear the caches to get an accurate measurement. Clear the
OSD caches between each benchmark run using the following command:

Syntax

ceph tell osd.OSD_ID cache drop

Example

[ceph: root@host01 /]# ceph tell osd.0 cache drop

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the Ceph Monitor node hosting the OSDs that you wish to benchmark.

Procedure

1. Log into the Cephadm shell:

Example

[root@host01 ~]# cephadm shell

2. Run a simple 4KiB random write workload on an OSD:

Syntax

ceph tell osd.OSD_ID bench 12288000 4096 4194304 100

Example

[ceph: root@host01 /]# ceph tell osd.0 bench 12288000 4096 4194304 100
{
 "bytes_written": 12288000,
 "blocksize": 4096,
 "elapsed_sec": 1.3718913019999999,
 "bytes_per_sec": 8956977.8466311768,
 "iops": 2186.7621695876896 1
}

The overall throughput obtained from the output of the osd bench command. This value is
the baseline throughput, when the default BlueStore throttle options are in effect.

3. Note the overall throughput, that is IOPS, obtained from the output of the previous command.

4. If the intent is to determine the BlueStore throttle values for your environment, set
bluestore_throttle_bytes and bluestore_throttle_deferred_bytes options to 32 KiB, that is,
32768 Bytes:

Red Hat Ceph Storage 7 Administration Guide

130

Syntax

ceph config set osd.OSD_ID bluestore_throttle_bytes 32768
ceph config set osd.OSD_ID bluestore_throttle_deferred_bytes 32768

Example

[ceph: root@host01 /]# ceph config set osd.0 bluestore_throttle_bytes 32768
[ceph: root@host01 /]# ceph config set osd.0 bluestore_throttle_deferred_bytes 32768

Otherwise, you can skip to the next section Specifying maximum OSD capacity .

5. Run the 4KiB random write test as before using an OSD bench command:

Example

[ceph: root@host01 /]# ceph tell osd.0 bench 12288000 4096 4194304 100

6. Notice the overall throughput from the output and compare the value against the baseline
throughput recorded earlier.

7. If the throughput does not match with the baseline, increase the BlueStore throttle options by
multiplying by 2.

8. Repeat the steps by running the 4KiB random write test, comparing the value against the
baseline throughput, and increasing the BlueStore throttle options by multiplying by 2, until the
obtained throughput is very close to the baseline value.

NOTE

For example, during benchmarking on a machine with NVMe SSDs, a value of 256 KiB for
both BlueStore throttle and deferred bytes was determined to maximize the impact of
mClock. For HDDs, the corresponding value was 40 MiB, where the overall throughput
was roughly equal to the baseline throughput.

In general for HDDs, the BlueStore throttle values are expected to be higher when
compared to SSDs.

10.7.4. Specifying maximum OSD capacity

You can override the maximum Ceph OSD capacity automatically set during OSD initialization.

These steps are optional. Perform the following steps if the default capacity does not accurately
represent the Ceph OSD capacity.

NOTE

Ensure that you determine the benchmark data first, as described in Manually
benchmarking OSDs.

Prerequisites

A running Red Hat Ceph Storage cluster.

CHAPTER 10. THE MCLOCK OSD SCHEDULER

131

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#specifying-maximum-osd-capacity_admin
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#manually-benchmarking-osds_admin

Root-level access to the Ceph Monitor host.

Procedure

1. Log into the Cephadm shell:

Example

[root@host01 ~]# cephadm shell

2. Set osd_mclock_max_capacity_iops_[hdd, ssd] option for an OSD:

Syntax

ceph config set osd.OSD_ID osd_mclock_max_capacity_iops_[hdd,ssd] VALUE

Example

[ceph: root@host01 /]# ceph config set osd.0 osd_mclock_max_capacity_iops_hdd 350

This example sets the maximum capacity for osd.0, where an underlying device type is HDD, to
350 IOPS.

Red Hat Ceph Storage 7 Administration Guide

132

CHAPTER 11. BLUESTORE
BlueStore is the back-end object store for the OSD daemons and puts objects directly on the block
device.

IMPORTANT

BlueStore provides a high-performance backend for OSD daemons in a production
environment. By default, BlueStore is configured to be self-tuning. If you determine that
your environment performs better with BlueStore tuned manually, please contact Red
Hat support and share the details of your configuration to help us improve the auto-
tuning capability. Red Hat looks forward to your feedback and appreciates your
recommendations.

11.1. CEPH BLUESTORE

The following are some of the main features of using BlueStore:

Direct management of storage devices

BlueStore consumes raw block devices or partitions. This avoids any intervening layers of
abstraction, such as local file systems like XFS, that might limit performance or add complexity.

Metadata management with RocksDB

BlueStore uses the RocksDB key-value database to manage internal metadata, such as the mapping
from object names to block locations on a disk.

Full data and metadata checksumming

By default all data and metadata written to BlueStore is protected by one or more checksums. No
data or metadata are read from disk or returned to the user without verification.

Inline compression

Data can be optionally compressed before being written to a disk.

Efficient copy-on-write

The Ceph Block Device and Ceph File System snapshots rely on a copy-on-write clone mechanism
that is implemented efficiently in BlueStore. This results in efficient I/O both for regular snapshots
and for erasure coded pools which rely on cloning to implement efficient two-phase commits.

No large double-writes

BlueStore first writes any new data to unallocated space on a block device, and then commits a
RocksDB transaction that updates the object metadata to reference the new region of the disk. Only
when the write operation is below a configurable size threshold, it falls back to a write-ahead
journaling scheme.

Multi-device support

BlueStore can use multiple block devices for storing different data. For example: Hard Disk Drive
(HDD) for the data, Solid-state Drive (SSD) for metadata, Non-volatile Memory (NVM) or Non-
volatile random-access memory (NVRAM) or persistent memory for the RocksDB write-ahead log
(WAL). See Ceph BlueStore devices for details.

Efficient block device usage

Because BlueStore does not use any file system, it minimizes the need to clear the storage device
cache.

Allocation metadata

Allocation metadata is no longer using the standalone objects in RocksDB as the allocation
information can be deduced from the aggregate allocation state of all onodes in the system which

CHAPTER 11. BLUESTORE

133

https://access.redhat.com/support/contact/technicalSupport/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#ceph-bluestore-devices_admin

are stored in the RocksDB already. BlueStore V3 code skips the RocksDB updates on allocation time
and performs a full destage of the allocator object with all the OSD allocation state in a single step
during umount. This results in a 25% increase in IOPS and reduced latency in small random-write
workloads; however, it prolongs the recovery time, usually by a few extra minutes, in failure cases
where an umount is not called since you need to iterate over all onodes to recreate the allocation
metadata.

Cache age binning

Red Hat Ceph Storage associates items in the different caches with "age bins", which gives a view of
the relative ages of all the cache items.

11.2. CEPH BLUESTORE DEVICES

BlueStore manages either one, two, or three storage devices in the backend.

Primary

WAL

DB

In the simplest case, BlueStore consumes a single primary storage device. The storage device is normally
used as a whole, occupying the full device that is managed by BlueStore directly. The primary device is
identified by a block symlink in the data directory.

The data directory is a tmpfs mount which gets populated with all the common OSD files that hold
information about the OSD, like the identifier, which cluster it belongs to, and its private keyring.

The storage device is partitioned into two parts that contain:

OSD metadata: A small partition formatted with XFS that contains basic metadata for the OSD.
This data directory includes information about the OSD, such as its identifier, which cluster it
belongs to, and its private keyring.

Data: A large partition occupying the rest of the device that is managed directly by BlueStore
and that contains all of the OSD data. This primary device is identified by a block symbolic link in
the data directory.

You can also use two additional devices:

A WAL (write-ahead-log) device: A device that stores BlueStore internal journal or write-
ahead log. It is identified by the block.wal symbolic link in the data directory. Consider using a
WAL device only if the device is faster than the primary device. For example, when the WAL
device uses an SSD disk and the primary device uses an HDD disk.

A DB device: A device that stores BlueStore internal metadata. The embedded RocksDB
database puts as much metadata as it can on the DB device instead of on the primary device to
improve performance. If the DB device is full, it starts adding metadata to the primary device.
Consider using a DB device only if the device is faster than the primary device.

Red Hat Ceph Storage 7 Administration Guide

134

WARNING

If you have only less than a gigabyte storage available on fast devices, Red Hat
recommends using it as a WAL device. If you have more fast devices available,
consider using it as a DB device. The BlueStore journal is always placed on the
fastest device, so using a DB device provides the same benefit that the WAL device
while also allows for storing additional metadata.

11.3. CEPH BLUESTORE CACHING

The BlueStore cache is a collection of buffers that, depending on configuration, can be populated with
data as the OSD daemon does reading from or writing to the disk. By default in Red Hat Ceph Storage,
BlueStore will cache on reads, but not writes. This is because the bluestore_default_buffered_write
option is set to false to avoid potential overhead associated with cache eviction.

If the bluestore_default_buffered_write option is set to true, data is written to the buffer first, and
then committed to disk. Afterwards, a write acknowledgement is sent to the client, allowing subsequent
reads faster access to the data already in cache, until that data is evicted.

Read-heavy workloads will not see an immediate benefit from BlueStore caching. As more reading is
done, the cache will grow over time and subsequent reads will see an improvement in performance. How
fast the cache populates depends on the BlueStore block and database disk type, and the client’s
workload requirements.

IMPORTANT

Please contact Red Hat support before enabling the bluestore_default_buffered_write
option.

Cache age binning

Red Hat Ceph Storage associates items in the different caches with "age bins", which gives a view of the
relative ages of all the cache items. For example, when there are old onode entries sitting in the
BlueStore onode cache, a hot read workload occurs against a single large object. The priority cache for
that OSD sorts the older onode entries into a lower priority level than the buffer cache data for the hot
object. Although Ceph might, in general, heavily favor onodes at a given priority level, in this hot
workload scenario, older onodes might be assigned a lower priority level than the hot workload data, so
that the buffer data memory request is fulfilled first.

11.4. SIZING CONSIDERATIONS FOR CEPH BLUESTORE

When mixing traditional and solid state drives using BlueStore OSDs, it is important to size the RocksDB
logical volume (block.db) appropriately. Red Hat recommends that the RocksDB logical volume be no
less than 4% of the block size with object, file and mixed workloads. Red Hat supports 1% of the
BlueStore block size with RocksDB and OpenStack block workloads. For example, if the block size is 1 TB
for an object workload, then at a minimum, create a 40 GB RocksDB logical volume.

When not mixing drive types, there is no requirement to have a separate RocksDB logical volume.
BlueStore will automatically manage the sizing of RocksDB.

BlueStore’s cache memory is used for the key-value pair metadata for RocksDB, BlueStore metadata,

CHAPTER 11. BLUESTORE

135

https://access.redhat.com/support/contact/technicalSupport/

BlueStore’s cache memory is used for the key-value pair metadata for RocksDB, BlueStore metadata,
and object data.

NOTE

The BlueStore cache memory values are in addition to the memory footprint already
being consumed by the OSD.

11.5. TUNING CEPH BLUESTORE USING BLUESTORE_MIN_ALLOC_SIZE

PARAMETER

This procedure is for new or freshly deployed OSDs.

In BlueStore, the raw partition is allocated and managed in chunks of bluestore_min_alloc_size. By
default, bluestore_min_alloc_size is 4096, equivalent to 4 KiB for HDDs and SSDs. The unwritten area
in each chunk is filled with zeroes when it is written to the raw partition. This can lead to wasted unused
space when not properly sized for your workload, for example when writing small objects.

It is best practice to set bluestore_min_alloc_size to match the smallest write so this write
amplification penalty can be avoided.

IMPORTANT

Changing the value of bluestore_min_alloc_size is not recommended. For any
assistance, contact Red Hat support.

NOTE

The settings bluestore_min_alloc_size_ssd and bluestore_min_alloc_size_hdd are
specific to SSDs and HDDs, respectively, but setting them is not necessary because
setting bluestore_min_alloc_size overrides them.

Prerequisites

A running Red Hat Ceph Storage cluster.

Ceph monitors and managers are deployed in the cluster.

Servers or nodes that can be freshly provisioned as OSD nodes

The admin keyring for the Ceph Monitor node, if you are redeploying an existing Ceph OSD
node.

Procedure

1. On the bootstrapped node, change the value of bluestore_min_alloc_size parameter:

Syntax

ceph config set osd.OSD_ID bluestore_min_alloc_size_DEVICE_NAME_ VALUE

Example

Red Hat Ceph Storage 7 Administration Guide

136

https://access.redhat.com/support

[ceph: root@host01 /]# ceph config set osd.4 bluestore_min_alloc_size_hdd 8192

You can see bluestore_min_alloc_size is set to 8192 bytes, which is equivalent to 8 KiB.

NOTE

The selected values should be power of 2 aligned.

2. Restart the OSD’s service.

Syntax

systemctl restart SERVICE_ID

Example

[ceph: root@host01 /]# systemctl restart ceph-499829b4-832f-11eb-8d6d-
001a4a000635@osd.4.service

Verification

Verify the setting using the ceph daemon command:

Syntax

ceph daemon osd.OSD_ID config get bluestore_min_alloc_size__DEVICE_

Example

[ceph: root@host01 /]# ceph daemon osd.4 config get bluestore_min_alloc_size_hdd

ceph daemon osd.4 config get bluestore_min_alloc_size
{
 "bluestore_min_alloc_size": "8192"
}

Additional Resources

For OSD removal and addition, see the Management of OSDs using the Ceph Orchestrator
chapter in the Red Hat Ceph Storage Operations Guide and follow the links. For already
deployed OSDs, you cannot modify the bluestore_min_alloc_size parameter so you have to
remove the OSDs and freshly deploy them again.

11.6. RESHARDING THE ROCKSDB DATABASE USING THE BLUESTORE
ADMIN TOOL

You can reshard the database with the BlueStore admin tool. It transforms BlueStore’s RocksDB
database from one shape to another into several column families without redeploying the OSDs.
Column families have the same features as the whole database, but allows users to operate on smaller
data sets and apply different options. It leverages the different expected lifetime of keys stored. The
keys are moved during the transformation without creating new keys or deleting existing keys.

CHAPTER 11. BLUESTORE

137

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/operations_guide/#management-of-osds-using-the-ceph-orchestrator

There are two ways to reshard the OSD:

1. Use the rocksdb-resharding.yml playbook.

2. Manually reshard the OSDs.

Prerequisites

A running Red Hat Ceph Storage cluster.

The object store configured as BlueStore.

OSD nodes deployed on the hosts.

Root level access to the all the hosts.

The ceph-common and cephadm packages installed on all the hosts.

11.6.1. Use the rocksdb-resharding.yml playbook

1. As a root user, on the administration node, navigate to the cephadm folder where the playbook
is installed:

Example

[root@host01 ~]# cd /usr/share/cephadm-ansible

2. Run the playbook:

Syntax

ansible-playbook -i hosts rocksdb-resharding.yml -e osd_id=OSD_ID -e
admin_node=HOST_NAME

Example

[root@host01 ~]# ansible-playbook -i hosts rocksdb-resharding.yml -e osd_id=7 -e
admin_node=host03

...............
TASK [stop the osd]

**
Wednesday 29 November 2023 11:25:18 +0000 (0:00:00.037) 0:00:03.864 ****
changed: [localhost -> host03]
TASK [set_fact ceph_cmd]

Wednesday 29 November 2023 11:25:32 +0000 (0:00:14.128) 0:00:17.992 ****
ok: [localhost -> host03]

TASK [check fs consistency with fsck before resharding]

**

Red Hat Ceph Storage 7 Administration Guide

138

Wednesday 29 November 2023 11:25:32 +0000 (0:00:00.041) 0:00:18.034 ****
ok: [localhost -> host03]

TASK [show current sharding]

Wednesday 29 November 2023 11:25:43 +0000 (0:00:11.053) 0:00:29.088 ****
ok: [localhost -> host03]

TASK [reshard]

Wednesday 29 November 2023 11:25:45 +0000 (0:00:01.446) 0:00:30.534 ****
ok: [localhost -> host03]

TASK [check fs consistency with fsck after resharding]

Wednesday 29 November 2023 11:25:46 +0000 (0:00:01.479) 0:00:32.014 ****
ok: [localhost -> host03]

TASK [restart the osd]

Wednesday 29 November 2023 11:25:57 +0000 (0:00:10.699) 0:00:42.714 ****
changed: [localhost -> host03]

3. Verify that the resharding is complete.

a. Stop the OSD that is resharded:

Example

[ceph: root@host01 /]# ceph orch daemon stop osd.7

b. Enter the OSD container:

Example

[root@host03 ~]# cephadm shell --name osd.7

c. Check for resharding:

Example

[ceph: root@host03 /]# ceph-bluestore-tool --path /var/lib/ceph/osd/ceph-7/ show-
sharding
 m(3) p(3,0-12) O(3,0-13) L P

d. Start the OSD:

Example

[ceph: root@host01 /]# ceph orch daemon start osd.7

CHAPTER 11. BLUESTORE

139

11.6.2. Manually resharding the OSDs

1. Log into the cephadm shell:

Example

[root@host01 ~]# cephadm shell

2. Fetch the OSD_ID and the host details from the administration node:

Example

[ceph: root@host01 /]# ceph orch ps

3. Log into the respective host as a root user and stop the OSD:

Syntax

cephadm unit --name OSD_ID stop

Example

[root@host02 ~]# cephadm unit --name osd.0 stop

4. Enter into the stopped OSD daemon container:

Syntax

cephadm shell --name OSD_ID

Example

[root@host02 ~]# cephadm shell --name osd.0

5. Log into the cephadm shell and check the file system consistency:

Syntax

ceph-bluestore-tool --path/var/lib/ceph/osd/ceph-OSD_ID/ fsck

Example

[ceph: root@host02 /]# ceph-bluestore-tool --path /var/lib/ceph/osd/ceph-0/ fsck

fsck success

6. Check the sharding status of the OSD node:

Syntax

ceph-bluestore-tool --path /var/lib/ceph/osd/ceph-OSD_ID/ show-sharding

Red Hat Ceph Storage 7 Administration Guide

140

Example

[ceph: root@host02 /]# ceph-bluestore-tool --path /var/lib/ceph/osd/ceph-6/ show-sharding

m(3) p(3,0-12) O(3,0-13) L P

7. Run the ceph-bluestore-tool command to reshard. Red Hat recommends to use the
parameters as given in the command:

Syntax

ceph-bluestore-tool --log-level 10 -l log.txt --path /var/lib/ceph/osd/ceph-OSD_ID/ --
sharding="m(3) p(3,0-12) O(3,0-13)=block_cache={type=binned_lru} L P" reshard

Example

[ceph: root@host02 /]# ceph-bluestore-tool --path /var/lib/ceph/osd/ceph-6/ --sharding="m(3)
p(3,0-12) O(3,0-13)=block_cache={type=binned_lru} L P" reshard

reshard success

8. To check the sharding status of the OSD node, run the show-sharding command:

Syntax

ceph-bluestore-tool --path /var/lib/ceph/osd/ceph-OSD_ID/ show-sharding

Example

[ceph: root@host02 /]# ceph-bluestore-tool --path /var/lib/ceph/osd/ceph-6/ show-sharding

m(3) p(3,0-12) O(3,0-13)=block_cache={type=binned_lru} L P

9. Exit from the cephadm shell:

[ceph: root@host02 /]# exit

10. Log into the respective host as a root user and start the OSD:

Syntax

cephadm unit --name OSD_ID start

Example

[root@host02 ~]# cephadm unit --name osd.0 start

Additional Resources

See the Red Hat Ceph Storage Installation Guide for more information.

CHAPTER 11. BLUESTORE

141

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/installation_guide/

11.7. THE BLUESTORE FRAGMENTATION TOOL

As a storage administrator, you will want to periodically check the fragmentation level of your BlueStore
OSDs. You can check fragmentation levels with one simple command for offline or online OSDs.

11.7.1. What is the BlueStore fragmentation tool?

For BlueStore OSDs, the free space gets fragmented over time on the underlying storage device. Some
fragmentation is normal, but when there is excessive fragmentation this causes poor performance.

The BlueStore fragmentation tool generates a score on the fragmentation level of the BlueStore OSD.
This fragmentation score is given as a range, 0 through 1. A score of 0 means no fragmentation, and a
score of 1 means severe fragmentation.

Table 11.1. Fragmentation scores' meaning

Score Fragmentation Amount

0.0 - 0.4 None to tiny fragmentation.

0.4 - 0.7 Small and acceptable fragmentation.

0.7 - 0.9 Considerable, but safe fragmentation.

0.9 - 1.0 Severe fragmentation and that causes performance
issues.

IMPORTANT

If you have severe fragmentation, and need some help in resolving the issue, contact Red
Hat Support.

11.7.2. Checking for fragmentation

Checking the fragmentation level of BlueStore OSDs can be done either online or offline.

Prerequisites

A running Red Hat Ceph Storage cluster.

BlueStore OSDs.

Online BlueStore fragmentation score

1. Inspect a running BlueStore OSD process:

a. Simple report:

Syntax

ceph daemon OSD_ID bluestore allocator score block

Red Hat Ceph Storage 7 Administration Guide

142

https://access.redhat.com/support/

Example

[ceph: root@host01 /]# ceph daemon osd.123 bluestore allocator score block

b. A more detailed report:

Syntax

ceph daemon OSD_ID bluestore allocator dump block

Example

[ceph: root@host01 /]# ceph daemon osd.123 bluestore allocator dump block

Offline BlueStore fragmentation score

1. Follow the steps for resharding for checking the offline fragmentation score.
Example

[root@host01 ~]# podman exec -it 7fbd6c6293c0 /bin/bash

1. Inspect a non-running BlueStore OSD process:

a. Simple report:

Syntax

ceph-bluestore-tool --path PATH_TO_OSD_DATA_DIRECTORY --allocator block free-
score

Example

[root@7fbd6c6293c0 /]# ceph-bluestore-tool --path /var/lib/ceph/osd/ceph-123 --allocator
block free-score

b. A more detailed report:

Syntax

ceph-bluestore-tool --path PATH_TO_OSD_DATA_DIRECTORY --allocator block free-
dump
block:
{
 "fragmentation_rating": 0.018290238194701977
}

Example

[root@7fbd6c6293c0 /]# ceph-bluestore-tool --path /var/lib/ceph/osd/ceph-123 --allocator
block free-dump
block:
{

CHAPTER 11. BLUESTORE

143

 "capacity": 21470642176,
 "alloc_unit": 4096,
 "alloc_type": "hybrid",
 "alloc_name": "block",
 "extents": [
 {
 "offset": "0x370000",
 "length": "0x20000"
 },
 {
 "offset": "0x3a0000",
 "length": "0x10000"
 },
 {
 "offset": "0x3f0000",
 "length": "0x20000"
 },
 {
 "offset": "0x460000",
 "length": "0x10000"
 },

Additional Resources

See the BlueStore Fragmentation Tool for details on the fragmentation score.

See the Resharding the RocskDB database using the BlueStore admin tool for details on
resharding.

11.8. CEPH BLUESTORE BLUEFS

BlueStore block database stores metadata as key-value pairs in a RocksDB database. The block
database resides on a small BlueFS partition on the storage device. BlueFS is a minimal file system that
is designed to hold the RocksDB files.

BlueFS files

Following are the three types of files that RocksDB produces:

Control files, for example CURRENT, IDENTITY, and MANIFEST-000011.

DB table files, for example 004112.sst.

Write ahead logs, for example 000038.log.

Additionally, there is an internal, hidden file that serves as BlueFS replay log, ino 1, that works as
directory structure, file mapping, and operations log.

Fallback hierarchy

With BlueFS it is possible to put any file on any device. Parts of file can even reside on different devices,
that is WAL, DB, and SLOW. There is an order to where BlueFS puts files. File is put to secondary storage
only when primary storage is exhausted, and tertiary only when secondary is exhausted.

The order for the specific files is:

Red Hat Ceph Storage 7 Administration Guide

144

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#what-is-the-bluestore-fragmentation-tool_admin
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#resharding-the-rocksdb-database-using-the-bluestore-admin-tool_admin

Write ahead logs: WAL, DB, SLOW

Replay log ino 1: DB, SLOW

Control and DB files: DB, SLOW

Control and DB file order when running out of space: SLOW

IMPORTANT

There is an exception to control and DB file order. When RocksDB detects
that you are running out of space on DB file, it directly notifies you to put file
to SLOW device.

11.8.1. Viewing the bluefs_buffered_io setting

As a storage administrator, you can view the current setting for the bluefs_buffered_io parameter.

The option bluefs_buffered_io is set to True by default for Red Hat Ceph Storage. This option enable
BlueFS to perform buffered reads in some cases, and enables the kernel page cache to act as a
secondary cache for reads like RocksDB block reads.

IMPORTANT

Changing the value of bluefs_buffered_io is not recommended. Before changing the
bluefs_buffered_io parameter, contact your Red Hat Support account team.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to the Ceph Monitor node.

Procedure

1. Log into the Cephadm shell:

Example

[root@host01 ~]# cephadm shell

2. You can view the current value of the bluefs_buffered_io parameter in three different ways:

Method 1

View the value stored in the configuration database:

Example

[ceph: root@host01 /]# ceph config get osd bluefs_buffered_io

Method 2

CHAPTER 11. BLUESTORE

145

View the value stored in the configuration database for a specific OSD:

Syntax

ceph config get OSD_ID bluefs_buffered_io

Example

[ceph: root@host01 /]# ceph config get osd.2 bluefs_buffered_io

Method 3

View the running value for an OSD where the running value is different from the value stored in
the configuration database:

Syntax

ceph config show OSD_ID bluefs_buffered_io

Example

[ceph: root@host01 /]# ceph config show osd.3 bluefs_buffered_io

11.8.2. Viewing Ceph BlueFS statistics for Ceph OSDs

View the BluesFS related information about collocated and non-collocated Ceph OSDs with the bluefs
stats command.

Prerequisites

A running Red Hat Ceph Storage cluster.

The object store configured as BlueStore.

Root-level access to the OSD node.

Procedure

1. Log into the Cephadm shell:

Example

[root@host01 ~]# cephadm shell

2. View the BlueStore OSD statistics:

Syntax

ceph daemon osd.OSD_ID bluefs stats

Example for collocated OSDs

Red Hat Ceph Storage 7 Administration Guide

146

[ceph: root@host01 /]# ceph daemon osd.1 bluefs stats

1 : device size 0x3bfc00000 : using 0x1a428000(420 MiB)
wal_total:0, db_total:15296836403, slow_total:0

Example for non-collocated OSDs

[ceph: root@host01 /]# ceph daemon osd.1 bluefs stats

0 :
1 : device size 0x1dfbfe000 : using 0x1100000(17 MiB)
2 : device size 0x27fc00000 : using 0x248000(2.3 MiB)
RocksDBBlueFSVolumeSelector: wal_total:0, db_total:7646425907,
slow_total:10196562739, db_avail:935539507
Usage matrix:
DEV/LEV WAL DB SLOW * * REAL FILES
LOG 0 B 4 MiB 0 B 0 B 0 B 756 KiB 1
WAL 0 B 4 MiB 0 B 0 B 0 B 3.3 MiB 1
DB 0 B 9 MiB 0 B 0 B 0 B 76 KiB 10
SLOW 0 B 0 B 0 B 0 B 0 B 0 B 0
TOTALS 0 B 17 MiB 0 B 0 B 0 B 0 B 12
MAXIMUMS:
LOG 0 B 4 MiB 0 B 0 B 0 B 756 KiB
WAL 0 B 4 MiB 0 B 0 B 0 B 3.3 MiB
DB 0 B 11 MiB 0 B 0 B 0 B 112 KiB
SLOW 0 B 0 B 0 B 0 B 0 B 0 B
TOTALS 0 B 17 MiB 0 B 0 B 0 B 0 B

where:

0: This refers to dedicated WAL device, that is block.wal.

1: This refers to dedicated DB device, that is block.db.

2: This refers to main block device, that is block or slow.

device size: It represents an actual size of the device.

using: It represents total usage. It is not restricted to BlueFS.

NOTE

DB and WAL devices are used only by BlueFS. For main device, usage from
stored BlueStore data is also included. In the above example, 2.3 MiB is the data
from BlueStore.

wal_total, db_total, slow_total: These values reiterate the device values above.

db_avail: This value represents how many bytes can be taken from SLOW device if necessary.

Usage matrix

The rows WAL, DB, SLOW: Describe where specific file was intended to be put.

The row LOG: Describes the BlueFS replay log ino 1.

The columns WAL, DB, SLOW: Describe where data is actually put. The values are in

CHAPTER 11. BLUESTORE

147

The columns WAL, DB, SLOW: Describe where data is actually put. The values are in
allocation units. WAL and DB have bigger allocation units for performance reasons.

The columns * / *: Relate to virtual devices new-db and new-wal that are used for ceph-
bluestore-tool. It should always show 0 B.

The column REAL: Shows actual usage in bytes.

The column FILES: Shows count of files.

MAXIMUMS: this table captures the maximum value of each entry from the usage matrix.

Additional Resources

See Ceph BlueStore BlueFS for more information about BlueFS files.

See Ceph BlueStore devices for more information about BlueStore devices.

Red Hat Ceph Storage 7 Administration Guide

148

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#ceph-bluestore-bluefs
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/administration_guide/#ceph-bluestore-devices_admin

CHAPTER 12. CRIMSON (TECHNOLOGY PREVIEW)
As a storage administrator, the Crimson project is an effort to build a replacement of ceph-osd daemon
that is suited to the new reality of low latency, high throughput persistent memory, and NVMe
technologies.

IMPORTANT

The Crimson feature is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs), might not
be functionally complete, and Red Hat does not recommend using them for production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process. See the
support scope for Red Hat Technology Preview features for more details.

12.1. CRIMSON OVERVIEW

Crimson is the code name for crimson-osd, which is the next generation ceph-osd for multi-core
scalability. It improves performance with fast network and storage devices, employing state-of-the-art
technologies that includes DPDK and SPDK. BlueStore continues to support HDDs and SSDs. Crimson
aims to be compatible with an earlier version of OSD daemon with the class ceph-osd.

Built on the SeaStar C++ framework, Crimson is a new implementation of the core Ceph object storage
daemon (OSD) component and replaces ceph-osd. The crimson-osd minimizes latency and increased
CPU processor usage. It uses high-performance asynchronous IO and a new threading architecture that
is designed to minimize context switches and inter-thread communication for an operation for cross
communication.

CAUTION

For Red Hat Ceph Storage 7, you can test RADOS Block Device (RBD) workloads on replicated pools
with Crimson only. Do not use Crimson for production data.

Crimson goals

Crimson OSD is a replacement for the OSD daemon with the following goals:

Minimize CPU overload

Minimize cycles or IOPS.

Minimize cross-core communication.

Minimize copies.

Bypass kernel, avoid context switches.

Enable emerging storage technologies

Zoned namespaces

Persistent memory

Fast NVMe

CHAPTER 12. CRIMSON (TECHNOLOGY PREVIEW)

149

https://access.redhat.com/support/offerings/techpreview/

Seastar features

Single reactor thread per CPU

Asynchronous IO

Scheduling done in user space

Includes direct support for DPDK, a high-performance library for user space networking.

Benefits

SeaStore has an independent metadata collection.

Transactional

Composed of flat object namespace.

Object Names might be Large (>1k).

Each object contains a key>value mapping (string>bytes) and data payload.

Supports COW object clones.

Supports ordered listing of both OMAP and object namespaces.

12.2. DIFFERENCE BETWEEN CRIMSON AND CLASSIC CEPH OSD
ARCHITECTURE

In a classic ceph-osd architecture, a messenger thread reads a client message from the wire, which
places the message in the OP queue. The osd-op thread-pool then picks up the message and creates a
transaction and queues it to BlueStore, the current default ObjectStore implementation. BlueStore’s
kv_queue then picks up this transaction and anything else in the queue, synchronously waits for
rocksdb to commit the transaction, and then places the completion callback in the finisher queue. The
finisher thread then picks up the completion callback and queues to replace the messenger thread to
send.

Each of these actions requires inter-thread co-ordination over the contents of a queue. For pg state,
more than one thread might need to access the internal metadata of any PG to lock contention.

This lock contention with increased processor usage scales rapidly with the number of tasks and cores,
and every locking point might become the scaling bottleneck under certain scenarios. Moreover, these
locks and queues incur latency costs even when uncontended. Due to this latency, the thread pools and
task queues deteriorate, as the bookkeeping effort delegates tasks between the worker thread and locks
can force context-switches.

Unlike the ceph-osd architecture, Crimson allows a single I/O operation to complete on a single core

Red Hat Ceph Storage 7 Administration Guide

150

without context switches and without blocking if the underlying storage operations do not require it.
However, some operations still need to be able to wait for asynchronous processes to complete,
probably nondeterministically depending on the state of the system such as recovery or the underlying
device.

Crimson uses the C++ framework that is called Seastar, a highly asynchronous engine, which generally
pre-allocates one thread pinned to each core. These divide work among those cores such that the state
can be partitioned between cores and locking can be avoided. With Seastar, the I/O operations are
partitioned among a group of threads based on the target object. Rather than splitting the stages of
running an I/O operation among different groups of threads, run all the pipeline stages within a single
thread. If an operation needs to be blocked, the core’s Seastar reactor switches to another concurrent
operation and progresses.

Ideally, all the locks and context-switches are no longer needed as each running nonblocking task owns
the CPU until it completes or cooperatively yields. No other thread can preempt the task at the same
time. If the communication is not needed with other shards in the data path, the ideal performance
scales linearly with the number of cores until the I/O device reaches its limit. This design fits the Ceph
OSD well because, at the OSD level, the PG shard all IOs.

Unlike ceph-osd, crimson-osd does not daemonize itself even if the daemonize option is enabled. Do
not daemonize crimson-osd since supported Linux distributions use systemd, which is able to
daemonize the application. With sysvinit, use start-stop-daemon to daemonize crimson-osd.

ObjectStore backend

The crimson-osd offers both native and alienized object store backend. The native object store
backend performs I/O with the Seastar reactor.

Following three ObjectStore backend is supported for Crimson:

AlienStore - Provides compatibility with an earlier version of object store, that is, BlueStore.

CyanStore - A dummy backend for tests, which are implemented by volatile memory. This
object store is modeled after the memstore in the classic OSD.

SeaStore - The new object store designed specifically for Crimson OSD. The paths toward
multiple shard support are different depending on the specific goal of the backend.

Following are the other two classic OSD ObjectStore backends:

MemStore - The memory as the backend object store.

BlueStore - The object store used by the classic ceph-osd.

12.3. CRIMSON METRICS

CHAPTER 12. CRIMSON (TECHNOLOGY PREVIEW)

151

Crimson has three ways to report statistics and metrics:

PG stats reported to manager.

Prometheus text protocol.

The asock command.

PG stats reported to manager

Crimson collects the per-pg, per-pool, and per-osd stats in MPGStats message, which is sent to the
Ceph Managers.

Prometheus text protocol

Configure the listening port and address by using the --prometheus-port command-line option.

The asock command

An admin socket command is offered to dump metrics.

Syntax

ceph tell OSD_ID dump_metrics
ceph tell OSD_ID dump_metrics reactor_utilization

Example

[ceph: root@host01 /]# ceph tell osd.0 dump_metrics
[ceph: root@host01 /]# ceph tell osd.0 dump_metrics reactor_utilization

Here, reactor_utilization is an optional string to filter the dumped metrics by prefix.

12.4. CRIMSON CONFIGURATION OPTIONS

Run the crimson-osd --help-seastar command for Seastar specific command-line options. Following
are the options that you can use to configure Crimson:

--crimson, Description

Start crimson-osd instead of ceph-osd.

--nodaemon, Description

Do not daemonize the service.

--redirect-output, Description

Redirect the stdout and stderr to out/$type.$num.stdout

--osd-args, Description

Pass extra command-line options to crimson-osd or ceph-osd. This option is useful for passing
Seastar options to crimson-osd. For example, one can supply --osd-args "--memory 2G" to set the
amount of memory to use.

--cyanstore, Description

Use CyanStore as the object store backend.

Red Hat Ceph Storage 7 Administration Guide

152

--bluestore, Description

Use the alienized BlueStore as the object store backend. --bluestore is the default memory store.

--memstore, Description

Use the alienized MemStore as the object store backend.

--seastore, Description

Use SeaStore as the back end object store.

--seastore-devs, Description

Specify the block device used by SeaStore.

--seastore-secondary-devs, Description

Optional. SeaStore supports multiple devices. Enable this feature by passing the block device to this
option.

--seastore-secondary-devs-type, Description

Optional. Specify the type of secondary devices. When the secondary device is slower than main
device passed to --seastore-devs, the cold data in faster device will be evicted to the slower devices
over time. Valid types include HDD, SSD, (default), ZNS, and RANDOM_BLOCK_SSD. Note that
secondary devices should not be faster than the main device.

12.5. CONFIGURING CRIMSON

Configure crimson-osd by installing a new storage cluster. Install a new cluster by using the bootstrap
option. You cannot upgrade this cluster as it is in the experimental phase. WARNING: Do not use
production data as it might result in data loss.

Prerequisites

An IP address for the first Ceph Monitor container, which is also the IP address for the first node
in the storage cluster.

Login access to registry.redhat.io.

A minimum of 10 GB of free space for /var/lib/containers/.

Root-level access to all nodes.

Procedure

1. While bootstrapping, use the --image flag to use Crimson build.

Example

[root@host 01 ~]# cephadm --image quay.ceph.io/ceph-
ci/ceph:b682861f8690608d831f58603303388dd7915aa7-crimson bootstrap --mon-ip
10.1.240.54 --allow-fqdn-hostname --initial-dashboard-password Ceph_Crims

2. Log in to the cephadm shell:

Example

[root@host 01 ~]# cephadm shell

CHAPTER 12. CRIMSON (TECHNOLOGY PREVIEW)

153

3. Enable Crimson globally as an experimental feature.

Example

[ceph: root@host01 /]# ceph config set global
'enable_experimental_unrecoverable_data_corrupting_features' crimson

This step enables crimson. Crimson is highly experimental, and malfunctions including crashes
and data loss are to be expected.

4. Enable the OSD Map flag.

Example

[ceph: root@host01 /]# ceph osd set-allow-crimson --yes-i-really-mean-it

The monitor allows crimson-osd to boot only with the --yes-i-really-mean-it flag.

5. Enable Crimson parameter for the monitor to direct the default pools to be created as Crimson
pools.

Example

[ceph: root@host01 /]# ceph config set mon osd_pool_default_crimson true

The crimson-osd does not initiate placement groups (PG) for non-crimson pools.

12.6. CRIMSON CONFIGURATION PARAMETERS

Following are the parameters that you can use to configure Crimson.

crimson_osd_obc_lru_size

Description

Number of obcs to cache.

Type

uint

Default

10

crimson_osd_scheduler_concurrency

Description

The maximum number concurrent IO operations, 0 for unlimited.

Type

uint

Default

0

crimson_alien_op_num_threads

Description

Red Hat Ceph Storage 7 Administration Guide

154

The number of threads for serving alienized ObjectStore.

Type

uint

Default

6

crimson_seastar_smp

Description

Number of seastar reactor threads to use for the OSD.

Type

uint

Default

1

crimson_alien_thread_cpu_cores

Description

String CPU cores on which alienstore threads run in cpuset(7) format.

Type

String

seastore_segment_size

Description

Segment size to use for Segment Manager.

Type

Size

Default

64_M

seastore_device_size

Description

Total size to use for SegmentManager block file if created.

Type

Size

Default

50_G

seastore_block_create

Description

Create SegmentManager file if it does not exist.

Type

Boolean

Default

true

CHAPTER 12. CRIMSON (TECHNOLOGY PREVIEW)

155

seastore_journal_batch_capacity

Description

The number limit of records in a journal batch.

Type

uint

Default

16

seastore_journal_batch_flush_size

Description

The size threshold to force flush a journal batch.

Type

Size

Default

16_M

seastore_journal_iodepth_limit

Description

The IO depth limit to submit journal records.

Type

uint

Default

5

seastore_journal_batch_preferred_fullness

Description

The record fullness threshold to flush a journal batch.

Type

Float

Default

0.95

seastore_default_max_object_size

Description

The default logical address space reservation for seastore objects' data.

Type

uint

Default

16777216

seastore_default_object_metadata_reservation

Description

The default logical address space reservation for seastore objects' metadata.

Red Hat Ceph Storage 7 Administration Guide

156

Type

uint

Default

16777216

seastore_cache_lru_size

Description

Size in bytes of extents to keep in cache.

Type

Size

Default

64_M

seastore_cbjournal_size

Description

Total size to use for CircularBoundedJournal if created, it is valid only if
seastore_main_device_type is RANDOM_BLOCK.

Type

Size

Default

5_G

seastore_obj_data_write_amplification

Description

Split extent if ratio of total extent size to write size exceeds this value.

Type

Float

Default

1.25

seastore_max_concurrent_transactions

Description

The maximum concurrent transactions that seastore allows.

Type

uint

Default

8

seastore_main_device_type

Description

The main device type seastore uses (SSD or RANDOM_BLOCK_SSD).

Type

String

CHAPTER 12. CRIMSON (TECHNOLOGY PREVIEW)

157

Default

SSD

seastore_multiple_tiers_stop_evict_ratio

Description

When the used ratio of main tier is less than this value, then stop evict cold data to the cold tier.

Type

Float

Default

0.5

seastore_multiple_tiers_default_evict_ratio

Description

Begin evicting cold data to the cold tier when the used ratio of the main tier reaches this value.

Type

Float

Default

0.6

seastore_multiple_tiers_fast_evict_ratio

Description

Begin fast eviction when the used ratio of the main tier reaches this value.

Type

Float

Default

0.7

12.7. PROFILING CRIMSON

Profiling Crimson is a methodology to do performance testing with Crimson. Two types of profiling are
supported:

Flexible I/O (FIO) - The crimson-store-nbd shows the configurable FuturizedStore internals
as an NBD server for use with FIO.

Ceph benchmarking tool (CBT) - A testing harness in python to test the performance of a Ceph
cluster.

Procedure

1. Install libnbd and compile FIO:

Example

[root@host01 ~]# dnf install libnbd
[root@host01 ~]# git clone git://git.kernel.dk/fio.git
[root@host01 ~]# cd fio

Red Hat Ceph Storage 7 Administration Guide

158

[root@host01 ~]# ./configure --enable-libnbd
[root@host01 ~]# make

2. Build crimson-store-nbd:

Example

[root@host01 ~]# cd build
[root@host01 ~]# ninja crimson-store-nbd

3. Run the crimson-store-nbd server with a block device. Specify the path to the raw device, like
/dev/nvme1n1:

Example

[root@host01 ~]# export disk_img=/tmp/disk.img
[root@host01 ~]# export unix_socket=/tmp/store_nbd_socket.sock
[root@host01 ~]# rm -f $disk_img $unix_socket
[root@host01 ~]# truncate -s 512M $disk_img
[root@host01 ~]# ./bin/crimson-store-nbd \
 --device-path $disk_img \
 --smp 1 \
 --mkfs true \
 --type transaction_manager \
 --uds-path ${unix_socket} &
 --smp is the CPU cores.
--mkfs initializes the device first.
--type is the backend.

4. Create an FIO job named nbd.fio:

Example

[global]
ioengine=nbd
uri=nbd+unix:///?socket=${unix_socket}
rw=randrw
time_based
runtime=120
group_reporting
iodepth=1
size=512M

[job0]
offset=0

5. Test the Crimson object with the FIO compiled:

Example

[root@host01 ~]# ./fio nbd.fio

Ceph Benchmarking Tool (CBT)

CHAPTER 12. CRIMSON (TECHNOLOGY PREVIEW)

159

Run the same test against two branches. One is main(master), another is topic branch of your choice.
Compare the test results. Along with every test case, a set of rules is defined to check whether you need
to perform regressions when two sets of test results are compared. If a possible regression is found, the
rule and corresponding test results are highlighted.

Procedure

1. From the main branch and the topic branch, run make crimson osd:

Example

[root@host01 ~]# git checkout master
[root@host01 ~]# make crimson-osd
[root@host01 ~]# ../src/script/run-cbt.sh --cbt ~/dev/cbt -a /tmp/baseline
../src/test/crimson/cbt/radosbench_4K_read.yaml
[root@host01 ~]# git checkout topic
[root@host01 ~]# make crimson-osd
[root@host01 ~]# ../src/script/run-cbt.sh --cbt ~/dev/cbt -a /tmp/yap
../src/test/crimson/cbt/radosbench_4K_read.yaml

2. Compare the test results:

Example

[root@host01 ~]# ~/dev/cbt/compare.py -b /tmp/baseline -a /tmp/yap -v

Red Hat Ceph Storage 7 Administration Guide

160

CHAPTER 13. CEPHADM TROUBLESHOOTING
As a storage administrator, you can troubleshoot the Red Hat Ceph Storage cluster. Sometimes there is
a need to investigate why a Cephadm command failed or why a specific service does not run properly.

13.1. PAUSE OR DISABLE CEPHADM

If Cephadm does not behave as expected, you can pause most of the background activity with the
following command:

Example

[ceph: root@host01 /]# ceph orch pause

This stops any changes, but Cephadm periodically checks hosts to refresh it’s inventory of daemons and
devices.

If you want to disable Cephadm completely, run the following commands:

Example

[ceph: root@host01 /]# ceph orch set backend ''
[ceph: root@host01 /]# ceph mgr module disable cephadm

Note that previously deployed daemon containers continue to exist and start as they did before.

To re-enable Cephadm in the cluster, run the following commands:

Example

[ceph: root@host01 /]# ceph mgr module enable cephadm
[ceph: root@host01 /]# ceph orch set backend cephadm

13.2. PER SERVICE AND PER DAEMON EVENT

Cephadm stores events per service and per daemon in order to aid in debugging failed daemon
deployments. These events often contain relevant information:

Per service

Syntax

ceph orch ls --service_name SERVICE_NAME --format yaml

Example

[ceph: root@host01 /]# ceph orch ls --service_name alertmanager --format yaml
service_type: alertmanager
service_name: alertmanager
placement:
 hosts:
 - unknown_host

CHAPTER 13. CEPHADM TROUBLESHOOTING

161

status:
 ...
 running: 1
 size: 1
events:
- 2021-02-01T08:58:02.741162 service:alertmanager [INFO] "service was created"
- '2021-02-01T12:09:25.264584 service:alertmanager [ERROR] "Failed to apply: Cannot
 place <AlertManagerSpec for service_name=alertmanager> on unknown_host: Unknown hosts"'

Per daemon

Syntax

ceph orch ps --service-name SERVICE_NAME --daemon-id DAEMON_ID --format yaml

Example

[ceph: root@host01 /]# ceph orch ps --service-name mds --daemon-id cephfs.hostname.ppdhsz --
format yaml
daemon_type: mds
daemon_id: cephfs.hostname.ppdhsz
hostname: hostname
status_desc: running
...
events:
- 2021-02-01T08:59:43.845866 daemon:mds.cephfs.hostname.ppdhsz [INFO] "Reconfigured
 mds.cephfs.hostname.ppdhsz on host 'hostname'"

13.3. CHECK CEPHADM LOGS

You can monitor the Cephadm log in real time with the following command:

Example

[ceph: root@host01 /]# ceph -W cephadm

You can see the last few messages with the following command:

Example

[ceph: root@host01 /]# ceph log last cephadm

If you have enabled logging to files, you can see a Cephadm log file called ceph.cephadm.log on the
monitor hosts.

13.4. GATHER LOG FILES

You can use the journalctl command, to gather the log files for all the daemons.

NOTE

You have to run all these commands outside the cephadm shell.

Red Hat Ceph Storage 7 Administration Guide

162

NOTE

By default, Cephadm stores logs in journald which means that daemon logs are no longer
available in /var/log/ceph.

To read the log file of a specific daemon, run the following command:

Syntax

cephadm logs --name DAEMON_NAME

Example

[root@host01 ~]# cephadm logs --name cephfs.hostname.ppdhsz

NOTE

This command works when run on the same hosts where the daemon is running.

To read the log file of a specific daemon running on a different host, run the following
command:

Syntax

cephadm logs --fsid FSID --name DAEMON_NAME

Example

[root@host01 ~]# cephadm logs --fsid 2d2fd136-6df1-11ea-ae74-002590e526e8 --name
cephfs.hostname.ppdhsz

where fsid is the cluster ID provided by the ceph status command.

To fetch all log files of all the daemons on a given host, run the following command:

Syntax

for name in $(cephadm ls | python3 -c "import sys, json; [print(i['name']) for i in
json.load(sys.stdin)]") ; do cephadm logs --fsid FSID_OF_CLUSTER --name "$name" >
$name; done

Example

[root@host01 ~]# for name in $(cephadm ls | python3 -c "import sys, json; [print(i['name']) for
i in json.load(sys.stdin)]") ; do cephadm logs --fsid 57bddb48-ee04-11eb-9962-
001a4a000672 --name "$name" > $name; done

13.5. COLLECT SYSTEMD STATUS

To print the state of a systemd unit, run the following command:

Example

CHAPTER 13. CEPHADM TROUBLESHOOTING

163

Example

[root@host01 ~]$ systemctl status ceph-a538d494-fb2a-48e4-82c8-
b91c37bb0684@mon.host01.service

13.6. LIST ALL DOWNLOADED CONTAINER IMAGES

To list all the container images that are downloaded on a host, run the following command:

Example

[ceph: root@host01 /]# podman ps -a --format json | jq '.[].Image'
"docker.io/library/rhel9"
"registry.redhat.io/rhceph-alpha/rhceph-6-
rhel9@sha256:9aaea414e2c263216f3cdcb7a096f57c3adf6125ec9f4b0f5f65fa8c43987155"

13.7. MANUALLY RUN CONTAINERS

Cephadm writes small wrappers that runs a container. Refer to
/var/lib/ceph/CLUSTER_FSID/SERVICE_NAME/unit to run the container execution command.

Analysing SSH errors

If you get the following error:

Example

execnet.gateway_bootstrap.HostNotFound: -F /tmp/cephadm-conf-73z09u6g -i /tmp/cephadm-
identity-ky7ahp_5 root@10.10.1.2
...
raise OrchestratorError(msg) from e
orchestrator._interface.OrchestratorError: Failed to connect to 10.10.1.2 (10.10.1.2).
Please make sure that the host is reachable and accepts connections using the cephadm SSH key

Try the following options to troubleshoot the issue:

To ensure Cephadm has a SSH identity key, run the following command:

Example

[ceph: root@host01 /]# ceph config-key get mgr/cephadm/ssh_identity_key >
~/cephadm_private_key
INFO:cephadm:Inferring fsid f8edc08a-7f17-11ea-8707-000c2915dd98
INFO:cephadm:Using recent ceph image docker.io/ceph/ceph:v15 obtained
'mgr/cephadm/ssh_identity_key'
[root@mon1 ~] # chmod 0600 ~/cephadm_private_key

If the above command fails, Cephadm does not have a key. To generate a SSH key, run the
following command:

Example

[ceph: root@host01 /]# chmod 0600 ~/cephadm_private_key

Red Hat Ceph Storage 7 Administration Guide

164

Or

Example

[ceph: root@host01 /]# cat ~/cephadm_private_key | ceph cephadm set-ssk-key -i-

To ensure that the SSH configuration is correct, run the following command:

Example

[ceph: root@host01 /]# ceph cephadm get-ssh-config

To verify the connection to the host, run the following command:

Example

[ceph: root@host01 /]# ssh -F config -i ~/cephadm_private_key root@host01

Verify public key is in authorized_keys.

To verify that the public key is in the authorized_keys file, run the following commands:

Example

[ceph: root@host01 /]# ceph cephadm get-pub-key
[ceph: root@host01 /]# grep "`cat ~/ceph.pub`" /root/.ssh/authorized_keys

13.8. CIDR NETWORK ERROR

Classless inter domain routing (CIDR) also known as supernetting, is a method of assigning Internet
Protocol (IP) addresses,FThe Cephadm log entries shows the current state that improves the efficiency
of address distribution and replaces the previous system based on Class A, Class B and Class C
networks. If you see one of the following errors:

ERROR: Failed to infer CIDR network for mon ip *; pass --skip-mon-network to configure it later

Or

Must set public_network config option or specify a CIDR network, ceph addrvec, or plain IP

You need to run the following command:

Example

[ceph: root@host01 /]# ceph config set host public_network hostnetwork

13.9. ACCESS THE ADMIN SOCKET

Each Ceph daemon provides an admin socket that bypasses the MONs.

To access the admin socket, enter the daemon container on the host:

Example

CHAPTER 13. CEPHADM TROUBLESHOOTING

165

[ceph: root@host01 /]# cephadm enter --name cephfs.hostname.ppdhsz
[ceph: root@mon1 /]# ceph --admin-daemon /var/run/ceph/ceph-cephfs.hostname.ppdhsz.asok
config show

13.10. MANUALLY DEPLOYING A MGR DAEMON

Cephadm requires a mgr daemon in order to manage the Red Hat Ceph Storage cluster. In case the last
mgr daemon of a Red Hat Ceph Storage cluster was removed, you can manually deploy a mgr daemon,
on a random host of the Red Hat Ceph Storage cluster.

Prerequisites

A running Red Hat Ceph Storage cluster.

Root-level access to all the nodes.

Hosts are added to the cluster.

Procedure

1. Log into the Cephadm shell:

Example

[root@host01 ~]# cephadm shell

2. Disable the Cephadm scheduler to prevent Cephadm from removing the new MGR daemon,
with the following command:

Example

[ceph: root@host01 /]# ceph config-key set mgr/cephadm/pause true

3. Get or create the auth entry for the new MGR daemon:

Example

[ceph: root@host01 /]# ceph auth get-or-create mgr.host01.smfvfd1 mon "profile mgr" osd
"allow *" mds "allow *"
[mgr.host01.smfvfd1]
key = AQDhcORgW8toCRAAlMzlqWXnh3cGRjqYEa9ikw==

4. Open ceph.conf file:

Example

[ceph: root@host01 /]# ceph config generate-minimal-conf
minimal ceph.conf for 8c9b0072-67ca-11eb-af06-001a4a0002a0
[global]
fsid = 8c9b0072-67ca-11eb-af06-001a4a0002a0
mon_host = [v2:10.10.200.10:3300/0,v1:10.10.200.10:6789/0]
[v2:10.10.10.100:3300/0,v1:10.10.200.100:6789/0]

Red Hat Ceph Storage 7 Administration Guide

166

5. Get the container image:

Example

[ceph: root@host01 /]# ceph config get "mgr.host01.smfvfd1" container_image

6. Create a config-json.json file and add the following:

NOTE

Use the values from the output of the ceph config generate-minimal-conf
command.

Example

{
 {
 "config": "# minimal ceph.conf for 8c9b0072-67ca-11eb-af06-001a4a0002a0\n[global]\n\tfsid
= 8c9b0072-67ca-11eb-af06-001a4a0002a0\n\tmon_host =
[v2:10.10.200.10:3300/0,v1:10.10.200.10:6789/0]
[v2:10.10.10.100:3300/0,v1:10.10.200.100:6789/0]\n",
 "keyring": "[mgr.Ceph5-2.smfvfd1]\n\tkey =
AQDhcORgW8toCRAAlMzlqWXnh3cGRjqYEa9ikw==\n"
}
}

7. Exit from the Cephadm shell:

Example

[ceph: root@host01 /]# exit

8. Deploy the MGR daemon:

Example

[root@host01 ~]# cephadm --image registry.redhat.io/rhceph-alpha/rhceph-6-rhel9:latest
deploy --fsid 8c9b0072-67ca-11eb-af06-001a4a0002a0 --name mgr.host01.smfvfd1 --config-
json config-json.json

Verification

In the Cephadm shell, run the following command:

Example

[ceph: root@host01 /]# ceph -s

You can see a new mgr daemon has been added.

CHAPTER 13. CEPHADM TROUBLESHOOTING

167

CHAPTER 14. CEPHADM OPERATIONS
As a storage administrator, you can carry out Cephadm operations in the Red Hat Ceph Storage cluster.

14.1. MONITOR CEPHADM LOG MESSAGES

Cephadm logs to the cephadm cluster log channel so you can monitor progress in real time.

To monitor progress in realtime, run the following command:

Example

[ceph: root@host01 /]# ceph -W cephadm

Example

2022-06-10T17:51:36.335728+0000 mgr.Ceph5-1.nqikfh [INF] refreshing Ceph5-adm facts
2022-06-10T17:51:37.170982+0000 mgr.Ceph5-1.nqikfh [INF] deploying 1 monitor(s) instead
of 2 so monitors may achieve consensus
2022-06-10T17:51:37.173487+0000 mgr.Ceph5-1.nqikfh [ERR] It is NOT safe to stop
['mon.Ceph5-adm']: not enough monitors would be available (Ceph5-2) after stopping mons
[Ceph5-adm]
2022-06-10T17:51:37.174415+0000 mgr.Ceph5-1.nqikfh [INF] Checking pool "nfs-ganesha"
exists for service nfs.foo
2022-06-10T17:51:37.176389+0000 mgr.Ceph5-1.nqikfh [ERR] Failed to apply nfs.foo spec
NFSServiceSpec({'placement': PlacementSpec(count=1), 'service_type': 'nfs', 'service_id':
'foo', 'unmanaged': False, 'preview_only': False, 'pool': 'nfs-ganesha', 'namespace': 'nfs-ns'}):
Cannot find pool "nfs-ganesha" for service nfs.foo
Traceback (most recent call last):
 File "/usr/share/ceph/mgr/cephadm/serve.py", line 408, in _apply_all_services
 if self._apply_service(spec):
 File "/usr/share/ceph/mgr/cephadm/serve.py", line 509, in _apply_service
 config_func(spec)
 File "/usr/share/ceph/mgr/cephadm/services/nfs.py", line 23, in config
 self.mgr._check_pool_exists(spec.pool, spec.service_name())
 File "/usr/share/ceph/mgr/cephadm/module.py", line 1840, in _check_pool_exists
 raise OrchestratorError(f'Cannot find pool "{pool}" for '
orchestrator._interface.OrchestratorError: Cannot find pool "nfs-ganesha" for service nfs.foo
2022-06-10T17:51:37.179658+0000 mgr.Ceph5-1.nqikfh [INF] Found osd claims -> {}
2022-06-10T17:51:37.180116+0000 mgr.Ceph5-1.nqikfh [INF] Found osd claims for
drivegroup all-available-devices -> {}
2022-06-10T17:51:37.182138+0000 mgr.Ceph5-1.nqikfh [INF] Applying all-available-devices
on host Ceph5-adm...
2022-06-10T17:51:37.182987+0000 mgr.Ceph5-1.nqikfh [INF] Applying all-available-devices
on host Ceph5-1...
2022-06-10T17:51:37.183395+0000 mgr.Ceph5-1.nqikfh [INF] Applying all-available-devices
on host Ceph5-2...
2022-06-10T17:51:43.373570+0000 mgr.Ceph5-1.nqikfh [INF] Reconfiguring node-
exporter.Ceph5-1 (unknown last config time)...
2022-06-10T17:51:43.373840+0000 mgr.Ceph5-1.nqikfh [INF] Reconfiguring daemon node-
exporter.Ceph5-1 on Ceph5-1

By default, the log displays info-level events and above. To see the debug-level messages, run
the following commands:

Red Hat Ceph Storage 7 Administration Guide

168

Example

[ceph: root@host01 /]# ceph config set mgr mgr/cephadm/log_to_cluster_level debug
[ceph: root@host01 /]# ceph -W cephadm --watch-debug
[ceph: root@host01 /]# ceph -W cephadm --verbose

Return debugging level to default info:

Example

[ceph: root@host01 /]# ceph config set mgr mgr/cephadm/log_to_cluster_level info

To see the recent events, run the following command:

Example

[ceph: root@host01 /]# ceph log last cephadm

Theses events are also logged to ceph.cephadm.log file on the monitor hosts and to the monitor
daemon’s stderr

14.2. CEPH DAEMON LOGS

You can view the Ceph daemon logs through stderr or files.

Logging to stdout

Traditionally, Ceph daemons have logged to /var/log/ceph. By default, Cephadm daemons log to stderr
and the logs are captured by the container runtime environment. For most systems, by default, these
logs are sent to journald and accessible through the journalctl command.

For example, to view the logs for the daemon on host01 for a storage cluster with ID 5c5a50ae-
272a-455d-99e9-32c6a013e694:

Example

[ceph: root@host01 /]# journalctl -u ceph-5c5a50ae-272a-455d-99e9-
32c6a013e694@host01

This works well for normal Cephadm operations when logging levels are low.

To disable logging to stderr, set the following values:

Example

[ceph: root@host01 /]# ceph config set global log_to_stderr false
[ceph: root@host01 /]# ceph config set global mon_cluster_log_to_stderr false

Logging to files

You can also configure Ceph daemons to log to files instead of stderr. When logging to files, Ceph logs
are located in /var/log/ceph/CLUSTER_FSID.

To enable logging to files, set the follwing values:

CHAPTER 14. CEPHADM OPERATIONS

169

Example

[ceph: root@host01 /]# ceph config set global log_to_file true
[ceph: root@host01 /]# ceph config set global mon_cluster_log_to_file true

NOTE

Red Hat recommends disabling logging to stderr to avoid double logs.

IMPORTANT

Currently log rotation to a non-default path is not supported.

By default, Cephadm sets up log rotation on each host to rotate these files. You can configure the
logging retention schedule by modifying /etc/logrotate.d/ceph.CLUSTER_FSID.

14.3. DATA LOCATION

Cephadm daemon data and logs are located in slightly different locations than the older versions of
Ceph:

/var/log/ceph/CLUSTER_FSID contains all the storage cluster logs. Note that by default
Cephadm logs through stderr and the container runtime, so these logs are usually not present.

/var/lib/ceph/CLUSTER_FSID contains all the cluster daemon data, besides logs.

var/lib/ceph/CLUSTER_FSID/DAEMON_NAME contains all the data for an specific daemon.

/var/lib/ceph/CLUSTER_FSID/crash contains the crash reports for the storage cluster.

/var/lib/ceph/CLUSTER_FSID/removed contains old daemon data directories for the stateful
daemons, for example monitor or Prometheus, that have been removed by Cephadm.

Disk usage

A few Ceph daemons may store a significant amount of data in /var/lib/ceph, notably the monitors and
Prometheus daemon, hence Red Hat recommends moving this directory to its own disk, partition, or
logical volume so that the root file system is not filled up.

14.4. CEPHADM CUSTOM CONFIG FILES

Cephadm supports specifying miscellaneous configuration files for daemons. You must provide both
the content of the configuration file and the location within the daemon’s container where it should be
mounted.

A YAML spec is applied with custom config files specified. Cephadm redeploys the daemons for which
the config files are specified. Then these files are mounted within the daemon’s container at the
specified location.

You can apply a YAML spec with custom config files:

Example

service_type: grafana

Red Hat Ceph Storage 7 Administration Guide

170

service_name: grafana
custom_configs:
 - mount_path: /etc/example.conf
 content: |
 setting1 = value1
 setting2 = value2
 - mount_path: /usr/share/grafana/example.cert
 content: |
-----BEGIN PRIVATE KEY-----
V2VyIGRhcyBsaWVzdCBpc3QgZG9vZi4gTG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQsIGNv
bnNldGV0dXIgc2FkaXBzY2luZyBlbGl0ciwgc2VkIGRpYW0gbm9udW15IGVpcm1vZCB0ZW1w
b3IgaW52aWR1bnQgdXQgbGFib3JlIGV0IGRvbG9yZSBtYWduYSBhbGlxdXlhbSBlcmF0LCBz
ZWQgZGlhbSB2b2x1cHR1YS4gQXQgdmVybyBlb3MgZXQgYWNjdXNhbSBldCBqdXN0byBkd
W8=
-----END PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
V2VyIGRhcyBsaWVzdCBpc3QgZG9vZi4gTG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQsIGNv
bnNldGV0dXIgc2FkaXBzY2luZyBlbGl0ciwgc2VkIGRpYW0gbm9udW15IGVpcm1vZCB0ZW1w
b3IgaW52aWR1bnQgdXQgbGFib3JlIGV0IGRvbG9yZSBtYWduYSBhbGlxdXlhbSBlcmF0LCBz
ZWQgZGlhbSB2b2x1cHR1YS4gQXQgdmVybyBlb3MgZXQgYWNjdXNhbSBldCBqdXN0byBkd
W8=
-----END CERTIFICATE-----

You can mount the new config files within the containers for the daemons:

Syntax

ceph orch redeploy SERVICE_NAME

Example

[ceph: root@host01 /]# ceph orch redeploy grafana

CHAPTER 14. CEPHADM OPERATIONS

171

CHAPTER 15. CEPHADM HEALTH CHECKS
As a storage administrator, you can monitor the Red Hat Ceph Storage cluster with the additional health
checks provided by the Cephadm module. This is supplementary to the default healthchecks provided
by the storage cluster.

15.1. CEPHADM OPERATIONS HEALTH CHECKS

Healthchecks are executed when the Cephadm module is active. You can get the following health
warnings:

CEPHADM_PAUSED

Cephadm background work is paused with the ceph orch pause command. Cephadm continues to
perform passive monitoring activities such as checking the host and daemon status, but it does not make
any changes like deploying or removing daemons. You can resume Cephadm work with the ceph orch
resume command.

CEPHADM_STRAY_HOST

One or more hosts have running Ceph daemons but are not registered as hosts managed by the
Cephadm module. This means that those services are not currently managed by Cephadm, for example,
a restart and upgrade that is included in the ceph orch ps command. You can manage the host(s) with
the ceph orch host add HOST_NAME command but ensure that SSH access to the remote hosts is
configured. Alternatively, you can manually connect to the host and ensure that services on that host
are removed or migrated to a host that is managed by Cephadm. You can also disable this warning with
the setting ceph config set mgr mgr/cephadm/warn_on_stray_hosts false

CEPHADM_STRAY_DAEMON

One or more Ceph daemons are running but are not managed by the Cephadm module. This might be
because they were deployed using a different tool, or because they were started manually. Those
services are not currently managed by Cephadm, for example, a restart and upgrade that is included in
the ceph orch ps command.

If the daemon is a stateful one that is a monitor or OSD daemon, these daemons should be adopted by
Cephadm. For stateless daemons, you can provision a new daemon with the ceph orch apply command
and then stop the unmanaged daemon.

You can disable this health warning with the setting ceph config set mgr
mgr/cephadm/warn_on_stray_daemons false.

CEPHADM_HOST_CHECK_FAILED

One or more hosts have failed the basic Cephadm host check, which verifies that:name: value

The host is reachable and you can execute Cephadm.

The host meets the basic prerequisites, like a working container runtime that is Podman , and
working time synchronization. If this test fails, Cephadm wont be able to manage the services on
that host.

You can manually run this check with the ceph cephadm check-host HOST_NAME command. You can
remove a broken host from management with the ceph orch host rm HOST_NAME command. You can
disable this health warning with the setting ceph config set mgr
mgr/cephadm/warn_on_failed_host_check false.

Red Hat Ceph Storage 7 Administration Guide

172

15.2. CEPHADM CONFIGURATION HEALTH CHECKS

Cephadm periodically scans each of the hosts in the storage cluster, to understand the state of the OS,
disks, and NICs . These facts are analyzed for consistency across the hosts in the storage cluster to
identify any configuration anomalies. The configuration checks are an optional feature.

You can enable this feature with the following command:

Example

[ceph: root@host01 /]# ceph config set mgr mgr/cephadm/config_checks_enabled true

The configuration checks are triggered after each host scan, which is for a duration of one minute.

The ceph -W cephadm command shows log entries of the current state and outcome of the
configuration checks as follows:
Disabled state

Example

ALL cephadm checks are disabled, use 'ceph config set mgr
mgr/cephadm/config_checks_enabled true' to enable

Enabled state

Example

CEPHADM 8/8 checks enabled and executed (0 bypassed, 0 disabled). No issues detected

The configuration checks themselves are managed through several cephadm subcommands.

To determine whether the configuration checks are enabled, run the following command:

Example

[ceph: root@host01 /]# ceph cephadm config-check status

This command returns the status of the configuration checker as either Enabled or Disabled.

To list all the configuration checks and their current state, run the following command:

Example

[ceph: root@host01 /]# ceph cephadm config-check ls
NAME HEALTHCHECK STATUS DESCRIPTION
kernel_security CEPHADM_CHECK_KERNEL_LSM enabled checks
SELINUX/Apparmor profiles are consistent across cluster hosts
os_subscription CEPHADM_CHECK_SUBSCRIPTION enabled checks subscription
states are consistent for all cluster hosts
public_network CEPHADM_CHECK_PUBLIC_MEMBERSHIP enabled check that all hosts
have a NIC on the Ceph public_netork
osd_mtu_size CEPHADM_CHECK_MTU enabled check that OSD hosts share a
common MTU setting
osd_linkspeed CEPHADM_CHECK_LINKSPEED enabled check that OSD hosts

CHAPTER 15. CEPHADM HEALTH CHECKS

173

share a common linkspeed
network_missing CEPHADM_CHECK_NETWORK_MISSING enabled checks that the
cluster/public networks defined exist on the Ceph hosts
ceph_release CEPHADM_CHECK_CEPH_RELEASE enabled check for Ceph version
consistency - ceph daemons should be on the same release (unless upgrade is active)
kernel_version CEPHADM_CHECK_KERNEL_VERSION enabled checks that the
MAJ.MIN of the kernel on Ceph hosts is consistent

Each configuration check is described as follows:

CEPHADM_CHECK_KERNEL_LSM

Each host within the storage cluster is expected to operate within the same Linux Security Module
(LSM) state. For example, if the majority of the hosts are running with SELINUX in enforcing mode, any
host not running in this mode would be flagged as an anomaly and a healthcheck with a warning state is
raised.

CEPHADM_CHECK_SUBSCRIPTION

This check relates to the status of the vendor subscription. This check is only performed for hosts using
Red Hat Enterprise Linux, but helps to confirm that all the hosts are covered by an active subscription so
that patches and updates are available.

CEPHADM_CHECK_PUBLIC_MEMBERSHIP

All members of the cluster should have NICs configured on at least one of the public network subnets.
Hosts that are not on the public network will rely on routing which may affect performance.

CEPHADM_CHECK_MTU

The maximum transmission unit (MTU) of the NICs on OSDs can be a key factor in consistent
performance. This check examines hosts that are running OSD services to ensure that the MTU is
configured consistently within the cluster. This is determined by establishing the MTU setting that the
majority of hosts are using, with any anomalies resulting in a Ceph healthcheck.

CEPHADM_CHECK_LINKSPEED

Similar to the MTU check, linkspeed consistency is also a factor in consistent cluster performance. This
check determines the linkspeed shared by the majority of the OSD hosts, resulting in a healthcheck for
any hosts that are set at a lower linkspeed rate.

CEPHADM_CHECK_NETWORK_MISSING

The public_network and cluster_network settings support subnet definitions for IPv4 and IPv6. If
these settings are not found on any host in the storage cluster a healthcheck is raised.

CEPHADM_CHECK_CEPH_RELEASE

Under normal operations, the Ceph cluster should be running daemons under the same Ceph release,
for example all Red Hat Ceph Storage cluster 5 releases. This check looks at the active release for each
daemon, and reports any anomalies as a healthcheck. This check is bypassed if an upgrade process is
active within the cluster.

CEPHADM_CHECK_KERNEL_VERSION

The OS kernel version is checked for consistency across the hosts. Once again, the majority of the hosts
is used as the basis of identifying anomalies.

Red Hat Ceph Storage 7 Administration Guide

174

CHAPTER 16. MANAGING A RED HAT CEPH STORAGE
CLUSTER USING CEPHADM-ANSIBLE MODULES

As a storage administrator, you can use cephadm-ansible modules in Ansible playbooks to administer
your Red Hat Ceph Storage cluster. The cephadm-ansible package provides several modules that wrap
cephadm calls to let you write your own unique Ansible playbooks to administer your cluster.

NOTE

At this time, cephadm-ansible modules only support the most important tasks. Any
operation not covered by cephadm-ansible modules must be completed using either the
command or shell Ansible modules in your playbooks.

16.1. THE CEPHADM-ANSIBLE MODULES

The cephadm-ansible modules are a collection of modules that simplify writing Ansible playbooks by
providing a wrapper around cephadm and ceph orch commands. You can use the modules to write
your own unique Ansible playbooks to administer your cluster using one or more of the modules.

The cephadm-ansible package includes the following modules:

cephadm_bootstrap

ceph_orch_host

ceph_config

ceph_orch_apply

ceph_orch_daemon

cephadm_registry_login

16.2. THE CEPHADM-ANSIBLE MODULES OPTIONS

The following tables list the available options for the cephadm-ansible modules. Options listed as
required need to be set when using the modules in your Ansible playbooks. Options listed with a default
value of true indicate that the option is automatically set when using the modules and you do not need
to specify it in your playbook. For example, for the cephadm_bootstrap module, the Ceph Dashboard is
installed unless you set dashboard: false.

Table 16.1. Available options for the cephadm_bootstrap module.

cephadm_bootstrap Description Required Default

mon_ip Ceph Monitor IP
address.

true

image Ceph container image. false

docker Use docker instead of
podman.

false

CHAPTER 16. MANAGING A RED HAT CEPH STORAGE CLUSTER USING CEPHADM-ANSIBLE MODULES

175

fsid Define the Ceph FSID. false

pull Pull the Ceph container
image.

false true

dashboard Deploy the Ceph
Dashboard.

false true

dashboard_user Specify a specific Ceph
Dashboard user.

false

dashboard_passwor
d

Ceph Dashboard
password.

false

monitoring Deploy the monitoring
stack.

false true

firewalld Manage firewall rules
with firewalld.

false true

allow_overwrite Allow overwrite of
existing --output-
config, --output-
keyring, or --output-
pub-ssh-key files.

false false

registry_url URL for custom registry. false

registry_username Username for custom
registry.

false

registry_password Password for custom
registry.

false

registry_json JSON file with custom
registry login
information.

false

ssh_user SSH user to use for
cephadm ssh to hosts.

false

ssh_config SSH config file path for
cephadm SSH client.

false

allow_fqdn_hostnam
e

Allow hostname that is a
fully-qualified domain
name (FQDN).

false false

cephadm_bootstrap Description Required Default

Red Hat Ceph Storage 7 Administration Guide

176

cluster_network Subnet to use for cluster
replication, recovery and
heartbeats.

false

cephadm_bootstrap Description Required Default

Table 16.2. Available options for the ceph_orch_host module.

ceph_orch_host Description Required Default

fsid The FSID of the Ceph
cluster to interact with.

false

image The Ceph container
image to use.

false

name Name of the host to
add, remove, or update.

true

address IP address of the host. true when state is
present.

set_admin_label Set the _admin label on
the specified host.

false false

labels The list of labels to apply
to the host.

false []

state If set to present, it
ensures the name
specified in name is
present. If set to
absent, it removes the
host specified in name.
If set to drain, it
schedules to remove all
daemons from the host
specified in name.

false present

Table 16.3. Available options for the ceph_config module

ceph_config Description Required Default

fsid The FSID of the Ceph
cluster to interact with.

false

image The Ceph container
image to use.

false

CHAPTER 16. MANAGING A RED HAT CEPH STORAGE CLUSTER USING CEPHADM-ANSIBLE MODULES

177

action Whether to set or get
the parameter specified
in option.

false set

who Which daemon to set
the configuration to.

true

option Name of the parameter
to set or get.

true

value Value of the parameter
to set.

true if action is set

ceph_config Description Required Default

Table 16.4. Available options for the ceph_orch_apply module.

ceph_orch_apply Description Required

fsid The FSID of the Ceph cluster to
interact with.

false

image The Ceph container image to use. false

spec The service specification to apply. true

Table 16.5. Available options for the ceph_orch_daemon module.

ceph_orch_daemon Description Required

fsid The FSID of the Ceph cluster to
interact with.

false

image The Ceph container image to use. false

state The desired state of the service
specified in name.

true

If started, it ensures the service is
started.

If stopped, it ensures the service
is stopped.

If restarted, it will restart the
service.

daemon_id The ID of the service. true

Red Hat Ceph Storage 7 Administration Guide

178

daemon_type The type of service. true

ceph_orch_daemon Description Required

Table 16.6. Available options for the cephadm_registry_login module

cephadm_registry_l
ogin

Description Required Default

state Login or logout of a
registry.

false login

docker Use docker instead of
podman.

false

registry_url The URL for custom
registry.

false

registry_username Username for custom
registry.

true when state is
login.

registry_password Password for custom
registry.

true when state is
login.

registry_json The path to a JSON file.
This file must be present
on remote hosts prior to
running this task. This
option is currently not
supported.

16.3. BOOTSTRAPPING A STORAGE CLUSTER USING THE
CEPHADM_BOOTSTRAP AND CEPHADM_REGISTRY_LOGIN MODULES

As a storage administrator, you can bootstrap a storage cluster using Ansible by using the
cephadm_bootstrap and cephadm_registry_login modules in your Ansible playbook.

Prerequisites

An IP address for the first Ceph Monitor container, which is also the IP address for the first node
in the storage cluster.

Login access to registry.redhat.io.

A minimum of 10 GB of free space for /var/lib/containers/.

Red Hat Enterprise Linux 9.0 or later with ansible-core bundled into AppStream.

Installation of the cephadm-ansible package on the Ansible administration node.

CHAPTER 16. MANAGING A RED HAT CEPH STORAGE CLUSTER USING CEPHADM-ANSIBLE MODULES

179

Passwordless SSH is set up on all hosts in the storage cluster.

Hosts are registered with CDN.

Procedure

1. Log in to the Ansible administration node.

2. Navigate to the /usr/share/cephadm-ansible directory on the Ansible administration node:

Example

[ceph-admin@admin ~]$ cd /usr/share/cephadm-ansible

3. Create the hosts file and add hosts, labels, and monitor IP address of the first host in the
storage cluster:

Syntax

sudo vi INVENTORY_FILE

HOST1 labels="['LABEL1', 'LABEL2']"
HOST2 labels="['LABEL1', 'LABEL2']"
HOST3 labels="['LABEL1']"

[admin]
ADMIN_HOST monitor_address=MONITOR_IP_ADDRESS labels="['ADMIN_LABEL',
'LABEL1', 'LABEL2']"

Example

[ceph-admin@admin cephadm-ansible]$ sudo vi hosts

host02 labels="['mon', 'mgr']"
host03 labels="['mon', 'mgr']"
host04 labels="['osd']"
host05 labels="['osd']"
host06 labels="['osd']"

[admin]
host01 monitor_address=10.10.128.68 labels="['_admin', 'mon', 'mgr']"

4. Run the preflight playbook:

Syntax

ansible-playbook -i INVENTORY_FILE cephadm-preflight.yml --extra-vars "ceph_origin=rhcs"

Example

[ceph-admin@admin cephadm-ansible]$ ansible-playbook -i hosts cephadm-preflight.yml --
extra-vars "ceph_origin=rhcs"

Red Hat Ceph Storage 7 Administration Guide

180

5. Create a playbook to bootstrap your cluster:

Syntax

sudo vi PLAYBOOK_FILENAME.yml

- name: NAME_OF_PLAY
 hosts: BOOTSTRAP_HOST
 become: USE_ELEVATED_PRIVILEGES
 gather_facts: GATHER_FACTS_ABOUT_REMOTE_HOSTS
 tasks:
 -name: NAME_OF_TASK
 cephadm_registry_login:
 state: STATE
 registry_url: REGISTRY_URL
 registry_username: REGISTRY_USER_NAME
 registry_password: REGISTRY_PASSWORD

 - name: NAME_OF_TASK
 cephadm_bootstrap:
 mon_ip: "{{ monitor_address }}"
 dashboard_user: DASHBOARD_USER
 dashboard_password: DASHBOARD_PASSWORD
 allow_fqdn_hostname: ALLOW_FQDN_HOSTNAME
 cluster_network: NETWORK_CIDR

Example

[ceph-admin@admin cephadm-ansible]$ sudo vi bootstrap.yml

- name: bootstrap the cluster
 hosts: host01
 become: true
 gather_facts: false
 tasks:
 - name: login to registry
 cephadm_registry_login:
 state: login
 registry_url: registry.redhat.io
 registry_username: user1
 registry_password: mypassword1

 - name: bootstrap initial cluster
 cephadm_bootstrap:
 mon_ip: "{{ monitor_address }}"
 dashboard_user: mydashboarduser
 dashboard_password: mydashboardpassword
 allow_fqdn_hostname: true
 cluster_network: 10.10.128.0/28

6. Run the playbook:

Syntax

CHAPTER 16. MANAGING A RED HAT CEPH STORAGE CLUSTER USING CEPHADM-ANSIBLE MODULES

181

ansible-playbook -i INVENTORY_FILE PLAYBOOK_FILENAME.yml -vvv

Example

[ceph-admin@admin cephadm-ansible]$ ansible-playbook -i hosts bootstrap.yml -vvv

Verification

Review the Ansible output after running the playbook.

16.4. ADDING OR REMOVING HOSTS USING THE CEPH_ORCH_HOST

MODULE

As a storage administrator, you can add and remove hosts in your storage cluster by using the
ceph_orch_host module in your Ansible playbook.

Prerequisites

A running Red Hat Ceph Storage cluster.

Register the nodes to the CDN and attach subscriptions.

Ansible user with sudo and passwordless SSH access to all nodes in the storage cluster.

Installation of the cephadm-ansible package on the Ansible administration node.

New hosts have the storage cluster’s public SSH key. For more information about copying the
storage cluster’s public SSH keys to new hosts, see Adding hosts in the Red Hat Ceph Storage
Installation Guide.

Procedure

1. Use the following procedure to add new hosts to the cluster:

a. Log in to the Ansible administration node.

b. Navigate to the /usr/share/cephadm-ansible directory on the Ansible administration node:

Example

[ceph-admin@admin ~]$ cd /usr/share/cephadm-ansible

c. Add the new hosts and labels to the Ansible inventory file.

Syntax

sudo vi INVENTORY_FILE

NEW_HOST1 labels="['LABEL1', 'LABEL2']"
NEW_HOST2 labels="['LABEL1', 'LABEL2']"
NEW_HOST3 labels="['LABEL1']"

Red Hat Ceph Storage 7 Administration Guide

182

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/installation_guide/#adding-hosts_install

[admin]
ADMIN_HOST monitor_address=MONITOR_IP_ADDRESS labels="['ADMIN_LABEL',
'LABEL1', 'LABEL2']"

Example

[ceph-admin@admin cephadm-ansible]$ sudo vi hosts

host02 labels="['mon', 'mgr']"
host03 labels="['mon', 'mgr']"
host04 labels="['osd']"
host05 labels="['osd']"
host06 labels="['osd']"

[admin]
host01 monitor_address= 10.10.128.68 labels="['_admin', 'mon', 'mgr']"

NOTE

If you have previously added the new hosts to the Ansible inventory file and
ran the preflight playbook on the hosts, skip to step 3.

d. Run the preflight playbook with the --limit option:

Syntax

ansible-playbook -i INVENTORY_FILE cephadm-preflight.yml --extra-vars
"ceph_origin=rhcs" --limit NEWHOST

Example

[ceph-admin@admin cephadm-ansible]$ ansible-playbook -i hosts cephadm-preflight.yml
--extra-vars "ceph_origin=rhcs" --limit host02

The preflight playbook installs podman, lvm2, chronyd, and cephadm on the new host.
After installation is complete, cephadm resides in the /usr/sbin/ directory.

e. Create a playbook to add the new hosts to the cluster:

Syntax

sudo vi PLAYBOOK_FILENAME.yml

- name: PLAY_NAME
 hosts: HOSTS_OR_HOST_GROUPS
 become: USE_ELEVATED_PRIVILEGES
 gather_facts: GATHER_FACTS_ABOUT_REMOTE_HOSTS
 tasks:
 - name: NAME_OF_TASK
 ceph_orch_host:
 name: "{{ ansible_facts['hostname'] }}"
 address: "{{ ansible_facts['default_ipv4']['address'] }}"

CHAPTER 16. MANAGING A RED HAT CEPH STORAGE CLUSTER USING CEPHADM-ANSIBLE MODULES

183

 labels: "{{ labels }}"
 delegate_to: HOST_TO_DELEGATE_TASK_TO

 - name: NAME_OF_TASK
 when: inventory_hostname in groups['admin']
 ansible.builtin.shell:
 cmd: CEPH_COMMAND_TO_RUN
 register: REGISTER_NAME

 - name: NAME_OF_TASK
 when: inventory_hostname in groups['admin']
 debug:
 msg: "{{ REGISTER_NAME.stdout }}"

NOTE

By default, Ansible executes all tasks on the host that matches the hosts line
of your playbook. The ceph orch commands must run on the host that
contains the admin keyring and the Ceph configuration file. Use the
delegate_to keyword to specify the admin host in your cluster.

Example

[ceph-admin@admin cephadm-ansible]$ sudo vi add-hosts.yml

- name: add additional hosts to the cluster
 hosts: all
 become: true
 gather_facts: true
 tasks:
 - name: add hosts to the cluster
 ceph_orch_host:
 name: "{{ ansible_facts['hostname'] }}"
 address: "{{ ansible_facts['default_ipv4']['address'] }}"
 labels: "{{ labels }}"
 delegate_to: host01

 - name: list hosts in the cluster
 when: inventory_hostname in groups['admin']
 ansible.builtin.shell:
 cmd: ceph orch host ls
 register: host_list

 - name: print current list of hosts
 when: inventory_hostname in groups['admin']
 debug:
 msg: "{{ host_list.stdout }}"

In this example, the playbook adds the new hosts to the cluster and displays a current list of
hosts.

f. Run the playbook to add additional hosts to the cluster:

Red Hat Ceph Storage 7 Administration Guide

184

Syntax

ansible-playbook -i INVENTORY_FILE PLAYBOOK_FILENAME.yml

Example

[ceph-admin@admin cephadm-ansible]$ ansible-playbook -i hosts add-hosts.yml

2. Use the following procedure to remove hosts from the cluster:

a. Log in to the Ansible administration node.

b. Navigate to the /usr/share/cephadm-ansible directory on the Ansible administration node:

Example

[ceph-admin@admin ~]$ cd /usr/share/cephadm-ansible

c. Create a playbook to remove a host or hosts from the cluster:

Syntax

sudo vi PLAYBOOK_FILENAME.yml

- name: NAME_OF_PLAY
 hosts: ADMIN_HOST
 become: USE_ELEVATED_PRIVILEGES
 gather_facts: GATHER_FACTS_ABOUT_REMOTE_HOSTS
 tasks:
 - name: NAME_OF_TASK
 ceph_orch_host:
 name: HOST_TO_REMOVE
 state: STATE

 - name: NAME_OF_TASK
 ceph_orch_host:
 name: HOST_TO_REMOVE
 state: STATE
 retries: NUMBER_OF_RETRIES
 delay: DELAY
 until: CONTINUE_UNTIL
 register: REGISTER_NAME

 - name: NAME_OF_TASK
 ansible.builtin.shell:
 cmd: ceph orch host ls
 register: REGISTER_NAME

 - name: NAME_OF_TASK
 debug:
 msg: "{{ REGISTER_NAME.stdout }}"

Example

CHAPTER 16. MANAGING A RED HAT CEPH STORAGE CLUSTER USING CEPHADM-ANSIBLE MODULES

185

[ceph-admin@admin cephadm-ansible]$ sudo vi remove-hosts.yml

- name: remove host
 hosts: host01
 become: true
 gather_facts: true
 tasks:
 - name: drain host07
 ceph_orch_host:
 name: host07
 state: drain

 - name: remove host from the cluster
 ceph_orch_host:
 name: host07
 state: absent
 retries: 20
 delay: 1
 until: result is succeeded
 register: result

 - name: list hosts in the cluster
 ansible.builtin.shell:
 cmd: ceph orch host ls
 register: host_list

 - name: print current list of hosts
 debug:
 msg: "{{ host_list.stdout }}"

In this example, the playbook tasks drain all daemons on host07, removes the host from the
cluster, and displays a current list of hosts.

d. Run the playbook to remove host from the cluster:

Syntax

ansible-playbook -i INVENTORY_FILE PLAYBOOK_FILENAME.yml

Example

[ceph-admin@admin cephadm-ansible]$ ansible-playbook -i hosts remove-hosts.yml

Verification

Review the Ansible task output displaying the current list of hosts in the cluster:

Example

TASK [print current hosts]
**
Friday 24 June 2022 14:52:40 -0400 (0:00:03.365) 0:02:31.702 ***********
ok: [host01] =>

Red Hat Ceph Storage 7 Administration Guide

186

 msg: |-
 HOST ADDR LABELS STATUS
 host01 10.10.128.68 _admin mon mgr
 host02 10.10.128.69 mon mgr
 host03 10.10.128.70 mon mgr
 host04 10.10.128.71 osd
 host05 10.10.128.72 osd
 host06 10.10.128.73 osd

16.5. SETTING CONFIGURATION OPTIONS USING THE CEPH_CONFIG

MODULE

As a storage administrator, you can set or get Red Hat Ceph Storage configuration options using the
ceph_config module.

Prerequisites

A running Red Hat Ceph Storage cluster.

Ansible user with sudo and passwordless SSH access to all nodes in the storage cluster.

Installation of the cephadm-ansible package on the Ansible administration node.

The Ansible inventory file contains the cluster and admin hosts.

Procedure

1. Log in to the Ansible administration node.

2. Navigate to the /usr/share/cephadm-ansible directory on the Ansible administration node:

Example

[ceph-admin@admin ~]$ cd /usr/share/cephadm-ansible

3. Create a playbook with configuration changes:

Syntax

sudo vi PLAYBOOK_FILENAME.yml

- name: PLAY_NAME
 hosts: ADMIN_HOST
 become: USE_ELEVATED_PRIVILEGES
 gather_facts: GATHER_FACTS_ABOUT_REMOTE_HOSTS
 tasks:
 - name: NAME_OF_TASK
 ceph_config:
 action: GET_OR_SET
 who: DAEMON_TO_SET_CONFIGURATION_TO
 option: CEPH_CONFIGURATION_OPTION
 value: VALUE_OF_PARAMETER_TO_SET

CHAPTER 16. MANAGING A RED HAT CEPH STORAGE CLUSTER USING CEPHADM-ANSIBLE MODULES

187

 - name: NAME_OF_TASK
 ceph_config:
 action: GET_OR_SET
 who: DAEMON_TO_SET_CONFIGURATION_TO
 option: CEPH_CONFIGURATION_OPTION
 register: REGISTER_NAME

 - name: NAME_OF_TASK
 debug:
 msg: "MESSAGE_TO_DISPLAY {{ REGISTER_NAME.stdout }}"

Example

[ceph-admin@admin cephadm-ansible]$ sudo vi change_configuration.yml

- name: set pool delete
 hosts: host01
 become: true
 gather_facts: false
 tasks:
 - name: set the allow pool delete option
 ceph_config:
 action: set
 who: mon
 option: mon_allow_pool_delete
 value: true

 - name: get the allow pool delete setting
 ceph_config:
 action: get
 who: mon
 option: mon_allow_pool_delete
 register: verify_mon_allow_pool_delete

 - name: print current mon_allow_pool_delete setting
 debug:
 msg: "the value of 'mon_allow_pool_delete' is {{ verify_mon_allow_pool_delete.stdout }}"

In this example, the playbook first sets the mon_allow_pool_delete option to false. The
playbook then gets the current mon_allow_pool_delete setting and displays the value in the
Ansible output.

4. Run the playbook:

Syntax

ansible-playbook -i INVENTORY_FILE _PLAYBOOK_FILENAME.yml

Example

[ceph-admin@admin cephadm-ansible]$ ansible-playbook -i hosts change_configuration.yml

Verification

Red Hat Ceph Storage 7 Administration Guide

188

Review the output from the playbook tasks.

Example

TASK [print current mon_allow_pool_delete setting]

Wednesday 29 June 2022 13:51:41 -0400 (0:00:05.523) 0:00:17.953 ********
ok: [host01] =>
 msg: the value of 'mon_allow_pool_delete' is true

Additional Resources

See the Red Hat Ceph Storage Configuration Guide for more details on configuration options.

16.6. APPLYING A SERVICE SPECIFICATION USING THE
CEPH_ORCH_APPLY MODULE

As a storage administrator, you can apply service specifications to your storage cluster using the
ceph_orch_apply module in your Ansible playbooks. A service specification is a data structure to
specify the service attributes and configuration settings that is used to deploy the Ceph service. You
can use a service specification to deploy Ceph service types like mon, crash, mds, mgr, osd, rdb, or
rbd-mirror.

Prerequisites

A running Red Hat Ceph Storage cluster.

Ansible user with sudo and passwordless SSH access to all nodes in the storage cluster.

Installation of the cephadm-ansible package on the Ansible administration node.

The Ansible inventory file contains the cluster and admin hosts.

Procedure

1. Log in to the Ansible administration node.

2. Navigate to the /usr/share/cephadm-ansible directory on the Ansible administration node:

Example

[ceph-admin@admin ~]$ cd /usr/share/cephadm-ansible

3. Create a playbook with the service specifications:

Syntax

sudo vi PLAYBOOK_FILENAME.yml

- name: PLAY_NAME
 hosts: HOSTS_OR_HOST_GROUPS
 become: USE_ELEVATED_PRIVILEGES

CHAPTER 16. MANAGING A RED HAT CEPH STORAGE CLUSTER USING CEPHADM-ANSIBLE MODULES

189

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/configuration_guide/

 gather_facts: GATHER_FACTS_ABOUT_REMOTE_HOSTS
 tasks:
 - name: NAME_OF_TASK
 ceph_orch_apply:
 spec: |
 service_type: SERVICE_TYPE
 service_id: UNIQUE_NAME_OF_SERVICE
 placement:
 host_pattern: 'HOST_PATTERN_TO_SELECT_HOSTS'
 label: LABEL
 spec:
 SPECIFICATION_OPTIONS:

Example

[ceph-admin@admin cephadm-ansible]$ sudo vi deploy_osd_service.yml

- name: deploy osd service
 hosts: host01
 become: true
 gather_facts: true
 tasks:
 - name: apply osd spec
 ceph_orch_apply:
 spec: |
 service_type: osd
 service_id: osd
 placement:
 host_pattern: '*'
 label: osd
 spec:
 data_devices:
 all: true

In this example, the playbook deploys the Ceph OSD service on all hosts with the label osd.

4. Run the playbook:

Syntax

ansible-playbook -i INVENTORY_FILE _PLAYBOOK_FILENAME.yml

Example

[ceph-admin@admin cephadm-ansible]$ ansible-playbook -i hosts deploy_osd_service.yml

Verification

Review the output from the playbook tasks.

Additional Resources

See the Red Hat Ceph Storage Operations Guide for more details on service specification

Red Hat Ceph Storage 7 Administration Guide

190

See the Red Hat Ceph Storage Operations Guide for more details on service specification
options.

16.7. MANAGING CEPH DAEMON STATES USING THE CEPH_ORCH_DAEMON

MODULE

As a storage administrator, you can start, stop, and restart Ceph daemons on hosts using the
ceph_orch_daemon module in your Ansible playbooks.

Prerequisites

A running Red Hat Ceph Storage cluster.

Ansible user with sudo and passwordless SSH access to all nodes in the storage cluster.

Installation of the cephadm-ansible package on the Ansible administration node.

The Ansible inventory file contains the cluster and admin hosts.

Procedure

1. Log in to the Ansible administration node.

2. Navigate to the /usr/share/cephadm-ansible directory on the Ansible administration node:

Example

[ceph-admin@admin ~]$ cd /usr/share/cephadm-ansible

3. Create a playbook with daemon state changes:

Syntax

sudo vi PLAYBOOK_FILENAME.yml

- name: PLAY_NAME
 hosts: ADMIN_HOST
 become: USE_ELEVATED_PRIVILEGES
 gather_facts: GATHER_FACTS_ABOUT_REMOTE_HOSTS
 tasks:
 - name: NAME_OF_TASK
 ceph_orch_daemon:
 state: STATE_OF_SERVICE
 daemon_id: DAEMON_ID
 daemon_type: TYPE_OF_SERVICE

Example

[ceph-admin@admin cephadm-ansible]$ sudo vi restart_services.yml

- name: start and stop services
 hosts: host01

CHAPTER 16. MANAGING A RED HAT CEPH STORAGE CLUSTER USING CEPHADM-ANSIBLE MODULES

191

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/operations_guide/

 become: true
 gather_facts: false
 tasks:
 - name: start osd.0
 ceph_orch_daemon:
 state: started
 daemon_id: 0
 daemon_type: osd

 - name: stop mon.host02
 ceph_orch_daemon:
 state: stopped
 daemon_id: host02
 daemon_type: mon

In this example, the playbook starts the OSD with an ID of 0 and stops a Ceph Monitor with an id
of host02.

4. Run the playbook:

Syntax

ansible-playbook -i INVENTORY_FILE _PLAYBOOK_FILENAME.yml

Example

[ceph-admin@admin cephadm-ansible]$ ansible-playbook -i hosts restart_services.yml

Verification

Review the output from the playbook tasks.

Red Hat Ceph Storage 7 Administration Guide

192

APPENDIX A. THE MCLOCK CONFIGURATION OPTIONS
This section contains the list of mClock configuration options:

osd_mclock_profile

Description

It sets the type of mClock profile to use for providing the quality of service (QoS) based on
operations belonging to different classes, such as background recovery, backfill, pg scrub, snap
trim, client op, and pg deletion.
Once a built-in profile is enabled, the lower-level mClock resource control parameters, that is
reservation, weight, and limit, and some Ceph configuration parameters are set transparently.
This does not apply for the custom profile.

Type

String

Default

balanced

Valid choices

balanced, high_recovery_ops, high_client_ops, custom

osd_mclock_max_capacity_iops_hdd

Description

It sets a maximum random write IOPS capacity, at 4 KiB block size, to consider per OSD for
rotational media. Contributes in QoS calculations when enabling a dmclock profile. It is only
considered for osd_op_queue = mclock_scheduler

Type

Float

Default

315.0

osd_mclock_max_capacity_iops_ssd

Description

It sets a maximum random write IOPS capacity, at 4 KiB block size, to consider per OSD for solid
state media.

Type

Float

Default

21500.0

osd_mclock_cost_per_byte_usec_ssd

Description

Indicates cost per byte in microseconds to consider per OSD for SDDs.Contributes in QoS
calculations when enabling a dmclock profile. It is only considered for osd_op_queue =
mclock_scheduler

Type

Float

APPENDIX A. THE MCLOCK CONFIGURATION OPTIONS

193

Default

0.011

osd_mclock_max_sequential_bandwidth_hdd

Description

Indicates the maximum sequential bandwidth in bytes to consider for an OSD whose underlying
device type is rotational media. This is considered by the mclock scheduler to derive the cost
factor to be used in QoS calculations. Only considered for osd_op_queue = mclock_scheduler

Type

Size

Default

150_M

osd_mclock_max_sequential_bandwidth_ssd

Description

Indicates the maximum sequential bandwidth in bytes to consider for an OSD whose underlying
device type is solid state media. This is considered by the mclock scheduler to derive the cost
factor to be used in QoS calculations. Only considered for osd_op_queue = mclock_scheduler

Type

Size

Default

1200_M

osd_mclock_force_run_benchmark_on_init

Description

This force-runs the OSD benchmark on OSD initialization or boot-up.

Type

Boolean

Default

False

See also

osd_mclock_max_capacity_iops_hdd, osd_mclock_max_capacity_iops_ssd

osd_mclock_skip_benchmark

Description

Setting this option skips the OSD benchmark on OSD initialization or boot-up.

Type

Boolean

Default

False

See also

osd_mclock_max_capacity_iops_hdd, osd_mclock_max_capacity_iops_ssd

osd_mclock_override_recovery_settings

Red Hat Ceph Storage 7 Administration Guide

194

Description

Setting this option enables the override of the recovery or backfill limits for the mClock scheduler
as defined by the osd_recovery_max_active_hdd, osd_recovery_max_active_ssd, and
osd_max_backfills options.

Type

Boolean

Default

False

See also

osd_recovery_max_active_hdd, osd_recovery_max_active_ssd, osd_max_backfills

osd_mclock_iops_capacity_threshold_hdd

Description

It indicates the threshold IOPS capacity, at 4KiB block size, beyond which to ignore the Ceph
OSD bench results for an OSD for HDDs.

Type

Float

Default

500.0

osd_mclock_iops_capacity_threshold_ssd

Description

It indicates the threshold IOPS capacity, at 4KiB block size, beyond which to ignore the Ceph
OSD bench results for an OSD for SSDs.

Type

Float

Default

80000.0

osd_mclock_scheduler_client_res

Description

It is the default I/O proportion reserved for each client. The default value of 0 specifies the
lowest possible reservation. Any value greater than 0 and up to 1.0 specifies the minimum IO
proportion to reserve for each client in terms of a fraction of the OSD’s maximum IOPS capacity.

Type

float

Default

0

min

0

max

1.0

osd_mclock_scheduler_client_wgt

APPENDIX A. THE MCLOCK CONFIGURATION OPTIONS

195

Description

It is the default I/O share for each client over reservation.

Type

Unsigned integer

Default

1

osd_mclock_scheduler_client_lim

Description

It is the default I/O limit for each client over reservation. The default value of 0 specifies no limit
enforcement, which means each client can use the maximum possible IOPS capacity of the OSD.
Any value greater than 0 and up to 1.0 specifies the upper IO limit over reservation that each
client receives in terms of a fraction of the OSD’s maximum IOPS capacity.

Type

float

Default

0

min

0

max

1.0

osd_mclock_scheduler_background_recovery_res

Description

It is the default I/O proportion reserved for background recovery. The default value of 0 specifies
the lowest possible reservation. Any value greater than 0 and up to 1.0 specifies the minimum IO
proportion to reserve for background recovery operations in terms of a fraction of the OSD’s
maximum IOPS capacity.

Type

float

Default

0

min

0

max

1.0

osd_mclock_scheduler_background_recovery_wgt

Description

It indicates the I/O share for each background recovery over reservation.

Type

Unsigned integer

Default

1

Red Hat Ceph Storage 7 Administration Guide

196

osd_mclock_scheduler_background_recovery_lim

Description

It indicates the I/O limit for background recovery over reservation. The default value of 0
specifies no limit enforcement, which means background recovery operation can use the
maximum possible IOPS capacity of the OSD. Any value greater than 0 and up to 1.0 specifies the
upper IO limit over reservation that background recovery operation receives in terms of a fraction
of the OSD’s maximum IOPS capacity.

Type

float

Default

0

min

0

max

1.0

osd_mclock_scheduler_background_best_effort_res

Description

It indicates the default I/O proportion reserved for background best_effort. The default value of
0 specifies the lowest possible reservation. Any value greater than 0 and up to 1.0 specifies the
minimum IO proportion to reserve for background best_effort operations in terms of a fraction of
the OSD’s maximum IOPS capacity.

Type

float

Default

0

min

0

max

1.0

osd_mclock_scheduler_background_best_effort_wgt

Description

It indicates the I/O share for each background best_effort over reservation.

Type

Unsigned integer

Default

1

osd_mclock_scheduler_background_best_effort_lim

Description

It indicates the I/O limit for background best_effort over reservation. The default value of 0
specifies no limit enforcement, which means background best_effort operation can use the
maximum possible IOPS capacity of the OSD. Any value greater than 0 and up to 1.0 specifies the

APPENDIX A. THE MCLOCK CONFIGURATION OPTIONS

197

upper IO limit over reservation that background best_effort operation receives in terms of a
fraction of the OSD’s maximum IOPS capacity.

Type

float

Default

0

min

0

max

1.0

Additional Resources

See Object Storage Daemon (OSD) configuration options for more details about osd_op_queue option.

Red Hat Ceph Storage 7 Administration Guide

198

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/configuration_guide/#osd-object-storage-daemon-configuration-options_conf

	Table of Contents
	CHAPTER 1. CEPH ADMINISTRATION
	CHAPTER 2. UNDERSTANDING PROCESS MANAGEMENT FOR CEPH
	2.1. CEPH PROCESS MANAGEMENT
	2.2. STARTING, STOPPING, AND RESTARTING ALL CEPH DAEMONS USING SYSTEMCTL COMMAND
	2.3. STARTING, STOPPING, AND RESTARTING ALL CEPH SERVICES
	2.4. VIEWING LOG FILES OF CEPH DAEMONS THAT RUN IN CONTAINERS
	2.5. POWERING DOWN AND REBOOTING RED HAT CEPH STORAGE CLUSTER
	2.5.1. Powering down and rebooting the cluster using the systemctl commands
	2.5.2. Powering down and rebooting the cluster using the Ceph Orchestrator

	CHAPTER 3. MONITORING A CEPH STORAGE CLUSTER
	3.1. HIGH-LEVEL MONITORING OF A CEPH STORAGE CLUSTER
	3.1.1. Checking the storage cluster health
	3.1.2. Watching storage cluster events
	3.1.3. How Ceph calculates data usage
	3.1.4. Understanding the storage clusters usage stats
	3.1.5. Understanding the OSD usage stats
	3.1.6. Checking the storage cluster status
	3.1.7. Checking the Ceph Monitor status
	3.1.8. Using the Ceph administration socket
	3.1.9. Understanding the Ceph OSD status

	3.2. LOW-LEVEL MONITORING OF A CEPH STORAGE CLUSTER
	3.2.1. Monitoring Placement Group Sets
	3.2.2. Ceph OSD peering
	3.2.3. Placement Group States
	3.2.4. Placement Group creating state
	3.2.5. Placement group peering state
	3.2.6. Placement group active state
	3.2.7. Placement Group clean state
	3.2.8. Placement Group degraded state
	3.2.9. Placement Group recovering state
	3.2.10. Back fill state
	3.2.11. Placement Group remapped state
	3.2.12. Placement Group stale state
	3.2.13. Placement Group misplaced state
	3.2.14. Placement Group incomplete state
	3.2.15. Identifying stuck Placement Groups
	3.2.16. Finding an object’s location

	CHAPTER 4. STRETCH CLUSTERS FOR CEPH STORAGE
	4.1. STRETCH MODE FOR A STORAGE CLUSTER
	4.1.1. Setting the CRUSH location for the daemons
	4.1.2. Entering the stretch mode
	4.1.3. Adding OSD hosts in stretch mode

	CHAPTER 5. OVERRIDE CEPH BEHAVIOR
	5.1. SETTING AND UNSETTING CEPH OVERRIDE OPTIONS
	5.2. CEPH OVERRIDE USE CASES

	CHAPTER 6. CEPH USER MANAGEMENT
	6.1. CEPH USER MANAGEMENT BACKGROUND
	6.2. MANAGING CEPH USERS
	6.2.1. Listing Ceph users
	6.2.2. Display Ceph user information
	6.2.3. Add a new Ceph user
	6.2.4. Modifying a Ceph User
	6.2.5. Deleting a Ceph user
	6.2.6. Print a Ceph user key

	CHAPTER 7. THE CEPH-VOLUME UTILITY
	7.1. CEPH VOLUME LVM PLUGIN
	7.2. WHY DOES CEPH-VOLUME REPLACE CEPH-DISK?
	7.3. PREPARING CEPH OSDS USING CEPH-VOLUME
	7.4. LISTING DEVICES USING CEPH-VOLUME
	7.5. ACTIVATING CEPH OSDS USING CEPH-VOLUME
	7.6. DEACTIVATING CEPH OSDS USING CEPH-VOLUME
	7.7. CREATING CEPH OSDS USING CEPH-VOLUME
	7.8. MIGRATING BLUEFS DATA
	7.9. USING BATCH MODE WITH CEPH-VOLUME
	7.10. ZAPPING DATA USING CEPH-VOLUME

	CHAPTER 8. CEPH PERFORMANCE BENCHMARK
	8.1. PERFORMANCE BASELINE
	8.2. BENCHMARKING CEPH PERFORMANCE
	8.3. BENCHMARKING CEPH BLOCK PERFORMANCE

	CHAPTER 9. CEPH PERFORMANCE COUNTERS
	9.1. ACCESS TO CEPH PERFORMANCE COUNTERS
	9.2. DISPLAY THE CEPH PERFORMANCE COUNTERS
	9.3. DUMP THE CEPH PERFORMANCE COUNTERS
	9.4. AVERAGE COUNT AND SUM
	9.5. CEPH MONITOR METRICS
	9.6. CEPH OSD METRICS
	9.7. CEPH OBJECT GATEWAY METRICS

	CHAPTER 10. THE MCLOCK OSD SCHEDULER
	10.1. COMPARISON OF MCLOCK OSD SCHEDULER WITH WPQ OSD SCHEDULER
	10.2. THE ALLOCATION OF INPUT AND OUTPUT RESOURCES
	10.3. FACTORS THAT IMPACT MCLOCK OPERATION QUEUES
	10.4. THE MCLOCK CONFIGURATION
	10.5. MCLOCK CLIENTS
	10.6. MCLOCK PROFILES
	10.6.1. mClock profile types
	10.6.2. Changing an mClock profile
	10.6.3. Switching between built-in and custom profiles
	10.6.4. Switching temporarily between mClock profiles
	10.6.5. Degraded and Misplaced Object Recovery Rate With mClock Profiles
	10.6.6. Modifying backfills and recovery options

	10.7. THE CEPH OSD CAPACITY DETERMINATION
	10.7.1. Verifying the capacity of an OSD
	10.7.2. Manually benchmarking OSDs
	10.7.3. Determining the correct BlueStore throttle values
	10.7.4. Specifying maximum OSD capacity

	CHAPTER 11. BLUESTORE
	11.1. CEPH BLUESTORE
	11.2. CEPH BLUESTORE DEVICES
	11.3. CEPH BLUESTORE CACHING
	11.4. SIZING CONSIDERATIONS FOR CEPH BLUESTORE
	11.5. TUNING CEPH BLUESTORE USING BLUESTORE_MIN_ALLOC_SIZE PARAMETER
	11.6. RESHARDING THE ROCKSDB DATABASE USING THE BLUESTORE ADMIN TOOL
	11.6.1. Use the rocksdb-resharding.yml playbook
	11.6.2. Manually resharding the OSDs

	11.7. THE BLUESTORE FRAGMENTATION TOOL
	11.7.1. What is the BlueStore fragmentation tool?
	11.7.2. Checking for fragmentation

	11.8. CEPH BLUESTORE BLUEFS
	11.8.1. Viewing the bluefs_buffered_io setting
	11.8.2. Viewing Ceph BlueFS statistics for Ceph OSDs

	CHAPTER 12. CRIMSON (TECHNOLOGY PREVIEW)
	12.1. CRIMSON OVERVIEW
	12.2. DIFFERENCE BETWEEN CRIMSON AND CLASSIC CEPH OSD ARCHITECTURE
	12.3. CRIMSON METRICS
	12.4. CRIMSON CONFIGURATION OPTIONS
	12.5. CONFIGURING CRIMSON
	12.6. CRIMSON CONFIGURATION PARAMETERS
	12.7. PROFILING CRIMSON

	CHAPTER 13. CEPHADM TROUBLESHOOTING
	13.1. PAUSE OR DISABLE CEPHADM
	13.2. PER SERVICE AND PER DAEMON EVENT
	13.3. CHECK CEPHADM LOGS
	13.4. GATHER LOG FILES
	13.5. COLLECT SYSTEMD STATUS
	13.6. LIST ALL DOWNLOADED CONTAINER IMAGES
	13.7. MANUALLY RUN CONTAINERS
	13.8. CIDR NETWORK ERROR
	13.9. ACCESS THE ADMIN SOCKET
	13.10. MANUALLY DEPLOYING A MGR DAEMON

	CHAPTER 14. CEPHADM OPERATIONS
	14.1. MONITOR CEPHADM LOG MESSAGES
	14.2. CEPH DAEMON LOGS
	14.3. DATA LOCATION
	14.4. CEPHADM CUSTOM CONFIG FILES

	CHAPTER 15. CEPHADM HEALTH CHECKS
	15.1. CEPHADM OPERATIONS HEALTH CHECKS
	15.2. CEPHADM CONFIGURATION HEALTH CHECKS

	CHAPTER 16. MANAGING A RED HAT CEPH STORAGE CLUSTER USING CEPHADM-ANSIBLE MODULES
	16.1. THE CEPHADM-ANSIBLE MODULES
	16.2. THE CEPHADM-ANSIBLE MODULES OPTIONS
	16.3. BOOTSTRAPPING A STORAGE CLUSTER USING THE CEPHADM_BOOTSTRAP AND CEPHADM_REGISTRY_LOGIN MODULES
	16.4. ADDING OR REMOVING HOSTS USING THE CEPH_ORCH_HOST MODULE
	16.5. SETTING CONFIGURATION OPTIONS USING THE CEPH_CONFIG MODULE
	16.6. APPLYING A SERVICE SPECIFICATION USING THE CEPH_ORCH_APPLY MODULE
	16.7. MANAGING CEPH DAEMON STATES USING THE CEPH_ORCH_DAEMON MODULE

	APPENDIX A. THE MCLOCK CONFIGURATION OPTIONS

