Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation’s permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The Release Notes document describes the major features and enhancements implemented in Red Hat Ceph Storage in a particular release. The document also includes known issues and bug fixes.
Table of Contents

CHAPTER 1. INTRODUCTION ... 3

CHAPTER 2. ACKNOWLEDGMENTS .. 4

CHAPTER 3. NEW FEATURES ... 5
 3.1. THE CEPH-ANSIBLE UTILITY .. 5
 3.2. CEPH MANAGEMENT DASHBOARD 5
 3.3. CEPH MANAGER PLUGINS ... 5
 3.4. THE CEPH-VOLUME UTILITY .. 6
 3.5. OBJECT GATEWAY ... 6
 3.6. PACKAGES .. 7
 3.7. RADOS ... 7

CHAPTER 4. BUG Fixes ... 9
 4.1. THE CEPH-ANSIBLE UTILITY .. 9
 4.2. CEPH MANAGEMENT DASHBOARD 13
 4.3. CEPH FILE SYSTEM .. 14
 4.4. CEPH MANAGER PLUGINS ... 15
 4.5. THE CEPH-VOLUME UTILITY .. 15
 4.6. ISCSI GATEWAY .. 16
 4.7. OBJECT GATEWAY .. 16
 4.8. OBJECT GATEWAY MULTISITE 20
 4.9. RADOS ... 21
 4.10. BLOCK DEVICES (RBD) ... 21

CHAPTER 5. TECHNOLOGY PREVIEWS 22
 5.1. BLOCK DEVICES (RBD) ... 22
 5.2. CEPH FILE SYSTEM .. 22
 5.3. OBJECT GATEWAY .. 22

CHAPTER 6. KNOWN ISSUES ... 23
 6.1. THE CEPH-ANSIBLE UTILITY .. 23
 6.2. CEPH MANAGEMENT DASHBOARD 23
 6.3. OBJECT GATEWAY .. 23

CHAPTER 7. DEPRECATED FUNCTIONALITY 24
 7.1. THE CEPH-ANSIBLE UTILITY .. 24

CHAPTER 8. SOURCES ... 25
CHAPTER 1. INTRODUCTION

Red Hat Ceph Storage is a massively scalable, open, software-defined storage platform that combines the most stable version of the Ceph storage system with a Ceph management platform, deployment utilities, and support services.

The Red Hat Ceph Storage documentation is available at https://access.redhat.com/documentation/en/red-hat-ceph-storage/.
CHAPTER 2. ACKNOWLEDGMENTS

Red Hat Ceph Storage version 3.3 contains many contributions from the Red Hat Ceph Storage team. Additionally, the Ceph project is seeing amazing growth in the quality and quantity of contributions from individuals and organizations in the Ceph community. We would like to thank all members of the Red Hat Ceph Storage team, all of the individual contributors in the Ceph community, and additionally (but not limited to) the contributions from organizations such as:

- Intel
- Fujitsu
- UnitedStack
- Yahoo
- UbuntuKylin
- Mellanox
- CERN
- Deutsche Telekom
- Mirantis
- SanDisk
- SUSE
CHAPTER 3. NEW FEATURES

This section lists all major updates, enhancements, and new features introduced in this release of Red Hat Ceph Storage.

3.1. THE CEPH-ANSIBLE UTILITY

osd_auto_discovery now works with the `batch` subcommand

Previously, when `osd_auto_discovery` was activated, the `batch` subcommand did not create OSDs as expected. With this update, when `batch` is used with `osd_auto_discovery`, all the devices found by the `ceph-ansible` utility become OSDs and are passed in `batch` as expected.

Removing iSCSI targets using Ansible

Previously, the iSCSI targets had to be removed manually before purging the storage cluster. Starting with this release, the `ceph-ansible` playbooks remove the iSCSI targets as expected.

For bare-metal Ceph deployments, see the Removing the Configuration section in the the Red Hat Ceph Storage 3 Block Device Guide for more details.

For Ceph container deployment, see the Red Hat Ceph Storage 3 Container Guide for more details.

Setting ownership is faster when using `switch-from-non-containerized-to-containerized-ceph-daemons.yml`

Previously, the `chown` command in the `switch-from-non-containerized-to-containerized-ceph-daemons.yml` playbook unconditionally re-applied the ownership of Ceph directories and files causing a lot of write operations. With this update, the command has been improved to run faster. This is especially useful on a Red Hat Ceph Storage cluster with a significant amount of directories and files in the `/var/lib/ceph/` directory.

3.2. CEPH MANAGEMENT DASHBOARD

New options to use pre-downloaded container images

Previously, it was not possible to install Red Hat Ceph Storage Dashboard and the Prometheus plug-in without access to the Red Hat Container Registry. This update adds the following Ansible options that allow you to use pre-downloaded container images:

- `prometheus.pull_image`
 - Set to `false` to not pull the Prometheus container image
- `prometheus.trust_image_content`
 - Set to `true` to not contact the Registry for Prometheus container image verification
- `grafana.pull_image`
 - Set to `false` to not pull the Dashboard container image
- `grafana.trust_image_content`
 - Set to `true` to not contact the Registry for Dashboard container image verification

Set these options in the Ansible `group_vars/all.yml` file to use the pre-downloaded container images.

3.3. CEPH MANAGER PLUGINS
The RESTful plug-in now exposes performance counters

The RESTful plug-in for the Ceph Manager (ceph-mgr) now exposes performance counters that include a number of Ceph Object Gateway metrics. To query the performance counters through the REST API provided by the RESTful plug-in, access the /perf endpoint.

3.4. THE CEPH-VOLUME UTILITY

The ceph-volume tool can now set the sizing of journals and block.db

Previously, sizing for journals and block.db volumes could only be set in the ceph.conf file. With this update, the ceph-volume tool can set the sizing of journals and block.db. This exposes sizing right on the command line interface (CLI) so the user can use tools like ceph-ansible or the CLI directly to set or change sizing when creating an OSD.

New ceph-volume subcommand: inventory

The ceph-volume utility now supports a new inventory subcommand. The subcommand describes every device in the system, reports if it is available or not and if it is used by the ceph-disk utility.

New ceph-volume lvm zap options: --osd.id and --osd-fsid

The ceph-volume lvm zap command now supports the --osd.id and --osd-fsid options. Use these options to remove any devices for an OSD by providing its ID or FSID, respectively. This is especially useful if you are not aware of the actual device names or logical volumes in use by that OSD.

3.5. OBJECT GATEWAY

The x-amz-version-id header is now supported

The x-amz-version-id header is now returned by PUT operations on versioned buckets to conform to the S3 protocol. With this enhancement, clients now know the version ID of the objects they create.

Ability to search for users by access-key

This update adds the ability to search for users by the access-key as a search string when using the radosgw-admin utility:

radosgw-admin user info --access-key key

Ability to associate one email address to multiple user accounts

This update adds the ability to create multiple Ceph Object Gateway (RGW) user accounts with the same email address.

Renaming users is now supported

This update of Red Hat Ceph Storage adds the ability to rename the Ceph Object Gateway users. For details, see the Rename a User section in the Object Gateway Guide for Red Hat Enterprise Linux or for Ubuntu.

Keystone S3 credential caching has been implemented

The Keystone S3 credential caching feature permits using AWSv4 request signing (AWS_HMAC_SHA256) with Keystone as an authentication source, and accelerates Keystone authentication using S3. This also enables AWSv4 request signing, which increases client security.
The Ceph Object Gateway now supports the use of SSE-S3 headers

Clients and applications can successfully negotiate SSE-S3 encryption using the global, default encryption key, if one has been configured. Previously, the default key only used SSE-KMS encryption.

3.6. PACKAGES

nfs-ganesha has been updated to the latest version

The nfs-ganesha package is now based on the upstream version 2.7.4, which provides a number of bug fixes and enhancements from the previous version.

3.7. RADOS

OSD BlueStore is now fully supported

BlueStore is a new back end for the OSD daemons that allows for storing objects directly on the block devices. Because BlueStore does not need any file system interface, it improves performance of Ceph Storage Clusters.

To learn more about the BlueStore OSD back end, see the OSD BlueStore chapter in the Administration Guide for Red Hat Ceph Storage 3.

New omap usage statistics per PG and OSD

This update adds a better reporting of omap data usage on a per placement group (PG) and per OSD level. PG-level data is gathered opportunistically during a deep scrub. Additional fields have been added to the output of the ceph osd df and various ceph pg commands to display the new values.

Updated the Ceph debug log to include the source IP address on failed incoming CRC messages

Previously, when a failed incoming Cyclic Redundancy Check (CRC) message was getting logged into the Ceph debug log, only a warning about the failed incoming CRC message was logged. With this release, the source IP address is added to this warning message. This helps system administrators identify which clients and daemons might have some networking issues.

A new configuration option: osd_map_message_max_bytes

The monitoring function can sometimes send messages via the Ceph File system kernel client to the cluster which are too large, causing a traffic problem. A configuration option named osd_map_message_max_bytes was added with a default value of 10MiB. This allows the cluster to respond in a more timely manner.

The default BlueStore and BlueFS allocator is now bitmap

Previously, the default allocator for BlueStore and BlueFS was the stupid allocator. This allocator spreads allocations over the entire device because it allocates the first extent it finds that is large enough, starting from the last place it allocated. The stupid allocator tracks each extent in a separate B-tree, so the amount of memory used depends on the number of extents. This behavior causes more fragmentation and requires more memory to track free space. With this update, the default allocator has been changed to bitmap. The bitmap allocator allocates based on the first extent possible from the start of the disk, so large extents are preserved. It uses a fixed-size tree of bitmaps to track free space, thus using constant memory regardless of number of extents. As a result, the new allocator causes less fragmentation and requires less memory.

The ability to inspect BlueStore fragmentation
This update adds the ability to inspect fragmentation of the BlueStore back end. To do so, use the `ceph` daemon command or the `ceph-bluestore-tool` utility.

For details see the Red Hat Ceph Storage 3 Administration Guide.

The `rocksdb_cache_size` option default is now 512 MB

BlueStore OSD `rocksdb_cache_size` option default value has been changed to 512 MB to help with compaction.

The RocksDB compaction threads default value has changed

The new default value for the `max_background_compactions` option is 2. As a result, this change improves performance for write heavy OMAP workloads. This option controls the number of concurrent background compaction threads. The old default value was 1.

PG IDs added to omap log messages

The large omap log messages now include placement group IDs to aid in locating the object.

Listing RADOS objects in a specific PG

The `rados ls` command now accepts the `--pgid` option to list the RADOS objects in a specific placement group (PG).
CHAPTER 4. BUG FIXES

This section describes bugs with significant impact on users that were fixed in this release of Red Hat Ceph Storage. In addition, the section includes descriptions of fixed known issues found in previous versions.

4.1. THE CEPH-ANSIBLE UTILITY

The `purge-cluster.yml` playbook no longer causes issues with redeploying a cluster

Previously the `purge-cluster.yml` Ansible playbook did not clean all Red Hat Ceph Storage kernel threads as it should and could leave CephFS `mountpoint` mounted and Ceph Block Devices mapped. This could prevent redeploying a cluster. With this update, the `purge-cluster.yml` Ansible playbook cleans all Ceph kernel threads, unmounts all Ceph related `mountpoint` on client nodes, and unmaps Ceph Block Devices so the cluster can be redeployed.

(BZ#1337915)

Ceph Ansible can now successfully activate OSDs that use NVMe devices

Due to an incorrect parsing of Non-volatile Memory Express (NVMe) drives, the `ceph-ansible` utility could not activate an OSD that used NVMe devices. This update fixes the parsing of the NVMe drives, and `ceph-ansible` can now successfully activate OSDs that use NVMe devices.

(BZ#1523464)

The `ceph-handler` script no longer restarts all OSDs regardless of if the `limit` parameter is provided

Previously, the `ceph-handler` script executed on all OSD nodes even if the `ceph-ansible limit` parameter was provided. This meant all OSDs were restarted, ignoring the `limit` parameter. With this update, the `ceph-handler` script only targets the OSD nodes included by the `limit` parameter, and the OSDs are restarted properly according to the `ceph-ansible limit` parameter.

(BZ#1535960)

Adding a new Ceph Manager node will no longer fail when using the Ansible `limit` option

Previously, adding a new Ceph Manager to an existing storage cluster when using the `limit` option would fail the Ansible playbook. With this release, you can now use the `limit` option when adding a new Ceph Manager and the newly generated keyring to be copied successfully.

(BZ#1552210)

The `shrink-osd.yml` playbook removes partitions from NVMe disks in all situations

Previously, the Ansible playbook `infrastructure-playbooks/shrink-osd.yml` did not properly remove partitions on NVMe devices when used with the `osd_scenario: non-collocated` option in containerized environments. This bug has been fixed with this update, and the playbook removes the partitions as expected.

(BZ#1572933)

Rolling update works as expected.

Previously, when using `rolling_update.yml` to update the Red Hat Ceph Storage cluster, it could fail due to a Python module import failure. The error printed was `ERROR! Unexpected Exception, this is`
probably a bug: cannot import name to_bytes. With this update, the correct import is used and no error occurs.
(BZ#1598763)

ceph-ansible now reports an error if an unsupported Ansible version is used

The ceph-ansible utility supports only Ansible versions from 2.3.x to 2.4.x. Previously, when Ansible version was higher than 2.4.x, the installation process failed with an error. With this update, ceph-ansible checks the Ansible version and reports an error if an unsupported Ansible version is used.
(BZ#1631563)

Ansible removes the chronyd service after Ceph installation

The chronyd service in another implementation of the Network Time Protocol (NTP) and was enabled after rebooting from the initial installation. With this release, the chronyd service is disabled and the default NTP service is enabled.
(BZ#1651875)

Deploying NFS Ganesha gateway on Ubuntu IPv6 systems works as expected

When deploying NFS Ganesha gateway on Ubuntu IPv6 systems, the ceph-ansible utility failed to start the nfs-ganesha service. As a consequence, the installation process failed as well. This bug has been fixed, and the installation process proceeds as expected.
(BZ#1656908)

The rolling_update.yml playbook now restarts tcmu-runner and rbd-target-api

Previously, the iSCSI gateway infrastructure playbooks, specifically rolling_update.yml, only restarted the rbd-target-gw daemon. With this update, the playbook also restarts the tcmu-runner and rbd-target-api daemons so the updated versions of those daemons are used.
(BZ#1659611)

The value of osd_memory_target for HCI deployment is calculated properly

Previously, the calculation of the number of OSDs was not implemented for containerized deployment; the default value was 0. Consequently, the calculation of the value of the BlueStore osd_memory_target option for Hyper-converged infrastructure (HCI) deployment was not correct. With this update, the number of OSDs is reported correctly for containerized deployment, and the value of osd_memory_target for the HCI configuration is calculated properly.
(BZ#1664112)

Ceph Ansible can configure RBD mirroring as expected

Previously, the configuration of RADOS Block Device (RBD) mirroring was incomplete and only available for non-containerized deployment. Consequently, the ceph-ansible utility was unable to configure RBD mirroring properly. The RBD mirroring configuration has been improved and has added support for containerized deployments. As a result, ceph-ansible can now configure the mirror pool mode and add the remote peer as expected on both deployments.
(BZ#1665877)

It is now possible to use Ansible playbooks without copying them to the root ceph-ansible directory
Due to the missing `library` variable in the Ansible configuration, the custom Ansible modules were not detected when executed playbooks were present in the `infrastructure-playbooks` directory. Consequently, it was not possible to run the infrastructure playbooks without copying them into the root `ceph-ansible` directory. This update adds the `library` variable to the Ansible configuration. As a result, it is possible to use playbooks in the `infrastructure-playbooks` without copying them, for example:

```
# ansible-playbook infrastructure-playbooks/purge-cluster.yml -i inventory_file
```

(BZ#1668478)

Using custom repositories to install Red Hat Ceph Storage

Previously, using custom software repositories to install Ceph was disabled. Having a custom software repository can be useful for environments where Internet access is not allowed. With this release, the ability to use custom software repositories are enabled for Red Hat signed packages only. Custom third-party software repositories are not supported.

(BZ#1673254)

Virtual IPv6 addresses are no longer configured for MON and RGW daemons

Previously, virtual IPv6 addresses could be configured in the Ceph configuration file for MON and RGW daemons because virtual IPv6 addresses are the first value present in the Ansible IPv6 address fact. The underlying code has been changed, and the last value in the Ansible IPv6 address fact is now used, and MON and RGW IPv6 configurations are set to the right value.

(BZ#1680155)

The BlueStore WAL and DB partitions are now only created when dedicated devices are specified for them

Previously, in containerized deployments using the `non-collocated` scenario, the BlueStore WAL partition was created by default on the same device as the BlueStore DB partition when it was not required. With this update, the `bluestore_wal_devices` variable is no longer set to `dedicated_devices` by default, and the BlueStore WAL partition is no longer created on the BlueStore DB device.

(BZ#1685253)

The shrink-osd.yml playbook stops OSD services as expected

A bug in the `shrink-osd.yml` playbook caused the `stopping osd service` task to attempt to connect to an incorrect node. Consequently, the task could not stop the OSD services properly. With this update, the bug has been fixed, and the playbook delegates the task on the correct node. As a result, OSD services are stopped properly.

(BZ#1686306)

An increase to the CPU allocation for containerized Ceph MDS deployments

Previously, for container-based deployments, the CPU allocation for the Ceph MDS daemons was set to 1 as the default. In some scenarios, this caused slow performance when compared to a bare-metal deployment. With this release, the Ceph MDS daemon CPU allocation default is 4.

(BZ#1695850)

Faster OSD creation when deploying on containers

Previously, when creating an OSD in a container using the `lvm` OSD scenario, the container was allowed
to set the number of open files to a value higher than the default host value. This behavior caused slower **ceph-volume** performance when compared to running **ceph-volume** on bare metal. With this release, the maximum number of open files is set to a lower value (1024) on the container during OSD creation. This results in faster OSD creation in container-based deployment.

(BZ#1702285)

The **group_vars** files now correctly refer to RHCS 3.x instead of 2.x

Previously, the Red Hat Ceph Storage (RHCS) documentation URL and default value were referring to RHCS 2.x instead of 3.x. This meant deploying with the default value on baremetal using the CDN repositories would configure RHCS 2.x repositories instead of 3.x. The documentation in the configuration files were also referring to 2.x. With this update, the default RHCS version value and URL are now referring to RHCS 3, and there are no 2.x references.

(BZ#1702732)

The **purge-cluster.yml** playbook no longer fails when initiated a second time

The **purge-cluster.yml** playbook would fail if the **ceph-volume** binary was not present. Now the presence of the **ceph-volume** binary is checked, allowing for the **purge-cluster.yml** playbook to be initiated multiple times successfully.

(BZ#1722663)

Redeploying OSDs using the same device name works as expected

Previously, the **shrink-osd.yml** playbook did not remove containers generated as part of the **prepare containers** task that were launched during initial development. As a consequence, an attempt to redeploy a container using the same device name failed, because the container was already present. The **shrink-osd.yml** playbook now properly removes containers generated as part of the **prepare containers** task, and redeploying OSDs using the same device name works as expected.

(BZ#1728132)

The **ceph-volume** execution time has been adjusted

On containerized deployment, the **ceph-volume** commands that were executed inside the OSD containers were taking more time than expected. Consequently, the OSD daemon could take several minutes to start because **ceph-volume** was executed before the **ceph-osd** process. The value of the **ulimit nofile** variable has been adjusted on the OSD container process to reduce the execution time of the **ceph-volume** commands. As a result, the OSD daemon starts faster.

(BZ#1744390)

Ceph Ansible can now successfully updates and restarts NFS Ganesha container when a custom suffix is used for the container name

Previously, the value set for the **ceph_nfs_service_suffix** variable was not considered when checking the status and version of the Ceph NFS Ganesha (**ceph-nfs**) container for restart or update. Consequently, the **ceph-nfs** container was not updated or restarted because the **ceph-ansible** utility could not determine that the container was running. With this update, **ceph-ansible** uses the value of **ceph_nfs_service_suffix** to determine the status of the **ceph-nfs** container. As a result, **ceph-nfs** container is successfully updated or restarted as expected.

(BZ#1750005)

The **ceph-ansible** playbooks are no longer missing certain tags
Previously, the **ceph-ansible** playbooks were missing some tags, so running **ceph-ansible** with those specific tags was failing. With this update, the Ceph roles are tagged correctly in the **ceph-ansible** playbooks, and running **ceph-ansible** with those specific tags works as expected.

(BZ#1754432)

ceph_release in no longer automatically being reset to **ceph_stable_release** when **ceph_repository** is set to **rhcs**

Previously, **ceph_release** was automatically being reset to **ceph_stable_release** even when **ceph_repository** was set to **rhcs** in the **all.yml** file. **ceph_stable_release** is not needed when using the **rhcs** repository, and was being set to the automatic default value **dummy**. This caused the **allow multi mds** task to fail with the error **has no attribute** because **ceph_release_num** has no key **dummy**. With this update, **ceph_release** is no longer reset when **ceph_repository** is set to **rhcs**, and the task **allow multi mds** can be executed properly.

(BZ#1765230)

4.2. CEPH MANAGEMENT DASHBOARD

The **MDS Performance** dashboard now displays the correct number of CephFS clients

The **MDS Performance** dashboard displayed an incorrect value for **Clients** after increasing and decreasing the number of active Metadata Servers (MDS) and clients multiple times. This bug has been fixed, and the **MDS Performance** dashboard now displays the correct number of Ceph File System (CephFS) clients as expected.

(BZ#1652896)

No data alerts are no longer generated

The Red Hat Ceph Storage Dashboard generated a **No data** alert when a query returns no data. Previously, this alert sent an email to the administrator whenever there was a network outage or a node was down for maintenance. With this update, these **No data** alert are no longer generated.

(BZ#1663289)

The TCP port for the Ceph exporter is opened during the Ansible deployment of the Ceph Dashboard

Previously, the TCP port for the Ceph exporter was not opened by the Ansible deployment scripts on all the nodes in the storage cluster. Opening TCP port 9283 had to be done manually on all nodes for the metrics to be available to the Ceph Dashboard. With this release, the TCP port is now being opened by the Ansible deployment scripts for Ceph Dashboard.

(BZ#1677269)

The dashboard can now be configured in a containerized cluster

Previously, in a containerized Ceph environment, the Red Hat Ceph Storage dashboard failed because the **cephmetric-ansible** playbook failed to populate the container name. With this update, the playbook populates the container name, and the dashboard can be configured as expected.

(BZ#1731919)

The Prometheus exporter port is now opened on all **ceph-mgr** nodes

Previously, the **ceph-mgr** playbook was not run on each **ceph-mgr** node, which meant the **ceph-mgr**
Prometheus exporter port was not being opened on each node. With this update, the ceph-mgr playbook runs on all the ceph-mgr nodes, and the Prometheus exporter port is opened on all ceph-mgr nodes.

(BZ#1744549)

The Red Hat Ceph Storage Dashboard includes information for Disk IOPS and Disk Throughput as expected

The Red Hat Ceph Storage Dashboard did not show any data for Disk IOPS and Disk Throughput. This bug has been fixed, and the Dashboard includes information for Disk IOPS and Disk Throughput as expected.

(BZ#1753942)

4.3. CEPH FILE SYSTEM

The drop cache command completes as expected

Previously, when executing the administrative drop cache command, the Metadata Server (MDS) did not detect that the clients could not return more capabilities, and the command would not complete. With this update, the MDS now detects the clients cannot return any more capabilities, and the command completes.

(BZ#1685734)

Heartbeat packets are reset as expected

Previously, the Ceph Metadata Server (MDS) did not reset heartbeat packets when it was busy in a large loops. This prevented the MDS from sending a beacon to the Monitor. With this update, the Monitor replaces the busy MDS, and the heartbeat packets are reset when the MDS is busy in a large loop.

(BZ#1714810)

The MDS no longer tries many log segments after restart

Previously, the Ceph Metadata Server (MDS) would sometimes try many log segments after restart. The MDS would then send too many OSD requests in a short period of time which could harm the Ceph cluster. This update limits the number of log segments, and the cluster is no longer harmed.

(BZ#1714814)

An issue with the _lookup_parent() function no longer causes nfs-ganesha to fail

Under certain circumstances, the _lookup_parent() function in the Red Hat Ceph Storage userland client libraries could return 0, but not zero out the parent return pointer, which would remain uninitialized. Later, an assertion that the parent pointer be NULL would trip, and cause nfs-ganesha to fail. With this update, the error checking and return of _lookup_parent() has been refactored, and the situation is avoided.

(BZ#1715086)

Partially flushed ESessions log event no longer cause the MDS to fail

Previously, when a Ceph Metadata Server (MDS) had more than 1024 client sessions, sessions in the ESessions log event could get flushed partially. The journal replay code expects sessions in the ESessions log event to either be all flushed or not flushed at all, so this would cause the MDS to fail. With this update, the journal replay code can handle a partially flushed ESessions log event.
4.4. CEPH MANAGER PLUGINS

Using several ceph-mgr modules at the same time no longer causes random segmentation faults

Previously, random segmentation faults of the ceph-mgr daemon were occurring. This was because the shared memory in ceph-mgr Python modules was being accessed without proper locks, and the memory was not being dereferenced properly. For these cases, the locking mechanisms in ceph-mgr has been improved, and random segmentation faults when using several ceph-mgr modules at the same time no longer occurs.

4.5. THE CEPH-VOLUME UTILITY

ceph-volume now returns a more accurate error message when deploying OSDs on devices with GPT headers

The ceph-volume utility does not support deploying OSDs on devices with GUID Partition Table (GPT) headers. Previously, after attempting to do so, an error similar to the following one was returned:

```
Device /dev/sdb excluded by a filter
```

With this update, the ceph-volume utility returns a more accurate error message instructing the users to remove GPT headers:

```
GPT headers found, they must be removed on: $device_name
```

4.5. THE CEPH-VOLUME UTILITY

An error is now returned when the WAL and DB partitions are defined but not present
Due to a race condition, after restarting a Nonvolatile Memory Express (NVMe) device containing the WAL and DB devices, the symbolic links for WAL and DB were missing. Consequently, the NVMe node could not be mounted. The underlying source code has been modified to return an error if WAL or DB devices are defined but the symbolic links are missing on the system, which allows trying for up to 30 times at 5 second intervals and increasing the chances of finding the devices as the system boots.

(BZ#1719971)

4.6. ISCSI GATEWAY

The `rbd-target-api` service is started and stopped with respect to the `rbd-target-gw` service status

Previously, the `rbd-target-api` service did not start after starting the `rbd-target-gw` service. Consequently, the `rolling_update.yml` playbook stopped at TASK [stop ceph iscsi services], and the updating process did not continue. With this update, the `rbd-target-api` service is started and stopped with respect to the `rbd-target-gw` service status, and the updating process works as expected.

(BZ#1670785)

The Ceph iSCSI gateway no longer fails to start when an RBD image cannot be found in a pool

During initialization, the `rbd-target-gw` daemon configures RBD images for use with the Ceph iSCSI gateway. The `rbd-target-gw` daemon did only a partial pool name match, potentially causing the incorrect pool to be used when opening an RBD image. As a consequence, the `rbd-target-gw` daemon failed to start. With this release, the `rbd-target-gw` daemon does a full pool name match, and the `rbd-target-gw` daemon starts as expected.

(BZ#1719772)

The `rbd-target-gw` service no longer fails to start when there are expired blacklist entries

When the `rbd-target-gw` service starts, it removes blacklist entries for the node. Previously, if a blacklist entry expired at the same time the daemon was removing it, the `rbd-target-gw` service would fail to detect the race and fail to start up. With this update, the `rbd-target-gw` service now checks for the error code indicating the blacklist entry no longer exists, ignores the error, and starts as expected.

(BZ#1732393)

4.7. OBJECT GATEWAY

Bucket resharding status is now displayed in plain language

Previously, the `radosgw-admin reshard status --bucket bucket_name` command used identifier-like tokens as follows to display the resharding status of a bucket:

- CLS_RGW_RESHARD_NONE
- CLS_RGW_RESHARD_IN_PROGRESS
- CLS_RGW_RESHARD_DONE

With this update, the command uses plain language to display the status:

- not-resharding
Swift object expiration is no longer effected by resharding

The Swift object expiration code was not compatible with bucket index resharding. This behavior could stall object expiration for the buckets. The Swift object expiration code has been updated to identify buckets using a tenant and bucket name. This update allows the removal of expired objects from an already resharded and stalled bucket. As a result, the object expiration is no longer effected by bucket index resharding.

(BZ#1703557)

Getting the versioning state on a nonexistent bucket now returns an error

Previously, when getting the bucket version on a nonexistent bucket, the HTTP response was successful, for example:

'HTTPStatusCode': 200

Because the bucket does not exist, the correct HTTP response must be an error. With this release, when getting the bucket version on a nonexistent bucket, the Ceph Object Gateway code returns the following error:

ERR_NO_SUCH_BUCKET

(BZ#1705922)

Enabling the rgw_enable_ops_log option would result in unbound memory growth

Previously, there was no process for consuming log entries, which lead to unbound memory growth for the Ceph Object Gateway. With this release, the process discards new messages when the number of outstanding messages in the data buffer exceeds a threshold, resulting in a smaller memory footprint.

(BZ#1708346)

Large or changed directories are now handled properly

Due to several underlying problems in the Ceph Object Gateway, the listing of very large directories could fail, and changed directories could become stale. With this update, the underlying problems have been fixed, allowing listing of large directories without failures, and reliable expiration of cached directory contents. Additionally, for the RADOS Gateway NFS interface, further changes were made allowing large directories to be listed at least 10 times faster than in Red Hat Ceph Storage 2.x.

(BZ#1708587)

A new bucket life-cycle policy will overwrite the existing life-cycle policy

Because of an encoding error with the Ceph Object Gateway, storing a new bucket life-cycle policy on a bucket that already had an existing one would fail. Previously, working around the failure was done by deleting the old policy first, before storing the new one. With this release, this encoding error was fixed.

(BZ#1708650)

Space is no longer leaked when deleting objects via NFS
Previously, the Ceph Object Gateway NFS implementation incorrectly set a value used to construct a key subsequently used to set garbage collection (GC) on shadow objects. Deleting an object via NFS, as opposed to S3 or Swift, could cause space to be leaked. With this update, the GC tag is now set correctly and space is not leaked when deleting objects via NFS.

(BZ#1715946)

A performance decrease when listing buckets with large object counts due to a regression was resolved

RADOS Gateway introduced a performance regression as a byproduct of changes in Red Hat Ceph Storage 3.2z2, which added support for multicharacter delimiters. This could cause S3 clients to time out. The regression has been fixed, restoring the original performance when listing buckets with large object counts. S3 clients no longer time out due to this issue.

(BZ#1717135)

The S3 client no longer times out when listing buckets with millions of objects

Previously, a change to the behavior of ordered bucket listing allowed support for multi-character delimiter searching, but this change did not include important listing optimizations. This caused a large performance loss. With this release, the logic controlling delimiter handling has been optimized, resulting in better performance.

(BZ#1718328)

Multi-character delimiter searches now take an expected amount of time to complete

Sometimes multi-character delimiter searches took an excessive amount of time. The logic has been corrected and now searches take an expected amount of time.

(BZ#1720741)

The Ceph Object Gateway returns the correct error code when accessing a S3 bucket

The Ceph Object Gateway authorization subsystem was changed in a previous release, and the LDAP error code for failed authentication was not updated. Because of this, the incorrect error code of AccessDenied was returned instead of InvalidAccessKeyId when trying to access a S3 bucket with non-existing credentials. With this release, the correct error code is returned when trying to access a S3 bucket with non-existing credentials.

(BZ#1721033)

The clean-up process no longer fails after an aborted upload

When a multipart upload was aborted part way through, the clean-up process assumed some artifacts were present. If they were not present, it caused an error and the clean-up process stopped. The logic has been updated so if the artifacts are not present, the clean-up process still continues until it finishes.

(BZ#1722664)

The RADOS configuration URL is now able to read objects larger than 1000 bytes

The RADOS configuration URL was unable to read configuration objects greater than 1000 bytes because they were truncated. This behavior has been fixed and now larger objects are read properly.

(BZ#1725521)
Different life-cycle rules for different objects no longer display the same rule applied to all objects

The S3 life-cycle expiration tags are a key-value pair, such that a valid match must match both the key and the value. However, the Ceph Object Gateway only matched the key when computing the `x-amz-expiration` headers, causing tag rules with a common key, but different values, to match incorrectly. With this release, the key and value are both checked when matching a tag rules in the expiration header computation. As a result, objects are displayed with the correct tag rules.

(BZ#1731486)

Ceph Object Gateway no longer terminates when there are many open file descriptors

Previously, the Ceph Object Gateway with Beast front end terminated with an uncaught exception if there were many open file descriptors. With this update, the Ceph Object Gateway no longer terminates.

(BZ#1740668)

Swift requests no longer cause the "HTTP/1.1 401 Unauthorized" error

Certain Swift requests with headers that contained non-strictly-compliant HTTP 1.1 line termination character in the "X-Auth-Token:" line were rejected with the "HTTP/1.1 401 Unauthorized" error. On Red Hat Ceph Storage version 2.5 those requests were processed despite their non-compliance. After upgrade to version 3.3 those requests began to return an error. With this update, the non-compliant line termination characters have been removed from the HTTP headers, and the aforementioned Swift requests no longer cause errors.

(BZ#1742993)

Bucket creation failed with a non-default location constraint

The default value is not set for the zone `api_name` option. This was causing the default zone group name to not be added properly, even when explicitly defining the zone group name. As a consequence, buckets could not be created with a non-default location constraint when referencing a non-default placement target. In this release, buckets can be created with a non-default location constraint when referencing a non-default placement target.

(BZ#1744766)

Removing non-existent buckets from the reshard queue works as expected

When a bucket was added to the reshard queue and then it was deleted, an attempt to remove the bucket from the queue failed because the removal process tried to modify the bucket record, which did not exist. Additionally, during reshard processing, when a non-existent bucket was encountered on the queue, the reshard process stopped early and possibly never got to other buckets on the queue. This behavior kept happening because the reshard process is scheduled to run at a specified time interval. The underlying source code has been modified, and removing non-existent buckets from the reshard queue works as expected.

(BZ#1749124)

Enabling the enable_experimental_unrecoverable_data_corrupting_features flag is no longer required when using the Beast web server

To use the Beast web server, it was required to enable the `enable_experimental_unrecoverable_data_corrupting_features` flag even though Beast was fully supported and not a Technology Preview anymore. With this update, enabling `enable_experimental_unrecoverable_data_corrupting_features` is no longer required to use Beast.
Dynamic bucket index resharding no longer uses unnecessarily high system resources

Previously, during bucket index sharding, the code built a large JSON object even if it was not needed. During bucket listing, the Ceph Object Gateway requested too many entries from each bucket index. This behavior caused high CPU, memory, and network usage. Together, this caused the time for resharding to complete to be unnecessarily long. With this release, the large JSON object is only built if required and dynamic bucket index resharding only shards up to 2000 entries at a time. The default maximum can be overridden using a configuration option. With these changes Red Hat Ceph Storage uses less memory during resharding and ordered bucket listing is more efficient so it takes less time.

Ceph Object Gateway daemons no longer crash after upgrading to the latest version

Latest update to Red Hat Ceph Storage introduces a bug that caused Ceph Object Gateway daemons to terminate unexpectedly with a segmentation fault after upgrading to the latest version. The underlying source code has been fixed, and Ceph Object Gateway daemons work as expected after the upgrade.

4.8. OBJECT GATEWAY MULTISITE

radosgw-admin bucket rm --bypass-gc now stores timestamps for deletions

Previously, objects deleted with `radosgw-admin bucket rm --bypass-gc` did not store a timestamp for the deletion. Because of this, data sync did not apply these object deletions on other zones. With this update, proper timestamps are stored for deletions, and `bucket rm` with `--bypass-gc` correctly deletes objects on all zones.

Bucket creation time remains consistent between zones in a multisite environment

Previously, a metadata sync in a multisite environment did not always update bucket creation time, and bucket creation times could become inconsistent between zones. With this update, the metadata sync now updates creation time even if the bucket already exists, and bucket creation time remains consistent between zones.

The `radosgw-admin bilog trim` command now fully trims the bucket index log

Previously, the `radosgw-admin bilog trim` command only trimmed 1000 entries from the log, because only one OSD request was sent. With this release, the `radosgw-admin bilog trim` command now sends OSD requests in a loop until the bucket index log is completely trimmed.

Enhanced log trimming

Previously, the `radosgw-admin datalog trim` and `radosgw-admin mdlog trim` commands trimmed only 1000 entries. This was inconvenient when doing extended log trimming. With this update, the aforementioned commands loop until no log records are available to trim.
4.9. RADOS

ceph osd in any no longer marks permanently removed OSDs as in

Previously, running the ceph osd in any command on a Red Hat Ceph Storage cluster marked all historic OSDs that were once part of the cluster as in. With this update, ceph osd in any no longer marks permanently removed OSDs as in.

(BZ#1696691)

The Ceph Balancer now works with erasure-coded pools

The maybe_remove_pg_upmaps method is meant to cancel invalid placement group items done by the upmap balancer, but this method incorrectly canceled valid placement group items when using erasure-coded pools. This caused a utilization imbalance on the OSDs. With this release, the maybe_remove_pg_upmaps method is less aggressive and does not invalidate valid placement group items, and as a result, the upmap balancer works with erasure-coded pools.

(BZ#1715577)

4.10. BLOCK DEVICES (RBD)

Operations against the RBD object map now utilize significantly less OSD CPU and I/O resources

The RADOS Block Device (RBD) object map support logic within the OSD daemons inefficiently handled object updates for multi-TiB RBD images. As a consequence, for such images, updating the RBD object map led to high CPU usage and unnecessary I/O within the OSDs. With this update, OSDs no longer pre-initialize the in-memory object map prior to reading the object map from disk. Additionally, now OSDs only perform read-modify-writes operations on portions of the object map Cyclic Redundancy Check (CRC) that are potentially affected by the updated state. As a result, operations against the RBD object map now utilize significantly less OSD CPU and I/O resources.

(BZ#1683751)
CHAPTER 5. TECHNOLOGY PREVIEWS

This section provides an overview of Technology Preview features introduced or updated in this release of Red Hat Ceph Storage.

IMPORTANT

Technology Preview features are not supported with Red Hat production service level agreements (SLAs), might not be functionally complete, and Red Hat does not recommend to use them for production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information on Red Hat Technology Preview features support scope, see https://access.redhat.com/support/offerings/techpreview/.

5.1. BLOCK DEVICES (RBD)

Erasure Coding for Ceph Block Devices

Erasure coding for Ceph Block Devices is supported as a Technology Preview. For details, see the Erasure Coding with Overwrites (Technology Preview) section in the Storage Strategies Guide for Red Hat Ceph Storage 3.

5.2. CEPH FILE SYSTEM

Erasure Coding for Ceph File System

Erasure coding for Ceph File System is now supported as a Technology Preview. For details, see the Creating Ceph File Systems with erasure coding section in the Ceph File System Guide for Red Hat Ceph Storage 3.

5.3. OBJECT GATEWAY

Improved interoperability with S3 and Swift by using a unified tenant namespace

This enhancement allows buckets to be moved between tenants. It also allows buckets to be renamed.

In Red Hat Ceph Storage 2 the rgw_keystoneImplicit_tenants option only applied to Swift. As of Red Hat Ceph Storage 3 this option applies to s3 also. Sites that used this feature with Red Hat Ceph Storage 2 now have outstanding data that depends on the old behavior. To accommodate that issue this enhancement also expands rgw_keystoneImplicit_tenants so it can be set to any of "none", "all", "s3", or "swift".

For more information, see Bucket management in the Object Gateway Guide for Red Hat Enterprise Linux or Object Gateway Guide for Ubuntu depending on your distribution. The rgw_keystoneImplicit_tenants setting is documented in the Using Keystone to Authenticate Ceph Object Gateway Users guide.

Ceph Object Gateway now supports Elasticsearch 5 and 6 APIs as a Technology Preview feature

Support has been added for using the Elasticsearch 5 and 6 application programming interfaces (APIs) with the Ceph Object Gateway.
CHAPTER 6. KNOWN ISSUES

This section documents known issues found in this release of Red Hat Ceph Storage.

6.1. THE CEPH-ANSIBLE UTILITY

Upgrading OSDs can become unresponsive for a long period of time

When using the `rolling_update.yml` playbook to upgrade an OSD, the playbook waits for the `active+clean` state. When data and `no of retry` count is large, the upgrading process becomes unresponsive for a long period of time because the playbook sets the `noout` and `norebalance` flags instead of the `nodeep-scrub` flag.

(BZ#1740463)

6.2. CEPH MANAGEMENT DASHBOARD

The dashboard shows no data while the cluster is updating

Due to a known issue, the Red Hat Ceph Storage dashboard does not show any data while the cluster is updating.

(BZ#1731330)

6.3. OBJECT GATEWAY

Invalid bucket names

There are some S3 bucket names that are invalid in AWS, and therefor cannot be replicated by the Ceph Object Gateway multisite. For more information about these bucket names, see the AWS documentation.

(BZ#1724106)
CHAPTER 7. DEPRECATED FUNCTIONALITY

This section provides an overview of functionality that has been deprecated in all minor releases up to this release of Red Hat Ceph Storage.

7.1. THE CEPH-ANSIBLE UTILITY

The `rgw_dns_name` parameter

The `rgw_dns_name` parameter is deprecated. Instead, configure the RADOS Gateway (RGW) zonegroup with the RGW DNS name. For more information, see: Ceph - How to add hostnames in RGW zonegroup in the Red Hat Customer Portal.
CHAPTER 8. SOURCES

The updated Red Hat Ceph Storage source code packages are available at the following locations:

- For Red Hat Enterprise Linux:

- For Ubuntu: https://rhcs.download.redhat.com/ubuntu/