
Red Hat build of Thorntail 2.5

Thorntail Runtime Guide

Use Thorntail to develop small, stand-alone, microservice-based applications that run
on OpenShift and on stand-alone RHEL

Last Updated: 2020-07-01

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

Use Thorntail to develop small, stand-alone, microservice-based applications that run on OpenShift
and on stand-alone RHEL

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides details about using Thorntail.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. INTRODUCTION TO APPLICATION DEVELOPMENT WITH THORNTAIL
1.1. OVERVIEW OF APPLICATION DEVELOPMENT WITH RED HAT RUNTIMES
1.2. APPLICATION DEVELOPMENT ON RED HAT OPENSHIFT USING DEVELOPER LAUNCHER
1.3. OVERVIEW OF THORNTAIL

1.3.1. Supported Architectures by Thorntail
1.3.2. Introduction to example applications

CHAPTER 2. DOWNLOADING AND DEPLOYING APPLICATIONS USING DEVELOPER LAUNCHER
2.1. WORKING WITH DEVELOPER LAUNCHER
2.2. DOWNLOADING THE EXAMPLE APPLICATIONS USING DEVELOPER LAUNCHER
2.3. DEPLOYING AN EXAMPLE APPLICATION ON OPENSHIFT CONTAINER PLATFORM OR CDK (MINISHIFT)

CHAPTER 3. DEVELOPING AND DEPLOYING THORNTAIL APPLICATION
3.1. CREATING AN APPLICATION FROM SCRATCH

Prerequisites
Procedure
Results

3.2. DEPLOYING THORNTAIL APPLICATION TO OPENSHIFT
3.2.1. Supported Java images for Thorntail

3.2.1.1. Images on x86_64 architecture
3.2.1.2. Images on s390x (IBM Z) architecture

3.2.2. Preparing Thorntail application for OpenShift deployment
3.2.3. Deploying Thorntail application to OpenShift using Fabric8 Maven plugin

3.3. DEPLOYING THORNTAIL APPLICATION TO STAND-ALONE RED HAT ENTERPRISE LINUX
3.3.1. Preparing Thorntail application for stand-alone Red Hat Enterprise Linux deployment
3.3.2. Deploying Thorntail application to stand-alone Red Hat Enterprise Linux using jar

CHAPTER 4. USING THORNTAIL MAVEN PLUGIN
4.1. THORNTAIL MAVEN PLUGIN GENERAL USAGE
4.2. THORNTAIL MAVEN PLUGIN GOALS
4.3. THORNTAIL MAVEN PLUGIN CONFIGURATION OPTIONS
4.4. THORNTAIL MAVEN PLUGIN CONFIGURATION PROPERTIES

CHAPTER 5. USING THORNTAIL FRACTIONS
5.1. FRACTIONS
5.2. AUTO-DETECTING FRACTIONS

Prerequisites
Procedure

5.3. USING EXPLICIT FRACTIONS

CHAPTER 6. USING A BOM
6.1. THORNTAIL PRODUCT BOM TYPES
6.2. SPECIFYING A BOM FOR IN YOUR APPLICATION

CHAPTER 7. ACCESSING LOGS ON YOUR THORNTAIL APPLICATION
7.1. ENABLING LOGGING
7.2. LOGGING TO A FILE

Prerequisites
Procedure

8

9

10
10
10
11
11
11

13
13
13

14

16
16
16
16
18
19
19
19

20
20
21
22
23
23

25
25
25
25
30

31
31
31
31
31
32

34
34
34

36
36
36
36
36

Table of Contents

1

. .

. .

. .

. .

. .

CHAPTER 8. CONFIGURING A THORNTAIL APPLICATION
8.1. SYSTEM PROPERTIES

8.1.1. Commonly used system properties
8.1.2. Application configuration using system properties

Configuration of items with the KEY parameter
8.1.3. Setting system properties using the Maven plugin

Prerequisites
Procedure

8.1.4. Setting system properties using the command line
Prerequisites
Procedure

8.1.5. Specifying JDBC drivers for hollow JARs
Prerequisites
Procedure

8.2. ENVIRONMENT VARIABLES
8.2.1. Application configuration using environment variables

8.3. YAML FILES
8.3.1. The general YAML file format
8.3.2. Default Thorntail YAML Files

project-defaults.yml
Other default file names

8.3.3. Non-default Thorntail YAML configuration files
Related information

CHAPTER 9. PACKAGING YOUR APPLICATION
9.1. PACKAGING TYPES

9.1.1. Uberjar
9.1.2. Hollow JAR

9.1.2.1. Pre-Built Hollow JARs
9.2. CREATING AN UBERJAR

Prerequisites
Procedure

CHAPTER 10. TESTING YOUR APPLICATION
10.1. TESTING IN A CONTAINER

Prerequisites
Procedure

CHAPTER 11. DEBUGGING YOUR APPLICATION
11.1. REMOTE DEBUGGING

11.1.1. Starting your application locally in debugging mode
11.1.2. Starting an uberjar in debugging mode
11.1.3. Starting your application on OpenShift in debugging mode
11.1.4. Attaching a remote debugger to the application

11.2. DEBUG LOGGING
11.2.1. Local debug logging
11.2.2. Accessing debug logs on OpenShift

CHAPTER 12. MONITORING YOUR APPLICATION
12.1. ACCESSING JVM METRICS FOR YOUR APPLICATION ON OPENSHIFT

12.1.1. Accessing JVM metrics using Jolokia on OpenShift
12.2. APPLICATION METRICS

12.2.1. What are metrics
12.2.2. Exposing application metrics

39
39
39
40
40
41
41
41
41

42
42
42
42
42
42
42
44
44
44
45
45
45
46

47
47
47
47
48
48
48
48

50
50
50
50

53
53
53
53
54
55
56
56
56

58
58
58
59
59
59

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

2

. .CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL
13.1. REST API LEVEL 0 EXAMPLE FOR THORNTAIL

13.1.1. REST API Level 0 design tradeoffs
13.1.2. Deploying the REST API Level 0 example application to OpenShift Online

13.1.2.1. Deploying the example application using developers.redhat.com/launch
13.1.2.2. Authenticating the oc CLI client
13.1.2.3. Deploying the REST API Level 0 example application using the oc CLI client

13.1.3. Deploying the REST API Level 0 example application to Minishift or CDK
13.1.3.1. Getting the Fabric8 Launcher tool URL and credentials
13.1.3.2. Deploying the example application using the Fabric8 Launcher tool
13.1.3.3. Authenticating the oc CLI client
13.1.3.4. Deploying the REST API Level 0 example application using the oc CLI client

13.1.4. Deploying the REST API Level 0 example application to OpenShift Container Platform
13.1.5. Interacting with the unmodified REST API Level 0 example application for Thorntail
13.1.6. Running the REST API Level 0 example application integration tests
13.1.7. REST resources

13.2. EXTERNALIZED CONFIGURATION EXAMPLE FOR THORNTAIL
13.2.1. The externalized configuration design pattern
13.2.2. Externalized Configuration design tradeoffs
13.2.3. Deploying the Externalized Configuration example application to OpenShift Online

13.2.3.1. Deploying the example application using developers.redhat.com/launch
13.2.3.2. Authenticating the oc CLI client
13.2.3.3. Deploying the Externalized Configuration example application using the oc CLI client

13.2.4. Deploying the Externalized Configuration example application to Minishift or CDK
13.2.4.1. Getting the Fabric8 Launcher tool URL and credentials
13.2.4.2. Deploying the example application using the Fabric8 Launcher tool
13.2.4.3. Authenticating the oc CLI client
13.2.4.4. Deploying the Externalized Configuration example application using the oc CLI client

13.2.5. Deploying the Externalized Configuration example application to OpenShift Container Platform
13.2.6. Interacting with the unmodified Externalized Configuration example application for Thorntail
13.2.7. Running the Externalized Configuration example application integration tests
13.2.8. Externalized Configuration resources

13.3. RELATIONAL DATABASE BACKEND EXAMPLE FOR THORNTAIL
13.3.1. Relational Database Backend design tradeoffs
13.3.2. Deploying the Relational Database Backend example application to OpenShift Online

13.3.2.1. Deploying the example application using developers.redhat.com/launch
13.3.2.2. Authenticating the oc CLI client
13.3.2.3. Deploying the Relational Database Backend example application using the oc CLI client

13.3.3. Deploying the Relational Database Backend example application to Minishift or CDK
13.3.3.1. Getting the Fabric8 Launcher tool URL and credentials
13.3.3.2. Deploying the example application using the Fabric8 Launcher tool
13.3.3.3. Authenticating the oc CLI client
13.3.3.4. Deploying the Relational Database Backend example application using the oc CLI client

13.3.4. Deploying the Relational Database Backend example application to OpenShift Container Platform
13.3.5. Interacting with the Relational Database Backend API

Troubleshooting
13.3.6. Running the Relational Database Backend example application integration tests
13.3.7. Relational database resources

13.4. HEALTH CHECK EXAMPLE FOR THORNTAIL
13.4.1. Health check concepts
13.4.2. Deploying the Health Check example application to OpenShift Online

13.4.2.1. Deploying the example application using developers.redhat.com/launch
13.4.2.2. Authenticating the oc CLI client

62
62
62
63
63
63
64
65
65
66
66
66
68
68
68
69
69
70
70
71
71
71
71
73
73
74
74
74
76
76
77
78
78
79
80
80
80
80
82
82
83
83
84
85
85
87
87
88
88
89
89
89
90

Table of Contents

3

13.4.2.3. Deploying the Health Check example application using the oc CLI client
13.4.3. Deploying the Health Check example application to Minishift or CDK

13.4.3.1. Getting the Fabric8 Launcher tool URL and credentials
13.4.3.2. Deploying the example application using the Fabric8 Launcher tool
13.4.3.3. Authenticating the oc CLI client
13.4.3.4. Deploying the Health Check example application using the oc CLI client

13.4.4. Deploying the Health Check example application to OpenShift Container Platform
13.4.5. Interacting with the unmodified Health Check example application
13.4.6. Running the Health Check example application integration tests
13.4.7. Health check resources

13.5. CIRCUIT BREAKER EXAMPLE FOR THORNTAIL
13.5.1. The circuit breaker design pattern

Circuit breaker implementation
13.5.2. Circuit Breaker design tradeoffs
13.5.3. Deploying the Circuit Breaker example application to OpenShift Online

13.5.3.1. Deploying the example application using developers.redhat.com/launch
13.5.3.2. Authenticating the oc CLI client
13.5.3.3. Deploying the Circuit Breaker example application using the oc CLI client

13.5.4. Deploying the Circuit Breaker example application to Minishift or CDK
13.5.4.1. Getting the Fabric8 Launcher tool URL and credentials
13.5.4.2. Deploying the example application using the Fabric8 Launcher tool
13.5.4.3. Authenticating the oc CLI client
13.5.4.4. Deploying the Circuit Breaker example application using the oc CLI client

13.5.5. Deploying the Circuit Breaker example application to OpenShift Container Platform
13.5.6. Interacting with the unmodified Thorntail Circuit Breaker example application
13.5.7. Running the Circuit Breaker example application integration tests
13.5.8. Using Hystrix Dashboard to monitor the circuit breaker
13.5.9. Circuit breaker resources

13.6. SECURED EXAMPLE APPLICATION FOR THORNTAIL
13.6.1. The Secured project structure
13.6.2. Red Hat SSO deployment configuration
13.6.3. Red Hat SSO realm model

13.6.3.1. Red Hat SSO users
13.6.3.2. The application clients

13.6.4. Thorntail SSO adapter configuration
13.6.5. Deploying the Secured example application to Minishift or CDK

13.6.5.1. Getting the Fabric8 Launcher tool URL and credentials
13.6.5.2. Creating the Secured example application using Fabric8 Launcher
13.6.5.3. Authenticating the oc CLI client
13.6.5.4. Deploying the Secured example application using the oc CLI client

13.6.6. Deploying the Secured example application to OpenShift Container Platform
13.6.6.1. Authenticating the oc CLI client
13.6.6.2. Deploying the Secured example application using the oc CLI client

13.6.7. Authenticating to the Secured example application API endpoint
13.6.7.1. Getting the Secured example application API endpoint
13.6.7.2. Authenticating HTTP requests using the command line
13.6.7.3. Authenticating HTTP requests using the web interface

13.6.8. Running the Thorntail Secured example application integration tests
13.6.9. Secured SSO resources

13.7. CACHE EXAMPLE FOR THORNTAIL
13.7.1. How caching works and when you need it
13.7.2. Deploying the Cache example application to OpenShift Online

13.7.2.1. Deploying the example application using developers.redhat.com/launch

90
91
91

92
92
93
94
94
96
97
97
97
98
98
98
99
99
99

100
101
101
102
102
103
104
105
106
107
107
108
108
109
109

111
111

112
112
113
113
114
115
115
115
116
116
117
119
122
123
123
124
124
125

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

4

. .

. .

. .

. .

13.7.2.2. Authenticating the oc CLI client
13.7.2.3. Deploying the Cache example application using the oc CLI client

13.7.3. Deploying the Cache example application to Minishift or CDK
13.7.3.1. Getting the Fabric8 Launcher tool URL and credentials
13.7.3.2. Deploying the example application using the Fabric8 Launcher tool
13.7.3.3. Authenticating the oc CLI client
13.7.3.4. Deploying the Cache example application using the oc CLI client

13.7.4. Deploying the Cache example application to OpenShift Container Platform
13.7.5. Interacting with the unmodified Cache example application
13.7.6. Running the Cache example application integration tests
13.7.7. Caching resources

APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS

APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION

APPENDIX C. CONFIGURING A JENKINS FREESTYLE PROJECT TO DEPLOY YOUR APPLICATION WITH
THE FABRIC8 MAVEN PLUGIN

Next steps

APPENDIX D. THORNTAIL FRACTIONS REFERENCE
D.1. ARCHAIUS
D.2. BEAN VALIDATION
D.3. CDI

D.3.1. CDI Configuration
D.4. CONNECTOR
D.5. CONTAINER
D.6. DATASOURCES

D.6.1. Autodetectable drivers
D.6.2. Example datasource definitions

D.6.2.1. MySQL
D.6.2.2. PostgreSQL
D.6.2.3. Oracle

D.7. EE
D.7.1. EE Security

D.8. EJB
D.8.1. EJB MDB

D.9. ELYTRON
D.10. HIBERNATE VALIDATOR
D.11. HYSTRIX
D.12. INFINISPAN
D.13. IO
D.14. JAEGER
D.15. JAX-RS

D.15.1. JAX-RS + CDI
D.15.2. JAX-RS + JAXB
D.15.3. JAX-RS + JSON-B
D.15.4. JAX-RS + JSON-P
D.15.5. JAX-RS + Multipart
D.15.6. JAX-RS + Validator

D.16. JCA
D.17. JMX
D.18. JPA
D.19. JSF

125
125
127
127
127
128
128
130
130
130
131

132

133

135
136

137
137
137
137
138
138
138
138
138
139
139
140
140
150
152
152
157
158
176
176
179
252
254
254
255
255
255
256
256
256
256
260
261
261

Table of Contents

5

. .

. .

. .

. .

D.20. JSON-B
D.21. JSON-P
D.22. KEYCLOAK
D.23. LOGGING
D.24. MANAGEMENT
D.25. MICROPROFILE

D.25.1. Note about YAML configuration
D.25.2. MicroProfile Config
D.25.3. MicroProfile Fault Tolerance

D.25.3.1. Bulkhead fallback rejection
D.25.3.1.1. Semaphore Isolation
D.25.3.1.2. Thread Isolation

D.25.4. MicroProfile Health
D.25.5. MicroProfile JWT RBAC Auth
D.25.6. MicroProfile Metrics
D.25.7. MicroProfile OpenAPI
D.25.8. MicroProfile OpenTracing
D.25.9. MicroProfile Rest Client

D.25.9.1. CDI Interceptors Support
D.25.9.2. RestClientProxy

D.26. MONITOR
D.27. MSC
D.28. NAMING
D.29. RX-JAVA
D.30. OPENTRACING

D.30.1. OpenTracing TracerResolver
D.31. REMOTING
D.32. REQUEST CONTROLLER
D.33. RESOURCE ADAPTERS
D.34. SECURITY
D.35. TOPOLOGY

D.35.1. OpenShift
D.35.2. Topology UI

D.36. TRANSACTIONS
D.37. UNDERTOW
D.38. WEB

APPENDIX E. ADDITIONAL THORNTAIL RESOURCES

APPENDIX F. APPLICATION DEVELOPMENT RESOURCES

APPENDIX G. PROFICIENCY LEVELS
Foundational
Advanced
Expert

APPENDIX H. GLOSSARY
H.1. PRODUCT AND PROJECT NAMES
H.2. TERMS SPECIFIC TO DEVELOPER LAUNCHER

261
262
262
268
283
299
299
300
300
300
300
300
301
301
302
303
303
303
303
304
304
305
305
306
306
306
306

312
312
317

320
321
321
321

324
345

346

347

348
348
348
348

349
349
349

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

6

Table of Contents

7

PREFACE
This guide covers concepts as well as practical details needed by developers to use the Thorntail
runtime.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

8

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. To provide feedback, you can highlight the text in a
document and add comments.

This section explains how to submit feedback.

Prerequisites

You are logged in to the Red Hat Customer Portal.

In the Red Hat Customer Portal, view the document in Multi-page HTML format.

Procedure

To provide your feedback, perform the following steps:

1. Click the Feedback button in the top-right corner of the document to see existing feedback.

NOTE

The feedback feature is enabled only in the Multi-page HTML format.

2. Highlight the section of the document where you want to provide feedback.

3. Click the Add Feedback pop-up that appears near the highlighted text.
A text box appears in the feedback section on the right side of the page.

4. Enter your feedback in the text box and click Submit.
A documentation issue is created.

5. To view the issue, click the issue tracker link in the feedback view.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

9

CHAPTER 1. INTRODUCTION TO APPLICATION
DEVELOPMENT WITH THORNTAIL

This section explains the basic concepts of application development with Red Hat runtimes. It also
provides an overview about the Thorntail runtime.

1.1. OVERVIEW OF APPLICATION DEVELOPMENT WITH RED HAT
RUNTIMES

Red Hat OpenShift is a container application platform, which provides a collection of cloud-native
runtimes. You can use the runtimes to develop, build, and deploy Java or JavaScript applications on
OpenShift.

Application development using Red Hat Runtimes for OpenShift includes:

A collection of runtimes, such as, Eclipse Vert.x, Thorntail, Spring Boot, and so on, designed to
run on OpenShift.

A prescriptive approach to cloud-native development on OpenShift.

OpenShift helps you manage, secure, and automate the deployment and monitoring of your
applications. You can break your business problems into smaller microservices and use OpenShift to
deploy, monitor, and maintain the microservices. You can implement patterns such as circuit breaker,
health check, and service discovery, in your applications.

Cloud-native development takes full advantage of cloud computing.

You can build, deploy, and manage your applications on:

OpenShift Container Platform

A private on-premise cloud by Red Hat.

Red Hat Container Development Kit (Minishift)

A local cloud that you can install and execute on your local machine. This functionality is provided by
Red Hat Container Development Kit (CDK) or Minishift.

Red Hat CodeReady Studio

An integrated development environment (IDE) for developing, testing, and deploying applications.

To help you get started with application development, all the runtimes are available with example
applications. These example applications are accessible from the Developer Launcher. You can use the
examples as templates to create your applications. For more information on example applications, see
the section Introduction to example applications .

This guide provides detailed information about the Thorntail runtime. For more information on other
runtimes, see the relevant runtime documentation.

1.2. APPLICATION DEVELOPMENT ON RED HAT OPENSHIFT USING
DEVELOPER LAUNCHER

You can get started with developing cloud-native applications on OpenShift using Developer Launcher
(developers.redhat.com/launch). It is a service provided by Red Hat.

Developer Launcher is a stand-alone project generator. You can use it to build and deploy applications

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

10

https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.openshift.com/products/container-platform/
https://developers.redhat.com/products/cdk/overview/
https://www.openshift.org/minishift/
https://access.redhat.com/products/red-hat-codeready-studio
https://access.redhat.com/documentation/en-us
https://developers.redhat.com/launch

Developer Launcher is a stand-alone project generator. You can use it to build and deploy applications
on OpenShift instances, such as, OpenShift Container Platform or Minishift or CDK.

For more information on how to download and deploy applications on Developer Launcher, see the
section Downloading and deploying applications using Developer Launcher .

1.3. OVERVIEW OF THORNTAIL

NOTE

Thorntail was formerly known as WildFly Swarm.

Thorntail deconstructs the features in JBoss EAP and allows them to be selectively reconstructed based
on the needs of your application. This allows you to create microservices that run on a just-enough-
appserver that supports the exact subset of APIs you need.

The Thorntail runtime enables you to run Thorntail applications and services in OpenShift while
providing all the advantages and conveniences of the OpenShift platform such as rolling updates,
service discovery, and canary deployments. OpenShift also makes it easier for your applications to
implement common microservice patterns such as externalized configuration, health check, circuit
breaker, and failover.

Thorntail has a product version of its runtime that runs on OpenShift and is provided as part of a Red
Hat subscription.

1.3.1. Supported Architectures by Thorntail

Thorntail supports the following architectures:

x86_64 (AMD64)

IBM Z (s390x) in the OpenShift environment

Different images are supported for different architectures. The example codes in this guide
demonstrate the commands for x86_64 architecture. If you are using other architectures, specify the
relevant image name in the commands. Refer to the section Supported Java images for Thorntail for
more information about the image names.

1.3.2. Introduction to example applications

Examples are working applications that demonstrate how to build cloud native applications and services.
They demonstrate prescriptive architectures, design patterns, tools, and best practices that should be
used when you develop your applications. The example applications can be used as templates to create
your cloud-native microservices. You can update and redeploy these examples using the deployment
process explained in this guide.

The examples implement Microservice patterns such as:

Creating REST APIs

Interoperating with a database

Implementing the health check pattern

Externalizing the configuration of your applications to make them more secure and easier to

CHAPTER 1. INTRODUCTION TO APPLICATION DEVELOPMENT WITH THORNTAIL

11

https://developers.redhat.com/products/eap/overview/
http://microservices.io/patterns/microservices.html

Externalizing the configuration of your applications to make them more secure and easier to
scale

You can use the examples applications as:

Working demonstration of the technology

Learning tool or a sandbox to understand how to develop applications for your project

Starting point for updating or extending your own use case

Each example application is implemented in one or more runtimes. For example, the REST API Level 0
example is available for the following runtimes:

Node.js

Spring Boot

Eclipse Vert.x

Thorntail

The subsequent sections explain the example applications implemented for the Thorntail runtime.

You can download and deploy all the example applications on:

x86_64 architecture - The example applications in this guide demonstrate how to build and
deploy example applications on x86_64 architecture.

s390x architecture - To deploy the example applications on OpenShift environments
provisioned on IBM Z infrastructure, specify the relevant IBM Z image name in the commands.
Refer to the section Supported Java images for Thorntail for more information about the image
names.
Some of the example applications also require other products, such as Red Hat Data Grid to
demonstrate the workflows. In this case, you must also change the image names of these
products to their relevant IBM Z image names in the YAML file of the example applications.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

12

https://access.redhat.com/documentation/en-us/red_hat_build_of_node.js/10/html-single/node.js_runtime_guide/#example-rest-http-nodejs
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#example-rest-http-spring-boot
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.9/html-single/eclipse_vert.x_runtime_guide/#example-rest-http-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_thorntail/2.5/html-single/thorntail_runtime_guide/#example-rest-http-wf-swarm

CHAPTER 2. DOWNLOADING AND DEPLOYING
APPLICATIONS USING DEVELOPER LAUNCHER

This section shows you how to download and deploy example applications provided with the runtimes.
The example applications are available on Developer Launcher.

2.1. WORKING WITH DEVELOPER LAUNCHER

Developer Launcher (developers.redhat.com/launch) runs on OpenShift. When you deploy example
applications, the Developer Launcher guides you through the process of:

Selecting a runtime

Building and executing the application

Based on your selection, Developer Launcher generates a custom project. You can either download a
ZIP version of the project or directly launch the application on an OpenShift Online instance.

When you deploy your application on OpenShift using Developer Launcher, the Source-to-Image (S2I)
build process is used. This build process handles all the configuration, build, and deployment steps that
are required to run your application on OpenShift.

2.2. DOWNLOADING THE EXAMPLE APPLICATIONS USING
DEVELOPER LAUNCHER

Red Hat provides example applications that help you get started with the Thorntail runtime. These
examples are available on Developer Launcher (developers.redhat.com/launch).

You can download the example applications, build, and deploy them. This section explains how to
download example applications.

You can use the example applications as templates to create your own cloud-native applications.

Procedure

1. Go to Developer Launcher (developers.redhat.com/launch).

2. Click Start.

3. Click Deploy an Example Application .

4. Click Select an Example to see the list of example applications available with the runtime.

5. Select a runtime.

6. Select an example application.

NOTE

Some example applications are available for multiple runtimes. If you have not
selected a runtime in the previous step, you can select a runtime from the list of
available runtimes in the example application.

7. Select the release version for the runtime. You can choose from the community or product

CHAPTER 2. DOWNLOADING AND DEPLOYING APPLICATIONS USING DEVELOPER LAUNCHER

13

https://developers.redhat.com/launch
https://developers.redhat.com/launch
https://developers.redhat.com/launch
https://developers.redhat.com/launch

7. Select the release version for the runtime. You can choose from the community or product
releases listed for the runtime.

8. Click Save.

9. Click Download to download the example application.
A ZIP file containing the source and documentation files is downloaded.

2.3. DEPLOYING AN EXAMPLE APPLICATION ON OPENSHIFT
CONTAINER PLATFORM OR CDK (MINISHIFT)

You can deploy the example application to either OpenShift Container Platform or CDK (Minishift).
Depending on where you want to deploy your application use the relevant web console for
authentication.

Prerequisites

An example application project created using Developer Launcher.

If you are deploying your application on OpenShift Container Platform, you must have access to
the OpenShift Container Platform web console.

If you are deploying your application on CDK (Minishift), you must have access to the CDK
(Minishift) web console.

oc command-line client installed.

Procedure

1. Download the example application.

2. You can deploy the example application on OpenShift Container Platform or CDK (Minishift)
using the oc command-line client.
You must authenticate the client using the token provided by the web console. Depending on
where you want to deploy your application, use either the OpenShift Container Platform web
console or CDK (Minishift) web console. Perform the following steps to get the authenticate the
client:

a. Login to the web console.

b. Click the question mark icon, which is in the upper-right corner of the web console.

c. Select Command Line Tools from the list.

d. Copy the oc login command.

e. Paste the command in a terminal to authenticate your oc CLI client with your account.

3. Extract the contents of the ZIP file.

4. Create a new project in OpenShift.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ unzip MY_APPLICATION_NAME.zip

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

14

https://developers.redhat.com/launch

5. Navigate to the root directory of MY_APPLICATION_NAME.

6. Deploy your example application using Maven.

NOTE: Some example applications may require additional setups. To build and deploy the
example applications, follow the instructions provided in the README file.

7. Check the status of your application and ensure your pod is running.

The MY_APP_NAME-1-aaaaa pod has the status Running after it is fully deployed and started.
The pod name of your application may be different. The numeric value in the pod name is
incremented for every new build. The letters at the end are generated when the pod is created.

8. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you can use to access it. In this
example, you can use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

$ oc new-project MY_PROJECT_NAME

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

CHAPTER 2. DOWNLOADING AND DEPLOYING APPLICATIONS USING DEVELOPER LAUNCHER

15

CHAPTER 3. DEVELOPING AND DEPLOYING THORNTAIL
APPLICATION

In addition to using an example, you can create new Thorntail applications from scratch and deploy them
to OpenShift.

3.1. CREATING AN APPLICATION FROM SCRATCH

Creating a simple Thorntail–based application with a REST endpoint from scratch.

Prerequisites

OpenJDK 8 or OpenJDK 11 installed

Maven 3.5.0 installed

Procedure

1. Create a directory for the application and navigate to it:

We recommend you start tracking the directory contents with Git. For more information, see Git
tutorial.

2. In the directory, create a pom.xml file with the following content.

$ mkdir myApp
$ cd myApp

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-
v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example</groupId>
 <artifactId>restful-endpoint</artifactId>
 <version>1.0.0-SNAPSHOT</version>
 <packaging>war</packaging>

 <name>Thorntail Example</name>

 <properties>
 <version.thorntail>{version}</version.thorntail>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
 <failOnMissingWebXml>false</failOnMissingWebXml>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <!-- Specify the JDK builder image used to build your application. -->
 <fabric8.generator.from>registry.access.redhat.com/redhat-openjdk-18/openjdk18-
openshift:latest</fabric8.generator.from>
 </properties>

 <dependencyManagement>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

16

https://git-scm.com/docs/gittutorial

3. Create a directory structure for your application:

 <dependencies>
 <dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>bom</artifactId>
 <version>${version.thorntail}</version>
 <scope>import</scope>
 <type>pom</type>
 </dependency>
 </dependencies>
 </dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>jaxrs</artifactId>
 </dependency>
 </dependencies>

 <build>
 <finalName>restful-endpoint</finalName>
 <plugins>
 <plugin>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-maven-plugin</artifactId>
 <version>${version.thorntail}</version>
 <executions>
 <execution>
 <goals>
 <goal>package</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

 <!-- Specify the repositories containing RHOAR artifacts -->
 <repositories>
 <repository>
 <id>redhat-ga</id>
 <name>Red Hat GA Repository</name>
 <url>https://maven.repository.redhat.com/ga/</url>
 </repository>
 </repositories>

 <pluginRepositories>
 <pluginRepository>
 <id>redhat-ga</id>
 <name>Red Hat GA Repository</name>
 <url>https://maven.repository.redhat.com/ga/</url>
 </pluginRepository>
 </pluginRepositories>

</project>

CHAPTER 3. DEVELOPING AND DEPLOYING THORNTAIL APPLICATION

17

4. In the src/main/java/com/example/rest directory, create the source files:

HelloWorldEndpoint.java with the class that serves the HTTP endpoint:

RestApplication.java with the application context:

5. Execute the application using Maven:

Results
Accessing the http://localhost:8080/rest/hello URL in your browser should return the following
message:

Hello from Thorntail!

After finishing the procedure, there should be a directory on your hard drive with the following contents:

myApp
├── pom.xml
└── src
 └── main
 └── java
 └── com
 └── example

mkdir -p src/main/java/com/example/rest

package com.example.rest;

import javax.ws.rs.Path;
import javax.ws.rs.core.Response;
import javax.ws.rs.GET;
import javax.ws.rs.Produces;

@Path("/hello")
public class HelloWorldEndpoint {

 @GET
 @Produces("text/plain")
 public Response doGet() {
 return Response.ok("Hello from Thorntail!").build();
 }
}

package com.example.rest;

import javax.ws.rs.core.Application;
import javax.ws.rs.ApplicationPath;

@ApplicationPath("/rest")
public class RestApplication extends Application {
}

$ mvn thorntail:run

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

18

http://localhost:8080/rest/hello

 └── rest
 ├── HelloWorldEndpoint.java
 └── RestApplication.java

3.2. DEPLOYING THORNTAIL APPLICATION TO OPENSHIFT

To deploy your Thorntail application to OpenShift, configure the pom.xml file in your application and
then use the Fabric8 Maven plugin. You can specify a Java image by replacing the
fabric8.generator.from URL in the pom.xml file.

The images are available in the Red Hat Ecosystem Catalog .

<fabric8.generator.from>IMAGE_NAME</fabric8.generator.from>

For example, the Java image for RHEL 7 with OpenJDK 8 is specified as:

<fabric8.generator.from>registry.access.redhat.com/redhat-openjdk-18/openjdk18-
openshift:latest</fabric8.generator.from>

3.2.1. Supported Java images for Thorntail

Thorntail is certified and tested with various Java images that are available for different operating
systems. For example, Java images are available for RHEL 7 and RHEL 8 with OpenJDK 8 or OpenJDK
11. Similar images are available on IBM Z.

You require Docker or podman authentication to access the RHEL 8 images in the Red Hat Ecosystem
Catalog.

The following table lists the images supported by Thorntail for different architectures. It also provides
links to the images available in the Red Hat Ecosystem Catalog. The image pages contain authentication
procedures required to access the RHEL 8 images.

3.2.1.1. Images on x86_64 architecture

OS Java Red Hat Ecosystem Catalog

RHEL 7 OpenJDK 8 RHEL 7 with OpenJDK 8

RHEL 7 OpenJDK 11 RHEL 7 with OpenJDK 11

RHEL 8 OpenJDK 8 RHEL 8 with OpenJDK 8

RHEL 8 OpenJDK 11 RHEL 8 with OpenJDK 11

NOTE

The use of a RHEL 8-based container on a RHEL 7 host, for example with OpenShift 3 or
OpenShift 4, has limited support. For more information, see the Red Hat Enterprise Linux
Container Compatibility Matrix.

CHAPTER 3. DEVELOPING AND DEPLOYING THORNTAIL APPLICATION

19

https://access.redhat.com/containers/
https://access.redhat.com/containers/#/registry.access.redhat.com/redhat-openjdk-18/openjdk18-openshift
https://access.redhat.com/containers/#/registry.access.redhat.com/openjdk/openjdk-11-rhel7
https://access.redhat.com/containers/#/registry.access.redhat.com/openjdk/openjdk-8-rhel8
https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/openjdk/openjdk-11-rhel8
https://access.redhat.com/support/policy/rhel-container-compatibility

3.2.1.2. Images on s390x (IBM Z) architecture

OS Java Red Hat Ecosystem Catalog

RHEL 8 Eclipse OpenJ9 11 RHEL 8 with Eclipse OpenJ9 11

NOTE

The use of a RHEL 8-based container on a RHEL 7 host, for example with OpenShift 3 or
OpenShift 4, has limited support. For more information, see the Red Hat Enterprise Linux
Container Compatibility Matrix.

3.2.2. Preparing Thorntail application for OpenShift deployment

For deploying your Thorntail application to OpenShift, it must contain:

Launcher profile information in the application’s pom.xml file.

In the following procedure, a profile with Fabric8 Maven plugin is used for building and deploying the
application to OpenShift.

Prerequisites

Maven is installed.

Docker or podman authentication into Red Hat Ecosystem Catalog to access RHEL 8 images.

Procedure

1. Add the following content to the pom.xml file in the application root directory:

...

<profiles>
 <profile>
 <id>openshift</id>
 <build>
 <plugins>
 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 <version>4.3.0</version>
 <executions>
 <execution>
 <goals>
 <goal>resource</goal>
 <goal>build</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

20

https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/openj9/openj9-11-rhel8
https://access.redhat.com/support/policy/rhel-container-compatibility
https://access.redhat.com/containers/

2. Replace the fabric8.generator.from property in the pom.xml file to specify relevant Java
image based on your architecture.

x86_64 architecture

RHEL 7 with OpenJDK 8

RHEL 7 with OpenJDK 11

RHEL 8 with OpenJDK 8

RHEL 8 with OpenJDK 11

s390x (IBM Z) architecture

RHEL 8 with Eclipse OpenJ9 11

3.2.3. Deploying Thorntail application to OpenShift using Fabric8 Maven plugin

To deploy your Thorntail application to OpenShift, you must perform the following:

Log in to your OpenShift instance.

Deploy the application to the OpenShift instance.

Prerequisites

oc CLI client installed.

Maven installed.

Procedure

1. Log in to your OpenShift instance with the oc client.

 </build>
 </profile>
 </profiles>

<fabric8.generator.from>registry.access.redhat.com/redhat-openjdk-18/openjdk18-
openshift:latest</fabric8.generator.from>

<fabric8.generator.from>registry.access.redhat.com/openjdk/openjdk-11-
rhel7:latest</fabric8.generator.from>

<fabric8.generator.from>registry.redhat.io/openjdk/openjdk-8-
rhel8:latest</fabric8.generator.from>

<fabric8.generator.from>registry.redhat.io/openjdk/openjdk-11-
rhel8:latest</fabric8.generator.from>

<fabric8.generator.from>registry.access.redhat.com/openj9/openj9-11-
rhel8:latest</fabric8.generator.from>

CHAPTER 3. DEVELOPING AND DEPLOYING THORNTAIL APPLICATION

21

2. Create a new project in the OpenShift instance.

3. Deploy the application to OpenShift using Maven from the application’s root directory. The root
directory of an application contains the pom.xml file.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and start
the pod.

4. Verify the deployment.

a. Check the status of your application and ensure your pod is running.

The MY_APP_NAME-1-aaaaa pod should have a status of Running once it is fully
deployed and started.

Your specific pod name will vary.

b. Determine the route for the pod.

Example Route Information

The route information of a pod gives you the base URL which you use to access it.

In this example, http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
is the base URL to access the application.

c. Verify that your application is running in OpenShift.

3.3. DEPLOYING THORNTAIL APPLICATION TO STAND-ALONE RED
HAT ENTERPRISE LINUX

To deploy your Thorntail application to stand-alone Red Hat Enterprise Linux, configure the pom.xml

$ oc login ...

$ oc new-project MY_PROJECT_NAME

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME 8080

$ curl http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/rest/hello
Hello from Thorntail!

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

22

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

To deploy your Thorntail application to stand-alone Red Hat Enterprise Linux, configure the pom.xml
file in the application, package it using Maven and deploy using the java -jar command.

Prerequisites

RHEL 7 or RHEL 8 installed.

3.3.1. Preparing Thorntail application for stand-alone Red Hat Enterprise Linux
deployment

For deploying your Thorntail application to stand-alone Red Hat Enterprise Linux, you must first
package the application using Maven.

Prerequisites

Maven installed.

Procedure

1. Add the following content to the pom.xml file in the application’s root directory:

2. Package your application using Maven.

The resulting JAR file is in the target directory.

3.3.2. Deploying Thorntail application to stand-alone Red Hat Enterprise Linux using
jar

To deploy your Thorntail application to stand-alone Red Hat Enterprise Linux, use java -jar command.

Prerequisites

RHEL 7 or RHEL 8 installed.

 ...
 <build>
 <plugins>
 <plugin>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-maven-plugin</artifactId>
 <version>${version.thorntail}</version>
 <executions>
 <execution>
 <goals>
 <goal>package</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 ...

$ mvn clean package

CHAPTER 3. DEVELOPING AND DEPLOYING THORNTAIL APPLICATION

23

OpenJDK 8 or OpenJDK 11 installed.

A JAR file with the application.

Procedure

1. Deploy the JAR file with the application.

2. Verify the deployment.
Use curl or your browser to verify your application is running at http://localhost:8080:

$ java -jar my-app-thorntail.jar

$ curl http://localhost:8080

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

24

http://localhost:8080

CHAPTER 4. USING THORNTAIL MAVEN PLUGIN
Thorntail provides a Maven plugin to accomplish most of the work of building uberjar packages.

4.1. THORNTAIL MAVEN PLUGIN GENERAL USAGE

The Thorntail Maven plugin is used like any other Maven plugin, that is through editing the pom.xml file
in your application and adding a <plugin> section:

4.2. THORNTAIL MAVEN PLUGIN GOALS

The Thorntail Maven plugin provides several goals:

package

Creates the executable package (see Section 9.2, “Creating an uberjar”).

run

Executes your application in the Maven process. The application is stopped if the Maven build is
interrupted, for example when you press Ctrl + C.

start and multistart

Executes your application in a forked process. Generally, it is only useful for running integration tests
using a plugin, such as the maven-failsafe-plugin. The multistart variant allows starting multiple
Thorntail–built applications using Maven GAVs to support complex testing scenarios.

stop

Stops any previously started applications.

NOTE

The stop goal can only stop applications that were started in the same Maven
execution.

4.3. THORNTAIL MAVEN PLUGIN CONFIGURATION OPTIONS

<plugin>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-maven-plugin</artifactId>
 <version>${version.thorntail}</version>
 <executions>
 ...
 <execution>
 <goals>
 ...
 </goals>
 <configuration>
 ...
 </configuration>
 </execution>
 </executions>
</plugin>

CHAPTER 4. USING THORNTAIL MAVEN PLUGIN

25

The Thorntail Maven plugin accepts the following configuration options:

bundleDependencies

If true, dependencies are included in the -thorntail.jar file. Otherwise, they are resolved from
$M2_REPO or from the network at runtime.

Property thorntail.bundleDependencies

Default true

Used by package

debug

The port to use for debugging. If set, the Thorntail process suspends on start and opens a debugger
on this port.

Property thorntail.debug.port

Default

Used by run, start

environment

A properties-style list of environment variables to use when executing the application.

Property none

Default

Used by multistart, run, start

environmentFile

A .properties file with environment variables to use when executing the application.

Property thorntail.environmentFile

Default

Used by multistart, run, start

filterWebInfLib

If true, the plugin removes artifacts that are provided by the Thorntail runtime from the WEB-INF/lib
directory of the project WAR file. Otherwise, the contents of WEB-INF/lib remain untouched.

Property thorntail.filterWebInfLib

Default true

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

26

Used by package

NOTE

This option is generally not necessary and is provided as a workaround in case the
Thorntail plugin removes a dependency required by the application. When false, it is the
responsibility of the developer to ensure that the WEB-INF/lib directory does not contain
Thorntail artifacts that would compromise the functionality of the application. One way to
do that is to avoid expressing dependencies on fractions and rely on auto-detection or by
explicitly listing any required extra fractions using the fractions option.

fractionDetectMode

The mode of fraction detection. The available options are:

when_missing: Runs only when no Thorntail dependencies are found.

force: Always run, and merge any detected fractions with the existing dependencies. Existing
dependencies take precedence.

never: Disable fraction detection.

Property thorntail.detect.mode

Default when_missing

Used by package, run, start

fractions

A list of extra fractions to include when using auto-detection. It is useful for fractions that cannot be
detected or for user-provided fractions.
Use one of the following formats when specifying a fraction: * group:artifact:version *
artifact:version * artifact

If no group is provided, io.thorntail is assumed.

If no version is provided, the version is taken from the Thorntail BOM for the version of the plugin you
are using.

If the value starts with a ! character, the corresponding auto-detected fraction is not installed (unless
it is a dependency of any other fraction). In the following example the Undertow fraction is not
installed even though your application references a class from the javax.servlet package:

<plugin>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-maven-plugin</artifactId>
 <version>${version.thorntail}</version>
 <executions>

CHAPTER 4. USING THORNTAIL MAVEN PLUGIN

27

Property none

Default

Used by package, run, start

jvmArguments

A list of <jvmArgument> elements specifying additional JVM arguments (such as -Xmx32m).

Property thorntail.jvmArguments

Default

Used by multistart, run, start

modules

Paths to a directory containing additional module definitions.

Property none

Default

Used by package, run, start

processes

Application configurations to start (see multistart).

Property none

Default

Used by multistart

properties

 <execution>
 <goals>
 <goal>package</goal>
 </goals>
 <configuration>
 <fractions>
 <fraction>!undertow</fraction>
 </fractions>
 </configuration>
 </execution>
 </executions>
</plugin>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

28

See Section 4.4, “Thorntail Maven plugin configuration properties” .

Property none

Default

Used by package, run, start

propertiesFile

See Section 4.4, “Thorntail Maven plugin configuration properties” .

Property thorntail.propertiesFile

Default

Used by package, run, start

stderrFile

Specifies the path to a file where the stderr output is stored instead of being sent to the stderr
output of the launching process.

Property thorntail.stderr

Default

Used by run, start

stdoutFile

Specifies the path to a file where the stdout output is stored instead of being sent to the stdout
output of the launching process.

Property thorntail.stdout

Default

Used by run, start

useUberJar

If specified, the -thorntail.jar file located in ${project.build.directory} is used. This JAR is not
created automatically, so make sure you execute the package goal first.

Property thorntail.useUberJar

Default

Used by run, start

CHAPTER 4. USING THORNTAIL MAVEN PLUGIN

29

4.4. THORNTAIL MAVEN PLUGIN CONFIGURATION PROPERTIES

Properties can be used to configure the execution and affect the packaging or running of your
application.

If you add a <properties> or <propertiesFile> section to the <configuration> of the plugin, the
properties are used when executing your application using the mvn thorntail:run command. In addition
to that, the same properties are added to your myapp-thorntail.jar file to affect subsequent executions
of the uberjar. Any properties loaded from the <propertiesFile> override identically-named properties
in the <properties> section.

Any properties added to the uberjar can be overridden at runtime using the traditional -Dname=value
mechanism of the java binary, or using the YAML-based configuration files.

Only the following properties are added to the uberjar at package time:

The properties specified outside of the <properties> section or the <propertiesFile>, whose
path starts with one of the following:

jboss.

wildfly.

thorntail.

swarm.

maven.

The properties that override a property specified in the <properties> section or the
<propertiesFile>.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

30

CHAPTER 5. USING THORNTAIL FRACTIONS

5.1. FRACTIONS

Thorntail is defined by an unbounded set of capabilities. Each piece of functionality is called a fraction.
Some fractions provide only access to APIs, such as JAX-RS or CDI; other fractions provide higher-level
capabilities, such as integration with RHSSO (Keycloak).

The typical method for consuming Thorntail fractions is through Maven coordinates, which you add to
the pom.xml file in your application. The functionality the fraction provides is then packaged with your
application (see Section 9.2, “Creating an uberjar”).

To enable easier consumption of Thorntail fractions, a bill of materials (BOM) is available. For more
information, see Chapter 6, Using a BOM .

5.2. AUTO-DETECTING FRACTIONS

Migrating existing legacy applications to benefit from Thorntail is simple when using fraction auto-
detection. If you enable the Thorntail Maven plugin in your application, Thorntail detects which APIs you
use, and includes the appropriate fractions at build time.

NOTE

By default, Thorntail only auto-detects if you do not specify any fractions explicitly. This
behavior is controlled by the fractionDetectMode property. For more information, see
the Maven plugin configuration reference .

For example, consider your pom.xml already specifies the API .jar file for a specification such as JAX-
RS:

Thorntail then includes the jaxrs fraction during the build automatically.

Prerequisites

An existing Maven-based application with a pom.xml file.

Procedure

1. Add the thorntail-maven-plugin to your pom.xml in a <plugin> block, with an <execution>
specifying the package goal.

<dependencies>
 <dependency>
 <groupId>org.jboss.spec.javax.ws.rs</groupId>
 <artifactId>jboss-jaxrs-api_2.1_spec</artifactId>
 <version>${version.jaxrs-api}</version>
 <scope>provided</scope>
 </dependency>
</dependencies>

<plugins>
 <plugin>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-maven-plugin</artifactId>

CHAPTER 5. USING THORNTAIL FRACTIONS

31

2. Perform a normal Maven build:

$ mvn package

3. Execute the resulting uberjar:

$ java -jar ./target/myapp-thorntail.jar

Related Information

Section 5.1, “Fractions”

Section 9.2, “Creating an uberjar”

5.3. USING EXPLICIT FRACTIONS

When writing your application from scratch, ensure it compiles correctly and uses the correct version of
APIs by explicitly selecting which fractions are packaged with it.

Prerequisites

A Maven-based application with a pom.xml file.

Procedure

1. Add the BOM to your pom.xml. For more information, see Chapter 6, Using a BOM .

2. Add the Thorntail Maven plugin to your pom.xml. For more information, see Section 9.2,
“Creating an uberjar”.

3. Add one or more dependencies on Thorntail fractions to the pom.xml file:

4. Perform a normal Maven build:

 <version>${version.thorntail}</version>
 <executions>
 <execution>
 <id>package</id>
 <goals>
 <goal>package</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
</plugins>

<dependencies>
 <dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>jaxrs</artifactId>
 </dependency>
</dependencies>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

32

$ mvn package

5. Execute the resulting uberjar:

$ java -jar ./target/myapp-thorntail.jar

Related Information

Section 5.1, “Fractions”

Section 5.2, “Auto-detecting fractions”

CHAPTER 5. USING THORNTAIL FRACTIONS

33

CHAPTER 6. USING A BOM
To explicitly specify the Thorntail fractions your application uses, instead of relying on auto-detection,
Thorntail includes a set of BOMs (bill of materials) which you can use instead of having to track and
update Maven artifact versions in several places.

6.1. THORNTAIL PRODUCT BOM TYPES

Thorntail is described as just enough app-server, which means it consists of multiple pieces. Your
application includes only the pieces it needs.

When using the Thorntail product, you can specify the following Maven BOMs:

bom

All fractions available in the product.

bom-certified

All community fractions that have been certified against the product. Any fraction used from bom-
certified is unsupported.

6.2. SPECIFYING A BOM FOR IN YOUR APPLICATION

Importing a specific BOM in the pom.xml file in your application allows you to track all your application
dependencies in one place.

NOTE

One shortcoming of importing a Maven BOM import is that it does not handle the
configuration on the level of <pluginManagement>. When you use the Thorntail Maven
Plugin, you must specify the version of the plugin to use.

Thanks to the property you use in your pom.xml file, you can easily ensure that your
plugin usage matches the release of Thorntail that you are targeting with the BOM
import.

Prerequisites

Your application as a Maven-based project with a pom.xml file.

Procedure

1. Include a bom artifact in your pom.xml.
Tracking the current version of Thorntail through a property in your pom.xml is recommended.

<plugins>
 <plugin>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-maven-plugin</artifactId>
 <version>${version.thorntail}</version>
 ...
 </plugin>
</plugins>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

34

Import BOMs in the <dependencyManagement> section. Specify the <type>pom</type> and
<scope>import</scope>.

In the example above, the bom artifact is imported to ensure that only stable fractions are
available.

By including the BOMs of your choice in the <dependencyManagement> section, you have:

Provided version-management for any Thorntail artifacts you subsequently choose to use.

Provided support to your IDE for auto-completing known artifacts when you edit your the
pom.xml file of your application.

2. Include Thorntail dependencies.
Even though you imported the Thorntail BOMs in the <dependencyManagement> section,
your application still has no dependencies on Thorntail artifacts.

To include Thorntail artifact dependencies based on the capabilities your application, enter the
relevant artifacts as <dependency> elements:

NOTE

You do not have to specify the version of the artifacts because the BOM
imported in <dependencyManagement> handles that.

In the example above, we include explicit dependencies on the jaxrs and datasources
fractions, which will provide transitive inclusion of others, for example undertow.

<properties>
 <version.thorntail>{version}</version.thorntail>
</properties>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>bom</artifactId>
 <version>${version.thorntail}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>jaxrs</artifactId>
 </dependency>
 <dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>datasources</artifactId>
 </dependency>
</dependencies>

CHAPTER 6. USING A BOM

35

CHAPTER 7. ACCESSING LOGS ON YOUR THORNTAIL
APPLICATION

7.1. ENABLING LOGGING

Each Thorntail fraction is dependent on the Logging fraction, which means that if you use any Thorntail
fraction in your application, logging is automatically enabled on the INFO level and higher. If you want to
enable logging explicitly, add the Logging fraction to the POM file of your application.

Prerequisites

A Maven-based application

Procedure

1. Find the <dependencies> section in the pom.xml file of your application. Verify it contains the
following coordinates. If it does not, add them.

2. If you want to log messages of a level other than INFO, launch the application while specifying
the thorntail.logging system property:

See the org.wildfly.swarm.config.logging.Level class for the list of available levels.

7.2. LOGGING TO A FILE

In addition to the console logging, you can save the logs of your application in a file. Typically,
deployments use rotating logs to save disk space.

In Thorntail, logging is configured using system properties. Even though it is possible to use the -
Dproperty=value syntax when launching your application, it is strongly recommended to configure file
logging using the YAML profile files.

Prerequisites

A Maven-based application with the logging fraction enabled. For more information, see
Section 7.1, “Enabling logging” .

A writable directory on your file system.

Procedure

1. Open a YAML profile file of your choice. If you do not know which one to use, open project-
defaults.yml in the src/main/resources directory in your application sources. In the YAML file,
add the following section:

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>logging</artifactId>
</dependency>

$ mvn thorntail:run -Dthorntail.logging=FINE

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

36

https://thorntail.github.io/javadocs/2.5.0.Final/apidocs/org/wildfly/swarm/config/logging/Level.html

2. Configure a formatter (optional). The following formatters are configured by default:

PATTERN

Useful for logging into a file.

COLOR_PATTERN

Color output. Useful for logging to the console.

To configure a custom formatter, add a new formatter with a pattern of your choice in the
logging section. In this example, it is called LOG_FORMATTER:

3. Configure a file handler to use with the loggers. This example shows the configuration of a
periodic rotating file handler. Under logging, add a periodic-rotating-file-handlers section
with a new handler.

Here, a new handler named FILE is created, logging events of the INFO level and higher. It logs
in the target directory, and each log file is named MY_APP_NAME.log with the suffix .yyyy-
MM-dd. Thorntail automatically parses the log rotation period from the suffix, so ensure you use
a format compatible with the java.text.SimpleDateFormat class.

4. Configure the root logger.
The root logger is by default configured to use the CONSOLE handler only. Under logging, add
a root-logger section with the handlers you wish to use:

Here, the FILE handler from the previous step is used, along with the default console handler.

Below, you can see the complete logging configuration section:

The logging section in a YAML configuration profile

thorntail:
 logging:

pattern-formatters:
 LOG_FORMATTER:
 pattern: "%p [%c] %s%e%n"

periodic-rotating-file-handlers:
 FILE:
 file:
 path: target/MY_APP_NAME.log
 suffix: .yyyy-MM-dd
 named-formatter: LOG_FORMATTER
 level: INFO

root-logger:
 handlers:
 - CONSOLE
 - FILE

thorntail:
 logging:
 pattern-formatters:
 LOG_FORMATTER:

CHAPTER 7. ACCESSING LOGS ON YOUR THORNTAIL APPLICATION

37

 pattern: "CUSTOM LOG FORMAT %p [%c] %s%e%n"
 periodic-rotating-file-handlers:
 FILE:
 file:
 path: path/to/your/file.log
 suffix: .yyyy-MM-dd
 named-formatter: LOG_FORMATTER
 root-logger:
 handlers:
 - CONSOLE
 - FILE

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

38

CHAPTER 8. CONFIGURING A THORNTAIL APPLICATION
You can configure numerous options with applications built with Thorntail. For most options, reasonable
defaults are already applied, so you do not have to change any options unless you explicitly want to.

This reference is a complete list of all configurable items, grouped by the fraction that introduces them.
Only the items related to the fractions that your application uses are relevant to you.

8.1. SYSTEM PROPERTIES

Using system properties for configuring your application is advantageous for experimenting, debugging,
and other short-term activities.

8.1.1. Commonly used system properties

This is a non-exhaustive list of system properties you are likely to use in your application:

General system properties

thorntail.bind.address

The interface to bind servers

Default 0.0.0.0

thorntail.port.offset

The global port adjustment

Default 0

thorntail.context.path

The context path for the deployed application

Default /

thorntail.http.port

The port for the HTTP server

Default 8080

thorntail.https.port

The port for the HTTPS server

Default 8443

thorntail.debug.port

If provided, the Thorntail process will pause for debugging on the given port.

This option is only available when running an Arquillian test or starting the application using the mvn

CHAPTER 8. CONFIGURING A THORNTAIL APPLICATION

39

This option is only available when running an Arquillian test or starting the application using the mvn
thorntail:run command, not when executing a JAR file. The JAR file execution requires normal Java
debug agent parameters.

Default

Datasource-related system properties

With JDBC driver autodetection, use the following properties to configure the datasource:

thorntail.ds.name

The name of the datasource

Default ExampleDS

thorntail.ds.username

The user name to access the database

Default driver-specific

thorntail.ds.password

The password to access the database

Default driver-specific

thorntail.ds.connection.url

The JDBC connection URL

Default driver-specific

NOTE

For a full set of available properties, see the documentation for each fraction and the
javadocs on class SwarmProperties.java

8.1.2. Application configuration using system properties

Configuration properties are presented using dotted notation, and are suitable for use as Java system
property names, which your application consumes through explicit setting in the Maven plugin
configuration, or through the command line when your application is being executed.

Any property that has the KEY parameter in its name indicates that you must supply a key or identifier in
that segment of the name.

Configuration of items with the KEY parameter
A configuration item documented as thorntail.undertow.servers.KEY.default-host indicates that the
configuration applies to a particular named server.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

40

https://github.com/thorntail/thorntail/blob/2.5.0.Final/core/spi/src/main/java/org/wildfly/swarm/spi/api/SwarmProperties.java

In practical usage, the property would be, for example, thorntail.undertow.servers.default.default-
host for a server known as default.

8.1.3. Setting system properties using the Maven plugin

Setting properties using the Maven plugin is useful for temporarily changing a configuration item for a
single execution of your Thorntail application.

NOTE

Even though the configuration in the POM file of your application is persistent, it is not
recommended to use it for long-term configuration of your application. Instead, use the
YAML configuration files.

If you want to set explicit configuration values as defaults through the Maven plugin, add a
<properties> section to the <configuration> block of the plugin in the pom.xml file in your application.

Prerequisites

Your Thorntail-based application with a POM file

Procedure

1. In the POM file of your application, locate the configuration you want to modify.

2. Insert a block with configuration of the io.thorntail:thorntail-maven-plugin artifact, for
example:

In the example above, the thorntail.bind.address property is set to 127.0.0.1 and the
java.net.preferIPv4Stack property is set to true.

8.1.4. Setting system properties using the command line

Setting properties using the Maven plugin is useful for temporarily changing a configuration item for a
single execution of your Thorntail application.

You can customize an environment-specific setting or experiment with configuration items before
setting them in a YAML configuration file.

<build>
 <plugins>
 <plugin>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-maven-plugin</artifactId>
 <version>{version}</version>
 <configuration>
 <properties>
 <thorntail.bind.address>127.0.0.1</thorntail.bind.address>
 <java.net.preferIPv4Stack>true</java.net.preferIPv4Stack>
 </properties>
 </configuration>
 </plugin>
 </plugins>
</build>

CHAPTER 8. CONFIGURING A THORNTAIL APPLICATION

41

To use a property on the command line, pass it as a command-line parameter to the Java binary:

Prerequisites

A JAR file with your application

Procedure

1. In a terminal application, navigate to the directory with your application JAR file.

2. Execute your application JAR file using the Java binary and specify the property and its value:

In this example, you assing the value 127.0.0.1 to the property called thorntail.bind.address.

8.1.5. Specifying JDBC drivers for hollow JARs

When executing a hollow JAR, you can specify a JDBC Driver JAR using the thorntail.classpath
property. This way, you do not need to package the driver in the hollow JAR.

The thorntail.classpath property accepts one or more paths to JAR files separated by ; (a semicolon).
The specified JAR files are added to the classpath of the application.

Prerequisites

A JAR file with your application

Procedure

1. In a terminal application, navigate to the directory with your application JAR file.

2. Execute your application JAR file using the Java binary and specify the JDBC driver:

8.2. ENVIRONMENT VARIABLES

Use environment variables to configure your application or override values stored in YAML files.

8.2.1. Application configuration using environment variables

Use environment variables to configure your application in various deployments—especially in a
containerized environment, such as Docker.

Example 8.1. Environment variables configuration

A property documented as thorntail.undertow.servers.KEY.default-host translates to the following
environment variable (substituting the KEY segment with the default identifier):

$ java -Dthorntail.bind.address=127.0.0.1 -jar myapp-thorntail.jar

$ java -Dthorntail.classpath=./h2-1.4.196.jar -jar microprofile-jpa-hollow-thorntail.jar example-
jpa-jaxrs-cdi.war

export THORNTAIL.UNDERTOW.SERVERS.DEFAULT.DEFAULT_DASH_HOST=<myhost>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

42

Unlike other configuration options, properties defined as environment variables in Linux-based
containers do not allow defining non-alphanumeric characters like dot (.), dash/hyphen (-) or any other
characters not in the [A-Za-z0-9_] range. Many configuration properties in Thorntail contain these
characters, so you must follow these rules when defining the environment variables in the following
environments:

Linux-based container rules

It is a naming convention that all environment properties are defined using uppercase letters.
For example, define the serveraddress property as SERVERADDRESS.

All the dot (.) characters must be replaced with underscore (_). For example, define the
thorntail.bind.address=127.0.0.1 property as THORNTAIL_BIND_ADDRESS=127.0.0.1.

All dash/hyphen (-) characters must be replaced with the _DASH_ string. For example, define
the thorntail.data-sources.foo.url=<url> property as
THORNTAIL_DATA_DASH_SOURCES_FOO_URL=<url>.

If the property name contains underscores, all underscore (_) characters must be replaced with
the _UNDERSCORE_ string. For example, define the thorntail.data_sources.foo.url=<url>
property as THORNTAIL_DATA_UNDERSCORE_SOURCES_FOO_URL=<url>.

Example 8.2. An example data source configuration

System
property

-Dthorntail.datasources.data-sources.devwf.connection-url=
jdbc:postgresql://localhost:5432/sampledb

Env. variable THORNTAIL_DATASOURCES_DATA_DASH_SOURCES_DEVWF_CONNEC
TION_DASH_URL= 'jdbc:postgresql://localhost:5432/sampledb'

System
property

-Dthorntail.datasources.data-sources.devwf.driver-name=postgresql

Env. variable THORNTAIL_DATASOURCES_DATA_DASH_SOURCES_DEVWF_DRIVER_
DASH_NAME='postgresql'

System
property

-Dthorntail.datasources.data-
sources.devwf.jndiname=java:/jboss/datasources/devwf

Env. variable THORNTAIL_DATASOURCES_DATA_DASH_SOURCES_DEVWF_JNDI_DA
SH_NAME='java:/jboss/datasources/devwf'

System
property

-Dthorntail.datasources.data-sources.devwf.user-name=postgres

Env. variable THORNTAIL_DATASOURCES_DATA_DASH_SOURCES_DEVWF_USER_D
ASH_NAME='postgres'

CHAPTER 8. CONFIGURING A THORNTAIL APPLICATION

43

System
property

-Dthorntail.datasources.data-sources.devwf.password=admin

Env. variable THORNTAIL_DATASOURCES_DATA_DASH_SOURCES_DEVWF_PASSWO
RD='admin'

8.3. YAML FILES

YAML is the preferred method for long-term configuration of your application. In addition to that, the
YAML strategy provides grouping of environment-specific configurations, which you can selectively
enable when executing the application.

8.3.1. The general YAML file format

The Thorntail configuration item names correspond to the YAML configuration structure. That is, if you
want to write a piece of YAML configuration for some configuration property, you just need to separate
the configuration property around the . characters.

Example 8.3. YAML configuration

For example, a configuration item documented as thorntail.undertow.servers.KEY.default-host
translates to the following YAML structure, substituting the KEY segment with the default identifier:

This simple rule applies always, there are no exceptions and no additional delimiters. Most notably, some
Eclipse MicroProfile specifications define configuration properties that use / as a delimiter, because the
. character is used in fully qualified class names. When writing the YAML configuration, it is still required
to split around . and not around /.

Example 8.4. YAML configuration for MicroProfile Rest Client

For example, MicroProfile Rest Client specifies that you can configure URL of an external service
with a configuration property named com.example.demo.client.Service/mp-rest/url. This translates
to the following YAML:

8.3.2. Default Thorntail YAML Files

By default, Thorntail looks up permanent configuration in files with specific names to put on the

thorntail:
 undertow:
 servers:
 default:
 default-host: <myhost>

com:
 example:
 demo:
 client:
 Service/mp-rest/url: http://localhost:8080/...

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

44

By default, Thorntail looks up permanent configuration in files with specific names to put on the
classpath.

project-defaults.yml
If the original .war file with your application contains a file named project-defaults.yml, that file
represents the defaults applied over the absolute defaults that Thorntail provides.

Other default file names
In addition to the project-defaults.yml file, you can provide specific configuration files using the -S
<name> command-line option. The specified files are loaded, in the order you provided them, before
project-defaults.yml. A name provided in the -S <name> argument specifies the project-<name>.yml
file on your classpath.

Example 8.5. Specifying configuration files on the command line

Consider the following application execution:

The following YAML files are loaded, in this order. The first file containing a given configuration item
takes precedence over others:

1. project-testing.yml

2. project-cloud.yml

3. project-defaults.yml

8.3.3. Non-default Thorntail YAML configuration files

In addition to default configuration files for your Thorntail-based application, you can specify YAML
files outside of your application. Use the -s <path> command-line option to load the desired file.

Both the -s <path> and -S <name> command-line options can be used at the same time, but files
specified using the -s <path> option take precedence over YAML files contained in your application.

Example 8.6. Specifying configuration files inside and outside of the application

Consider the following application execution:

The following YAML files are loaded, in this order:

1. /home/app/openshift.yml

2. project-cloud.yml

3. project-testing.yml

4. project-defaults.yml

The same order of preference is applied even if you invoke the application as follows:

$ java -jar myapp-thorntail.jar -Stesting -Scloud

$ java -jar myapp-thorntail.jar -s/home/app/openshift.yml -Scloud -Stesting

CHAPTER 8. CONFIGURING A THORNTAIL APPLICATION

45

Related information

Section 8.3.2, “Default Thorntail YAML Files”

$ java -jar myapp-thorntail.jar -Scloud -Stesting -s/home/app/openshift.yml

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

46

CHAPTER 9. PACKAGING YOUR APPLICATION
This sections contains information about packaging your Thorntail–based application for deployment
and execution.

9.1. PACKAGING TYPES

When using Thorntail, there are the following ways to package your runtime and application, depending
on how you intend to use and deploy it:

9.1.1. Uberjar

An uberjar is a single Java .jar file that includes everything you need to execute your application. This
means both the runtime components you have selected—you can understand that as the app server—
along with the application components (your .war file).

An uberjar is useful for many continuous integration and continuous deployment (CI/CD) pipeline styles,
in which a single executable binary artifact is produced and moved through the testing, validation, and
production environments in your organization.

The names of the uberjars that Thorntail produces include the name of your application and the -
thorntail.jar suffix.

An uberjar can be executed like any executable JAR:

$ java -jar myapp-thorntail.jar

9.1.2. Hollow JAR

A hollow JAR is similar to an uberjar, but includes only the runtime components, and does not include
your application code.

A hollow jar is suitable for deployment processes that involve Linux containers such as Docker. When
using containers, place the runtime components in a container image lower in the image hierarchy—
which means it changes less often—so that the higher layer which contains only your application code
can be rebuilt more quickly.

The names of the hollow JARs that Thorntail produces include the name of your application, and the -
hollow-thorntail.jar suffix. You must package the .war file of your application separately in order to
benefit from the hollow JAR.

NOTE

CHAPTER 9. PACKAGING YOUR APPLICATION

47

NOTE

Using hollow JARs has certain limitations:

To enable Thorntail to autodetect a JDBC driver, you must add the JAR with the
driver to the thorntail.classpath system property, for example:

YAML configuration files in your application are not automatically applied. You
must specify them manually, for example:

When executing the hollow JAR, provide the application .war file as an argument to the Java binary:

$ java -jar myapp-hollow-thorntail.jar myapp.war

9.1.2.1. Pre-Built Hollow JARs

Thorntail ships the following pre-built hollow JARs:

web

Functionality focused on web technologies

microprofile

Functionality defined by all Eclipse MicroProfile specifications

The hollow JARs are available under the following coordinates:

9.2. CREATING AN UBERJAR

One method of packaging an application for execution with Thorntail is as an uberjar.

Prerequisites

A Maven-based application with a pom.xml file.

Procedure

1. Add the thorntail-maven-plugin to your pom.xml in a <plugin> block, with an <execution>
specifying the package goal.

$ java -Dthorntail.classpath=./h2-1.4.196.jar -jar my-hollow-thorntail.jar
myApp.war

$ java -jar my-hollow-thorntail.jar myApp.war -s ./project-defaults.yml

<dependency>
 <groupId>io.thorntail.servers</groupId>
 <artifactId>[web|microprofile]</artifactId>
</dependency>

<plugins>
 <plugin>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-maven-plugin</artifactId>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

48

2. Perform a normal Maven build:

$ mvn package

3. Execute the resulting uberjar:

$ java -jar ./target/myapp-thorntail.jar

 <version>${version.thorntail}</version>
 <executions>
 <execution>
 <id>package</id>
 <goals>
 <goal>package</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
</plugins>

CHAPTER 9. PACKAGING YOUR APPLICATION

49

CHAPTER 10. TESTING YOUR APPLICATION

10.1. TESTING IN A CONTAINER

Using Arquillian, you have the capability of injecting unit tests into a running application. This allows you
to verify your application is behaving correctly. There is an adapter for Thorntail that makes Arquillian-
based testing work well with Thorntail–based applications.

Prerequisites

A Maven-based application with a pom.xml file.

Procedure

1. Include the Thorntail BOM as described in Chapter 6, Using a BOM :

2. Reference the io.thorntail:arquillian artifact in your pom.xml file with the <scope> set to test:

3. Create your Application.
Write your application as you normally would; use any default project-defaults.yml files you
need to configure it.

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>bom</artifactId>
 <version>${version.thorntail}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>arquillian</artifactId>
 <scope>test</scope>
 </dependency>
</dependencies>

thorntail:
 datasources:
 data-sources:
 MyDS:
 driver-name: myh2
 connection-url: jdbc:h2:mem:test;DB_CLOSE_DELAY=-
1;DB_CLOSE_ON_EXIT=FALSE
 user-name: sa
 password: sa
 jdbc-drivers:

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

50

4. Create a test class.

NOTE

Creating an Arquillian test before Thorntail existed usually involved
programatically creating Archive due to the fact that applications were larger,
and the aim was to test a single component in isolation.

5. Create a deployment.
In the context of microservices, the entire application represents one small microservice
component.

Use the @DefaultDeployment annotation to automatically create the deployment of the entire
application. The @DefaultDeployment annotation defaults to creating a .war file, which is not
applicable in this case because Undertow is not involved in this process.

Apply the @DefaultDeployment annotation at the class level of a JUnit test, along with the
@RunWith(Arquillian.class) annotation:

Using the @DefaultDeployment annotation provided by Arquillian integration with Thorntail
means you should not use the Arquillian @Deployment annotation on static methods that
return an Archive.

The @DefaultDeployment annotation inspects the package of the test:

From the package, it uses heuristics to include all of your other application classes in the same
package or deeper in the Java packaging hierarchy.

Even though using the @DefaultDeployment annotation allows you to write tests that only
create a default deployment for sub-packages of your application, it also prevents you from
placing tests in an unrelated package, for example:

6. Write your test code.
Write an Arquillian-type of test as you normally would, including using Arquillian facilities to gain
access to internal running components.

 myh2:
 driver-module-name: com.h2database.h2
 driver-xa-datasource-class-name: org.h2.jdbcx.JdbcDataSource

package org.wildfly.swarm.howto.incontainer;

public class InContainerTest {
}

@RunWith(Arquillian.class)
@DefaultDeployment(type = DefaultDeployment.Type.JAR)
public class InContainerTest {

package org.wildfly.swarm.howto.incontainer;

package org.mycorp.myapp.test;

CHAPTER 10. TESTING YOUR APPLICATION

51

In the example below, Arquillian is used to inject the InitialContext of the running application
into an instance member of the test case:

That means the test method itself can use that InitialContext to ensure the Datasource you
configured using project-defaults.yml is live and available:

7. Run the tests.
Because Arquillian provides an integration with JUnit, you can execute your test classes using
Maven or your IDE:

NOTE

In many IDEs, execute a test class by right-clicking it and selecting Run.

@ArquillianResource
InitialContext context;

@Test
public void testDataSourceIsBound() throws Exception {
 DataSource ds = (DataSource) context.lookup("java:jboss/datasources/MyDS");
 assertNotNull(ds);
}

$ mvn install

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

52

CHAPTER 11. DEBUGGING YOUR APPLICATION
This sections contains information about debugging your Thorntail–based application both in local and
remote deployments.

11.1. REMOTE DEBUGGING

To remotely debug an application, you must first configure it to start in a debugging mode, and then
attach a debugger to it.

11.1.1. Starting your application locally in debugging mode

One of the ways of debugging a Maven-based project is manually launching the application while
specifying a debugging port, and subsequently connecting a remote debugger to that port. This method
is applicable at least to the following deployments of the application:

When launching the application manually using the mvn thorntail:run goal.

When starting the application without waiting for it to exit using the mvn thorntail:start goal.
This is useful especially when performing integration testing.

When using the Arquillian adapter for Thorntail.

Prerequisites

A Maven-based application

Procedure

1. In a console, navigate to the directory with your application.

2. Launch your application and specify the debug port using the -Dthorntail.debug.port
argument:

Here, $PORT_NUMBER is an unused port number of your choice. Remember this number for
the remote debugger configuration.

11.1.2. Starting an uberjar in debugging mode

If you chose to package your application as a Thorntail uberjar, debug it by executing it with the
following parameters.

Prerequisites

An uberjar with your application

Procedure

1. In a console, navigate to the directory with the uberjar.

2. Execute the uberjar with the following parameters. Ensure that all the parameters are specified
before the name of the uberjar on the line.

$ mvn thorntail:run -Dthorntail.debug.port=$PORT_NUMBER

CHAPTER 11. DEBUGGING YOUR APPLICATION

53

$PORT_NUMBER is an unused port number of your choice. Remember this number for the
remote debugger configuration.

If you want the JVM to pause and wait for remote debugger connection before it starts the
application, change suspend to y.

Additional resources

Section 9.2, “Creating an uberjar”

11.1.3. Starting your application on OpenShift in debugging mode

To debug your Thorntail-based application on OpenShift remotely, you must set the JAVA_DEBUG
environment variable inside the container to true and configure port forwarding so that you can connect
to your application from a remote debugger.

Prerequisites

Your application running on OpenShift.

The oc binary installed on your machine.

The ability to execute the oc port-forward command in your target OpenShift environment.

Procedure

1. Using the oc command, list the available deployment configurations:

2. Set the JAVA_DEBUG environment variable in the deployment configuration of your
application to true, which configures the JVM to open the port number 5005 for debugging. For
example:

3. Redeploy the application if it is not set to redeploy automatically on configuration change. For
example:

4. Configure port forwarding from your local machine to the application pod:

a. List the currently running pods and find one containing your application:

$ java -agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=$PORT_NUMBER -
jar $UBERJAR_FILENAME

$ oc get dc

$ oc set env dc/MY_APP_NAME JAVA_DEBUG=true

$ oc rollout latest dc/MY_APP_NAME

$ oc get pod
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-3-1xrsp 0/1 Running 0 6s
...

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

54

b. Configure port forwarding:

Here, $LOCAL_PORT_NUMBER is an unused port number of your choice on your local
machine. Remember this number for the remote debugger configuration.

5. When you are done debugging, unset the JAVA_DEBUG environment variable in your
application pod. For example:

Additional resources

You can also set the JAVA_DEBUG_PORT environment variable if you want to change the debug port
from the default, which is 5005.

11.1.4. Attaching a remote debugger to the application

When your application is configured for debugging, attach a remote debugger of your choice to it. In this
guide, Red Hat CodeReady Studio is covered, but the procedure is similar when using other programs.

Prerequisites

The application running either locally or on OpenShift, and configured for debugging.

The port number that your application is listening on for debugging.

Red Hat CodeReady Studio installed on your machine. You can download it from the Red Hat
CodeReady Studio download page.

Procedure

1. Start Red Hat CodeReady Studio.

2. Create a new debug configuration for your application:

a. Click Run→Debug Configurations.

b. In the list of configurations, double-click Remote Java application. This creates a new
remote debugging configuration.

c. Enter a suitable name for the configuration in the Name field.

d. Enter the path to the directory with your application into the Project field. You can use the
Browse… button for convenience.

e. Set the Connection Type field to Standard (Socket Attach) if it is not already.

f. Set the Port field to the port number that your application is listening on for debugging.

g. Click Apply.

3. Start debugging by clicking the Debug button in the Debug Configurations window.
To quickly launch your debug configuration after the first time, click Run→Debug History and
select the configuration from the list.

$ oc port-forward MY_APP_NAME-3-1xrsp $LOCAL_PORT_NUMBER:5005

$ oc set env dc/MY_APP_NAME JAVA_DEBUG-

CHAPTER 11. DEBUGGING YOUR APPLICATION

55

https://www.redhat.com/en/technologies/jboss-middleware/codeready-studio
https://developers.redhat.com/products/codeready-studio/download

Additional resources

Debug an OpenShift Java Application with JBoss Developer Studio on Red Hat
Knowledgebase.
Red Hat CodeReady Studio was previously called JBoss Developer Studio.

A Debugging Java Applications On OpenShift and Kubernetes article on OpenShift Blog.

11.2. DEBUG LOGGING

11.2.1. Local debug logging

To enable debug logging locally, see the Section 7.1, “Enabling logging” section and use the DEBUG log
level.

If you want to enable debug logging permanently, add the following configuration to the
src/main/resources/project-defaults.yml file in your application:

Debug logging YAML configuration

11.2.2. Accessing debug logs on OpenShift

Start your application and interact with it to see the debugging statements in OpenShift.

Prerequisites

A Maven-based application with debug logging enabled.

The oc CLI client installed and authenticated.

Procedure

1. Deploy your application to OpenShift:

2. View the logs:

1. Get the name of the pod with your application:

2. Start watching the log output:

Keep the terminal window displaying the log output open so that you can watch the log
output.

3. Interact with your application:

For example, if you had debug logging in the REST API Level 0 example to log the message

swarm:
 logging: DEBUG

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods

$ oc logs -f pod/MY_APP_NAME-2-aaaaa

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

56

https://access.redhat.com/articles/1290703
https://blog.openshift.com/debugging-java-applications-on-openshift-kubernetes/

For example, if you had debug logging in the REST API Level 0 example to log the message
variable in the /api/greeting method:

1. Get the route of your application:

2. Make an HTTP request on the /api/greeting endpoint of your application:

4. Return to the window with your pod logs and inspect debug logging messages in the logs.

...
2018-02-11 11:12:31,158 INFO [io.openshift.MY_APP_NAME] (default task-18) Hello,
Sarah!
...

5. To disable debug logging, remove the logging key from the project-defaults.yml file and
redeploy the appliation.

Additional resources

Section D.23, “Logging”

$ oc get routes

$ curl $APPLICATION_ROUTE/api/greeting?name=Sarah

CHAPTER 11. DEBUGGING YOUR APPLICATION

57

CHAPTER 12. MONITORING YOUR APPLICATION
This section contains information about monitoring your Thorntail–based application running on
OpenShift.

12.1. ACCESSING JVM METRICS FOR YOUR APPLICATION ON
OPENSHIFT

12.1.1. Accessing JVM metrics using Jolokia on OpenShift

Jolokia is a built-in lightweight solution for accessing JMX (Java Management Extension) metrics over
HTTP on OpenShift. Jolokia allows you to access CPU, storage, and memory usage data collected by
JMX over an HTTP bridge. Jolokia uses a REST interface and JSON-formatted message payloads. It is
suitable for monitoring cloud applications thanks to its comparably high speed and low resource
requirements.

For Java-based applications, the OpenShift Web console provides the integrated hawt.io console that
collects and displays all relevant metrics output by the JVM running your application.

Prerequistes

the oc client authenticated

a Java-based application container running in a project on OpenShift

latest JDK 1.8.0 image

Procedure

1. List the deployment configurations of the pods inside your project and select the one that
corresponds to your application.

NAME REVISION DESIRED CURRENT TRIGGERED BY
MY_APP_NAME 2 1 1 config,image(my-app:6)
...

2. Open the YAML deployment template of the pod running your application for editing.

3. Add the following entry to the ports section of the template and save your changes:

oc get dc

oc edit dc/MY_APP_NAME

...
spec:
 ...
 ports:
 - containerPort: 8778
 name: jolokia
 protocol: TCP
 ...
...

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

58

https://jolokia.org/documentation.html
https://docs.openshift.com/container-platform/3.6/architecture/infrastructure_components/web_console.html#jvm-console
https://github.com/jboss-container-images/openjdk/blob/openjdk18-dev/image.yaml

4. Redeploy the pod running your application.

The pod is redeployed with the updated deployment configuration and exposes the port 8778.

5. Log into the OpenShift Web console.

6. In the sidebar, navigate to Applications > Pods, and click on the name of the pod running your
application.

7. In the pod details screen, click Open Java Console to access the hawt.io console.

Additional resources

hawt.io documentation

12.2. APPLICATION METRICS

Thorntail provides ways of exposing application metrics in order to track performance and service
availability.

12.2.1. What are metrics

In the microservices architecture, where multiple services are invoked in order to serve a single user
request, diagnosing performance issues or reacting to service outages might be hard. To make solving
problems easier, applications must expose machine-readable data about their behavior, such as:

How many requests are currently being processed.

How many connections to the database are currently in use.

How long service invocations take.

These kinds of data are referred to as metrics. Collecting metrics, visualizing them, setting alerts,
discovering trends, etc. are very important to keep a service healthy.

Thorntail provides a fraction for Eclipse MicroProfile Metrics, an easy-to-use API for exposing metrics.
Among other formats, it supports exporting data in the native format of Prometheus, a popular
monitoring solution. Inside the application, you need nothing except this fraction. Outside of the
application, Prometheus typically runs.

Additional resources

The MicroProfile Metrics GitHub page .

The Prometheus homepage

A popular solution to visualize metrics stored in Prometheus is Grafana. For more information,
see the Grafana homepage.

12.2.2. Exposing application metrics

In this example, you:

oc rollout latest dc/MY_APP_NAME

CHAPTER 12. MONITORING YOUR APPLICATION

59

https://hawt.io/docs/index.html
https://github.com/eclipse/microprofile-metrics
https://prometheus.io/
https://grafana.com/

Configure your application to expose metrics.

Collect and view the data using Prometheus.

Note that Prometheus actively connects to a monitored application to collect data; the application does
not actively send metrics to a server.

Prerequisites

Prometheus configured to collect metrics from the application:

1. Download and extract the archive with the latest Prometheus release:

2. Navigate to the directory with Prometheus:

3. Append the following snippet to the prometheus.yml file to make Prometheus
automatically collect metrics from your application:

The default behavior of Thorntail-based applications is to expose metrics at the /metrics
endpoint. This is what the MicroProfile Metrics specification requires, and also what
Prometheus expects.

The Prometheus server started on localhost:
Start Prometheus and wait until the Server is ready to receive web requests message is
displayed in the console.

Procedure

1. Include the microprofile-metrics fraction in the pom.xml file in your application:

pom.xml

2. Annotate methods or classes with the metrics annotations, for example:

$ wget
https://github.com/prometheus/prometheus/releases/download/v2.4.3/prometheus-
2.4.3.linux-amd64.tar.gz
$ tar -xvf prometheus-2.4.3.linux-amd64.tar.gz

$ cd prometheus-2.4.3.linux-amd64

 - job_name: 'thorntail'
 static_configs:
 - targets: ['localhost:8080']

$./prometheus

<dependencies>
 <dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>microprofile-metrics</artifactId>
 </dependency>
</dependencies>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

60

https://prometheus.io/download/

Here, the @Counted annotation is used to keep track of how many times this method was
invoked. The @Timed annotation is used to keep track of how long the invocations took.

In this example, a JAX-RS resource method was annotated directly, but you can annotate any
CDI bean in your application as well.

3. Launch your application:

4. Invoke the traced endpoint several times:

5. Wait at least 15 seconds for the collection to happen, and see the metrics in Prometheus UI:

1. Open the Prometheus UI at http://localhost:9090/ and type hello into the Expression box.

2. From the suggestions, select for example application:hello_count and click Execute.

3. In the table that is displayed, you can see how many times the resource method was
invoked.

4. Alternatively, select application:hello_time_mean_seconds to see the mean time of all
the invocations.

Note that all metrics you created are prefixed with application:. There are other metrics,
automatically exposed by Thorntail as the MicroProfile Metrics specification requires. Those
metrics are prefixed with base: and vendor: and expose information about the JVM in which
the application runs.

Additional resources

For additional types of metrics, see the Eclipse MicroProfile Metrics documentation .

@GET
@Counted(name = "hello-count", absolute = true)
@Timed(name = "hello-time", absolute = true)
public String get() {
 return "Hello from counted and timed endpoint";
}

$ mvn thorntail:run

$ curl http://localhost:8080/
Hello from counted and timed endpoint

CHAPTER 12. MONITORING YOUR APPLICATION

61

http://localhost:9090/
https://github.com/eclipse/microprofile-metrics

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL
The Thorntail runtime provides example applications. When you start developing applications on
OpenShift, you can use the example applications as templates.

You can access these example applications on Developer Launcher.

You can download and deploy all the example applications on:

x86_64 architecture - The example applications in this guide demonstrate how to build and
deploy example applications on x86_64 architecture.

s390x architecture - To deploy the example applications on OpenShift environments
provisioned on IBM Z infrastructure, specify the relevant IBM Z image name in the commands.
Refer to the section Supported Java images for Thorntail for more information about the image
names.
Some of the example applications also require other products, such as Red Hat Data Grid to
demonstrate the workflows. In this case, you must also change the image names of these
products to their relevant IBM Z image names in the YAML file of the example applications.

NOTE

The Secured example application in Thorntail requires Red Hat SSO 7.3. Since Red Hat
SSO 7.3 is not supported on IBM Z, the Secured example is not available for IBM Z.

13.1. REST API LEVEL 0 EXAMPLE FOR THORNTAIL

IMPORTANT

The following example is not meant to be run in a production environment.

Example proficiency level: Foundational.

What the REST API Level 0 example does

The REST API Level 0 example shows how to map business operations to a remote procedure call
endpoint over HTTP using a REST framework. This corresponds to Level 0 in the Richardson Maturity
Model. Creating an HTTP endpoint using REST and its underlying principles to define your API lets you
quickly prototype and design the API flexibly.

This example introduces the mechanics of interacting with a remote service using the HTTP protocol. It
allows you to:

Execute an HTTP GET request on the api/greeting endpoint.

Receive a response in JSON format with a payload consisting of the Hello, World! String.

Execute an HTTP GET request on the api/greeting endpoint while passing in a String argument.
This uses the name request parameter in the query string.

Receive a response in JSON format with a payload of Hello, $name! with $name replaced by
the value of the name parameter passed into the request.

13.1.1. REST API Level 0 design tradeoffs

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

62

https://developers.redhat.com/launch
https://martinfowler.com/articles/richardsonMaturityModel.html#level0

Table 13.1. Design tradeoffs

Pros Cons

The example application enables fast
prototyping.

The API Design is flexible.

HTTP endpoints allow clients to be
language-neutral.

As an application or service matures, the
REST API Level 0 approach might not scale
well. It might not support a clean API design
or use cases with database interactions.

Any operations involving shared,
mutable state must be integrated with
an appropriate backing datastore.

All requests handled by this API design
are scoped only to the container
servicing the request. Subsequent
requests might not be served by the
same container.

13.1.2. Deploying the REST API Level 0 example application to OpenShift Online

Use one of the following options to execute the REST API Level 0 example application on OpenShift
Online.

Use developers.redhat.com/launch

Use the oc CLI client

Although each method uses the same oc commands to deploy your application, using
developers.redhat.com/launch provides an automated deployment workflow that executes the oc
commands for you.

13.1.2.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the developers.redhat.com/launch URL in a browser.

2. Follow on-screen instructions to create and launch your example application in Thorntail.

13.1.2.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must
authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

An account at OpenShift Online.

Procedure

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

63

https://manage.openshift.com
https://developers.redhat.com/launch
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com

1. Navigate to the OpenShift Online URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your OpenShift Online account.

13.1.2.3. Deploying the REST API Level 0 example application using the oc CLI client

Prerequisites

The example application created using developers.redhat.com/launch. For more information,
see Section 13.1.2.1, “Deploying the example application using developers.redhat.com/launch” .

The oc client authenticated. For more information, see Section 13.1.2.2, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new project in OpenShift.

3. Navigate to the root directory of your application.

4. Use Maven to start the deployment to OpenShift.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

5. Check the status of your application and ensure your pod is running.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

64

https://manage.openshift.com
https://manage.openshift.com
https://developers.redhat.com/launch
https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

The MY_APP_NAME-1-aaaaa pod should have a status of Running once it is fully deployed
and started. Your specific pod name will vary. The number in the middle will increase with each
new build. The letters at the end are generated when the pod is created.

6. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.1.3. Deploying the REST API Level 0 example application to Minishift or CDK

Use one of the following options to execute the REST API Level 0 example application locally on
Minishift or CDK:

Using Fabric8 Launcher

Using the oc CLI client

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher
provides an automated deployment workflow that executes the oc commands for you.

13.1.3.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

...
-- Removing temporary directory ... OK
-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.42.152:8443

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

65

13.1.3.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 13.1.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Fabric8 Launcher URL in a browser.

2. Follow the on-screen instructions to create and launch your example application in Thorntail.

13.1.3.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 13.1.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your Minishift or CDK account.

13.1.3.4. Deploying the REST API Level 0 example application using the oc CLI client

Prerequisites

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

$ oc login OPENSHIFT_URL --token=MYTOKEN

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

66

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more
information, see Section 13.1.3.2, “Deploying the example application using the Fabric8 Launcher
tool”.

Your Fabric8 Launcher tool URL.

The oc client authenticated. For more information, see Section 13.1.3.3, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new project in OpenShift.

3. Navigate to the root directory of your application.

4. Use Maven to start the deployment to OpenShift.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

5. Check the status of your application and ensure your pod is running.

The MY_APP_NAME-1-aaaaa pod should have a status of Running once it is fully deployed
and started. Your specific pod name will vary. The number in the middle will increase with each
new build. The letters at the end are generated when the pod is created.

6. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

67

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.1.4. Deploying the REST API Level 0 example application to OpenShift Container
Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar
to OpenShift Online:

Prerequisites

The example application created using developers.redhat.com/launch.

Procedure

Follow the instructions in Section 13.1.2, “Deploying the REST API Level 0 example application to
OpenShift Online”, only use the URL and user credentials from the OpenShift Container
Platform Web Console.

13.1.5. Interacting with the unmodified REST API Level 0 example application for
Thorntail

The example provides a default HTTP endpoint that accepts GET requests.

Prerequisites

Your application running

The curl binary or a web browser

Procedure

1. Use curl to execute a GET request against the example. You can also use a browser to do this.

2. Use curl to execute a GET request with the name URL parameter against the example. You can
also use a browser to do this.

NOTE

From a browser, you can also use a form provided by the example to perform these same
interactions. The form is located at the root of the project http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME.

13.1.6. Running the REST API Level 0 example application integration tests

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting
{"content":"Hello, World!"}

$ curl http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting?name=Sarah
{"content":"Hello, Sarah!"}

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

68

https://developers.redhat.com/launch

This example application includes a self-contained set of integration tests. When run inside an
OpenShift project, the tests:

Deploy a test instance of the application to the project.

Execute the individual tests on that instance.

Remove all instances of the application from the project when the testing is done.

WARNING

Executing integration tests removes all existing instances of the example
application from the target OpenShift project. To avoid accidentally removing your
example application, ensure that you create and select a separate OpenShift
project to execute the tests.

Prerequisites

The oc client authenticated

An empty OpenShift project

Procedure

Execute the following command to run the integration tests:

13.1.7. REST resources

More background and related information on REST can be found here:

Architectural Styles and the Design of Network-based Software Architectures -
Representational State Transfer (REST)

Richardson Maturity Model

JSR 311: JAX-RS: The JavaTM API for RESTful Web Services

RESTEasy Documentation

REST API Level 0 for Spring Boot

REST API Level 0 for Eclipse Vert.x

REST API Level 0 for Node.js

13.2. EXTERNALIZED CONFIGURATION EXAMPLE FOR THORNTAIL

IMPORTANT

$ mvn clean verify -Popenshift,openshift-it

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

69

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://martinfowler.com/articles/richardsonMaturityModel.html
https://www.jcp.org/en/jsr/detail?id=311
https://resteasy.github.io/docs.html
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#example-rest-http-spring-boot
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.9/html-single/eclipse_vert.x_runtime_guide/#example-rest-http-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_node.js/10/html-single/node.js_runtime_guide/#example-rest-http-nodejs

IMPORTANT

The following example is not meant to be run in a production environment.

Example proficiency level: Foundational.

Externalized Configuration provides a basic example of using a ConfigMap to externalize configuration.
ConfigMap is an object used by OpenShift to inject configuration data as simple key and value pairs into
one or more Linux containers while keeping the containers independent of OpenShift.

This example shows you how to:

Set up and configure a ConfigMap.

Use the configuration provided by the ConfigMap within an application.

Deploy changes to the ConfigMap configuration of running applications.

13.2.1. The externalized configuration design pattern

Whenever possible, externalize the application configuration and separate it from the application code.
This allows the application configuration to change as it moves through different environments, but
leaves the code unchanged. Externalizing the configuration also keeps sensitive or internal information
out of your code base and version control. Many languages and application servers provide environment
variables to support externalizing an application’s configuration.

Microservices architectures and multi-language (polyglot) environments add a layer of complexity to
managing an application’s configuration. Applications consist of independent, distributed services, and
each can have its own configuration. Keeping all configuration data synchronized and accessible creates
a maintenance challenge.

ConfigMaps enable the application configuration to be externalized and used in individual Linux
containers and pods on OpenShift. You can create a ConfigMap object in a variety of ways, including
using a YAML file, and inject it into the Linux container. ConfigMaps also allow you to group and scale
sets of configuration data. This lets you configure a large number of environments beyond the basic
Development, Stage, and Production. You can find more information about ConfigMaps in the OpenShift
documentation.

13.2.2. Externalized Configuration design tradeoffs

Table 13.2. Design Tradeoffs

Pros Cons

Configuration is separate from deployments

Can be updated independently

Can be shared across services

Adding configuration to environment
requires additional step

Has to be maintained separately

Requires coordination beyond the scope of
a service

13.2.3. Deploying the Externalized Configuration example application to OpenShift

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

70

https://docs.openshift.com/container-platform/3.11/dev_guide/configmaps.html

13.2.3. Deploying the Externalized Configuration example application to OpenShift
Online

Use one of the following options to execute the Externalized Configuration example application on
OpenShift Online.

Use developers.redhat.com/launch

Use the oc CLI client

Although each method uses the same oc commands to deploy your application, using
developers.redhat.com/launch provides an automated deployment workflow that executes the oc
commands for you.

13.2.3.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the developers.redhat.com/launch URL in a browser.

2. Follow on-screen instructions to create and launch your example application in Thorntail.

13.2.3.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must
authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the OpenShift Online URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your OpenShift Online account.

13.2.3.3. Deploying the Externalized Configuration example application using the oc CLI
client

Prerequisites

$ oc login OPENSHIFT_URL --token=MYTOKEN

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

71

https://manage.openshift.com
https://developers.redhat.com/launch
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com

Prerequisites

The example application created using developers.redhat.com/launch. For more information,
see Section 13.2.3.1, “Deploying the example application using developers.redhat.com/launch” .

The oc client authenticated. For more information, see Section 13.2.3.2, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Deploy your ConfigMap configuration to OpenShift using app-config.yml in the root of the
example.

5. Verify your ConfigMap configuration has been deployed.

6. Use Maven to start the deployment to OpenShift.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

7. Check the status of your application and ensure your pod is running.

The MY_APP_NAME-1-aaaaa pod should have a status of Running once its fully deployed and

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc create configmap app-config --from-file=app-config.yml

$ oc get configmap app-config -o yaml

apiVersion: v1
data:
 app-config.yml: |-
 greeting:
 message: Hello %s from a ConfigMap!
...

$ mvn clean fabric8:deploy -Popenshift -DskipTests

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

72

https://developers.redhat.com/launch
https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

The MY_APP_NAME-1-aaaaa pod should have a status of Running once its fully deployed and
started. Your specific pod name will vary. The number in the middle will increase with each new
build. The letters at the end are generated when the pod is created.

8. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.2.4. Deploying the Externalized Configuration example application to Minishift or
CDK

Use one of the following options to execute the Externalized Configuration example application locally
on Minishift or CDK:

Using Fabric8 Launcher

Using the oc CLI client

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher
provides an automated deployment workflow that executes the oc commands for you.

13.2.4.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

...
-- Removing temporary directory ... OK
-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

73

13.2.4.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 13.2.4.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Fabric8 Launcher URL in a browser.

2. Follow the on-screen instructions to create and launch your example application in Thorntail.

13.2.4.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 13.2.4.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your Minishift or CDK account.

13.2.4.4. Deploying the Externalized Configuration example application using the oc CLI
client

 https://192.168.42.152:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

$ oc login OPENSHIFT_URL --token=MYTOKEN

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

74

Prerequisites

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more
information, see Section 13.2.4.2, “Deploying the example application using the Fabric8
Launcher tool”.

Your Fabric8 Launcher tool URL.

The oc client authenticated. For more information, see Section 13.2.4.3, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Deploy your ConfigMap configuration to OpenShift using app-config.yml in the root of the
example.

5. Verify your ConfigMap configuration has been deployed.

6. Use Maven to start the deployment to OpenShift.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

7. Check the status of your application and ensure your pod is running.

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc create configmap app-config --from-file=app-config.yml

$ oc get configmap app-config -o yaml

apiVersion: v1
data:
 app-config.yml: |-
 greeting:
 message: Hello %s from a ConfigMap!
...

$ mvn clean fabric8:deploy -Popenshift -DskipTests

$ oc get pods -w
NAME READY STATUS RESTARTS AGE

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

75

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

The MY_APP_NAME-1-aaaaa pod should have a status of Running once its fully deployed and
started. Your specific pod name will vary. The number in the middle will increase with each new
build. The letters at the end are generated when the pod is created.

8. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.2.5. Deploying the Externalized Configuration example application to OpenShift
Container Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar
to OpenShift Online:

Prerequisites

The example application created using developers.redhat.com/launch.

Procedure

Follow the instructions in Section 13.2.3, “Deploying the Externalized Configuration example
application to OpenShift Online”, only use the URL and user credentials from the OpenShift
Container Platform Web Console.

13.2.6. Interacting with the unmodified Externalized Configuration example
application for Thorntail

The example provides a default HTTP endpoint that accepts GET requests.

Prerequisites

Your application running

The curl binary or a web browser

Procedure

1. Use curl to execute a GET request against the example. You can also use a browser to do this.

MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting
{"content":"Hello World from a ConfigMap!"}

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

76

https://developers.redhat.com/launch

2. Update the deployed ConfigMap configuration.

Change the value for the greeting.message key to Bonjour %s from a ConfigMap! and save
the file. After you save this, the changes will be propagated to your OpenShift instance.

3. Rollout the new version of your application so the ConfigMap configuration changes are picked
up.

4. Check the status of your example and ensure your new pod is running.

The MY_APP_NAME-1-aaaaa pod should have a status of Running once its fully deployed and
started. Your specific pod name will vary. The number in the middle will increase with each new
build. The letters at the end are generated when the pod is created.

5. Execute a GET request using curl against the example with the updated ConfigMap
configuration to see your updated greeting. You can also do this from your browser using the
web form provided by the application.

13.2.7. Running the Externalized Configuration example application integration tests

This example application includes a self-contained set of integration tests. When run inside an
OpenShift project, the tests:

Deploy a test instance of the application to the project.

Execute the individual tests on that instance.

Remove all instances of the application from the project when the testing is done.

WARNING

Executing integration tests removes all existing instances of the example
application from the target OpenShift project. To avoid accidentally removing your
example application, ensure that you create and select a separate OpenShift
project to execute the tests.

$ oc edit configmap app-config

$ oc rollout latest dc/MY_APP_NAME

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting
{"content":"Bonjour World from a ConfigMap!"}

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

77

Prerequisites

The oc client authenticated

An empty OpenShift project

Procedure

Execute the following command to run the integration tests:

13.2.8. Externalized Configuration resources

More background and related information on Externalized Configuration and ConfigMap can be found
here:

OpenShift ConfigMap Documentation

Blog Post about ConfigMap in OpenShift

Externalized Configuration for Spring Boot

Externalized Configuration for Eclipse Vert.x

Externalized Configuration for Node.js

13.3. RELATIONAL DATABASE BACKEND EXAMPLE FOR THORNTAIL

IMPORTANT

The following example is not meant to be run in a production environment.

Limitation: Run this example application on a Minishift or CDK. You can also use a manual workflow to
deploy this example to OpenShift Online Pro and OpenShift Container Platform. This example is not
currently available on OpenShift Online Starter.

Example proficiency level: Foundational.

What the Relational Database Backend example does

The Relational Database Backend example expands on the REST API Level 0 application to provide a
basic example of performing create, read, update and delete (CRUD) operations on a PostgreSQL
database using a simple HTTP API. CRUD operations are the four basic functions of persistent storage,
widely used when developing an HTTP API dealing with a database.

The example also demonstrates the ability of the HTTP application to locate and connect to a database
in OpenShift. Each runtime shows how to implement the connectivity solution best suited in the given
case. The runtime can choose between options such as using JDBC, JPA, or accessing ORM APIs
directly.

The example application exposes an HTTP API, which provides endpoints that allow you to manipulate
data by performing CRUD operations over HTTP. The CRUD operations are mapped to HTTP Verbs.
The API uses JSON formatting to receive requests and return responses to the user. The user can also

$ mvn clean verify -Popenshift,openshift-it

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

78

https://docs.openshift.com/container-platform/3.11/dev_guide/configmaps.html
https://blog.openshift.com/configuring-your-application-part-1/
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#example-configmap-spring-boot
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.9/html-single/eclipse_vert.x_runtime_guide/#example-configmap-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_node.js/10/html-single/node.js_runtime_guide/#example-configmap-nodejs

use a user interface provided by the example to use the application. Specifically, this example provides
an application that allows you to:

Navigate to the application web interface in your browser. This exposes a simple website
allowing you to perform CRUD operations on the data in the my_data database.

Execute an HTTP GET request on the api/fruits endpoint.

Receive a response formatted as a JSON array containing the list of all fruits in the database.

Execute an HTTP GET request on the api/fruits/* endpoint while passing in a valid item ID as an
argument.

Receive a response in JSON format containing the name of the fruit with the given ID. If no item
matches the specified ID, the call results in an HTTP error 404.

Execute an HTTP POST request on the api/fruits endpoint passing in a valid name value to
create a new entry in the database.

Execute an HTTP PUT request on the api/fruits/* endpoint passing in a valid ID and a name as
an argument. This updates the name of the item with the given ID to match the name specified
in your request.

Execute an HTTP DELETE request on the api/fruits/* endpoint, passing in a valid ID as an
argument. This removes the item with the specified ID from the database and returns an HTTP
code 204 (No Content) as a response. If you pass in an invalid ID, the call results in an HTTP
error 404.

This example also contains a set of automated integration tests that can be used to verify that the
application is fully integrated with the database.

This example does not showcase a fully matured RESTful model (level 3), but it does use compatible
HTTP verbs and status, following the recommended HTTP API practices.

13.3.1. Relational Database Backend design tradeoffs

Table 13.3. Design Tradeoffs

Pros Cons

Each runtime determines how to implement
the database interactions. One can use a
low-level connectivity API such as JDBC,
some other can use JPA, and yet another
can access ORM APIs directly. Each runtime
decides what would be the best way.

Each runtime determines how the schema is
created.

The PostgreSQL database provided with
this example application is not backed up
with persistent storage. Changes to the
database are lost if you stop or redeploy the
database pod. To use an external database
with your example application’s pod in order
to preserve changes, see the Creating an
application with a database chapter of the
OpenShift Documentation. It is also possible
to set up persistent storage with database
containers on OpenShift. (For more details
about using persistent storage with
OpenShift and containers, see the
Persistent Storage, Managing Volumes and
Persistent Volumes chapters of the
OpenShift Documentation).

13.3.2. Deploying the Relational Database Backend example application to

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

79

https://docs.openshift.com/container-platform/latest/cli_reference/openshift_developer_cli/creating-an-application-with-a-database.html
https://docs.openshift.com/online/architecture/additional_concepts/storage.html
https://docs.openshift.com/online/dev_guide/volumes.html
https://docs.openshift.com/online/dev_guide/persistent_volumes.html

13.3.2. Deploying the Relational Database Backend example application to
OpenShift Online

Use one of the following options to execute the Relational Database Backend example application on
OpenShift Online.

Use developers.redhat.com/launch

Use the oc CLI client

Although each method uses the same oc commands to deploy your application, using
developers.redhat.com/launch provides an automated deployment workflow that executes the oc
commands for you.

13.3.2.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the developers.redhat.com/launch URL in a browser.

2. Follow on-screen instructions to create and launch your example application in Thorntail.

13.3.2.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must
authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the OpenShift Online URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your OpenShift Online account.

13.3.2.3. Deploying the Relational Database Backend example application using the oc CLI
client

Prerequisites

$ oc login OPENSHIFT_URL --token=MYTOKEN

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

80

https://manage.openshift.com
https://developers.redhat.com/launch
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com

Prerequisites

The example application created using developers.redhat.com/launch. For more information,
see Section 13.3.2.1, “Deploying the example application using developers.redhat.com/launch” .

The oc client authenticated. For more information, see Section 13.3.2.2, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Deploy the PostgreSQL database to OpenShift. Ensure that you use the following values for
user name, password, and database name when creating your database application. The
example application is pre-configured to use these values. Using different values prevents your
application from integrating with the database.

5. Check the status of your database and ensure the pod is running.

The my-database-1-aaaaa pod should have a status of Running and should be indicated as
ready once it is fully deployed and started. Your specific pod name will vary. The number in the
middle will increase with each new build. The letters at the end are generated when the pod is
created.

6. Use maven to start the deployment to OpenShift.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

7. Check the status of your application and ensure your pod is running.

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc new-app -e POSTGRESQL_USER=luke -ePOSTGRESQL_PASSWORD=secret -
ePOSTGRESQL_DATABASE=my_data registry.access.redhat.com/rhscl/postgresql-10-rhel7
--name=my-database

$ oc get pods -w
my-database-1-aaaaa 1/1 Running 0 45s
my-database-1-deploy 0/1 Completed 0 53s

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

81

https://developers.redhat.com/launch
https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

Your MY_APP_NAME-1-aaaaa pod should have a status of Running and should be indicated
as ready once it is fully deployed and started.

8. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.3.3. Deploying the Relational Database Backend example application to Minishift
or CDK

Use one of the following options to execute the Relational Database Backend example application
locally on Minishift or CDK:

Using Fabric8 Launcher

Using the oc CLI client

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher
provides an automated deployment workflow that executes the oc commands for you.

13.3.3.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES PORT
TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

...
-- Removing temporary directory ... OK

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

82

13.3.3.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 13.3.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Fabric8 Launcher URL in a browser.

2. Follow the on-screen instructions to create and launch your example application in Thorntail.

13.3.3.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 13.3.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your Minishift or CDK account.

13.3.3.4. Deploying the Relational Database Backend example application using the oc CLI

-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.42.152:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

$ oc login OPENSHIFT_URL --token=MYTOKEN

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

83

13.3.3.4. Deploying the Relational Database Backend example application using the oc CLI
client

Prerequisites

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more
information, see Section 13.3.3.2, “Deploying the example application using the Fabric8
Launcher tool”.

Your Fabric8 Launcher tool URL.

The oc client authenticated. For more information, see Section 13.3.3.3, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Deploy the PostgreSQL database to OpenShift. Ensure that you use the following values for
user name, password, and database name when creating your database application. The
example application is pre-configured to use these values. Using different values prevents your
application from integrating with the database.

5. Check the status of your database and ensure the pod is running.

The my-database-1-aaaaa pod should have a status of Running and should be indicated as
ready once it is fully deployed and started. Your specific pod name will vary. The number in the
middle will increase with each new build. The letters at the end are generated when the pod is
created.

6. Use maven to start the deployment to OpenShift.

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc new-app -e POSTGRESQL_USER=luke -ePOSTGRESQL_PASSWORD=secret -
ePOSTGRESQL_DATABASE=my_data registry.access.redhat.com/rhscl/postgresql-10-rhel7
--name=my-database

$ oc get pods -w
my-database-1-aaaaa 1/1 Running 0 45s
my-database-1-deploy 0/1 Completed 0 53s

$ mvn clean fabric8:deploy -Popenshift

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

84

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

7. Check the status of your application and ensure your pod is running.

Your MY_APP_NAME-1-aaaaa pod should have a status of Running and should be indicated
as ready once it is fully deployed and started.

8. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.3.4. Deploying the Relational Database Backend example application to
OpenShift Container Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar
to OpenShift Online:

Prerequisites

The example application created using developers.redhat.com/launch.

Procedure

Follow the instructions in Section 13.3.2, “Deploying the Relational Database Backend example
application to OpenShift Online”, only use the URL and user credentials from the OpenShift
Container Platform Web Console.

13.3.5. Interacting with the Relational Database Backend API

When you have finished creating your example application, you can interact with it the following way:

Prerequisites

Your application running

The curl binary or a web browser

Procedure

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES PORT
TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

85

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build
https://developers.redhat.com/launch

1. Obtain the URL of your application by executing the following command:

NAME HOST/PORT PATH SERVICES PORT
TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

2. To access the web interface of the database application, navigate to the application URL in your
browser:

Alternatively, you can make requests directly on the api/fruits/* endpoint using curl:

List all entries in the database:

Retrieve an entry with a specific ID

Create a new entry:

$ oc get route MY_APP_NAME

http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits

[{
 "id" : 1,
 "name" : "Apple",
 "stock" : 10
}, {
 "id" : 2,
 "name" : "Orange",
 "stock" : 10
}, {
 "id" : 3,
 "name" : "Pear",
 "stock" : 10
}]

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits/3

{
 "id" : 3,
 "name" : "Pear",
 "stock" : 10
}

$ curl -H "Content-Type: application/json" -X POST -d '{"name":"Peach","stock":1}'
http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits

{
 "id" : 4,

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

86

Update an Entry

Delete an Entry:

Troubleshooting

If you receive an HTTP Error code 503 as a response after executing these commands, it means
that the application is not ready yet.

13.3.6. Running the Relational Database Backend example application integration
tests

This example application includes a self-contained set of integration tests. When run inside an
OpenShift project, the tests:

Deploy a test instance of the application to the project.

Execute the individual tests on that instance.

Remove all instances of the application from the project when the testing is done.

WARNING

Executing integration tests removes all existing instances of the example
application from the target OpenShift project. To avoid accidentally removing your
example application, ensure that you create and select a separate OpenShift
project to execute the tests.

Prerequisites

The oc client authenticated

An empty OpenShift project

 "name" : "Peach",
 "stock" : 1
}

$ curl -H "Content-Type: application/json" -X PUT -d '{"name":"Apple","stock":100}'
http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits/1

{
 "id" : 1,
 "name" : "Apple",
 "stock" : 100
}

$ curl -X DELETE http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits/1

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

87

Procedure

Execute the following command to run the integration tests:

13.3.7. Relational database resources

More background and related information on running relational databases in OpenShift, CRUD, HTTP
API and REST can be found here:

HTTP Verbs

Architectural Styles and the Design of Network-based Software Architectures -
Representational State Transfer (REST)

The never ending REST API design debase

REST APIs must be Hypertext driven

Richardson Maturity Model

JSR 311: JAX-RS: The JavaTM API for RESTful Web Services

RESTEasy Documentation

Relational Database Backend for Spring Boot

Relational Database Backend for Eclipse Vert.x

Relational Database Backend for Node.js

13.4. HEALTH CHECK EXAMPLE FOR THORNTAIL

IMPORTANT

The following example is not meant to be run in a production environment.

Example proficiency level: Foundational.

When you deploy an application, it is important to know if it is available and if it can start handling
incoming requests. Implementing the health check pattern allows you to monitor the health of an
application, which includes if an application is available and whether it is able to service requests.

NOTE

If you are not familiar with the health check terminology, see the Section 13.4.1, “Health
check concepts” section first.

The purpose of this use case is to demonstrate the health check pattern through the use of probing.
Probing is used to report the liveness and readiness of an application. In this use case, you configure an
application which exposes an HTTP health endpoint to issue HTTP requests. If the container is alive,
according to the liveness probe on the health HTTP endpoint, the management platform receives 200
as return code and no further action is required. If the health HTTP endpoint does not return a

$ mvn clean verify -Popenshift,openshift-it

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

88

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://speakerdeck.com/glaforge/the-never-ending-rest-api-design-debate
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://martinfowler.com/articles/richardsonMaturityModel.html
https://www.jcp.org/en/jsr/detail?id=311
https://resteasy.github.io/docs.html
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#example-crud-spring-boot
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.9/html-single/eclipse_vert.x_runtime_guide/#example-crud-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_node.js/10/html-single/node.js_runtime_guide/#example-crud-nodejs

response, for example if the thread is blocked, then the application is not considered alive according to
the liveness probe. In that case, the platform kills the pod corresponding to that application and
recreates a new pod to restart the application.

This use case also allows you to demonstrate and use a readiness probe. In cases where the application is
running but is unable to handle requests, such as when the application returns an HTTP 503 response
code during restart, this application is not considered ready according to the readiness probe. If the
application is not considered ready by the readiness probe, requests are not routed to that application
until it is considered ready according to the readiness probe.

13.4.1. Health check concepts

In order to understand the health check pattern, you need to first understand the following concepts:

Liveness

Liveness defines whether an application is running or not. Sometimes a running application moves
into an unresponsive or stopped state and needs to be restarted. Checking for liveness helps
determine whether or not an application needs to be restarted.

Readiness

Readiness defines whether a running application can service requests. Sometimes a running
application moves into an error or broken state where it can no longer service requests. Checking
readiness helps determine whether or not requests should continue to be routed to that application.

Fail-over

Fail-over enables failures in servicing requests to be handled gracefully. If an application fails to
service a request, that request and future requests can then fail-over or be routed to another
application, which is usually a redundant copy of that same application.

Resilience and Stability

Resilience and Stability enable failures in servicing requests to be handled gracefully. If an application
fails to service a request due to connection loss, in a resilient system that request can be retried after
the connection is re-established.

Probe

A probe is a Kubernetes action that periodically performs diagnostics on a running container.

13.4.2. Deploying the Health Check example application to OpenShift Online

Use one of the following options to execute the Health Check example application on OpenShift Online.

Use developers.redhat.com/launch

Use the oc CLI client

Although each method uses the same oc commands to deploy your application, using
developers.redhat.com/launch provides an automated deployment workflow that executes the oc
commands for you.

13.4.2.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

An account at OpenShift Online.

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

89

https://manage.openshift.com

Procedure

1. Navigate to the developers.redhat.com/launch URL in a browser.

2. Follow on-screen instructions to create and launch your example application in Thorntail.

13.4.2.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must
authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the OpenShift Online URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your OpenShift Online account.

13.4.2.3. Deploying the Health Check example application using the oc CLI client

Prerequisites

The example application created using developers.redhat.com/launch. For more information,
see Section 13.4.2.1, “Deploying the example application using developers.redhat.com/launch” .

The oc client authenticated. For more information, see Section 13.4.2.2, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

90

https://developers.redhat.com/launch
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://developers.redhat.com/launch

3. Navigate to the root directory of your application.

4. Use Maven to start the deployment to OpenShift.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

5. Check the status of your application and ensure your pod is running.

The MY_APP_NAME-1-aaaaa pod should have a status of Running once its fully deployed and
started. You should also wait for your pod to be ready before proceeding, which is shown in the
READY column. For example, MY_APP_NAME-1-aaaaa is ready when the READY column is
1/1. Your specific pod name will vary. The number in the middle will increase with each new build.
The letters at the end are generated when the pod is created.

6. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.4.3. Deploying the Health Check example application to Minishift or CDK

Use one of the following options to execute the Health Check example application locally on Minishift or
CDK:

Using Fabric8 Launcher

Using the oc CLI client

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher
provides an automated deployment workflow that executes the oc commands for you.

13.4.3.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

$ oc new-project MY_PROJECT_NAME

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

91

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

13.4.3.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 13.4.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Fabric8 Launcher URL in a browser.

2. Follow the on-screen instructions to create and launch your example application in Thorntail.

13.4.3.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 13.4.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

...
-- Removing temporary directory ... OK
-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.42.152:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

92

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your Minishift or CDK account.

13.4.3.4. Deploying the Health Check example application using the oc CLI client

Prerequisites

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more
information, see Section 13.4.3.2, “Deploying the example application using the Fabric8
Launcher tool”.

Your Fabric8 Launcher tool URL.

The oc client authenticated. For more information, see Section 13.4.3.3, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Use Maven to start the deployment to OpenShift.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

5. Check the status of your application and ensure your pod is running.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

93

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

The MY_APP_NAME-1-aaaaa pod should have a status of Running once its fully deployed and
started. You should also wait for your pod to be ready before proceeding, which is shown in the
READY column. For example, MY_APP_NAME-1-aaaaa is ready when the READY column is
1/1. Your specific pod name will vary. The number in the middle will increase with each new build.
The letters at the end are generated when the pod is created.

6. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.4.4. Deploying the Health Check example application to OpenShift Container
Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar
to OpenShift Online:

Prerequisites

The example application created using developers.redhat.com/launch.

Procedure

Follow the instructions in Section 13.4.2, “Deploying the Health Check example application to
OpenShift Online”, only use the URL and user credentials from the OpenShift Container
Platform Web Console.

13.4.5. Interacting with the unmodified Health Check example application

After you deploy the example application, you will have the MY_APP_NAME service running. The
MY_APP_NAME service exposes the following REST endpoints:

/api/greeting

Returns a name as a String.

/api/stop

Forces the service to become unresponsive as means to simulate a failure.

The following steps demonstrate how to verify the service availability and simulate a failure. This failure
of an available service causes the OpenShift self-healing capabilities to be trigger on the service.

NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

94

https://developers.redhat.com/launch

Alternatively, you can use the web interface to perform these steps.

1. Use curl to execute a GET request against the MY_APP_NAME service. You can also use a
browser to do this.

{"content":"Hello, World!"}

2. Invoke the /api/stop endpoint and verify the availability of the /api/greeting endpoint shortly
after that.
Invoking the /api/stop endpoint simulates an internal service failure and triggers the OpenShift
self-healing capabilities. When invoking /api/greeting after simulating the failure, the service
should return a HTTP status 503.

(followed by)

<html>
 <head><title>Error</title></head>
 <body>503 - Service Unavailable</body>
</html>

3. Use oc get pods -w to continuously watch the self-healing capabilities in action.
While invoking the service failure, you can watch the self-healing capabilities in action on
OpenShift console, or with the oc client tools. You should see the number of pods in the
READY state move to zero (0/1) and after a short period (less than one minute) move back up
to one (1/1). In addition to that, the RESTARTS count increases every time you you invoke the
service failure.

4. Optional: Use the web interface to invoke the service.
Alternatively to the interaction using the terminal window, you can use the web interface
provided by the service to invoke the different methods and watch the service move through
the life cycle phases.

http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME

5. Optional: Use the web console to view the log output generated by the application at each
stage of the self-healing process.

1. Navigate to your project.

2. On the sidebar, click on Monitoring.

3. In the upper right-hand corner of the screen, click on Events to display the log messages.

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/stop

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-26iy7 0/1 Running 5 18m
MY_APP_NAME-1-26iy7 1/1 Running 5 19m

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

95

4. Optional: Click View Details to display a detailed view of the Event log.

The health check application generates the following messages:

Message Status

Unhealthy Readiness probe failed. This message is
expected and indicates that the simulated failure
of the /api/greeting endpoint has been
detected and the self-healing process starts.

Killing The unavailable Docker container running the
service is being killed before being re-created.

Pulling Downloading the latest version of docker image
to re-create the container.

Pulled Docker image downloaded successfully.

Created Docker container has been successfully created

Started Docker container is ready to handle requests

13.4.6. Running the Health Check example application integration tests

This example application includes a self-contained set of integration tests. When run inside an
OpenShift project, the tests:

Deploy a test instance of the application to the project.

Execute the individual tests on that instance.

Remove all instances of the application from the project when the testing is done.

WARNING

Executing integration tests removes all existing instances of the example
application from the target OpenShift project. To avoid accidentally removing your
example application, ensure that you create and select a separate OpenShift
project to execute the tests.

Prerequisites

The oc client authenticated

An empty OpenShift project

Procedure

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

96

Execute the following command to run the integration tests:

13.4.7. Health check resources

More background and related information on health checking can be found here:

Application Health in OpenShift

Kubernetes Liveness and Readiness Probes

Health Check for Spring Boot

Health Check for Eclipse Vert.x

Health Check for Node.js

13.5. CIRCUIT BREAKER EXAMPLE FOR THORNTAIL

IMPORTANT

The following example is not meant to be run in a production environment.

Limitation: Run this example application on a Minishift or CDK. You can also use a manual workflow to
deploy this example to OpenShift Online Pro and OpenShift Container Platform. This example is not
currently available on OpenShift Online Starter.

Example proficiency level: Foundational.

The Circuit Breaker example demonstrates a generic pattern for reporting the failure of a service and
then limiting access to the failed service until it becomes available to handle requests. This helps prevent
cascading failure in other services that depend on the failed services for functionality.

This example shows you how to implement a Circuit Breaker and Fallback pattern in your services.

13.5.1. The circuit breaker design pattern

The Circuit Breaker is a pattern intended to:

Reduce the impact of network failure and high latency on service architectures where services
synchronously invoke other services.
If one of the services:

becomes unavailable due to network failure, or

incurs unusually high latency values due to overwhelming traffic,

other services attempting to call its endpoint may end up exhausting critical resources in an
attempt to reach it, rendering themselves unusable.

Prevent the condition also known as cascading failure, which can render the entire microservice
architecture unusable.

$ mvn clean verify -Popenshift,openshift-it

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

97

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/developer_guide/dev-guide-application-health
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#example-health-check-spring-boot
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.9/html-single/eclipse_vert.x_runtime_guide/#example-health-check-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_node.js/10/html-single/node.js_runtime_guide/#example-health-check-nodejs

Act as a proxy between a protected function and a remote function, which monitors for failures.

Trip once the failures reach a certain threshold, and all further calls to the circuit breaker return
an error or a predefined fallback response, without the protected call being made at all.

The Circuit Breaker usually also contain an error reporting mechanism that notifies you when the Circuit
Breaker trips.

Circuit breaker implementation

With the Circuit Breaker pattern implemented, a service client invokes a remote service
endpoint via a proxy at regular intervals.

If the calls to the remote service endpoint fail repeatedly and consistently, the Circuit Breaker
trips, making all calls to the service fail immediately over a set timeout period and returns a
predefined fallback response.

When the timeout period expires, a limited number of test calls are allowed to pass through to
the remote service to determine whether it has healed, or remains unavailable.

If the test calls fail, the Circuit Breaker keeps the service unavailable and keeps returning
the fallback responses to incoming calls.

If the test calls succeed, the Circuit Breaker closes, fully enabling traffic to reach the remote
service again.

13.5.2. Circuit Breaker design tradeoffs

Table 13.4. Design Tradeoffs

Pros Cons

Enables a service to handle the failure of
other services it invokes.

Optimizing the timeout values can be
challenging

Larger-than-necessary timeout values
may generate excessive latency.

Smaller-than-necessary timeout values
may introduce false positives.

13.5.3. Deploying the Circuit Breaker example application to OpenShift Online

Use one of the following options to execute the Circuit Breaker example application on OpenShift
Online.

Use developers.redhat.com/launch

Use the oc CLI client

Although each method uses the same oc commands to deploy your application, using
developers.redhat.com/launch provides an automated deployment workflow that executes the oc
commands for you.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

98

13.5.3.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the developers.redhat.com/launch URL in a browser.

2. Follow on-screen instructions to create and launch your example application in Thorntail.

13.5.3.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must
authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the OpenShift Online URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your OpenShift Online account.

13.5.3.3. Deploying the Circuit Breaker example application using the oc CLI client

Prerequisites

The example application created using developers.redhat.com/launch. For more information,
see Section 13.5.3.1, “Deploying the example application using developers.redhat.com/launch” .

The oc client authenticated. For more information, see Section 13.5.3.2, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

99

https://manage.openshift.com
https://developers.redhat.com/launch
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://developers.redhat.com/launch

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Use Maven to start the deployment to OpenShift.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

5. Check the status of your application and ensure your pod is running.

Both the MY_APP_NAME-greeting-1-aaaaa and MY_APP_NAME-name-1-aaaaa pods should
have a status of Running once they are fully deployed and started. You should also wait for your
pods to be ready before proceeding, which is shown in the READY column. For example,
MY_APP_NAME-greeting-1-aaaaa is ready when the READY column is 1/1. Your specific pod
names will vary. The number in the middle will increase with each new build. The letters at the
end are generated when the pod is created.

6. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.5.4. Deploying the Circuit Breaker example application to Minishift or CDK

Use one of the following options to execute the Circuit Breaker example application locally on Minishift

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-greeting-1-aaaaa 1/1 Running 0 17s
MY_APP_NAME-greeting-1-deploy 0/1 Completed 0 22s
MY_APP_NAME-name-1-aaaaa 1/1 Running 0 14s
MY_APP_NAME-name-1-deploy 0/1 Completed 0 28s

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME-greeting MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-greeting 8080
None
MY_APP_NAME-name MY_APP_NAME-name-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-name 8080
None

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

100

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

Use one of the following options to execute the Circuit Breaker example application locally on Minishift
or CDK:

Using Fabric8 Launcher

Using the oc CLI client

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher
provides an automated deployment workflow that executes the oc commands for you.

13.5.4.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

13.5.4.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 13.5.4.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Fabric8 Launcher URL in a browser.

...
-- Removing temporary directory ... OK
-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.42.152:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

101

2. Follow the on-screen instructions to create and launch your example application in Thorntail.

13.5.4.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 13.5.4.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your Minishift or CDK account.

13.5.4.4. Deploying the Circuit Breaker example application using the oc CLI client

Prerequisites

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more
information, see Section 13.5.4.2, “Deploying the example application using the Fabric8
Launcher tool”.

Your Fabric8 Launcher tool URL.

The oc client authenticated. For more information, see Section 13.5.4.3, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

102

3. Navigate to the root directory of your application.

4. Use Maven to start the deployment to OpenShift.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

5. Check the status of your application and ensure your pod is running.

Both the MY_APP_NAME-greeting-1-aaaaa and MY_APP_NAME-name-1-aaaaa pods should
have a status of Running once they are fully deployed and started. You should also wait for your
pods to be ready before proceeding, which is shown in the READY column. For example,
MY_APP_NAME-greeting-1-aaaaa is ready when the READY column is 1/1. Your specific pod
names will vary. The number in the middle will increase with each new build. The letters at the
end are generated when the pod is created.

6. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.5.5. Deploying the Circuit Breaker example application to OpenShift Container
Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar
to OpenShift Online:

Prerequisites

The example application created using developers.redhat.com/launch.

$ oc new-project MY_PROJECT_NAME

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-greeting-1-aaaaa 1/1 Running 0 17s
MY_APP_NAME-greeting-1-deploy 0/1 Completed 0 22s
MY_APP_NAME-name-1-aaaaa 1/1 Running 0 14s
MY_APP_NAME-name-1-deploy 0/1 Completed 0 28s

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME-greeting MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-greeting 8080
None
MY_APP_NAME-name MY_APP_NAME-name-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-name 8080
None

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

103

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build
https://developers.redhat.com/launch

Procedure

Follow the instructions in Section 13.5.3, “Deploying the Circuit Breaker example application to
OpenShift Online”, only use the URL and user credentials from the OpenShift Container
Platform Web Console.

13.5.6. Interacting with the unmodified Thorntail Circuit Breaker example application

After you have the Thorntail example application deployed, you have the following services running:

MY_APP_NAME-name

Exposes the following endpoints:

the /api/name endpoint, which returns a name when this service is working, and an error when
this service is set up to demonstrate failure.

the /api/state endpoint, which controls the behavior of the /api/name endpoint and
determines whether the service works correctly or demonstrates failure.

MY_APP_NAME-greeting

Exposes the following endpoints:

the /api/greeting endpoint that you can call to get a personalized greeting response.
When you call the /api/greeting endpoint, it issues a call against the /api/name endpoint of
the MY_APP_NAME-name service as part of processing your request. The call made against
the /api/name endpoint is protected by the Circuit Breaker.

If the remote endpoint is available, the name service responds with an HTTP code 200 (OK)
and you receive the following greeting from the /api/greeting endpoint:

{"content":"Hello, World!"}

If the remote endpoint is unavailable, the name service responds with an HTTP code 500
(Internal server error) and you receive a predefined fallback response from the
/api/greeting endpoint:

{"content":"Hello, Fallback!"}

the /api/cb-state endpoint, which returns the state of the Circuit Breaker. The state can be:

open : the circuit breaker is preventing requests from reaching the failed service,

closed: the circuit breaker is allowing requests to reach the service.

The following steps demonstrate how to verify the availability of the service, simulate a failure and
receive a fallback response.

1. Use curl to execute a GET request against the MY_APP_NAME-greeting service. You can also
use the Invoke button in the web interface to do this.

$ curl http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/greeting
{"content":"Hello, World!"}

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

104

2. To simulate the failure of the MY_APP_NAME-name service you can:

use the Toggle button in the web interface.

scale the number of replicas of the pod running the MY_APP_NAME-name service down to
0.

execute an HTTP PUT request against the /api/state endpoint of the MY_APP_NAME-
name service to set its state to fail.

3. Invoke the /api/greeting endpoint. When several requests on the /api/name endpoint fail:

a. the Circuit Breaker opens,

b. the state indicator in the web interface changes from CLOSED to OPEN,

c. the Circuit Breaker issues a fallback response when you invoke the /api/greeting endpoint:

4. Restore the name MY_APP_NAME-name service to availability. To do this you can:

use the Toggle button in the web interface.

scale the number of replicas of the pod running the MY_APP_NAME-name service back up
to 1.

execute an HTTP PUT request against the /api/state endpoint of the MY_APP_NAME-
name service to set its state back to ok.

5. Invoke the /api/greeting endpoint again. When several requests on the /api/name endpoint
succeed:

a. the Circuit Breaker closes,

b. the state indicator in the web interface changes from OPEN to CLOSED,

c. the Circuit Breaker issues a returns the Hello World! greeting when you invoke the
/api/greeting endpoint:

13.5.7. Running the Circuit Breaker example application integration tests

$ curl -X PUT -H "Content-Type: application/json" -d '{"state": "fail"}'
http://MY_APP_NAME-name-
MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/state

$ curl http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/greeting
{"content":"Hello, Fallback!"}

$ curl -X PUT -H "Content-Type: application/json" -d '{"state": "ok"}'
http://MY_APP_NAME-name-
MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/state

$ curl http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/greeting
{"content":"Hello, World!"}

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

105

This example application includes a self-contained set of integration tests. When run inside an
OpenShift project, the tests:

Deploy a test instance of the application to the project.

Execute the individual tests on that instance.

Remove all instances of the application from the project when the testing is done.

WARNING

Executing integration tests removes all existing instances of the example
application from the target OpenShift project. To avoid accidentally removing your
example application, ensure that you create and select a separate OpenShift
project to execute the tests.

Prerequisites

The oc client authenticated

An empty OpenShift project

Procedure

Execute the following command to run the integration tests:

13.5.8. Using Hystrix Dashboard to monitor the circuit breaker

Hystrix Dashboard lets you easily monitor the health of your services in real time by aggregating Hystrix
metrics data from an event stream and displaying them on one screen.

Prerequisites

The application deployed

Procedure

1. Log in to your Minishift or CDK cluster.

2. To access the Web console, use your browser to navigate to your Minishift or CDK URL.

3. Navigate to the project that contains your Circuit Breaker application.

4. Import the YAML template for the Hystrix Dashboard application. You can do this by clicking

$ mvn clean verify -Popenshift,openshift-it

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ oc project MY_PROJECT_NAME

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

106

4. Import the YAML template for the Hystrix Dashboard application. You can do this by clicking
Add to Project , then selecting the Import YAML / JSON tab, and copying the contents of the
YAML file into the text box. Alternatively, you can execute the following command:

5. Click the Create button to create the Hystrix Dashboard application based on the template.
Alternatively, you can execute the following command.

6. Wait for the pod containing Hystrix Dashboard to deploy.

7. Obtain the route of your Hystrix Dashboard application.

8. To access the Dashboard, open the Dashboard application route URL in your browser.
Alternatively, you can navigate to the Overview screen in the Web console and click the route
URL in the header above the pod containing your Hystrix Dashboard application.

9. To use the Dashboard to monitor the MY_APP_NAME-greeting service, replace the default
event stream address with the following address and click the Monitor Stream button.

http://MY_APP_NAME-greeting/hystrix.stream

Additional resources

The Hystrix Dashboard wiki page

13.5.9. Circuit breaker resources

Follow the links below for more background information on the design principles behind the Circuit
Breaker pattern

microservices.io: Microservice Patterns: Circuit Breaker

Martin Fowler: CircuitBreaker

Circuit Breaker for Spring Boot

Circuit Breaker for Eclipse Vert.x

Circuit Breaker for Node.js

13.6. SECURED EXAMPLE APPLICATION FOR THORNTAIL

IMPORTANT

$ oc create -f https://raw.githubusercontent.com/snowdrop/openshift-
templates/master/hystrix-dashboard/hystrix-dashboard.yml

$ oc new-app --template=hystrix-dashboard

$ oc get route hystrix-dashboard
NAME HOST/PORT PATH SERVICES
PORT TERMINATION WILDCARD
hystrix-dashboard hystrix-dashboard-
MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME hystrix-dashboard
<all> None

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

107

https://raw.githubusercontent.com/snowdrop/openshift-templates/master/hystrix-dashboard/hystrix-dashboard.yml
https://github.com/Netflix/Hystrix/wiki
https://microservices.io/patterns/reliability/circuit-breaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#example-circuit-breaker-spring-boot
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.9/html-single/eclipse_vert.x_runtime_guide/#example-circuit-breaker-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_node.js/10/html-single/node.js_runtime_guide/#example-circuit-breaker-nodejs

IMPORTANT

The following example is not meant to be run in a production environment.

Limitation: Run this example application on a Minishift or CDK. You can also use a manual workflow to
deploy this example to OpenShift Online Pro and OpenShift Container Platform. This example is not
currently available on OpenShift Online Starter.

NOTE

The Secured example application in Thorntail requires Red Hat SSO 7.3. Since Red Hat
SSO 7.3 is not supported on IBM Z, the Secured example is not available for IBM Z.

Example proficiency level: Advanced.

The Secured example application secures a REST endpoint using Red Hat SSO . (This example expands
on the REST API Level 0 example).

Red Hat SSO:

Implements the Open ID Connect protocol which is an extension of the OAuth 2.0 specification.

Issues access tokens to provide clients with various access rights to secured resources.

Securing an application with SSO enables you to add security to your applications while centralizing the
security configuration.

IMPORTANT

This example comes with Red Hat SSO pre-configured for demonstration purposes, it
does not explain its principles, usage, or configuration. Before using this example, ensure
that you are familiar with the basic concepts related to Red Hat SSO .

13.6.1. The Secured project structure

The SSO example contains:

the sources for the Greeting service, which is the one which we are going to to secure

a template file (service.sso.yaml) to deploy the SSO server

the Keycloak adapter configuration to secure the service

13.6.2. Red Hat SSO deployment configuration

The service.sso.yaml file in this example contains all OpenShift configuration items to deploy a pre-
configured Red Hat SSO server. The SSO server configuration has been simplified for the sake of this
exercise and does provide an out-of-the-box configuration, with pre-configured users and security
settings. The service.sso.yaml file also contains very long lines, and some text editors, such as gedit,
may have issues reading this file.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

108

https://access.redhat.com/products/red-hat-single-sign-on
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.1/html/securing_applications_and_services_guide/openid_connect_3
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.1/html-single/getting_started_guide/
https://wiki.gnome.org/Apps/Gedit

WARNING

It is not recommended to use this SSO configuration in production. Specifically, the
simplifications made to the example security configuration impact the ability to use
it in a production environment.

Table 13.5. SSO Example Simplifications

Change Reason Recommendation

The default configuration includes
both public and private keys in
the yaml configuration files.

We did this because the end user
can deploy Red Hat SSO module
and have it in a usable state
without needing to know the
internals or how to configure Red
Hat SSO.

In production, do not store private
keys under source control. They
should be added by the server
administrator.

The configured clients accept
any callback url.

To avoid having a custom
configuration for each runtime,
we avoid the callback verification
that is required by the OAuth2
specification.

An application-specific callback
URL should be provided with a
valid domain name.

Clients do not require SSL/TLS
and the secured applications are
not exposed over HTTPS.

The examples are simplified by
not requiring certificates
generated for each runtime.

In production a secure application
should use HTTPS rather than
plain HTTP.

The token timeout has been
increased to 10 minutes from the
default of 1 minute.

Provides a better user experience
when working with the command
line examples

From a security perspective, the
window an attacker would have to
guess the access token is
extended. It is recommended to
keep this window short as it makes
it much harder for a potential
attacker to guess the current
token.

13.6.3. Red Hat SSO realm model

The master realm is used to secure this example. There are two pre-configured application client
definitions that provide a model for command line clients and the secured REST endpoint.

There are also two pre-configured users in the Red Hat SSO master realm that can be used to validate
various authentication and authorization outcomes: admin and alice.

13.6.3.1. Red Hat SSO users

The realm model for the secured examples includes two users:

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

109

admin

The admin user has a password of admin and is the realm administrator. This user has full access to
the Red Hat SSO administration console, but none of the role mappings that are required to access
the secured endpoints. You can use this user to illustrate the behavior of an authenticated, but
unauthorized user.

alice

The alice user has a password of password and is the canonical application user. This user will
demonstrate successful authenticated and authorized access to the secured endpoints. An example
representation of the role mappings is provided in this decoded JWT bearer token:

The iss field corresponds to the Red Hat SSO realm instance URL that issues the token. This

{
 "jti": "0073cfaa-7ed6-4326-ac07-c108d34b4f82",
 "exp": 1510162193,
 "nbf": 0,
 "iat": 1510161593,
 "iss": "https://secure-sso-sso.LOCAL_OPENSHIFT_HOSTNAME/auth/realms/master", 1
 "aud": "demoapp",
 "sub": "c0175ccb-0892-4b31-829f-dda873815fe8",
 "typ": "Bearer",
 "azp": "demoapp",
 "nonce": "90ff5d1a-ba44-45ae-a413-50b08bf4a242",
 "auth_time": 1510161591,
 "session_state": "98efb95a-b355-43d1-996b-0abcb1304352",
 "acr": "1",
 "client_session": "5962112c-2b19-461e-8aac-84ab512d2a01",
 "allowed-origins": [
 "*"
],
 "realm_access": {
 "roles": [2
 "example-admin"
]
 },
 "resource_access": { 3
 "secured-example-endpoint": {
 "roles": [
 "example-admin" 4
]
 },
 "account": {
 "roles": [
 "manage-account",
 "view-profile"
]
 }
 },
 "name": "Alice InChains",
 "preferred_username": "alice", 5
 "given_name": "Alice",
 "family_name": "InChains",
 "email": "alice@keycloak.org"
}

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

110

1

2

3

4

5

The iss field corresponds to the Red Hat SSO realm instance URL that issues the token. This
must be configured in the secured endpoint deployments in order for the token to be verified.

The roles object provides the roles that have been granted to the user at the global realm level.
In this case alice has been granted the example-admin role. We will see that the secured
endpoint will look to the realm level for authorized roles.

The resource_access object contains resource specific role grants. Under this object you will
find an object for each of the secured endpoints.

The resource_access.secured-example-endpoint.roles object contains the roles granted to
alice for the secured-example-endpoint resource.

The preferred_username field provides the username that was used to generate the access
token.

13.6.3.2. The application clients

The OAuth 2.0 specification allows you to define a role for application clients that access secured
resources on behalf of resource owners. The master realm has the following application clients defined:

demoapp

This is a confidential type client with a client secret that is used to obtain an access token. The token
contains grants for the alice user which enable alice to access the Thorntail, Eclipse Vert.x, Node.js
and Spring Boot based REST example application deployments.

secured-example-endpoint

The secured-example-endpoint is a bearer-only type of client that requires a example-admin role
for accessing the associated resources, specifically the Greeting service.

13.6.4. Thorntail SSO adapter configuration

The SSO adapter is the client side, or client to the SSO server, component that enforces security on the
web resources. In this specific case, it is the greeting service.

In Thorntail, the security configuration breaks down into two notable assets:

The web.xml configuration to enact the security for the service

The keycloak.json configuration for the keycloak adapter.

Enacting Security using web.xml

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5">
 <security-constraint>
 <web-resource-collection>
 <url-pattern>/api/greeting</url-pattern> 1
 </web-resource-collection>
 <auth-constraint>
 <role-name>example-admin</role-name> 2
 </auth-constraint>
 </security-constraint>

 <login-config>

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

111

1

2

3

1

2

3

4

5

The web context that is to be secured.

The role needed to access the endpoint.

Using keycloak as the security provider.

Enacting Security in Keycloak Adapter using keycloak.json

The security realm to be used.

The actual keycloak client configuration.

PEM format of the realm public key. You can obtain this from the administration console.

The address of the Red Hat SSO server (Interpolation at build time).

If enabled the adapter will not attempt to authenticate users, but only verify bearer tokens.

The web.xml enables keycloak and enforces protection of the Greeting service web resource endpoint.
The keycloak.json configures the security adapter to interact with Red Hat SSO.

13.6.5. Deploying the Secured example application to Minishift or CDK

13.6.5.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

 <auth-method>KEYCLOAK</auth-method> 3
 </login-config>

 <security-role>
 <role-name>example-admin</role-name>
 </security-role>
</web-app>

{
 "realm": "master", 1
 "resource": "secured-example-endpoint", 2
 "realm-public-key": "...", 3
 "auth-server-url": "${sso.auth.server.url}", 4
 "ssl-required": "external",
 "disable-trust-manager": true,
 "bearer-only": true, 5
 "use-resource-role-mappings": true
}

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

112

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

13.6.5.2. Creating the Secured example application using Fabric8 Launcher

Prerequisites

The URL and user credentials of your running Fabric8 Launcher instance. For more information,
see Section 13.6.5.1, “Getting the Fabric8 Launcher tool URL and credentials” .

Procedure

Navigate to the Fabric8 Launcher URL in a browser and log in.

Follow the on-screen instructions to create your example in Thorntail. When asked about which
deployment type, select I will build and run locally.

Follow on-screen instructions.
When done, click the Download as ZIP file button and store the file on your hard drive.

13.6.5.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 13.6.5.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your

...
-- Removing temporary directory ... OK
-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.42.152:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

113

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your Minishift or CDK account.

13.6.5.4. Deploying the Secured example application using the oc CLI client

Prerequisites

The example application created using the Fabric8 Launcher tool on a Minishift or CDK. For
more information, see Section 13.6.5.2, “Creating the Secured example application using
Fabric8 Launcher”.

Your Fabric8 Launcher URL.

The oc client authenticated. For more information, see Section 13.6.5.3, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Deploy the Red Hat SSO server using the service.sso.yaml file from your example ZIP file:

5. Use Maven to start the deployment to Minishift or CDK.

This command uses the Fabric8 Maven Plugin to launch the S2I process on Minishift or CDK
and to start the pod.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc create -f service.sso.yaml

$ mvn clean fabric8:deploy -Popenshift -DskipTests \
 -DSSO_AUTH_SERVER_URL=$(oc get route secure-sso -o jsonpath='{"https://"}
{.spec.host}{"/auth\n"}')

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

114

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

This process generates the uberjar file as well as the OpenShift resources and deploys them to the
current project on your Minishift or CDK server.

13.6.6. Deploying the Secured example application to OpenShift Container Platform

In addition to the Minishift or CDK, you can create and deploy the example on OpenShift Container
Platform with only minor differences. The most important difference is that you need to create the
example application on Minishift or CDK before you can deploy it with OpenShift Container Platform.

Prerequisites

The example created using Minishift or CDK.

13.6.6.1. Authenticating the oc CLI client

To work with example applications on OpenShift Container Platform using the oc command-line client,
you must authenticate the client using the token provided by the OpenShift Container Platform web
interface.

Prerequisites

An account at OpenShift Container Platform.

Procedure

1. Navigate to the OpenShift Container Platform URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your OpenShift Container Platform account.

13.6.6.2. Deploying the Secured example application using the oc CLI client

Prerequisites

The example application created using the Fabric8 Launcher tool on a Minishift or CDK.

The oc client authenticated. For more information, see Section 13.6.6.1, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

115

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Deploy the Red Hat SSO server using the service.sso.yaml file from your example ZIP file:

5. Use Maven to start the deployment to OpenShift Container Platform.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift
Container Platform and to start the pod.

This process generates the uberjar file as well as the OpenShift resources and deploys them to the
current project on your OpenShift Container Platform server.

13.6.7. Authenticating to the Secured example application API endpoint

The Secured example application provides a default HTTP endpoint that accepts GET requests if the
caller is authenticated and authorized. The client first authenticates against the Red Hat SSO server and
then performs a GET request against the Secured example application using the access token returned
by the authentication step.

13.6.7.1. Getting the Secured example application API endpoint

When using a client to interact with the example, you must specify the Secured example application
endpoint, which is the PROJECT_ID service.

Prerequisites

The Secured example application deployed and running.

The oc client authenticated.

Procedure

1. In a terminal application, execute the oc get routes command.
A sample output is shown in the following table:

Example 13.1. List of Secured endpoints

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc create -f service.sso.yaml

$ mvn clean fabric8:deploy -Popenshift -DskipTests \
 -DSSO_AUTH_SERVER_URL=$(oc get route secure-sso -o jsonpath='{"https://"}
{.spec.host}{"/auth\n"}')

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

116

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

Name Host/Port Path Services Port Termination

secure-sso secure-sso-
myproject.L
OCAL_OPE
NSHIFT_HO
STNAME

 secure-sso <all> passthrough

PROJECT_I
D

PROJECT_I
D-
myproject.L
OCAL_OPE
NSHIFT_HO
STNAME

 PROJECT_I
D

<all>

sso sso-
myproject.L
OCAL_OPE
NSHIFT_HO
STNAME

 sso <all>

In the above example, the example endpoint would be http://PROJECT_ID-
myproject.LOCAL_OPENSHIFT_HOSTNAME. PROJECT_ID is based on the name you
entered when generating your example using developers.redhat.com/launch or the Fabric8
Launcher tool.

13.6.7.2. Authenticating HTTP requests using the command line

Request a token by sending a HTTP POST request to the Red Hat SSO server. In the following example,
the jq CLI tool is used to extract the token value from the JSON response.

Prerequisites

The secured example endpoint URL. For more information, see Section 13.6.7.1, “Getting the
Secured example application API endpoint”.

The jq command-line tool (optional). To download the tool and for more information, see
https://stedolan.github.io/jq/.

Procedure

1. Request an access token with curl, the credentials, and <SSO_AUTH_SERVER_URL> and
extract the token from the response with the jq command:

curl -sk -X POST https://<SSO_AUTH_SERVER_URL>/auth/realms/master/protocol/openid-
connect/token \
 -d grant_type=password \
 -d username=alice\
 -d password=password \
 -d client_id=demoapp \

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

117

https://developers.redhat.com/launch
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

<SSO_AUTH_SERVER_URL> is the url of the secure-sso service.

The attributes, such as username, password, and client_secret are usually kept secret, but the
above command uses the default provided credentials with this example for demonstration
purpose.

If you do not want to use jq to extract the token, you can run just the curl command and
manually extract the access token.

NOTE

The -sk option tells curl to ignore failures resulting from self-signed certificates.
Do not use this option in a production environment. On macOS, you must have
curl version 7.56.1 or greater installed. It must also be built with OpenSSL.

1. Invoke the Secured service. Attach the access (bearer) token to the HTTP headers:

Example 13.2. A sample GET Request Headers with an Access (Bearer) Token

 -d client_secret=1daa57a2-b60e-468b-a3ac-25bd2dc2eadc \
 | jq -r '.access_token'

eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICJRek1nbXhZMUhrQnpxTnR0SnkwMm5j
NTNtMGNiWDQxV1hNSTU1MFo4MGVBIn0.eyJqdGkiOiI0NDA3YTliNC04YWRhLTRlMTctOD
Q2ZS03YjI5MjMyN2RmYTIiLCJleHAiOjE1MDc3OTM3ODcsIm5iZiI6MCwiaWF0IjoxNTA3Nzkz
NzI3LCJpc3MiOiJodHRwczovL3NlY3VyZS1zc28tc3NvLWRlbW8uYXBwcy5jYWZlLWJhYmUub
3JnL2F1dGgvcmVhbG1zL21hc3RlciIsImF1ZCI6ImRlbW9hcHAiLCJzdWIiOiJjMDE3NWNjYi0w
ODkyLTRiMzEtODI5Zi1kZGE4NzM4MTVmZTgiLCJ0eXAiOiJCZWFyZXIiLCJhenAiOiJkZW1vY
XBwIiwiYXV0aF90aW1lIjowLCJzZXNzaW9uX3N0YXRlIjoiMDFjOTkzNGQtNmZmOS00NWYzL
WJkNWUtMTU4NDI5ZDZjNDczIiwiYWNyIjoiMSIsImNsaWVudF9zZXNzaW9uIjoiMzM3Yzk0MT
YtYTdlZS00ZWUzLThjZWQtODhlODI0MGJjNTAyIiwiYWxsb3dlZC1vcmlnaW5zIjpbIioiXSwicmV
hbG1fYWNjZXNzIjp7InJvbGVzIjpbImJvb3N0ZXItYWRtaW4iXX0sInJlc291cmNlX2FjY2VzcyI6ey
JzZWN1cmVkLWJvb3N0ZXItZW5kcG9pbnQiOnsicm9sZXMiOlsiYm9vc3Rlci1hZG1pbiJdfSwiY
WNjb3VudCI6eyJyb2xlcyI6WyJtYW5hZ2UtYWNjb3VudCIsInZpZXctcHJvZmlsZSJdfX0sIm5hbW
UiOiJBbGljZSBJbkNoYWlucyIsInByZWZlcnJlZF91c2VybmFtZSI6ImFsaWNlIiwiZ2l2ZW5fbmFtZ
SI6IkFsaWNlIiwiZmFtaWx5X25hbWUiOiJJbkNoYWlucyIsImVtYWlsIjoiYWxpY2VAa2V5Y2xvYW
sub3JnIn0.mjmZe37enHpigJv0BGuIitOj-
kfMLPNwYzNd3n0Ax4Nga7KpnfytGyuPSvR4KAG8rzkfBNN9klPYdy7pJEeYlfmnFUkM4EDrZY
gn4qZAznP1Wzy1RfVRdUFi0-
GqFTMPb37o5HRldZZ09QljX_j3GHnoMGXRtYW9RZN4eKkYkcz9hRwgfJoTy2CuwFqeJwZY
UyXifrfA-JoTr0UmSUed-0NMksGrtJjjPggUGS-
qOn6OgKcmN2vaVAQlxW32y53JqUXctfLQ6DhJzIMYTmOflIPy0sgG1mG7sovQhw1xTg0vTjdx
8zQ-EJcexkj7IivRevRZsslKgqRFWs67jQAFQA

$ curl -v -H "Authorization: Bearer <TOKEN>" http://<SERVICE_HOST>/api/greeting

{
 "content": "Hello, World!",
 "id": 2
}

> GET /api/greeting HTTP/1.1
> Host: <SERVICE_HOST>
> User-Agent: curl/7.51.0

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

118

<SERVICE_HOST> is the URL of the secured example endpoint. For more information, see
Section 13.6.7.1, “Getting the Secured example application API endpoint” .

2. Verify the signature of the access token.
The access token is a JSON Web Token, so you can decode it using the JWT Debugger:

a. In a web browser, navigate to the JWT Debugger website.

b. Select RS256 from the Algorithm drop down menu.

NOTE

Make sure the web form has been updated after you made the selection, so it
displays the correct RSASHA256(…) information in the Signature section. If it
has not, try switching to HS256 and then back to RS256.

c. Paste the following content in the topmost text box into the VERIFY SIGNATURE section:

NOTE

This is the master realm public key from the Red Hat SSO server deployment
of the Secured example application.

d. Paste the token output from the client output into the Encoded box.
The Signature Verified sign is displayed on the debugger page.

13.6.7.3. Authenticating HTTP requests using the web interface

In addition to the HTTP API, the secured endpoint also contains a web interface to interact with.

The following procedure is an exercise for you to see how security is enforced, how you authenticate,
and how you work with the authentication token.

Prerequisites

The secured endpoint URL. For more information, see Section 13.6.7.1, “Getting the Secured
example application API endpoint”.

Procedure

> Accept: */*
> Authorization: Bearer <TOKEN>

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAoETnPmN55xBJjRzN/cs30OzJ
9olkteLVNRjzdTxFOyRtS2ovDfzdhhO9XzUcTMbIsCOAZtSt8K+6yvBXypOSYvI75EUdypm
kcK1KoptqY5KEBQ1KwhWuP7IWQ0fshUwD6jI1QWDfGxfM/h34FvEn/0tJ71xN2P8TI2Yan
wuDZgosdobx/PAvlGREBGuk4BgmexTOkAdnFxIUQcCkiEZ2C41uCrxiS4CEe5OX91aK9
HKZV4ZJX6vnqMHmdDnsMdO+UFtxOBYZio+a1jP4W3d7J5fGeiOaXjQCOpivKnP2yU2D
PdWmDMyVb67l8DRA+jh0OJFKZ5H2fNgE3II59vdsRwIDAQAB
-----END PUBLIC KEY-----

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

119

https://jwt.io
https://jwt.io/#debugger-io
https://jwt.io/#debugger-io

1. In a web browser, navigate to the endpoint URL.

2. Perform an unauthenticated request:

a. Click the Invoke button.

Figure 13.1. Unauthenticated Secured Example Web Interface

The services responds with an HTTP 401 Unauthorized status code.

Figure 13.2. Unauthenticated Error Message

3. Perform an authenticated request as a user:

a. Click the Login button to authenticate against Red Hat SSO. You will be redirected to the
SSO server.

b. Log in as the Alice user. You will be redirected back to the web interface.

NOTE

You can see the access (bearer) token in the command line output at the
bottom of the page.

Figure 13.3. Authenticated Secured Example Web Interface (as Alice)

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

120

Figure 13.3. Authenticated Secured Example Web Interface (as Alice)

c. Click Invoke again to access the Greeting service.
Confirm that there is no exception and the JSON response payload is displayed. This means
the service accepted your access (bearer) token and you are authorized access to the
Greeting service.

Figure 13.4. The Result of an Authenticated Greeting Request (as Alice)

d. Log out.

4. Perform an authenticated request as an admininstrator:

a. Click the Invoke button.
Confirm that this sends an unauthenticated request to the Greeting service.

b. Click the Login button and log in as the admin user.

Figure 13.5. Authenticated Secured Example Web Interface (as admin)

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

121

Figure 13.5. Authenticated Secured Example Web Interface (as admin)

5. Click the Invoke button.
The service responds with an HTTP 403 Forbidden status code because the admin user is not
authorized to access the Greeting service.

Figure 13.6. Unauthorized Error Message

13.6.8. Running the Thorntail Secured example application integration tests

IMPORTANT

The keycloak-authz-client library for Thorntail is provided as a Technology Preview.

Prerequisites

The oc client authenticated.

PROCEDURE

Executing integration tests removes all existing instances of the example
application from the target OpenShift project. To avoid accidentally removing your
example application, ensure that you create and select a separate OpenShift
project to execute the tests.

1. In a terminal application, navigate to the directory with your project.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

122

https://access.redhat.com/support/offerings/techpreview/

2. Deploy the Red Hat SSO server:

3. Wait until the Red Hat SSO server is ready. Go to the Web console or view the output of oc get
pods to check if the pod is ready.

4. Execute the integration tests. Provide the URL of the Red Hat SSO server as a parameter:

5. Once the tests are finished, remove the Red Hat SSO server:

13.6.9. Secured SSO resources

Follow the links below for additional information on the principles behind the OAuth2 specification and
on securing your applications using Red Hat SSO and Keycloak:

Aaron Parecki: OAuth2 Simplified

Red Hat SSO 7.1 Documentation

Keycloak 3.2 Documentation

Secured for Spring Boot

Secured for Eclipse Vert.x

Secured for Node.js

13.7. CACHE EXAMPLE FOR THORNTAIL

IMPORTANT

The following example is not meant to be run in a production environment.

Limitation: Run this example application on a Minishift or CDK. You can also use a manual workflow to
deploy this example to OpenShift Online Pro and OpenShift Container Platform. This example is not
currently available on OpenShift Online Starter.

Example proficiency level: Advanced.

The Cache example demonstrates how to use a cache to increase the response time of applications.

This example shows you how to:

Deploy a cache to OpenShift.

Use a cache within an application.

oc apply -f service.sso.yaml

$ mvn clean verify -Popenshift,openshift-it -DSSO_AUTH_SERVER_URL=$(oc get route
secure-sso -o jsonpath='{"https://"}{.spec.host}{"/auth\n"}')

oc delete -f service.sso.yaml

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

123

https://aaronparecki.com/oauth-2-simplified/
https://access.redhat.com/documentation/en/red-hat-single-sign-on?version=7.1/
https://www.keycloak.org/documentation.html
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#example-rest-http-secured-spring-boot
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.9/html-single/eclipse_vert.x_runtime_guide/#example-rest-http-secured-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_node.js/10/html-single/node.js_runtime_guide/#example-rest-http-secured-nodejs

13.7.1. How caching works and when you need it

Caches allows you to store information and access it for a given period of time. You can access
information in a cache faster or more reliably than repeatedly calling the original service. A disadvantage
of using a cache is that the cached information is not up to date. However, that problem can be reduced
by setting an expiration or TTL (time to live) on each value stored in the cache.

Example 13.3. Caching example

Assume you have two applications: service1 and service2:

Service1 depends on a value from service2.

If the value from service2 infrequently changes, service1 could cache the value from
service2 for a period of time.

Using cached values can also reduce the number of times service2 is called.

If it takes service1 500 ms to retrieve the value directly from service2, but 100 ms to retrieve
the cached value, service1 would save 400 ms by using the cached value for each cached call.

If service1 would make uncached calls to service2 5 times per second, over 10 seconds, that
would be 50 calls.

If service1 started using a cached value with a TTL of 1 second instead, that would be reduced
to 10 calls over 10 seconds.

How the Cache example works

1. The cache, cute name, and greeting services are deployed and exposed.

2. User accesses the web frontend of the greeting service.

3. User invokes the greeting HTTP API using a button on the web frontend.

4. The greeting service depends on a value from the cute name service.

The greeting service first checks if that value is stored in the cache service. If it is, then the
cached value is returned.

If the value is not cached, the greeting service calls the cute name service, returns the value,
and stores the value in the cache service with a TTL of 5 seconds.

5. The web front end displays the response from the greeting service as well as the total time of
the operation.

6. User invokes the service multiple times to see the difference between cached and uncached
operations.

Cached operations are significantly faster than uncached operations.

User can force the cache to be cleared before the TTL expires.

13.7.2. Deploying the Cache example application to OpenShift Online

Use one of the following options to execute the Cache example application on OpenShift Online.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

124

Use developers.redhat.com/launch

Use the oc CLI client

Although each method uses the same oc commands to deploy your application, using
developers.redhat.com/launch provides an automated deployment workflow that executes the oc
commands for you.

13.7.2.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the developers.redhat.com/launch URL in a browser.

2. Follow on-screen instructions to create and launch your example application in Thorntail.

13.7.2.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must
authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the OpenShift Online URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your OpenShift Online account.

13.7.2.3. Deploying the Cache example application using the oc CLI client

Prerequisites

The example application created using developers.redhat.com/launch. For more information,
see Section 13.7.2.1, “Deploying the example application using developers.redhat.com/launch” .

The oc client authenticated. For more information, see Section 13.7.2.2, “Authenticating the oc
CLI client”.

$ oc login OPENSHIFT_URL --token=MYTOKEN

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

125

https://manage.openshift.com
https://developers.redhat.com/launch
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://developers.redhat.com/launch

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new project.

3. Navigate to the root directory of your application.

4. Deploy the cache service.

NOTE

If you are using an architecture other than x86_64, in the YAML file, update the
image name of Red Hat Data Grid to its relevant image name in that
architecture. For example, for the s390x architecture, update the image name to
its IBM Z image name registry.access.redhat.com/jboss-datagrid-
7/datagrid73-openj9-11-openshift-rhel8.

5. Use Maven to start the deployment to OpenShift.

6. Check the status of your application and ensure your pod is running.

Your 3 pods should have a status of Running once they are fully deployed and started.

7. After your example application is deployed and started, determine its route.

Example Route Information

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc apply -f service.cache.yml

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
cache-server-123456789-aaaaa 1/1 Running 0 8m
MY_APP_NAME-cutename-1-bbbbb 1/1 Running 0 4m
MY_APP_NAME-cutename-s2i-1-build 0/1 Completed 0 7m
MY_APP_NAME-greeting-1-ccccc 1/1 Running 0 3m
MY_APP_NAME-greeting-s2i-1-build 0/1 Completed 0 3m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME-cutename MY_APP_NAME-cutename-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-cutename 8080

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

126

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the greeting
service.

13.7.3. Deploying the Cache example application to Minishift or CDK

Use one of the following options to execute the Cache example application locally on Minishift or CDK:

Using Fabric8 Launcher

Using the oc CLI client

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher
provides an automated deployment workflow that executes the oc commands for you.

13.7.3.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

13.7.3.2. Deploying the example application using the Fabric8 Launcher tool

None
MY_APP_NAME-greeting MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-greeting 8080
None

...
-- Removing temporary directory ... OK
-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.42.152:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

127

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 13.7.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Fabric8 Launcher URL in a browser.

2. Follow the on-screen instructions to create and launch your example application in Thorntail.

13.7.3.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 13.7.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your Minishift or CDK account.

13.7.3.4. Deploying the Cache example application using the oc CLI client

Prerequisites

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more
information, see Section 13.7.3.2, “Deploying the example application using the Fabric8
Launcher tool”.

Your Fabric8 Launcher tool URL.

The oc client authenticated. For more information, see Section 13.7.3.3, “Authenticating the oc
CLI client”.

Procedure

$ oc login OPENSHIFT_URL --token=MYTOKEN

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

128

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new project.

3. Navigate to the root directory of your application.

4. Deploy the cache service.

NOTE

If you are using an architecture other than x86_64, in the YAML file, update the
image name of Red Hat Data Grid to its relevant image name in that
architecture. For example, for the s390x architecture, update the image name to
its IBM Z image name registry.access.redhat.com/jboss-datagrid-
7/datagrid73-openj9-11-openshift-rhel8.

5. Use Maven to start the deployment to OpenShift.

6. Check the status of your application and ensure your pod is running.

Your 3 pods should have a status of Running once they are fully deployed and started.

7. After your example application is deployed and started, determine its route.

Example Route Information

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc apply -f service.cache.yml

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
cache-server-123456789-aaaaa 1/1 Running 0 8m
MY_APP_NAME-cutename-1-bbbbb 1/1 Running 0 4m
MY_APP_NAME-cutename-s2i-1-build 0/1 Completed 0 7m
MY_APP_NAME-greeting-1-ccccc 1/1 Running 0 3m
MY_APP_NAME-greeting-s2i-1-build 0/1 Completed 0 3m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME-cutename MY_APP_NAME-cutename-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-cutename 8080
None

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

129

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the greeting
service.

13.7.4. Deploying the Cache example application to OpenShift Container Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar
to OpenShift Online:

Prerequisites

The example application created using developers.redhat.com/launch.

Procedure

Follow the instructions in Section 13.7.2, “Deploying the Cache example application to
OpenShift Online”, only use the URL and user credentials from the OpenShift Container
Platform Web Console.

13.7.5. Interacting with the unmodified Cache example application

Prerequisites

Your application deployed

Procedure

1. Navigate to the greeting service using your browser.

2. Click Invoke the service once.
Notice the duration value is above 2000. Also notice the cache state has changed form No
cached value to A value is cached.

3. Wait 5 seconds and notice cache state has changed back to No cached value.
The TTL for the cached value is set to 5 seconds. When the TTL expires, the value is no longer
cached.

4. Click Invoke the service once more to cache the value.

5. Click Invoke the service a few more times over the course of a few seconds while cache state is
A value is cached.
Notice a significantly lower duration value since it is using a cached value. If you click Clear the
cache, the cache is emptied.

13.7.6. Running the Cache example application integration tests

This example application includes a self-contained set of integration tests. When run inside an
OpenShift project, the tests:

MY_APP_NAME-greeting MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-greeting 8080
None

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

130

https://developers.redhat.com/launch

Deploy a test instance of the application to the project.

Execute the individual tests on that instance.

Remove all instances of the application from the project when the testing is done.

WARNING

Executing integration tests removes all existing instances of the example
application from the target OpenShift project. To avoid accidentally removing your
example application, ensure that you create and select a separate OpenShift
project to execute the tests.

Prerequisites

The oc client authenticated

An empty OpenShift project

Procedure

Execute the following command to run the integration tests:

13.7.7. Caching resources

More background and related information on caching can be found here:

Cache for Spring Boot

Cache for Eclipse Vert.x

Cache for Node.js

$ mvn clean verify -Popenshift,openshift-it

CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL

131

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#example-cache-spring-boot
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.9/html-single/eclipse_vert.x_runtime_guide/#example-cache-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_node.js/10/html-single/node.js_runtime_guide/#example-cache-nodejs

APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS
Source-to-Image (S2I) is a build tool for generating reproducible Docker-formatted container images
from online SCM repositories with application sources. With S2I builds, you can easily deliver the latest
version of your application into production with shorter build times, decreased resource and network
usage, improved security, and a number of other advantages. OpenShift supports multiple build
strategies and input sources.

For more information, see the Source-to-Image (S2I) Build chapter of the OpenShift Container
Platform documentation.

You must provide three elements to the S2I process to assemble the final container image:

The application sources hosted in an online SCM repository, such as GitHub.

The S2I Builder image, which serves as the foundation for the assembled image and provides
the ecosystem in which your application is running.

Optionally, you can also provide environment variables and parameters that are used by S2I
scripts.

The process injects your application source and dependencies into the Builder image according to
instructions specified in the S2I script, and generates a Docker-formatted container image that runs the
assembled application. For more information, check the S2I build requirements, build options and how
builds work sections of the OpenShift Container Platform documentation.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

132

https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html#build-strategy-s2i_understanding-image-builds
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html#build-strategy-s2i_understanding-image-builds
https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://docs.openshift.com/container-platform/latest/builds/build-strategies.html
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html

APPENDIX B. UPDATING THE DEPLOYMENT
CONFIGURATION OF AN EXAMPLE APPLICATION

The deployment configuration for an example application contains information related to deploying and
running the application in OpenShift, such as route information or readiness probe location. The
deployment configuration of an example application is stored in a set of YAML files. For examples that
use the Fabric8 Maven Plugin, the YAML files are located in the src/main/fabric8/ directory. For
examples using Nodeshift, the YAML files are located in the .nodeshift directory.

IMPORTANT

The deployment configuration files used by the Fabric8 Maven Plugin and Nodeshift do
not have to be full OpenShift resource definitions. Both Fabric8 Maven Plugin and
Nodeshift can take the deployment configuration files and add some missing information
to create a full OpenShift resource definition. The resource definitions generated by the
Fabric8 Maven Plugin are available in the target/classes/META-INF/fabric8/ directory.
The resource definitions generated by Nodeshift are available in the
tmp/nodeshift/resource/ directory.

Prerequisites

An existing example project.

The oc CLI client installed.

Procedure

1. Edit an existing YAML file or create an additional YAML file with your configuration update.

For example, if your example already has a YAML file with a readinessProbe configured,
you could change the path value to a different available path to check for readiness:

If a readinessProbe is not configured in an existing YAML file, you can also create a new
YAML file in the same directory with the readinessProbe configuration.

2. Deploy the updated version of your example using Maven or npm.

3. Verify that your configuration updates show in the deployed version of your example.

spec:
 template:
 spec:
 containers:
 readinessProbe:
 httpGet:
 path: /path/to/probe
 port: 8080
 scheme: HTTP
...

$ oc export all --as-template='my-template'

apiVersion: v1
kind: Template

APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION

133

Additional resources

If you updated the configuration of your application directly using the web-based console or the oc CLI
client, export and add these changes to your YAML file. Use the oc export all command to show the
configuration of your deployed application.

metadata:
 creationTimestamp: null
 name: my-template
objects:
- apiVersion: v1
 kind: DeploymentConfig
 ...
 spec:
 ...
 template:
 ...
 spec:
 containers:
 ...
 livenessProbe:
 failureThreshold: 3
 httpGet:
 path: /path/to/different/probe
 port: 8080
 scheme: HTTP
 initialDelaySeconds: 60
 periodSeconds: 30
 successThreshold: 1
 timeoutSeconds: 1
 ...

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

134

APPENDIX C. CONFIGURING A JENKINS FREESTYLE
PROJECT TO DEPLOY YOUR APPLICATION WITH THE

FABRIC8 MAVEN PLUGIN
Similar to using Maven and the Fabric8 Maven Plugin from your local host to deploy an application, you
can configure Jenkins to use Maven and the Fabric8 Maven Plugin to deploy an application.

Prerequisites

Access to an OpenShift cluster.

The Jenkins container image running on same OpenShift cluster.

A JDK and Maven installed and configured on your Jenkins server.

An application configured to use Maven, the Fabric8 Maven Plugin, and the Red Hat base image
in the pom.xml.

NOTE

For building and deploying your applications to OpenShift, Spring Boot 2.1.x only
supports builder images based on OpenJDK 8 and OpenJDK 11. Oracle JDK and
OpenJDK 9 builder images are not supported.

Example pom.xml

The source of the application available in GitHub.

Procedure

1. Create a new OpenShift project for your application:

a. Open the OpenShift Web console and log in.

b. Click Create Project to create a new OpenShift project.

c. Enter the project information and click Create.

2. Ensure Jenkins has access to that project.
For example, if you configured a service account for Jenkins, ensure that account has edit
access to the project of your application.

3. Create a new freestyle Jenkins project on your Jenkins server:

a. Click New Item.

b. Enter a name, choose Freestyle project, and click OK.

<properties>
 ...
 <fabric8.generator.from>registry.access.redhat.com/redhat-openjdk-18/openjdk18-
openshift:latest</fabric8.generator.from>
</properties>

APPENDIX C. CONFIGURING A JENKINS FREESTYLE PROJECT TO DEPLOY YOUR APPLICATION WITH THE FABRIC8 MAVEN PLUGIN

135

https://docs.openshift.com/container-platform/latest/openshift_images/using_images/images-other-jenkins.html
https://wiki.jenkins.io/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-Settinguptheproject

c. Under Source Code Management, choose Git and add the GitHub url of your application.

d. Under Build, choose Add build step and select Invoke top-level Maven targets.

e. Add the following to Goals:

Substitute MY_PROJECT with the name of the OpenShift project for your application.

f. Click Save.

4. Click Build Now from the main page of the Jenkins project to verify your application builds and
deploys to the OpenShift project for your application.
You can also verify that your application is deployed by opening the route in the OpenShift
project of the application.

Next steps

Consider adding GITSCM polling or using the Poll SCM build trigger. These options enable
builds to run every time a new commit is pushed to the GitHub repository.

Consider adding a build step that executes tests before deploying.

clean fabric8:deploy -Popenshift -Dfabric8.namespace=MY_PROJECT

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

136

https://wiki.jenkins.io/display/JENKINS/Github+Plugin#GitHubPlugin-GitHubhooktriggerforGITScmpolling
https://wiki.jenkins.io/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-Buildsbysourcechanges

APPENDIX D. THORNTAIL FRACTIONS REFERENCE
For information about using the configuration properties provided in Thorntail fractions, see Chapter 8,
Configuring a Thorntail application .

D.1. ARCHAIUS

WARNING

This fraction is deprecated.

Maven Coordinates

D.2. BEAN VALIDATION

Provides class-level constraint and validation according to JSR 303.

Maven Coordinates

D.3. CDI

Provides context and dependency-injection support according to JSR-299.

Maven Coordinates

Configuration

thorntail.cdi.development-mode

Weld comes with a special mode for application development. When the development mode is
enabled, certain built-in tools, which facilitate the development of CDI applications, are available.
Setting this attribute to true activates the development mode.

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>archaius</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>bean-validation</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>cdi</artifactId>
</dependency>

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

137

thorntail.cdi.non-portable-mode

If true then the non-portable mode is enabled. The non-portable mode is suggested by the
specification to overcome problems with legacy applications that do not use CDI SPI properly and
may be rejected by more strict validation in CDI 1.1.

thorntail.cdi.require-bean-descriptor

If true then implicit bean archives without bean descriptor file (beans.xml) are ignored by Weld

thorntail.cdi.thread-pool-size

The number of threads to be used by the Weld thread pool. The pool is shared across all CDI-enabled
deployments and used primarily for parallel Weld bootstrap.

D.3.1. CDI Configuration

Maven Coordinates

D.4. CONNECTOR

Primarily an internal fraction used to provide support for higher-level fractions such as JCA (JSR-322).

If you require JCA support, please see the JCA fraction documentation.

Maven Coordinates

D.5. CONTAINER

Maven Coordinates

D.6. DATASOURCES

Provides support for container-managed database connections.

D.6.1. Autodetectable drivers

If your application includes the appropriate vendor JDBC library in its normal dependencies, these
drivers will be detected and installed by Thorntail without any additional effort.

The list of detectable drivers and their driver-name which may be used when defining a datasource is as

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>cdi-config</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>connector</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>container</artifactId>
</dependency>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

138

The list of detectable drivers and their driver-name which may be used when defining a datasource is as
follows:

Database driver-name

MySQL mysql

PostgreSQL postgresql

H2 h2

EnterpriseDB edb

IBM DB2 ibmdb2

Oracle DB oracle

Microsoft SQLServer sqlserver

Sybase sybase

Teiid teiid

MariaDB mariadb

Derby derby

Hive2 hive2

PrestoDB prestodb

D.6.2. Example datasource definitions

D.6.2.1. MySQL

An example of a MySQL datasource configuration with connection information, basic security, and
validation options:

thorntail:
 datasources:
 data-sources:
 MyDS:
 driver-name: mysql
 connection-url: jdbc:mysql://localhost:3306/jbossdb
 user-name: admin
 password: admin
 valid-connection-checker-class-name:
org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLValidConnectionChecker
 validate-on-match: true

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

139

D.6.2.2. PostgreSQL

An example of a PostgreSQL datasource configuration with connection information, basic security, and
validation options:

D.6.2.3. Oracle

An example of an Oracle datasource configuration with connection information, basic security, and
validation options:

Maven Coordinates

 background-validation: false
 exception-sorter-class-name:
org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLExceptionSorter

thorntail:
 datasources:
 data-sources:
 MyDS:
 driver-name: postgresql
 connection-url: jdbc:postgresql://localhost:5432/postgresdb
 user-name: admin
 password: admin
 valid-connection-checker-class-name:
org.jboss.jca.adapters.jdbc.extensions.postgres.PostgreSQLValidConnectionChecker
 validate-on-match: true
 background-validation: false
 exception-sorter-class-name:
org.jboss.jca.adapters.jdbc.extensions.postgres.PostgreSQLExceptionSorter

thorntail:
 datasources:
 data-sources:
 MyDS:
 driver-name: oracle
 connection-url: jdbc:oracle:thin:@localhost:1521:XE
 user-name: admin
 password: admin
 valid-connection-checker-class-name:
org.jboss.jca.adapters.jdbc.extensions.oracle.OracleValidConnectionChecker
 validate-on-match: true
 background-validation: false
 stale-connection-checker-class-name:
org.jboss.jca.adapters.jdbc.extensions.oracle.OracleStaleConnectionChecker
 exception-sorter-class-name:
org.jboss.jca.adapters.jdbc.extensions.oracle.OracleExceptionSorter

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>datasources</artifactId>
</dependency>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

140

Configuration

thorntail.datasources.data-sources.KEY.allocation-retry

The allocation retry element indicates the number of times that allocating a connection should be
tried before throwing an exception

thorntail.datasources.data-sources.KEY.allocation-retry-wait-millis

The allocation retry wait millis element specifies the amount of time, in milliseconds, to wait between
retrying to allocate a connection

thorntail.datasources.data-sources.KEY.allow-multiple-users

Specifies if multiple users will access the datasource through the getConnection(user, password)
method and hence if the internal pool type should account for that

thorntail.datasources.data-sources.KEY.authentication-context

The Elytron authentication context which defines the javax.security.auth.Subject that is used to
distinguish connections in the pool.

thorntail.datasources.data-sources.KEY.background-validation

An element to specify that connections should be validated on a background thread versus being
validated prior to use. Changing this value can be done only on disabled datasource, requires a server
restart otherwise.

thorntail.datasources.data-sources.KEY.background-validation-millis

The background-validation-millis element specifies the amount of time, in milliseconds, that
background validation will run. Changing this value can be done only on disabled datasource, requires
a server restart otherwise

thorntail.datasources.data-sources.KEY.blocking-timeout-wait-millis

The blocking-timeout-millis element specifies the maximum time, in milliseconds, to block while
waiting for a connection before throwing an exception. Note that this blocks only while waiting for
locking a connection, and will never throw an exception if creating a new connection takes an
inordinately long time

thorntail.datasources.data-sources.KEY.capacity-decrementer-class

Class defining the policy for decrementing connections in the pool

thorntail.datasources.data-sources.KEY.capacity-decrementer-properties

Properties to be injected in class defining the policy for decrementing connections in the pool

thorntail.datasources.data-sources.KEY.capacity-incrementer-class

Class defining the policy for incrementing connections in the pool

thorntail.datasources.data-sources.KEY.capacity-incrementer-properties

Properties to be injected in class defining the policy for incrementing connections in the pool

thorntail.datasources.data-sources.KEY.check-valid-connection-sql

Specify an SQL statement to check validity of a pool connection. This may be called when managed
connection is obtained from the pool

thorntail.datasources.data-sources.KEY.connectable

Enable the use of CMR. This feature means that a local resource can reliably participate in an XA
transaction.

thorntail.datasources.data-sources.KEY.connection-listener-class

Speciefies class name extending org.jboss.jca.adapters.jdbc.spi.listener.ConnectionListener that
provides a possible to listen for connection activation and passivation in order to perform actions
before the connection is returned to the application or returned to the pool.

thorntail.datasources.data-sources.KEY.connection-listener-property

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

141

Properties to be injected in class specidied in connection-listener-class

thorntail.datasources.data-sources.KEY.connection-properties.KEY.value

Each connection-property specifies a string name/value pair with the property name coming from
the name attribute and the value coming from the element content

thorntail.datasources.data-sources.KEY.connection-url

The JDBC driver connection URL

thorntail.datasources.data-sources.KEY.credential-reference

Credential (from Credential Store) to authenticate on data source

thorntail.datasources.data-sources.KEY.datasource-class

The fully qualified name of the JDBC datasource class

thorntail.datasources.data-sources.KEY.driver-class

The fully qualified name of the JDBC driver class

thorntail.datasources.data-sources.KEY.driver-name

Defines the JDBC driver the datasource should use. It is a symbolic name matching the the name of
installed driver. In case the driver is deployed as jar, the name is the name of deployment unit

thorntail.datasources.data-sources.KEY.elytron-enabled

Enables Elytron security for handling authentication of connections. The Elytron authentication-
context to be used will be current context if no context is specified (see authentication-context).

thorntail.datasources.data-sources.KEY.enlistment-trace

Defines if WildFly/IronJacamar should record enlistment traces

thorntail.datasources.data-sources.KEY.exception-sorter-class-name

An org.jboss.jca.adapters.jdbc.ExceptionSorter that provides an isExceptionFatal(SQLException)
method to validate if an exception should broadcast an error

thorntail.datasources.data-sources.KEY.exception-sorter-properties

The exception sorter properties

thorntail.datasources.data-sources.KEY.flush-strategy

Specifies how the pool should be flush in case of an error.

thorntail.datasources.data-sources.KEY.idle-timeout-minutes

The idle-timeout-minutes elements specifies the maximum time, in minutes, a connection may be
idle before being closed. The actual maximum time depends also on the IdleRemover scan time,
which is half of the smallest idle-timeout-minutes value of any pool. Changing this value can be done
only on disabled datasource, requires a server restart otherwise.

thorntail.datasources.data-sources.KEY.initial-pool-size

The initial-pool-size element indicates the initial number of connections a pool should hold.

thorntail.datasources.data-sources.KEY.jndi-name

Specifies the JNDI name for the datasource

thorntail.datasources.data-sources.KEY.jta

Enable JTA integration

thorntail.datasources.data-sources.KEY.max-pool-size

The max-pool-size element specifies the maximum number of connections for a pool. No more
connections will be created in each sub-pool

thorntail.datasources.data-sources.KEY.mcp

Defines the ManagedConnectionPool implementation, f.ex.
org.jboss.jca.core.connectionmanager.pool.mcp.SemaphoreArrayListManagedConnectionPool

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

142

thorntail.datasources.data-sources.KEY.min-pool-size

The min-pool-size element specifies the minimum number of connections for a pool

thorntail.datasources.data-sources.KEY.new-connection-sql

Specifies an SQL statement to execute whenever a connection is added to the connection pool

thorntail.datasources.data-sources.KEY.password

Specifies the password used when creating a new connection

thorntail.datasources.data-sources.KEY.pool-fair

Defines if pool use should be fair

thorntail.datasources.data-sources.KEY.pool-prefill

Should the pool be prefilled. Changing this value can be done only on disabled datasource, requires a
server restart otherwise.

thorntail.datasources.data-sources.KEY.pool-use-strict-min

Specifies if the min-pool-size should be considered strictly

thorntail.datasources.data-sources.KEY.prepared-statements-cache-size

The number of prepared statements per connection in an LRU cache

thorntail.datasources.data-sources.KEY.query-timeout

Any configured query timeout in seconds. If not provided no timeout will be set

thorntail.datasources.data-sources.KEY.reauth-plugin-class-name

The fully qualified class name of the reauthentication plugin implementation

thorntail.datasources.data-sources.KEY.reauth-plugin-properties

The properties for the reauthentication plugin

thorntail.datasources.data-sources.KEY.security-domain

Specifies the PicketBox security domain which defines the PicketBox javax.security.auth.Subject
that are used to distinguish connections in the pool

thorntail.datasources.data-sources.KEY.set-tx-query-timeout

Whether to set the query timeout based on the time remaining until transaction timeout. Any
configured query timeout will be used if there is no transaction

thorntail.datasources.data-sources.KEY.share-prepared-statements

Whether to share prepared statements, i.e. whether asking for same statement twice without closing
uses the same underlying prepared statement

thorntail.datasources.data-sources.KEY.spy

Enable spying of SQL statements

thorntail.datasources.data-sources.KEY.stale-connection-checker-class-name

An org.jboss.jca.adapters.jdbc.StaleConnectionChecker that provides an
isStaleConnection(SQLException) method which if it returns true will wrap the exception in an
org.jboss.jca.adapters.jdbc.StaleConnectionException

thorntail.datasources.data-sources.KEY.stale-connection-checker-properties

The stale connection checker properties

thorntail.datasources.data-sources.KEY.statistics-enabled

Define whether runtime statistics are enabled or not.

thorntail.datasources.data-sources.KEY.track-statements

Whether to check for unclosed statements when a connection is returned to the pool, result sets are
closed, a statement is closed or return to the prepared statement cache. Valid values are: "false" - do
not track statements, "true" - track statements and result sets and warn when they are not closed,

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

143

"nowarn" - track statements but do not warn about them being unclosed

thorntail.datasources.data-sources.KEY.tracking

Defines if IronJacamar should track connection handles across transaction boundaries

thorntail.datasources.data-sources.KEY.transaction-isolation

Set the java.sql.Connection transaction isolation level. Valid values are:
TRANSACTION_READ_UNCOMMITTED, TRANSACTION_READ_COMMITTED,
TRANSACTION_REPEATABLE_READ, TRANSACTION_SERIALIZABLE and TRANSACTION_NONE.
Different values are used to set customLevel using TransactionIsolation#customLevel

thorntail.datasources.data-sources.KEY.url-delimiter

Specifies the delimiter for URLs in connection-url for HA datasources

thorntail.datasources.data-sources.KEY.url-selector-strategy-class-name

A class that implements org.jboss.jca.adapters.jdbc.URLSelectorStrategy

thorntail.datasources.data-sources.KEY.use-ccm

Enable the use of a cached connection manager

thorntail.datasources.data-sources.KEY.use-fast-fail

Whether to fail a connection allocation on the first try if it is invalid (true) or keep trying until the pool
is exhausted of all potential connections (false)

thorntail.datasources.data-sources.KEY.use-java-context

Setting this to false will bind the datasource into global JNDI

thorntail.datasources.data-sources.KEY.use-try-lock

Any configured timeout for internal locks on the resource adapter objects in seconds

thorntail.datasources.data-sources.KEY.user-name

Specify the user name used when creating a new connection

thorntail.datasources.data-sources.KEY.valid-connection-checker-class-name

An org.jboss.jca.adapters.jdbc.ValidConnectionChecker that provides an
isValidConnection(Connection) method to validate a connection. If an exception is returned that
means the connection is invalid. This overrides the check-valid-connection-sql element

thorntail.datasources.data-sources.KEY.valid-connection-checker-properties

The valid connection checker properties

thorntail.datasources.data-sources.KEY.validate-on-match

The validate-on-match element specifies if connection validation should be done when a connection
factory attempts to match a managed connection. This is typically exclusive to the use of
background validation

thorntail.datasources.installed-drivers

List of JDBC drivers that have been installed in the runtime

thorntail.datasources.jdbc-drivers.KEY.datasource-class-info

The available properties for the datasource-class, and xa-datasource-class for the jdbc-driver

thorntail.datasources.jdbc-drivers.KEY.deployment-name

The name of the deployment unit from which the driver was loaded

thorntail.datasources.jdbc-drivers.KEY.driver-class-name

The fully qualified class name of the java.sql.Driver implementation

thorntail.datasources.jdbc-drivers.KEY.driver-datasource-class-name

The fully qualified class name of the javax.sql.DataSource implementation

thorntail.datasources.jdbc-drivers.KEY.driver-major-version

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

144

The driver’s major version number

thorntail.datasources.jdbc-drivers.KEY.driver-minor-version

The driver’s minor version number

thorntail.datasources.jdbc-drivers.KEY.driver-module-name

The name of the module from which the driver was loaded, if it was loaded from the module path

thorntail.datasources.jdbc-drivers.KEY.driver-name

Defines the JDBC driver the datasource should use. It is a symbolic name matching the the name of
installed driver. In case the driver is deployed as jar, the name is the name of deployment unit

thorntail.datasources.jdbc-drivers.KEY.driver-xa-datasource-class-name

The fully qualified class name of the javax.sql.XADataSource implementation

thorntail.datasources.jdbc-drivers.KEY.jdbc-compliant

Whether or not the driver is JDBC compliant

thorntail.datasources.jdbc-drivers.KEY.module-slot

The slot of the module from which the driver was loaded, if it was loaded from the module path

thorntail.datasources.jdbc-drivers.KEY.profile

Domain Profile in which driver is defined. Null in case of standalone server

thorntail.datasources.jdbc-drivers.KEY.xa-datasource-class

XA datasource class

thorntail.datasources.xa-data-sources.KEY.allocation-retry

The allocation retry element indicates the number of times that allocating a connection should be
tried before throwing an exception

thorntail.datasources.xa-data-sources.KEY.allocation-retry-wait-millis

The allocation retry wait millis element specifies the amount of time, in milliseconds, to wait between
retrying to allocate a connection

thorntail.datasources.xa-data-sources.KEY.allow-multiple-users

Specifies if multiple users will access the datasource through the getConnection(user, password)
method and hence if the internal pool type should account for that

thorntail.datasources.xa-data-sources.KEY.authentication-context

The Elytron authentication context which defines the javax.security.auth.Subject that is used to
distinguish connections in the pool.

thorntail.datasources.xa-data-sources.KEY.background-validation

An element to specify that connections should be validated on a background thread versus being
validated prior to use.

thorntail.datasources.xa-data-sources.KEY.background-validation-millis

The background-validation-millis element specifies the amount of time, in milliseconds, that
background validation will run.

thorntail.datasources.xa-data-sources.KEY.blocking-timeout-wait-millis

The blocking-timeout-millis element specifies the maximum time, in milliseconds, to block while
waiting for a connection before throwing an exception. Note that this blocks only while waiting for
locking a connection, and will never throw an exception if creating a new connection takes an
inordinately long time

thorntail.datasources.xa-data-sources.KEY.capacity-decrementer-class

Class defining the policy for decrementing connections in the pool

thorntail.datasources.xa-data-sources.KEY.capacity-decrementer-properties

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

145

Properties to inject in class defining the policy for decrementing connections in the pool

thorntail.datasources.xa-data-sources.KEY.capacity-incrementer-class

Class defining the policy for incrementing connections in the pool

thorntail.datasources.xa-data-sources.KEY.capacity-incrementer-properties

Properties to inject in class defining the policy for incrementing connections in the pool

thorntail.datasources.xa-data-sources.KEY.check-valid-connection-sql

Specify an SQL statement to check validity of a pool connection. This may be called when managed
connection is obtained from the pool

thorntail.datasources.xa-data-sources.KEY.connectable

Enable the use of CMR for this datasource. This feature means that a local resource can reliably
participate in an XA transaction.

thorntail.datasources.xa-data-sources.KEY.connection-listener-class

Speciefies class name extending org.jboss.jca.adapters.jdbc.spi.listener.ConnectionListener that
provides a possible to listen for connection activation and passivation in order to perform actions
before the connection is returned to the application or returned to the pool.

thorntail.datasources.xa-data-sources.KEY.connection-listener-property

Properties to be injected in class specified in connection-listener-class

thorntail.datasources.xa-data-sources.KEY.credential-reference

Credential (from Credential Store) to authenticate on data source

thorntail.datasources.xa-data-sources.KEY.driver-name

Defines the JDBC driver the datasource should use. It is a symbolic name matching the the name of
installed driver. In case the driver is deployed as jar, the name is the name of deployment unit

thorntail.datasources.xa-data-sources.KEY.elytron-enabled

Enables Elytron security for handling authentication of connections for recovery. The Elytron
authentication-context to be used will be current context if no context is specified (see
authentication-context).

thorntail.datasources.xa-data-sources.KEY.enlistment-trace

Defines if WildFly/IronJacamar should record enlistment traces

thorntail.datasources.xa-data-sources.KEY.exception-sorter-class-name

An org.jboss.jca.adapters.jdbc.ExceptionSorter that provides an isExceptionFatal(SQLException)
method to validate if an exception should broadcast an error

thorntail.datasources.xa-data-sources.KEY.exception-sorter-properties

The exception sorter properties

thorntail.datasources.xa-data-sources.KEY.flush-strategy

Specifies how the pool should be flush in case of an error.

thorntail.datasources.xa-data-sources.KEY.idle-timeout-minutes

The idle-timeout-minutes elements specifies the maximum time, in minutes, a connection may be
idle before being closed. The actual maximum time depends also on the IdleRemover scan time,
which is half of the smallest idle-timeout-minutes value of any pool. Changing this value can be done
only on disabled datasource, requires a server restart otherwise.

thorntail.datasources.xa-data-sources.KEY.initial-pool-size

The initial-pool-size element indicates the initial number of connections a pool should hold.

thorntail.datasources.xa-data-sources.KEY.interleaving

An element to enable interleaving for XA connections

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

146

thorntail.datasources.xa-data-sources.KEY.jndi-name

Specifies the JNDI name for the datasource

thorntail.datasources.xa-data-sources.KEY.max-pool-size

The max-pool-size element specifies the maximum number of connections for a pool. No more
connections will be created in each sub-pool

thorntail.datasources.xa-data-sources.KEY.mcp

Defines the ManagedConnectionPool implementation, f.ex.
org.jboss.jca.core.connectionmanager.pool.mcp.SemaphoreArrayListManagedConnectionPool

thorntail.datasources.xa-data-sources.KEY.min-pool-size

The min-pool-size element specifies the minimum number of connections for a pool

thorntail.datasources.xa-data-sources.KEY.new-connection-sql

Specifies an SQL statement to execute whenever a connection is added to the connection pool

thorntail.datasources.xa-data-sources.KEY.no-recovery

Specifies if the connection pool should be excluded from recovery

thorntail.datasources.xa-data-sources.KEY.no-tx-separate-pool

Oracle does not like XA connections getting used both inside and outside a JTA transaction. To
workaround the problem you can create separate sub-pools for the different contexts

thorntail.datasources.xa-data-sources.KEY.pad-xid

Should the Xid be padded

thorntail.datasources.xa-data-sources.KEY.password

Specifies the password used when creating a new connection

thorntail.datasources.xa-data-sources.KEY.pool-fair

Defines if pool use should be fair

thorntail.datasources.xa-data-sources.KEY.pool-prefill

Should the pool be prefilled. Changing this value can be done only on disabled datasource, requires a
server restart otherwise.

thorntail.datasources.xa-data-sources.KEY.pool-use-strict-min

Specifies if the min-pool-size should be considered strictly

thorntail.datasources.xa-data-sources.KEY.prepared-statements-cache-size

The number of prepared statements per connection in an LRU cache

thorntail.datasources.xa-data-sources.KEY.query-timeout

Any configured query timeout in seconds. If not provided no timeout will be set

thorntail.datasources.xa-data-sources.KEY.reauth-plugin-class-name

The fully qualified class name of the reauthentication plugin implementation

thorntail.datasources.xa-data-sources.KEY.reauth-plugin-properties

The properties for the reauthentication plugin

thorntail.datasources.xa-data-sources.KEY.recovery-authentication-context

The Elytron authentication context which defines the javax.security.auth.Subject that is used to
distinguish connections in the pool.

thorntail.datasources.xa-data-sources.KEY.recovery-credential-reference

Credential (from Credential Store) to authenticate on data source

thorntail.datasources.xa-data-sources.KEY.recovery-elytron-enabled

Enables Elytron security for handling authentication of connections for recovery. The Elytron

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

147

Enables Elytron security for handling authentication of connections for recovery. The Elytron
authentication-context to be used will be current context if no context is specified (see
authentication-context).

thorntail.datasources.xa-data-sources.KEY.recovery-password

The password used for recovery

thorntail.datasources.xa-data-sources.KEY.recovery-plugin-class-name

The fully qualified class name of the recovery plugin implementation

thorntail.datasources.xa-data-sources.KEY.recovery-plugin-properties

The properties for the recovery plugin

thorntail.datasources.xa-data-sources.KEY.recovery-security-domain

The security domain used for recovery

thorntail.datasources.xa-data-sources.KEY.recovery-username

The user name used for recovery

thorntail.datasources.xa-data-sources.KEY.same-rm-override

The is-same-rm-override element allows one to unconditionally set whether the
javax.transaction.xa.XAResource.isSameRM(XAResource) returns true or false

thorntail.datasources.xa-data-sources.KEY.security-domain

Specifies the PicketBox security domain which defines the javax.security.auth.Subject that are used
to distinguish connections in the pool

thorntail.datasources.xa-data-sources.KEY.set-tx-query-timeout

Whether to set the query timeout based on the time remaining until transaction timeout. Any
configured query timeout will be used if there is no transaction

thorntail.datasources.xa-data-sources.KEY.share-prepared-statements

Whether to share prepared statements, i.e. whether asking for same statement twice without closing
uses the same underlying prepared statement

thorntail.datasources.xa-data-sources.KEY.spy

Enable spying of SQL statements

thorntail.datasources.xa-data-sources.KEY.stale-connection-checker-class-name

An org.jboss.jca.adapters.jdbc.StaleConnectionChecker that provides an
isStaleConnection(SQLException) method which if it returns true will wrap the exception in an
org.jboss.jca.adapters.jdbc.StaleConnectionException

thorntail.datasources.xa-data-sources.KEY.stale-connection-checker-properties

The stale connection checker properties

thorntail.datasources.xa-data-sources.KEY.statistics-enabled

Define whether runtime statistics are enabled or not.

thorntail.datasources.xa-data-sources.KEY.track-statements

Whether to check for unclosed statements when a connection is returned to the pool, result sets are
closed, a statement is closed or return to the prepared statement cache. Valid values are: "false" - do
not track statements, "true" - track statements and result sets and warn when they are not closed,
"nowarn" - track statements but do not warn about them being unclosed

thorntail.datasources.xa-data-sources.KEY.tracking

Defines if IronJacamar should track connection handles across transaction boundaries

thorntail.datasources.xa-data-sources.KEY.transaction-isolation

Set the java.sql.Connection transaction isolation level. Valid values are:
TRANSACTION_READ_UNCOMMITTED, TRANSACTION_READ_COMMITTED,

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

148

TRANSACTION_REPEATABLE_READ, TRANSACTION_SERIALIZABLE and TRANSACTION_NONE.
Different values are used to set customLevel using TransactionIsolation#customLevel.

thorntail.datasources.xa-data-sources.KEY.url-delimiter

Specifies the delimiter for URLs in connection-url for HA datasources

thorntail.datasources.xa-data-sources.KEY.url-property

Specifies the property for the URL property in the xa-datasource-property values

thorntail.datasources.xa-data-sources.KEY.url-selector-strategy-class-name

A class that implements org.jboss.jca.adapters.jdbc.URLSelectorStrategy

thorntail.datasources.xa-data-sources.KEY.use-ccm

Enable the use of a cached connection manager

thorntail.datasources.xa-data-sources.KEY.use-fast-fail

Whether to fail a connection allocation on the first try if it is invalid (true) or keep trying until the pool
is exhausted of all potential connections (false)

thorntail.datasources.xa-data-sources.KEY.use-java-context

Setting this to false will bind the datasource into global JNDI

thorntail.datasources.xa-data-sources.KEY.use-try-lock

Any configured timeout for internal locks on the resource adapter objects in seconds

thorntail.datasources.xa-data-sources.KEY.user-name

Specify the user name used when creating a new connection

thorntail.datasources.xa-data-sources.KEY.valid-connection-checker-class-name

An org.jboss.jca.adapters.jdbc.ValidConnectionChecker that provides an
isValidConnection(Connection) method to validate a connection. If an exception is returned that
means the connection is invalid. This overrides the check-valid-connection-sql element

thorntail.datasources.xa-data-sources.KEY.valid-connection-checker-properties

The valid connection checker properties

thorntail.datasources.xa-data-sources.KEY.validate-on-match

The validate-on-match element specifies if connection validation should be done when a connection
factory attempts to match a managed connection. This is typically exclusive to the use of
background validation

thorntail.datasources.xa-data-sources.KEY.wrap-xa-resource

Should the XAResource instances be wrapped in an org.jboss.tm.XAResourceWrapper instance

thorntail.datasources.xa-data-sources.KEY.xa-datasource-class

The fully qualified name of the javax.sql.XADataSource implementation

thorntail.datasources.xa-data-sources.KEY.xa-datasource-properties.KEY.value

Specifies a property value to assign to the XADataSource implementation class. Each property is
identified by the name attribute and the property value is given by the xa-datasource-property
element content. The property is mapped onto the XADataSource implementation by looking for a
JavaBeans style getter method for the property name. If found, the value of the property is set using
the JavaBeans setter with the element text translated to the true property type using the
java.beans.PropertyEditor

thorntail.datasources.xa-data-sources.KEY.xa-resource-timeout

The value is passed to XAResource.setTransactionTimeout(), in seconds. Default is zero

thorntail.ds.connection.url

Default datasource connection URL

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

149

thorntail.ds.name

Name of the default datasource

thorntail.ds.password

Default datasource connection password

thorntail.ds.username

Default datasource connection user name

thorntail.jdbc.driver

Default datasource JDBC driver name

D.7. EE

An internal fraction used to support other higher-level fractions.

The EE fraction does not imply the totality of Java EE support.

If you require specific Java EE technologies, address them individually, for example jaxrs, cdi,
datasources, or ejb.

Maven Coordinates

Configuration

thorntail.ee.annotation-property-replacement

Flag indicating whether Java EE annotations will have property replacements applied

thorntail.ee.context-services.KEY.jndi-name

The JNDI Name to lookup the context service.

thorntail.ee.context-services.KEY.use-transaction-setup-provider

Flag which indicates if the transaction setup provider should be used

thorntail.ee.default-bindings-service.context-service

The JNDI name where the default EE Context Service can be found

thorntail.ee.default-bindings-service.datasource

The JNDI name where the default EE Datasource can be found

thorntail.ee.default-bindings-service.jms-connection-factory

The JNDI name where the default EE JMS Connection Factory can be found

thorntail.ee.default-bindings-service.managed-executor-service

The JNDI name where the default EE Managed Executor Service can be found

thorntail.ee.default-bindings-service.managed-scheduled-executor-service

The JNDI name where the default EE Managed Scheduled Executor Service can be found

thorntail.ee.default-bindings-service.managed-thread-factory

The JNDI name where the default EE Managed Thread Factory can be found

thorntail.ee.ear-subdeployments-isolated

Flag indicating whether each of the subdeployments within a .ear can access classes belonging to

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>ee</artifactId>
</dependency>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

150

Flag indicating whether each of the subdeployments within a .ear can access classes belonging to
another subdeployment within the same .ear. A value of false means the subdeployments can see
classes belonging to other subdeployments within the .ear.

thorntail.ee.global-modules

A list of modules that should be made available to all deployments.

thorntail.ee.jboss-descriptor-property-replacement

Flag indicating whether JBoss specific deployment descriptors will have property replacements
applied

thorntail.ee.managed-executor-services.KEY.context-service

The name of the context service to be used by the executor.

thorntail.ee.managed-executor-services.KEY.core-threads

The minimum number of threads to be used by the executor. If left undefined the default core-size is
calculated based on the number of processors. A value of zero is not advised and in some cases
invalid. See the queue-length attribute for details on how this value is used to determine the queuing
strategy.

thorntail.ee.managed-executor-services.KEY.hung-task-threshold

The runtime, in milliseconds, for tasks to be considered hung by the managed executor service. If
value is 0 tasks are never considered hung.

thorntail.ee.managed-executor-services.KEY.jndi-name

The JNDI Name to lookup the managed executor service.

thorntail.ee.managed-executor-services.KEY.keepalive-time

When the number of threads is greater than the core, this is the maximum time, in milliseconds, that
excess idle threads will wait for new tasks before terminating.

thorntail.ee.managed-executor-services.KEY.long-running-tasks

Flag which hints the duration of tasks executed by the executor.

thorntail.ee.managed-executor-services.KEY.max-threads

The maximum number of threads to be used by the executor. If left undefined the value from core-
size will be used. This value is ignored if an unbounded queue is used (only core-threads will be used
in that case).

thorntail.ee.managed-executor-services.KEY.queue-length

The executors task queue capacity. A length of 0 means direct hand-off and possible rejection will
occur. An undefined length (the default), or Integer.MAX_VALUE, indicates that an unbounded
queue should be used. All other values specify an exact queue size. If an unbounded queue or direct
hand-off is used, a core-threads value greater than zero is required.

thorntail.ee.managed-executor-services.KEY.reject-policy

The policy to be applied to aborted tasks.

thorntail.ee.managed-executor-services.KEY.thread-factory

The name of the thread factory to be used by the executor.

thorntail.ee.managed-scheduled-executor-services.KEY.context-service

The name of the context service to be used by the scheduled executor.

thorntail.ee.managed-scheduled-executor-services.KEY.core-threads

The minimum number of threads to be used by the scheduled executor.

thorntail.ee.managed-scheduled-executor-services.KEY.hung-task-threshold

The runtime, in milliseconds, for tasks to be considered hung by the scheduled executor. If 0 tasks
are never considered hung.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

151

thorntail.ee.managed-scheduled-executor-services.KEY.jndi-name

The JNDI Name to lookup the managed scheduled executor service.

thorntail.ee.managed-scheduled-executor-services.KEY.keepalive-time

When the number of threads is greater than the core, this is the maximum time, in milliseconds, that
excess idle threads will wait for new tasks before terminating.

thorntail.ee.managed-scheduled-executor-services.KEY.long-running-tasks

Flag which hints the duration of tasks executed by the scheduled executor.

thorntail.ee.managed-scheduled-executor-services.KEY.reject-policy

The policy to be applied to aborted tasks.

thorntail.ee.managed-scheduled-executor-services.KEY.thread-factory

The name of the thread factory to be used by the scheduled executor.

thorntail.ee.managed-thread-factories.KEY.context-service

The name of the context service to be used by the managed thread factory

thorntail.ee.managed-thread-factories.KEY.jndi-name

The JNDI Name to lookup the managed thread factory.

thorntail.ee.managed-thread-factories.KEY.priority

The priority applied to threads created by the factory

thorntail.ee.spec-descriptor-property-replacement

Flag indicating whether descriptors defined by the Java EE specification will have property
replacements applied

D.7.1. EE Security

Provides Java EE Security API support according to JSR 375.

Maven Coordinates

D.8. EJB

Maven Coordinates

Configuration

thorntail.ejb3.allow-ejb-name-regex

If this is true then regular expressions can be used in interceptor bindings to allow interceptors to be
mapped to all beans that match the regular expression

thorntail.ejb3.application-security-domains.KEY.enable-jacc

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>ee-security</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>ejb</artifactId>
</dependency>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

152

Enable authorization using JACC

thorntail.ejb3.application-security-domains.KEY.referencing-deployments

The deployments currently referencing this mapping

thorntail.ejb3.application-security-domains.KEY.security-domain

The Elytron security domain to be used by deployments that reference the mapped security domain

thorntail.ejb3.async-service.thread-pool-name

The name of the thread pool which handles asynchronous invocations

thorntail.ejb3.caches.KEY.aliases

The aliases by which this cache may also be referenced

thorntail.ejb3.caches.KEY.passivation-store

The passivation store used by this cache

thorntail.ejb3.cluster-passivation-stores.KEY.bean-cache

The name of the cache used to store bean instances.

thorntail.ejb3.cluster-passivation-stores.KEY.cache-container

The name of the cache container used for the bean and client-mappings caches

thorntail.ejb3.cluster-passivation-stores.KEY.idle-timeout

The timeout in units specified by idle-timeout-unit, after which a bean will passivate

thorntail.ejb3.cluster-passivation-stores.KEY.max-size

The maximum number of beans this cache should store before forcing old beans to passivate

thorntail.ejb3.default-clustered-sfsb-cache

Name of the default stateful bean cache, which will be applicable to all clustered stateful EJBs, unless
overridden at the deployment or bean level

thorntail.ejb3.default-distinct-name

The default distinct name that is applied to every EJB deployed on this server

thorntail.ejb3.default-entity-bean-instance-pool

Name of the default entity bean instance pool, which will be applicable to all entity beans, unless
overridden at the deployment or bean level

thorntail.ejb3.default-entity-bean-optimistic-locking

If set to true entity beans will use optimistic locking by default

thorntail.ejb3.default-mdb-instance-pool

Name of the default MDB instance pool, which will be applicable to all MDBs, unless overridden at
the deployment or bean level

thorntail.ejb3.default-missing-method-permissions-deny-access

If this is set to true then methods on an EJB with a security domain specified or with other methods
with security metadata will have an implicit @DenyAll unless other security metadata is present

thorntail.ejb3.default-resource-adapter-name

Name of the default resource adapter name that will be used by MDBs, unless overridden at the
deployment or bean level

thorntail.ejb3.default-security-domain

The default security domain that will be used for EJBs if the bean doesn’t explicitly specify one

thorntail.ejb3.default-sfsb-cache

Name of the default stateful bean cache, which will be applicable to all stateful EJBs, unless
overridden at the deployment or bean level

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

153

thorntail.ejb3.default-sfsb-passivation-disabled-cache

Name of the default stateful bean cache, which will be applicable to all stateful EJBs which have
passivation disabled. Each deployment or EJB can optionally override this cache name.

thorntail.ejb3.default-singleton-bean-access-timeout

The default access timeout for singleton beans

thorntail.ejb3.default-slsb-instance-pool

Name of the default stateless bean instance pool, which will be applicable to all stateless EJBs,
unless overridden at the deployment or bean level

thorntail.ejb3.default-stateful-bean-access-timeout

The default access timeout for stateful beans

thorntail.ejb3.disable-default-ejb-permissions

This deprecated attribute has no effect and will be removed in a future release; it may never be set to
a "false" value

thorntail.ejb3.enable-graceful-txn-shutdown

Enabling txn graceful shutdown will make the server wait for active EJB-related transactions to
complete before suspending. For that reason, if the server is running on a cluster, the suspending
cluster node may receive ejb requests until all active transactions are complete. To avoid this
behavior, omit this tag.

thorntail.ejb3.enable-statistics

If set to true, enable the collection of invocation statistics. Deprecated in favour of "statistics-
enabled"

thorntail.ejb3.file-passivation-stores.KEY.idle-timeout

The timeout in units specified by idle-timeout-unit, after which a bean will passivate

thorntail.ejb3.file-passivation-stores.KEY.max-size

The maximum number of beans this cache should store before forcing old beans to passivate

thorntail.ejb3.identity-service.outflow-security-domains

References to security domains to attempt to outflow any established identity to

thorntail.ejb3.iiop-service.enable-by-default

If this is true EJB’s will be exposed over IIOP by default, otherwise it needs to be explicitly enabled in
the deployment descriptor

thorntail.ejb3.iiop-service.use-qualified-name

If true EJB names will be bound into the naming service with the application and module name
prepended to the name (e.g. myapp/mymodule/MyEjb)

thorntail.ejb3.in-vm-remote-interface-invocation-pass-by-value

If set to false, the parameters to invocations on remote interface of an EJB, will be passed by
reference. Else, the parameters will be passed by value.

thorntail.ejb3.log-system-exceptions

If this is true then all EJB system (not application) exceptions will be logged. The EJB spec
mandates this behaviour, however it is not recommended as it will often result in exceptions being
logged twice (once by the EJB and once by the calling code)

thorntail.ejb3.mdb-delivery-groups.KEY.active

Indicates if delivery for all MDBs belonging to this group is active

thorntail.ejb3.passivation-stores.KEY.bean-cache

The name of the cache used to store bean instances.

thorntail.ejb3.passivation-stores.KEY.cache-container

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

154

The name of the cache container used for the bean and client-mappings caches

thorntail.ejb3.passivation-stores.KEY.max-size

The maximum number of beans this cache should store before forcing old beans to passivate

thorntail.ejb3.remote-service.channel-creation-options.KEY.type

The type of the channel creation option

thorntail.ejb3.remote-service.channel-creation-options.KEY.value

The value for the EJB remote channel creation option

thorntail.ejb3.remote-service.cluster

The name of the clustered cache container which will be used to store/access the client-mappings of
the EJB remoting connector’s socket-binding on each node, in the cluster

thorntail.ejb3.remote-service.connector-ref

The name of the connector on which the EJB3 remoting channel is registered

thorntail.ejb3.remote-service.execute-in-worker

If this is true the EJB request will be executed in the IO subsystems worker, otherwise it will dispatch
to the EJB thread pool

thorntail.ejb3.remote-service.thread-pool-name

The name of the thread pool that handles remote invocations

thorntail.ejb3.remoting-profiles.KEY.exclude-local-receiver

If set no local receiver is used in this profile

thorntail.ejb3.remoting-profiles.KEY.local-receiver-pass-by-value

If set local receiver will pass ejb beans by value

thorntail.ejb3.remoting-profiles.KEY.remoting-ejb-receivers.KEY.channel-creation-
options.KEY.type

The type of the channel creation option

thorntail.ejb3.remoting-profiles.KEY.remoting-ejb-receivers.KEY.channel-creation-
options.KEY.value

The value for the EJB remote channel creation option

thorntail.ejb3.remoting-profiles.KEY.remoting-ejb-receivers.KEY.connect-timeout

Remoting ejb receiver connect timeout

thorntail.ejb3.remoting-profiles.KEY.remoting-ejb-receivers.KEY.outbound-connection-ref

Name of outbound connection that will be used by the ejb receiver

thorntail.ejb3.remoting-profiles.KEY.static-ejb-discovery

Describes static discovery config for EJB’s

thorntail.ejb3.statistics-enabled

If set to true, enable the collection of invocation statistics.

thorntail.ejb3.strict-max-bean-instance-pools.KEY.derive-size

Specifies if and what the max pool size should be derived from. An undefined value (or the
deprecated value 'none' which is converted to undefined) indicates that the explicit value of max-
pool-size should be used. A value of 'from-worker-pools' indicates that the max pool size should be
derived from the size of the total threads for all worker pools configured on the system. A value of
'from-cpu-count' indicates that the max pool size should be derived from the total number of
processors available on the system. Note that the computation isn’t a 1:1 mapping, the values may or
may not be augmented by other factors.

thorntail.ejb3.strict-max-bean-instance-pools.KEY.derived-size

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

155

Derived maximum number of bean instances that the pool can hold at a given point in time

thorntail.ejb3.strict-max-bean-instance-pools.KEY.max-pool-size

Configured maximum number of bean instances that the pool can hold at a given point in time

thorntail.ejb3.strict-max-bean-instance-pools.KEY.timeout

The maximum amount of time to wait for a bean instance to be available from the pool

thorntail.ejb3.strict-max-bean-instance-pools.KEY.timeout-unit

The instance acquisition timeout unit

thorntail.ejb3.thread-pools.KEY.active-count

The approximate number of threads that are actively executing tasks.

thorntail.ejb3.thread-pools.KEY.completed-task-count

The approximate total number of tasks that have completed execution.

thorntail.ejb3.thread-pools.KEY.current-thread-count

The current number of threads in the pool.

thorntail.ejb3.thread-pools.KEY.keepalive-time

Used to specify the amount of time that pool threads should be kept running when idle; if not
specified, threads will run until the executor is shut down.

thorntail.ejb3.thread-pools.KEY.largest-thread-count

The largest number of threads that have ever simultaneously been in the pool.

thorntail.ejb3.thread-pools.KEY.max-threads

The maximum thread pool size.

thorntail.ejb3.thread-pools.KEY.name

The name of the thread pool.

thorntail.ejb3.thread-pools.KEY.queue-size

The queue size.

thorntail.ejb3.thread-pools.KEY.rejected-count

The number of tasks that have been rejected.

thorntail.ejb3.thread-pools.KEY.task-count

The approximate total number of tasks that have ever been scheduled for execution.

thorntail.ejb3.thread-pools.KEY.thread-factory

Specifies the name of a specific thread factory to use to create worker threads. If not defined an
appropriate default thread factory will be used.

thorntail.ejb3.timer-service.database-data-stores.KEY.allow-execution

If this node is allowed to execute timers. If this is false then the timers will be added to the database,
and another node may execute them. Note that depending on your refresh interval if you add timers
with a very short delay they will not be executed until another node refreshes.

thorntail.ejb3.timer-service.database-data-stores.KEY.database

The type of database that is in use. SQL can be customised per database type.

thorntail.ejb3.timer-service.database-data-stores.KEY.datasource-jndi-name

The datasource that is used to persist the timers

thorntail.ejb3.timer-service.database-data-stores.KEY.partition

The partition name. This should be set to a different value for every node that is sharing a database
to prevent the same timer being loaded by multiple noded.

thorntail.ejb3.timer-service.database-data-stores.KEY.refresh-interval

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

156

Interval between refreshing the current timer set against the underlying database. A low value means
timers get picked up more quickly, but increase load on the database.

thorntail.ejb3.timer-service.default-data-store

The default data store used for persistent timers

thorntail.ejb3.timer-service.file-data-stores.KEY.path

The directory to store persistent timer information in

thorntail.ejb3.timer-service.file-data-stores.KEY.relative-to

The relative path that is used to resolve the timer data store location

thorntail.ejb3.timer-service.thread-pool-name

The name of the thread pool used to run timer service invocations

D.8.1. EJB MDB

Provides support for Message Driven Beans.

For this to work, you need to deploy a resource adapter for an external messaging server. The name of
this resource adapter must be configured in the ejb3 subsystem. If the resource adapter’s connection
factory is bound to a different JNDI name than java:jboss/DefaultJMSConnectionFactory, the JNDI
name must be configured in the ee subsystem. For example:

thorntail:
 # deploy AMQP resource adapter
 deployment:
 org.amqphub.jca:resource-adapter.rar:
 # configure the resource adapter
 resource-adapters:
 resource-adapters:
 # the resource adapter is called `default`
 default:
 archive: resource-adapter.rar
 transaction-support: NoTransaction
 connection-definitions:
 default:
 # the connection factory is bound to JNDI name `java:global/jms/default`
 jndi-name: java:global/jms/default
 class-name: org.jboss.resource.adapter.jms.JmsManagedConnectionFactory
 config-properties:
 ConnectionFactory:
 value: factory1
 UserName:
 value: username
 Password:
 value: password
 JndiParameters:
 value:
"java.naming.factory.initial=org.apache.qpid.jms.jndi.JmsInitialContextFactory;connectionFactory.factory1
=amqp://${env.MESSAGING_SERVICE_HOST:localhost}:${env.MESSAGING_SERVICE_PORT:5672
}"
 # configure the `ejb3` and `ee` subsystems
 ejb3:
 default-resource-adapter-name: default
 ee:

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

157

Maven Coordinates

D.9. ELYTRON

Elytron can generate the audit log to the same directory where the Thorntail application is executed.
Include the following section in the project-defaults.yml file in your application:

In some environments, for example cloud, you might have to relocate the audit file to a globally writable
directory, for example:

thorntail:
 elytron:
 file-audit-logs:
 local-audit:
 path: /tmp/audit.log

Maven Coordinates

Configuration

thorntail.elytron.add-prefix-role-mappers.KEY.prefix

The prefix to add to each role.

thorntail.elytron.add-suffix-role-mappers.KEY.suffix

The suffix to add to each role.

thorntail.elytron.aggregate-http-server-mechanism-factories.KEY.available-mechanisms

The HTTP mechanisms available from this factory instance.

thorntail.elytron.aggregate-http-server-mechanism-factories.KEY.http-server-mechanism-
factories

The referenced http server factories to aggregate.

thorntail.elytron.aggregate-principal-decoders.KEY.principal-decoders

 annotation-property-replacement: true
 default-bindings-service:
 jms-connection-factory: java:global/jms/default

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>ejb-mdb</artifactId>
</dependency>

thorntail:
 elytron:
 file-audit-logs:
 local-audit:
 path: audit.log

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>elytron</artifactId>
</dependency>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

158

The referenced principal decoders to aggregate.

thorntail.elytron.aggregate-principal-transformers.KEY.principal-transformers

The referenced principal transformers to aggregate.

thorntail.elytron.aggregate-providers.KEY.providers

The referenced Provider[] resources to aggregate.

thorntail.elytron.aggregate-realms.KEY.authentication-realm

Reference to the security realm to use for authentication steps (obtaining or validating credentials).

thorntail.elytron.aggregate-realms.KEY.authorization-realm

Reference to the security realm to use for loading the identity for authorization steps (loading of the
identity).

thorntail.elytron.aggregate-role-mappers.KEY.role-mappers

The referenced role mappers to aggregate.

thorntail.elytron.aggregate-sasl-server-factories.KEY.available-mechanisms

The SASL mechanisms available from this factory after all filtering has been applied.

thorntail.elytron.aggregate-sasl-server-factories.KEY.sasl-server-factories

The referenced sasl server factories to aggregate.

thorntail.elytron.aggregate-security-event-listeners.KEY.security-event-listeners

The referenced security event listener resources to aggregate.

thorntail.elytron.authentication-configurations.KEY.anonymous

Enables anonymous authentication.

thorntail.elytron.authentication-configurations.KEY.attribute-extends

A previously defined authentication configuration to extend.

thorntail.elytron.authentication-configurations.KEY.authentication-name

The authentication name to use.

thorntail.elytron.authentication-configurations.KEY.authorization-name

The authorization name to use.

thorntail.elytron.authentication-configurations.KEY.credential-reference

The reference to credential stored in CredentialStore under defined alias or clear text password.

thorntail.elytron.authentication-configurations.KEY.forwarding-mode

The type of security identity forwarding to use. A mode of 'authentication' forwarding forwards the
principal and credential. A mode of 'authorization' forwards the authorization id, allowing for a
different authentication identity.

thorntail.elytron.authentication-configurations.KEY.host

The host to use.

thorntail.elytron.authentication-configurations.KEY.kerberos-security-factory

Reference to a kerberos security factory used to obtain a GSS kerberos credential

thorntail.elytron.authentication-configurations.KEY.mechanism-properties

Configuration properties for the SASL authentication mechanism.

thorntail.elytron.authentication-configurations.KEY.port

The port to use.

thorntail.elytron.authentication-configurations.KEY.protocol

The protocol to use.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

159

thorntail.elytron.authentication-configurations.KEY.realm

The realm to use.

thorntail.elytron.authentication-configurations.KEY.sasl-mechanism-selector

The SASL mechanism selector string.

thorntail.elytron.authentication-configurations.KEY.security-domain

Reference to a security domain to obtain a forwarded identity.

thorntail.elytron.authentication-contexts.KEY.attribute-extends

A previously defined authentication context to extend.

thorntail.elytron.authentication-contexts.KEY.match-rules

The match-rules for this authentication context.

thorntail.elytron.caching-realms.KEY.maximum-age

The time in milliseconds that an item can stay in the cache.

thorntail.elytron.caching-realms.KEY.maximum-entries

The maximum number of entries to keep in the cache.

thorntail.elytron.caching-realms.KEY.realm

A reference to a cacheable security realm.

thorntail.elytron.certificate-authority-accounts.KEY.alias

The alias of certificate authority account key in the keystore. If the alias does not already exist in the
keystore, a certificate authority account key will be automatically generated and stored as a
PrivateKeyEntry under the alias.

thorntail.elytron.certificate-authority-accounts.KEY.certificate-authority

The name of the certificate authority to use. Allowed values: "LetsEncrypt"

thorntail.elytron.certificate-authority-accounts.KEY.contact-urls

A list of URLs that the certificate authority can contact about any issues related to this account.

thorntail.elytron.certificate-authority-accounts.KEY.credential-reference

Credential to be used when accessing the certificate authority account key.

thorntail.elytron.certificate-authority-accounts.KEY.key-store

The keystore that contains the certificate authority account key.

thorntail.elytron.chained-principal-transformers.KEY.principal-transformers

The referenced principal transformers to chain.

thorntail.elytron.client-ssl-contexts.KEY.active-session-count

The count of current active sessions.

thorntail.elytron.client-ssl-contexts.KEY.cipher-suite-filter

The filter to apply to specify the enabled cipher suites.

thorntail.elytron.client-ssl-contexts.KEY.key-manager

Reference to the key manager to use within the SSLContext.

thorntail.elytron.client-ssl-contexts.KEY.protocols

The enabled protocols.

thorntail.elytron.client-ssl-contexts.KEY.provider-name

The name of the provider to use. If not specified, all providers from providers will be passed to the
SSLContext.

thorntail.elytron.client-ssl-contexts.KEY.providers

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

160

The name of the providers to obtain the Provider[] to use to load the SSLContext.

thorntail.elytron.client-ssl-contexts.KEY.ssl-sessions.KEY.application-buffer-size

The application buffer size as reported by the SSLSession.

thorntail.elytron.client-ssl-contexts.KEY.ssl-sessions.KEY.cipher-suite

The selected cipher suite as reported by the SSLSession.

thorntail.elytron.client-ssl-contexts.KEY.ssl-sessions.KEY.creation-time

The creation time as reported by the SSLSession.

thorntail.elytron.client-ssl-contexts.KEY.ssl-sessions.KEY.last-accessed-time

The last accessed time as reported by the SSLSession.

thorntail.elytron.client-ssl-contexts.KEY.ssl-sessions.KEY.local-certificates

The local certificates from the SSLSession.

thorntail.elytron.client-ssl-contexts.KEY.ssl-sessions.KEY.local-principal

The local principal as reported by the SSLSession.

thorntail.elytron.client-ssl-contexts.KEY.ssl-sessions.KEY.packet-buffer-size

The packet buffer size as reported by the SSLSession.

thorntail.elytron.client-ssl-contexts.KEY.ssl-sessions.KEY.peer-certificates

The peer certificates from the SSLSession.

thorntail.elytron.client-ssl-contexts.KEY.ssl-sessions.KEY.peer-host

The peer host as reported by the SSLSession.

thorntail.elytron.client-ssl-contexts.KEY.ssl-sessions.KEY.peer-port

The peer port as reported by the SSLSession.

thorntail.elytron.client-ssl-contexts.KEY.ssl-sessions.KEY.peer-principal

The peer principal as reported by the SSLSession.

thorntail.elytron.client-ssl-contexts.KEY.ssl-sessions.KEY.protocol

The protocol as reported by the SSLSession.

thorntail.elytron.client-ssl-contexts.KEY.ssl-sessions.KEY.valid

The validity of the session as reported by the SSLSession.

thorntail.elytron.client-ssl-contexts.KEY.trust-manager

Reference to the trust manager to use within the SSLContext.

thorntail.elytron.concatenating-principal-decoders.KEY.joiner

The string to use to join the results of the referenced principal decoders.

thorntail.elytron.concatenating-principal-decoders.KEY.principal-decoders

The referenced principal decoders to concatenate.

thorntail.elytron.configurable-http-server-mechanism-factories.KEY.available-mechanisms

The HTTP mechanisms available from this factory instance.

thorntail.elytron.configurable-http-server-mechanism-factories.KEY.filters

Filtering to be applied to enable / disable mechanisms based on the name.

thorntail.elytron.configurable-http-server-mechanism-factories.KEY.http-server-mechanism-
factory

The http server factory to be wrapped.

thorntail.elytron.configurable-http-server-mechanism-factories.KEY.properties

Custom properties to be passed in to the http server factory calls.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

161

thorntail.elytron.configurable-sasl-server-factories.KEY.available-mechanisms

The SASL mechanisms available from this factory after all filtering has been applied.

thorntail.elytron.configurable-sasl-server-factories.KEY.filters

List of filters to be evaluated sequentially combining the results using 'or'.

thorntail.elytron.configurable-sasl-server-factories.KEY.properties

Custom properties to be passed in to the sasl server factory calls.

thorntail.elytron.configurable-sasl-server-factories.KEY.protocol

The protocol that should be passed into factory when creating the mechanism.

thorntail.elytron.configurable-sasl-server-factories.KEY.sasl-server-factory

The sasl server factory to be wrapped.

thorntail.elytron.configurable-sasl-server-factories.KEY.server-name

The server name that should be passed into factory when creating the mechanism.

thorntail.elytron.constant-permission-mappers.KEY.permission-sets

The permission sets to assign.

thorntail.elytron.constant-principal-decoders.KEY.constant

The constant value the principal decoder will always return.

thorntail.elytron.constant-principal-transformers.KEY.constant

The constant value this PrincipalTransformer will always return.

thorntail.elytron.constant-realm-mappers.KEY.realm-name

The name of the constant realm to return.

thorntail.elytron.constant-role-mappers.KEY.roles

The constant roles to be returned by this role mapper.

thorntail.elytron.credential-stores.KEY.create

Specifies whether credential store should create storage when it doesn’t exist.

thorntail.elytron.credential-stores.KEY.credential-reference

Credential reference to be used to create protection parameter.

thorntail.elytron.credential-stores.KEY.implementation-properties

Map of credentials store implementation specific properties.

thorntail.elytron.credential-stores.KEY.location

File name of credential store storage.

thorntail.elytron.credential-stores.KEY.modifiable

Specifies whether credential store is modifiable.

thorntail.elytron.credential-stores.KEY.other-providers

The name of the providers defined within the subsystem to obtain the Providers to search for the
one that can create the required JCA objects within credential store. This is valid only for key-store
based CredentialStore. If this is not specified then the global list of Providers is used instead.

thorntail.elytron.credential-stores.KEY.provider-name

The name of the provider to use to instantiate the CredentialStoreSpi. If the provider is not specified
then the first provider found that can create an instance of the specified 'type' will be used.

thorntail.elytron.credential-stores.KEY.providers

The name of the providers defined within the subsystem to obtain the Providers to search for the
one that can create the required CredentialStore type. If this is not specified then the global list of
Providers is used instead.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

162

thorntail.elytron.credential-stores.KEY.relative-to

A reference to a previously defined path that the file name is relative to.

thorntail.elytron.credential-stores.KEY.state

The state of the underlying service that represents this credential store at runtime.

thorntail.elytron.credential-stores.KEY.type

The credential store type, e.g. KeyStoreCredentialStore.

thorntail.elytron.custom-credential-security-factories.KEY.class-name

The class name of the implementation of the custom security factory.

thorntail.elytron.custom-credential-security-factories.KEY.configuration

The optional key/value configuration for the custom security factory.

thorntail.elytron.custom-credential-security-factories.KEY.module

The module to use to load the custom security factory.

thorntail.elytron.custom-modifiable-realms.KEY.class-name

The class name of the implementation of the custom realm.

thorntail.elytron.custom-modifiable-realms.KEY.configuration

The optional key/value configuration for the custom realm.

thorntail.elytron.custom-modifiable-realms.KEY.module

The module to use to load the custom realm.

thorntail.elytron.custom-permission-mappers.KEY.class-name

Fully qualified class name of the permission mapper

thorntail.elytron.custom-permission-mappers.KEY.configuration

The optional kay/value configuration for the permission mapper

thorntail.elytron.custom-permission-mappers.KEY.module

Name of the module to use to load the permission mapper

thorntail.elytron.custom-principal-decoders.KEY.class-name

Fully qualified class name of the principal decoder

thorntail.elytron.custom-principal-decoders.KEY.configuration

The optional kay/value configuration for the principal decoder

thorntail.elytron.custom-principal-decoders.KEY.module

Name of the module to use to load the principal decoder

thorntail.elytron.custom-principal-transformers.KEY.class-name

The class name of the implementation of the custom principal transformer.

thorntail.elytron.custom-principal-transformers.KEY.configuration

The optional key/value configuration for the custom principal transformer.

thorntail.elytron.custom-principal-transformers.KEY.module

The module to use to load the custom principal transformer.

thorntail.elytron.custom-realm-mappers.KEY.class-name

Fully qualified class name of the RealmMapper

thorntail.elytron.custom-realm-mappers.KEY.configuration

The optional kay/value configuration for the RealmMapper

thorntail.elytron.custom-realm-mappers.KEY.module

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

163

Name of the module to use to load the RealmMapper

thorntail.elytron.custom-realms.KEY.class-name

The class name of the implementation of the custom realm.

thorntail.elytron.custom-realms.KEY.configuration

The optional key/value configuration for the custom realm.

thorntail.elytron.custom-realms.KEY.module

The module to use to load the custom realm.

thorntail.elytron.custom-role-decoders.KEY.class-name

Fully qualified class name of the RoleDecoder

thorntail.elytron.custom-role-decoders.KEY.configuration

The optional kay/value configuration for the RoleDecoder

thorntail.elytron.custom-role-decoders.KEY.module

Name of the module to use to load the RoleDecoder

thorntail.elytron.custom-role-mappers.KEY.class-name

Fully qualified class name of the RoleMapper

thorntail.elytron.custom-role-mappers.KEY.configuration

The optional key/value configuration for the RoleMapper

thorntail.elytron.custom-role-mappers.KEY.module

Name of the module to use to load the RoleMapper

thorntail.elytron.custom-security-event-listeners.KEY.class-name

The class name of the implementation of the custom security event listener.

thorntail.elytron.custom-security-event-listeners.KEY.configuration

The optional key/value configuration for the custom security event listener.

thorntail.elytron.custom-security-event-listeners.KEY.module

The module to use to load the custom security event listener.

thorntail.elytron.default-authentication-context

The default authentication context to be associated with all deployments.

thorntail.elytron.dir-contexts.KEY.authentication-context

The authentication context to obtain login credentials to connect to the LDAP server. Can be
omitted if authentication-level is "none" (anonymous).

thorntail.elytron.dir-contexts.KEY.authentication-level

The authentication level (security level/authentication mechanism) to use. Corresponds to
SECURITY_AUTHENTICATION ("java.naming.security.authentication") environment property.
Allowed values: "none", "simple", sasl_mech, where sasl_mech is a space-separated list of SASL
mechanism names.

thorntail.elytron.dir-contexts.KEY.connection-timeout

The timeout for connecting to the LDAP server in milliseconds.

thorntail.elytron.dir-contexts.KEY.credential-reference

The credential reference to authenticate and connect to the LDAP server. Can be omitted if
authentication-level is "none" (anonymous).

thorntail.elytron.dir-contexts.KEY.enable-connection-pooling

Indicates if connection pooling is enabled.

thorntail.elytron.dir-contexts.KEY.module

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

164

Name of module that will be used as class loading base.

thorntail.elytron.dir-contexts.KEY.principal

The principal to authenticate and connect to the LDAP server. Can be omitted if authentication-
level is "none" (anonymous).

thorntail.elytron.dir-contexts.KEY.properties

The additional connection properties for the DirContext.

thorntail.elytron.dir-contexts.KEY.read-timeout

The read timeout for an LDAP operation in milliseconds.

thorntail.elytron.dir-contexts.KEY.referral-mode

If referrals should be followed.

thorntail.elytron.dir-contexts.KEY.ssl-context

The name of ssl-context used to secure connection to the LDAP server.

thorntail.elytron.dir-contexts.KEY.url

The connection url.

thorntail.elytron.disallowed-providers

A list of providers that are not allowed, and will be removed from the providers list.

thorntail.elytron.file-audit-logs.KEY.attribute-synchronized

Whether every event should be immediately synchronised to disk.

thorntail.elytron.file-audit-logs.KEY.format

The format to use to record the audit event.

thorntail.elytron.file-audit-logs.KEY.path

Path of the file to be written.

thorntail.elytron.file-audit-logs.KEY.relative-to

The relative path to the audit log.

thorntail.elytron.filesystem-realms.KEY.encoded

Whether the identity names should be stored encoded (Base32) in file names.

thorntail.elytron.filesystem-realms.KEY.levels

The number of levels of directory hashing to apply.

thorntail.elytron.filesystem-realms.KEY.path

The path to the file containing the realm.

thorntail.elytron.filesystem-realms.KEY.relative-to

The pre-defined path the path is relative to.

thorntail.elytron.filtering-key-stores.KEY.alias-filter

A filter to apply to the aliases returned from the KeyStore, can either be a comma separated list of
aliases to return or one of the following formats ALL:-alias1:-alias2, NONE:+alias1:+alias2

thorntail.elytron.filtering-key-stores.KEY.key-store

Name of filtered KeyStore.

thorntail.elytron.filtering-key-stores.KEY.state

The state of the underlying service that represents this KeyStore at runtime, if it is anything other
than UP runtime operations will not be available.

thorntail.elytron.final-providers

Reference to the Providers that should be registered after all existing Providers.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

165

thorntail.elytron.http-authentication-factories.KEY.available-mechanisms

The HTTP mechanisms available from this configuration after all filtering has been applied.

thorntail.elytron.http-authentication-factories.KEY.http-server-mechanism-factory

The HttpServerAuthenticationMechanismFactory to associate with this resource

thorntail.elytron.http-authentication-factories.KEY.mechanism-configurations

Mechanism specific configuration

thorntail.elytron.http-authentication-factories.KEY.security-domain

The SecurityDomain to associate with this resource

thorntail.elytron.identity-realms.KEY.attribute-name

The name of the attribute associated with this identity.

thorntail.elytron.identity-realms.KEY.attribute-values

The values associated with the identity attributes.

thorntail.elytron.identity-realms.KEY.identity

The name of the identity available from the security realm.

thorntail.elytron.initial-providers

Reference to the Providers that should be registered ahead of all existing Providers.

thorntail.elytron.jdbc-realms.KEY.principal-query

The authentication query used to authenticate users based on specific key types.

thorntail.elytron.kerberos-security-factories.KEY.debug

Should the JAAS step of obtaining the credential have debug logging enabled.

thorntail.elytron.kerberos-security-factories.KEY.fail-cache

Amount of seconds before new try to obtain server credential should be done if it has failed last time.

thorntail.elytron.kerberos-security-factories.KEY.mechanism-names

The mechanism names the credential should be usable with. Names will be converted to OIDs and
used together with OIDs from mechanism-oids attribute.

thorntail.elytron.kerberos-security-factories.KEY.mechanism-oids

The mechanism OIDs the credential should be usable with. Will be used together with OIDs derived
from names from mechanism-names attribute.

thorntail.elytron.kerberos-security-factories.KEY.minimum-remaining-lifetime

How much lifetime (in seconds) should a cached credential have remaining before it is recreated.

thorntail.elytron.kerberos-security-factories.KEY.obtain-kerberos-ticket

Should the KerberosTicket also be obtained and associated with the credential. This is required to be
true where credentials are delegated to the server.

thorntail.elytron.kerberos-security-factories.KEY.options

The Krb5LoginModule additional options.

thorntail.elytron.kerberos-security-factories.KEY.path

The path of the KeyTab to load to obtain the credential.

thorntail.elytron.kerberos-security-factories.KEY.principal

The principal represented by the KeyTab

thorntail.elytron.kerberos-security-factories.KEY.relative-to

The name of another previously named path, or of one of the standard paths provided by the system.
If 'relative-to' is provided, the value of the 'path' attribute is treated as relative to the path specified
by this attribute.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

166

thorntail.elytron.kerberos-security-factories.KEY.request-lifetime

How much lifetime (in seconds) should be requested for newly created credentials.

thorntail.elytron.kerberos-security-factories.KEY.required

Is the keytab file with adequate principal required to exist at the time the service starts?

thorntail.elytron.kerberos-security-factories.KEY.server

If this for use server side or client side?

thorntail.elytron.kerberos-security-factories.KEY.wrap-gss-credential

Should generated GSS credentials be wrapped to prevent improper disposal or not?

thorntail.elytron.key-managers.KEY.algorithm

The name of the algorithm to use to create the underlying KeyManagerFactory.

thorntail.elytron.key-managers.KEY.alias-filter

A filter to apply to the aliases returned from the KeyStore, can either be a comma separated list of
aliases to return or one of the following formats ALL:-alias1:-alias2, NONE:+alias1:+alias2

thorntail.elytron.key-managers.KEY.credential-reference

The credential reference to decrypt KeyStore item. (Not a password of the KeyStore.)

thorntail.elytron.key-managers.KEY.key-store

Reference to the KeyStore to use to initialise the underlying KeyManagerFactory.

thorntail.elytron.key-managers.KEY.provider-name

The name of the provider to use to create the underlying KeyManagerFactory.

thorntail.elytron.key-managers.KEY.providers

Reference to obtain the Provider[] to use when creating the underlying KeyManagerFactory.

thorntail.elytron.key-store-realms.KEY.key-store

Reference to the KeyStore that should be used to back this security realm.

thorntail.elytron.key-stores.KEY.alias-filter

A filter to apply to the aliases returned from the KeyStore, can either be a comma separated list of
aliases to return or one of the following formats ALL:-alias1:-alias2, NONE:+alias1:+alias2

thorntail.elytron.key-stores.KEY.attribute-synchronized

The time this KeyStore was last loaded or saved. Note: Some providers may continue to apply
updates after the KeyStore was loaded within the application server.

thorntail.elytron.key-stores.KEY.credential-reference

The reference to credential stored in CredentialStore under defined alias or clear text password.

thorntail.elytron.key-stores.KEY.loaded-provider

Information about the provider that was used for this KeyStore.

thorntail.elytron.key-stores.KEY.modified

Indicates if the in-memory representation of the KeyStore has been changed since it was last loaded
or stored. Note: For some providers updates may be immediate without further load or store calls.

thorntail.elytron.key-stores.KEY.path

The path to the KeyStore file.

thorntail.elytron.key-stores.KEY.provider-name

The name of the provider to use to load the KeyStore, disables searching for the first Provider that
can create a KeyStore of the specified type.

thorntail.elytron.key-stores.KEY.providers

A reference to the providers that should be used to obtain the list of Provider instances to search, if

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

167

A reference to the providers that should be used to obtain the list of Provider instances to search, if
not specified the global list of providers will be used instead.

thorntail.elytron.key-stores.KEY.relative-to

The base path this store is relative to.

thorntail.elytron.key-stores.KEY.required

Is the file required to exist at the time the KeyStore service starts?

thorntail.elytron.key-stores.KEY.size

The number of entries in the KeyStore.

thorntail.elytron.key-stores.KEY.state

The state of the underlying service that represents this KeyStore at runtime, if it is anything other
than UP runtime operations will not be available.

thorntail.elytron.key-stores.KEY.type

The type of the KeyStore, used when creating the new KeyStore instance.

thorntail.elytron.ldap-key-stores.KEY.alias-attribute

The name of LDAP attribute, where will be item alias stored.

thorntail.elytron.ldap-key-stores.KEY.certificate-attribute

The name of LDAP attribute, where will be certificate stored.

thorntail.elytron.ldap-key-stores.KEY.certificate-chain-attribute

The name of LDAP attribute, where will be certificate chain stored.

thorntail.elytron.ldap-key-stores.KEY.certificate-chain-encoding

The encoding of the certificate chain.

thorntail.elytron.ldap-key-stores.KEY.certificate-type

The type of the Certificate.

thorntail.elytron.ldap-key-stores.KEY.dir-context

The name of DirContext, which will be used to communication with LDAP server.

thorntail.elytron.ldap-key-stores.KEY.filter-alias

The LDAP filter for obtaining an item of the KeyStore by alias. If this is not specified then the default
value will be (alias_attribute={0}). The string '{0}' will be replaced by the searched alias and the
'alias_attribute' value will be the value of the attribute 'alias-attribute'.

thorntail.elytron.ldap-key-stores.KEY.filter-certificate

The LDAP filter for obtaining an item of the KeyStore by certificate. If this is not specified then the
default value will be (certificate_attribute={0}). The string '{0}' will be replaced by searched encoded
certificate and the 'certificate_attribute' will be the value of the attribute 'certificate-attribute'.

thorntail.elytron.ldap-key-stores.KEY.filter-iterate

The LDAP filter for iterating over all items of the KeyStore. If this is not specified then the default
value will be (alias_attribute=*). The 'alias_attribute' will be the value of the attribute 'alias-attribute'.

thorntail.elytron.ldap-key-stores.KEY.key-attribute

The name of LDAP attribute, where will be key stored.

thorntail.elytron.ldap-key-stores.KEY.key-type

The type of KeyStore, in which will be key serialized to LDAP attribute.

thorntail.elytron.ldap-key-stores.KEY.new-item-template

Configuration for item creation. Define how will look LDAP entry of newly created keystore item.

thorntail.elytron.ldap-key-stores.KEY.search-path

The path in LDAP, where will be KeyStore items searched.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

168

thorntail.elytron.ldap-key-stores.KEY.search-recursive

If the LDAP search should be recursive.

thorntail.elytron.ldap-key-stores.KEY.search-time-limit

The time limit for obtaining keystore items from LDAP.

thorntail.elytron.ldap-key-stores.KEY.size

The size of LDAP KeyStore in amount of items/aliases.

thorntail.elytron.ldap-key-stores.KEY.state

The state of the underlying service that represents this KeyStore at runtime, if it is anything other
than UP runtime operations will not be available.

thorntail.elytron.ldap-realms.KEY.allow-blank-password

Does this realm support blank password direct verification? Blank password attempt will be rejected
otherwise.

thorntail.elytron.ldap-realms.KEY.dir-context

The configuration to connect to a LDAP server.

thorntail.elytron.ldap-realms.KEY.direct-verification

Does this realm support verification of credentials by directly connecting to LDAP as the account
being authenticated?

thorntail.elytron.ldap-realms.KEY.identity-mapping

The configuration options that define how principals are mapped to their corresponding entries in
the underlying LDAP server.

thorntail.elytron.logical-permission-mappers.KEY.left

Reference to the permission mapper to use to the left of the operation.

thorntail.elytron.logical-permission-mappers.KEY.logical-operation

The logical operation to use to combine the permission mappers.

thorntail.elytron.logical-permission-mappers.KEY.right

Reference to the permission mapper to use to the right of the operation.

thorntail.elytron.logical-role-mappers.KEY.left

Reference to a role mapper to be used on the left side of the operation.

thorntail.elytron.logical-role-mappers.KEY.logical-operation

The logical operation to be performed on the role mapper mappings.

thorntail.elytron.logical-role-mappers.KEY.right

Reference to a role mapper to be used on the right side of the operation.

thorntail.elytron.mapped-regex-realm-mappers.KEY.delegate-realm-mapper

The RealmMapper to delegate to if the pattern does not match. If no delegate is specified then the
default realm on the domain will be used instead. If the username does not match the pattern and a
delegate realm-mapper is present, the result of delegate-realm-mapper is mapped via the realm-
map.

thorntail.elytron.mapped-regex-realm-mappers.KEY.pattern

The regular expression which must contain at least one capture group to extract the realm from the
name. If the regular expression matches more than one capture group, the first capture group is
used.

thorntail.elytron.mapped-regex-realm-mappers.KEY.realm-map

Mapping of realm name extracted using the regular expression to a defined realm name. If the value

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

169

Mapping of realm name extracted using the regular expression to a defined realm name. If the value
for the mapping is not in the map or the realm whose name is the result of the mapping does not
exist in the given security domain, the default realm is used.

thorntail.elytron.mapped-role-mappers.KEY.keep-mapped

When set to 'true' the mapped roles will retain all roles, that have defined mappings.

thorntail.elytron.mapped-role-mappers.KEY.keep-non-mapped

When set to 'true' the mapped roles will retain all roles, that have no defined mappings.

thorntail.elytron.mapped-role-mappers.KEY.role-map

A string to string list map for mapping roles.

thorntail.elytron.mechanism-provider-filtering-sasl-server-factories.KEY.available-mechanisms

The SASL mechanisms available from this factory after all filtering has been applied.

thorntail.elytron.mechanism-provider-filtering-sasl-server-factories.KEY.enabling

When set to 'true' no provider loaded mechanisms are enabled unless matched by one of the filters,
setting to 'false' has the inverse effect.

thorntail.elytron.mechanism-provider-filtering-sasl-server-factories.KEY.filters

The filters to apply when comparing the mechanisms from the providers, a filter matches when all of
the specified values match the mechanism / provider pair.

thorntail.elytron.mechanism-provider-filtering-sasl-server-factories.KEY.sasl-server-factory

Reference to a sasl server factory to be wrapped by this definition.

thorntail.elytron.periodic-rotating-file-audit-logs.KEY.attribute-synchronized

Whether every event should be immediately synchronised to disk.

thorntail.elytron.periodic-rotating-file-audit-logs.KEY.format

The format to use to record the audit event.

thorntail.elytron.periodic-rotating-file-audit-logs.KEY.path

Path of the file to be written.

thorntail.elytron.periodic-rotating-file-audit-logs.KEY.relative-to

The relative path to the audit log.

thorntail.elytron.periodic-rotating-file-audit-logs.KEY.suffix

The suffix string in a format which can be understood by java.time.format.DateTimeFormatter. The
period of the rotation is automatically calculated based on the suffix.

thorntail.elytron.permission-sets.KEY.permissions

The permissions in the permission set.

thorntail.elytron.policies.KEY.custom-policy

A custom policy provider definition.

thorntail.elytron.policies.KEY.jacc-policy

A policy provider definition that sets up JACC and related services.

thorntail.elytron.properties-realms.KEY.attribute-synchronized

The time the properties files that back this realm were last loaded.

thorntail.elytron.properties-realms.KEY.groups-attribute

The name of the attribute in the returned AuthorizationIdentity that should contain the group
membership information for the identity.

thorntail.elytron.properties-realms.KEY.groups-properties

The properties file containing the users and their groups.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

170

thorntail.elytron.properties-realms.KEY.users-properties

The properties file containing the users and their passwords.

thorntail.elytron.provider-http-server-mechanism-factories.KEY.available-mechanisms

The HTTP mechanisms available from this factory instance.

thorntail.elytron.provider-http-server-mechanism-factories.KEY.providers

The providers to use to locate the factories, if not specified the globally registered list of Providers
will be used.

thorntail.elytron.provider-loaders.KEY.argument

An argument to be passed into the constructor as the Provider is instantiated.

thorntail.elytron.provider-loaders.KEY.class-names

The fully qualified class names of the providers to load, these are loaded after the service-loader
discovered providers and duplicates will be skipped.

thorntail.elytron.provider-loaders.KEY.configuration

The key/value configuration to be passed to the Provider to initialise it.

thorntail.elytron.provider-loaders.KEY.loaded-providers

The list of providers loaded by this provider loader.

thorntail.elytron.provider-loaders.KEY.module

The name of the module to load the provider from.

thorntail.elytron.provider-loaders.KEY.path

The path of the file to use to initialise the providers.

thorntail.elytron.provider-loaders.KEY.relative-to

The base path of the configuration file.

thorntail.elytron.provider-sasl-server-factories.KEY.available-mechanisms

The SASL mechanisms available from this factory after all filtering has been applied.

thorntail.elytron.provider-sasl-server-factories.KEY.providers

The providers to use to locate the factories, if not specified the globally registered list of Providers
will be used.

thorntail.elytron.regex-principal-transformers.KEY.pattern

The regular expression to use to locate the portion of the name to be replaced.

thorntail.elytron.regex-principal-transformers.KEY.replace-all

Should all occurrences of the pattern matched be replaced or only the first occurrence.

thorntail.elytron.regex-principal-transformers.KEY.replacement

The value to be used as the replacement.

thorntail.elytron.regex-validating-principal-transformers.KEY.match

If set to true, the name must match the given pattern to make validation successful. If set to false,
the name must not match the given pattern to make validation successful.

thorntail.elytron.regex-validating-principal-transformers.KEY.pattern

The regular expression to use for the principal transformer.

thorntail.elytron.sasl-authentication-factories.KEY.available-mechanisms

The SASL mechanisms available from this configuration after all filtering has been applied.

thorntail.elytron.sasl-authentication-factories.KEY.mechanism-configurations

Mechanism specific configuration

thorntail.elytron.sasl-authentication-factories.KEY.sasl-server-factory

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

171

The SaslServerFactory to associate with this resource

thorntail.elytron.sasl-authentication-factories.KEY.security-domain

The SecurityDomain to associate with this resource

thorntail.elytron.security-domains.KEY.default-realm

The default realm contained by this security domain.

thorntail.elytron.security-domains.KEY.outflow-anonymous

When outflowing to a security domain if outflow is not possible should the anonymous identity be
used? Outflowing anonymous has the effect of clearing any identity already established for that
domain.

thorntail.elytron.security-domains.KEY.outflow-security-domains

The list of security domains that the security identity from this domain should automatically outflow
to.

thorntail.elytron.security-domains.KEY.permission-mapper

A reference to a PermissionMapper to be used by this domain.

thorntail.elytron.security-domains.KEY.post-realm-principal-transformer

A reference to a principal transformer to be applied after the realm has operated on the supplied
identity name.

thorntail.elytron.security-domains.KEY.pre-realm-principal-transformer

A reference to a principal transformer to be applied before the realm is selected.

thorntail.elytron.security-domains.KEY.principal-decoder

A reference to a PrincipalDecoder to be used by this domain.

thorntail.elytron.security-domains.KEY.realm-mapper

Reference to the RealmMapper to be used by this domain.

thorntail.elytron.security-domains.KEY.realms

The list of realms contained by this security domain.

thorntail.elytron.security-domains.KEY.role-mapper

Reference to the RoleMapper to be used by this domain.

thorntail.elytron.security-domains.KEY.security-event-listener

Reference to a listener for security events.

thorntail.elytron.security-domains.KEY.trusted-security-domains

The list of security domains that are trusted by this security domain.

thorntail.elytron.security-properties

Security properties to be set.

thorntail.elytron.server-ssl-contexts.KEY.active-session-count

The count of current active sessions.

thorntail.elytron.server-ssl-contexts.KEY.authentication-optional

Rejecting of the client certificate by the security domain will not prevent the connection. Allows a fall
through to use other authentication mechanisms (like form login) when the client certificate is
rejected by security domain. Has an effect only when the security domain is set.

thorntail.elytron.server-ssl-contexts.KEY.cipher-suite-filter

The filter to apply to specify the enabled cipher suites.

thorntail.elytron.server-ssl-contexts.KEY.final-principal-transformer

A final principal transformer to apply for this mechanism realm.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

172

thorntail.elytron.server-ssl-contexts.KEY.key-manager

Reference to the key manager to use within the SSLContext.

thorntail.elytron.server-ssl-contexts.KEY.maximum-session-cache-size

The maximum number of SSL sessions in the cache. The default value -1 means use the JVM default
value. Value zero means there is no limit.

thorntail.elytron.server-ssl-contexts.KEY.need-client-auth

To require a client certificate on SSL handshake. Connection without trusted client certificate (see
trust-manager) will be rejected.

thorntail.elytron.server-ssl-contexts.KEY.post-realm-principal-transformer

A principal transformer to apply after the realm is selected.

thorntail.elytron.server-ssl-contexts.KEY.pre-realm-principal-transformer

A principal transformer to apply before the realm is selected.

thorntail.elytron.server-ssl-contexts.KEY.protocols

The enabled protocols.

thorntail.elytron.server-ssl-contexts.KEY.provider-name

The name of the provider to use. If not specified, all providers from providers will be passed to the
SSLContext.

thorntail.elytron.server-ssl-contexts.KEY.providers

The name of the providers to obtain the Provider[] to use to load the SSLContext.

thorntail.elytron.server-ssl-contexts.KEY.realm-mapper

The realm mapper to be used for SSL authentication.

thorntail.elytron.server-ssl-contexts.KEY.security-domain

The security domain to use for authentication during SSL session establishment.

thorntail.elytron.server-ssl-contexts.KEY.session-timeout

The timeout for SSL sessions, in seconds. The default value -1 means use the JVM default value.
Value zero means there is no limit.

thorntail.elytron.server-ssl-contexts.KEY.ssl-sessions.KEY.application-buffer-size

The application buffer size as reported by the SSLSession.

thorntail.elytron.server-ssl-contexts.KEY.ssl-sessions.KEY.cipher-suite

The selected cipher suite as reported by the SSLSession.

thorntail.elytron.server-ssl-contexts.KEY.ssl-sessions.KEY.creation-time

The creation time as reported by the SSLSession.

thorntail.elytron.server-ssl-contexts.KEY.ssl-sessions.KEY.last-accessed-time

The last accessed time as reported by the SSLSession.

thorntail.elytron.server-ssl-contexts.KEY.ssl-sessions.KEY.local-certificates

The local certificates from the SSLSession.

thorntail.elytron.server-ssl-contexts.KEY.ssl-sessions.KEY.local-principal

The local principal as reported by the SSLSession.

thorntail.elytron.server-ssl-contexts.KEY.ssl-sessions.KEY.packet-buffer-size

The packet buffer size as reported by the SSLSession.

thorntail.elytron.server-ssl-contexts.KEY.ssl-sessions.KEY.peer-certificates

The peer certificates from the SSLSession.

thorntail.elytron.server-ssl-contexts.KEY.ssl-sessions.KEY.peer-host

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

173

The peer host as reported by the SSLSession.

thorntail.elytron.server-ssl-contexts.KEY.ssl-sessions.KEY.peer-port

The peer port as reported by the SSLSession.

thorntail.elytron.server-ssl-contexts.KEY.ssl-sessions.KEY.peer-principal

The peer principal as reported by the SSLSession.

thorntail.elytron.server-ssl-contexts.KEY.ssl-sessions.KEY.protocol

The protocol as reported by the SSLSession.

thorntail.elytron.server-ssl-contexts.KEY.ssl-sessions.KEY.valid

The validity of the session as reported by the SSLSession.

thorntail.elytron.server-ssl-contexts.KEY.trust-manager

Reference to the trust manager to use within the SSLContext.

thorntail.elytron.server-ssl-contexts.KEY.use-cipher-suites-order

To honor local cipher suites preference.

thorntail.elytron.server-ssl-contexts.KEY.want-client-auth

To request (but not to require) a client certificate on SSL handshake. If a security domain is
referenced and supports X509 evidence, this will be set to true automatically. Ignored when need-
client-auth is set.

thorntail.elytron.server-ssl-contexts.KEY.wrap

Should the SSLEngine, SSLSocket, and SSLServerSocket instances returned be wrapped to protect
against further modification.

thorntail.elytron.service-loader-http-server-mechanism-factories.KEY.available-mechanisms

The HTTP mechanisms available from this factory instance.

thorntail.elytron.service-loader-http-server-mechanism-factories.KEY.module

The module to use to obtain the classloader to load the factories, if not specified the classloader to
load the resource will be used instead.

thorntail.elytron.service-loader-sasl-server-factories.KEY.available-mechanisms

The SASL mechanisms available from this factory after all filtering has been applied.

thorntail.elytron.service-loader-sasl-server-factories.KEY.module

The module to use to obtain the classloader to load the factories, if not specified the classloader to
load the resource will be used instead.

thorntail.elytron.simple-permission-mappers.KEY.mapping-mode

The mapping mode that should be used in the event of multiple matches.

thorntail.elytron.simple-permission-mappers.KEY.permission-mappings

The defined permission mappings.

thorntail.elytron.simple-regex-realm-mappers.KEY.delegate-realm-mapper

The RealmMapper to delegate to if there is no match using the pattern.

thorntail.elytron.simple-regex-realm-mappers.KEY.pattern

The regular expression which must contain at least one capture group to extract the realm from the
name. If the regular expression matches more than one capture group, the first capture group is
used.

thorntail.elytron.simple-role-decoders.KEY.attribute

The name of the attribute from the identity to map directly to roles.

thorntail.elytron.size-rotating-file-audit-logs.KEY.attribute-synchronized

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

174

Whether every event should be immediately synchronised to disk.

thorntail.elytron.size-rotating-file-audit-logs.KEY.format

The format to use to record the audit event.

thorntail.elytron.size-rotating-file-audit-logs.KEY.max-backup-index

The maximum number of files to backup when rotating.

thorntail.elytron.size-rotating-file-audit-logs.KEY.path

Path of the file to be written.

thorntail.elytron.size-rotating-file-audit-logs.KEY.relative-to

The relative path to the audit log.

thorntail.elytron.size-rotating-file-audit-logs.KEY.rotate-on-boot

Whether the file should be rotated before the a new file is set.

thorntail.elytron.size-rotating-file-audit-logs.KEY.rotate-size

The log file size the file should rotate at.

thorntail.elytron.size-rotating-file-audit-logs.KEY.suffix

Format of date used as suffix of log file names in java.time.format.DateTimeFormatter. The suffix
does not play a role in determining when the file should be rotated.

thorntail.elytron.syslog-audit-logs.KEY.format

The format to use to record the audit event.

thorntail.elytron.syslog-audit-logs.KEY.host-name

The host name to embed withing all events sent to the remote syslog server.

thorntail.elytron.syslog-audit-logs.KEY.port

The listening port on the syslog server.

thorntail.elytron.syslog-audit-logs.KEY.server-address

The server address of the syslog server the events should be sent to.

thorntail.elytron.syslog-audit-logs.KEY.ssl-context

The SSLContext to use to connect to the syslog server when SSL_TCP transport is used.

thorntail.elytron.syslog-audit-logs.KEY.transport

The transport to use to connect to the syslog server.

thorntail.elytron.token-realms.KEY.jwt

A token validator to be used in conjunction with a token-based realm that handles security tokens
based on the JWT/JWS standard.

thorntail.elytron.token-realms.KEY.oauth2-introspection

A token validator to be used in conjunction with a token-based realm that handles OAuth2 Access
Tokens and validates them using an endpoint compliant with OAuth2 Token Introspection
specification(RFC-7662).

thorntail.elytron.token-realms.KEY.principal-claim

The name of the claim that should be used to obtain the principal’s name.

thorntail.elytron.trust-managers.KEY.algorithm

The name of the algorithm to use to create the underlying TrustManagerFactory.

thorntail.elytron.trust-managers.KEY.alias-filter

A filter to apply to the aliases returned from the KeyStore, can either be a comma separated list of
aliases to return or one of the following formats ALL:-alias1:-alias2, NONE:+alias1:+alias2

thorntail.elytron.trust-managers.KEY.certificate-revocation-list

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

175

Enables certificate revocation list checks to a trust manager.

thorntail.elytron.trust-managers.KEY.key-store

Reference to the KeyStore to use to initialise the underlying TrustManagerFactory.

thorntail.elytron.trust-managers.KEY.provider-name

The name of the provider to use to create the underlying TrustManagerFactory.

thorntail.elytron.trust-managers.KEY.providers

Reference to obtain the Provider[] to use when creating the underlying TrustManagerFactory.

thorntail.elytron.x500-attribute-principal-decoders.KEY.attribute-name

The name of the X.500 attribute to map (can be defined using OID instead)

thorntail.elytron.x500-attribute-principal-decoders.KEY.convert

When set to 'true', if the Principal is not already an X500Principal conversion will be attempted

thorntail.elytron.x500-attribute-principal-decoders.KEY.joiner

The joining string

thorntail.elytron.x500-attribute-principal-decoders.KEY.maximum-segments

The maximum number of occurrences of the attribute to map

thorntail.elytron.x500-attribute-principal-decoders.KEY.oid

The OID of the X.500 attribute to map (can be defined using attribute name instead)

thorntail.elytron.x500-attribute-principal-decoders.KEY.required-attributes

The attributes names of the attributes that must be present in the principal

thorntail.elytron.x500-attribute-principal-decoders.KEY.required-oids

The OIDs of the attributes that must be present in the principal

thorntail.elytron.x500-attribute-principal-decoders.KEY.reverse

When set to 'true', the attribute values will be processed and returned in reverse order

thorntail.elytron.x500-attribute-principal-decoders.KEY.start-segment

The 0-based starting occurrence of the attribute to map

D.10. HIBERNATE VALIDATOR

Provides support and integration for applications using Hibernate Validator.

Maven Coordinates

D.11. HYSTRIX

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>hibernate-validator</artifactId>
</dependency>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

176

WARNING

This fraction is deprecated.

Maven Coordinates

Configuration

thorntail.hystrix.collapser.default.maxRequestsInBatch

The maximum number of requests allowed in a batch before this triggers a batch execution

thorntail.hystrix.collapser.default.requestCache.enabled

Indicates whether request caching is enabled for HystrixCollapser.execute() and
HystrixCollapser.queue() invocations

thorntail.hystrix.collapser.default.timerDelayInMilliseconds

The number of milliseconds after the creation of the batch that its execution is triggered

thorntail.hystrix.command.default.circuitBreaker.enabled

Determines whether a circuit breaker will be used to track health and to short-circuit requests if it
trips

thorntail.hystrix.command.default.circuitBreaker.errorThresholdPercentage

The error percentage at or above which the circuit should trip open and start short-circuiting
requests to fallback logic

thorntail.hystrix.command.default.circuitBreaker.forceClosed

If true, forces the circuit breaker into a closed state in which it will allow requests regardless of the
error percentage

thorntail.hystrix.command.default.circuitBreaker.forceOpen

If true, forces the circuit breaker into an open (tripped) state in which it will reject all requests

thorntail.hystrix.command.default.circuitBreaker.requestVolumeThreshold

The minimum number of requests in a rolling window that will trip the circuit

thorntail.hystrix.command.default.circuitBreaker.sleepWindowInMilliseconds

The amount of time, after tripping the circuit, to reject requests before allowing attempts again to
determine if the circuit should again be closed

thorntail.hystrix.command.default.execution.isolation.semaphore.maxConcurrentRequests

The maximum number of requests allowed to a HystrixCommand.run() method when you are using
ExecutionIsolationStrategy.SEMAPHORE

thorntail.hystrix.command.default.execution.isolation.strategy

Isolation strategy (THREAD or SEMAPHORE)

thorntail.hystrix.command.default.execution.isolation.thread.interruptOnCancel

Indicates whether the HystrixCommand.run() execution should be interrupted when a cancellation

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>hystrix</artifactId>
</dependency>

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

177

Indicates whether the HystrixCommand.run() execution should be interrupted when a cancellation
occurs

thorntail.hystrix.command.default.execution.isolation.thread.interruptOnTimeout

Indicates whether the HystrixCommand.run() execution should be interrupted when a timeout occurs

thorntail.hystrix.command.default.execution.isolation.thread.timeoutInMilliseconds

The time in milliseconds after which the caller will observe a timeout and walk away from the
command execution

thorntail.hystrix.command.default.execution.timeout.enabled

Indicates whether the HystrixCommand.run() execution should have a timeout

thorntail.hystrix.command.default.fallback.enabled

Determines whether a call to HystrixCommand.getFallback() will be attempted when failure or
rejection occurs

thorntail.hystrix.command.default.fallback.isolation.semaphore.maxConcurrentRequests

The maximum number of requests allowed to a HystrixCommand.getFallback() method when you are
using ExecutionIsolationStrategy.SEMAPHORE

thorntail.hystrix.command.default.metrics.healthSnapshot.intervalInMilliseconds

The time to wait, in milliseconds, between allowing health snapshots to be taken that calculate
success and error percentages and affect circuit breaker status

thorntail.hystrix.command.default.metrics.rollingPercentile.bucketSize

The maximum number of execution times that are kept per bucket

thorntail.hystrix.command.default.metrics.rollingPercentile.enabled

Indicates whether execution latencies should be tracked and calculated as percentiles

thorntail.hystrix.command.default.metrics.rollingPercentile.numBuckets

The number of buckets the rollingPercentile window will be divided into

thorntail.hystrix.command.default.metrics.rollingPercentile.timeInMilliseconds

The duration of the rolling window in which execution times are kept to allow for percentile
calculations, in milliseconds

thorntail.hystrix.command.default.metrics.rollingStats.numBuckets

The number of buckets the rolling statistical window is divided into

thorntail.hystrix.command.default.metrics.rollingStats.timeInMilliseconds

The duration of the statistical rolling window, in milliseconds. This is how long Hystrix keeps metrics
for the circuit breaker to use and for publishing

thorntail.hystrix.command.default.requestCache.enabled

Indicates whether HystrixCommand.getCacheKey() should be used with HystrixRequestCache to
provide de-duplication functionality via request-scoped caching

thorntail.hystrix.command.default.requestLog.enabled

Indicates whether HystrixCommand execution and events should be logged to HystrixRequestLog

thorntail.hystrix.stream.path

Context path for the stream

thorntail.hystrix.threadpool.default.allowMaximumSizeToDivergeFromCoreSize

Allows the configuration for maximumSize to take effect

thorntail.hystrix.threadpool.default.coreSize

The core thread-pool size

thorntail.hystrix.threadpool.default.keepAliveTimeMinutes

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

178

The keep-alive time, in minutes

thorntail.hystrix.threadpool.default.maxQueueSize

The maximum queue size of the BlockingQueue implementation

thorntail.hystrix.threadpool.default.maximumSize

The maximum thread-pool size

thorntail.hystrix.threadpool.default.metrics.rollingPercentile.numBuckets

The number of buckets the rolling statistical window is divided into

thorntail.hystrix.threadpool.default.metrics.rollingStats.timeInMilliseconds

The duration of the statistical rolling window, in milliseconds

thorntail.hystrix.threadpool.default.queueSizeRejectionThreshold

The queue size rejection threshold - an artificial maximum queue size at which rejections will occur
even if maxQueueSize has not been reached

D.12. INFINISPAN

Maven Coordinates

Configuration

thorntail.infinispan.cache-containers.KEY.aliases

The list of aliases for this cache container

thorntail.infinispan.cache-containers.KEY.async-operations-thread-pool.keepalive-time

Used to specify the amount of milliseconds that pool threads should be kept running when idle; if not
specified, threads will run until the executor is shut down.

thorntail.infinispan.cache-containers.KEY.async-operations-thread-pool.max-threads

The maximum thread pool size.

thorntail.infinispan.cache-containers.KEY.async-operations-thread-pool.min-threads

The core thread pool size which is smaller than the maximum pool size. If undefined, the core thread
pool size is the same as the maximum thread pool size.

thorntail.infinispan.cache-containers.KEY.async-operations-thread-pool.queue-length

The queue length.

thorntail.infinispan.cache-containers.KEY.cache-manager-status

The status of the cache manager component. May return null if the cache manager is not started.

thorntail.infinispan.cache-containers.KEY.cluster-name

The name of the cluster this node belongs to. May return null if the cache manager is not started.

thorntail.infinispan.cache-containers.KEY.coordinator-address

The logical address of the cluster’s coordinator. May return null if the cache manager is not started.

thorntail.infinispan.cache-containers.KEY.default-cache

The default infinispan cache

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>infinispan</artifactId>
</dependency>

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

179

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.activations

The number of cache node activations (bringing a node into memory from a cache store) . May
return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.async-marshalling

If enabled, this will cause marshalling of entries to be performed asynchronously.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.average-read-time

Average time (in ms) for cache reads. Includes hits and misses. May return null if the cache is not
started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.average-replication-time

The average time taken to replicate data around the cluster. May return null if the cache is not
started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.average-write-time

Average time (in ms) for cache writes. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.backups-
component.backups.KEY.after-failures

Indicates the number of failures after which this backup site should go offline.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.backups-
component.backups.KEY.enabled

Indicates whether or not this backup site is enabled.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.backups-
component.backups.KEY.failure-policy

The policy to follow when connectivity to the backup site fails.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.backups-
component.backups.KEY.min-wait

Indicates the minimum time (in milliseconds) to wait after the max number of failures is reached,
after which this backup site should go offline.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.backups-
component.backups.KEY.strategy

The backup strategy for this cache

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.backups-
component.backups.KEY.timeout

The timeout for replicating to the backup site.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.behind-
write.flush-lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.binary-keyed-

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

180

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.binary-keyed-
table

Defines a table used to store cache entries whose keys cannot be expressed as strings.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.binary-
table.data-column

A database column to hold cache entry data.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.binary-
table.fetch-size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.binary-
table.id-column

A database column to hold cache entry ids.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.binary-
table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.binary-
table.timestamp-column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.cache-loader-
loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.cache-loader-
misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.data-source

References the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.datasource

The jndi name of the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.dialect

The dialect of this datastore.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.max-batch-
size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

181

want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-jdbc-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-memory.eviction-type

Indicates whether the size attribute refers to the number of cache entries (i.e. COUNT) or the
collective size of the cache entries (i.e. MEMORY).

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-memory.evictions

The number of cache eviction operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.binary-memory.size

Eviction threshold, as defined by the eviction-type.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.cache-status

The status of the cache component. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.capacity-factor

Controls the proportion of entries that will reside on the local node, compared to the other nodes in
the cluster.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.consistent-hash-strategy

Defines the consistent hash strategy for the cache.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.custom-store.attribute-class

The custom store implementation class to use for this cache store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.custom-store.behind-
write.flush-lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.custom-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.custom-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

182

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.custom-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.custom-store.cache-loader-
loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.custom-store.cache-loader-
misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.custom-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.custom-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.custom-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.custom-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.custom-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.custom-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.custom-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.custom-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.custom-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.elapsed-time

Time (in secs) since cache started. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.expiration-component.interval

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

183

Interval (in milliseconds) between subsequent runs to purge expired entries from memory and any
cache stores. If you wish to disable the periodic eviction process altogether, set wakeupInterval to -1.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.expiration-component.lifespan

Maximum lifespan of a cache entry, after which the entry is expired cluster-wide, in milliseconds. -1
means the entries never expire.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.expiration-component.max-idle

Maximum idle time a cache entry will be maintained in the cache, in milliseconds. If the idle time is
exceeded, the entry will be expired cluster-wide. -1 means the entries never expire.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.file-store.behind-write.flush-
lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.file-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.file-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.file-store.behind-write.thread-
pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.file-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.file-store.cache-loader-misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.file-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.file-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.file-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.file-store.path

The system path under which this cache store will persist its entries.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.file-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

184

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.file-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.file-store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.file-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.file-store.relative-to

The system path to which the specified path is relative.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.file-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.file-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.hit-ratio

The hit/miss ratio for the cache (hits/hits+misses). May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.hits

The number of cache attribute hits. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.hotrod-store.behind-
write.flush-lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.hotrod-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.hotrod-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.hotrod-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.hotrod-store.cache-
configuration

Name of the cache configuration template defined in Infinispan Server to create caches from.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.hotrod-store.cache-loader-
loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.hotrod-store.cache-loader-
misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.hotrod-store.fetch-state

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

185

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.hotrod-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.hotrod-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.hotrod-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.hotrod-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.hotrod-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.hotrod-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.hotrod-store.remote-cache-
container

Reference to a container-managed remote-cache-container.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.hotrod-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.hotrod-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.indexing

If enabled, entries will be indexed when they are added to the cache. Indexes will be updated as
entries change or are removed.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.indexing-properties

Properties to control indexing behaviour

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.invalidations

The number of cache invalidations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.behind-write.flush-
lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.behind-

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

186

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.behind-write.thread-
pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.cache-loader-misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.data-source

References the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.datasource

The jndi name of the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.dialect

The dialect of this datastore.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.purge

If true, purges this cache store when it starts up.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

187

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.string-keyed-table

Defines a table used to store persistent cache entries.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.string-table.data-
column

A database column to hold cache entry data.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.string-table.fetch-
size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.string-table.id-
column

A database column to hold cache entry ids.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.string-table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.jdbc-store.string-
table.timestamp-column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.l1-lifespan

Maximum lifespan of an entry placed in the L1 cache. This element configures the L1 cache behavior
in 'distributed' caches instances. In any other cache modes, this element is ignored.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.locking-component.acquire-
timeout

Maximum time to attempt a particular lock acquisition.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.locking-
component.concurrency-level

Concurrency level for lock containers. Adjust this value according to the number of concurrent
threads interacting with Infinispan.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.locking-component.current-
concurrency-level

The estimated number of concurrently updating threads which this cache can support. May return
null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.locking-component.isolation

Sets the cache locking isolation level.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.locking-component.number-of-
locks-available

The number of locks available to this cache. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.locking-component.number-of-
locks-held

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

188

The number of locks currently in use by this cache. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.locking-component.striping

If true, a pool of shared locks is maintained for all entries that need to be locked. Otherwise, a lock is
created per entry in the cache. Lock striping helps control memory footprint but may reduce
concurrency in the system.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.misses

The number of cache attribute misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.behind-
write.flush-lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.binary-keyed-
table

Defines a table used to store cache entries whose keys cannot be expressed as strings.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.binary-
table.data-column

A database column to hold cache entry data.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.binary-
table.fetch-size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.binary-
table.id-column

A database column to hold cache entry ids.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.binary-
table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.binary-
table.timestamp-column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.cache-loader-
loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.cache-loader-
misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.data-source

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

189

References the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.datasource

The jndi name of the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.dialect

The dialect of this datastore.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.max-batch-
size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.string-keyed-
table

Defines a table used to store persistent cache entries.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.string-
table.data-column

A database column to hold cache entry data.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.string-

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

190

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.string-
table.fetch-size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.string-
table.id-column

A database column to hold cache entry ids.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.string-
table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.mixed-jdbc-store.string-
table.timestamp-column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.module

The module whose class loader should be used when building this cache’s configuration.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.number-of-entries

The current number of entries in the cache. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.object-memory.evictions

The number of cache eviction operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.object-memory.size

Triggers eviction of the least recently used entries when the number of cache entries exceeds this
threshold.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.off-heap-memory.capacity

Defines the capacity of the off-heap storage.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.off-heap-memory.eviction-type

Indicates whether the size attribute refers to the number of cache entries (i.e. COUNT) or the
collective size of the cache entries (i.e. MEMORY).

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.off-heap-memory.evictions

The number of cache eviction operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.off-heap-memory.size

Eviction threshold, as defined by the eviction-type.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.owners

Number of cluster-wide replicas for each cache entry.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.partition-handling-
component.availability

Indicates the current availability of the cache.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.partition-handling-
component.enabled

If enabled, the cache will enter degraded mode upon detecting a network partition that threatens the
integrity of the cache.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.passivations

The number of cache node passivations (passivating a node from memory to a cache store). May
return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.queue-flush-interval

In ASYNC mode, this attribute controls how often the asynchronous thread used to flush the

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

191

In ASYNC mode, this attribute controls how often the asynchronous thread used to flush the
replication queue runs. This should be a positive integer which represents thread wakeup time in
milliseconds.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.queue-size

In ASYNC mode, this attribute can be used to trigger flushing of the queue when it reaches a specific
threshold.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.read-write-ratio

The read/write ratio of the cache ((hits+misses)/stores). May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-store.behind-
write.flush-lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-store.cache

The name of the remote cache to use for this remote store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-store.cache-loader-
loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-store.cache-loader-
misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

192

provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-store.remote-servers

A list of remote servers for this cache store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-store.socket-timeout

A socket timeout for remote cache communication.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-store.tcp-no-delay

A TCP_NODELAY value for remote cache communication.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remote-timeout

In SYNC mode, the timeout (in ms) used to wait for an acknowledgment when making a remote call,
after which the call is aborted and an exception is thrown.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remove-hits

The number of cache attribute remove hits. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.remove-misses

The number of cache attribute remove misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.replication-count

The number of times data was replicated around the cluster. May return null if the cache is not
started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.replication-failures

The number of data replication failures. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.segments

Controls the number of hash space segments which is the granularity for key distribution in the
cluster. Value must be strictly positive.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.state-transfer-
component.chunk-size

The maximum number of cache entries in a batch of transferred state.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.state-transfer-
component.enabled

If enabled, this will cause the cache to ask neighboring caches for state when it starts up, so the

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

193

If enabled, this will cause the cache to ask neighboring caches for state when it starts up, so the
cache starts 'warm', although it will impact startup time.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.state-transfer-
component.timeout

The maximum amount of time (ms) to wait for state from neighboring caches, before throwing an
exception and aborting startup. If timeout is 0, state transfer is performed asynchronously, and the
cache will be immediately available.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.statistics-enabled

If enabled, statistics will be collected for this cache

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.stores

The number of cache attribute put operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.success-ratio

The data replication success ratio (successes/successes+failures). May return null if the cache is not
started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.time-since-reset

Time (in secs) since cache statistics were reset. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.transaction-
component.commits

The number of transaction commits. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.transaction-component.locking

The locking mode for this cache, one of OPTIMISTIC or PESSIMISTIC.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.transaction-component.mode

Sets the cache transaction mode to one of NONE, NON_XA, NON_DURABLE_XA, FULL_XA.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.transaction-
component.prepares

The number of transaction prepares. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.transaction-
component.rollbacks

The number of transaction rollbacks. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.distributed-caches.KEY.transaction-component.stop-
timeout

If there are any ongoing transactions when a cache is stopped, Infinispan waits for ongoing remote
and local transactions to finish. The amount of time to wait for is defined by the cache stop timeout.

thorntail.infinispan.cache-containers.KEY.expiration-thread-pool.keepalive-time

Used to specify the amount of milliseconds that pool threads should be kept running when idle; if not
specified, threads will run until the executor is shut down.

thorntail.infinispan.cache-containers.KEY.expiration-thread-pool.max-threads

The maximum thread pool size.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.activations

The number of cache node activations (bringing a node into memory from a cache store) . May
return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.async-marshalling

If enabled, this will cause marshalling of entries to be performed asynchronously.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.average-read-time

Average time (in ms) for cache reads. Includes hits and misses. May return null if the cache is not

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

194

Average time (in ms) for cache reads. Includes hits and misses. May return null if the cache is not
started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.average-replication-time

The average time taken to replicate data around the cluster. May return null if the cache is not
started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.average-write-time

Average time (in ms) for cache writes. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.behind-
write.flush-lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.binary-
keyed-table

Defines a table used to store cache entries whose keys cannot be expressed as strings.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.binary-
table.data-column

A database column to hold cache entry data.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.binary-
table.fetch-size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.binary-
table.id-column

A database column to hold cache entry ids.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.binary-
table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.binary-
table.timestamp-column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.cache-
loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.cache-
loader-misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.data-source

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

195

References the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.datasource

The jndi name of the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.dialect

The dialect of this datastore.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.max-batch-
size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-jdbc-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-memory.eviction-type

Indicates whether the size attribute refers to the number of cache entries (i.e. COUNT) or the
collective size of the cache entries (i.e. MEMORY).

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-memory.evictions

The number of cache eviction operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.binary-memory.size

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

196

Eviction threshold, as defined by the eviction-type.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.cache-status

The status of the cache component. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.custom-store.attribute-class

The custom store implementation class to use for this cache store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.custom-store.behind-
write.flush-lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.custom-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.custom-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.custom-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.custom-store.cache-loader-
loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.custom-store.cache-loader-
misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.custom-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.custom-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.custom-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.custom-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.custom-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.custom-

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

197

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.custom-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.custom-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.custom-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.custom-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.elapsed-time

Time (in secs) since cache started. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.expiration-component.interval

Interval (in milliseconds) between subsequent runs to purge expired entries from memory and any
cache stores. If you wish to disable the periodic eviction process altogether, set wakeupInterval to -1.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.expiration-component.lifespan

Maximum lifespan of a cache entry, after which the entry is expired cluster-wide, in milliseconds. -1
means the entries never expire.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.expiration-component.max-idle

Maximum idle time a cache entry will be maintained in the cache, in milliseconds. If the idle time is
exceeded, the entry will be expired cluster-wide. -1 means the entries never expire.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.file-store.behind-write.flush-
lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.file-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.file-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.file-store.behind-write.thread-
pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.file-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.file-store.cache-loader-misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.file-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

198

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.file-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.file-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.file-store.path

The system path under which this cache store will persist its entries.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.file-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.file-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.file-store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.file-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.file-store.relative-to

The system path to which the specified path is relative.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.file-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.file-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hit-ratio

The hit/miss ratio for the cache (hits/hits+misses). May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hits

The number of cache attribute hits. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hotrod-store.behind-
write.flush-lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hotrod-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hotrod-store.behind-

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

199

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hotrod-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hotrod-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hotrod-store.cache-
configuration

Name of the cache configuration template defined in Infinispan Server to create caches from.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hotrod-store.cache-loader-
loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hotrod-store.cache-loader-
misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hotrod-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hotrod-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hotrod-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hotrod-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hotrod-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hotrod-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hotrod-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hotrod-store.remote-cache-
container

Reference to a container-managed remote-cache-container.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hotrod-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

200

Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.hotrod-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.indexing

If enabled, entries will be indexed when they are added to the cache. Indexes will be updated as
entries change or are removed.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.indexing-properties

Properties to control indexing behaviour

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.invalidations

The number of cache invalidations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.behind-write.flush-
lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.behind-write.thread-
pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.cache-loader-misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.data-source

References the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.datasource

The jndi name of the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.dialect

The dialect of this datastore.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

201

as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.string-keyed-table

Defines a table used to store persistent cache entries.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.string-table.data-
column

A database column to hold cache entry data.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.string-table.fetch-
size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.string-table.id-
column

A database column to hold cache entry ids.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.string-table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.jdbc-store.string-
table.timestamp-column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.locking-component.acquire-
timeout

Maximum time to attempt a particular lock acquisition.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.locking-
component.concurrency-level

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

202

Concurrency level for lock containers. Adjust this value according to the number of concurrent
threads interacting with Infinispan.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.locking-component.current-
concurrency-level

The estimated number of concurrently updating threads which this cache can support. May return
null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.locking-component.isolation

Sets the cache locking isolation level.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.locking-component.number-of-
locks-available

The number of locks available to this cache. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.locking-component.number-of-
locks-held

The number of locks currently in use by this cache. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.locking-component.striping

If true, a pool of shared locks is maintained for all entries that need to be locked. Otherwise, a lock is
created per entry in the cache. Lock striping helps control memory footprint but may reduce
concurrency in the system.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.misses

The number of cache attribute misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.behind-
write.flush-lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.binary-
keyed-table

Defines a table used to store cache entries whose keys cannot be expressed as strings.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.binary-
table.data-column

A database column to hold cache entry data.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.binary-
table.fetch-size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.binary-
table.id-column

A database column to hold cache entry ids.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

203

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.binary-
table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.binary-
table.timestamp-column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.cache-
loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.cache-
loader-misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.data-source

References the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.datasource

The jndi name of the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.dialect

The dialect of this datastore.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.max-batch-
size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

204

multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.string-keyed-
table

Defines a table used to store persistent cache entries.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.string-
table.data-column

A database column to hold cache entry data.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.string-
table.fetch-size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.string-
table.id-column

A database column to hold cache entry ids.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.string-
table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.mixed-jdbc-store.string-
table.timestamp-column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.module

The module whose class loader should be used when building this cache’s configuration.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.number-of-entries

The current number of entries in the cache. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.object-memory.evictions

The number of cache eviction operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.object-memory.size

Triggers eviction of the least recently used entries when the number of cache entries exceeds this
threshold.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.off-heap-memory.capacity

Defines the capacity of the off-heap storage.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.off-heap-memory.eviction-type

Indicates whether the size attribute refers to the number of cache entries (i.e. COUNT) or the
collective size of the cache entries (i.e. MEMORY).

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.off-heap-memory.evictions

The number of cache eviction operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.off-heap-memory.size

Eviction threshold, as defined by the eviction-type.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.passivations

The number of cache node passivations (passivating a node from memory to a cache store). May

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

205

The number of cache node passivations (passivating a node from memory to a cache store). May
return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.queue-flush-interval

In ASYNC mode, this attribute controls how often the asynchronous thread used to flush the
replication queue runs. This should be a positive integer which represents thread wakeup time in
milliseconds.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.queue-size

In ASYNC mode, this attribute can be used to trigger flushing of the queue when it reaches a specific
threshold.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.read-write-ratio

The read/write ratio of the cache ((hits+misses)/stores). May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-store.behind-
write.flush-lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-store.cache

The name of the remote cache to use for this remote store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-store.cache-loader-
loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-store.cache-loader-
misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-store.preload

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

206

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-store.remote-servers

A list of remote servers for this cache store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-store.socket-timeout

A socket timeout for remote cache communication.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-store.tcp-no-delay

A TCP_NODELAY value for remote cache communication.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remote-timeout

In SYNC mode, the timeout (in ms) used to wait for an acknowledgment when making a remote call,
after which the call is aborted and an exception is thrown.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remove-hits

The number of cache attribute remove hits. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.remove-misses

The number of cache attribute remove misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.replication-count

The number of times data was replicated around the cluster. May return null if the cache is not
started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.replication-failures

The number of data replication failures. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.statistics-enabled

If enabled, statistics will be collected for this cache

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.stores

The number of cache attribute put operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.success-ratio

The data replication success ratio (successes/successes+failures). May return null if the cache is not

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

207

The data replication success ratio (successes/successes+failures). May return null if the cache is not
started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.time-since-reset

Time (in secs) since cache statistics were reset. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.transaction-
component.commits

The number of transaction commits. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.transaction-component.locking

The locking mode for this cache, one of OPTIMISTIC or PESSIMISTIC.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.transaction-component.mode

Sets the cache transaction mode to one of NONE, NON_XA, NON_DURABLE_XA, FULL_XA.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.transaction-
component.prepares

The number of transaction prepares. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.transaction-
component.rollbacks

The number of transaction rollbacks. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.invalidation-caches.KEY.transaction-component.stop-
timeout

If there are any ongoing transactions when a cache is stopped, Infinispan waits for ongoing remote
and local transactions to finish. The amount of time to wait for is defined by the cache stop timeout.

thorntail.infinispan.cache-containers.KEY.is-coordinator

Set to true if this node is the cluster’s coordinator. May return null if the cache manager is not
started.

thorntail.infinispan.cache-containers.KEY.jgroups-transport.channel

The channel of this cache container’s transport.

thorntail.infinispan.cache-containers.KEY.jgroups-transport.lock-timeout

The timeout for locks for the transport

thorntail.infinispan.cache-containers.KEY.listener-thread-pool.keepalive-time

Used to specify the amount of milliseconds that pool threads should be kept running when idle; if not
specified, threads will run until the executor is shut down.

thorntail.infinispan.cache-containers.KEY.listener-thread-pool.max-threads

The maximum thread pool size.

thorntail.infinispan.cache-containers.KEY.listener-thread-pool.min-threads

The core thread pool size which is smaller than the maximum pool size. If undefined, the core thread
pool size is the same as the maximum thread pool size.

thorntail.infinispan.cache-containers.KEY.listener-thread-pool.queue-length

The queue length.

thorntail.infinispan.cache-containers.KEY.local-address

The local address of the node. May return null if the cache manager is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.activations

The number of cache node activations (bringing a node into memory from a cache store) . May
return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.average-read-time

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

208

Average time (in ms) for cache reads. Includes hits and misses. May return null if the cache is not
started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.average-write-time

Average time (in ms) for cache writes. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.behind-write.flush-
lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.binary-keyed-table

Defines a table used to store cache entries whose keys cannot be expressed as strings.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.binary-table.data-
column

A database column to hold cache entry data.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.binary-table.fetch-
size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.binary-table.id-
column

A database column to hold cache entry ids.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.binary-table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.binary-
table.timestamp-column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.cache-loader-
misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.data-source

References the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.datasource

The jndi name of the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.dialect

The dialect of this datastore.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

209

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-jdbc-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-memory.eviction-type

Indicates whether the size attribute refers to the number of cache entries (i.e. COUNT) or the
collective size of the cache entries (i.e. MEMORY).

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-memory.evictions

The number of cache eviction operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.binary-memory.size

Eviction threshold, as defined by the eviction-type.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.cache-status

The status of the cache component. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.custom-store.attribute-class

The custom store implementation class to use for this cache store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.custom-store.behind-write.flush-lock-

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

210

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.custom-store.behind-write.flush-lock-
timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.custom-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.custom-store.behind-write.shutdown-
timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.custom-store.behind-write.thread-
pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.custom-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.custom-store.cache-loader-misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.custom-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.custom-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.custom-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.custom-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.custom-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.custom-store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.custom-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.custom-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

211

enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.custom-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.elapsed-time

Time (in secs) since cache started. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.expiration-component.interval

Interval (in milliseconds) between subsequent runs to purge expired entries from memory and any
cache stores. If you wish to disable the periodic eviction process altogether, set wakeupInterval to -1.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.expiration-component.lifespan

Maximum lifespan of a cache entry, after which the entry is expired cluster-wide, in milliseconds. -1
means the entries never expire.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.expiration-component.max-idle

Maximum idle time a cache entry will be maintained in the cache, in milliseconds. If the idle time is
exceeded, the entry will be expired cluster-wide. -1 means the entries never expire.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.file-store.behind-write.flush-lock-
timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.file-store.behind-write.modification-
queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.file-store.behind-write.shutdown-
timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.file-store.behind-write.thread-pool-
size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.file-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.file-store.cache-loader-misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.file-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.file-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.file-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

212

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.file-store.path

The system path under which this cache store will persist its entries.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.file-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.file-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.file-store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.file-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.file-store.relative-to

The system path to which the specified path is relative.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.file-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.file-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.hit-ratio

The hit/miss ratio for the cache (hits/hits+misses). May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.hits

The number of cache attribute hits. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.hotrod-store.behind-write.flush-lock-
timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.hotrod-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.hotrod-store.behind-write.shutdown-
timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.hotrod-store.behind-write.thread-
pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.hotrod-store.cache-configuration

Name of the cache configuration template defined in Infinispan Server to create caches from.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

213

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.hotrod-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.hotrod-store.cache-loader-misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.hotrod-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.hotrod-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.hotrod-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.hotrod-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.hotrod-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.hotrod-store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.hotrod-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.hotrod-store.remote-cache-container

Reference to a container-managed remote-cache-container.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.hotrod-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.hotrod-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.indexing

If enabled, entries will be indexed when they are added to the cache. Indexes will be updated as
entries change or are removed.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.indexing-properties

Properties to control indexing behaviour

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.invalidations

The number of cache invalidations. May return null if the cache is not started.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

214

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.behind-write.flush-lock-
timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.behind-write.modification-
queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.behind-write.shutdown-
timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.behind-write.thread-pool-
size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.cache-loader-misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.data-source

References the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.datasource

The jndi name of the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.dialect

The dialect of this datastore.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.properties.KEY.value

The value of the cache store property.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

215

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.string-keyed-table

Defines a table used to store persistent cache entries.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.string-table.data-column

A database column to hold cache entry data.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.string-table.fetch-size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.string-table.id-column

A database column to hold cache entry ids.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.string-table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.jdbc-store.string-table.timestamp-
column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.locking-component.acquire-timeout

Maximum time to attempt a particular lock acquisition.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.locking-component.concurrency-level

Concurrency level for lock containers. Adjust this value according to the number of concurrent
threads interacting with Infinispan.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.locking-component.current-
concurrency-level

The estimated number of concurrently updating threads which this cache can support. May return
null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.locking-component.isolation

Sets the cache locking isolation level.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.locking-component.number-of-locks-
available

The number of locks available to this cache. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.locking-component.number-of-locks-
held

The number of locks currently in use by this cache. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.locking-component.striping

If true, a pool of shared locks is maintained for all entries that need to be locked. Otherwise, a lock is
created per entry in the cache. Lock striping helps control memory footprint but may reduce
concurrency in the system.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

216

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.misses

The number of cache attribute misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.behind-write.flush-
lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.binary-keyed-table

Defines a table used to store cache entries whose keys cannot be expressed as strings.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.binary-table.data-
column

A database column to hold cache entry data.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.binary-table.fetch-
size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.binary-table.id-
column

A database column to hold cache entry ids.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.binary-table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.binary-
table.timestamp-column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.cache-loader-misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.data-source

References the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.datasource

The jndi name of the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.dialect

The dialect of this datastore.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

217

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.string-keyed-table

Defines a table used to store persistent cache entries.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.string-table.data-
column

A database column to hold cache entry data.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.string-table.fetch-
size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.string-table.id-
column

A database column to hold cache entry ids.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.string-table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.string-

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

218

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.mixed-jdbc-store.string-
table.timestamp-column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.module

The module whose class loader should be used when building this cache’s configuration.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.number-of-entries

The current number of entries in the cache. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.object-memory.evictions

The number of cache eviction operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.object-memory.size

Triggers eviction of the least recently used entries when the number of cache entries exceeds this
threshold.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.off-heap-memory.capacity

Defines the capacity of the off-heap storage.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.off-heap-memory.eviction-type

Indicates whether the size attribute refers to the number of cache entries (i.e. COUNT) or the
collective size of the cache entries (i.e. MEMORY).

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.off-heap-memory.evictions

The number of cache eviction operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.off-heap-memory.size

Eviction threshold, as defined by the eviction-type.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.passivations

The number of cache node passivations (passivating a node from memory to a cache store). May
return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.read-write-ratio

The read/write ratio of the cache ((hits+misses)/stores). May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remote-store.behind-write.flush-lock-
timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remote-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remote-store.behind-write.shutdown-
timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remote-store.behind-write.thread-
pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remote-store.cache

The name of the remote cache to use for this remote store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remote-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

219

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remote-store.cache-loader-misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remote-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remote-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remote-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remote-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remote-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remote-store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remote-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remote-store.remote-servers

A list of remote servers for this cache store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remote-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remote-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remote-store.socket-timeout

A socket timeout for remote cache communication.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remote-store.tcp-no-delay

A TCP_NODELAY value for remote cache communication.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remove-hits

The number of cache attribute remove hits. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.remove-misses

The number of cache attribute remove misses. May return null if the cache is not started.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

220

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.statistics-enabled

If enabled, statistics will be collected for this cache

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.stores

The number of cache attribute put operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.time-since-reset

Time (in secs) since cache statistics were reset. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.transaction-component.commits

The number of transaction commits. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.transaction-component.locking

The locking mode for this cache, one of OPTIMISTIC or PESSIMISTIC.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.transaction-component.mode

Sets the cache transaction mode to one of NONE, NON_XA, NON_DURABLE_XA, FULL_XA.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.transaction-component.prepares

The number of transaction prepares. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.transaction-component.rollbacks

The number of transaction rollbacks. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.local-caches.KEY.transaction-component.stop-timeout

If there are any ongoing transactions when a cache is stopped, Infinispan waits for ongoing remote
and local transactions to finish. The amount of time to wait for is defined by the cache stop timeout.

thorntail.infinispan.cache-containers.KEY.module

The module whose class loader should be used when building this cache container’s configuration.

thorntail.infinispan.cache-containers.KEY.persistence-thread-pool.keepalive-time

Used to specify the amount of milliseconds that pool threads should be kept running when idle; if not
specified, threads will run until the executor is shut down.

thorntail.infinispan.cache-containers.KEY.persistence-thread-pool.max-threads

The maximum thread pool size.

thorntail.infinispan.cache-containers.KEY.remote-command-thread-pool.keepalive-time

Used to specify the amount of milliseconds that pool threads should be kept running when idle; if not
specified, threads will run until the executor is shut down.

thorntail.infinispan.cache-containers.KEY.remote-command-thread-pool.max-threads

The maximum thread pool size.

thorntail.infinispan.cache-containers.KEY.remote-command-thread-pool.min-threads

The core thread pool size which is smaller than the maximum pool size. If undefined, the core thread
pool size is the same as the maximum thread pool size.

thorntail.infinispan.cache-containers.KEY.remote-command-thread-pool.queue-length

The queue length.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.activations

The number of cache node activations (bringing a node into memory from a cache store) . May
return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.async-marshalling

If enabled, this will cause marshalling of entries to be performed asynchronously.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.average-read-time

Average time (in ms) for cache reads. Includes hits and misses. May return null if the cache is not

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

221

Average time (in ms) for cache reads. Includes hits and misses. May return null if the cache is not
started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.average-replication-time

The average time taken to replicate data around the cluster. May return null if the cache is not
started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.average-write-time

Average time (in ms) for cache writes. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.backups-
component.backups.KEY.after-failures

Indicates the number of failures after which this backup site should go offline.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.backups-
component.backups.KEY.enabled

Indicates whether or not this backup site is enabled.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.backups-
component.backups.KEY.failure-policy

The policy to follow when connectivity to the backup site fails.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.backups-
component.backups.KEY.min-wait

Indicates the minimum time (in milliseconds) to wait after the max number of failures is reached,
after which this backup site should go offline.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.backups-
component.backups.KEY.strategy

The backup strategy for this cache

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.backups-
component.backups.KEY.timeout

The timeout for replicating to the backup site.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.behind-
write.flush-lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.binary-keyed-
table

Defines a table used to store cache entries whose keys cannot be expressed as strings.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.binary-
table.data-column

A database column to hold cache entry data.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

222

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.binary-
table.fetch-size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.binary-
table.id-column

A database column to hold cache entry ids.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.binary-
table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.binary-
table.timestamp-column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.cache-loader-
loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.cache-loader-
misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.data-source

References the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.datasource

The jndi name of the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.dialect

The dialect of this datastore.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.max-batch-
size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

223

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-jdbc-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-memory.eviction-type

Indicates whether the size attribute refers to the number of cache entries (i.e. COUNT) or the
collective size of the cache entries (i.e. MEMORY).

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-memory.evictions

The number of cache eviction operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.binary-memory.size

Eviction threshold, as defined by the eviction-type.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.cache-status

The status of the cache component. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.custom-store.attribute-class

The custom store implementation class to use for this cache store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.custom-store.behind-write.flush-
lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.custom-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.custom-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.custom-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.custom-store.cache-loader-
loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.custom-store.cache-loader-
misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.custom-store.fetch-state

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

224

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.custom-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.custom-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.custom-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.custom-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.custom-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.custom-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.custom-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.custom-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.elapsed-time

Time (in secs) since cache started. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.expiration-component.interval

Interval (in milliseconds) between subsequent runs to purge expired entries from memory and any
cache stores. If you wish to disable the periodic eviction process altogether, set wakeupInterval to -1.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.expiration-component.lifespan

Maximum lifespan of a cache entry, after which the entry is expired cluster-wide, in milliseconds. -1
means the entries never expire.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.expiration-component.max-idle

Maximum idle time a cache entry will be maintained in the cache, in milliseconds. If the idle time is
exceeded, the entry will be expired cluster-wide. -1 means the entries never expire.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.file-store.behind-write.flush-
lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

225

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.file-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.file-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.file-store.behind-write.thread-
pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.file-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.file-store.cache-loader-misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.file-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.file-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.file-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.file-store.path

The system path under which this cache store will persist its entries.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.file-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.file-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.file-store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.file-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.file-store.relative-to

The system path to which the specified path is relative.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.file-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

226

Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.file-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.hit-ratio

The hit/miss ratio for the cache (hits/hits+misses). May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.hits

The number of cache attribute hits. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.hotrod-store.behind-write.flush-
lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.hotrod-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.hotrod-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.hotrod-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.hotrod-store.cache-
configuration

Name of the cache configuration template defined in Infinispan Server to create caches from.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.hotrod-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.hotrod-store.cache-loader-
misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.hotrod-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.hotrod-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.hotrod-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.hotrod-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

227

particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.hotrod-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.hotrod-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.hotrod-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.hotrod-store.remote-cache-
container

Reference to a container-managed remote-cache-container.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.hotrod-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.hotrod-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.indexing

If enabled, entries will be indexed when they are added to the cache. Indexes will be updated as
entries change or are removed.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.indexing-properties

Properties to control indexing behaviour

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.invalidations

The number of cache invalidations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.behind-write.flush-
lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.behind-write.thread-
pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

228

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.cache-loader-misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.data-source

References the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.datasource

The jndi name of the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.dialect

The dialect of this datastore.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.string-keyed-table

Defines a table used to store persistent cache entries.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.string-table.data-
column

A database column to hold cache entry data.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

229

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.string-table.fetch-
size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.string-table.id-
column

A database column to hold cache entry ids.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.string-table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.jdbc-store.string-
table.timestamp-column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.locking-component.acquire-
timeout

Maximum time to attempt a particular lock acquisition.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.locking-component.concurrency-
level

Concurrency level for lock containers. Adjust this value according to the number of concurrent
threads interacting with Infinispan.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.locking-component.current-
concurrency-level

The estimated number of concurrently updating threads which this cache can support. May return
null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.locking-component.isolation

Sets the cache locking isolation level.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.locking-component.number-of-
locks-available

The number of locks available to this cache. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.locking-component.number-of-
locks-held

The number of locks currently in use by this cache. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.locking-component.striping

If true, a pool of shared locks is maintained for all entries that need to be locked. Otherwise, a lock is
created per entry in the cache. Lock striping helps control memory footprint but may reduce
concurrency in the system.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.misses

The number of cache attribute misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.behind-
write.flush-lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

230

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.binary-keyed-
table

Defines a table used to store cache entries whose keys cannot be expressed as strings.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.binary-
table.data-column

A database column to hold cache entry data.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.binary-
table.fetch-size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.binary-
table.id-column

A database column to hold cache entry ids.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.binary-
table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.binary-
table.timestamp-column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.cache-loader-
loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.cache-loader-
misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.data-source

References the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.datasource

The jndi name of the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.dialect

The dialect of this datastore.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.max-batch-
size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

231

copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.string-keyed-
table

Defines a table used to store persistent cache entries.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.string-
table.data-column

A database column to hold cache entry data.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.string-
table.fetch-size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.string-table.id-
column

A database column to hold cache entry ids.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.string-
table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.mixed-jdbc-store.string-
table.timestamp-column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.module

The module whose class loader should be used when building this cache’s configuration.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.number-of-entries

The current number of entries in the cache. May return null if the cache is not started.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

232

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.object-memory.evictions

The number of cache eviction operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.object-memory.size

Triggers eviction of the least recently used entries when the number of cache entries exceeds this
threshold.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.off-heap-memory.capacity

Defines the capacity of the off-heap storage.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.off-heap-memory.eviction-type

Indicates whether the size attribute refers to the number of cache entries (i.e. COUNT) or the
collective size of the cache entries (i.e. MEMORY).

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.off-heap-memory.evictions

The number of cache eviction operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.off-heap-memory.size

Eviction threshold, as defined by the eviction-type.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.partition-handling-
component.availability

Indicates the current availability of the cache.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.partition-handling-
component.enabled

If enabled, the cache will enter degraded mode upon detecting a network partition that threatens the
integrity of the cache.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.passivations

The number of cache node passivations (passivating a node from memory to a cache store). May
return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.queue-flush-interval

In ASYNC mode, this attribute controls how often the asynchronous thread used to flush the
replication queue runs. This should be a positive integer which represents thread wakeup time in
milliseconds.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.queue-size

In ASYNC mode, this attribute can be used to trigger flushing of the queue when it reaches a specific
threshold.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.read-write-ratio

The read/write ratio of the cache ((hits+misses)/stores). May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-store.behind-write.flush-
lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-store.behind-
write.thread-pool-size

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

233

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-store.cache

The name of the remote cache to use for this remote store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-store.cache-loader-
misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-store.remote-servers

A list of remote servers for this cache store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-store.socket-timeout

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

234

A socket timeout for remote cache communication.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-store.tcp-no-delay

A TCP_NODELAY value for remote cache communication.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remote-timeout

In SYNC mode, the timeout (in ms) used to wait for an acknowledgment when making a remote call,
after which the call is aborted and an exception is thrown.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remove-hits

The number of cache attribute remove hits. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.remove-misses

The number of cache attribute remove misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.replication-count

The number of times data was replicated around the cluster. May return null if the cache is not
started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.replication-failures

The number of data replication failures. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.state-transfer-
component.chunk-size

The maximum number of cache entries in a batch of transferred state.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.state-transfer-
component.enabled

If enabled, this will cause the cache to ask neighboring caches for state when it starts up, so the
cache starts 'warm', although it will impact startup time.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.state-transfer-
component.timeout

The maximum amount of time (ms) to wait for state from neighboring caches, before throwing an
exception and aborting startup. If timeout is 0, state transfer is performed asynchronously, and the
cache will be immediately available.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.statistics-enabled

If enabled, statistics will be collected for this cache

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.stores

The number of cache attribute put operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.success-ratio

The data replication success ratio (successes/successes+failures). May return null if the cache is not
started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.time-since-reset

Time (in secs) since cache statistics were reset. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.transaction-component.commits

The number of transaction commits. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.transaction-component.locking

The locking mode for this cache, one of OPTIMISTIC or PESSIMISTIC.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.transaction-component.mode

Sets the cache transaction mode to one of NONE, NON_XA, NON_DURABLE_XA, FULL_XA.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.transaction-component.prepares

The number of transaction prepares. May return null if the cache is not started.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

235

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.transaction-component.rollbacks

The number of transaction rollbacks. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.replicated-caches.KEY.transaction-component.stop-
timeout

If there are any ongoing transactions when a cache is stopped, Infinispan waits for ongoing remote
and local transactions to finish. The amount of time to wait for is defined by the cache stop timeout.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.activations

The number of cache node activations (bringing a node into memory from a cache store) . May
return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.async-marshalling

If enabled, this will cause marshalling of entries to be performed asynchronously.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.average-read-time

Average time (in ms) for cache reads. Includes hits and misses. May return null if the cache is not
started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.average-replication-time

The average time taken to replicate data around the cluster. May return null if the cache is not
started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.average-write-time

Average time (in ms) for cache writes. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.backups-
component.backups.KEY.after-failures

Indicates the number of failures after which this backup site should go offline.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.backups-
component.backups.KEY.enabled

Indicates whether or not this backup site is enabled.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.backups-
component.backups.KEY.failure-policy

The policy to follow when connectivity to the backup site fails.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.backups-
component.backups.KEY.min-wait

Indicates the minimum time (in milliseconds) to wait after the max number of failures is reached,
after which this backup site should go offline.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.backups-
component.backups.KEY.strategy

The backup strategy for this cache

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.backups-
component.backups.KEY.timeout

The timeout for replicating to the backup site.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.bias-lifespan

When greater than zero, specifies the duration (in ms) that a cache entry will be cached on a non-
owner following a write operation.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.behind-
write.flush-lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.behind-

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

236

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.binary-keyed-
table

Defines a table used to store cache entries whose keys cannot be expressed as strings.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.binary-
table.data-column

A database column to hold cache entry data.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.binary-
table.fetch-size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.binary-
table.id-column

A database column to hold cache entry ids.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.binary-
table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.binary-
table.timestamp-column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.cache-loader-
loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.cache-loader-
misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.data-source

References the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.datasource

The jndi name of the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.dialect

The dialect of this datastore.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.max-batch-

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

237

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.max-batch-
size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-jdbc-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-memory.eviction-type

Indicates whether the size attribute refers to the number of cache entries (i.e. COUNT) or the
collective size of the cache entries (i.e. MEMORY).

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-memory.evictions

The number of cache eviction operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.binary-memory.size

Eviction threshold, as defined by the eviction-type.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.cache-status

The status of the cache component. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.consistent-hash-strategy

Defines the consistent hash strategy for the cache.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.custom-store.attribute-class

The custom store implementation class to use for this cache store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.custom-store.behind-write.flush-

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

238

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.custom-store.behind-write.flush-
lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.custom-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.custom-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.custom-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.custom-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.custom-store.cache-loader-
misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.custom-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.custom-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.custom-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.custom-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.custom-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.custom-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.custom-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.custom-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

239

Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.custom-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.elapsed-time

Time (in secs) since cache started. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.expiration-component.interval

Interval (in milliseconds) between subsequent runs to purge expired entries from memory and any
cache stores. If you wish to disable the periodic eviction process altogether, set wakeupInterval to -1.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.expiration-component.lifespan

Maximum lifespan of a cache entry, after which the entry is expired cluster-wide, in milliseconds. -1
means the entries never expire.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.expiration-component.max-idle

Maximum idle time a cache entry will be maintained in the cache, in milliseconds. If the idle time is
exceeded, the entry will be expired cluster-wide. -1 means the entries never expire.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.file-store.behind-write.flush-
lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.file-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.file-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.file-store.behind-write.thread-
pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.file-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.file-store.cache-loader-misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.file-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.file-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.file-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

240

copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.file-store.path

The system path under which this cache store will persist its entries.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.file-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.file-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.file-store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.file-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.file-store.relative-to

The system path to which the specified path is relative.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.file-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.file-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hit-ratio

The hit/miss ratio for the cache (hits/hits+misses). May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hits

The number of cache attribute hits. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hotrod-store.behind-write.flush-
lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hotrod-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hotrod-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hotrod-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hotrod-store.cache-

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

241

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hotrod-store.cache-
configuration

Name of the cache configuration template defined in Infinispan Server to create caches from.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hotrod-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hotrod-store.cache-loader-
misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hotrod-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hotrod-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hotrod-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hotrod-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hotrod-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hotrod-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hotrod-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hotrod-store.remote-cache-
container

Reference to a container-managed remote-cache-container.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hotrod-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.hotrod-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.indexing

If enabled, entries will be indexed when they are added to the cache. Indexes will be updated as

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

242

If enabled, entries will be indexed when they are added to the cache. Indexes will be updated as
entries change or are removed.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.indexing-properties

Properties to control indexing behaviour

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.invalidation-batch-size

The threshold after which batched invalidations are sent.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.invalidations

The number of cache invalidations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.behind-write.flush-
lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.behind-write.thread-
pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.cache-loader-misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.data-source

References the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.datasource

The jndi name of the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.dialect

The dialect of this datastore.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.preload

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

243

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.string-keyed-table

Defines a table used to store persistent cache entries.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.string-table.data-
column

A database column to hold cache entry data.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.string-table.fetch-size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.string-table.id-column

A database column to hold cache entry ids.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.string-table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.jdbc-store.string-
table.timestamp-column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.locking-component.acquire-
timeout

Maximum time to attempt a particular lock acquisition.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.locking-component.concurrency-
level

Concurrency level for lock containers. Adjust this value according to the number of concurrent
threads interacting with Infinispan.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.locking-component.current-
concurrency-level

The estimated number of concurrently updating threads which this cache can support. May return
null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.locking-component.isolation

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

244

Sets the cache locking isolation level.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.locking-component.number-of-
locks-available

The number of locks available to this cache. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.locking-component.number-of-
locks-held

The number of locks currently in use by this cache. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.locking-component.striping

If true, a pool of shared locks is maintained for all entries that need to be locked. Otherwise, a lock is
created per entry in the cache. Lock striping helps control memory footprint but may reduce
concurrency in the system.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.misses

The number of cache attribute misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.behind-
write.flush-lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.binary-keyed-
table

Defines a table used to store cache entries whose keys cannot be expressed as strings.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.binary-
table.data-column

A database column to hold cache entry data.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.binary-
table.fetch-size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.binary-table.id-
column

A database column to hold cache entry ids.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.binary-
table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.binary-
table.timestamp-column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.cache-loader-

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

245

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.cache-loader-
loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.cache-loader-
misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.data-source

References the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.datasource

The jndi name of the data source used to connect to this store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.dialect

The dialect of this datastore.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is
particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

246

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.string-keyed-
table

Defines a table used to store persistent cache entries.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.string-
table.data-column

A database column to hold cache entry data.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.string-
table.fetch-size

For DB queries, the fetch size will be used to set the fetch size on ResultSets.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.string-table.id-
column

A database column to hold cache entry ids.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.string-
table.prefix

The prefix for the database table name.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.mixed-jdbc-store.string-
table.timestamp-column

A database column to hold cache entry timestamps.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.module

The module whose class loader should be used when building this cache’s configuration.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.number-of-entries

The current number of entries in the cache. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.object-memory.evictions

The number of cache eviction operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.object-memory.size

Triggers eviction of the least recently used entries when the number of cache entries exceeds this
threshold.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.off-heap-memory.capacity

Defines the capacity of the off-heap storage.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.off-heap-memory.eviction-type

Indicates whether the size attribute refers to the number of cache entries (i.e. COUNT) or the
collective size of the cache entries (i.e. MEMORY).

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.off-heap-memory.evictions

The number of cache eviction operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.off-heap-memory.size

Eviction threshold, as defined by the eviction-type.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.partition-handling-
component.availability

Indicates the current availability of the cache.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.partition-handling-
component.enabled

If enabled, the cache will enter degraded mode upon detecting a network partition that threatens the
integrity of the cache.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.passivations

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

247

The number of cache node passivations (passivating a node from memory to a cache store). May
return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.queue-flush-interval

In ASYNC mode, this attribute controls how often the asynchronous thread used to flush the
replication queue runs. This should be a positive integer which represents thread wakeup time in
milliseconds.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.queue-size

In ASYNC mode, this attribute can be used to trigger flushing of the queue when it reaches a specific
threshold.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.read-write-ratio

The read/write ratio of the cache ((hits+misses)/stores). May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-store.behind-write.flush-
lock-timeout

Timeout to acquire the lock which guards the state to be flushed to the cache store periodically.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-store.behind-
write.modification-queue-size

Maximum number of entries in the asynchronous queue. When the queue is full, the store becomes
write-through until it can accept new entries.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-store.behind-
write.shutdown-timeout

Timeout in milliseconds to stop the cache store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-store.behind-
write.thread-pool-size

Size of the thread pool whose threads are responsible for applying the modifications to the cache
store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-store.cache

The name of the remote cache to use for this remote store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-store.cache-loader-loads

The number of cache loader node loads. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-store.cache-loader-
misses

The number of cache loader node misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-store.fetch-state

If true, fetch persistent state when joining a cluster. If multiple cache stores are chained, only one of
them can have this property enabled.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-store.max-batch-size

The maximum size of a batch to be inserted/deleted from the store. If the value is less than one, then
no upper limit is placed on the number of operations in a batch.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-store.passivation

If true, data is only written to the cache store when it is evicted from memory, a phenomenon known
as 'passivation'. Next time the data is requested, it will be 'activated' which means that data will be
brought back to memory and removed from the persistent store. If false, the cache store contains a
copy of the contents in memory, so writes to cache result in cache store writes. This essentially gives
you a 'write-through' configuration.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-store.preload

If true, when the cache starts, data stored in the cache store will be pre-loaded into memory. This is

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

248

particularly useful when data in the cache store will be needed immediately after startup and you
want to avoid cache operations being delayed as a result of loading this data lazily. Can be used to
provide a 'warm-cache' on startup, however there is a performance penalty as startup time is
affected by this process.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-store.properties

A list of cache store properties.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-
store.properties.KEY.value

The value of the cache store property.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-store.purge

If true, purges this cache store when it starts up.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-store.remote-servers

A list of remote servers for this cache store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-store.shared

This setting should be set to true when multiple cache instances share the same cache store (e.g.,
multiple nodes in a cluster using a JDBC-based CacheStore pointing to the same, shared database.)
Setting this to true avoids multiple cache instances writing the same modification multiple times. If
enabled, only the node where the modification originated will write to the cache store. If disabled,
each individual cache reacts to a potential remote update by storing the data to the cache store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-store.singleton

If true, the singleton store cache store is enabled. SingletonStore is a delegating cache store used
for situations when only one instance in a cluster should interact with the underlying store.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-store.socket-timeout

A socket timeout for remote cache communication.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-store.tcp-no-delay

A TCP_NODELAY value for remote cache communication.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remote-timeout

In SYNC mode, the timeout (in ms) used to wait for an acknowledgment when making a remote call,
after which the call is aborted and an exception is thrown.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remove-hits

The number of cache attribute remove hits. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.remove-misses

The number of cache attribute remove misses. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.replication-count

The number of times data was replicated around the cluster. May return null if the cache is not
started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.replication-failures

The number of data replication failures. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.segments

Controls the number of hash space segments which is the granularity for key distribution in the
cluster. Value must be strictly positive.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.state-transfer-
component.chunk-size

The maximum number of cache entries in a batch of transferred state.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.state-transfer-

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

249

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.state-transfer-
component.enabled

If enabled, this will cause the cache to ask neighboring caches for state when it starts up, so the
cache starts 'warm', although it will impact startup time.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.state-transfer-
component.timeout

The maximum amount of time (ms) to wait for state from neighboring caches, before throwing an
exception and aborting startup. If timeout is 0, state transfer is performed asynchronously, and the
cache will be immediately available.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.statistics-enabled

If enabled, statistics will be collected for this cache

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.stores

The number of cache attribute put operations. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.success-ratio

The data replication success ratio (successes/successes+failures). May return null if the cache is not
started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.time-since-reset

Time (in secs) since cache statistics were reset. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.transaction-component.commits

The number of transaction commits. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.transaction-component.locking

The locking mode for this cache, one of OPTIMISTIC or PESSIMISTIC.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.transaction-component.mode

Sets the cache transaction mode to one of NONE, NON_XA, NON_DURABLE_XA, FULL_XA.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.transaction-component.prepares

The number of transaction prepares. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.transaction-component.rollbacks

The number of transaction rollbacks. May return null if the cache is not started.

thorntail.infinispan.cache-containers.KEY.scattered-caches.KEY.transaction-component.stop-
timeout

If there are any ongoing transactions when a cache is stopped, Infinispan waits for ongoing remote
and local transactions to finish. The amount of time to wait for is defined by the cache stop timeout.

thorntail.infinispan.cache-containers.KEY.state-transfer-thread-pool.keepalive-time

Used to specify the amount of milliseconds that pool threads should be kept running when idle; if not
specified, threads will run until the executor is shut down.

thorntail.infinispan.cache-containers.KEY.state-transfer-thread-pool.max-threads

The maximum thread pool size.

thorntail.infinispan.cache-containers.KEY.state-transfer-thread-pool.min-threads

The core thread pool size which is smaller than the maximum pool size. If undefined, the core thread
pool size is the same as the maximum thread pool size.

thorntail.infinispan.cache-containers.KEY.state-transfer-thread-pool.queue-length

The queue length.

thorntail.infinispan.cache-containers.KEY.statistics-enabled

If enabled, statistics will be collected for this cache container

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

250

thorntail.infinispan.cache-containers.KEY.transport-thread-pool.keepalive-time

Used to specify the amount of milliseconds that pool threads should be kept running when idle; if not
specified, threads will run until the executor is shut down.

thorntail.infinispan.cache-containers.KEY.transport-thread-pool.max-threads

The maximum thread pool size.

thorntail.infinispan.cache-containers.KEY.transport-thread-pool.min-threads

The core thread pool size which is smaller than the maximum pool size. If undefined, the core thread
pool size is the same as the maximum thread pool size.

thorntail.infinispan.cache-containers.KEY.transport-thread-pool.queue-length

The queue length.

thorntail.infinispan.default-fraction

(not yet documented)

thorntail.infinispan.remote-cache-containers.KEY.async-thread-pool.keepalive-time

Used to specify the amount of milliseconds that pool threads should be kept running when idle; if not
specified, threads will run until the executor is shut down.

thorntail.infinispan.remote-cache-containers.KEY.async-thread-pool.max-threads

The maximum thread pool size.

thorntail.infinispan.remote-cache-containers.KEY.async-thread-pool.min-threads

The core thread pool size which is smaller than the maximum pool size. If undefined, the core thread
pool size is the same as the maximum thread pool size.

thorntail.infinispan.remote-cache-containers.KEY.async-thread-pool.queue-length

The queue length.

thorntail.infinispan.remote-cache-containers.KEY.connection-pool-component.exhausted-action

Specifies what happens when asking for a connection from a server’s pool, and that pool is
exhausted.

thorntail.infinispan.remote-cache-containers.KEY.connection-pool-component.max-active

Controls the maximum number of connections per server that are allocated (checked out to client
threads, or idle in the pool) at one time. When non-positive, there is no limit to the number of
connections per server. When maxActive is reached, the connection pool for that server is said to be
exhausted. Value -1 means no limit.

thorntail.infinispan.remote-cache-containers.KEY.connection-pool-component.max-wait

The amount of time in milliseconds to wait for a connection to become available when the exhausted
action is ExhaustedAction.WAIT, after which a java.util.NoSuchElementException will be thrown. If a
negative value is supplied, the pool will block indefinitely.

thorntail.infinispan.remote-cache-containers.KEY.connection-pool-component.min-evictable-
idle-time

Specifies the minimum amount of time that an connection may sit idle in the pool before it is eligible
for eviction due to idle time. When non-positive, no connection will be dropped from the pool due to
idle time alone. This setting has no effect unless timeBetweenEvictionRunsMillis > 0.

thorntail.infinispan.remote-cache-containers.KEY.connection-pool-component.min-idle

Sets a target value for the minimum number of idle connections (per server) that should always be
available. If this parameter is set to a positive number and timeBetweenEvictionRunsMillis > 0, each
time the idle connection eviction thread runs, it will try to create enough idle instances so that there
will be minIdle idle instances available for each server.

thorntail.infinispan.remote-cache-containers.KEY.connection-timeout

Defines the maximum socket connect timeout before giving up connecting to the server.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

251

thorntail.infinispan.remote-cache-containers.KEY.default-remote-cluster

Required default remote server cluster.

thorntail.infinispan.remote-cache-containers.KEY.invalidation-near-cache.max-entries

Defines the maximum number of elements to keep in the near cache.

thorntail.infinispan.remote-cache-containers.KEY.key-size-estimate

This hint allows sizing of byte buffers when serializing and deserializing keys, to minimize array
resizing.

thorntail.infinispan.remote-cache-containers.KEY.max-retries

Sets the maximum number of retries for each request. A valid value should be greater or equals than
0. Zero means no retry will made in case of a network failure.

thorntail.infinispan.remote-cache-containers.KEY.module

Defines the module whose class loader should be used when configuring remote cache container
marshaller.

thorntail.infinispan.remote-cache-containers.KEY.protocol-version

This property defines the protocol version that this client should use.

thorntail.infinispan.remote-cache-containers.KEY.remote-clusters.KEY.socket-bindings

List of outbound-socket-bindings of Hot Rod servers to connect to.

thorntail.infinispan.remote-cache-containers.KEY.security-component.ssl-context

Reference to the Elytron-managed SSLContext to be used for connecting to the remote cluster.

thorntail.infinispan.remote-cache-containers.KEY.socket-timeout

Enable or disable SO_TIMEOUT on socket connections to remote Hot Rod servers with the specified
timeout, in milliseconds. A timeout of 0 is interpreted as an infinite timeout.

thorntail.infinispan.remote-cache-containers.KEY.tcp-keep-alive

Configures TCP Keepalive on the TCP stack.

thorntail.infinispan.remote-cache-containers.KEY.tcp-no-delay

Enable or disable TCP_NODELAY on socket connections to remote Hot Rod servers.

thorntail.infinispan.remote-cache-containers.KEY.value-size-estimate

This hint allows sizing of byte buffers when serializing and deserializing values, to minimize array
resizing.

D.13. IO

Primarily an internal fraction supporting I/O activities for higher-level fractions.

Maven Coordinates

Configuration

thorntail.io.buffer-pools.KEY.buffer-size

The size of each buffer slice in bytes, if not set optimal value is calculated based on available RAM
resources in your system.

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>io</artifactId>
</dependency>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

252

thorntail.io.buffer-pools.KEY.buffers-per-slice

How many buffers per slice, if not set optimal value is calculated based on available RAM resources in
your system.

thorntail.io.buffer-pools.KEY.direct-buffers

Does the buffer pool use direct buffers, some platforms don’t support direct buffers

thorntail.io.workers.KEY.busy-task-thread-count

An estimate of busy threads in the task worker thread pool

thorntail.io.workers.KEY.core-pool-size

Minimum number of threads to keep in the underlying thread pool even if they are idle. Threads over
this limit will be terminated over time specified by task-keepalive attribute.

thorntail.io.workers.KEY.io-thread-count

I/O thread count

thorntail.io.workers.KEY.io-threads

Specify the number of I/O threads to create for the worker. If not specified, a default will be chosen,
which is calculated by cpuCount * 2

thorntail.io.workers.KEY.max-pool-size

The maximum number of threads to allow in the thread pool. Depending on implementation, when
this limit is reached, tasks which cannot be queued may be rejected.

thorntail.io.workers.KEY.outbound-bind-address.KEY.bind-address

The address to bind to when the destination address matches

thorntail.io.workers.KEY.outbound-bind-address.KEY.bind-port

The port number to bind to when the destination address matches

thorntail.io.workers.KEY.outbound-bind-address.KEY.match

The destination address range to match

thorntail.io.workers.KEY.queue-size

An estimate of the number of tasks in the worker queue.

thorntail.io.workers.KEY.servers.KEY.connection-count

Estimate of the current connection count

thorntail.io.workers.KEY.servers.KEY.connection-limit-high-water-mark

If the connection count hits this number, no new connections will be accepted until the count drops
below the low-water mark.

thorntail.io.workers.KEY.servers.KEY.connection-limit-low-water-mark

If the connection count has previously hit the high water mark, once it drops back down below this
count, connections will be accepted again.

thorntail.io.workers.KEY.shutdown-requested

True is shutdown of the pool was requested

thorntail.io.workers.KEY.stack-size

The stack size (in bytes) to attempt to use for worker threads.

thorntail.io.workers.KEY.task-core-threads

Specify the starting number of threads for the worker task thread pool.

thorntail.io.workers.KEY.task-keepalive

Specify the number of milliseconds to keep non-core task threads alive.

thorntail.io.workers.KEY.task-max-threads

Specify the maximum number of threads for the worker task thread pool.If not set, default value used

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

253

Specify the maximum number of threads for the worker task thread pool.If not set, default value used
which is calculated by formula cpuCount * 16,as long as MaxFileDescriptorCount jmx property allows
that number, otherwise calculation takes max into account to adjust it accordingly.

D.14. JAEGER

Maven Coordinates

Configuration

thorntail.jaeger.agent-host

The hostname for communicating with agent via UDP

thorntail.jaeger.agent-port

The port for communicating with agent via UDP

thorntail.jaeger.enable-b3-header-propagation

Whether to enable propagation of B3 headers in the configured Tracer. By default this is false.

thorntail.jaeger.password

Password to send as part of "Basic" authentication to the endpoint

thorntail.jaeger.remote-reporter-http-endpoint

Remote Reporter HTTP endpoint for Jaeger collector, such as http://jaeger-collector.istio-
system:14268/api/traces

thorntail.jaeger.reporter-flush-interval

The reporter’s flush interval (ms)

thorntail.jaeger.reporter-log-spans

Whether the reporter should also log the spans

thorntail.jaeger.reporter-max-queue-size

The reporter’s maximum queue size

thorntail.jaeger.sampler-manager-host

The host name and port when using the remote controlled sampler

thorntail.jaeger.sampler-parameter

The sampler parameter (number). Ex.: 1

thorntail.jaeger.sampler-type

The sampler type. Ex.: const

thorntail.jaeger.service-name

The service name. Required (via this parameter, system property or env var). Ex.: order-manager

thorntail.jaeger.user

Username to send as part of "Basic" authentication to the endpoint

D.15. JAX-RS

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>jaeger</artifactId>
</dependency>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

254

http://jaeger-collector.istio-system:14268/api/traces

Provides support for building RESTful web services according to JSR-311.

Maven Coordinates

Configuration

thorntail.deployment.KEY.jaxrs.application-path

Set the JAX-RS application path. If set, Thorntail will automatically generate a JAX-RS Application
class and use this value as the @ApplicationPath

D.15.1. JAX-RS + CDI

An internal fraction providing integration between JAX-RS and CDI.

For more information, see the JAX-RS and CDI fraction documentation.

Maven Coordinates

D.15.2. JAX-RS + JAXB

Provides support within JAX-RS applications for the XML binding framework according to JSR-31 and
JSR-222.

Maven Coordinates

D.15.3. JAX-RS + JSON-B

Provides support within JAX-RS application for JSON Binding according to JSR-367.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>jaxrs</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>jaxrs-cdi</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>jaxrs-jaxb</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>jaxrs-jsonb</artifactId>
</dependency>

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

255

D.15.4. JAX-RS + JSON-P

Provides support within JAX-RS application for JSON processing according to JSR-374.

Maven Coordinates

D.15.5. JAX-RS + Multipart

Provides support within JAX-RS application for MIME multipart form processing.

Maven Coordinates

D.15.6. JAX-RS + Validator

Provides integration and support between JAX-RS applications and Hibernate Validator.

Maven Coordinates

D.16. JCA

Provides support for the Java Connector Architecture (JCA) according to JSR 322.

Maven Coordinates

Configuration

thorntail.jca.archive-validation.enabled

Specify whether archive validation is enabled

thorntail.jca.archive-validation.fail-on-error

Should an archive validation error report fail the deployment

thorntail.jca.archive-validation.fail-on-warn

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>jaxrs-jsonp</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>jaxrs-multipart</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>jaxrs-validator</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>jca</artifactId>
</dependency>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

256

Should an archive validation warning report fail the deployment

thorntail.jca.bean-validation.enabled

Specify whether bean validation is enabled

thorntail.jca.bootstrap-contexts.KEY.name

The name of the BootstrapContext

thorntail.jca.bootstrap-contexts.KEY.workmanager

The WorkManager instance for the BootstrapContext

thorntail.jca.cached-connection-manager.debug

Enable/disable debug information logging

thorntail.jca.cached-connection-manager.error

Enable/disable error information logging

thorntail.jca.cached-connection-manager.ignore-unknown-connections

Do not cache unknown connections

thorntail.jca.cached-connection-manager.install

Enable/disable the cached connection manager valve and interceptor

thorntail.jca.distributed-workmanagers.KEY.elytron-enabled

Enables Elytron security for this workmanager.

thorntail.jca.distributed-workmanagers.KEY.long-running-threads.KEY.allow-core-timeout

Whether core threads may time out.

thorntail.jca.distributed-workmanagers.KEY.long-running-threads.KEY.core-threads

The core thread pool size which is smaller than the maximum pool size. If undefined, the core thread
pool size is the same as the maximum thread pool size.

thorntail.jca.distributed-workmanagers.KEY.long-running-threads.KEY.current-thread-count

The current number of threads in the pool.

thorntail.jca.distributed-workmanagers.KEY.long-running-threads.KEY.keepalive-time

Used to specify the amount of time that pool threads should be kept running when idle; if not
specified, threads will run until the executor is shut down.

thorntail.jca.distributed-workmanagers.KEY.long-running-threads.KEY.largest-thread-count

The largest number of threads that have ever simultaneously been in the pool.

thorntail.jca.distributed-workmanagers.KEY.long-running-threads.KEY.max-threads

The maximum thread pool size.

thorntail.jca.distributed-workmanagers.KEY.long-running-threads.KEY.name

The name of the thread pool.

thorntail.jca.distributed-workmanagers.KEY.long-running-threads.KEY.queue-length

The queue length.

thorntail.jca.distributed-workmanagers.KEY.long-running-threads.KEY.queue-size

The queue size.

thorntail.jca.distributed-workmanagers.KEY.long-running-threads.KEY.rejected-count

The number of tasks that have been passed to the handoff-executor (if one is specified) or
discarded.

thorntail.jca.distributed-workmanagers.KEY.long-running-threads.KEY.thread-factory

Specifies the name of a specific thread factory to use to create worker threads. If not defined an
appropriate default thread factory will be used.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

257

thorntail.jca.distributed-workmanagers.KEY.name

The name of the DistributedWorkManager

thorntail.jca.distributed-workmanagers.KEY.policy

The policy decides when to redistribute a Work instance

thorntail.jca.distributed-workmanagers.KEY.policy-options

List of policy’s options key/value pairs

thorntail.jca.distributed-workmanagers.KEY.selector

The selector decides to which nodes in the network to redistribute the Work instance to

thorntail.jca.distributed-workmanagers.KEY.selector-options

List of selector’s options key/value pairs

thorntail.jca.distributed-workmanagers.KEY.short-running-threads.KEY.allow-core-timeout

Whether core threads may time out.

thorntail.jca.distributed-workmanagers.KEY.short-running-threads.KEY.core-threads

The core thread pool size which is smaller than the maximum pool size. If undefined, the core thread
pool size is the same as the maximum thread pool size.

thorntail.jca.distributed-workmanagers.KEY.short-running-threads.KEY.current-thread-count

The current number of threads in the pool.

thorntail.jca.distributed-workmanagers.KEY.short-running-threads.KEY.keepalive-time

Used to specify the amount of time that pool threads should be kept running when idle; if not
specified, threads will run until the executor is shut down.

thorntail.jca.distributed-workmanagers.KEY.short-running-threads.KEY.largest-thread-count

The largest number of threads that have ever simultaneously been in the pool.

thorntail.jca.distributed-workmanagers.KEY.short-running-threads.KEY.max-threads

The maximum thread pool size.

thorntail.jca.distributed-workmanagers.KEY.short-running-threads.KEY.name

The name of the thread pool.

thorntail.jca.distributed-workmanagers.KEY.short-running-threads.KEY.queue-length

The queue length.

thorntail.jca.distributed-workmanagers.KEY.short-running-threads.KEY.queue-size

The queue size.

thorntail.jca.distributed-workmanagers.KEY.short-running-threads.KEY.rejected-count

The number of tasks that have been passed to the handoff-executor (if one is specified) or
discarded.

thorntail.jca.distributed-workmanagers.KEY.short-running-threads.KEY.thread-factory

Specifies the name of a specific thread factory to use to create worker threads. If not defined an
appropriate default thread factory will be used.

thorntail.jca.tracer.enabled

Specify whether tracer is enabled

thorntail.jca.workmanagers.KEY.elytron-enabled

Enables Elytron security for this workmanager.

thorntail.jca.workmanagers.KEY.long-running-threads.KEY.allow-core-timeout

Whether core threads may time out.

thorntail.jca.workmanagers.KEY.long-running-threads.KEY.core-threads

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

258

The core thread pool size which is smaller than the maximum pool size. If undefined, the core thread
pool size is the same as the maximum thread pool size.

thorntail.jca.workmanagers.KEY.long-running-threads.KEY.current-thread-count

The current number of threads in the pool.

thorntail.jca.workmanagers.KEY.long-running-threads.KEY.keepalive-time

Used to specify the amount of time that pool threads should be kept running when idle; if not
specified, threads will run until the executor is shut down.

thorntail.jca.workmanagers.KEY.long-running-threads.KEY.largest-thread-count

The largest number of threads that have ever simultaneously been in the pool.

thorntail.jca.workmanagers.KEY.long-running-threads.KEY.max-threads

The maximum thread pool size.

thorntail.jca.workmanagers.KEY.long-running-threads.KEY.name

The name of the thread pool.

thorntail.jca.workmanagers.KEY.long-running-threads.KEY.queue-length

The queue length.

thorntail.jca.workmanagers.KEY.long-running-threads.KEY.queue-size

The queue size.

thorntail.jca.workmanagers.KEY.long-running-threads.KEY.rejected-count

The number of tasks that have been passed to the handoff-executor (if one is specified) or
discarded.

thorntail.jca.workmanagers.KEY.long-running-threads.KEY.thread-factory

Specifies the name of a specific thread factory to use to create worker threads. If not defined an
appropriate default thread factory will be used.

thorntail.jca.workmanagers.KEY.name

The name of the WorkManager

thorntail.jca.workmanagers.KEY.short-running-threads.KEY.allow-core-timeout

Whether core threads may time out.

thorntail.jca.workmanagers.KEY.short-running-threads.KEY.core-threads

The core thread pool size which is smaller than the maximum pool size. If undefined, the core thread
pool size is the same as the maximum thread pool size.

thorntail.jca.workmanagers.KEY.short-running-threads.KEY.current-thread-count

The current number of threads in the pool.

thorntail.jca.workmanagers.KEY.short-running-threads.KEY.keepalive-time

Used to specify the amount of time that pool threads should be kept running when idle; if not
specified, threads will run until the executor is shut down.

thorntail.jca.workmanagers.KEY.short-running-threads.KEY.largest-thread-count

The largest number of threads that have ever simultaneously been in the pool.

thorntail.jca.workmanagers.KEY.short-running-threads.KEY.max-threads

The maximum thread pool size.

thorntail.jca.workmanagers.KEY.short-running-threads.KEY.name

The name of the thread pool.

thorntail.jca.workmanagers.KEY.short-running-threads.KEY.queue-length

The queue length.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

259

thorntail.jca.workmanagers.KEY.short-running-threads.KEY.queue-size

The queue size.

thorntail.jca.workmanagers.KEY.short-running-threads.KEY.rejected-count

The number of tasks that have been passed to the handoff-executor (if one is specified) or
discarded.

thorntail.jca.workmanagers.KEY.short-running-threads.KEY.thread-factory

Specifies the name of a specific thread factory to use to create worker threads. If not defined an
appropriate default thread factory will be used.

D.17. JMX

Provides support for Java Management Extensions (JMX) according to JSR-3.

Maven Coordinates

Configuration

thorntail.jmx.audit-log-configuration.enabled

Whether audit logging is enabled.

thorntail.jmx.audit-log-configuration.log-boot

Whether operations should be logged on server boot.

thorntail.jmx.audit-log-configuration.log-read-only

Whether operations that do not modify the configuration or any runtime services should be logged.

thorntail.jmx.expression-expose-model.domain-name

The domain name to use for the 'expression' model controller JMX facade in the MBeanServer.

thorntail.jmx.jmx-remoting-connector.use-management-endpoint

If true the connector will use the management endpoint, otherwise it will use the remoting
subsystem one

thorntail.jmx.non-core-mbean-sensitivity

Whether or not core MBeans, i.e. mbeans not coming from the model controller, should be
considered sensitive.

thorntail.jmx.resolved-expose-model.domain-name

The domain name to use for the 'resolved' model controller JMX facade in the MBeanServer.

thorntail.jmx.resolved-expose-model.proper-property-format

If false, PROPERTY type attributes are represented as a DMR string, this is the legacy behaviour. If
true, PROPERTY type attributes are represented by a composite type where the key is a string, and
the value has the same type as the property in the underlying model.

thorntail.jmx.show-model

Alias for the existence of the 'resolved' model controller jmx facade. When writing, if set to 'true' it
will add the 'resolved' model controller jmx facade resource with the default domain name.

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>jmx</artifactId>
</dependency>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

260

D.18. JPA

Provides support for the Java Persistence API according to JSR-220.

Maven Coordinates

Configuration

thorntail.jpa.default-datasource

The name of the default global datasource.

thorntail.jpa.default-extended-persistence-inheritance

Controls how JPA extended persistence context (XPC) inheritance is performed. 'DEEP' shares the
extended persistence context at top bean level. 'SHALLOW' the extended persistece context is only
shared with the parent bean (never with sibling beans).

D.19. JSF

Provides support for JavaServer Faces 2.3 according to JSR-372.

Maven Coordinates

Configuration

thorntail.jsf.default-jsf-impl-slot

Default JSF implementation slot

thorntail.jsf.disallow-doctype-decl

Specifies whether or not DOCTYPE declarations in JSF deployments should be disallowed. This
setting can be overridden at the deployment level.

D.20. JSON-B

Provides support for JSON Binding according to JSR-367.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>jpa</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>jsf</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>jsonb</artifactId>
</dependency>

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

261

D.21. JSON-P

Provides support for JSON Processing according to JSR-353.

Maven Coordinates

D.22. KEYCLOAK

Maven Coordinates

Configuration

thorntail.keycloak.json.path

Path to Keycloak adapter configuration

thorntail.keycloak.multitenancy.paths

Map of the relative request paths to Keycloak adapter configuration locations

thorntail.keycloak.realms.KEY.allow-any-hostname

SSL Setting

thorntail.keycloak.realms.KEY.always-refresh-token

Refresh token on every single web request

thorntail.keycloak.realms.KEY.auth-server-url

Base URL of the Realm Auth Server

thorntail.keycloak.realms.KEY.auth-server-url-for-backend-requests

URL to use to make background calls to auth server

thorntail.keycloak.realms.KEY.autodetect-bearer-only

autodetect bearer-only requests

thorntail.keycloak.realms.KEY.client-key-password

n/a

thorntail.keycloak.realms.KEY.client-keystore

n/a

thorntail.keycloak.realms.KEY.client-keystore-password

n/a

thorntail.keycloak.realms.KEY.confidential-port

Specify the confidential port (SSL/TLS) used by the Realm Auth Server

thorntail.keycloak.realms.KEY.connection-pool-size

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>jsonp</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>keycloak</artifactId>
</dependency>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

262

Connection pool size for the client used by the adapter

thorntail.keycloak.realms.KEY.cors-allowed-headers

CORS allowed headers

thorntail.keycloak.realms.KEY.cors-allowed-methods

CORS allowed methods

thorntail.keycloak.realms.KEY.cors-exposed-headers

CORS exposed headers

thorntail.keycloak.realms.KEY.cors-max-age

CORS max-age header

thorntail.keycloak.realms.KEY.disable-trust-manager

Adapter will not use a trust manager when making adapter HTTPS requests

thorntail.keycloak.realms.KEY.enable-cors

Enable Keycloak CORS support

thorntail.keycloak.realms.KEY.expose-token

Enable secure URL that exposes access token

thorntail.keycloak.realms.KEY.ignore-oauth-query-parameter

disable query parameter parsing for access_token

thorntail.keycloak.realms.KEY.principal-attribute

token attribute to use to set Principal name

thorntail.keycloak.realms.KEY.proxy-url

The URL for the HTTP proxy if one is used.

thorntail.keycloak.realms.KEY.realm-public-key

Public key of the realm

thorntail.keycloak.realms.KEY.register-node-at-startup

Cluster setting

thorntail.keycloak.realms.KEY.register-node-period

how often to re-register node

thorntail.keycloak.realms.KEY.ssl-required

Specify if SSL is required (valid values are all, external and none)

thorntail.keycloak.realms.KEY.token-store

cookie or session storage for auth session data

thorntail.keycloak.realms.KEY.truststore

Truststore used for adapter client HTTPS requests

thorntail.keycloak.realms.KEY.truststore-password

Password of the Truststore

thorntail.keycloak.realms.KEY.verify-token-audience

If true, then during bearer-only authentication, the adapter will verify if token contains this client
name (resource) as an audience

thorntail.keycloak.secure-deployments.KEY.adapter-state-cookie-path

If set, defines the path used in cookies set by the adapter. Useful when deploying the application in
the root context path.

thorntail.keycloak.secure-deployments.KEY.allow-any-hostname

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

263

SSL Setting

thorntail.keycloak.secure-deployments.KEY.always-refresh-token

Refresh token on every single web request

thorntail.keycloak.secure-deployments.KEY.auth-server-url

Base URL of the Realm Auth Server

thorntail.keycloak.secure-deployments.KEY.auth-server-url-for-backend-requests

URL to use to make background calls to auth server

thorntail.keycloak.secure-deployments.KEY.autodetect-bearer-only

autodetect bearer-only requests

thorntail.keycloak.secure-deployments.KEY.bearer-only

Bearer Token Auth only

thorntail.keycloak.secure-deployments.KEY.client-key-password

n/a

thorntail.keycloak.secure-deployments.KEY.client-keystore

n/a

thorntail.keycloak.secure-deployments.KEY.client-keystore-password

n/a

thorntail.keycloak.secure-deployments.KEY.confidential-port

Specify the confidential port (SSL/TLS) used by the Realm Auth Server

thorntail.keycloak.secure-deployments.KEY.connection-pool-size

Connection pool size for the client used by the adapter

thorntail.keycloak.secure-deployments.KEY.cors-allowed-headers

CORS allowed headers

thorntail.keycloak.secure-deployments.KEY.cors-allowed-methods

CORS allowed methods

thorntail.keycloak.secure-deployments.KEY.cors-exposed-headers

CORS exposed headers

thorntail.keycloak.secure-deployments.KEY.cors-max-age

CORS max-age header

thorntail.keycloak.secure-deployments.KEY.credentials.KEY.value

Credential value

thorntail.keycloak.secure-deployments.KEY.disable-trust-manager

Adapter will not use a trust manager when making adapter HTTPS requests

thorntail.keycloak.secure-deployments.KEY.enable-basic-auth

Enable Basic Authentication

thorntail.keycloak.secure-deployments.KEY.enable-cors

Enable Keycloak CORS support

thorntail.keycloak.secure-deployments.KEY.expose-token

Enable secure URL that exposes access token

thorntail.keycloak.secure-deployments.KEY.ignore-oauth-query-parameter

disable query parameter parsing for access_token

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

264

thorntail.keycloak.secure-deployments.KEY.min-time-between-jwks-requests

If adapter recognize token signed by unknown public key, it will try to download new public key from
keycloak server. However it won’t try to download if already tried it in less than 'min-time-between-
jwks-requests' seconds

thorntail.keycloak.secure-deployments.KEY.principal-attribute

token attribute to use to set Principal name

thorntail.keycloak.secure-deployments.KEY.proxy-url

The URL for the HTTP proxy if one is used.

thorntail.keycloak.secure-deployments.KEY.public-client

Public client

thorntail.keycloak.secure-deployments.KEY.public-key-cache-ttl

Maximum time the downloaded public keys are considered valid. When this time reach, the adapter is
forced to download public keys from keycloak server

thorntail.keycloak.secure-deployments.KEY.realm

Keycloak realm

thorntail.keycloak.secure-deployments.KEY.realm-public-key

Public key of the realm

thorntail.keycloak.secure-deployments.KEY.redirect-rewrite-rules.KEY.value

redirect-rewrite-rule value

thorntail.keycloak.secure-deployments.KEY.register-node-at-startup

Cluster setting

thorntail.keycloak.secure-deployments.KEY.register-node-period

how often to re-register node

thorntail.keycloak.secure-deployments.KEY.resource

Application name

thorntail.keycloak.secure-deployments.KEY.ssl-required

Specify if SSL is required (valid values are all, external and none)

thorntail.keycloak.secure-deployments.KEY.token-minimum-time-to-live

The adapter will refresh the token if the current token is expired OR will expire in 'token-minimum-
time-to-live' seconds or less

thorntail.keycloak.secure-deployments.KEY.token-store

cookie or session storage for auth session data

thorntail.keycloak.secure-deployments.KEY.truststore

Truststore used for adapter client HTTPS requests

thorntail.keycloak.secure-deployments.KEY.truststore-password

Password of the Truststore

thorntail.keycloak.secure-deployments.KEY.turn-off-change-session-id-on-login

The session id is changed by default on a successful login. Change this to true if you want to turn this
off

thorntail.keycloak.secure-deployments.KEY.use-resource-role-mappings

Use resource level permissions from token

thorntail.keycloak.secure-deployments.KEY.verify-token-audience

If true, then during bearer-only authentication, the adapter will verify if token contains this client

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

265

If true, then during bearer-only authentication, the adapter will verify if token contains this client
name (resource) as an audience

thorntail.keycloak.secure-servers.KEY.adapter-state-cookie-path

If set, defines the path used in cookies set by the adapter. Useful when deploying the application in
the root context path.

thorntail.keycloak.secure-servers.KEY.allow-any-hostname

SSL Setting

thorntail.keycloak.secure-servers.KEY.always-refresh-token

Refresh token on every single web request

thorntail.keycloak.secure-servers.KEY.auth-server-url

Base URL of the Realm Auth Server

thorntail.keycloak.secure-servers.KEY.auth-server-url-for-backend-requests

URL to use to make background calls to auth server

thorntail.keycloak.secure-servers.KEY.autodetect-bearer-only

autodetect bearer-only requests

thorntail.keycloak.secure-servers.KEY.bearer-only

Bearer Token Auth only

thorntail.keycloak.secure-servers.KEY.client-key-password

n/a

thorntail.keycloak.secure-servers.KEY.client-keystore

n/a

thorntail.keycloak.secure-servers.KEY.client-keystore-password

n/a

thorntail.keycloak.secure-servers.KEY.confidential-port

Specify the confidential port (SSL/TLS) used by the Realm Auth Server

thorntail.keycloak.secure-servers.KEY.connection-pool-size

Connection pool size for the client used by the adapter

thorntail.keycloak.secure-servers.KEY.cors-allowed-headers

CORS allowed headers

thorntail.keycloak.secure-servers.KEY.cors-allowed-methods

CORS allowed methods

thorntail.keycloak.secure-servers.KEY.cors-exposed-headers

CORS exposed headers

thorntail.keycloak.secure-servers.KEY.cors-max-age

CORS max-age header

thorntail.keycloak.secure-servers.KEY.credentials.KEY.value

Credential value

thorntail.keycloak.secure-servers.KEY.disable-trust-manager

Adapter will not use a trust manager when making adapter HTTPS requests

thorntail.keycloak.secure-servers.KEY.enable-basic-auth

Enable Basic Authentication

thorntail.keycloak.secure-servers.KEY.enable-cors

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

266

Enable Keycloak CORS support

thorntail.keycloak.secure-servers.KEY.expose-token

Enable secure URL that exposes access token

thorntail.keycloak.secure-servers.KEY.ignore-oauth-query-parameter

disable query parameter parsing for access_token

thorntail.keycloak.secure-servers.KEY.min-time-between-jwks-requests

If adapter recognize token signed by unknown public key, it will try to download new public key from
keycloak server. However it won’t try to download if already tried it in less than 'min-time-between-
jwks-requests' seconds

thorntail.keycloak.secure-servers.KEY.principal-attribute

token attribute to use to set Principal name

thorntail.keycloak.secure-servers.KEY.proxy-url

The URL for the HTTP proxy if one is used.

thorntail.keycloak.secure-servers.KEY.public-client

Public client

thorntail.keycloak.secure-servers.KEY.public-key-cache-ttl

Maximum time the downloaded public keys are considered valid. When this time reach, the adapter is
forced to download public keys from keycloak server

thorntail.keycloak.secure-servers.KEY.realm

Keycloak realm

thorntail.keycloak.secure-servers.KEY.realm-public-key

Public key of the realm

thorntail.keycloak.secure-servers.KEY.redirect-rewrite-rules.KEY.value

redirect-rewrite-rule value

thorntail.keycloak.secure-servers.KEY.register-node-at-startup

Cluster setting

thorntail.keycloak.secure-servers.KEY.register-node-period

how often to re-register node

thorntail.keycloak.secure-servers.KEY.resource

Application name

thorntail.keycloak.secure-servers.KEY.ssl-required

Specify if SSL is required (valid values are all, external and none)

thorntail.keycloak.secure-servers.KEY.token-minimum-time-to-live

The adapter will refresh the token if the current token is expired OR will expire in 'token-minimum-
time-to-live' seconds or less

thorntail.keycloak.secure-servers.KEY.token-store

cookie or session storage for auth session data

thorntail.keycloak.secure-servers.KEY.truststore

Truststore used for adapter client HTTPS requests

thorntail.keycloak.secure-servers.KEY.truststore-password

Password of the Truststore

thorntail.keycloak.secure-servers.KEY.turn-off-change-session-id-on-login

The session id is changed by default on a successful login. Change this to true if you want to turn this

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

267

The session id is changed by default on a successful login. Change this to true if you want to turn this
off

thorntail.keycloak.secure-servers.KEY.use-resource-role-mappings

Use resource level permissions from token

thorntail.keycloak.secure-servers.KEY.verify-token-audience

If true, then during bearer-only authentication, the adapter will verify if token contains this client
name (resource) as an audience

D.23. LOGGING

Provides facilities to configure logging categories, levels and handlers.

When specifying log-levels through properties, since they include dots, they should be placed between
square brackets, such as thorntail.logging.loggers.[com.mycorp.logger].level.

Maven Coordinates

Configuration

thorntail.logging.add-logging-api-dependencies

Indicates whether or not logging API dependencies should be added to deployments during the
deployment process. A value of true will add the dependencies to the deployment. A value of false
will skip the deployment from being processed for logging API dependencies.

thorntail.logging.async-handlers.KEY.enabled

If set to true the handler is enabled and functioning as normal, if set to false the handler is ignored
when processing log messages.

thorntail.logging.async-handlers.KEY.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

thorntail.logging.async-handlers.KEY.level

The log level specifying which message levels will be logged by this handler. Message levels lower
than this value will be discarded.

thorntail.logging.async-handlers.KEY.name

The name of the handler.

thorntail.logging.async-handlers.KEY.overflow-action

Specify what action to take when the overflowing. The valid options are 'block' and 'discard'

thorntail.logging.async-handlers.KEY.queue-length

The queue length to use before flushing writing

thorntail.logging.async-handlers.KEY.subhandlers

The Handlers associated with this async handler.

thorntail.logging.console-handlers.KEY.autoflush

Automatically flush after each write.

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>logging</artifactId>
</dependency>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

268

thorntail.logging.console-handlers.KEY.enabled

If set to true the handler is enabled and functioning as normal, if set to false the handler is ignored
when processing log messages.

thorntail.logging.console-handlers.KEY.encoding

The character encoding used by this Handler.

thorntail.logging.console-handlers.KEY.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

thorntail.logging.console-handlers.KEY.formatter

Defines a pattern for the formatter.

thorntail.logging.console-handlers.KEY.level

The log level specifying which message levels will be logged by this logger. Message levels lower than
this value will be discarded.

thorntail.logging.console-handlers.KEY.name

The name of the handler.

thorntail.logging.console-handlers.KEY.named-formatter

The name of the defined formatter to be used on the handler.

thorntail.logging.console-handlers.KEY.target

Defines the target of the console handler. The value can be System.out, System.err or console.

thorntail.logging.custom-formatters.KEY.attribute-class

The logging formatter class to be used.

thorntail.logging.custom-formatters.KEY.module

The module that the logging formatter depends on.

thorntail.logging.custom-formatters.KEY.properties

Defines the properties used for the logging formatter. All properties must be accessible via a setter
method.

thorntail.logging.custom-handlers.KEY.attribute-class

The logging handler class to be used.

thorntail.logging.custom-handlers.KEY.enabled

If set to true the handler is enabled and functioning as normal, if set to false the handler is ignored
when processing log messages.

thorntail.logging.custom-handlers.KEY.encoding

The character encoding used by this Handler.

thorntail.logging.custom-handlers.KEY.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

thorntail.logging.custom-handlers.KEY.formatter

Defines a pattern for the formatter.

thorntail.logging.custom-handlers.KEY.level

The log level specifying which message levels will be logged by this logger. Message levels lower than
this value will be discarded.

thorntail.logging.custom-handlers.KEY.module

The module that the logging handler depends on.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

269

thorntail.logging.custom-handlers.KEY.name

The name of the handler.

thorntail.logging.custom-handlers.KEY.named-formatter

The name of the defined formatter to be used on the handler.

thorntail.logging.custom-handlers.KEY.properties

Defines the properties used for the logging handler. All properties must be accessible via a setter
method.

thorntail.logging.file-handlers.KEY.append

Specify whether to append to the target file.

thorntail.logging.file-handlers.KEY.autoflush

Automatically flush after each write.

thorntail.logging.file-handlers.KEY.enabled

If set to true the handler is enabled and functioning as normal, if set to false the handler is ignored
when processing log messages.

thorntail.logging.file-handlers.KEY.encoding

The character encoding used by this Handler.

thorntail.logging.file-handlers.KEY.file

The file description consisting of the path and optional relative to path.

thorntail.logging.file-handlers.KEY.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

thorntail.logging.file-handlers.KEY.formatter

Defines a pattern for the formatter.

thorntail.logging.file-handlers.KEY.level

The log level specifying which message levels will be logged by this logger. Message levels lower than
this value will be discarded.

thorntail.logging.file-handlers.KEY.name

The name of the handler.

thorntail.logging.file-handlers.KEY.named-formatter

The name of the defined formatter to be used on the handler.

thorntail.logging.json-formatters.KEY.date-format

The date/time format pattern. The pattern must be a valid
java.time.format.DateTimeFormatter.ofPattern() pattern. The default pattern is an ISO-8601
extended offset date-time format.

thorntail.logging.json-formatters.KEY.exception-output-type

Indicates how the cause of the logged message, if one is available, will be added to the JSON output.

thorntail.logging.json-formatters.KEY.key-overrides

Allows the names of the keys for the JSON properties to be overridden.

thorntail.logging.json-formatters.KEY.meta-data

Sets the meta data to use in the JSON format. Properties will be added to each log message.

thorntail.logging.json-formatters.KEY.pretty-print

Indicates whether or not pretty printing should be used when formatting.

thorntail.logging.json-formatters.KEY.print-details

Sets whether or not details should be printed. Printing the details can be expensive as the values are

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

270

Sets whether or not details should be printed. Printing the details can be expensive as the values are
retrieved from the caller. The details include the source class name, source file name, source method
name, source module name, source module version and source line number.

thorntail.logging.json-formatters.KEY.record-delimiter

The value to be used to indicate the end of a record. If set to null no delimiter will be used at the end
of the record. The default value is a line feed.

thorntail.logging.json-formatters.KEY.zone-id

The zone ID for formatting the date and time. The system default is used if left undefined.

thorntail.logging.log-files.KEY.file-size

The size of the log file in bytes.

thorntail.logging.log-files.KEY.last-modified-time

The date, in milliseconds, the file was last modified.

thorntail.logging.log-files.KEY.last-modified-timestamp

The date, in ISO 8601 format, the file was last modified.

thorntail.logging.log-files.KEY.stream

Provides the server log as a response attachment. The response result value is the unique id of the
attachment.

thorntail.logging.loggers.KEY.category

Specifies the category for the logger.

thorntail.logging.loggers.KEY.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

thorntail.logging.loggers.KEY.handlers

The handlers associated with the logger.

thorntail.logging.loggers.KEY.level

The log level specifying which message levels will be logged by the logger. Message levels lower than
this value will be discarded.

thorntail.logging.loggers.KEY.use-parent-handlers

Specifies whether or not this logger should send its output to its parent Logger.

thorntail.logging.logging-profiles.KEY.async-handlers.KEY.enabled

If set to true the handler is enabled and functioning as normal, if set to false the handler is ignored
when processing log messages.

thorntail.logging.logging-profiles.KEY.async-handlers.KEY.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

thorntail.logging.logging-profiles.KEY.async-handlers.KEY.level

The log level specifying which message levels will be logged by this handler. Message levels lower
than this value will be discarded.

thorntail.logging.logging-profiles.KEY.async-handlers.KEY.name

The name of the handler.

thorntail.logging.logging-profiles.KEY.async-handlers.KEY.overflow-action

Specify what action to take when the overflowing. The valid options are 'block' and 'discard'

thorntail.logging.logging-profiles.KEY.async-handlers.KEY.queue-length

The queue length to use before flushing writing

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

271

thorntail.logging.logging-profiles.KEY.async-handlers.KEY.subhandlers

The Handlers associated with this async handler.

thorntail.logging.logging-profiles.KEY.console-handlers.KEY.autoflush

Automatically flush after each write.

thorntail.logging.logging-profiles.KEY.console-handlers.KEY.enabled

If set to true the handler is enabled and functioning as normal, if set to false the handler is ignored
when processing log messages.

thorntail.logging.logging-profiles.KEY.console-handlers.KEY.encoding

The character encoding used by this Handler.

thorntail.logging.logging-profiles.KEY.console-handlers.KEY.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

thorntail.logging.logging-profiles.KEY.console-handlers.KEY.formatter

Defines a pattern for the formatter.

thorntail.logging.logging-profiles.KEY.console-handlers.KEY.level

The log level specifying which message levels will be logged by this logger. Message levels lower than
this value will be discarded.

thorntail.logging.logging-profiles.KEY.console-handlers.KEY.name

The name of the handler.

thorntail.logging.logging-profiles.KEY.console-handlers.KEY.named-formatter

The name of the defined formatter to be used on the handler.

thorntail.logging.logging-profiles.KEY.console-handlers.KEY.target

Defines the target of the console handler. The value can be System.out, System.err or console.

thorntail.logging.logging-profiles.KEY.custom-formatters.KEY.attribute-class

The logging formatter class to be used.

thorntail.logging.logging-profiles.KEY.custom-formatters.KEY.module

The module that the logging formatter depends on.

thorntail.logging.logging-profiles.KEY.custom-formatters.KEY.properties

Defines the properties used for the logging formatter. All properties must be accessible via a setter
method.

thorntail.logging.logging-profiles.KEY.custom-handlers.KEY.attribute-class

The logging handler class to be used.

thorntail.logging.logging-profiles.KEY.custom-handlers.KEY.enabled

If set to true the handler is enabled and functioning as normal, if set to false the handler is ignored
when processing log messages.

thorntail.logging.logging-profiles.KEY.custom-handlers.KEY.encoding

The character encoding used by this Handler.

thorntail.logging.logging-profiles.KEY.custom-handlers.KEY.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

thorntail.logging.logging-profiles.KEY.custom-handlers.KEY.formatter

Defines a pattern for the formatter.

thorntail.logging.logging-profiles.KEY.custom-handlers.KEY.level

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

272

The log level specifying which message levels will be logged by this logger. Message levels lower than
this value will be discarded.

thorntail.logging.logging-profiles.KEY.custom-handlers.KEY.module

The module that the logging handler depends on.

thorntail.logging.logging-profiles.KEY.custom-handlers.KEY.name

The name of the handler.

thorntail.logging.logging-profiles.KEY.custom-handlers.KEY.named-formatter

The name of the defined formatter to be used on the handler.

thorntail.logging.logging-profiles.KEY.custom-handlers.KEY.properties

Defines the properties used for the logging handler. All properties must be accessible via a setter
method.

thorntail.logging.logging-profiles.KEY.file-handlers.KEY.append

Specify whether to append to the target file.

thorntail.logging.logging-profiles.KEY.file-handlers.KEY.autoflush

Automatically flush after each write.

thorntail.logging.logging-profiles.KEY.file-handlers.KEY.enabled

If set to true the handler is enabled and functioning as normal, if set to false the handler is ignored
when processing log messages.

thorntail.logging.logging-profiles.KEY.file-handlers.KEY.encoding

The character encoding used by this Handler.

thorntail.logging.logging-profiles.KEY.file-handlers.KEY.file

The file description consisting of the path and optional relative to path.

thorntail.logging.logging-profiles.KEY.file-handlers.KEY.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

thorntail.logging.logging-profiles.KEY.file-handlers.KEY.formatter

Defines a pattern for the formatter.

thorntail.logging.logging-profiles.KEY.file-handlers.KEY.level

The log level specifying which message levels will be logged by this logger. Message levels lower than
this value will be discarded.

thorntail.logging.logging-profiles.KEY.file-handlers.KEY.name

The name of the handler.

thorntail.logging.logging-profiles.KEY.file-handlers.KEY.named-formatter

The name of the defined formatter to be used on the handler.

thorntail.logging.logging-profiles.KEY.json-formatters.KEY.date-format

The date/time format pattern. The pattern must be a valid
java.time.format.DateTimeFormatter.ofPattern() pattern. The default pattern is an ISO-8601
extended offset date-time format.

thorntail.logging.logging-profiles.KEY.json-formatters.KEY.exception-output-type

Indicates how the cause of the logged message, if one is available, will be added to the JSON output.

thorntail.logging.logging-profiles.KEY.json-formatters.KEY.key-overrides

Allows the names of the keys for the JSON properties to be overridden.

thorntail.logging.logging-profiles.KEY.json-formatters.KEY.meta-data

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

273

Sets the meta data to use in the JSON format. Properties will be added to each log message.

thorntail.logging.logging-profiles.KEY.json-formatters.KEY.pretty-print

Indicates whether or not pretty printing should be used when formatting.

thorntail.logging.logging-profiles.KEY.json-formatters.KEY.print-details

Sets whether or not details should be printed. Printing the details can be expensive as the values are
retrieved from the caller. The details include the source class name, source file name, source method
name, source module name, source module version and source line number.

thorntail.logging.logging-profiles.KEY.json-formatters.KEY.record-delimiter

The value to be used to indicate the end of a record. If set to null no delimiter will be used at the end
of the record. The default value is a line feed.

thorntail.logging.logging-profiles.KEY.json-formatters.KEY.zone-id

The zone ID for formatting the date and time. The system default is used if left undefined.

thorntail.logging.logging-profiles.KEY.log-files.KEY.file-size

The size of the log file in bytes.

thorntail.logging.logging-profiles.KEY.log-files.KEY.last-modified-time

The date, in milliseconds, the file was last modified.

thorntail.logging.logging-profiles.KEY.log-files.KEY.last-modified-timestamp

The date, in ISO 8601 format, the file was last modified.

thorntail.logging.logging-profiles.KEY.log-files.KEY.stream

Provides the server log as a response attachment. The response result value is the unique id of the
attachment.

thorntail.logging.logging-profiles.KEY.loggers.KEY.category

Specifies the category for the logger.

thorntail.logging.logging-profiles.KEY.loggers.KEY.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

thorntail.logging.logging-profiles.KEY.loggers.KEY.handlers

The handlers associated with the logger.

thorntail.logging.logging-profiles.KEY.loggers.KEY.level

The log level specifying which message levels will be logged by the logger. Message levels lower than
this value will be discarded.

thorntail.logging.logging-profiles.KEY.loggers.KEY.use-parent-handlers

Specifies whether or not this logger should send its output to its parent Logger.

thorntail.logging.logging-profiles.KEY.pattern-formatters.KEY.color-map

The color-map attribute allows for a comma delimited list of colors to be used for different levels
with a pattern formatter. The format for the color mapping pattern is level-name:color-name.Valid
Levels; severe, fatal, error, warn, warning, info, debug, trace, config, fine, finer, finest Valid Colors;
black, green, red, yellow, blue, magenta, cyan, white, brightblack, brightred, brightgreen, brightblue,
brightyellow, brightmagenta, brightcyan, brightwhite

thorntail.logging.logging-profiles.KEY.pattern-formatters.KEY.pattern

Defines a pattern for the formatter.

thorntail.logging.logging-profiles.KEY.periodic-rotating-file-handlers.KEY.append

Specify whether to append to the target file.

thorntail.logging.logging-profiles.KEY.periodic-rotating-file-handlers.KEY.autoflush

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

274

Automatically flush after each write.

thorntail.logging.logging-profiles.KEY.periodic-rotating-file-handlers.KEY.enabled

If set to true the handler is enabled and functioning as normal, if set to false the handler is ignored
when processing log messages.

thorntail.logging.logging-profiles.KEY.periodic-rotating-file-handlers.KEY.encoding

The character encoding used by this Handler.

thorntail.logging.logging-profiles.KEY.periodic-rotating-file-handlers.KEY.file

The file description consisting of the path and optional relative to path.

thorntail.logging.logging-profiles.KEY.periodic-rotating-file-handlers.KEY.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

thorntail.logging.logging-profiles.KEY.periodic-rotating-file-handlers.KEY.formatter

Defines a pattern for the formatter.

thorntail.logging.logging-profiles.KEY.periodic-rotating-file-handlers.KEY.level

The log level specifying which message levels will be logged by this logger. Message levels lower than
this value will be discarded.

thorntail.logging.logging-profiles.KEY.periodic-rotating-file-handlers.KEY.name

The name of the handler.

thorntail.logging.logging-profiles.KEY.periodic-rotating-file-handlers.KEY.named-formatter

The name of the defined formatter to be used on the handler.

thorntail.logging.logging-profiles.KEY.periodic-rotating-file-handlers.KEY.suffix

Set the suffix string. The string is in a format which can be understood by
java.text.SimpleDateFormat. The period of the rotation is automatically calculated based on the
suffix.

thorntail.logging.logging-profiles.KEY.periodic-size-rotating-file-handlers.KEY.append

Specify whether to append to the target file.

thorntail.logging.logging-profiles.KEY.periodic-size-rotating-file-handlers.KEY.autoflush

Automatically flush after each write.

thorntail.logging.logging-profiles.KEY.periodic-size-rotating-file-handlers.KEY.enabled

If set to true the handler is enabled and functioning as normal, if set to false the handler is ignored
when processing log messages.

thorntail.logging.logging-profiles.KEY.periodic-size-rotating-file-handlers.KEY.encoding

The character encoding used by this Handler.

thorntail.logging.logging-profiles.KEY.periodic-size-rotating-file-handlers.KEY.file

The file description consisting of the path and optional relative to path.

thorntail.logging.logging-profiles.KEY.periodic-size-rotating-file-handlers.KEY.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

thorntail.logging.logging-profiles.KEY.periodic-size-rotating-file-handlers.KEY.formatter

Defines a pattern for the formatter.

thorntail.logging.logging-profiles.KEY.periodic-size-rotating-file-handlers.KEY.level

The log level specifying which message levels will be logged by this logger. Message levels lower than
this value will be discarded.

thorntail.logging.logging-profiles.KEY.periodic-size-rotating-file-handlers.KEY.max-backup-index

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

275

The maximum number of backups to keep.

thorntail.logging.logging-profiles.KEY.periodic-size-rotating-file-handlers.KEY.name

The name of the handler.

thorntail.logging.logging-profiles.KEY.periodic-size-rotating-file-handlers.KEY.named-formatter

The name of the defined formatter to be used on the handler.

thorntail.logging.logging-profiles.KEY.periodic-size-rotating-file-handlers.KEY.rotate-on-boot

Indicates the file should be rotated each time the file attribute is changed. This always happens when
at initialization time.

thorntail.logging.logging-profiles.KEY.periodic-size-rotating-file-handlers.KEY.rotate-size

The size at which to rotate the log file.

thorntail.logging.logging-profiles.KEY.periodic-size-rotating-file-handlers.KEY.suffix

Set the suffix string. The string is in a format which can be understood by
java.text.SimpleDateFormat. The period of the rotation is automatically calculated based on the
suffix.

thorntail.logging.logging-profiles.KEY.root-logger.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

thorntail.logging.logging-profiles.KEY.root-logger.handlers

The handlers associated with the root logger.

thorntail.logging.logging-profiles.KEY.root-logger.level

The log level specifying which message levels will be logged by the root logger. Message levels lower
than this value will be discarded.

thorntail.logging.logging-profiles.KEY.size-rotating-file-handlers.KEY.append

Specify whether to append to the target file.

thorntail.logging.logging-profiles.KEY.size-rotating-file-handlers.KEY.autoflush

Automatically flush after each write.

thorntail.logging.logging-profiles.KEY.size-rotating-file-handlers.KEY.enabled

If set to true the handler is enabled and functioning as normal, if set to false the handler is ignored
when processing log messages.

thorntail.logging.logging-profiles.KEY.size-rotating-file-handlers.KEY.encoding

The character encoding used by this Handler.

thorntail.logging.logging-profiles.KEY.size-rotating-file-handlers.KEY.file

The file description consisting of the path and optional relative to path.

thorntail.logging.logging-profiles.KEY.size-rotating-file-handlers.KEY.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

thorntail.logging.logging-profiles.KEY.size-rotating-file-handlers.KEY.formatter

Defines a pattern for the formatter.

thorntail.logging.logging-profiles.KEY.size-rotating-file-handlers.KEY.level

The log level specifying which message levels will be logged by this logger. Message levels lower than
this value will be discarded.

thorntail.logging.logging-profiles.KEY.size-rotating-file-handlers.KEY.max-backup-index

The maximum number of backups to keep.

thorntail.logging.logging-profiles.KEY.size-rotating-file-handlers.KEY.name

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

276

The name of the handler.

thorntail.logging.logging-profiles.KEY.size-rotating-file-handlers.KEY.named-formatter

The name of the defined formatter to be used on the handler.

thorntail.logging.logging-profiles.KEY.size-rotating-file-handlers.KEY.rotate-on-boot

Indicates the file should be rotated each time the file attribute is changed. This always happens when
at initialization time.

thorntail.logging.logging-profiles.KEY.size-rotating-file-handlers.KEY.rotate-size

The size at which to rotate the log file.

thorntail.logging.logging-profiles.KEY.size-rotating-file-handlers.KEY.suffix

Set the suffix string. The string is in a format which can be understood by
java.text.SimpleDateFormat. The suffix does not determine when the file should be rotated.

thorntail.logging.logging-profiles.KEY.socket-handlers.KEY.autoflush

Automatically flush after each write.

thorntail.logging.logging-profiles.KEY.socket-handlers.KEY.block-on-reconnect

If set to true the write methods will block when attempting to reconnect. This is only advisable to be
set to true if using an asynchronous handler.

thorntail.logging.logging-profiles.KEY.socket-handlers.KEY.enabled

If set to true the handler is enabled and functioning as normal, if set to false the handler is ignored
when processing log messages.

thorntail.logging.logging-profiles.KEY.socket-handlers.KEY.encoding

The character encoding used by this Handler.

thorntail.logging.logging-profiles.KEY.socket-handlers.KEY.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

thorntail.logging.logging-profiles.KEY.socket-handlers.KEY.level

The log level specifying which message levels will be logged by this logger. Message levels lower than
this value will be discarded.

thorntail.logging.logging-profiles.KEY.socket-handlers.KEY.named-formatter

The name of the defined formatter to be used on the handler.

thorntail.logging.logging-profiles.KEY.socket-handlers.KEY.outbound-socket-binding-ref

Outbound socket reference for the socket connection.

thorntail.logging.logging-profiles.KEY.socket-handlers.KEY.protocol

The protocol the socket should communicate over.

thorntail.logging.logging-profiles.KEY.socket-handlers.KEY.ssl-context

The reference to the defined SSL context. This is only used if the protocol is set to SSL_TCP.

thorntail.logging.logging-profiles.KEY.syslog-handlers.KEY.app-name

The app name used when formatting the message in RFC5424 format. By default the app name is
"java".

thorntail.logging.logging-profiles.KEY.syslog-handlers.KEY.enabled

If set to true the handler is enabled and functioning as normal, if set to false the handler is ignored
when processing log messages.

thorntail.logging.logging-profiles.KEY.syslog-handlers.KEY.facility

Facility as defined by RFC-5424 (http://tools.ietf.org/html/rfc5424)and RFC-3164
(http://tools.ietf.org/html/rfc3164).

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

277

http://tools.ietf.org/html/rfc5424)and
http://tools.ietf.org/html/rfc3164

thorntail.logging.logging-profiles.KEY.syslog-handlers.KEY.hostname

The name of the host the messages are being sent from. For example the name of the host the
application server is running on.

thorntail.logging.logging-profiles.KEY.syslog-handlers.KEY.level

The log level specifying which message levels will be logged by this logger. Message levels lower than
this value will be discarded.

thorntail.logging.logging-profiles.KEY.syslog-handlers.KEY.port

The port the syslog server is listening on.

thorntail.logging.logging-profiles.KEY.syslog-handlers.KEY.server-address

The address of the syslog server.

thorntail.logging.logging-profiles.KEY.syslog-handlers.KEY.syslog-format

Formats the log message according to the RFC specification.

thorntail.logging.logging-profiles.KEY.xml-formatters.KEY.date-format

The date/time format pattern. The pattern must be a valid
java.time.format.DateTimeFormatter.ofPattern() pattern. The default pattern is an ISO-8601
extended offset date-time format.

thorntail.logging.logging-profiles.KEY.xml-formatters.KEY.exception-output-type

Indicates how the cause of the logged message, if one is available, will be added to the XML output.

thorntail.logging.logging-profiles.KEY.xml-formatters.KEY.key-overrides

Allows the names of the keys for the XML properties to be overridden.

thorntail.logging.logging-profiles.KEY.xml-formatters.KEY.meta-data

Sets the meta data to use in the XML format. Properties will be added to each log message.

thorntail.logging.logging-profiles.KEY.xml-formatters.KEY.namespace-uri

Sets the namespace URI used for each record if print-namespace attribute is true. Note that if no
namespace-uri is defined and there are overridden keys no namespace will be written regardless if
the print-namespace attribute is set to true.

thorntail.logging.logging-profiles.KEY.xml-formatters.KEY.pretty-print

Indicates whether or not pretty printing should be used when formatting.

thorntail.logging.logging-profiles.KEY.xml-formatters.KEY.print-details

Sets whether or not details should be printed. Printing the details can be expensive as the values are
retrieved from the caller. The details include the source class name, source file name, source method
name, source module name, source module version and source line number.

thorntail.logging.logging-profiles.KEY.xml-formatters.KEY.print-namespace

Turns on or off the printing of the namespace for each <record/>. This is set to false by default.

thorntail.logging.logging-profiles.KEY.xml-formatters.KEY.record-delimiter

The value to be used to indicate the end of a record. If set to null no delimiter will be used at the end
of the record. The default value is a line feed.

thorntail.logging.logging-profiles.KEY.xml-formatters.KEY.zone-id

The zone ID for formatting the date and time. The system default is used if left undefined.

thorntail.logging.pattern-formatters.KEY.color-map

The color-map attribute allows for a comma delimited list of colors to be used for different levels
with a pattern formatter. The format for the color mapping pattern is level-name:color-name.Valid
Levels; severe, fatal, error, warn, warning, info, debug, trace, config, fine, finer, finest Valid Colors;
black, green, red, yellow, blue, magenta, cyan, white, brightblack, brightred, brightgreen, brightblue,
brightyellow, brightmagenta, brightcyan, brightwhite

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

278

thorntail.logging.pattern-formatters.KEY.pattern

Defines a pattern for the formatter.

thorntail.logging.periodic-rotating-file-handlers.KEY.append

Specify whether to append to the target file.

thorntail.logging.periodic-rotating-file-handlers.KEY.autoflush

Automatically flush after each write.

thorntail.logging.periodic-rotating-file-handlers.KEY.enabled

If set to true the handler is enabled and functioning as normal, if set to false the handler is ignored
when processing log messages.

thorntail.logging.periodic-rotating-file-handlers.KEY.encoding

The character encoding used by this Handler.

thorntail.logging.periodic-rotating-file-handlers.KEY.file

The file description consisting of the path and optional relative to path.

thorntail.logging.periodic-rotating-file-handlers.KEY.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

thorntail.logging.periodic-rotating-file-handlers.KEY.formatter

Defines a pattern for the formatter.

thorntail.logging.periodic-rotating-file-handlers.KEY.level

The log level specifying which message levels will be logged by this logger. Message levels lower than
this value will be discarded.

thorntail.logging.periodic-rotating-file-handlers.KEY.name

The name of the handler.

thorntail.logging.periodic-rotating-file-handlers.KEY.named-formatter

The name of the defined formatter to be used on the handler.

thorntail.logging.periodic-rotating-file-handlers.KEY.suffix

Set the suffix string. The string is in a format which can be understood by
java.text.SimpleDateFormat. The period of the rotation is automatically calculated based on the
suffix.

thorntail.logging.periodic-size-rotating-file-handlers.KEY.append

Specify whether to append to the target file.

thorntail.logging.periodic-size-rotating-file-handlers.KEY.autoflush

Automatically flush after each write.

thorntail.logging.periodic-size-rotating-file-handlers.KEY.enabled

If set to true the handler is enabled and functioning as normal, if set to false the handler is ignored
when processing log messages.

thorntail.logging.periodic-size-rotating-file-handlers.KEY.encoding

The character encoding used by this Handler.

thorntail.logging.periodic-size-rotating-file-handlers.KEY.file

The file description consisting of the path and optional relative to path.

thorntail.logging.periodic-size-rotating-file-handlers.KEY.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

279

thorntail.logging.periodic-size-rotating-file-handlers.KEY.formatter

Defines a pattern for the formatter.

thorntail.logging.periodic-size-rotating-file-handlers.KEY.level

The log level specifying which message levels will be logged by this logger. Message levels lower than
this value will be discarded.

thorntail.logging.periodic-size-rotating-file-handlers.KEY.max-backup-index

The maximum number of backups to keep.

thorntail.logging.periodic-size-rotating-file-handlers.KEY.name

The name of the handler.

thorntail.logging.periodic-size-rotating-file-handlers.KEY.named-formatter

The name of the defined formatter to be used on the handler.

thorntail.logging.periodic-size-rotating-file-handlers.KEY.rotate-on-boot

Indicates the file should be rotated each time the file attribute is changed. This always happens when
at initialization time.

thorntail.logging.periodic-size-rotating-file-handlers.KEY.rotate-size

The size at which to rotate the log file.

thorntail.logging.periodic-size-rotating-file-handlers.KEY.suffix

Set the suffix string. The string is in a format which can be understood by
java.text.SimpleDateFormat. The period of the rotation is automatically calculated based on the
suffix.

thorntail.logging.root-logger.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

thorntail.logging.root-logger.handlers

The handlers associated with the root logger.

thorntail.logging.root-logger.level

The log level specifying which message levels will be logged by the root logger. Message levels lower
than this value will be discarded.

thorntail.logging.size-rotating-file-handlers.KEY.append

Specify whether to append to the target file.

thorntail.logging.size-rotating-file-handlers.KEY.autoflush

Automatically flush after each write.

thorntail.logging.size-rotating-file-handlers.KEY.enabled

If set to true the handler is enabled and functioning as normal, if set to false the handler is ignored
when processing log messages.

thorntail.logging.size-rotating-file-handlers.KEY.encoding

The character encoding used by this Handler.

thorntail.logging.size-rotating-file-handlers.KEY.file

The file description consisting of the path and optional relative to path.

thorntail.logging.size-rotating-file-handlers.KEY.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

thorntail.logging.size-rotating-file-handlers.KEY.formatter

Defines a pattern for the formatter.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

280

thorntail.logging.size-rotating-file-handlers.KEY.level

The log level specifying which message levels will be logged by this logger. Message levels lower than
this value will be discarded.

thorntail.logging.size-rotating-file-handlers.KEY.max-backup-index

The maximum number of backups to keep.

thorntail.logging.size-rotating-file-handlers.KEY.name

The name of the handler.

thorntail.logging.size-rotating-file-handlers.KEY.named-formatter

The name of the defined formatter to be used on the handler.

thorntail.logging.size-rotating-file-handlers.KEY.rotate-on-boot

Indicates the file should be rotated each time the file attribute is changed. This always happens when
at initialization time.

thorntail.logging.size-rotating-file-handlers.KEY.rotate-size

The size at which to rotate the log file.

thorntail.logging.size-rotating-file-handlers.KEY.suffix

Set the suffix string. The string is in a format which can be understood by
java.text.SimpleDateFormat. The suffix does not determine when the file should be rotated.

thorntail.logging.socket-handlers.KEY.autoflush

Automatically flush after each write.

thorntail.logging.socket-handlers.KEY.block-on-reconnect

If set to true the write methods will block when attempting to reconnect. This is only advisable to be
set to true if using an asynchronous handler.

thorntail.logging.socket-handlers.KEY.enabled

If set to true the handler is enabled and functioning as normal, if set to false the handler is ignored
when processing log messages.

thorntail.logging.socket-handlers.KEY.encoding

The character encoding used by this Handler.

thorntail.logging.socket-handlers.KEY.filter-spec

A filter expression value to define a filter. Example for a filter that does not match a pattern:
not(match("JBAS.*"))

thorntail.logging.socket-handlers.KEY.level

The log level specifying which message levels will be logged by this logger. Message levels lower than
this value will be discarded.

thorntail.logging.socket-handlers.KEY.named-formatter

The name of the defined formatter to be used on the handler.

thorntail.logging.socket-handlers.KEY.outbound-socket-binding-ref

Outbound socket reference for the socket connection.

thorntail.logging.socket-handlers.KEY.protocol

The protocol the socket should communicate over.

thorntail.logging.socket-handlers.KEY.ssl-context

The reference to the defined SSL context. This is only used if the protocol is set to SSL_TCP.

thorntail.logging.syslog-handlers.KEY.app-name

The app name used when formatting the message in RFC5424 format. By default the app name is
"java".

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

281

thorntail.logging.syslog-handlers.KEY.enabled

If set to true the handler is enabled and functioning as normal, if set to false the handler is ignored
when processing log messages.

thorntail.logging.syslog-handlers.KEY.facility

Facility as defined by RFC-5424 (http://tools.ietf.org/html/rfc5424)and RFC-3164
(http://tools.ietf.org/html/rfc3164).

thorntail.logging.syslog-handlers.KEY.hostname

The name of the host the messages are being sent from. For example the name of the host the
application server is running on.

thorntail.logging.syslog-handlers.KEY.level

The log level specifying which message levels will be logged by this logger. Message levels lower than
this value will be discarded.

thorntail.logging.syslog-handlers.KEY.port

The port the syslog server is listening on.

thorntail.logging.syslog-handlers.KEY.server-address

The address of the syslog server.

thorntail.logging.syslog-handlers.KEY.syslog-format

Formats the log message according to the RFC specification.

thorntail.logging.use-deployment-logging-config

Indicates whether or not deployments should use a logging configuration file found in the
deployment to configure the log manager. If set to true and a logging configuration file was found in
the deployments META-INF or WEB-INF/classes directory, then a log manager will be configured
with those settings. If set false the servers logging configuration will be used regardless of any
logging configuration files supplied in the deployment.

thorntail.logging.xml-formatters.KEY.date-format

The date/time format pattern. The pattern must be a valid
java.time.format.DateTimeFormatter.ofPattern() pattern. The default pattern is an ISO-8601
extended offset date-time format.

thorntail.logging.xml-formatters.KEY.exception-output-type

Indicates how the cause of the logged message, if one is available, will be added to the XML output.

thorntail.logging.xml-formatters.KEY.key-overrides

Allows the names of the keys for the XML properties to be overridden.

thorntail.logging.xml-formatters.KEY.meta-data

Sets the meta data to use in the XML format. Properties will be added to each log message.

thorntail.logging.xml-formatters.KEY.namespace-uri

Sets the namespace URI used for each record if print-namespace attribute is true. Note that if no
namespace-uri is defined and there are overridden keys no namespace will be written regardless if
the print-namespace attribute is set to true.

thorntail.logging.xml-formatters.KEY.pretty-print

Indicates whether or not pretty printing should be used when formatting.

thorntail.logging.xml-formatters.KEY.print-details

Sets whether or not details should be printed. Printing the details can be expensive as the values are
retrieved from the caller. The details include the source class name, source file name, source method
name, source module name, source module version and source line number.

thorntail.logging.xml-formatters.KEY.print-namespace

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

282

http://tools.ietf.org/html/rfc5424)and
http://tools.ietf.org/html/rfc3164

Turns on or off the printing of the namespace for each <record/>. This is set to false by default.

thorntail.logging.xml-formatters.KEY.record-delimiter

The value to be used to indicate the end of a record. If set to null no delimiter will be used at the end
of the record. The default value is a line feed.

thorntail.logging.xml-formatters.KEY.zone-id

The zone ID for formatting the date and time. The system default is used if left undefined.

D.24. MANAGEMENT

Provides the JBoss EAP management API.

Maven Coordinates

Configuration

thorntail.management.audit-access.audit-log-logger.enabled

Whether audit logging is enabled.

thorntail.management.audit-access.audit-log-logger.log-boot

Whether operations should be logged on server boot.

thorntail.management.audit-access.audit-log-logger.log-read-only

Whether operations that do not modify the configuration or any runtime services should be logged.

thorntail.management.audit-access.file-handlers.KEY.disabled-due-to-failure

Whether this handler has been disabled due to logging failures.

thorntail.management.audit-access.file-handlers.KEY.failure-count

The number of logging failures since the handler was initialized.

thorntail.management.audit-access.file-handlers.KEY.formatter

The formatter used to format the log messages.

thorntail.management.audit-access.file-handlers.KEY.max-failure-count

The maximum number of logging failures before disabling this handler.

thorntail.management.audit-access.file-handlers.KEY.path

The path of the audit log file.

thorntail.management.audit-access.file-handlers.KEY.relative-to

The name of another previously named path, or of one of the standard paths provided by the system.
If 'relative-to' is provided, the value of the 'path' attribute is treated as relative to the path specified
by this attribute.

thorntail.management.audit-access.file-handlers.KEY.rotate-at-startup

Whether the old log file should be rotated at server startup.

thorntail.management.audit-access.in-memory-handlers.KEY.max-history

The maximum number of operation stored in history for this handler.

thorntail.management.audit-access.json-formatters.KEY.compact

If true will format the JSON on one line. There may still be values containing new lines, so if having

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>management</artifactId>
</dependency>

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

283

If true will format the JSON on one line. There may still be values containing new lines, so if having
the whole record on one line is important, set escape-new-line or escape-control-characters to true.

thorntail.management.audit-access.json-formatters.KEY.date-format

The date format to use as understood by java.text.SimpleDateFormat. Will be ignored if include-
date="false".

thorntail.management.audit-access.json-formatters.KEY.date-separator

The separator between the date and the rest of the formatted log message. Will be ignored if
include-date="false".

thorntail.management.audit-access.json-formatters.KEY.escape-control-characters

If true will escape all control characters (ascii entries with a decimal value < 32) with the ascii code in
octal, e.g.' becomes '#012'. If this is true, it will override escape-new-line="false".

thorntail.management.audit-access.json-formatters.KEY.escape-new-line

If true will escape all new lines with the ascii code in octal, e.g. "#012".

thorntail.management.audit-access.json-formatters.KEY.include-date

Whether or not to include the date in the formatted log record.

thorntail.management.audit-access.periodic-rotating-file-handlers.KEY.disabled-due-to-failure

Whether this handler has been disabled due to logging failures.

thorntail.management.audit-access.periodic-rotating-file-handlers.KEY.failure-count

The number of logging failures since the handler was initialized.

thorntail.management.audit-access.periodic-rotating-file-handlers.KEY.formatter

The formatter used to format the log messages.

thorntail.management.audit-access.periodic-rotating-file-handlers.KEY.max-failure-count

The maximum number of logging failures before disabling this handler.

thorntail.management.audit-access.periodic-rotating-file-handlers.KEY.path

The path of the audit log file.

thorntail.management.audit-access.periodic-rotating-file-handlers.KEY.relative-to

The name of another previously named path, or of one of the standard paths provided by the system.
If 'relative-to' is provided, the value of the 'path' attribute is treated as relative to the path specified
by this attribute.

thorntail.management.audit-access.periodic-rotating-file-handlers.KEY.suffix

The suffix string in a format which can be understood by java.text.SimpleDateFormat. The period of
the rotation is automatically calculated based on the suffix.

thorntail.management.audit-access.size-rotating-file-handlers.KEY.disabled-due-to-failure

Whether this handler has been disabled due to logging failures.

thorntail.management.audit-access.size-rotating-file-handlers.KEY.failure-count

The number of logging failures since the handler was initialized.

thorntail.management.audit-access.size-rotating-file-handlers.KEY.formatter

The formatter used to format the log messages.

thorntail.management.audit-access.size-rotating-file-handlers.KEY.max-backup-index

The maximum number of backups to keep.

thorntail.management.audit-access.size-rotating-file-handlers.KEY.max-failure-count

The maximum number of logging failures before disabling this handler.

thorntail.management.audit-access.size-rotating-file-handlers.KEY.path

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

284

The path of the audit log file.

thorntail.management.audit-access.size-rotating-file-handlers.KEY.relative-to

The name of another previously named path, or of one of the standard paths provided by the system.
If 'relative-to' is provided, the value of the 'path' attribute is treated as relative to the path specified
by this attribute.

thorntail.management.audit-access.size-rotating-file-handlers.KEY.rotate-size

The size at which to rotate the log file.

thorntail.management.audit-access.syslog-handlers.KEY.app-name

The application name to add to the syslog records as defined in section 6.2.5 of RFC-5424. If not
specified it will default to the name of the product.

thorntail.management.audit-access.syslog-handlers.KEY.disabled-due-to-failure

Whether this handler has been disabled due to logging failures.

thorntail.management.audit-access.syslog-handlers.KEY.facility

The facility to use for syslog logging as defined in section 6.2.1 of RFC-5424, and section 4.1.1 of
RFC-3164.

thorntail.management.audit-access.syslog-handlers.KEY.failure-count

The number of logging failures since the handler was initialized.

thorntail.management.audit-access.syslog-handlers.KEY.formatter

The formatter used to format the log messages.

thorntail.management.audit-access.syslog-handlers.KEY.max-failure-count

The maximum number of logging failures before disabling this handler.

thorntail.management.audit-access.syslog-handlers.KEY.max-length

The maximum length in bytes a log message, including the header, is allowed to be. If undefined, it
will default to 1024 bytes if the syslog-format is RFC3164, or 2048 bytes if the syslog-format is
RFC5424.

thorntail.management.audit-access.syslog-handlers.KEY.syslog-format

Whether to set the syslog format to the one specified in RFC-5424 or RFC-3164.

thorntail.management.audit-access.syslog-handlers.KEY.tcp-protocol.host

The host of the syslog server for the tcp requests.

thorntail.management.audit-access.syslog-handlers.KEY.tcp-protocol.message-transfer

The message transfer setting as described in section 3.4 of RFC-6587. This can either be
OCTET_COUNTING as described in section 3.4.1 of RFC-6587, or NON_TRANSPARENT_FRAMING
as described in section 3.4.1 of RFC-6587. See your syslog provider’s documentation for what is
supported.

thorntail.management.audit-access.syslog-handlers.KEY.tcp-protocol.port

The port of the syslog server for the tcp requests.

thorntail.management.audit-access.syslog-handlers.KEY.tcp-protocol.reconnect-timeout

If a connection drop is detected, the number of seconds to wait before reconnecting. A negative
number means don’t reconnect automatically.

thorntail.management.audit-access.syslog-handlers.KEY.tls-protocol.client-certificate-store-
authentication.key-password

The password for the keystore key.

thorntail.management.audit-access.syslog-handlers.KEY.tls-protocol.client-certificate-store-
authentication.key-password-credential-reference

The reference to credential for the keystore key stored in CredentialStore under defined alias or

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

285

The reference to credential for the keystore key stored in CredentialStore under defined alias or
clear text password.

thorntail.management.audit-access.syslog-handlers.KEY.tls-protocol.client-certificate-store-
authentication.keystore-password

The password for the keystore.

thorntail.management.audit-access.syslog-handlers.KEY.tls-protocol.client-certificate-store-
authentication.keystore-password-credential-reference

The reference to credential for the keystore password stored in CredentialStore under defined alias
or clear text password.

thorntail.management.audit-access.syslog-handlers.KEY.tls-protocol.client-certificate-store-
authentication.keystore-path

The path of the keystore.

thorntail.management.audit-access.syslog-handlers.KEY.tls-protocol.client-certificate-store-
authentication.keystore-relative-to

The name of another previously named path, or of one of the standard paths provided by the system.
If 'keystore-relative-to' is provided, the value of the 'keystore-path' attribute is treated as relative to
the path specified by this attribute.

thorntail.management.audit-access.syslog-handlers.KEY.tls-protocol.host

The host of the syslog server for the tls over tcp requests.

thorntail.management.audit-access.syslog-handlers.KEY.tls-protocol.message-transfer

The message transfer setting as described in section 3.4 of RFC-6587. This can either be
OCTET_COUNTING as described in section 3.4.1 of RFC-6587, or NON_TRANSPARENT_FRAMING
as described in section 3.4.1 of RFC-6587. See your syslog provider’s documentation for what is
supported.

thorntail.management.audit-access.syslog-handlers.KEY.tls-protocol.port

The port of the syslog server for the tls over tcp requests.

thorntail.management.audit-access.syslog-handlers.KEY.tls-protocol.reconnect-timeout

If a connection drop is detected, the number of seconds to wait before reconnecting. A negative
number means don’t reconnect automatically.

thorntail.management.audit-access.syslog-handlers.KEY.tls-protocol.truststore-
authentication.keystore-password

The password for the truststore.

thorntail.management.audit-access.syslog-handlers.KEY.tls-protocol.truststore-
authentication.keystore-password-credential-reference

The reference to credential for the truststore password stored in CredentialStore under defined alias
or clear text password.

thorntail.management.audit-access.syslog-handlers.KEY.tls-protocol.truststore-
authentication.keystore-path

The path of the truststore.

thorntail.management.audit-access.syslog-handlers.KEY.tls-protocol.truststore-
authentication.keystore-relative-to

The name of another previously named path, or of one of the standard paths provided by the system.
If 'keystore-relative-to' is provided, the value of the 'keystore-path' attribute is treated as relative to
the path specified by this attribute.

thorntail.management.audit-access.syslog-handlers.KEY.truncate

Whether or not a message, including the header, should truncate the message if the length in bytes is

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

286

Whether or not a message, including the header, should truncate the message if the length in bytes is
greater than the maximum length. If set to false messages will be split and sent with the same header
values.

thorntail.management.audit-access.syslog-handlers.KEY.udp-protocol.host

The host of the syslog server for the udp requests.

thorntail.management.audit-access.syslog-handlers.KEY.udp-protocol.port

The port of the syslog server for the udp requests.

thorntail.management.authorization-access.all-role-names

The official names of all roles supported by the current management access control provider. This
includes any standard roles as well as any user-defined roles.

thorntail.management.authorization-access.application-classification-
constraint.types.KEY.classifications.KEY.applies-tos.KEY.address

Address pattern describing a resource or resources to which the constraint applies.

thorntail.management.authorization-access.application-classification-
constraint.types.KEY.classifications.KEY.applies-tos.KEY.attributes

List of the names of attributes to which the constraint specifically applies.

thorntail.management.authorization-access.application-classification-
constraint.types.KEY.classifications.KEY.applies-tos.KEY.entire-resource

True if the constraint applies to the resource as a whole; false if it only applies to one or more
attributes or operations.

thorntail.management.authorization-access.application-classification-
constraint.types.KEY.classifications.KEY.applies-tos.KEY.operations

List of the names of operations to which the constraint specifically applies.

thorntail.management.authorization-access.application-classification-
constraint.types.KEY.classifications.KEY.configured-application

Set to override the default as to whether the constraint is considered an application resource.

thorntail.management.authorization-access.application-classification-
constraint.types.KEY.classifications.KEY.default-application

Whether targets having this application type constraint are considered application resources.

thorntail.management.authorization-access.permission-combination-policy

The policy for combining access control permissions when the authorization policy grants the user
more than one type of permission for a given action. In the standard role based authorization policy,
this would occur when a user maps to multiple roles. The 'permissive' policy means if any of the
permissions allow the action, the action is allowed. The 'rejecting' policy means the existence of
multiple permissions should result in an error.

thorntail.management.authorization-access.provider

The provider to use for management access control decisions.

thorntail.management.authorization-access.role-mappings.KEY.excludes.KEY.name

The name of the user or group being mapped.

thorntail.management.authorization-access.role-mappings.KEY.excludes.KEY.realm

An optional attribute to map based on the realm used for authentication.

thorntail.management.authorization-access.role-mappings.KEY.excludes.KEY.type

The type of the Principal being mapped, either 'group' or 'user'.

thorntail.management.authorization-access.role-mappings.KEY.include-all

Configure if all authenticated users should be automatically assigned this role.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

287

thorntail.management.authorization-access.role-mappings.KEY.includes.KEY.name

The name of the user or group being mapped.

thorntail.management.authorization-access.role-mappings.KEY.includes.KEY.realm

An optional attribute to map based on the realm used for authentication.

thorntail.management.authorization-access.role-mappings.KEY.includes.KEY.type

The type of the Principal being mapped, either 'group' or 'user'.

thorntail.management.authorization-access.sensitivity-classification-
constraint.types.KEY.classifications.KEY.applies-tos.KEY.address

Address pattern describing a resource or resources to which the constraint applies.

thorntail.management.authorization-access.sensitivity-classification-
constraint.types.KEY.classifications.KEY.applies-tos.KEY.attributes

List of the names of attributes to which the constraint specifically applies.

thorntail.management.authorization-access.sensitivity-classification-
constraint.types.KEY.classifications.KEY.applies-tos.KEY.entire-resource

True if the constraint applies to the resource as a whole; false if it only applies to one or more
attributes or operations.

thorntail.management.authorization-access.sensitivity-classification-
constraint.types.KEY.classifications.KEY.applies-tos.KEY.operations

List of the names of operations to which the constraint specifically applies.

thorntail.management.authorization-access.sensitivity-classification-
constraint.types.KEY.classifications.KEY.configured-application

Set to override the default as to whether the constraint is considered an application resource.

thorntail.management.authorization-access.sensitivity-classification-
constraint.types.KEY.classifications.KEY.default-application

Whether targets having this application type constraint are considered application resources.

thorntail.management.authorization-access.standard-role-names

The official names of the standard roles supported by the current management access control
provider.

thorntail.management.authorization-access.use-identity-roles

Should the raw roles obtained from the underlying security identity be used directly?

thorntail.management.authorization-access.vault-expression-constraint.configured-requires-read

Set to override the default as to whether reading attributes containing vault expressions should be
considered sensitive.

thorntail.management.authorization-access.vault-expression-constraint.configured-requires-
write

Set to override the default as to whether writing attributes containing vault expressions should be
considered sensitive.

thorntail.management.authorization-access.vault-expression-constraint.default-requires-read

Whether reading attributes containing vault expressions should be considered sensitive.

thorntail.management.authorization-access.vault-expression-constraint.default-requires-write

Whether writing attributes containing vault expressions should be considered sensitive.

thorntail.management.bind.interface

Interface to bind for the management ports

thorntail.management.configuration-changes-service.max-history

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

288

The maximum number of configuration changes stored in history.

thorntail.management.http-interface-management-interface.allowed-origins

Comma separated list of trusted Origins for sending Cross-Origin Resource Sharing requests on the
management API once the user is authenticated.

thorntail.management.http-interface-management-interface.console-enabled

Flag that indicates admin console is enabled

thorntail.management.http-interface-management-interface.http-authentication-factory

The authentication policy to use to secure the interface for normal HTTP requests.

thorntail.management.http-interface-management-interface.http-upgrade

HTTP Upgrade specific configuration

thorntail.management.http-interface-management-interface.http-upgrade-enabled

Flag that indicates HTTP Upgrade is enabled, which allows HTTP requests to be upgraded to native
remoting connections

thorntail.management.http-interface-management-interface.sasl-protocol

The name of the protocol to be passed to the SASL mechanisms used for authentication.

thorntail.management.http-interface-management-interface.secure-socket-binding

The name of the socket binding configuration to use for the HTTPS management interface’s socket.
When defined at least one of ssl-context or security-realm must also be defined.

thorntail.management.http-interface-management-interface.security-realm

The legacy security realm to use for the HTTP management interface.

thorntail.management.http-interface-management-interface.server-name

The name of the server used in the initial Remoting exchange and within the SASL mechanisms.

thorntail.management.http-interface-management-interface.socket-binding

The name of the socket binding configuration to use for the HTTP management interface’s socket.

thorntail.management.http-interface-management-interface.ssl-context

Reference to the SSLContext to use for this management interface.

thorntail.management.http.disable

Flag to disable HTTP access to management interface

thorntail.management.http.port

Port for HTTP access to management interface

thorntail.management.https.port

Port for HTTPS access to management interface

thorntail.management.identity-access.security-domain

Reference to the security domain to use to obtain the current identity performing a management
request.

thorntail.management.ldap-connections.KEY.always-send-client-cert

If true, the client SSL certificate will be sent to LDAP server with every request; otherwise the client
SSL certificate will not be sent when verifying the user credentials

thorntail.management.ldap-connections.KEY.handles-referrals-for

List of URLs that this connection handles referrals for.

thorntail.management.ldap-connections.KEY.initial-context-factory

The initial context factory to establish the LdapContext.

thorntail.management.ldap-connections.KEY.properties.KEY.value

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

289

The optional value of the property.

thorntail.management.ldap-connections.KEY.referrals

The referral handling mode for this connection.

thorntail.management.ldap-connections.KEY.search-credential

The credential to use when connecting to perform a search.

thorntail.management.ldap-connections.KEY.search-credential-reference

The reference to the search credential stored in CredentialStore under defined alias or clear text
password.

thorntail.management.ldap-connections.KEY.search-dn

The distinguished name to use when connecting to the LDAP server to perform searches.

thorntail.management.ldap-connections.KEY.security-realm

The security realm to reference to obtain a configured SSLContext to use when establishing the
connection.

thorntail.management.ldap-connections.KEY.url

The URL to use to connect to the LDAP server.

thorntail.management.management-operations-service.active-operations.KEY.access-mechanism

The mechanism used to submit a request to the server.

thorntail.management.management-operations-service.active-operations.KEY.address

The address of the resource targeted by the operation. The value in the final element of the address
will be '<hidden>' if the caller is not authorized to address the operation’s target resource.

thorntail.management.management-operations-service.active-operations.KEY.caller-thread

The name of the thread that is executing the operation.

thorntail.management.management-operations-service.active-operations.KEY.cancelled

Whether the operation has been cancelled.

thorntail.management.management-operations-service.active-operations.KEY.domain-rollout

True if the operation is a subsidiary request on a domain process other than the one directly handling
the original operation, executing locally as part of the rollout of the original operation across the
domain.

thorntail.management.management-operations-service.active-operations.KEY.domain-uuid

Identifier of an overall multi-process domain operation of which this operation is a part, or undefined
if this operation is not associated with such a domain operation.

thorntail.management.management-operations-service.active-operations.KEY.exclusive-running-
time

Amount of time the operation has been executing with the exclusive operation execution lock held,
or -1 if the operation does not hold the exclusive execution lock.

thorntail.management.management-operations-service.active-operations.KEY.execution-status

The current activity of the operation.

thorntail.management.management-operations-service.active-operations.KEY.operation

The name of the operation, or '<hidden>' if the caller is not authorized to address the operation’s
target resource.

thorntail.management.management-operations-service.active-operations.KEY.running-time

Amount of time the operation has been executing.

thorntail.management.native-interface-management-interface.sasl-authentication-factory

The SASL authentication policy to use to secure this interface.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

290

thorntail.management.native-interface-management-interface.sasl-protocol

The name of the protocol to be passed to the SASL mechanisms used for authentication.

thorntail.management.native-interface-management-interface.security-realm

The legacy security realm to use for the native management interface.

thorntail.management.native-interface-management-interface.server-name

The name of the server used in the initial Remoting exchange and within the SASL mechanisms.

thorntail.management.native-interface-management-interface.socket-binding

The name of the socket binding configuration to use for the native management interface’s socket.

thorntail.management.native-interface-management-interface.ssl-context

Reference to the SSLContext to use for this management interface.

thorntail.management.security-realms.KEY.jaas-authentication.assign-groups

Map the roles loaded by JAAS to groups.

thorntail.management.security-realms.KEY.jaas-authentication.name

The name of the JAAS configuration to use.

thorntail.management.security-realms.KEY.kerberos-authentication.remove-realm

After authentication should the realm name be stripped from the users name.

thorntail.management.security-realms.KEY.kerberos-server-identity.keytabs.KEY.debug

Should additional debug logging be enabled during TGT acquisition?

thorntail.management.security-realms.KEY.kerberos-server-identity.keytabs.KEY.for-hosts

A server can be accessed using different host names, this attribute specifies which host names this
keytab can be used with.

thorntail.management.security-realms.KEY.kerberos-server-identity.keytabs.KEY.path

The path to the keytab.

thorntail.management.security-realms.KEY.kerberos-server-identity.keytabs.KEY.relative-to

The name of another previously named path, or of one of the standard paths provided by the system.
If 'relative-to' is provided, the value of the 'path' attribute is treated as relative to the path specified
by this attribute.

thorntail.management.security-realms.KEY.ldap-authentication.advanced-filter

The fully defined filter to be used to search for the user based on their entered user ID. The filter
should contain a variable in the form {0} - this will be replaced with the username supplied by the
user.

thorntail.management.security-realms.KEY.ldap-authentication.allow-empty-passwords

Should empty passwords be accepted from the user being authenticated.

thorntail.management.security-realms.KEY.ldap-authentication.base-dn

The base distinguished name to commence the search for the user.

thorntail.management.security-realms.KEY.ldap-authentication.by-access-time-cache.cache-
failures

Should failures be cached?

thorntail.management.security-realms.KEY.ldap-authentication.by-access-time-cache.cache-size

The current size of the cache.

thorntail.management.security-realms.KEY.ldap-authentication.by-access-time-cache.eviction-
time

The time in seconds until an entry should be evicted from the cache.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

291

thorntail.management.security-realms.KEY.ldap-authentication.by-access-time-cache.max-
cache-size

The maximum size of the cache before the oldest items are removed to make room for new entries.

thorntail.management.security-realms.KEY.ldap-authentication.by-search-time-cache.cache-
failures

Should failures be cached?

thorntail.management.security-realms.KEY.ldap-authentication.by-search-time-cache.cache-size

The current size of the cache.

thorntail.management.security-realms.KEY.ldap-authentication.by-search-time-cache.eviction-
time

The time in seconds until an entry should be evicted from the cache.

thorntail.management.security-realms.KEY.ldap-authentication.by-search-time-cache.max-
cache-size

The maximum size of the cache before the oldest items are removed to make room for new entries.

thorntail.management.security-realms.KEY.ldap-authentication.connection

The name of the connection to use to connect to LDAP.

thorntail.management.security-realms.KEY.ldap-authentication.recursive

Whether the search should be recursive.

thorntail.management.security-realms.KEY.ldap-authentication.user-dn

The name of the attribute which is the user’s distinguished name.

thorntail.management.security-realms.KEY.ldap-authentication.username-attribute

The name of the attribute to search for the user. This filter will then perform a simple search where
the username entered by the user matches the attribute specified here.

thorntail.management.security-realms.KEY.ldap-authentication.username-load

The name of the attribute that should be loaded from the authenticated users LDAP entry to replace
the username that they supplied, e.g. convert an e-mail address to an ID or correct the case entered.

thorntail.management.security-realms.KEY.ldap-authorization.advanced-filter-username-to-
dn.base-dn

The starting point of the search for the user.

thorntail.management.security-realms.KEY.ldap-authorization.advanced-filter-username-to-
dn.by-access-time-cache.cache-failures

Should failures be cached?

thorntail.management.security-realms.KEY.ldap-authorization.advanced-filter-username-to-
dn.by-access-time-cache.cache-size

The current size of the cache.

thorntail.management.security-realms.KEY.ldap-authorization.advanced-filter-username-to-
dn.by-access-time-cache.eviction-time

The time in seconds until an entry should be evicted from the cache.

thorntail.management.security-realms.KEY.ldap-authorization.advanced-filter-username-to-
dn.by-access-time-cache.max-cache-size

The maximum size of the cache before the oldest items are removed to make room for new entries.

thorntail.management.security-realms.KEY.ldap-authorization.advanced-filter-username-to-
dn.by-search-time-cache.cache-failures

Should failures be cached?

thorntail.management.security-realms.KEY.ldap-authorization.advanced-filter-username-to-

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

292

thorntail.management.security-realms.KEY.ldap-authorization.advanced-filter-username-to-
dn.by-search-time-cache.cache-size

The current size of the cache.

thorntail.management.security-realms.KEY.ldap-authorization.advanced-filter-username-to-
dn.by-search-time-cache.eviction-time

The time in seconds until an entry should be evicted from the cache.

thorntail.management.security-realms.KEY.ldap-authorization.advanced-filter-username-to-
dn.by-search-time-cache.max-cache-size

The maximum size of the cache before the oldest items are removed to make room for new entries.

thorntail.management.security-realms.KEY.ldap-authorization.advanced-filter-username-to-
dn.filter

The filter to use for the LDAP search.

thorntail.management.security-realms.KEY.ldap-authorization.advanced-filter-username-to-
dn.force

Authentication may have already converted the username to a distinguished name, force this to
occur again before loading groups.

thorntail.management.security-realms.KEY.ldap-authorization.advanced-filter-username-to-
dn.recursive

Should levels below the starting point be recursively searched?

thorntail.management.security-realms.KEY.ldap-authorization.advanced-filter-username-to-
dn.user-dn-attribute

The attribute on the user entry that contains their distinguished name.

thorntail.management.security-realms.KEY.ldap-authorization.connection

The name of the connection to use to connect to LDAP.

thorntail.management.security-realms.KEY.ldap-authorization.group-to-principal-group-
search.base-dn

The starting point of the search for the group.

thorntail.management.security-realms.KEY.ldap-authorization.group-to-principal-group-
search.by-access-time-cache.cache-failures

Should failures be cached?

thorntail.management.security-realms.KEY.ldap-authorization.group-to-principal-group-
search.by-access-time-cache.cache-size

The current size of the cache.

thorntail.management.security-realms.KEY.ldap-authorization.group-to-principal-group-
search.by-access-time-cache.eviction-time

The time in seconds until an entry should be evicted from the cache.

thorntail.management.security-realms.KEY.ldap-authorization.group-to-principal-group-
search.by-access-time-cache.max-cache-size

The maximum size of the cache before the oldest items are removed to make room for new entries.

thorntail.management.security-realms.KEY.ldap-authorization.group-to-principal-group-
search.by-search-time-cache.cache-failures

Should failures be cached?

thorntail.management.security-realms.KEY.ldap-authorization.group-to-principal-group-
search.by-search-time-cache.cache-size

The current size of the cache.

thorntail.management.security-realms.KEY.ldap-authorization.group-to-principal-group-

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

293

thorntail.management.security-realms.KEY.ldap-authorization.group-to-principal-group-
search.by-search-time-cache.eviction-time

The time in seconds until an entry should be evicted from the cache.

thorntail.management.security-realms.KEY.ldap-authorization.group-to-principal-group-
search.by-search-time-cache.max-cache-size

The maximum size of the cache before the oldest items are removed to make room for new entries.

thorntail.management.security-realms.KEY.ldap-authorization.group-to-principal-group-
search.group-dn-attribute

Which attribute on a group entry is it’s distinguished name.

thorntail.management.security-realms.KEY.ldap-authorization.group-to-principal-group-
search.group-name

An enumeration to identify if groups should be referenced using a simple name or their distinguished
name.

thorntail.management.security-realms.KEY.ldap-authorization.group-to-principal-group-
search.group-name-attribute

Which attribute on a group entry is it’s simple name.

thorntail.management.security-realms.KEY.ldap-authorization.group-to-principal-group-
search.iterative

Should further searches be performed to identify groups that the groups identified are a member
of?

thorntail.management.security-realms.KEY.ldap-authorization.group-to-principal-group-
search.prefer-original-connection

After following a referral should subsequent searches prefer the original connection or use the
connection of the last referral.

thorntail.management.security-realms.KEY.ldap-authorization.group-to-principal-group-
search.principal-attribute

The attribute on the group entry that references the principal.

thorntail.management.security-realms.KEY.ldap-authorization.group-to-principal-group-
search.recursive

Should levels below the starting point be recursively searched?

thorntail.management.security-realms.KEY.ldap-authorization.group-to-principal-group-
search.search-by

Should searches be performed using simple names or distinguished names?

thorntail.management.security-realms.KEY.ldap-authorization.principal-to-group-group-
search.by-access-time-cache.cache-failures

Should failures be cached?

thorntail.management.security-realms.KEY.ldap-authorization.principal-to-group-group-
search.by-access-time-cache.cache-size

The current size of the cache.

thorntail.management.security-realms.KEY.ldap-authorization.principal-to-group-group-
search.by-access-time-cache.eviction-time

The time in seconds until an entry should be evicted from the cache.

thorntail.management.security-realms.KEY.ldap-authorization.principal-to-group-group-
search.by-access-time-cache.max-cache-size

The maximum size of the cache before the oldest items are removed to make room for new entries.

thorntail.management.security-realms.KEY.ldap-authorization.principal-to-group-group-

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

294

thorntail.management.security-realms.KEY.ldap-authorization.principal-to-group-group-
search.by-search-time-cache.cache-failures

Should failures be cached?

thorntail.management.security-realms.KEY.ldap-authorization.principal-to-group-group-
search.by-search-time-cache.cache-size

The current size of the cache.

thorntail.management.security-realms.KEY.ldap-authorization.principal-to-group-group-
search.by-search-time-cache.eviction-time

The time in seconds until an entry should be evicted from the cache.

thorntail.management.security-realms.KEY.ldap-authorization.principal-to-group-group-
search.by-search-time-cache.max-cache-size

The maximum size of the cache before the oldest items are removed to make room for new entries.

thorntail.management.security-realms.KEY.ldap-authorization.principal-to-group-group-
search.group-attribute

The attribute on the principal which references the group the principal is a member of.

thorntail.management.security-realms.KEY.ldap-authorization.principal-to-group-group-
search.group-dn-attribute

Which attribute on a group entry is it’s distinguished name.

thorntail.management.security-realms.KEY.ldap-authorization.principal-to-group-group-
search.group-name

An enumeration to identify if groups should be referenced using a simple name or their distinguished
name.

thorntail.management.security-realms.KEY.ldap-authorization.principal-to-group-group-
search.group-name-attribute

Which attribute on a group entry is it’s simple name.

thorntail.management.security-realms.KEY.ldap-authorization.principal-to-group-group-
search.iterative

Should further searches be performed to identify groups that the groups identified are a member
of?

thorntail.management.security-realms.KEY.ldap-authorization.principal-to-group-group-
search.parse-group-name-from-dn

Should the group name be extracted from the distinguished name.

thorntail.management.security-realms.KEY.ldap-authorization.principal-to-group-group-
search.prefer-original-connection

After following a referral should subsequent searches prefer the original connection or use the
connection of the last referral.

thorntail.management.security-realms.KEY.ldap-authorization.principal-to-group-group-
search.skip-missing-groups

If a non-existent group is referenced should it be quietly ignored.

thorntail.management.security-realms.KEY.ldap-authorization.username-filter-username-to-
dn.attribute

The attribute on the user entry that is their username.

thorntail.management.security-realms.KEY.ldap-authorization.username-filter-username-to-
dn.base-dn

The starting point of the search for the user.

thorntail.management.security-realms.KEY.ldap-authorization.username-filter-username-to-

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

295

thorntail.management.security-realms.KEY.ldap-authorization.username-filter-username-to-
dn.by-access-time-cache.cache-failures

Should failures be cached?

thorntail.management.security-realms.KEY.ldap-authorization.username-filter-username-to-
dn.by-access-time-cache.cache-size

The current size of the cache.

thorntail.management.security-realms.KEY.ldap-authorization.username-filter-username-to-
dn.by-access-time-cache.eviction-time

The time in seconds until an entry should be evicted from the cache.

thorntail.management.security-realms.KEY.ldap-authorization.username-filter-username-to-
dn.by-access-time-cache.max-cache-size

The maximum size of the cache before the oldest items are removed to make room for new entries.

thorntail.management.security-realms.KEY.ldap-authorization.username-filter-username-to-
dn.by-search-time-cache.cache-failures

Should failures be cached?

thorntail.management.security-realms.KEY.ldap-authorization.username-filter-username-to-
dn.by-search-time-cache.cache-size

The current size of the cache.

thorntail.management.security-realms.KEY.ldap-authorization.username-filter-username-to-
dn.by-search-time-cache.eviction-time

The time in seconds until an entry should be evicted from the cache.

thorntail.management.security-realms.KEY.ldap-authorization.username-filter-username-to-
dn.by-search-time-cache.max-cache-size

The maximum size of the cache before the oldest items are removed to make room for new entries.

thorntail.management.security-realms.KEY.ldap-authorization.username-filter-username-to-
dn.force

Authentication may have already converted the username to a distinguished name, force this to
occur again before loading groups.

thorntail.management.security-realms.KEY.ldap-authorization.username-filter-username-to-
dn.recursive

Should levels below the starting point be recursively searched?

thorntail.management.security-realms.KEY.ldap-authorization.username-filter-username-to-
dn.user-dn-attribute

The attribute on the user entry that contains their distinguished name.

thorntail.management.security-realms.KEY.ldap-authorization.username-is-dn-username-to-
dn.by-access-time-cache.cache-failures

Should failures be cached?

thorntail.management.security-realms.KEY.ldap-authorization.username-is-dn-username-to-
dn.by-access-time-cache.cache-size

The current size of the cache.

thorntail.management.security-realms.KEY.ldap-authorization.username-is-dn-username-to-
dn.by-access-time-cache.eviction-time

The time in seconds until an entry should be evicted from the cache.

thorntail.management.security-realms.KEY.ldap-authorization.username-is-dn-username-to-
dn.by-access-time-cache.max-cache-size

The maximum size of the cache before the oldest items are removed to make room for new entries.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

296

thorntail.management.security-realms.KEY.ldap-authorization.username-is-dn-username-to-
dn.by-search-time-cache.cache-failures

Should failures be cached?

thorntail.management.security-realms.KEY.ldap-authorization.username-is-dn-username-to-
dn.by-search-time-cache.cache-size

The current size of the cache.

thorntail.management.security-realms.KEY.ldap-authorization.username-is-dn-username-to-
dn.by-search-time-cache.eviction-time

The time in seconds until an entry should be evicted from the cache.

thorntail.management.security-realms.KEY.ldap-authorization.username-is-dn-username-to-
dn.by-search-time-cache.max-cache-size

The maximum size of the cache before the oldest items are removed to make room for new entries.

thorntail.management.security-realms.KEY.ldap-authorization.username-is-dn-username-to-
dn.force

Authentication may have already converted the username to a distinguished name, force this to
occur again before loading groups.

thorntail.management.security-realms.KEY.local-authentication.allowed-users

The comma separated list of users that will be accepted using the JBOSS-LOCAL-USER
mechanism or '*' to accept all. If specified the default-user is always assumed allowed.

thorntail.management.security-realms.KEY.local-authentication.default-user

The name of the default user to assume if no user specified by the remote client.

thorntail.management.security-realms.KEY.local-authentication.skip-group-loading

Disable the loading of the users group membership information after local authentication has been
used.

thorntail.management.security-realms.KEY.map-groups-to-roles

After a users group membership has been loaded should a 1:1 relationship be assumed regarding
group to role mapping.

thorntail.management.security-realms.KEY.plug-in-authentication.mechanism

Allow the mechanism this plug-in is compatible with to be overridden from DIGEST.

thorntail.management.security-realms.KEY.plug-in-authentication.name

The short name of the plug-in (as registered) to use.

thorntail.management.security-realms.KEY.plug-in-authentication.properties.KEY.value

The optional value of the property.

thorntail.management.security-realms.KEY.plug-in-authorization.name

The short name of the plug-in (as registered) to use.

thorntail.management.security-realms.KEY.plug-in-authorization.properties.KEY.value

The optional value of the property.

thorntail.management.security-realms.KEY.properties-authentication.path

The path of the properties file containing the users.

thorntail.management.security-realms.KEY.properties-authentication.plain-text

Are the credentials within the properties file stored in plain text. If not the credential is expected to
be the hex encoded Digest hash of 'username : realm : password'.

thorntail.management.security-realms.KEY.properties-authentication.relative-to

The name of another previously named path, or of one of the standard paths provided by the system.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

297

The name of another previously named path, or of one of the standard paths provided by the system.
If 'relative-to' is provided, the value of the 'path' attribute is treated as relative to the path specified
by this attribute.

thorntail.management.security-realms.KEY.properties-authorization.path

The path of the properties file containing the users roles.

thorntail.management.security-realms.KEY.properties-authorization.relative-to

The name of another previously named path, or of one of the standard paths provided by the system.
If 'relative-to' is provided, the value of the 'path' attribute is treated as relative to the path specified
by this attribute.

thorntail.management.security-realms.KEY.secret-server-identity.credential-reference

The reference to credential for the secret / password stored in CredentialStore under defined alias
or clear text password.

thorntail.management.security-realms.KEY.secret-server-identity.value

The secret / password - Base64 Encoded.

thorntail.management.security-realms.KEY.ssl-server-identity.alias

The alias of the entry to use from the keystore.

thorntail.management.security-realms.KEY.ssl-server-identity.enabled-cipher-suites

The cipher suites that can be enabled on the underlying SSLEngine.

thorntail.management.security-realms.KEY.ssl-server-identity.enabled-protocols

The protocols that can be enabled on the underlying SSLEngine.

thorntail.management.security-realms.KEY.ssl-server-identity.generate-self-signed-certificate-
host

If the keystore does not exist and this attribute is set then a self signed certificate will be generated
for the specified host name. This is not intended for production use.

thorntail.management.security-realms.KEY.ssl-server-identity.key-password

The password to obtain the key from the keystore.

thorntail.management.security-realms.KEY.ssl-server-identity.key-password-credential-reference

The reference to credential for the keystore key stored in CredentialStore under defined alias or
clear text password.

thorntail.management.security-realms.KEY.ssl-server-identity.keystore-password

The password to open the keystore.

thorntail.management.security-realms.KEY.ssl-server-identity.keystore-password-credential-
reference

The reference to credential for the keystore password stored in CredentialStore under defined alias
or clear text password.

thorntail.management.security-realms.KEY.ssl-server-identity.keystore-path

The path of the keystore, will be ignored if the keystore-provider is anything other than JKS.

thorntail.management.security-realms.KEY.ssl-server-identity.keystore-provider

The provider for loading the keystore, defaults to JKS.

thorntail.management.security-realms.KEY.ssl-server-identity.keystore-relative-to

The name of another previously named path, or of one of the standard paths provided by the system.
If 'relative-to' is provided, the value of the 'path' attribute is treated as relative to the path specified
by this attribute.

thorntail.management.security-realms.KEY.ssl-server-identity.protocol

The protocol to use when creating the SSLContext.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

298

thorntail.management.security-realms.KEY.truststore-authentication.keystore-password

The password to open the keystore.

thorntail.management.security-realms.KEY.truststore-authentication.keystore-password-
credential-reference

The reference to credential for the keystore password stored in CredentialStore under defined alias
or clear text password.

thorntail.management.security-realms.KEY.truststore-authentication.keystore-path

The path of the keystore, will be ignored if the keystore-provider is anything other than JKS.

thorntail.management.security-realms.KEY.truststore-authentication.keystore-provider

The provider for loading the keystore, defaults to JKS.

thorntail.management.security-realms.KEY.truststore-authentication.keystore-relative-to

The name of another previously named path, or of one of the standard paths provided by the system.
If 'relative-to' is provided, the value of the 'path' attribute is treated as relative to the path specified
by this attribute.

thorntail.management.security-realms.KEY.users-authentication.users.KEY.credential-reference

The reference to credential for the password stored in CredentialStore under defined alias or clear
text password.

thorntail.management.security-realms.KEY.users-authentication.users.KEY.password

The user’s password.

D.25. MICROPROFILE

You can use this fraction to add a dependency on all fractions that implement the Eclipse MicroProfile
specifications.

D.25.1. Note about YAML configuration

Some Eclipse MicroProfile specifications define configuration properties that use / as a delimiter,
because the . character is used in fully qualified class names. When writing the YAML configuration, it is
required to split around . and not around /.

Example D.1. YAML configuration for MicroProfile Rest Client

For example, MicroProfile Rest Client specifies that you can configure URL of an external service
with a configuration property named com.example.demo.client.Service/mp-rest/url. This translates
to the following YAML:

Maven Coordinates

com:
 example:
 demo:
 client:
 Service/mp-rest/url: http://localhost:8080/...

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>microprofile</artifactId>

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

299

D.25.2. MicroProfile Config

Maven Coordinates

Configuration

thorntail.microprofile.config.config-source-providers.KEY.attribute-class

Class of the ConfigSourceProvider to load

thorntail.microprofile.config.config-sources.KEY.attribute-class

Class of the config source to load

thorntail.microprofile.config.config-sources.KEY.dir

Directory that is scanned to config properties for this config source (file names are key, file content
are value)

thorntail.microprofile.config.config-sources.KEY.ordinal

Ordinal value for the config source

thorntail.microprofile.config.config-sources.KEY.properties

Properties configured for this config source

D.25.3. MicroProfile Fault Tolerance

This fraction implements the Eclipse MicroProfile Fault Tolerance API . The implementation depends on
the Hystrix fraction, which is added transitively into your application. Use standard configuration
mechanisms to configure Hystrix properties in your application.

D.25.3.1. Bulkhead fallback rejection

If you use the @Bulkhead pattern together with some @Fallback logic to limit the number of
concurrent requests, an invocation may still result in an exception.

D.25.3.1.1. Semaphore Isolation

For semaphore-style @Bulkhead a BulkheadException may be thrown if the maximum concurrent
limit is reached. To avoid that, set the
thorntail.hystrix.command.default.fallback.isolation.semaphore.maxConcurrentRequests
property to increase the limit.

D.25.3.1.2. Thread Isolation

For @Bulkhead used together with @Asynchronous a RejectedExecutionException may be thrown
if the maximum concurrent limit is reached. To avoid that, set the
thorntail.hystrix.threadpool.default.maximumSize property to increase the limit. Also don’t forget to
set the thorntail.hystrix.threadpool.default.allowMaximumSizeToDivergeFromCoreSize property to
true.

</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>microprofile-config</artifactId>
</dependency>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

300

https://github.com/eclipse/microprofile-fault-tolerance
https://github.com/Netflix/Hystrix/wiki/Configuration

Maven Coordinates

Configuration

thorntail.microprofile.fault-tolerance.synchronous-circuit-breaker

Enable/disable synchronous circuit breaker functionality. If disabled,
CircuitBreaker#successThreshold() of value greater than 1 is not supported and
CircuitBreaker#failOn() configuration is ignored. Moreover, circuit breaker does not necessarily
transition from CLOSED to OPEN immediately when a fault tolerance operation completes.
However, applications are encouraged to disable this feature on high-volume circuits.

D.25.4. MicroProfile Health

Maven Coordinates

Configuration

thorntail.microprofile.health.security-realm

Security realm configuration

D.25.5. MicroProfile JWT RBAC Auth

Maven Coordinates

Configuration

thorntail.microprofile.jwt.claims.groups

Default group name. This property can be used to support the JWT tokens without a 'groups' claim.

thorntail.microprofile.jwt.default-missing-method-permissions-deny-access

If a JAX-RS resource has no class-level security metadata, then if this property is set to true and at
least one resource method has security metadata all other resource methods without security
metadata have an implicit @DenyAll, otherwise resource methods without security metadata are not
secured

thorntail.microprofile.jwt.enabled

Set this to false to disable the MP JWT authentication mechanism. Defaults to true.

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>microprofile-fault-tolerance</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>microprofile-health</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>microprofile-jwt</artifactId>
</dependency>

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

301

thorntail.microprofile.jwt.path.groups

Path to the claim containing an array of groups, for example: 'realm/groups'. It can be used if a token
has no 'groups' claim but has the groups set in a different claim

thorntail.microprofile.jwt.realm

Defines the security domain which should be used for MicroProfile JWT. If no security domain with
this name exists, one will be created using sensible defaults. If this option is set, then the
@LoginConfig annotation is not needed but if it is present then its realmName property, if set, must
have the same value as this option.

thorntail.microprofile.jwt.roles.file

Roles properties file path, ignored if the roles.map property is set

thorntail.microprofile.jwt.roles.map

Roles properties map

thorntail.microprofile.jwt.token.cookie

Cookie name containing a JWT token. This property is ignored unless the
'thorntail.microprofile.jwt.token.header' is set to 'Cookie'

thorntail.microprofile.jwt.token.exp-grace-period

The JWT token expiration grace period in seconds

thorntail.microprofile.jwt.token.header

HTTP header which is expected to contain a JWT token, default value is 'Authorization'

thorntail.microprofile.jwt.token.issued-by

The URI of the JWT token issuer

thorntail.microprofile.jwt.token.jwks-refresh-interval

The interval at which the JWKS URI should be queried for keys (in minutes). It is ignored if the value
of either signer-pub-key-location or jwks-uri is not HTTPS URI

thorntail.microprofile.jwt.token.jwks-uri

The JWKS URI from which to load public keys. This property is deprecated, use the
'thorntail.microprofile.jwt.token.signer-pub-key-location' property instead

thorntail.microprofile.jwt.token.signer-pub-key

The public key of the JWT token signer. Can be prefixed 'file:' or 'classpath:' to refer to external
assets, but this is deprecated; use 'thorntail.microprofile.jwt.token.signer-pub-key-location' instead

thorntail.microprofile.jwt.token.signer-pub-key-location

Location of the public key of the JWT token signer. By default, or when the 'classpath:' prefix is
present, this is a classpath resource. Can be prefixed with 'file:' to refer to an external file. Can also be
a HTTPS URL of a JWK Set.

D.25.6. MicroProfile Metrics

This fraction implements the Eclipse MicroProfile Metrics specification .

To use this in your project you need the following in your pom.xml

There is no need to include the MicroProfile Metrics API dependency, as it comes with the fraction.

 <dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>microprofile-metrics</artifactId>
 </dependency>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

302

https://github.com/eclipse/microprofile-metrics/

1

By default the base metrics and vendor metrics of the server are exposed as required by the spec.

NOTE

Exposing application metrics currently only works if you chose war packaging of your
application

war packaging

Maven Coordinates

D.25.7. MicroProfile OpenAPI

Maven Coordinates

D.25.8. MicroProfile OpenTracing

Maven Coordinates

D.25.9. MicroProfile Rest Client

This fraction implements the Eclipse MicroProfile Rest Client specification.

D.25.9.1. CDI Interceptors Support

In general, Rest Client proxies are not created by the CDI container and therefore method invocations
do not pass through CDI interceptors. In Thorntail, however, you can associate business method
interceptors (denoted by the @AroundInvoke annotation) with a Rest Client proxy by using interceptor
bindings. This feature is non-portable. The primary use case is the support of Section D.25.3,
“MicroProfile Fault Tolerance” annotations, for example:

<project>
 <groupId>org.example</groupId>
 <artifactId>thorntail-demo</artifactId>
 <packaging>war</packaging> 1

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>microprofile-metrics</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>microprofile-openapi</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>microprofile-opentracing</artifactId>
</dependency>

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

303

https://github.com/eclipse/microprofile-rest-client

NOTE

The org.eclipse.microprofile.faulttolerance.Asynchronous annotation is currently not
supported because the underlying RESTEasy client is not able to handle the
java.util.concurrent.Future return types.

D.25.9.2. RestClientProxy

In addition to the MicroProfile Rest Client specification, every Rest Client proxy implements
org.jboss.resteasy.microprofile.client.RestClientProxy interface which allows you to:

obtain the underlying javax.ws.rs.client.Client instance

release all associated resources, for example:

Maven Coordinates

D.26. MONITOR

WARNING

This fraction is deprecated. Use the io.thorntail:microprofile-health fraction
instead.

Maven Coordinates

import org.eclipse.microprofile.faulttolerance.Retry;

@Path("/v1")
interface MyClient {

 @Retry(maxRetries = 3) // Retry on any exception thrown
 @GET
 @Path("/hello")
 String hello();
}

public void hello() {
 MyClient myClient = RestClientBuilder.newBuilder().build(MyClient.class);
 myClient.hello();
 // Finally release all associated resources
 ((RestClientProxy) helloClient).close();
}

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>microprofile-restclient</artifactId>
</dependency>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

304

Configuration

thorntail.monitor.security-realm

(not yet documented)

D.27. MSC

Primarily an internal fraction providing support for the JBoss Modular Container (MSC). JBoss MSC
provides the underpinning for all services wired together supporting the container and the application.

Maven Coordinates

D.28. NAMING

Provides support for JNDI.

Maven Coordinates

Configuration

thorntail.naming.bindings.KEY.attribute-class

The object factory class name for object factory bindings

thorntail.naming.bindings.KEY.binding-type

The type of binding to create, may be simple, lookup, external-context or object-factory

thorntail.naming.bindings.KEY.cache

If the external context should be cached

thorntail.naming.bindings.KEY.environment

The environment to use on object factory instance retrieval

thorntail.naming.bindings.KEY.lookup

The entry to lookup in JNDI for lookup bindings

thorntail.naming.bindings.KEY.module

The module to load the object factory from for object factory bindings

thorntail.naming.bindings.KEY.type

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>monitor</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>msc</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>naming</artifactId>
</dependency>

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

305

The type of the value to bind for simple bindings, this must be a primitive type

thorntail.naming.bindings.KEY.value

The value to bind for simple bindings

D.29. RX-JAVA

Maven Coordinates

D.30. OPENTRACING

Maven Coordinates

Configuration

thorntail.opentracing.servlet.skipPattern

The servlet skip pattern as a Java compilable Pattern. Optional. Ex.: /health-check

D.30.1. OpenTracing TracerResolver

Maven Coordinates

D.31. REMOTING

Primarily an internal fraction providing remote invocation support for higher-level fractions such as EJB.

Maven Coordinates

Configuration

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>netflix-rxjava</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>opentracing</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>opentracing-tracerresolver</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>remoting</artifactId>
</dependency>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

306

thorntail.remoting.auth-realm

The authentication realm to use if no authentication CallbackHandler is specified.

thorntail.remoting.authentication-retries

Specify the number of times a client is allowed to retry authentication before closing the connection.

thorntail.remoting.authorize-id

The SASL authorization ID. Used as authentication user name to use if no authentication
CallbackHandler is specifiedand the selected SASL mechanism demands a user name.

thorntail.remoting.buffer-region-size

The size of allocated buffer regions.

thorntail.remoting.connectors.KEY.authentication-provider

The "authentication-provider" element contains the name of the authentication provider to use for
incoming connections.

thorntail.remoting.connectors.KEY.properties.KEY.value

The property value.

thorntail.remoting.connectors.KEY.sasl-authentication-factory

Reference to the SASL authentication factory to secure this connector.

thorntail.remoting.connectors.KEY.sasl-protocol

The protocol to pass into the SASL mechanisms used for authentication.

thorntail.remoting.connectors.KEY.sasl-security.include-mechanisms

The optional nested "include-mechanisms" element contains a whitelist of allowed SASL mechanism
names. No mechanisms will be allowed which are not present in this list.

thorntail.remoting.connectors.KEY.sasl-security.policy-sasl-policy.forward-secrecy

The optional nested "forward-secrecy" element contains a boolean value which specifies whether
mechanisms that implement forward secrecy between sessions are required. Forward secrecy means
that breaking into one session will not automatically provide information for breaking into future
sessions.

thorntail.remoting.connectors.KEY.sasl-security.policy-sasl-policy.no-active

The optional nested "no-active" element contains a boolean value which specifies whether
mechanisms susceptible to active (non-dictionary) attacks are not permitted. "false" to permit, "true"
to deny.

thorntail.remoting.connectors.KEY.sasl-security.policy-sasl-policy.no-anonymous

The optional nested "no-anonymous" element contains a boolean value which specifies whether
mechanisms that accept anonymous login are permitted. "false" to permit, "true" to deny.

thorntail.remoting.connectors.KEY.sasl-security.policy-sasl-policy.no-dictionary

The optional nested "no-dictionary" element contains a boolean value which specifies whether
mechanisms susceptible to passive dictionary attacks are permitted. "false" to permit, "true" to deny.

thorntail.remoting.connectors.KEY.sasl-security.policy-sasl-policy.no-plain-text

The optional nested "no-plain-text" element contains a boolean value which specifies whether
mechanisms susceptible to simple plain passive attacks (e.g., "PLAIN") are not permitted. "false" to
permit, "true" to deny.

thorntail.remoting.connectors.KEY.sasl-security.policy-sasl-policy.pass-credentials

The optional nested "pass-credentials" element contains a boolean value which specifies whether
mechanisms that pass client credentials are required.

thorntail.remoting.connectors.KEY.sasl-security.properties.KEY.value

The property value.

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

307

thorntail.remoting.connectors.KEY.sasl-security.qop

The optional nested "qop" element contains a list of quality-of-protection values, in decreasing order
of preference.

thorntail.remoting.connectors.KEY.sasl-security.reuse-session

The optional nested "reuse-session" boolean element specifies whether or not the server should
attempt to reuse previously authenticated session information. The mechanism may or may not
support such reuse, and other factors may also prevent it.

thorntail.remoting.connectors.KEY.sasl-security.server-auth

The optional nested "server-auth" boolean element specifies whether the server should authenticate
to the client. Not all mechanisms may support this setting.

thorntail.remoting.connectors.KEY.sasl-security.strength

The optional nested "strength" element contains a list of cipher strength values, in decreasing order
of preference.

thorntail.remoting.connectors.KEY.security-realm

The associated security realm to use for authentication for this connector.

thorntail.remoting.connectors.KEY.server-name

The server name to send in the initial message exchange and for SASL based authentication.

thorntail.remoting.connectors.KEY.socket-binding

The name of the socket binding to attach to.

thorntail.remoting.connectors.KEY.ssl-context

Reference to the SSLContext to use for this connector.

thorntail.remoting.endpoint-configuration.auth-realm

The authentication realm to use if no authentication CallbackHandler is specified.

thorntail.remoting.endpoint-configuration.authentication-retries

Specify the number of times a client is allowed to retry authentication before closing the connection.

thorntail.remoting.endpoint-configuration.authorize-id

The SASL authorization ID. Used as authentication user name to use if no authentication
CallbackHandler is specifiedand the selected SASL mechanism demands a user name.

thorntail.remoting.endpoint-configuration.buffer-region-size

The size of allocated buffer regions.

thorntail.remoting.endpoint-configuration.heartbeat-interval

The interval to use for connection heartbeat, in milliseconds. If the connection is idle in the outbound
directionfor this amount of time, a ping message will be sent, which will trigger a corresponding reply
message.

thorntail.remoting.endpoint-configuration.max-inbound-channels

The maximum number of inbound channels to support for a connection.

thorntail.remoting.endpoint-configuration.max-inbound-message-size

The maximum inbound message size to be allowed. Messages exceeding this size will cause an
exception to be thrown on the reading side as well as the writing side.

thorntail.remoting.endpoint-configuration.max-inbound-messages

The maximum number of concurrent inbound messages on a channel.

thorntail.remoting.endpoint-configuration.max-outbound-channels

The maximum number of outbound channels to support for a connection.

thorntail.remoting.endpoint-configuration.max-outbound-message-size

The maximum outbound message size to send. No messages larger than this well be transmitted;

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

308

The maximum outbound message size to send. No messages larger than this well be transmitted;
attempting to do so will cause an exception on the writing side.

thorntail.remoting.endpoint-configuration.max-outbound-messages

The maximum number of concurrent outbound messages on a channel.

thorntail.remoting.endpoint-configuration.receive-buffer-size

The size of the largest buffer that this endpoint will accept over a connection.

thorntail.remoting.endpoint-configuration.receive-window-size

The maximum window size of the receive direction for connection channels, in bytes.

thorntail.remoting.endpoint-configuration.sasl-protocol

Where a SaslServer or SaslClient are created by default the protocol specified it 'remoting', this can
be used to override this.

thorntail.remoting.endpoint-configuration.send-buffer-size

The size of the largest buffer that this endpoint will transmit over a connection.

thorntail.remoting.endpoint-configuration.server-name

The server side of the connection passes it’s name to the client in the initial greeting, by default the
name is automatically discovered from the local address of the connection or it can be overridden
using this.

thorntail.remoting.endpoint-configuration.transmit-window-size

The maximum window size of the transmit direction for connection channels, in bytes.

thorntail.remoting.endpoint-configuration.worker

Worker to use

thorntail.remoting.heartbeat-interval

The interval to use for connection heartbeat, in milliseconds. If the connection is idle in the outbound
directionfor this amount of time, a ping message will be sent, which will trigger a corresponding reply
message.

thorntail.remoting.http-connectors.KEY.authentication-provider

The "authentication-provider" element contains the name of the authentication provider to use for
incoming connections.

thorntail.remoting.http-connectors.KEY.connector-ref

The name (or names) of a connector in the Undertow subsystem to connect to.

thorntail.remoting.http-connectors.KEY.properties.KEY.value

The property value.

thorntail.remoting.http-connectors.KEY.sasl-authentication-factory

Reference to the SASL authentication factory to use for this connector.

thorntail.remoting.http-connectors.KEY.sasl-protocol

The protocol to pass into the SASL mechanisms used for authentication.

thorntail.remoting.http-connectors.KEY.sasl-security.include-mechanisms

The optional nested "include-mechanisms" element contains a whitelist of allowed SASL mechanism
names. No mechanisms will be allowed which are not present in this list.

thorntail.remoting.http-connectors.KEY.sasl-security.policy-sasl-policy.forward-secrecy

The optional nested "forward-secrecy" element contains a boolean value which specifies whether
mechanisms that implement forward secrecy between sessions are required. Forward secrecy means
that breaking into one session will not automatically provide information for breaking into future
sessions.

thorntail.remoting.http-connectors.KEY.sasl-security.policy-sasl-policy.no-active

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

309

The optional nested "no-active" element contains a boolean value which specifies whether
mechanisms susceptible to active (non-dictionary) attacks are not permitted. "false" to permit, "true"
to deny.

thorntail.remoting.http-connectors.KEY.sasl-security.policy-sasl-policy.no-anonymous

The optional nested "no-anonymous" element contains a boolean value which specifies whether
mechanisms that accept anonymous login are permitted. "false" to permit, "true" to deny.

thorntail.remoting.http-connectors.KEY.sasl-security.policy-sasl-policy.no-dictionary

The optional nested "no-dictionary" element contains a boolean value which specifies whether
mechanisms susceptible to passive dictionary attacks are permitted. "false" to permit, "true" to deny.

thorntail.remoting.http-connectors.KEY.sasl-security.policy-sasl-policy.no-plain-text

The optional nested "no-plain-text" element contains a boolean value which specifies whether
mechanisms susceptible to simple plain passive attacks (e.g., "PLAIN") are not permitted. "false" to
permit, "true" to deny.

thorntail.remoting.http-connectors.KEY.sasl-security.policy-sasl-policy.pass-credentials

The optional nested "pass-credentials" element contains a boolean value which specifies whether
mechanisms that pass client credentials are required.

thorntail.remoting.http-connectors.KEY.sasl-security.properties.KEY.value

The property value.

thorntail.remoting.http-connectors.KEY.sasl-security.qop

The optional nested "qop" element contains a list of quality-of-protection values, in decreasing order
of preference.

thorntail.remoting.http-connectors.KEY.sasl-security.reuse-session

The optional nested "reuse-session" boolean element specifies whether or not the server should
attempt to reuse previously authenticated session information. The mechanism may or may not
support such reuse, and other factors may also prevent it.

thorntail.remoting.http-connectors.KEY.sasl-security.server-auth

The optional nested "server-auth" boolean element specifies whether the server should authenticate
to the client. Not all mechanisms may support this setting.

thorntail.remoting.http-connectors.KEY.sasl-security.strength

The optional nested "strength" element contains a list of cipher strength values, in decreasing order
of preference.

thorntail.remoting.http-connectors.KEY.security-realm

The associated security realm to use for authentication for this connector.

thorntail.remoting.http-connectors.KEY.server-name

The server name to send in the initial message exchange and for SASL based authentication.

thorntail.remoting.local-outbound-connections.KEY.outbound-socket-binding-ref

Name of the outbound-socket-binding which will be used to determine the destination address and
port for the connection.

thorntail.remoting.local-outbound-connections.KEY.properties.KEY.value

The property value.

thorntail.remoting.max-inbound-channels

The maximum number of inbound channels to support for a connection.

thorntail.remoting.max-inbound-message-size

The maximum inbound message size to be allowed. Messages exceeding this size will cause an
exception to be thrown on the reading side as well as the writing side.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

310

thorntail.remoting.max-inbound-messages

The maximum number of concurrent inbound messages on a channel.

thorntail.remoting.max-outbound-channels

The maximum number of outbound channels to support for a connection.

thorntail.remoting.max-outbound-message-size

The maximum outbound message size to send. No messages larger than this well be transmitted;
attempting to do so will cause an exception on the writing side.

thorntail.remoting.max-outbound-messages

The maximum number of concurrent outbound messages on a channel.

thorntail.remoting.outbound-connections.KEY.properties.KEY.value

The property value.

thorntail.remoting.outbound-connections.KEY.uri

The connection URI for the outbound connection.

thorntail.remoting.port

Port for legacy remoting connector

thorntail.remoting.receive-buffer-size

The size of the largest buffer that this endpoint will accept over a connection.

thorntail.remoting.receive-window-size

The maximum window size of the receive direction for connection channels, in bytes.

thorntail.remoting.remote-outbound-connections.KEY.authentication-context

Reference to the authentication context instance containing the configuration for outbound
connections.

thorntail.remoting.remote-outbound-connections.KEY.outbound-socket-binding-ref

Name of the outbound-socket-binding which will be used to determine the destination address and
port for the connection.

thorntail.remoting.remote-outbound-connections.KEY.properties.KEY.value

The property value.

thorntail.remoting.remote-outbound-connections.KEY.protocol

The protocol to use for the remote connection.

thorntail.remoting.remote-outbound-connections.KEY.security-realm

Reference to the security realm to use to obtain the password and SSL configuration.

thorntail.remoting.remote-outbound-connections.KEY.username

The user name to use when authenticating against the remote server.

thorntail.remoting.required

(not yet documented)

thorntail.remoting.sasl-protocol

Where a SaslServer or SaslClient are created by default the protocol specified it 'remoting', this can
be used to override this.

thorntail.remoting.send-buffer-size

The size of the largest buffer that this endpoint will transmit over a connection.

thorntail.remoting.server-name

The server side of the connection passes it’s name to the client in the initial greeting, by default the

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

311

The server side of the connection passes it’s name to the client in the initial greeting, by default the
name is automatically discovered from the local address of the connection or it can be overridden
using this.

thorntail.remoting.transmit-window-size

The maximum window size of the transmit direction for connection channels, in bytes.

thorntail.remoting.worker

Worker to use

thorntail.remoting.worker-read-threads

The number of read threads to create for the remoting worker.

thorntail.remoting.worker-task-core-threads

The number of core threads for the remoting worker task thread pool.

thorntail.remoting.worker-task-keepalive

The number of milliseconds to keep non-core remoting worker task threads alive.

thorntail.remoting.worker-task-limit

The maximum number of remoting worker tasks to allow before rejecting.

thorntail.remoting.worker-task-max-threads

The maximum number of threads for the remoting worker task thread pool.

thorntail.remoting.worker-write-threads

The number of write threads to create for the remoting worker.

D.32. REQUEST CONTROLLER

Provides support for the JBoss EAP request-controller, allowing for graceful pause/resume/shutdown
of the container.

Maven Coordinates

Configuration

thorntail.request-controller.active-requests

The number of requests that are currently running in the server

thorntail.request-controller.max-requests

The maximum number of all types of requests that can be running in a server at a time. Once this limit
is hit any new requests will be rejected.

thorntail.request-controller.track-individual-endpoints

If this is true requests are tracked at an endpoint level, which will allow individual deployments to be
suspended

D.33. RESOURCE ADAPTERS

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>request-controller</artifactId>
</dependency>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

312

Configuration

thorntail.resource-adapters.resource-adapters.KEY.admin-objects.KEY.class-name

Specifies the fully qualified class name of an administration object.

thorntail.resource-adapters.resource-adapters.KEY.admin-objects.KEY.config-
properties.KEY.value

Custom defined config property value.

thorntail.resource-adapters.resource-adapters.KEY.admin-objects.KEY.enabled

Specifies if the administration object should be enabled.

thorntail.resource-adapters.resource-adapters.KEY.admin-objects.KEY.jndi-name

Specifies the JNDI name for the administration object.

thorntail.resource-adapters.resource-adapters.KEY.admin-objects.KEY.use-java-context

Setting this to false will bind the object into global JNDI.

thorntail.resource-adapters.resource-adapters.KEY.archive

Specifies the resource adapter archive.

thorntail.resource-adapters.resource-adapters.KEY.beanvalidationgroups

Specifies the bean validation groups that should be used.

thorntail.resource-adapters.resource-adapters.KEY.bootstrap-context

Specifies the unique name of the bootstrap context that should be used.

thorntail.resource-adapters.resource-adapters.KEY.config-properties.KEY.value

Custom defined config property value.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.allocation-retry

The allocation retry element indicates the number of times that allocating a connection should be
tried before throwing an exception.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.allocation-retry-
wait-millis

The allocation retry wait millis element specifies the amount of time, in milliseconds, to wait between
retrying to allocate a connection.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.authentication-
context

The Elytron authentication context which defines the javax.security.auth.Subject that is used to
distinguish connections in the pool.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.authentication-
context-and-application

Indicates that either application-supplied parameters, such as from getConnection(user, pw), or
Subject (provided by Elytron after authenticating using configured authentication-context), are used
to distinguish connections in the pool.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.background-
validation

An element to specify that connections should be validated on a background thread versus being
validated prior to use. Changing this value requires a server restart.

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>resource-adapters</artifactId>
</dependency>

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

313

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.background-
validation-millis

The background-validation-millis element specifies the amount of time, in milliseconds, that
background validation will run. Changing this value requires a server restart.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.blocking-timeout-
wait-millis

The blocking-timeout-millis element specifies the maximum time, in milliseconds, to block while
waiting for a connection before throwing an exception. Note that this blocks only while waiting for
locking a connection, and will never throw an exception if creating a new connection takes an
inordinately long time.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.capacity-
decrementer-class

Class defining the policy for decrementing connections in the pool.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.capacity-
decrementer-properties

Properties to inject in class defining the policy for decrementing connections in the pool.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.capacity-
incrementer-class

Class defining the policy for incrementing connections in the pool.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.capacity-
incrementer-properties

Properties to inject in class defining the policy for incrementing connections in the pool.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.class-name

Specifies the fully qualified class name of a managed connection factory or admin object.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.config-
properties.KEY.value

Custom defined config property value.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.connectable

Enable the use of CMR. This feature means that a local resource can reliably participate in an XA
transaction.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.elytron-enabled

Enables Elytron security for handling authentication of connections. The Elytron authentication-
context to be used will be current context if no context is specified (see authentication-context).

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.enabled

Specifies if the resource adapter should be enabled.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.enlistment

Defines if lazy enlistment should be used if supported by the resource adapter.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.enlistment-trace

Defines if WildFly/IronJacamar should record enlistment traces.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.flush-strategy

Specifies how the pool should be flushed in case of an error.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.idle-timeout-
minutes

Specifies the maximum time, in minutes, a connection may be idle before being closed. The actual
maximum time depends also on the IdleRemover scan time, which is half of the smallest idle-
timeout-minutes value of any pool. Changing this value requires a server restart.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

314

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.initial-pool-size

Specifies the initial number of connections a pool should hold.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.interleaving

An element to enable interleaving for XA connections.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.jndi-name

Specifies the JNDI name for the connection factory.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.max-pool-size

Specifies the maximum number of connections for a pool. No more connections will be created in
each sub-pool.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.mcp

Defines the ManagedConnectionPool implementation. For example:
org.jboss.jca.core.connectionmanager.pool.mcp.SemaphoreArrayListManagedConnectionPool.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.min-pool-size

Specifies the minimum number of connections for a pool.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.no-recovery

Specifies if the connection pool should be excluded from recovery.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.no-tx-separate-
pool

Oracle does not like XA connections getting used both inside and outside a JTA transaction. To
workaround the problem you can create separate sub-pools for the different contexts.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.pad-xid

Specifies whether the Xid should be padded.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.pool-fair

Defines if pool use should be fair.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.pool-prefill

Specifies if the pool should be prefilled. Changing this value requires a server restart.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.pool-use-strict-
min

Specifies if the min-pool-size should be considered strict.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.recovery-
authentication-context

The Elytron authentication context used for recovery (current authentication-context will be used if
unspecified).

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.recovery-
credential-reference

Credential (from Credential Store) to authenticate on recovery connection

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.recovery-elytron-
enabled

Indicates that an Elytron authentication context will be used for recovery.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.recovery-
password

The password used for recovery.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.recovery-plugin-
class-name

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

315

The fully qualified class name of the recovery plugin implementation.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.recovery-plugin-
properties

The properties for the recovery plugin.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.recovery-
security-domain

The PicketBox security domain used for recovery.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.recovery-
username

The user name used for recovery.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.same-rm-override

Using this attribute, you can unconditionally set whether
javax.transaction.xa.XAResource.isSameRM(XAResource) returns true or false.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.security-
application

Indicates that application-supplied parameters, such as from getConnection(user, pw), are used to
distinguish connections in the pool.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.security-domain

Specifies the PicketBox security domain which defines the javax.security.auth.Subject that is used to
distinguish connections in the pool.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.security-domain-
and-application

Indicates that either application-supplied parameters, such as from getConnection(user, pw), or
Subject (from PicketBox security domain), are used to distinguish connections in the pool.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.sharable

Enable the use of sharable connections, which allows lazy association to be enabled if supported.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.tracking

Defines if IronJacamar should track connection handles across transaction boundaries.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.use-ccm

Enable the use of a cached connection manager.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.use-fast-fail

Whether to fail a connection allocation on the first try if it is invalid (true) or keep trying until the pool
is exhausted of all potential connections (false).

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.use-java-context

Setting this to false will bind the object into global JNDI.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.validate-on-
match

This specifies if connection validation should be done when a connection factory attempts to match a
managed connection. This is typically exclusive to the use of background validation.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.wrap-xa-resource

Specifies whether XAResource instances should be wrapped in an org.jboss.tm.XAResourceWrapper
instance.

thorntail.resource-adapters.resource-adapters.KEY.connection-definitions.KEY.xa-resource-
timeout

The value is passed to XAResource.setTransactionTimeout(), in seconds.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

316

thorntail.resource-adapters.resource-adapters.KEY.module

Specifies the module from which resource adapter will be loaded

thorntail.resource-adapters.resource-adapters.KEY.statistics-enabled

Define whether runtime statistics are enabled or not.

thorntail.resource-adapters.resource-adapters.KEY.transaction-support

Specifies the transaction support level of the resource adapter.

thorntail.resource-adapters.resource-adapters.KEY.wm-elytron-security-domain

Defines the name of the Elytron security domain that should be used.

thorntail.resource-adapters.resource-adapters.KEY.wm-security

Toggle on/off wm.security for this resource adapter. In case of false all wm-security-* parameters
are ignored, even the defaults.

thorntail.resource-adapters.resource-adapters.KEY.wm-security-default-groups

Defines a default groups list that should be added to the used Subject instance.

thorntail.resource-adapters.resource-adapters.KEY.wm-security-default-principal

Defines a default principal name that should be added to the used Subject instance.

thorntail.resource-adapters.resource-adapters.KEY.wm-security-domain

Defines the name of the PicketBox security domain that should be used.

thorntail.resource-adapters.resource-adapters.KEY.wm-security-mapping-groups

List of groups mappings.

thorntail.resource-adapters.resource-adapters.KEY.wm-security-mapping-required

Defines if a mapping is required for security credentials.

thorntail.resource-adapters.resource-adapters.KEY.wm-security-mapping-users

List of user mappings.

D.34. SECURITY

Provides underlying security infrastructure to support JAAS and other security APIs.

Maven Coordinates

Configuration

thorntail.security.classic-vault.code

Fully Qualified Name of the Security Vault Implementation.

thorntail.security.classic-vault.vault-options

Security Vault options.

thorntail.security.deep-copy-subject-mode

Sets the copy mode of subjects done by the security managers to be deep copies that makes copies
of the subject principals and credentials if they are cloneable. It should be set to true if subject
include mutable content that can be corrupted when multiple threads have the same identity and

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>security</artifactId>
</dependency>

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

317

cache flushes/logout clearing the subject in one thread results in subject references affecting other
threads.

thorntail.security.elytron-key-managers.KEY.legacy-jsse-config

The name of the legacy security domain that contains a JSSE configuration that can be used to
export the key manager.

thorntail.security.elytron-key-stores.KEY.legacy-jsse-config

The name of the legacy security domain that contains a JSSE configuration that can be used to
export the key store.

thorntail.security.elytron-realms.KEY.apply-role-mappers

Indicates to the realm if it should apply the role mappers defined in the legacy domain to the roles
obtained from authenticated Subjects or not.

thorntail.security.elytron-realms.KEY.legacy-jaas-config

The name of the legacy security domain to which authentication will be delegated.

thorntail.security.elytron-trust-managers.KEY.legacy-jsse-config

The name of the legacy security domain that contains a JSSE configuration that can be used to
export the trust manager.

thorntail.security.elytron-trust-stores.KEY.legacy-jsse-config

The name of the legacy security domain that contains a JSSE configuration that can be used to
export the trust store.

thorntail.security.initialize-jacc

Indicates if this subsystem should be in charge of initializing JACC related services.

thorntail.security.security-domains.KEY.cache-type

Adds a cache to speed up authentication checks. Allowed values are 'default' to use simple map as
the cache and 'infinispan' to use an Infinispan cache.

thorntail.security.security-domains.KEY.classic-acl.acl-modules.KEY.code

Class name of the module to be instantiated.

thorntail.security.security-domains.KEY.classic-acl.acl-modules.KEY.flag

The flag controls how the module participates in the overall procedure. Allowed values are requisite,
required, sufficient or optional.

thorntail.security.security-domains.KEY.classic-acl.acl-modules.KEY.module

Name of JBoss Module where the login module is located.

thorntail.security.security-domains.KEY.classic-acl.acl-modules.KEY.module-options

List of module options containing a name/value pair.

thorntail.security.security-domains.KEY.classic-audit.provider-modules.KEY.code

Class name of the module to be instantiated.

thorntail.security.security-domains.KEY.classic-audit.provider-modules.KEY.module

Name of JBoss Module where the mapping module code is located.

thorntail.security.security-domains.KEY.classic-audit.provider-modules.KEY.module-options

List of module options containing a name/value pair.

thorntail.security.security-domains.KEY.classic-authentication.login-modules.KEY.code

Class name of the module to be instantiated.

thorntail.security.security-domains.KEY.classic-authentication.login-modules.KEY.flag

The flag controls how the module participates in the overall procedure. Allowed values are requisite,
required, sufficient or optional.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

318

thorntail.security.security-domains.KEY.classic-authentication.login-modules.KEY.module

Name of JBoss Module where the login module is located.

thorntail.security.security-domains.KEY.classic-authentication.login-modules.KEY.module-options

List of module options containing a name/value pair.

thorntail.security.security-domains.KEY.classic-authorization.policy-modules.KEY.code

Class name of the module to be instantiated.

thorntail.security.security-domains.KEY.classic-authorization.policy-modules.KEY.flag

The flag controls how the module participates in the overall procedure. Allowed values are requisite,
required, sufficient or optional.

thorntail.security.security-domains.KEY.classic-authorization.policy-modules.KEY.module

Name of JBoss Module where the login module is located.

thorntail.security.security-domains.KEY.classic-authorization.policy-modules.KEY.module-options

List of module options containing a name/value pair.

thorntail.security.security-domains.KEY.classic-identity-trust.trust-modules.KEY.code

Class name of the module to be instantiated.

thorntail.security.security-domains.KEY.classic-identity-trust.trust-modules.KEY.flag

The flag controls how the module participates in the overall procedure. Allowed values are requisite,
required, sufficient or optional.

thorntail.security.security-domains.KEY.classic-identity-trust.trust-modules.KEY.module

Name of JBoss Module where the login module is located.

thorntail.security.security-domains.KEY.classic-identity-trust.trust-modules.KEY.module-options

List of module options containing a name/value pair.

thorntail.security.security-domains.KEY.classic-jsse.additional-properties

Additional properties that may be necessary to configure JSSE.

thorntail.security.security-domains.KEY.classic-jsse.cipher-suites

Comma separated list of cipher suites to enable on SSLSockets.

thorntail.security.security-domains.KEY.classic-jsse.client-alias

Preferred alias to use when the KeyManager chooses the client alias.

thorntail.security.security-domains.KEY.classic-jsse.client-auth

Boolean attribute to indicate if client’s certificates should also be authenticated on the server side.

thorntail.security.security-domains.KEY.classic-jsse.key-manager

JSEE Key Manager factory

thorntail.security.security-domains.KEY.classic-jsse.keystore

Configures a JSSE key store

thorntail.security.security-domains.KEY.classic-jsse.protocols

Comma separated list of protocols to enable on SSLSockets.

thorntail.security.security-domains.KEY.classic-jsse.server-alias

Preferred alias to use when the KeyManager chooses the server alias.

thorntail.security.security-domains.KEY.classic-jsse.service-auth-token

Token to retrieve PrivateKeys from the KeyStore.

thorntail.security.security-domains.KEY.classic-jsse.trust-manager

JSEE Trust Manager factory

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

319

thorntail.security.security-domains.KEY.classic-jsse.truststore

Configures a JSSE trust store

thorntail.security.security-domains.KEY.classic-mapping.mapping-modules.KEY.code

Class name of the module to be instantiated.

thorntail.security.security-domains.KEY.classic-mapping.mapping-modules.KEY.module

Name of JBoss Module where the mapping module code is located.

thorntail.security.security-domains.KEY.classic-mapping.mapping-modules.KEY.module-options

List of module options containing a name/value pair.

thorntail.security.security-domains.KEY.classic-mapping.mapping-modules.KEY.type

Type of mapping this module performs. Allowed values are principal, role, attribute or credential..

thorntail.security.security-domains.KEY.jaspi-authentication.auth-modules.KEY.code

Class name of the module to be instantiated.

thorntail.security.security-domains.KEY.jaspi-authentication.auth-modules.KEY.flag

The flag controls how the module participates in the overall procedure. Allowed values are requisite,
required, sufficient or optional.

thorntail.security.security-domains.KEY.jaspi-authentication.auth-modules.KEY.login-module-
stack-ref

Reference to a login module stack name previously configured in the same security domain.

thorntail.security.security-domains.KEY.jaspi-authentication.auth-modules.KEY.module

Name of JBoss Module where the mapping module code is located.

thorntail.security.security-domains.KEY.jaspi-authentication.auth-modules.KEY.module-options

List of module options containing a name/value pair.

thorntail.security.security-domains.KEY.jaspi-authentication.login-module-stacks.KEY.login-
modules.KEY.code

Class name of the module to be instantiated.

thorntail.security.security-domains.KEY.jaspi-authentication.login-module-stacks.KEY.login-
modules.KEY.flag

The flag controls how the module participates in the overall procedure. Allowed values are requisite,
required, sufficient or optional.

thorntail.security.security-domains.KEY.jaspi-authentication.login-module-stacks.KEY.login-
modules.KEY.module

Name of JBoss Module where the login module is located.

thorntail.security.security-domains.KEY.jaspi-authentication.login-module-stacks.KEY.login-
modules.KEY.module-options

List of module options containing a name/value pair.

D.35. TOPOLOGY

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>topology</artifactId>
</dependency>

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

320

D.35.1. OpenShift

Maven Coordinates

D.35.2. Topology UI

Maven Coordinates

Configuration

thorntail.topology.web-app.expose-topology-endpoint

Flag to enable or disable the topology web endpoint

thorntail.topology.web-app.proxied-service-mappings

Service name to URL path proxy mappings

D.36. TRANSACTIONS

Provides support for the Java Transaction API (JTA) according to JSR-907.

Maven Coordinates

Configuration

thorntail.transactions.average-commit-time

The average time of transaction commit in nanoseconds, measured from the moment the client calls
commit until the transaction manager determines that the commit attempt was successful.

thorntail.transactions.commit-markable-resources.KEY.batch-size

Batch size for this CMR resource

thorntail.transactions.commit-markable-resources.KEY.immediate-cleanup

Immediate cleanup associated to this CMR resource

thorntail.transactions.commit-markable-resources.KEY.jndi-name

JNDi name of this CMR resource

thorntail.transactions.commit-markable-resources.KEY.name

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>topology-openshift</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>topology-webapp</artifactId>
</dependency>

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>transactions</artifactId>
</dependency>

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

321

table name for storing XIDs

thorntail.transactions.default-timeout

The default timeout for a transaction managed by the transaction manager.

thorntail.transactions.enable-statistics

Whether transaction statistics should be gathered.

thorntail.transactions.enable-tsm-status

Whether the transaction status manager (TSM) service, needed for out of process recovery, should
be provided or not.

thorntail.transactions.hornetq-store-enable-async-io

Whether AsyncIO should be enabled for the journal store.

thorntail.transactions.jdbc-action-store-drop-table

Configure if jdbc action store should drop tables.

thorntail.transactions.jdbc-action-store-table-prefix

Optional prefix for table used to write transaction logs in configured jdbc action store.

thorntail.transactions.jdbc-communication-store-drop-table

Configure if jdbc communication store should drop tables.

thorntail.transactions.jdbc-communication-store-table-prefix

Optional prefix for table used to write transaction logs in configured jdbc communication store.

thorntail.transactions.jdbc-state-store-drop-table

Configure if jdbc state store should drop tables.

thorntail.transactions.jdbc-state-store-table-prefix

Optional prefix for table used to write transaction logs in configured jdbc state store.

thorntail.transactions.jdbc-store-datasource

Jndi name of non-XA datasource used. Datasource sghould be define in datasources subsystem. For
this would work the non-XA datasource has to be marked as jta="false".

thorntail.transactions.journal-store-enable-async-io

Whether AsyncIO should be enabled for the journal store. For this settings being active journal
natives libraries needs to be available.

thorntail.transactions.jts

If true this enables the Java Transaction Service. Use of the JTS needs configuration in IIOP
OpenJDK where Transactions parameter needs to be set to full.

thorntail.transactions.log-store.expose-all-logs

Whether to expose all logs like orphans etc. By default only a subset of transaction logs is exposed.

thorntail.transactions.log-store.transactions.KEY.age-in-seconds

The time since this transaction was prepared or when the recovery system last tried to recover it.

thorntail.transactions.log-store.transactions.KEY.id

The id of this transaction.

thorntail.transactions.log-store.transactions.KEY.jmx-name

The JMX name of this transaction.

thorntail.transactions.log-store.transactions.KEY.participants.KEY.eis-product-name

The JCA enterprise information system’s product name.

thorntail.transactions.log-store.transactions.KEY.participants.KEY.eis-product-version

The JCA enterprise information system’s product version

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

322

thorntail.transactions.log-store.transactions.KEY.participants.KEY.jmx-name

The JMX name of this participant.

thorntail.transactions.log-store.transactions.KEY.participants.KEY.jndi-name

JNDI name of this participant.

thorntail.transactions.log-store.transactions.KEY.participants.KEY.status

Reports the commitment status of this participant (can be one of Pending, Prepared, Failed,
Heuristic or Readonly).

thorntail.transactions.log-store.transactions.KEY.participants.KEY.type

The type name under which this record is stored.

thorntail.transactions.log-store.transactions.KEY.type

The type name under which this record is stored.

thorntail.transactions.log-store.type

Specifies the implementation type of the logging store.

thorntail.transactions.maximum-timeout

If the default timeout is zero then this value is consulted to set the maximum timeout (in seconds) for
a transaction managed by the transaction manager.

thorntail.transactions.node-identifier

Used to set the node identifier on the core environment. Each Xid that Transaction Manager creates
will have this identifier encoded within it and ensures Transaction Manager will only recover branches
which match the specified identifier. It is imperative that this identifier is unique between Application
Server instances which share either an object store or access common resource managers.

thorntail.transactions.number-of-aborted-transactions

The number of aborted (i.e. rolledback) transactions.

thorntail.transactions.number-of-application-rollbacks

The number of transactions that have been rolled back by application request. This includes those
that timeout, since the timeout behavior is considered an attribute of the application configuration.

thorntail.transactions.number-of-committed-transactions

The number of committed transactions.

thorntail.transactions.number-of-heuristics

The number of transactions which have terminated with heuristic outcomes.

thorntail.transactions.number-of-inflight-transactions

The number of transactions that have begun but not yet terminated.

thorntail.transactions.number-of-nested-transactions

The total number of nested (sub) transactions created.

thorntail.transactions.number-of-resource-rollbacks

The number of transactions that rolled back due to resource (participant) failure.

thorntail.transactions.number-of-system-rollbacks

The number of transactions that have been rolled back due to internal system errors.

thorntail.transactions.number-of-timed-out-transactions

The number of transactions that have rolled back due to timeout.

thorntail.transactions.number-of-transactions

The total number of transactions (top-level and nested) created

thorntail.transactions.object-store-path

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

323

Denotes a relative or absolute filesystem path denoting where the transaction manager object store
should store data. By default the value is treated as relative to the path denoted by the "relative-to"
attribute. This settings is valid when default or journal store is used. It’s not used when jdbc journal
store is used.

thorntail.transactions.object-store-relative-to

References a global path configuration in the domain model, defaulting to the Application Server
data directory (jboss.server.data.dir). The value of the "Object store path" attribute will treated as
relative to this path. Undefine this attribute to disable the default behavior and force the value of the
"Object store path" attribute to be treated as an absolute path.

thorntail.transactions.port

Port for transaction manager

thorntail.transactions.process-id-socket-binding

The name of the socket binding configuration to use if the transaction manager should use a socket-
based process id. Will be 'undefined' if 'process-id-uuid' is 'true'; otherwise must be set.

thorntail.transactions.process-id-socket-max-ports

The maximum number of ports to search for an open port if the transaction manager should use a
socket-based process id. If the port specified by the socket binding referenced in 'process-id-
socket-binding' is occupied, the next higher port will be tried until an open port is found or the
number of ports specified by this attribute have been tried. Will be 'undefined' if 'process-id-uuid' is
'true'.

thorntail.transactions.process-id-uuid

Indicates whether the transaction manager should use a UUID based process id.

thorntail.transactions.recovery-listener

Used to specify if the recovery system should listen on a network socket or not.

thorntail.transactions.socket-binding

Used to reference the correct socket binding to use for the recovery environment.

thorntail.transactions.statistics-enabled

Whether transaction statistics should be gathered.

thorntail.transactions.status-port

Status port for transaction manager

thorntail.transactions.status-socket-binding

Used to reference the correct socket binding to use for the transaction status manager.

thorntail.transactions.use-hornetq-store

Use the journal store for writing transaction logs. Set to true to enable and to false to use the default
log store type. The default log store is normally one file system file per transaction log.It’s alternative
to jdbc based store.

thorntail.transactions.use-jdbc-store

Use the jdbc store for writing transaction logs. Set to true to enable and to false to use the default
log store type. The default log store is normally one file file per transaction log. It’s alternative to
journal based store.

thorntail.transactions.use-journal-store

Use the journal store for writing transaction logs. Set to true to enable and to false to use the default
log store type. The default log store creates normally one file system file per transaction log. The
journal one consists from one file for all the transactions. It’s alternative to jdbc based store.

D.37. UNDERTOW

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

324

Provides basic HTTP support, including Java Servlets, JavaServer Pages (JSP), and JavaServer Pages
Standard Tag Library (JSTL) according to JSR-340, JSR-245 and JSR-52.

Maven Coordinates

Configuration

thorntail.ajp.enable

Determine if AJP should be enabled

thorntail.ajp.port

Set the port for the default AJP listener

thorntail.deployment

Map of security configuration by deployment

thorntail.http.port

Set the port for the default HTTP listener

thorntail.https.certificate.generate

Should a self-signed certificate be generated

thorntail.https.certificate.generate.host

Hostname for the generated self-signed certificate

thorntail.https.key.alias

Alias to the server certificate key entry in the keystore

thorntail.https.key.password

Password to the server certificate

thorntail.https.keystore.embedded

Should an embedded keystore be created

thorntail.https.keystore.password

Password to the server keystore

thorntail.https.keystore.path

Path to the server keystore

thorntail.https.only

Only enable the HTTPS Listener

thorntail.https.port

Set the port for the default HTTPS listener

thorntail.undertow.application-security-domains.KEY.enable-jacc

Enable authorization using JACC

thorntail.undertow.application-security-domains.KEY.http-authentication-factory

The HTTP Authentication Factory to be used by deployments that reference the mapped security
domain.

thorntail.undertow.application-security-domains.KEY.override-deployment-config

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>undertow</artifactId>
</dependency>

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

325

Should the authentication configuration in the deployment be overridden by the factory.

thorntail.undertow.application-security-domains.KEY.referencing-deployments

The deployments currently referencing this mapping.

thorntail.undertow.application-security-domains.KEY.security-domain

The SecurityDomain to be used by deployments that reference the mapped security domain.

thorntail.undertow.application-security-domains.KEY.single-sign-on-setting.client-ssl-context

Reference to the SSL context used to secure back-channel logout connection.

thorntail.undertow.application-security-domains.KEY.single-sign-on-setting.cookie-name

Name of the cookie

thorntail.undertow.application-security-domains.KEY.single-sign-on-setting.credential-reference

The credential reference to decrypt the private key entry.

thorntail.undertow.application-security-domains.KEY.single-sign-on-setting.domain

The cookie domain that will be used.

thorntail.undertow.application-security-domains.KEY.single-sign-on-setting.http-only

Set Cookie httpOnly attribute.

thorntail.undertow.application-security-domains.KEY.single-sign-on-setting.key-alias

Alias of the private key entry used for signing and verifying back-channel logout connection.

thorntail.undertow.application-security-domains.KEY.single-sign-on-setting.key-store

Reference to key store containing a private key entry.

thorntail.undertow.application-security-domains.KEY.single-sign-on-setting.path

Cookie path.

thorntail.undertow.application-security-domains.KEY.single-sign-on-setting.secure

Set Cookie secure attribute.

thorntail.undertow.buffer-caches.KEY.buffer-size

The size of an individual buffer, in bytes.

thorntail.undertow.buffer-caches.KEY.buffers-per-region

The numbers of buffers in a region

thorntail.undertow.buffer-caches.KEY.max-regions

The maximum number of regions

thorntail.undertow.byte-buffer-pools.KEY.buffer-size

The size of the buffer

thorntail.undertow.byte-buffer-pools.KEY.direct

If this is true the buffer pool will use direct buffers, this is recommended for best performance

thorntail.undertow.byte-buffer-pools.KEY.leak-detection-percent

The percentage of buffers that will be allocated with a leak detector. This should only be larger than
zero if you are experiencing issues with buffers leaking.

thorntail.undertow.byte-buffer-pools.KEY.max-pool-size

The maximum amount of buffers to keep in the pool. If more buffers are required at runtime they will
be allocated dynamically. Setting this to zero effectively disables pooling.

thorntail.undertow.byte-buffer-pools.KEY.thread-local-cache-size

The maximum number of buffers to cache on each thread. The actual number may be lower
depending on the calculated usage pattern.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

326

thorntail.undertow.default-security-domain

The default security domain used by web deployments

thorntail.undertow.default-server

The default server to use for deployments

thorntail.undertow.default-servlet-container

The default servlet container to use for deployments

thorntail.undertow.default-virtual-host

The default virtual host to use for deployments

thorntail.undertow.filter-configuration.custom-filters.KEY.class-name

Class name of HttpHandler

thorntail.undertow.filter-configuration.custom-filters.KEY.module

Module name where class can be loaded from

thorntail.undertow.filter-configuration.custom-filters.KEY.parameters

Filter parameters

thorntail.undertow.filter-configuration.error-pages.KEY.code

Error page code

thorntail.undertow.filter-configuration.error-pages.KEY.path

Error page path

thorntail.undertow.filter-configuration.expression-filters.KEY.expression

The expression that defines the filter

thorntail.undertow.filter-configuration.expression-filters.KEY.module

Module to use to load the filter definitions

thorntail.undertow.filter-configuration.mod-clusters.KEY.advertise-frequency

The frequency (in milliseconds) that mod-cluster advertises itself on the network

thorntail.undertow.filter-configuration.mod-clusters.KEY.advertise-path

The path that mod-cluster is registered under.

thorntail.undertow.filter-configuration.mod-clusters.KEY.advertise-protocol

The protocol that is in use.

thorntail.undertow.filter-configuration.mod-clusters.KEY.advertise-socket-binding

The multicast group and port that is used to advertise.

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.max-attempts

Maximum number of failover attempts by reverse proxy when sending the request to the backend
server.

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.nodes.KEY.aliases

The nodes aliases

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.nodes.KEY.cache-
connections

The number of connections to keep alive indefinitely

thorntail.undertow.filter-configuration.mod-
clusters.KEY.balancers.KEY.nodes.KEY.contexts.KEY.requests

The number of requests against this context

thorntail.undertow.filter-configuration.mod-
clusters.KEY.balancers.KEY.nodes.KEY.contexts.KEY.status

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

327

The status of this context

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.nodes.KEY.elected

The elected count

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.nodes.KEY.flush-packets

If received data should be immediately flushed

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.nodes.KEY.load

The current load of this node

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.nodes.KEY.load-
balancing-group

The load balancing group this node belongs to

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.nodes.KEY.max-
connections

The maximum number of connections per IO thread

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.nodes.KEY.open-
connections

The current number of open connections

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.nodes.KEY.ping

The nodes ping

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.nodes.KEY.queue-new-
requests

If a request is received and there is no worker immediately available should it be queued

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.nodes.KEY.read

The number of bytes read from the node

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.nodes.KEY.request-
queue-size

The size of the request queue

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.nodes.KEY.status

The current status of this node

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.nodes.KEY.timeout

The request timeout

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.nodes.KEY.ttl

The time connections will stay alive with no requests before being closed, if the number of
connections is larger than cache-connections

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.nodes.KEY.uri

The URI that the load balancer uses to connect to the node

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.nodes.KEY.written

The number of bytes transferred to the node

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.sticky-session

If sticky sessions are enabled

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.sticky-session-cookie

The session cookie name

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.sticky-session-force

If this is true then an error will be returned if the request cannot be routed to the sticky node,

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

328

If this is true then an error will be returned if the request cannot be routed to the sticky node,
otherwise it will be routed to another node

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.sticky-session-path

The path of the sticky session cookie

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.sticky-session-remove

Remove the session cookie if the request cannot be routed to the correct host

thorntail.undertow.filter-configuration.mod-clusters.KEY.balancers.KEY.wait-worker

The number of seconds to wait for an available worker

thorntail.undertow.filter-configuration.mod-clusters.KEY.broken-node-timeout

The amount of time that must elapse before a broken node is removed from the table

thorntail.undertow.filter-configuration.mod-clusters.KEY.cached-connections-per-thread

The number of connections that will be kept alive indefinitely

thorntail.undertow.filter-configuration.mod-clusters.KEY.connection-idle-timeout

The amount of time a connection can be idle before it will be closed. Connections will not time out
once the pool size is down to the configured minimum (as configured by cached-connections-per-
thread)

thorntail.undertow.filter-configuration.mod-clusters.KEY.connections-per-thread

The number of connections that will be maintained to backend servers, per IO thread.

thorntail.undertow.filter-configuration.mod-clusters.KEY.enable-http2

If the load balancer should attempt to upgrade back end connections to HTTP2. If HTTP2 is not
supported HTTP or HTTPS will be used as normal

thorntail.undertow.filter-configuration.mod-clusters.KEY.failover-strategy

Determines how a failover node is chosen, in the event that the node to which a session has affinity is
not available.

thorntail.undertow.filter-configuration.mod-clusters.KEY.health-check-interval

The frequency of health check pings to backend nodes

thorntail.undertow.filter-configuration.mod-clusters.KEY.http2-enable-push

If push should be enabled for HTTP/2 connections

thorntail.undertow.filter-configuration.mod-clusters.KEY.http2-header-table-size

The size of the header table used for HPACK compression, in bytes. This amount of memory will be
allocated per connection for compression. Larger values use more memory but may give better
compression.

thorntail.undertow.filter-configuration.mod-clusters.KEY.http2-initial-window-size

The flow control window size that controls how quickly the client can send data to the server

thorntail.undertow.filter-configuration.mod-clusters.KEY.http2-max-concurrent-streams

The maximum number of HTTP/2 streams that can be active at any time on a single connection

thorntail.undertow.filter-configuration.mod-clusters.KEY.http2-max-frame-size

The max HTTP/2 frame size

thorntail.undertow.filter-configuration.mod-clusters.KEY.http2-max-header-list-size

The maximum size of request headers the server is prepared to accept

thorntail.undertow.filter-configuration.mod-clusters.KEY.management-access-predicate

A predicate that is applied to incoming requests to determine if they can perform mod cluster
management commands. Provides additional security on top of what is provided by limiting
management to requests that originate from the management-socket-binding

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

329

thorntail.undertow.filter-configuration.mod-clusters.KEY.management-socket-binding

The socket binding of the mod_cluster management address and port. When using mod_cluster two
HTTP listeners should be defined, a public one to handle requests, and one bound to the internal
network to handle mod cluster commands. This socket binding should correspond to the internal
listener, and should not be publicly accessible.

thorntail.undertow.filter-configuration.mod-clusters.KEY.max-ajp-packet-size

The maximum size for AJP packets. Increasing this will allow AJP to work for requests/responses
that have a large amount of headers. This is an advanced option, and must be the same between load
balancers and backend servers.

thorntail.undertow.filter-configuration.mod-clusters.KEY.max-request-time

The max amount of time that a request to a backend node can take before it is killed

thorntail.undertow.filter-configuration.mod-clusters.KEY.max-retries

The number of times to attempt to retry a request if it fails. Note that if a request is not considered
idempotent then it will only be retried if the proxy can be sure it was not sent to the backend server).

thorntail.undertow.filter-configuration.mod-clusters.KEY.request-queue-size

The number of requests that can be queued if the connection pool is full before requests are
rejected with a 503

thorntail.undertow.filter-configuration.mod-clusters.KEY.security-key

The security key that is used for the mod-cluster group. All members must use the same security
key.

thorntail.undertow.filter-configuration.mod-clusters.KEY.security-realm

The security realm that provides the SSL configuration

thorntail.undertow.filter-configuration.mod-clusters.KEY.ssl-context

Reference to the SSLContext to be used by this filter.

thorntail.undertow.filter-configuration.mod-clusters.KEY.use-alias

If an alias check is performed

thorntail.undertow.filter-configuration.mod-clusters.KEY.worker

The XNIO worker that is used to send the advertise notifications

thorntail.undertow.filter-configuration.request-limits.KEY.max-concurrent-requests

Maximum number of concurrent requests

thorntail.undertow.filter-configuration.request-limits.KEY.queue-size

Number of requests to queue before they start being rejected

thorntail.undertow.filter-configuration.response-headers.KEY.header-name

Header name

thorntail.undertow.filter-configuration.response-headers.KEY.header-value

Value for header

thorntail.undertow.filter-configuration.rewrites.KEY.redirect

If this is true then a redirect will be done instead of a rewrite

thorntail.undertow.filter-configuration.rewrites.KEY.target

The expression that defines the target. If you are redirecting to a constant target put single quotes
around the value

thorntail.undertow.handler-configuration.files.KEY.cache-buffer-size

Size of the buffers, in bytes.

thorntail.undertow.handler-configuration.files.KEY.cache-buffers

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

330

Number of buffers

thorntail.undertow.handler-configuration.files.KEY.case-sensitive

Use case sensitive file handling

thorntail.undertow.handler-configuration.files.KEY.directory-listing

Enable directory listing?

thorntail.undertow.handler-configuration.files.KEY.follow-symlink

Enable following symbolic links

thorntail.undertow.handler-configuration.files.KEY.path

Path on filesystem from where file handler will serve resources

thorntail.undertow.handler-configuration.files.KEY.safe-symlink-paths

Paths that are safe to be targets of symbolic links

thorntail.undertow.handler-configuration.reverse-proxies.KEY.cached-connections-per-thread

The number of connections that will be kept alive indefinitely

thorntail.undertow.handler-configuration.reverse-proxies.KEY.connection-idle-timeout

The amount of time a connection can be idle before it will be closed. Connections will not time out
once the pool size is down to the configured minimum (as configured by cached-connections-per-
thread)

thorntail.undertow.handler-configuration.reverse-proxies.KEY.connections-per-thread

The number of connections that will be maintained to backend servers, per IO thread.

thorntail.undertow.handler-configuration.reverse-proxies.KEY.hosts.KEY.enable-http2

If this is true then the proxy will attempt to use HTTP/2 to connect to the backend. If it is not
supported it will fall back to HTTP/1.1.

thorntail.undertow.handler-configuration.reverse-proxies.KEY.hosts.KEY.instance-id

The instance id (aka JVM route) that will be used to enable sticky sessions

thorntail.undertow.handler-configuration.reverse-proxies.KEY.hosts.KEY.outbound-socket-
binding

Outbound socket binding for this host

thorntail.undertow.handler-configuration.reverse-proxies.KEY.hosts.KEY.path

Optional path if host is using non root resource

thorntail.undertow.handler-configuration.reverse-proxies.KEY.hosts.KEY.scheme

What kind of scheme is used

thorntail.undertow.handler-configuration.reverse-proxies.KEY.hosts.KEY.security-realm

The security realm that provides the SSL configuration for the connection to the host

thorntail.undertow.handler-configuration.reverse-proxies.KEY.hosts.KEY.ssl-context

Reference to the SSLContext to be used by this handler.

thorntail.undertow.handler-configuration.reverse-proxies.KEY.max-request-time

The maximum time that a proxy request can be active for, before being killed

thorntail.undertow.handler-configuration.reverse-proxies.KEY.max-retries

The number of times to attempt to retry a request if it fails. Note that if a request is not considered
idempotent then it will only be retried if the proxy can be sure it was not sent to the backend server).

thorntail.undertow.handler-configuration.reverse-proxies.KEY.problem-server-retry

Time in seconds to wait before attempting to reconnect to a server that is down

thorntail.undertow.handler-configuration.reverse-proxies.KEY.request-queue-size

The number of requests that can be queued if the connection pool is full before requests are

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

331

The number of requests that can be queued if the connection pool is full before requests are
rejected with a 503

thorntail.undertow.handler-configuration.reverse-proxies.KEY.session-cookie-names

Comma separated list of session cookie names. Generally this will just be JSESSIONID.

thorntail.undertow.instance-id

The cluster instance id

thorntail.undertow.servers.KEY.ajp-listeners.KEY.allow-encoded-slash

If a request comes in with encoded / characters (i.e. %2F), will these be decoded.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.allow-equals-in-cookie-value

If this is true then Undertow will allow non-escaped equals characters in unquoted cookie values.
Unquoted cookie values may not contain equals characters. If present the value ends before the
equals sign. The remainder of the cookie value will be dropped.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.allow-unescaped-characters-in-url

If this is true Undertow will accept non-encoded characters that are disallowed by the URI
specification. This defaults to false, and in general should not be needed as most clients correctly
encode characters. Note that setting this to true can be considered a security risk, as allowing non-
standard characters can allow request smuggling attacks in some circumstances.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.always-set-keep-alive

If this is true then a Connection: keep-alive header will be added to responses, even when it is not
strictly required by the specification.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.buffer-pipelined-data

If we should buffer pipelined requests.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.buffer-pool

The listeners buffer pool

thorntail.undertow.servers.KEY.ajp-listeners.KEY.bytes-received

The number of bytes that have been received by this listener

thorntail.undertow.servers.KEY.ajp-listeners.KEY.bytes-sent

The number of bytes that have been sent out on this listener

thorntail.undertow.servers.KEY.ajp-listeners.KEY.decode-url

If this is true then the parser will decode the URL and query parameters using the selected character
encoding (UTF-8 by default). If this is false they will not be decoded. This will allow a later handler to
decode them into whatever charset is desired.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.disallowed-methods

A comma separated list of HTTP methods that are not allowed

thorntail.undertow.servers.KEY.ajp-listeners.KEY.error-count

The number of 500 responses that have been sent by this listener

thorntail.undertow.servers.KEY.ajp-listeners.KEY.max-ajp-packet-size

The maximum supported size of AJP packets. If this is modified it has to be increased on the load
balancer and the backend server.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.max-buffered-request-size

Maximum size of a buffered request, in bytes. Requests are not usually buffered, the most common
case is when performing SSL renegotiation for a POST request, and the post data must be fully
buffered in order to perform the renegotiation.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.max-connections

The maximum number of concurrent connections. Only values greater than 0 are allowed. For

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

332

The maximum number of concurrent connections. Only values greater than 0 are allowed. For
unlimited connections simply undefine this attribute value.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.max-cookies

The maximum number of cookies that will be parsed. This is used to protect against hash
vulnerabilities.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.max-header-size

The maximum size of a http request header, in bytes.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.max-headers

The maximum number of headers that will be parsed. This is used to protect against hash
vulnerabilities.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.max-parameters

The maximum number of parameters that will be parsed. This is used to protect against hash
vulnerabilities. This applies to both query parameters, and to POST data, but is not cumulative (i.e.
you can potentially have max parameters * 2 total parameters).

thorntail.undertow.servers.KEY.ajp-listeners.KEY.max-post-size

The maximum size of a post that will be accepted, in bytes.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.max-processing-time

The maximum processing time taken by a request on this listener

thorntail.undertow.servers.KEY.ajp-listeners.KEY.no-request-timeout

The length of time in milliseconds that the connection can be idle before it is closed by the container.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.processing-time

The total processing time of all requests handed by this listener

thorntail.undertow.servers.KEY.ajp-listeners.KEY.read-timeout

Configure a read timeout for a socket, in milliseconds. If the given amount of time elapses without a
successful read taking place, the socket’s next read will throw a {@link ReadTimeoutException}.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.receive-buffer

The receive buffer size, in bytes.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.record-request-start-time

If this is true then Undertow will record the request start time, to allow for request time to be logged.
This has a small but measurable performance impact

thorntail.undertow.servers.KEY.ajp-listeners.KEY.redirect-socket

If this listener is supporting non-SSL requests, and a request is received for which a matching
<security-constraint> requires SSL transport, undertow will automatically redirect the request to the
socket binding port specified here.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.request-count

The number of requests this listener has served

thorntail.undertow.servers.KEY.ajp-listeners.KEY.request-parse-timeout

The maximum amount of time (in milliseconds) that can be spent parsing the request

thorntail.undertow.servers.KEY.ajp-listeners.KEY.resolve-peer-address

Enables host dns lookup

thorntail.undertow.servers.KEY.ajp-listeners.KEY.rfc6265-cookie-validation

If cookies should be validated to ensure they comply with RFC6265.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.scheme

The listener scheme, can be HTTP or HTTPS. By default the scheme will be taken from the incoming

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

333

The listener scheme, can be HTTP or HTTPS. By default the scheme will be taken from the incoming
AJP request.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.secure

If this is true then requests that originate from this listener are marked as secure, even if the request
is not using HTTPS.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.send-buffer

The send buffer size, in bytes.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.socket-binding

The listener socket binding

thorntail.undertow.servers.KEY.ajp-listeners.KEY.tcp-backlog

Configure a server with the specified backlog.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.tcp-keep-alive

Configure a channel to send TCP keep-alive messages in an implementation-dependent manner.

thorntail.undertow.servers.KEY.ajp-listeners.KEY.url-charset

URL charset

thorntail.undertow.servers.KEY.ajp-listeners.KEY.worker

The listeners XNIO worker

thorntail.undertow.servers.KEY.ajp-listeners.KEY.write-timeout

Configure a write timeout for a socket, in milliseconds. If the given amount of time elapses without a
successful write taking place, the socket’s next write will throw a {@link WriteTimeoutException}.

thorntail.undertow.servers.KEY.default-host

The servers default virtual host

thorntail.undertow.servers.KEY.hosts.KEY.access-log-setting.directory

Directory in which to save logs

thorntail.undertow.servers.KEY.hosts.KEY.access-log-setting.extended

If the log uses the extended log file format

thorntail.undertow.servers.KEY.hosts.KEY.access-log-setting.pattern

The access log pattern.

thorntail.undertow.servers.KEY.hosts.KEY.access-log-setting.predicate

Predicate that determines if the request should be logged

thorntail.undertow.servers.KEY.hosts.KEY.access-log-setting.prefix

Prefix for the log file name.

thorntail.undertow.servers.KEY.hosts.KEY.access-log-setting.relative-to

The directory the path is relative to

thorntail.undertow.servers.KEY.hosts.KEY.access-log-setting.rotate

Rotate the access log every day.

thorntail.undertow.servers.KEY.hosts.KEY.access-log-setting.suffix

Suffix for the log file name.

thorntail.undertow.servers.KEY.hosts.KEY.access-log-setting.use-server-log

If the log should be written to the server log, rather than a separate file.

thorntail.undertow.servers.KEY.hosts.KEY.access-log-setting.worker

Name of the worker to use for logging

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

334

thorntail.undertow.servers.KEY.hosts.KEY.alias

Aliases for the host

thorntail.undertow.servers.KEY.hosts.KEY.default-response-code

If set, this will be response code sent back in case requested context does not exist on server.

thorntail.undertow.servers.KEY.hosts.KEY.default-web-module

Default web module

thorntail.undertow.servers.KEY.hosts.KEY.disable-console-redirect

if set to true, /console redirect wont be enabled for this host, default is false

thorntail.undertow.servers.KEY.hosts.KEY.filter-refs.KEY.predicate

Predicates provide a simple way of making a true/false decision based on an exchange. Many
handlers have a requirement that they be applied conditionally, and predicates provide a general way
to specify a condition.

thorntail.undertow.servers.KEY.hosts.KEY.filter-refs.KEY.priority

Defines filter order. A lower number instructs the server to be included earlier in the handler chain
than others with higher numbers. Values range from 1, indicating the filter will be handled first, to
2147483647, resulting in the filter being handled last.

thorntail.undertow.servers.KEY.hosts.KEY.http-invoker-setting.http-authentication-factory

The HTTP authentication factory to use for authentication

thorntail.undertow.servers.KEY.hosts.KEY.http-invoker-setting.path

The path that the services are installed under

thorntail.undertow.servers.KEY.hosts.KEY.http-invoker-setting.security-realm

The legacy security realm to use for authentication

thorntail.undertow.servers.KEY.hosts.KEY.locations.KEY.filter-refs.KEY.predicate

Predicates provide a simple way of making a true/false decision based on an exchange. Many
handlers have a requirement that they be applied conditionally, and predicates provide a general way
to specify a condition.

thorntail.undertow.servers.KEY.hosts.KEY.locations.KEY.filter-refs.KEY.priority

Defines filter order. A lower number instructs the server to be included earlier in the handler chain
than others with higher numbers. Values range from 1, indicating the filter will be handled first, to
2147483647, resulting in the filter being handled last.

thorntail.undertow.servers.KEY.hosts.KEY.locations.KEY.handler

Default handler for this location

thorntail.undertow.servers.KEY.hosts.KEY.queue-requests-on-start

If requests should be queued on start for this host. If this is set to false the default response code will
be returned instead.

thorntail.undertow.servers.KEY.hosts.KEY.single-sign-on-setting.cookie-name

Name of the cookie

thorntail.undertow.servers.KEY.hosts.KEY.single-sign-on-setting.domain

The cookie domain that will be used.

thorntail.undertow.servers.KEY.hosts.KEY.single-sign-on-setting.http-only

Set Cookie httpOnly attribute.

thorntail.undertow.servers.KEY.hosts.KEY.single-sign-on-setting.path

Cookie path.

thorntail.undertow.servers.KEY.hosts.KEY.single-sign-on-setting.secure

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

335

Set Cookie secure attribute.

thorntail.undertow.servers.KEY.http-listeners.KEY.allow-encoded-slash

If a request comes in with encoded / characters (i.e. %2F), will these be decoded.

thorntail.undertow.servers.KEY.http-listeners.KEY.allow-equals-in-cookie-value

If this is true then Undertow will allow non-escaped equals characters in unquoted cookie values.
Unquoted cookie values may not contain equals characters. If present the value ends before the
equals sign. The remainder of the cookie value will be dropped.

thorntail.undertow.servers.KEY.http-listeners.KEY.allow-unescaped-characters-in-url

If this is true Undertow will accept non-encoded characters that are disallowed by the URI
specification. This defaults to false, and in general should not be needed as most clients correctly
encode characters. Note that setting this to true can be considered a security risk, as allowing non-
standard characters can allow request smuggling attacks in some circumstances.

thorntail.undertow.servers.KEY.http-listeners.KEY.always-set-keep-alive

If this is true then a Connection: keep-alive header will be added to responses, even when it is not
strictly required by the specification.

thorntail.undertow.servers.KEY.http-listeners.KEY.buffer-pipelined-data

If we should buffer pipelined requests.

thorntail.undertow.servers.KEY.http-listeners.KEY.buffer-pool

The listeners buffer pool

thorntail.undertow.servers.KEY.http-listeners.KEY.bytes-received

The number of bytes that have been received by this listener

thorntail.undertow.servers.KEY.http-listeners.KEY.bytes-sent

The number of bytes that have been sent out on this listener

thorntail.undertow.servers.KEY.http-listeners.KEY.certificate-forwarding

If certificate forwarding should be enabled. If this is enabled then the listener will take the certificate
from the SSL_CLIENT_CERT attribute. This should only be enabled if behind a proxy, and the proxy
is configured to always set these headers.

thorntail.undertow.servers.KEY.http-listeners.KEY.decode-url

If this is true then the parser will decode the URL and query parameters using the selected character
encoding (UTF-8 by default). If this is false they will not be decoded. This will allow a later handler to
decode them into whatever charset is desired.

thorntail.undertow.servers.KEY.http-listeners.KEY.disallowed-methods

A comma separated list of HTTP methods that are not allowed

thorntail.undertow.servers.KEY.http-listeners.KEY.enable-http2

Enables HTTP2 support for this listener

thorntail.undertow.servers.KEY.http-listeners.KEY.error-count

The number of 500 responses that have been sent by this listener

thorntail.undertow.servers.KEY.http-listeners.KEY.http2-enable-push

If server push is enabled for this connection

thorntail.undertow.servers.KEY.http-listeners.KEY.http2-header-table-size

The size of the header table used for HPACK compression, in bytes. This amount of memory will be
allocated per connection for compression. Larger values use more memory but may give better
compression.

thorntail.undertow.servers.KEY.http-listeners.KEY.http2-initial-window-size

The flow control window size that controls how quickly the client can send data to the server

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

336

thorntail.undertow.servers.KEY.http-listeners.KEY.http2-max-concurrent-streams

The maximum number of HTTP/2 streams that can be active at any time on a single connection

thorntail.undertow.servers.KEY.http-listeners.KEY.http2-max-frame-size

The max HTTP/2 frame size

thorntail.undertow.servers.KEY.http-listeners.KEY.http2-max-header-list-size

The maximum size of request headers the server is prepared to accept

thorntail.undertow.servers.KEY.http-listeners.KEY.max-buffered-request-size

Maximum size of a buffered request, in bytes. Requests are not usually buffered, the most common
case is when performing SSL renegotiation for a POST request, and the post data must be fully
buffered in order to perform the renegotiation.

thorntail.undertow.servers.KEY.http-listeners.KEY.max-connections

The maximum number of concurrent connections. Only values greater than 0 are allowed. For
unlimited connections simply undefine this attribute value.

thorntail.undertow.servers.KEY.http-listeners.KEY.max-cookies

The maximum number of cookies that will be parsed. This is used to protect against hash
vulnerabilities.

thorntail.undertow.servers.KEY.http-listeners.KEY.max-header-size

The maximum size of a http request header, in bytes.

thorntail.undertow.servers.KEY.http-listeners.KEY.max-headers

The maximum number of headers that will be parsed. This is used to protect against hash
vulnerabilities.

thorntail.undertow.servers.KEY.http-listeners.KEY.max-parameters

The maximum number of parameters that will be parsed. This is used to protect against hash
vulnerabilities. This applies to both query parameters, and to POST data, but is not cumulative (i.e.
you can potentially have max parameters * 2 total parameters).

thorntail.undertow.servers.KEY.http-listeners.KEY.max-post-size

The maximum size of a post that will be accepted, in bytes.

thorntail.undertow.servers.KEY.http-listeners.KEY.max-processing-time

The maximum processing time taken by a request on this listener

thorntail.undertow.servers.KEY.http-listeners.KEY.no-request-timeout

The length of time in milliseconds that the connection can be idle before it is closed by the container.

thorntail.undertow.servers.KEY.http-listeners.KEY.processing-time

The total processing time of all requests handed by this listener

thorntail.undertow.servers.KEY.http-listeners.KEY.proxy-address-forwarding

Enables handling of x-forwarded-host header (and other x-forwarded-* headers) and use this
header information to set the remote address. This should only be used behind a trusted proxy that
sets these headers otherwise a remote user can spoof their IP address.

thorntail.undertow.servers.KEY.http-listeners.KEY.proxy-protocol

If this is true then the listener will use the proxy protocol v1, as defined by
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt. This option MUST only be enabled
for listeners that are behind a load balancer that supports the same protocol.

thorntail.undertow.servers.KEY.http-listeners.KEY.read-timeout

Configure a read timeout for a socket, in milliseconds. If the given amount of time elapses without a
successful read taking place, the socket’s next read will throw a {@link ReadTimeoutException}.

thorntail.undertow.servers.KEY.http-listeners.KEY.receive-buffer

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

337

https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

The receive buffer size, in bytes.

thorntail.undertow.servers.KEY.http-listeners.KEY.record-request-start-time

If this is true then Undertow will record the request start time, to allow for request time to be logged.
This has a small but measurable performance impact

thorntail.undertow.servers.KEY.http-listeners.KEY.redirect-socket

If this listener is supporting non-SSL requests, and a request is received for which a matching
<security-constraint> requires SSL transport, undertow will automatically redirect the request to the
socket binding port specified here.

thorntail.undertow.servers.KEY.http-listeners.KEY.request-count

The number of requests this listener has served

thorntail.undertow.servers.KEY.http-listeners.KEY.request-parse-timeout

The maximum amount of time (in milliseconds) that can be spent parsing the request

thorntail.undertow.servers.KEY.http-listeners.KEY.require-host-http11

Require that all HTTP/1.1 requests have a 'Host' header, as per the RFC. IF the request does not
include this header it will be rejected with a 403.

thorntail.undertow.servers.KEY.http-listeners.KEY.resolve-peer-address

Enables host dns lookup

thorntail.undertow.servers.KEY.http-listeners.KEY.rfc6265-cookie-validation

If cookies should be validated to ensure they comply with RFC6265.

thorntail.undertow.servers.KEY.http-listeners.KEY.secure

If this is true then requests that originate from this listener are marked as secure, even if the request
is not using HTTPS.

thorntail.undertow.servers.KEY.http-listeners.KEY.send-buffer

The send buffer size, in bytes.

thorntail.undertow.servers.KEY.http-listeners.KEY.socket-binding

The listener socket binding

thorntail.undertow.servers.KEY.http-listeners.KEY.tcp-backlog

Configure a server with the specified backlog.

thorntail.undertow.servers.KEY.http-listeners.KEY.tcp-keep-alive

Configure a channel to send TCP keep-alive messages in an implementation-dependent manner.

thorntail.undertow.servers.KEY.http-listeners.KEY.url-charset

URL charset

thorntail.undertow.servers.KEY.http-listeners.KEY.worker

The listeners XNIO worker

thorntail.undertow.servers.KEY.http-listeners.KEY.write-timeout

Configure a write timeout for a socket, in milliseconds. If the given amount of time elapses without a
successful write taking place, the socket’s next write will throw a {@link WriteTimeoutException}.

thorntail.undertow.servers.KEY.https-listeners.KEY.allow-encoded-slash

If a request comes in with encoded / characters (i.e. %2F), will these be decoded.

thorntail.undertow.servers.KEY.https-listeners.KEY.allow-equals-in-cookie-value

If this is true then Undertow will allow non-escaped equals characters in unquoted cookie values.
Unquoted cookie values may not contain equals characters. If present the value ends before the
equals sign. The remainder of the cookie value will be dropped.

thorntail.undertow.servers.KEY.https-listeners.KEY.allow-unescaped-characters-in-url

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

338

If this is true Undertow will accept non-encoded characters that are disallowed by the URI
specification. This defaults to false, and in general should not be needed as most clients correctly
encode characters. Note that setting this to true can be considered a security risk, as allowing non-
standard characters can allow request smuggling attacks in some circumstances.

thorntail.undertow.servers.KEY.https-listeners.KEY.always-set-keep-alive

If this is true then a Connection: keep-alive header will be added to responses, even when it is not
strictly required by the specification.

thorntail.undertow.servers.KEY.https-listeners.KEY.buffer-pipelined-data

If we should buffer pipelined requests.

thorntail.undertow.servers.KEY.https-listeners.KEY.buffer-pool

The listeners buffer pool

thorntail.undertow.servers.KEY.https-listeners.KEY.bytes-received

The number of bytes that have been received by this listener

thorntail.undertow.servers.KEY.https-listeners.KEY.bytes-sent

The number of bytes that have been sent out on this listener

thorntail.undertow.servers.KEY.https-listeners.KEY.certificate-forwarding

If certificate forwarding should be enabled. If this is enabled then the listener will take the certificate
from the SSL_CLIENT_CERT attribute. This should only be enabled if behind a proxy, and the proxy
is configured to always set these headers.

thorntail.undertow.servers.KEY.https-listeners.KEY.decode-url

If this is true then the parser will decode the URL and query parameters using the selected character
encoding (UTF-8 by default). If this is false they will not be decoded. This will allow a later handler to
decode them into whatever charset is desired.

thorntail.undertow.servers.KEY.https-listeners.KEY.disallowed-methods

A comma separated list of HTTP methods that are not allowed

thorntail.undertow.servers.KEY.https-listeners.KEY.enable-http2

Enables HTTP2 support for this listener

thorntail.undertow.servers.KEY.https-listeners.KEY.enabled-cipher-suites

Configures Enabled SSL ciphers

thorntail.undertow.servers.KEY.https-listeners.KEY.enabled-protocols

Configures SSL protocols

thorntail.undertow.servers.KEY.https-listeners.KEY.error-count

The number of 500 responses that have been sent by this listener

thorntail.undertow.servers.KEY.https-listeners.KEY.http2-enable-push

If server push is enabled for this connection

thorntail.undertow.servers.KEY.https-listeners.KEY.http2-header-table-size

The size of the header table used for HPACK compression, in bytes. This amount of memory will be
allocated per connection for compression. Larger values use more memory but may give better
compression.

thorntail.undertow.servers.KEY.https-listeners.KEY.http2-initial-window-size

The flow control window size that controls how quickly the client can send data to the server

thorntail.undertow.servers.KEY.https-listeners.KEY.http2-max-concurrent-streams

The maximum number of HTTP/2 streams that can be active at any time on a single connection

thorntail.undertow.servers.KEY.https-listeners.KEY.http2-max-frame-size

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

339

The max HTTP/2 frame size

thorntail.undertow.servers.KEY.https-listeners.KEY.http2-max-header-list-size

The maximum size of request headers the server is prepared to accept

thorntail.undertow.servers.KEY.https-listeners.KEY.max-buffered-request-size

Maximum size of a buffered request, in bytes. Requests are not usually buffered, the most common
case is when performing SSL renegotiation for a POST request, and the post data must be fully
buffered in order to perform the renegotiation.

thorntail.undertow.servers.KEY.https-listeners.KEY.max-connections

The maximum number of concurrent connections. Only values greater than 0 are allowed. For
unlimited connections simply undefine this attribute value.

thorntail.undertow.servers.KEY.https-listeners.KEY.max-cookies

The maximum number of cookies that will be parsed. This is used to protect against hash
vulnerabilities.

thorntail.undertow.servers.KEY.https-listeners.KEY.max-header-size

The maximum size of a http request header, in bytes.

thorntail.undertow.servers.KEY.https-listeners.KEY.max-headers

The maximum number of headers that will be parsed. This is used to protect against hash
vulnerabilities.

thorntail.undertow.servers.KEY.https-listeners.KEY.max-parameters

The maximum number of parameters that will be parsed. This is used to protect against hash
vulnerabilities. This applies to both query parameters, and to POST data, but is not cumulative (i.e.
you can potentially have max parameters * 2 total parameters).

thorntail.undertow.servers.KEY.https-listeners.KEY.max-post-size

The maximum size of a post that will be accepted, in bytes.

thorntail.undertow.servers.KEY.https-listeners.KEY.max-processing-time

The maximum processing time taken by a request on this listener

thorntail.undertow.servers.KEY.https-listeners.KEY.no-request-timeout

The length of time in milliseconds that the connection can be idle before it is closed by the container.

thorntail.undertow.servers.KEY.https-listeners.KEY.processing-time

The total processing time of all requests handed by this listener

thorntail.undertow.servers.KEY.https-listeners.KEY.proxy-address-forwarding

Enables handling of x-forwarded-host header (and other x-forwarded-* headers) and use this
header information to set the remote address. This should only be used behind a trusted proxy that
sets these headers otherwise a remote user can spoof their IP address.

thorntail.undertow.servers.KEY.https-listeners.KEY.proxy-protocol

If this is true then the listener will use the proxy protocol v1, as defined by
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt. This option MUST only be enabled
for listeners that are behind a load balancer that supports the same protocol.

thorntail.undertow.servers.KEY.https-listeners.KEY.read-timeout

Configure a read timeout for a socket, in milliseconds. If the given amount of time elapses without a
successful read taking place, the socket’s next read will throw a {@link ReadTimeoutException}.

thorntail.undertow.servers.KEY.https-listeners.KEY.receive-buffer

The receive buffer size, in bytes.

thorntail.undertow.servers.KEY.https-listeners.KEY.record-request-start-time

If this is true then Undertow will record the request start time, to allow for request time to be logged.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

340

https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

If this is true then Undertow will record the request start time, to allow for request time to be logged.
This has a small but measurable performance impact

thorntail.undertow.servers.KEY.https-listeners.KEY.request-count

The number of requests this listener has served

thorntail.undertow.servers.KEY.https-listeners.KEY.request-parse-timeout

The maximum amount of time (in milliseconds) that can be spent parsing the request

thorntail.undertow.servers.KEY.https-listeners.KEY.require-host-http11

Require that all HTTP/1.1 requests have a 'Host' header, as per the RFC. IF the request does not
include this header it will be rejected with a 403.

thorntail.undertow.servers.KEY.https-listeners.KEY.resolve-peer-address

Enables host dns lookup

thorntail.undertow.servers.KEY.https-listeners.KEY.rfc6265-cookie-validation

If cookies should be validated to ensure they comply with RFC6265.

thorntail.undertow.servers.KEY.https-listeners.KEY.secure

If this is true then requests that originate from this listener are marked as secure, even if the request
is not using HTTPS.

thorntail.undertow.servers.KEY.https-listeners.KEY.security-realm

The listeners security realm

thorntail.undertow.servers.KEY.https-listeners.KEY.send-buffer

The send buffer size, in bytes.

thorntail.undertow.servers.KEY.https-listeners.KEY.socket-binding

The listener socket binding

thorntail.undertow.servers.KEY.https-listeners.KEY.ssl-context

Reference to the SSLContext to be used by this listener.

thorntail.undertow.servers.KEY.https-listeners.KEY.ssl-session-cache-size

The maximum number of active SSL sessions

thorntail.undertow.servers.KEY.https-listeners.KEY.ssl-session-timeout

The timeout for SSL sessions, in seconds

thorntail.undertow.servers.KEY.https-listeners.KEY.tcp-backlog

Configure a server with the specified backlog.

thorntail.undertow.servers.KEY.https-listeners.KEY.tcp-keep-alive

Configure a channel to send TCP keep-alive messages in an implementation-dependent manner.

thorntail.undertow.servers.KEY.https-listeners.KEY.url-charset

URL charset

thorntail.undertow.servers.KEY.https-listeners.KEY.verify-client

The desired SSL client authentication mode for SSL channels

thorntail.undertow.servers.KEY.https-listeners.KEY.worker

The listeners XNIO worker

thorntail.undertow.servers.KEY.https-listeners.KEY.write-timeout

Configure a write timeout for a socket, in milliseconds. If the given amount of time elapses without a
successful write taking place, the socket’s next write will throw a {@link WriteTimeoutException}.

thorntail.undertow.servers.KEY.servlet-container

The servers default servlet container

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

341

thorntail.undertow.servlet-containers.KEY.allow-non-standard-wrappers

If true then request and response wrappers that do not extend the standard wrapper classes can be
used

thorntail.undertow.servlet-containers.KEY.crawler-session-management-setting.session-timeout

The session timeout for sessions that are owned by crawlers

thorntail.undertow.servlet-containers.KEY.crawler-session-management-setting.user-agents

Regular expression that is used to match the user agent of a crawler

thorntail.undertow.servlet-containers.KEY.default-buffer-cache

The buffer cache to use for caching static resources

thorntail.undertow.servlet-containers.KEY.default-cookie-version

The default cookie version servlet applications will send

thorntail.undertow.servlet-containers.KEY.default-encoding

Default encoding to use for all deployed applications

thorntail.undertow.servlet-containers.KEY.default-session-timeout

The default session timeout (in minutes) for all applications deployed in the container.

thorntail.undertow.servlet-containers.KEY.directory-listing

If directory listing should be enabled for default servlets.

thorntail.undertow.servlet-containers.KEY.disable-caching-for-secured-pages

If Undertow should set headers to disable caching for secured paged. Disabling this can cause
security problems, as sensitive pages may be cached by an intermediary.

thorntail.undertow.servlet-containers.KEY.disable-file-watch-service

If this is true then the file watch service will not be used to monitor exploded deployments for
changes

thorntail.undertow.servlet-containers.KEY.disable-session-id-reuse

If this is true then an unknown session ID will never be reused, and a new session id will be generated.
If this is false then it will be re-used if and only if it is present in the session manager of another
deployment, to allow the same session id to be shared between applications on the same server.

thorntail.undertow.servlet-containers.KEY.eager-filter-initialization

If true undertow calls filter init() on deployment start rather than when first requested.

thorntail.undertow.servlet-containers.KEY.file-cache-max-file-size

The maximum size of a file that will be cached in the file cache

thorntail.undertow.servlet-containers.KEY.file-cache-metadata-size

The maximum number of files that will have their metadata cached

thorntail.undertow.servlet-containers.KEY.file-cache-time-to-live

The length of time in ms an item will stay cached. By default this is 2000 for exploded deployments,
and -1 (infinite) for archive deployments

thorntail.undertow.servlet-containers.KEY.ignore-flush

Ignore flushes on the servlet output stream. In most cases these just hurt performance for no good
reason.

thorntail.undertow.servlet-containers.KEY.jsp-setting.check-interval

Check interval for JSP updates using a background thread. This has no effect for most deployments
where JSP change notifications are handled using the File System notification API. This only takes
effect if the file watch service is disabled.

thorntail.undertow.servlet-containers.KEY.jsp-setting.development

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

342

Enable Development mode which enables reloading JSP on-the-fly

thorntail.undertow.servlet-containers.KEY.jsp-setting.disabled

Disable the JSP container.

thorntail.undertow.servlet-containers.KEY.jsp-setting.display-source-fragment

When a runtime error occurs, attempts to display corresponding JSP source fragment

thorntail.undertow.servlet-containers.KEY.jsp-setting.dump-smap

Write SMAP data to a file.

thorntail.undertow.servlet-containers.KEY.jsp-setting.error-on-use-bean-invalid-class-attribute

Enable errors when using a bad class in useBean.

thorntail.undertow.servlet-containers.KEY.jsp-setting.generate-strings-as-char-arrays

Generate String constants as char arrays.

thorntail.undertow.servlet-containers.KEY.jsp-setting.java-encoding

Specify the encoding used for Java sources.

thorntail.undertow.servlet-containers.KEY.jsp-setting.keep-generated

Keep the generated Servlets.

thorntail.undertow.servlet-containers.KEY.jsp-setting.mapped-file

Map to the JSP source.

thorntail.undertow.servlet-containers.KEY.jsp-setting.modification-test-interval

Minimum amount of time between two tests for updates, in seconds.

thorntail.undertow.servlet-containers.KEY.jsp-setting.optimize-scriptlets

If JSP scriptlets should be optimised to remove string concatenation

thorntail.undertow.servlet-containers.KEY.jsp-setting.recompile-on-fail

Retry failed JSP compilations on each request.

thorntail.undertow.servlet-containers.KEY.jsp-setting.scratch-dir

Specify a different work directory.

thorntail.undertow.servlet-containers.KEY.jsp-setting.smap

Enable SMAP.

thorntail.undertow.servlet-containers.KEY.jsp-setting.source-vm

Source VM level for compilation.

thorntail.undertow.servlet-containers.KEY.jsp-setting.tag-pooling

Enable tag pooling.

thorntail.undertow.servlet-containers.KEY.jsp-setting.target-vm

Target VM level for compilation.

thorntail.undertow.servlet-containers.KEY.jsp-setting.trim-spaces

Trim some spaces from the generated Servlet.

thorntail.undertow.servlet-containers.KEY.jsp-setting.xPowered-by

Enable advertising the JSP engine in x-powered-by.

thorntail.undertow.servlet-containers.KEY.max-sessions

The maximum number of sessions that can be active at one time

thorntail.undertow.servlet-containers.KEY.mime-mappings.KEY.value

The mime type for this mapping

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

343

thorntail.undertow.servlet-containers.KEY.persistent-sessions-setting.path

The path to the persistent session data directory. If this is null sessions will be stored in memory

thorntail.undertow.servlet-containers.KEY.persistent-sessions-setting.relative-to

The directory the path is relative to

thorntail.undertow.servlet-containers.KEY.proactive-authentication

If proactive authentication should be used. If this is true a user will always be authenticated if
credentials are present.

thorntail.undertow.servlet-containers.KEY.session-cookie-setting.comment

Cookie comment

thorntail.undertow.servlet-containers.KEY.session-cookie-setting.domain

Cookie domain

thorntail.undertow.servlet-containers.KEY.session-cookie-setting.http-only

Is cookie http-only

thorntail.undertow.servlet-containers.KEY.session-cookie-setting.max-age

Max age of cookie

thorntail.undertow.servlet-containers.KEY.session-cookie-setting.name

Name of the cookie

thorntail.undertow.servlet-containers.KEY.session-cookie-setting.secure

Is cookie secure?

thorntail.undertow.servlet-containers.KEY.session-id-length

The length of the generated session ID. Longer session ID’s are more secure. This number refers to
the number of bytes of randomness that are used to generate the session ID, the actual ID that is
sent to the client will be base64 encoded so will be approximately 33% larger (e.g. a session id length
of 30 will result in a cookie value of length 40).

thorntail.undertow.servlet-containers.KEY.stack-trace-on-error

If an error page with the stack trace should be generated on error. Values are all, none and local-only

thorntail.undertow.servlet-containers.KEY.use-listener-encoding

Use encoding defined on listener

thorntail.undertow.servlet-containers.KEY.websockets-setting.buffer-pool

The buffer pool to use for websocket deployments

thorntail.undertow.servlet-containers.KEY.websockets-setting.deflater-level

Configures the level of compression of the DEFLATE algorithm

thorntail.undertow.servlet-containers.KEY.websockets-setting.dispatch-to-worker

If callbacks should be dispatched to a worker thread. If this is false then they will be run in the IO
thread, which is faster however care must be taken not to perform blocking operations.

thorntail.undertow.servlet-containers.KEY.websockets-setting.per-message-deflate

Enables websocket’s per-message compression extension, RFC-7692

thorntail.undertow.servlet-containers.KEY.websockets-setting.worker

The worker to use for websocket deployments

thorntail.undertow.statistics-enabled

Configures if statistics are enabled. Changes take effect on the connector level statistics
immediately, deployment level statistics will only be affected after the deployment is redeployed (or
the container is reloaded).

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

344

D.38. WEB

Provides a collection of fractions equivalent to the Web Profile:

Bean Validation

CDI

EJB

JAX-RS

JSON-P

JAXB

Multipart

Validator

JPA

JSF

Transactions

Undertow (Servlets)

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>web</artifactId>
</dependency>

APPENDIX D. THORNTAIL FRACTIONS REFERENCE

345

APPENDIX E. ADDITIONAL THORNTAIL RESOURCES
Thorntail Community Documentation

Thorntail Presentations

Thorntail, Microservices & OpenShift Lab

Thorntail Microservices On Red Hat OpenShift Container Platform 3

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

346

https://docs.wildfly-swarm.io/2.5.0.Final/
https://github.com/thorntail/presentations
https://github.com/redhat-Microservices/lab_swarm-openshift
https://access.redhat.com/documentation/en-us/reference_architectures/2017/html/wildfly_swarm_microservices_on_red_hat_openshift_container_platform_3/

APPENDIX F. APPLICATION DEVELOPMENT RESOURCES
For additional information about application development with OpenShift, see:

OpenShift Interactive Learning Portal

To reduce network load and shorten the build time of your application, set up a Nexus mirror for Maven
on your Minishift or CDK:

Setting Up a Nexus Mirror for Maven

APPENDIX F. APPLICATION DEVELOPMENT RESOURCES

347

https://learn.openshift.com/
https://docs.openshift.com/container-platform/3.11/dev_guide/dev_tutorials/maven_tutorial.html

APPENDIX G. PROFICIENCY LEVELS
Each available example teaches concepts that require certain minimum knowledge. This requirement
varies by example. The minimum requirements and concepts are organized in several levels of
proficiency. In addition to the levels described here, you might need additional information specific to
each example.

Foundational
The examples rated at Foundational proficiency generally require no prior knowledge of the subject
matter; they provide general awareness and demonstration of key elements, concepts, and terminology.
There are no special requirements except those directly mentioned in the description of the example.

Advanced
When using Advanced examples, the assumption is that you are familiar with the common concepts and
terminology of the subject area of the example in addition to Kubernetes and OpenShift. You must also
be able to perform basic tasks on your own, for example, configuring services and applications, or
administering networks. If a service is needed by the example, but configuring it is not in the scope of the
example, the assumption is that you have the knowledge to properly configure it, and only the resulting
state of the service is described in the documentation.

Expert
Expert examples require the highest level of knowledge of the subject matter. You are expected to
perform many tasks based on feature-based documentation and manuals, and the documentation is
aimed at most complex scenarios.

Red Hat build of Thorntail 2.5 Thorntail Runtime Guide

348

APPENDIX H. GLOSSARY

H.1. PRODUCT AND PROJECT NAMES

Developer Launcher (developers.redhat.com/launch)

developers.redhat.com/launch called Developer Launcher is a stand-alone getting started
experience provided by Red Hat. It helps you get started with cloud-native development on
OpenShift. It contains functional example applications that you can download, build, and deploy on
OpenShift.

Minishift or CDK

An OpenShift cluster running on your machine using Minishift.

H.2. TERMS SPECIFIC TO DEVELOPER LAUNCHER

Example

An application specification, for example a web service with a REST API.
Examples generally do not specify which language or platform they should run on; the description
only contains the intended functionality.

Example application

A language-specific implementation of a particular example on a particular runtime. Example
applications are listed in an examples catalog.
For example, an example application is a web service with a REST API implemented using the
Thorntail runtime.

Examples Catalog

A Git repository that contains information about example applications.

Runtime

A platform that executes an example application. For example, Thorntail or Eclipse Vert.x.

APPENDIX H. GLOSSARY

349

https://developers.redhat.com/launch

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION TO APPLICATION DEVELOPMENT WITH THORNTAIL
	1.1. OVERVIEW OF APPLICATION DEVELOPMENT WITH RED HAT RUNTIMES
	1.2. APPLICATION DEVELOPMENT ON RED HAT OPENSHIFT USING DEVELOPER LAUNCHER
	1.3. OVERVIEW OF THORNTAIL
	1.3.1. Supported Architectures by Thorntail
	1.3.2. Introduction to example applications

	CHAPTER 2. DOWNLOADING AND DEPLOYING APPLICATIONS USING DEVELOPER LAUNCHER
	2.1. WORKING WITH DEVELOPER LAUNCHER
	2.2. DOWNLOADING THE EXAMPLE APPLICATIONS USING DEVELOPER LAUNCHER
	2.3. DEPLOYING AN EXAMPLE APPLICATION ON OPENSHIFT CONTAINER PLATFORM OR CDK (MINISHIFT)

	CHAPTER 3. DEVELOPING AND DEPLOYING THORNTAIL APPLICATION
	3.1. CREATING AN APPLICATION FROM SCRATCH
	Prerequisites
	Procedure
	Results

	3.2. DEPLOYING THORNTAIL APPLICATION TO OPENSHIFT
	3.2.1. Supported Java images for Thorntail
	3.2.1.1. Images on x86_64 architecture
	3.2.1.2. Images on s390x (IBM Z) architecture

	3.2.2. Preparing Thorntail application for OpenShift deployment
	3.2.3. Deploying Thorntail application to OpenShift using Fabric8 Maven plugin

	3.3. DEPLOYING THORNTAIL APPLICATION TO STAND-ALONE RED HAT ENTERPRISE LINUX
	3.3.1. Preparing Thorntail application for stand-alone Red Hat Enterprise Linux deployment
	3.3.2. Deploying Thorntail application to stand-alone Red Hat Enterprise Linux using jar

	CHAPTER 4. USING THORNTAIL MAVEN PLUGIN
	4.1. THORNTAIL MAVEN PLUGIN GENERAL USAGE
	4.2. THORNTAIL MAVEN PLUGIN GOALS
	4.3. THORNTAIL MAVEN PLUGIN CONFIGURATION OPTIONS
	4.4. THORNTAIL MAVEN PLUGIN CONFIGURATION PROPERTIES

	CHAPTER 5. USING THORNTAIL FRACTIONS
	5.1. FRACTIONS
	5.2. AUTO-DETECTING FRACTIONS
	Prerequisites
	Procedure

	5.3. USING EXPLICIT FRACTIONS

	CHAPTER 6. USING A BOM
	6.1. THORNTAIL PRODUCT BOM TYPES
	6.2. SPECIFYING A BOM FOR IN YOUR APPLICATION

	CHAPTER 7. ACCESSING LOGS ON YOUR THORNTAIL APPLICATION
	7.1. ENABLING LOGGING
	7.2. LOGGING TO A FILE
	Prerequisites
	Procedure

	CHAPTER 8. CONFIGURING A THORNTAIL APPLICATION
	8.1. SYSTEM PROPERTIES
	8.1.1. Commonly used system properties
	8.1.2. Application configuration using system properties
	Configuration of items with the KEY parameter

	8.1.3. Setting system properties using the Maven plugin
	Prerequisites
	Procedure

	8.1.4. Setting system properties using the command line
	Prerequisites
	Procedure

	8.1.5. Specifying JDBC drivers for hollow JARs
	Prerequisites
	Procedure

	8.2. ENVIRONMENT VARIABLES
	8.2.1. Application configuration using environment variables

	8.3. YAML FILES
	8.3.1. The general YAML file format
	8.3.2. Default Thorntail YAML Files
	project-defaults.yml
	Other default file names

	8.3.3. Non-default Thorntail YAML configuration files
	Related information

	CHAPTER 9. PACKAGING YOUR APPLICATION
	9.1. PACKAGING TYPES
	9.1.1. Uberjar
	9.1.2. Hollow JAR
	9.1.2.1. Pre-Built Hollow JARs

	9.2. CREATING AN UBERJAR
	Prerequisites
	Procedure

	CHAPTER 10. TESTING YOUR APPLICATION
	10.1. TESTING IN A CONTAINER
	Prerequisites
	Procedure

	CHAPTER 11. DEBUGGING YOUR APPLICATION
	11.1. REMOTE DEBUGGING
	11.1.1. Starting your application locally in debugging mode
	11.1.2. Starting an uberjar in debugging mode
	11.1.3. Starting your application on OpenShift in debugging mode
	11.1.4. Attaching a remote debugger to the application

	11.2. DEBUG LOGGING
	11.2.1. Local debug logging
	11.2.2. Accessing debug logs on OpenShift

	CHAPTER 12. MONITORING YOUR APPLICATION
	12.1. ACCESSING JVM METRICS FOR YOUR APPLICATION ON OPENSHIFT
	12.1.1. Accessing JVM metrics using Jolokia on OpenShift

	12.2. APPLICATION METRICS
	12.2.1. What are metrics
	12.2.2. Exposing application metrics

	CHAPTER 13. AVAILABLE EXAMPLES FOR THORNTAIL
	13.1. REST API LEVEL 0 EXAMPLE FOR THORNTAIL
	13.1.1. REST API Level 0 design tradeoffs
	13.1.2. Deploying the REST API Level 0 example application to OpenShift Online
	13.1.2.1. Deploying the example application using developers.redhat.com/launch
	13.1.2.2. Authenticating the oc CLI client
	13.1.2.3. Deploying the REST API Level 0 example application using the oc CLI client

	13.1.3. Deploying the REST API Level 0 example application to Minishift or CDK
	13.1.3.1. Getting the Fabric8 Launcher tool URL and credentials
	13.1.3.2. Deploying the example application using the Fabric8 Launcher tool
	13.1.3.3. Authenticating the oc CLI client
	13.1.3.4. Deploying the REST API Level 0 example application using the oc CLI client

	13.1.4. Deploying the REST API Level 0 example application to OpenShift Container Platform
	13.1.5. Interacting with the unmodified REST API Level 0 example application for Thorntail
	13.1.6. Running the REST API Level 0 example application integration tests
	13.1.7. REST resources

	13.2. EXTERNALIZED CONFIGURATION EXAMPLE FOR THORNTAIL
	13.2.1. The externalized configuration design pattern
	13.2.2. Externalized Configuration design tradeoffs
	13.2.3. Deploying the Externalized Configuration example application to OpenShift Online
	13.2.3.1. Deploying the example application using developers.redhat.com/launch
	13.2.3.2. Authenticating the oc CLI client
	13.2.3.3. Deploying the Externalized Configuration example application using the oc CLI client

	13.2.4. Deploying the Externalized Configuration example application to Minishift or CDK
	13.2.4.1. Getting the Fabric8 Launcher tool URL and credentials
	13.2.4.2. Deploying the example application using the Fabric8 Launcher tool
	13.2.4.3. Authenticating the oc CLI client
	13.2.4.4. Deploying the Externalized Configuration example application using the oc CLI client

	13.2.5. Deploying the Externalized Configuration example application to OpenShift Container Platform
	13.2.6. Interacting with the unmodified Externalized Configuration example application for Thorntail
	13.2.7. Running the Externalized Configuration example application integration tests
	13.2.8. Externalized Configuration resources

	13.3. RELATIONAL DATABASE BACKEND EXAMPLE FOR THORNTAIL
	13.3.1. Relational Database Backend design tradeoffs
	13.3.2. Deploying the Relational Database Backend example application to OpenShift Online
	13.3.2.1. Deploying the example application using developers.redhat.com/launch
	13.3.2.2. Authenticating the oc CLI client
	13.3.2.3. Deploying the Relational Database Backend example application using the oc CLI client

	13.3.3. Deploying the Relational Database Backend example application to Minishift or CDK
	13.3.3.1. Getting the Fabric8 Launcher tool URL and credentials
	13.3.3.2. Deploying the example application using the Fabric8 Launcher tool
	13.3.3.3. Authenticating the oc CLI client
	13.3.3.4. Deploying the Relational Database Backend example application using the oc CLI client

	13.3.4. Deploying the Relational Database Backend example application to OpenShift Container Platform
	13.3.5. Interacting with the Relational Database Backend API
	Troubleshooting

	13.3.6. Running the Relational Database Backend example application integration tests
	13.3.7. Relational database resources

	13.4. HEALTH CHECK EXAMPLE FOR THORNTAIL
	13.4.1. Health check concepts
	13.4.2. Deploying the Health Check example application to OpenShift Online
	13.4.2.1. Deploying the example application using developers.redhat.com/launch
	13.4.2.2. Authenticating the oc CLI client
	13.4.2.3. Deploying the Health Check example application using the oc CLI client

	13.4.3. Deploying the Health Check example application to Minishift or CDK
	13.4.3.1. Getting the Fabric8 Launcher tool URL and credentials
	13.4.3.2. Deploying the example application using the Fabric8 Launcher tool
	13.4.3.3. Authenticating the oc CLI client
	13.4.3.4. Deploying the Health Check example application using the oc CLI client

	13.4.4. Deploying the Health Check example application to OpenShift Container Platform
	13.4.5. Interacting with the unmodified Health Check example application
	13.4.6. Running the Health Check example application integration tests
	13.4.7. Health check resources

	13.5. CIRCUIT BREAKER EXAMPLE FOR THORNTAIL
	13.5.1. The circuit breaker design pattern
	Circuit breaker implementation

	13.5.2. Circuit Breaker design tradeoffs
	13.5.3. Deploying the Circuit Breaker example application to OpenShift Online
	13.5.3.1. Deploying the example application using developers.redhat.com/launch
	13.5.3.2. Authenticating the oc CLI client
	13.5.3.3. Deploying the Circuit Breaker example application using the oc CLI client

	13.5.4. Deploying the Circuit Breaker example application to Minishift or CDK
	13.5.4.1. Getting the Fabric8 Launcher tool URL and credentials
	13.5.4.2. Deploying the example application using the Fabric8 Launcher tool
	13.5.4.3. Authenticating the oc CLI client
	13.5.4.4. Deploying the Circuit Breaker example application using the oc CLI client

	13.5.5. Deploying the Circuit Breaker example application to OpenShift Container Platform
	13.5.6. Interacting with the unmodified Thorntail Circuit Breaker example application
	13.5.7. Running the Circuit Breaker example application integration tests
	13.5.8. Using Hystrix Dashboard to monitor the circuit breaker
	13.5.9. Circuit breaker resources

	13.6. SECURED EXAMPLE APPLICATION FOR THORNTAIL
	13.6.1. The Secured project structure
	13.6.2. Red Hat SSO deployment configuration
	13.6.3. Red Hat SSO realm model
	13.6.3.1. Red Hat SSO users
	13.6.3.2. The application clients

	13.6.4. Thorntail SSO adapter configuration
	13.6.5. Deploying the Secured example application to Minishift or CDK
	13.6.5.1. Getting the Fabric8 Launcher tool URL and credentials
	13.6.5.2. Creating the Secured example application using Fabric8 Launcher
	13.6.5.3. Authenticating the oc CLI client
	13.6.5.4. Deploying the Secured example application using the oc CLI client

	13.6.6. Deploying the Secured example application to OpenShift Container Platform
	13.6.6.1. Authenticating the oc CLI client
	13.6.6.2. Deploying the Secured example application using the oc CLI client

	13.6.7. Authenticating to the Secured example application API endpoint
	13.6.7.1. Getting the Secured example application API endpoint
	13.6.7.2. Authenticating HTTP requests using the command line
	13.6.7.3. Authenticating HTTP requests using the web interface

	13.6.8. Running the Thorntail Secured example application integration tests
	13.6.9. Secured SSO resources

	13.7. CACHE EXAMPLE FOR THORNTAIL
	13.7.1. How caching works and when you need it
	13.7.2. Deploying the Cache example application to OpenShift Online
	13.7.2.1. Deploying the example application using developers.redhat.com/launch
	13.7.2.2. Authenticating the oc CLI client
	13.7.2.3. Deploying the Cache example application using the oc CLI client

	13.7.3. Deploying the Cache example application to Minishift or CDK
	13.7.3.1. Getting the Fabric8 Launcher tool URL and credentials
	13.7.3.2. Deploying the example application using the Fabric8 Launcher tool
	13.7.3.3. Authenticating the oc CLI client
	13.7.3.4. Deploying the Cache example application using the oc CLI client

	13.7.4. Deploying the Cache example application to OpenShift Container Platform
	13.7.5. Interacting with the unmodified Cache example application
	13.7.6. Running the Cache example application integration tests
	13.7.7. Caching resources

	APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS
	APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION
	APPENDIX C. CONFIGURING A JENKINS FREESTYLE PROJECT TO DEPLOY YOUR APPLICATION WITH THE FABRIC8 MAVEN PLUGIN
	Next steps

	APPENDIX D. THORNTAIL FRACTIONS REFERENCE
	D.1. ARCHAIUS
	D.2. BEAN VALIDATION
	D.3. CDI
	D.3.1. CDI Configuration

	D.4. CONNECTOR
	D.5. CONTAINER
	D.6. DATASOURCES
	D.6.1. Autodetectable drivers
	D.6.2. Example datasource definitions
	D.6.2.1. MySQL
	D.6.2.2. PostgreSQL
	D.6.2.3. Oracle

	D.7. EE
	D.7.1. EE Security

	D.8. EJB
	D.8.1. EJB MDB

	D.9. ELYTRON
	D.10. HIBERNATE VALIDATOR
	D.11. HYSTRIX
	D.12. INFINISPAN
	D.13. IO
	D.14. JAEGER
	D.15. JAX-RS
	D.15.1. JAX-RS + CDI
	D.15.2. JAX-RS + JAXB
	D.15.3. JAX-RS + JSON-B
	D.15.4. JAX-RS + JSON-P
	D.15.5. JAX-RS + Multipart
	D.15.6. JAX-RS + Validator

	D.16. JCA
	D.17. JMX
	D.18. JPA
	D.19. JSF
	D.20. JSON-B
	D.21. JSON-P
	D.22. KEYCLOAK
	D.23. LOGGING
	D.24. MANAGEMENT
	D.25. MICROPROFILE
	D.25.1. Note about YAML configuration
	D.25.2. MicroProfile Config
	D.25.3. MicroProfile Fault Tolerance
	D.25.3.1. Bulkhead fallback rejection

	D.25.4. MicroProfile Health
	D.25.5. MicroProfile JWT RBAC Auth
	D.25.6. MicroProfile Metrics
	D.25.7. MicroProfile OpenAPI
	D.25.8. MicroProfile OpenTracing
	D.25.9. MicroProfile Rest Client
	D.25.9.1. CDI Interceptors Support
	D.25.9.2. RestClientProxy

	D.26. MONITOR
	D.27. MSC
	D.28. NAMING
	D.29. RX-JAVA
	D.30. OPENTRACING
	D.30.1. OpenTracing TracerResolver

	D.31. REMOTING
	D.32. REQUEST CONTROLLER
	D.33. RESOURCE ADAPTERS
	D.34. SECURITY
	D.35. TOPOLOGY
	D.35.1. OpenShift
	D.35.2. Topology UI

	D.36. TRANSACTIONS
	D.37. UNDERTOW
	D.38. WEB

	APPENDIX E. ADDITIONAL THORNTAIL RESOURCES
	APPENDIX F. APPLICATION DEVELOPMENT RESOURCES
	APPENDIX G. PROFICIENCY LEVELS
	Foundational
	Advanced
	Expert

	APPENDIX H. GLOSSARY
	H.1. PRODUCT AND PROJECT NAMES
	H.2. TERMS SPECIFIC TO DEVELOPER LAUNCHER

