Chapter 13. Available examples for Thorntail

The Thorntail runtime provides example applications. When you start developing applications on OpenShift, you can use the example applications as templates.

You can access these example applications on Developer Launcher.

You can download and deploy all the example applications on:

  • x86_64 architecture - The example applications in this guide demonstrate how to build and deploy example applications on x86_64 architecture.
  • s390x architecture - To deploy the example applications on OpenShift environments provisioned on IBM Z infrastructure, specify the relevant IBM Z image name in the commands. Refer to the section Supported Java images for Thorntail for more information about the image names.

    Some of the example applications also require other products, such as Red Hat Data Grid to demonstrate the workflows. In this case, you must also change the image names of these products to their relevant IBM Z image names in the YAML file of the example applications.

Note

The Secured example application in Thorntail requires Red Hat SSO 7.3. Since Red Hat SSO 7.3 is not supported on IBM Z, the Secured example is not available for IBM Z.

13.1. REST API Level 0 example for Thorntail

Important

The following example is not meant to be run in a production environment.

Example proficiency level: Foundational.

What the REST API Level 0 example does

The REST API Level 0 example shows how to map business operations to a remote procedure call endpoint over HTTP using a REST framework. This corresponds to Level 0 in the Richardson Maturity Model. Creating an HTTP endpoint using REST and its underlying principles to define your API lets you quickly prototype and design the API flexibly.

This example introduces the mechanics of interacting with a remote service using the HTTP protocol. It allows you to:

  • Execute an HTTP GET request on the api/greeting endpoint.
  • Receive a response in JSON format with a payload consisting of the Hello, World! String.
  • Execute an HTTP GET request on the api/greeting endpoint while passing in a String argument. This uses the name request parameter in the query string.
  • Receive a response in JSON format with a payload of Hello, $name! with $name replaced by the value of the name parameter passed into the request.

13.1.1. REST API Level 0 design tradeoffs

Table 13.1. Design tradeoffs

ProsCons
  • The example application enables fast prototyping.
  • The API Design is flexible.
  • HTTP endpoints allow clients to be language-neutral.
  • As an application or service matures, the REST API Level 0 approach might not scale well. It might not support a clean API design or use cases with database interactions.

    • Any operations involving shared, mutable state must be integrated with an appropriate backing datastore.
    • All requests handled by this API design are scoped only to the container servicing the request. Subsequent requests might not be served by the same container.

13.1.2. Deploying the REST API Level 0 example application to OpenShift Online

Use one of the following options to execute the REST API Level 0 example application on OpenShift Online.

Although each method uses the same oc commands to deploy your application, using developers.redhat.com/launch provides an automated deployment workflow that executes the oc commands for you.

13.1.2.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

Procedure

  1. Navigate to the developers.redhat.com/launch URL in a browser.
  2. Follow on-screen instructions to create and launch your example application in Thorntail.

13.1.2.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

Procedure

  1. Navigate to the OpenShift Online URL in a browser.
  2. Click on the question mark icon in the top right-hand corner of the Web console, next to your user name.
  3. Select Command Line Tools in the drop-down menu.
  4. Copy the oc login command.
  5. Paste the command in a terminal. The command uses your authentication token to authenticate your oc CLI client with your OpenShift Online account.

    $ oc login OPENSHIFT_URL --token=MYTOKEN

13.1.2.3. Deploying the REST API Level 0 example application using the oc CLI client

Prerequisites

Procedure

  1. Clone your project from GitHub.

    $ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

    Alternatively, if you downloaded a ZIP file of your project, extract it.

    $ unzip MY_PROJECT_NAME.zip
  2. Create a new project in OpenShift.

    $ oc new-project MY_PROJECT_NAME
  3. Navigate to the root directory of your application.
  4. Use Maven to start the deployment to OpenShift.

    $ mvn clean fabric8:deploy -Popenshift

    This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to start the pod.

  5. Check the status of your application and ensure your pod is running.

    $ oc get pods -w
    NAME                             READY     STATUS      RESTARTS   AGE
    MY_APP_NAME-1-aaaaa               1/1       Running     0          58s
    MY_APP_NAME-s2i-1-build           0/1       Completed   0          2m

    The MY_APP_NAME-1-aaaaa pod should have a status of Running once it is fully deployed and started. Your specific pod name will vary. The number in the middle will increase with each new build. The letters at the end are generated when the pod is created.

  6. After your example application is deployed and started, determine its route.

    Example Route Information

    $ oc get routes
    NAME                 HOST/PORT                                                     PATH      SERVICES        PORT      TERMINATION
    MY_APP_NAME         MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME      MY_APP_NAME      8080

    The route information of a pod gives you the base URL which you use to access it. In the example above, you would use http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.1.3. Deploying the REST API Level 0 example application to Minishift or CDK

Use one of the following options to execute the REST API Level 0 example application locally on Minishift or CDK:

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher provides an automated deployment workflow that executes the oc commands for you.

13.1.3.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

  • The Fabric8 Launcher tool installed, configured, and running.

Procedure

  1. Navigate to the console where you started Minishift or CDK.
  2. Check the console output for the URL and user credentials you can use to access the running Fabric8 Launcher:

    Example Console Output from a Minishift or CDK Startup

    ...
    -- Removing temporary directory ... OK
    -- Server Information ...
       OpenShift server started.
       The server is accessible via web console at:
           https://192.168.42.152:8443
    
       You are logged in as:
           User:     developer
           Password: developer
    
       To login as administrator:
           oc login -u system:admin

13.1.3.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

Procedure

  1. Navigate to the Fabric8 Launcher URL in a browser.
  2. Follow the on-screen instructions to create and launch your example application in Thorntail.

13.1.3.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

Procedure

  1. Navigate to the Minishift or CDK URL in a browser.
  2. Click on the question mark icon in the top right-hand corner of the Web console, next to your user name.
  3. Select Command Line Tools in the drop-down menu.
  4. Copy the oc login command.
  5. Paste the command in a terminal. The command uses your authentication token to authenticate your oc CLI client with your Minishift or CDK account.

    $ oc login OPENSHIFT_URL --token=MYTOKEN

13.1.3.4. Deploying the REST API Level 0 example application using the oc CLI client

Prerequisites

Procedure

  1. Clone your project from GitHub.

    $ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

    Alternatively, if you downloaded a ZIP file of your project, extract it.

    $ unzip MY_PROJECT_NAME.zip
  2. Create a new project in OpenShift.

    $ oc new-project MY_PROJECT_NAME
  3. Navigate to the root directory of your application.
  4. Use Maven to start the deployment to OpenShift.

    $ mvn clean fabric8:deploy -Popenshift

    This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to start the pod.

  5. Check the status of your application and ensure your pod is running.

    $ oc get pods -w
    NAME                             READY     STATUS      RESTARTS   AGE
    MY_APP_NAME-1-aaaaa               1/1       Running     0          58s
    MY_APP_NAME-s2i-1-build           0/1       Completed   0          2m

    The MY_APP_NAME-1-aaaaa pod should have a status of Running once it is fully deployed and started. Your specific pod name will vary. The number in the middle will increase with each new build. The letters at the end are generated when the pod is created.

  6. After your example application is deployed and started, determine its route.

    Example Route Information

    $ oc get routes
    NAME                 HOST/PORT                                                     PATH      SERVICES        PORT      TERMINATION
    MY_APP_NAME         MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME      MY_APP_NAME      8080

    The route information of a pod gives you the base URL which you use to access it. In the example above, you would use http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.1.4. Deploying the REST API Level 0 example application to OpenShift Container Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar to OpenShift Online:

Prerequisites

Procedure

13.1.5. Interacting with the unmodified REST API Level 0 example application for Thorntail

The example provides a default HTTP endpoint that accepts GET requests.

Prerequisites

  • Your application running
  • The curl binary or a web browser

Procedure

  1. Use curl to execute a GET request against the example. You can also use a browser to do this.

    $ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting
    {"content":"Hello, World!"}
  2. Use curl to execute a GET request with the name URL parameter against the example. You can also use a browser to do this.

    $ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting?name=Sarah
    {"content":"Hello, Sarah!"}
Note

From a browser, you can also use a form provided by the example to perform these same interactions. The form is located at the root of the project http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME.

13.1.6. Running the REST API Level 0 example application integration tests

This example application includes a self-contained set of integration tests. When run inside an OpenShift project, the tests:

  • Deploy a test instance of the application to the project.
  • Execute the individual tests on that instance.
  • Remove all instances of the application from the project when the testing is done.
Warning

Executing integration tests removes all existing instances of the example application from the target OpenShift project. To avoid accidentally removing your example application, ensure that you create and select a separate OpenShift project to execute the tests.

Prerequisites

  • The oc client authenticated
  • An empty OpenShift project

Procedure

Execute the following command to run the integration tests:

$ mvn clean verify -Popenshift,openshift-it

13.1.7. REST resources

More background and related information on REST can be found here:

13.2. Externalized Configuration example for Thorntail

Important

The following example is not meant to be run in a production environment.

Example proficiency level: Foundational.

Externalized Configuration provides a basic example of using a ConfigMap to externalize configuration. ConfigMap is an object used by OpenShift to inject configuration data as simple key and value pairs into one or more Linux containers while keeping the containers independent of OpenShift.

This example shows you how to:

  • Set up and configure a ConfigMap.
  • Use the configuration provided by the ConfigMap within an application.
  • Deploy changes to the ConfigMap configuration of running applications.

13.2.1. The externalized configuration design pattern

Whenever possible, externalize the application configuration and separate it from the application code. This allows the application configuration to change as it moves through different environments, but leaves the code unchanged. Externalizing the configuration also keeps sensitive or internal information out of your code base and version control. Many languages and application servers provide environment variables to support externalizing an application’s configuration.

Microservices architectures and multi-language (polyglot) environments add a layer of complexity to managing an application’s configuration. Applications consist of independent, distributed services, and each can have its own configuration. Keeping all configuration data synchronized and accessible creates a maintenance challenge.

ConfigMaps enable the application configuration to be externalized and used in individual Linux containers and pods on OpenShift. You can create a ConfigMap object in a variety of ways, including using a YAML file, and inject it into the Linux container. ConfigMaps also allow you to group and scale sets of configuration data. This lets you configure a large number of environments beyond the basic Development, Stage, and Production. You can find more information about ConfigMaps in the OpenShift documentation.

13.2.2. Externalized Configuration design tradeoffs

Table 13.2. Design Tradeoffs

ProsCons
  • Configuration is separate from deployments
  • Can be updated independently
  • Can be shared across services
  • Adding configuration to environment requires additional step
  • Has to be maintained separately
  • Requires coordination beyond the scope of a service

13.2.3. Deploying the Externalized Configuration example application to OpenShift Online

Use one of the following options to execute the Externalized Configuration example application on OpenShift Online.

Although each method uses the same oc commands to deploy your application, using developers.redhat.com/launch provides an automated deployment workflow that executes the oc commands for you.

13.2.3.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

Procedure

  1. Navigate to the developers.redhat.com/launch URL in a browser.
  2. Follow on-screen instructions to create and launch your example application in Thorntail.

13.2.3.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

Procedure

  1. Navigate to the OpenShift Online URL in a browser.
  2. Click on the question mark icon in the top right-hand corner of the Web console, next to your user name.
  3. Select Command Line Tools in the drop-down menu.
  4. Copy the oc login command.
  5. Paste the command in a terminal. The command uses your authentication token to authenticate your oc CLI client with your OpenShift Online account.

    $ oc login OPENSHIFT_URL --token=MYTOKEN

13.2.3.3. Deploying the Externalized Configuration example application using the oc CLI client

Prerequisites

Procedure

  1. Clone your project from GitHub.

    $ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

    Alternatively, if you downloaded a ZIP file of your project, extract it.

    $ unzip MY_PROJECT_NAME.zip
  2. Create a new OpenShift project.

    $ oc new-project MY_PROJECT_NAME
  3. Navigate to the root directory of your application.
  4. Deploy your ConfigMap configuration to OpenShift using app-config.yml in the root of the example.

    $ oc create configmap app-config --from-file=app-config.yml
  5. Verify your ConfigMap configuration has been deployed.

    $ oc get configmap app-config -o yaml
    
    apiVersion: v1
    data:
      app-config.yml: |-
        greeting:
          message: Hello %s from a ConfigMap!
    ...
  6. Use Maven to start the deployment to OpenShift.

    $ mvn clean fabric8:deploy -Popenshift -DskipTests

    This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to start the pod.

  7. Check the status of your application and ensure your pod is running.

    $ oc get pods -w
    NAME                                       READY     STATUS      RESTARTS   AGE
    MY_APP_NAME-1-aaaaa               1/1       Running     0          58s
    MY_APP_NAME-s2i-1-build           0/1       Completed   0          2m

    The MY_APP_NAME-1-aaaaa pod should have a status of Running once its fully deployed and started. Your specific pod name will vary. The number in the middle will increase with each new build. The letters at the end are generated when the pod is created.

  8. After your example application is deployed and started, determine its route.

    Example Route Information

    $ oc get routes
    NAME                 HOST/PORT                                                     PATH      SERVICES        PORT      TERMINATION
    MY_APP_NAME         MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME      MY_APP_NAME      8080

    The route information of a pod gives you the base URL which you use to access it. In the example above, you would use http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.2.4. Deploying the Externalized Configuration example application to Minishift or CDK

Use one of the following options to execute the Externalized Configuration example application locally on Minishift or CDK:

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher provides an automated deployment workflow that executes the oc commands for you.

13.2.4.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

  • The Fabric8 Launcher tool installed, configured, and running.

Procedure

  1. Navigate to the console where you started Minishift or CDK.
  2. Check the console output for the URL and user credentials you can use to access the running Fabric8 Launcher:

    Example Console Output from a Minishift or CDK Startup

    ...
    -- Removing temporary directory ... OK
    -- Server Information ...
       OpenShift server started.
       The server is accessible via web console at:
           https://192.168.42.152:8443
    
       You are logged in as:
           User:     developer
           Password: developer
    
       To login as administrator:
           oc login -u system:admin

13.2.4.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

Procedure

  1. Navigate to the Fabric8 Launcher URL in a browser.
  2. Follow the on-screen instructions to create and launch your example application in Thorntail.

13.2.4.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

Procedure

  1. Navigate to the Minishift or CDK URL in a browser.
  2. Click on the question mark icon in the top right-hand corner of the Web console, next to your user name.
  3. Select Command Line Tools in the drop-down menu.
  4. Copy the oc login command.
  5. Paste the command in a terminal. The command uses your authentication token to authenticate your oc CLI client with your Minishift or CDK account.

    $ oc login OPENSHIFT_URL --token=MYTOKEN

13.2.4.4. Deploying the Externalized Configuration example application using the oc CLI client

Prerequisites

Procedure

  1. Clone your project from GitHub.

    $ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

    Alternatively, if you downloaded a ZIP file of your project, extract it.

    $ unzip MY_PROJECT_NAME.zip
  2. Create a new OpenShift project.

    $ oc new-project MY_PROJECT_NAME
  3. Navigate to the root directory of your application.
  4. Deploy your ConfigMap configuration to OpenShift using app-config.yml in the root of the example.

    $ oc create configmap app-config --from-file=app-config.yml
  5. Verify your ConfigMap configuration has been deployed.

    $ oc get configmap app-config -o yaml
    
    apiVersion: v1
    data:
      app-config.yml: |-
        greeting:
          message: Hello %s from a ConfigMap!
    ...
  6. Use Maven to start the deployment to OpenShift.

    $ mvn clean fabric8:deploy -Popenshift -DskipTests

    This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to start the pod.

  7. Check the status of your application and ensure your pod is running.

    $ oc get pods -w
    NAME                                       READY     STATUS      RESTARTS   AGE
    MY_APP_NAME-1-aaaaa               1/1       Running     0          58s
    MY_APP_NAME-s2i-1-build           0/1       Completed   0          2m

    The MY_APP_NAME-1-aaaaa pod should have a status of Running once its fully deployed and started. Your specific pod name will vary. The number in the middle will increase with each new build. The letters at the end are generated when the pod is created.

  8. After your example application is deployed and started, determine its route.

    Example Route Information

    $ oc get routes
    NAME                 HOST/PORT                                                     PATH      SERVICES        PORT      TERMINATION
    MY_APP_NAME         MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME      MY_APP_NAME      8080

    The route information of a pod gives you the base URL which you use to access it. In the example above, you would use http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.2.5. Deploying the Externalized Configuration example application to OpenShift Container Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar to OpenShift Online:

Prerequisites

Procedure

13.2.6. Interacting with the unmodified Externalized Configuration example application for Thorntail

The example provides a default HTTP endpoint that accepts GET requests.

Prerequisites

  • Your application running
  • The curl binary or a web browser

Procedure

  1. Use curl to execute a GET request against the example. You can also use a browser to do this.

    $ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting
    {"content":"Hello World from a ConfigMap!"}
  2. Update the deployed ConfigMap configuration.

    $ oc edit configmap app-config

    Change the value for the greeting.message key to Bonjour %s from a ConfigMap! and save the file. After you save this, the changes will be propagated to your OpenShift instance.

  3. Rollout the new version of your application so the ConfigMap configuration changes are picked up.

    $ oc rollout latest dc/MY_APP_NAME
  4. Check the status of your example and ensure your new pod is running.

    $ oc get pods -w
    NAME                             READY     STATUS      RESTARTS   AGE
    MY_APP_NAME-1-aaaaa       1/1       Running     0          58s
    MY_APP_NAME-s2i-1-build   0/1       Completed   0          2m

    The MY_APP_NAME-1-aaaaa pod should have a status of Running once its fully deployed and started. Your specific pod name will vary. The number in the middle will increase with each new build. The letters at the end are generated when the pod is created.

  5. Execute a GET request using curl against the example with the updated ConfigMap configuration to see your updated greeting. You can also do this from your browser using the web form provided by the application.

    $ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting
    {"content":"Bonjour World from a ConfigMap!"}

13.2.7. Running the Externalized Configuration example application integration tests

This example application includes a self-contained set of integration tests. When run inside an OpenShift project, the tests:

  • Deploy a test instance of the application to the project.
  • Execute the individual tests on that instance.
  • Remove all instances of the application from the project when the testing is done.
Warning

Executing integration tests removes all existing instances of the example application from the target OpenShift project. To avoid accidentally removing your example application, ensure that you create and select a separate OpenShift project to execute the tests.

Prerequisites

  • The oc client authenticated
  • An empty OpenShift project

Procedure

Execute the following command to run the integration tests:

$ mvn clean verify -Popenshift,openshift-it

13.2.8. Externalized Configuration resources

More background and related information on Externalized Configuration and ConfigMap can be found here:

13.3. Relational Database Backend example for Thorntail

Important

The following example is not meant to be run in a production environment.

Limitation: Run this example application on a Minishift or CDK. You can also use a manual workflow to deploy this example to OpenShift Online Pro and OpenShift Container Platform. This example is not currently available on OpenShift Online Starter.

Example proficiency level: Foundational.

What the Relational Database Backend example does

The Relational Database Backend example expands on the REST API Level 0 application to provide a basic example of performing create, read, update and delete (CRUD) operations on a PostgreSQL database using a simple HTTP API. CRUD operations are the four basic functions of persistent storage, widely used when developing an HTTP API dealing with a database.

The example also demonstrates the ability of the HTTP application to locate and connect to a database in OpenShift. Each runtime shows how to implement the connectivity solution best suited in the given case. The runtime can choose between options such as using JDBC, JPA, or accessing ORM APIs directly.

The example application exposes an HTTP API, which provides endpoints that allow you to manipulate data by performing CRUD operations over HTTP. The CRUD operations are mapped to HTTP Verbs. The API uses JSON formatting to receive requests and return responses to the user. The user can also use a user interface provided by the example to use the application. Specifically, this example provides an application that allows you to:

  • Navigate to the application web interface in your browser. This exposes a simple website allowing you to perform CRUD operations on the data in the my_data database.
  • Execute an HTTP GET request on the api/fruits endpoint.
  • Receive a response formatted as a JSON array containing the list of all fruits in the database.
  • Execute an HTTP GET request on the api/fruits/* endpoint while passing in a valid item ID as an argument.
  • Receive a response in JSON format containing the name of the fruit with the given ID. If no item matches the specified ID, the call results in an HTTP error 404.
  • Execute an HTTP POST request on the api/fruits endpoint passing in a valid name value to create a new entry in the database.
  • Execute an HTTP PUT request on the api/fruits/* endpoint passing in a valid ID and a name as an argument. This updates the name of the item with the given ID to match the name specified in your request.
  • Execute an HTTP DELETE request on the api/fruits/* endpoint, passing in a valid ID as an argument. This removes the item with the specified ID from the database and returns an HTTP code 204 (No Content) as a response. If you pass in an invalid ID, the call results in an HTTP error 404.

This example also contains a set of automated integration tests that can be used to verify that the application is fully integrated with the database.

This example does not showcase a fully matured RESTful model (level 3), but it does use compatible HTTP verbs and status, following the recommended HTTP API practices.

13.3.1. Relational Database Backend design tradeoffs

Table 13.3. Design Tradeoffs

ProsCons
  • Each runtime determines how to implement the database interactions. One can use a low-level connectivity API such as JDBC, some other can use JPA, and yet another can access ORM APIs directly. Each runtime decides what would be the best way.
  • Each runtime determines how the schema is created.
  • The PostgreSQL database provided with this example application is not backed up with persistent storage. Changes to the database are lost if you stop or redeploy the database pod. To use an external database with your example application’s pod in order to preserve changes, see the Creating an application with a database chapter of the OpenShift Documentation. It is also possible to set up persistent storage with database containers on OpenShift. (For more details about using persistent storage with OpenShift and containers, see the Persistent Storage, Managing Volumes and Persistent Volumes chapters of the OpenShift Documentation).

13.3.2. Deploying the Relational Database Backend example application to OpenShift Online

Use one of the following options to execute the Relational Database Backend example application on OpenShift Online.

Although each method uses the same oc commands to deploy your application, using developers.redhat.com/launch provides an automated deployment workflow that executes the oc commands for you.

13.3.2.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

Procedure

  1. Navigate to the developers.redhat.com/launch URL in a browser.
  2. Follow on-screen instructions to create and launch your example application in Thorntail.

13.3.2.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

Procedure

  1. Navigate to the OpenShift Online URL in a browser.
  2. Click on the question mark icon in the top right-hand corner of the Web console, next to your user name.
  3. Select Command Line Tools in the drop-down menu.
  4. Copy the oc login command.
  5. Paste the command in a terminal. The command uses your authentication token to authenticate your oc CLI client with your OpenShift Online account.

    $ oc login OPENSHIFT_URL --token=MYTOKEN

13.3.2.3. Deploying the Relational Database Backend example application using the oc CLI client

Prerequisites

Procedure

  1. Clone your project from GitHub.

    $ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

    Alternatively, if you downloaded a ZIP file of your project, extract it.

    $ unzip MY_PROJECT_NAME.zip
  2. Create a new OpenShift project.

    $ oc new-project MY_PROJECT_NAME
  3. Navigate to the root directory of your application.
  4. Deploy the PostgreSQL database to OpenShift. Ensure that you use the following values for user name, password, and database name when creating your database application. The example application is pre-configured to use these values. Using different values prevents your application from integrating with the database.

    $ oc new-app -e POSTGRESQL_USER=luke -ePOSTGRESQL_PASSWORD=secret -ePOSTGRESQL_DATABASE=my_data registry.access.redhat.com/rhscl/postgresql-10-rhel7 --name=my-database
  5. Check the status of your database and ensure the pod is running.

    $ oc get pods -w
    my-database-1-aaaaa   1/1       Running   0         45s
    my-database-1-deploy   0/1       Completed   0         53s

    The my-database-1-aaaaa pod should have a status of Running and should be indicated as ready once it is fully deployed and started. Your specific pod name will vary. The number in the middle will increase with each new build. The letters at the end are generated when the pod is created.

  6. Use maven to start the deployment to OpenShift.

    $ mvn clean fabric8:deploy -Popenshift

    This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to start the pod.

  7. Check the status of your application and ensure your pod is running.

    $ oc get pods -w
    NAME                             READY     STATUS      RESTARTS   AGE
    MY_APP_NAME-1-aaaaa       1/1       Running     0          58s
    MY_APP_NAME-s2i-1-build   0/1       Completed   0          2m

    Your MY_APP_NAME-1-aaaaa pod should have a status of Running and should be indicated as ready once it is fully deployed and started.

  8. After your example application is deployed and started, determine its route.

    Example Route Information

    $ oc get routes
    NAME                 HOST/PORT                                     PATH      SERVICES             PORT      TERMINATION
    MY_APP_NAME   MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME      MY_APP_NAME   8080

    The route information of a pod gives you the base URL which you use to access it. In the example above, you would use http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.3.3. Deploying the Relational Database Backend example application to Minishift or CDK

Use one of the following options to execute the Relational Database Backend example application locally on Minishift or CDK:

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher provides an automated deployment workflow that executes the oc commands for you.

13.3.3.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

  • The Fabric8 Launcher tool installed, configured, and running.

Procedure

  1. Navigate to the console where you started Minishift or CDK.
  2. Check the console output for the URL and user credentials you can use to access the running Fabric8 Launcher:

    Example Console Output from a Minishift or CDK Startup

    ...
    -- Removing temporary directory ... OK
    -- Server Information ...
       OpenShift server started.
       The server is accessible via web console at:
           https://192.168.42.152:8443
    
       You are logged in as:
           User:     developer
           Password: developer
    
       To login as administrator:
           oc login -u system:admin

13.3.3.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

Procedure

  1. Navigate to the Fabric8 Launcher URL in a browser.
  2. Follow the on-screen instructions to create and launch your example application in Thorntail.

13.3.3.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

Procedure

  1. Navigate to the Minishift or CDK URL in a browser.
  2. Click on the question mark icon in the top right-hand corner of the Web console, next to your user name.
  3. Select Command Line Tools in the drop-down menu.
  4. Copy the oc login command.
  5. Paste the command in a terminal. The command uses your authentication token to authenticate your oc CLI client with your Minishift or CDK account.

    $ oc login OPENSHIFT_URL --token=MYTOKEN

13.3.3.4. Deploying the Relational Database Backend example application using the oc CLI client

Prerequisites

Procedure

  1. Clone your project from GitHub.

    $ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

    Alternatively, if you downloaded a ZIP file of your project, extract it.

    $ unzip MY_PROJECT_NAME.zip
  2. Create a new OpenShift project.

    $ oc new-project MY_PROJECT_NAME
  3. Navigate to the root directory of your application.
  4. Deploy the PostgreSQL database to OpenShift. Ensure that you use the following values for user name, password, and database name when creating your database application. The example application is pre-configured to use these values. Using different values prevents your application from integrating with the database.

    $ oc new-app -e POSTGRESQL_USER=luke -ePOSTGRESQL_PASSWORD=secret -ePOSTGRESQL_DATABASE=my_data registry.access.redhat.com/rhscl/postgresql-10-rhel7 --name=my-database
  5. Check the status of your database and ensure the pod is running.

    $ oc get pods -w
    my-database-1-aaaaa   1/1       Running   0         45s
    my-database-1-deploy   0/1       Completed   0         53s

    The my-database-1-aaaaa pod should have a status of Running and should be indicated as ready once it is fully deployed and started. Your specific pod name will vary. The number in the middle will increase with each new build. The letters at the end are generated when the pod is created.

  6. Use maven to start the deployment to OpenShift.

    $ mvn clean fabric8:deploy -Popenshift

    This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to start the pod.

  7. Check the status of your application and ensure your pod is running.

    $ oc get pods -w
    NAME                             READY     STATUS      RESTARTS   AGE
    MY_APP_NAME-1-aaaaa       1/1       Running     0          58s
    MY_APP_NAME-s2i-1-build   0/1       Completed   0          2m

    Your MY_APP_NAME-1-aaaaa pod should have a status of Running and should be indicated as ready once it is fully deployed and started.

  8. After your example application is deployed and started, determine its route.

    Example Route Information

    $ oc get routes
    NAME                 HOST/PORT                                     PATH      SERVICES             PORT      TERMINATION
    MY_APP_NAME   MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME      MY_APP_NAME   8080

    The route information of a pod gives you the base URL which you use to access it. In the example above, you would use http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.3.4. Deploying the Relational Database Backend example application to OpenShift Container Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar to OpenShift Online:

Prerequisites

Procedure

13.3.5. Interacting with the Relational Database Backend API

When you have finished creating your example application, you can interact with it the following way:

Prerequisites

  • Your application running
  • The curl binary or a web browser

Procedure

  1. Obtain the URL of your application by executing the following command:

    $ oc get route MY_APP_NAME
    NAME                 HOST/PORT                                         PATH      SERVICES             PORT      TERMINATION
    MY_APP_NAME           MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME              MY_APP_NAME           8080
  2. To access the web interface of the database application, navigate to the application URL in your browser:

    http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME

    Alternatively, you can make requests directly on the api/fruits/* endpoint using curl:

    List all entries in the database:

    $ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits

    [ {
      "id" : 1,
      "name" : "Apple",
      "stock" : 10
    }, {
      "id" : 2,
      "name" : "Orange",
      "stock" : 10
    }, {
      "id" : 3,
      "name" : "Pear",
      "stock" : 10
    } ]

    Retrieve an entry with a specific ID

    $ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits/3

    {
      "id" : 3,
      "name" : "Pear",
      "stock" : 10
    }

    Create a new entry:

    $ curl -H "Content-Type: application/json" -X POST -d '{"name":"Peach","stock":1}'  http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits

    {
      "id" : 4,
      "name" : "Peach",
      "stock" : 1
    }

    Update an Entry

    $ curl -H "Content-Type: application/json" -X PUT -d '{"name":"Apple","stock":100}'  http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits/1

    {
      "id" : 1,
      "name" : "Apple",
      "stock" : 100
    }

    Delete an Entry:

    $ curl -X DELETE http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits/1

Troubleshooting
  • If you receive an HTTP Error code 503 as a response after executing these commands, it means that the application is not ready yet.

13.3.6. Running the Relational Database Backend example application integration tests

This example application includes a self-contained set of integration tests. When run inside an OpenShift project, the tests:

  • Deploy a test instance of the application to the project.
  • Execute the individual tests on that instance.
  • Remove all instances of the application from the project when the testing is done.
Warning

Executing integration tests removes all existing instances of the example application from the target OpenShift project. To avoid accidentally removing your example application, ensure that you create and select a separate OpenShift project to execute the tests.

Prerequisites

  • The oc client authenticated
  • An empty OpenShift project

Procedure

Execute the following command to run the integration tests:

$ mvn clean verify -Popenshift,openshift-it

13.3.7. Relational database resources

More background and related information on running relational databases in OpenShift, CRUD, HTTP API and REST can be found here:

13.4. Health Check example for Thorntail

Important

The following example is not meant to be run in a production environment.

Example proficiency level: Foundational.

When you deploy an application, it is important to know if it is available and if it can start handling incoming requests. Implementing the health check pattern allows you to monitor the health of an application, which includes if an application is available and whether it is able to service requests.

Note

If you are not familiar with the health check terminology, see the Section 13.4.1, “Health check concepts” section first.

The purpose of this use case is to demonstrate the health check pattern through the use of probing. Probing is used to report the liveness and readiness of an application. In this use case, you configure an application which exposes an HTTP health endpoint to issue HTTP requests. If the container is alive, according to the liveness probe on the health HTTP endpoint, the management platform receives 200 as return code and no further action is required. If the health HTTP endpoint does not return a response, for example if the thread is blocked, then the application is not considered alive according to the liveness probe. In that case, the platform kills the pod corresponding to that application and recreates a new pod to restart the application.

This use case also allows you to demonstrate and use a readiness probe. In cases where the application is running but is unable to handle requests, such as when the application returns an HTTP 503 response code during restart, this application is not considered ready according to the readiness probe. If the application is not considered ready by the readiness probe, requests are not routed to that application until it is considered ready according to the readiness probe.

13.4.1. Health check concepts

In order to understand the health check pattern, you need to first understand the following concepts:

Liveness
Liveness defines whether an application is running or not. Sometimes a running application moves into an unresponsive or stopped state and needs to be restarted. Checking for liveness helps determine whether or not an application needs to be restarted.
Readiness
Readiness defines whether a running application can service requests. Sometimes a running application moves into an error or broken state where it can no longer service requests. Checking readiness helps determine whether or not requests should continue to be routed to that application.
Fail-over
Fail-over enables failures in servicing requests to be handled gracefully. If an application fails to service a request, that request and future requests can then fail-over or be routed to another application, which is usually a redundant copy of that same application.
Resilience and Stability
Resilience and Stability enable failures in servicing requests to be handled gracefully. If an application fails to service a request due to connection loss, in a resilient system that request can be retried after the connection is re-established.
Probe
A probe is a Kubernetes action that periodically performs diagnostics on a running container.

13.4.2. Deploying the Health Check example application to OpenShift Online

Use one of the following options to execute the Health Check example application on OpenShift Online.

Although each method uses the same oc commands to deploy your application, using developers.redhat.com/launch provides an automated deployment workflow that executes the oc commands for you.

13.4.2.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

Procedure

  1. Navigate to the developers.redhat.com/launch URL in a browser.
  2. Follow on-screen instructions to create and launch your example application in Thorntail.

13.4.2.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

Procedure

  1. Navigate to the OpenShift Online URL in a browser.
  2. Click on the question mark icon in the top right-hand corner of the Web console, next to your user name.
  3. Select Command Line Tools in the drop-down menu.
  4. Copy the oc login command.
  5. Paste the command in a terminal. The command uses your authentication token to authenticate your oc CLI client with your OpenShift Online account.

    $ oc login OPENSHIFT_URL --token=MYTOKEN

13.4.2.3. Deploying the Health Check example application using the oc CLI client

Prerequisites

Procedure

  1. Clone your project from GitHub.

    $ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

    Alternatively, if you downloaded a ZIP file of your project, extract it.

    $ unzip MY_PROJECT_NAME.zip
  2. Create a new OpenShift project.

    $ oc new-project MY_PROJECT_NAME
  3. Navigate to the root directory of your application.
  4. Use Maven to start the deployment to OpenShift.

    $ mvn clean fabric8:deploy -Popenshift

    This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to start the pod.

  5. Check the status of your application and ensure your pod is running.

    $ oc get pods -w
    NAME                             READY     STATUS      RESTARTS   AGE
    MY_APP_NAME-1-aaaaa               1/1       Running     0          58s
    MY_APP_NAME-s2i-1-build           0/1       Completed   0          2m

    The MY_APP_NAME-1-aaaaa pod should have a status of Running once its fully deployed and started. You should also wait for your pod to be ready before proceeding, which is shown in the READY column. For example, MY_APP_NAME-1-aaaaa is ready when the READY column is 1/1. Your specific pod name will vary. The number in the middle will increase with each new build. The letters at the end are generated when the pod is created.

  6. After your example application is deployed and started, determine its route.

    Example Route Information

    $ oc get routes
    NAME                 HOST/PORT                                                     PATH      SERVICES        PORT      TERMINATION
    MY_APP_NAME         MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME      MY_APP_NAME      8080

    The route information of a pod gives you the base URL which you use to access it. In the example above, you would use http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.4.3. Deploying the Health Check example application to Minishift or CDK

Use one of the following options to execute the Health Check example application locally on Minishift or CDK:

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher provides an automated deployment workflow that executes the oc commands for you.

13.4.3.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

  • The Fabric8 Launcher tool installed, configured, and running.

Procedure

  1. Navigate to the console where you started Minishift or CDK.
  2. Check the console output for the URL and user credentials you can use to access the running Fabric8 Launcher:

    Example Console Output from a Minishift or CDK Startup

    ...
    -- Removing temporary directory ... OK
    -- Server Information ...
       OpenShift server started.
       The server is accessible via web console at:
           https://192.168.42.152:8443
    
       You are logged in as:
           User:     developer
           Password: developer
    
       To login as administrator:
           oc login -u system:admin

13.4.3.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

Procedure

  1. Navigate to the Fabric8 Launcher URL in a browser.
  2. Follow the on-screen instructions to create and launch your example application in Thorntail.

13.4.3.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

Procedure

  1. Navigate to the Minishift or CDK URL in a browser.
  2. Click on the question mark icon in the top right-hand corner of the Web console, next to your user name.
  3. Select Command Line Tools in the drop-down menu.
  4. Copy the oc login command.
  5. Paste the command in a terminal. The command uses your authentication token to authenticate your oc CLI client with your Minishift or CDK account.

    $ oc login OPENSHIFT_URL --token=MYTOKEN

13.4.3.4. Deploying the Health Check example application using the oc CLI client

Prerequisites

Procedure

  1. Clone your project from GitHub.

    $ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

    Alternatively, if you downloaded a ZIP file of your project, extract it.

    $ unzip MY_PROJECT_NAME.zip
  2. Create a new OpenShift project.

    $ oc new-project MY_PROJECT_NAME
  3. Navigate to the root directory of your application.
  4. Use Maven to start the deployment to OpenShift.

    $ mvn clean fabric8:deploy -Popenshift

    This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to start the pod.

  5. Check the status of your application and ensure your pod is running.

    $ oc get pods -w
    NAME                             READY     STATUS      RESTARTS   AGE
    MY_APP_NAME-1-aaaaa               1/1       Running     0          58s
    MY_APP_NAME-s2i-1-build           0/1       Completed   0          2m

    The MY_APP_NAME-1-aaaaa pod should have a status of Running once its fully deployed and started. You should also wait for your pod to be ready before proceeding, which is shown in the READY column. For example, MY_APP_NAME-1-aaaaa is ready when the READY column is 1/1. Your specific pod name will vary. The number in the middle will increase with each new build. The letters at the end are generated when the pod is created.

  6. After your example application is deployed and started, determine its route.

    Example Route Information

    $ oc get routes
    NAME                 HOST/PORT                                                     PATH      SERVICES        PORT      TERMINATION
    MY_APP_NAME         MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME      MY_APP_NAME      8080

    The route information of a pod gives you the base URL which you use to access it. In the example above, you would use http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.4.4. Deploying the Health Check example application to OpenShift Container Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar to OpenShift Online:

Prerequisites

Procedure

13.4.5. Interacting with the unmodified Health Check example application

After you deploy the example application, you will have the MY_APP_NAME service running. The MY_APP_NAME service exposes the following REST endpoints:

/api/greeting
Returns a name as a String.
/api/stop
Forces the service to become unresponsive as means to simulate a failure.

The following steps demonstrate how to verify the service availability and simulate a failure. This failure of an available service causes the OpenShift self-healing capabilities to be trigger on the service.

Alternatively, you can use the web interface to perform these steps.

  1. Use curl to execute a GET request against the MY_APP_NAME service. You can also use a browser to do this.

    $ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting
    {"content":"Hello, World!"}
  2. Invoke the /api/stop endpoint and verify the availability of the /api/greeting endpoint shortly after that.

    Invoking the /api/stop endpoint simulates an internal service failure and triggers the OpenShift self-healing capabilities. When invoking /api/greeting after simulating the failure, the service should return a HTTP status 503.

    $ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/stop

    (followed by)

    $ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting
    <html>
      <head><title>Error</title></head>
      <body>503 - Service Unavailable</body>
    </html>
  3. Use oc get pods -w to continuously watch the self-healing capabilities in action.

    While invoking the service failure, you can watch the self-healing capabilities in action on OpenShift console, or with the oc client tools. You should see the number of pods in the READY state move to zero (0/1) and after a short period (less than one minute) move back up to one (1/1). In addition to that, the RESTARTS count increases every time you you invoke the service failure.

    $ oc get pods -w
    NAME                           READY     STATUS    RESTARTS   AGE
    MY_APP_NAME-1-26iy7   0/1       Running   5          18m
    MY_APP_NAME-1-26iy7   1/1       Running   5         19m
  4. Optional: Use the web interface to invoke the service.

    Alternatively to the interaction using the terminal window, you can use the web interface provided by the service to invoke the different methods and watch the service move through the life cycle phases.

    http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
  5. Optional: Use the web console to view the log output generated by the application at each stage of the self-healing process.

    1. Navigate to your project.
    2. On the sidebar, click on Monitoring.
    3. In the upper right-hand corner of the screen, click on Events to display the log messages.
    4. Optional: Click View Details to display a detailed view of the Event log.

    The health check application generates the following messages:

    MessageStatus

    Unhealthy

    Readiness probe failed. This message is expected and indicates that the simulated failure of the /api/greeting endpoint has been detected and the self-healing process starts.

    Killing

    The unavailable Docker container running the service is being killed before being re-created.

    Pulling

    Downloading the latest version of docker image to re-create the container.

    Pulled

    Docker image downloaded successfully.

    Created

    Docker container has been successfully created

    Started

    Docker container is ready to handle requests

13.4.6. Running the Health Check example application integration tests

This example application includes a self-contained set of integration tests. When run inside an OpenShift project, the tests:

  • Deploy a test instance of the application to the project.
  • Execute the individual tests on that instance.
  • Remove all instances of the application from the project when the testing is done.
Warning

Executing integration tests removes all existing instances of the example application from the target OpenShift project. To avoid accidentally removing your example application, ensure that you create and select a separate OpenShift project to execute the tests.

Prerequisites

  • The oc client authenticated
  • An empty OpenShift project

Procedure

Execute the following command to run the integration tests:

$ mvn clean verify -Popenshift,openshift-it

13.4.7. Health check resources

More background and related information on health checking can be found here:

13.5. Circuit Breaker example for Thorntail

Important

The following example is not meant to be run in a production environment.

Limitation: Run this example application on a Minishift or CDK. You can also use a manual workflow to deploy this example to OpenShift Online Pro and OpenShift Container Platform. This example is not currently available on OpenShift Online Starter.

Example proficiency level: Foundational.

The Circuit Breaker example demonstrates a generic pattern for reporting the failure of a service and then limiting access to the failed service until it becomes available to handle requests. This helps prevent cascading failure in other services that depend on the failed services for functionality.

This example shows you how to implement a Circuit Breaker and Fallback pattern in your services.

13.5.1. The circuit breaker design pattern

The Circuit Breaker is a pattern intended to:

  • Reduce the impact of network failure and high latency on service architectures where services synchronously invoke other services.

    If one of the services:

    • becomes unavailable due to network failure, or
    • incurs unusually high latency values due to overwhelming traffic,

    other services attempting to call its endpoint may end up exhausting critical resources in an attempt to reach it, rendering themselves unusable.

  • Prevent the condition also known as cascading failure, which can render the entire microservice architecture unusable.
  • Act as a proxy between a protected function and a remote function, which monitors for failures.
  • Trip once the failures reach a certain threshold, and all further calls to the circuit breaker return an error or a predefined fallback response, without the protected call being made at all.

The Circuit Breaker usually also contain an error reporting mechanism that notifies you when the Circuit Breaker trips.

Circuit breaker implementation
  • With the Circuit Breaker pattern implemented, a service client invokes a remote service endpoint via a proxy at regular intervals.
  • If the calls to the remote service endpoint fail repeatedly and consistently, the Circuit Breaker trips, making all calls to the service fail immediately over a set timeout period and returns a predefined fallback response.
  • When the timeout period expires, a limited number of test calls are allowed to pass through to the remote service to determine whether it has healed, or remains unavailable.

    • If the test calls fail, the Circuit Breaker keeps the service unavailable and keeps returning the fallback responses to incoming calls.
    • If the test calls succeed, the Circuit Breaker closes, fully enabling traffic to reach the remote service again.

13.5.2. Circuit Breaker design tradeoffs

Table 13.4. Design Tradeoffs

ProsCons
  • Enables a service to handle the failure of other services it invokes.
  • Optimizing the timeout values can be challenging

    • Larger-than-necessary timeout values may generate excessive latency.
    • Smaller-than-necessary timeout values may introduce false positives.

13.5.3. Deploying the Circuit Breaker example application to OpenShift Online

Use one of the following options to execute the Circuit Breaker example application on OpenShift Online.

Although each method uses the same oc commands to deploy your application, using developers.redhat.com/launch provides an automated deployment workflow that executes the oc commands for you.

13.5.3.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

Procedure

  1. Navigate to the developers.redhat.com/launch URL in a browser.
  2. Follow on-screen instructions to create and launch your example application in Thorntail.

13.5.3.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

Procedure

  1. Navigate to the OpenShift Online URL in a browser.
  2. Click on the question mark icon in the top right-hand corner of the Web console, next to your user name.
  3. Select Command Line Tools in the drop-down menu.
  4. Copy the oc login command.
  5. Paste the command in a terminal. The command uses your authentication token to authenticate your oc CLI client with your OpenShift Online account.

    $ oc login OPENSHIFT_URL --token=MYTOKEN

13.5.3.3. Deploying the Circuit Breaker example application using the oc CLI client

Prerequisites

Procedure

  1. Clone your project from GitHub.

    $ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

    Alternatively, if you downloaded a ZIP file of your project, extract it.

    $ unzip MY_PROJECT_NAME.zip
  2. Create a new OpenShift project.

    $ oc new-project MY_PROJECT_NAME
  3. Navigate to the root directory of your application.
  4. Use Maven to start the deployment to OpenShift.

    $ mvn clean fabric8:deploy -Popenshift

    This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to start the pod.

  5. Check the status of your application and ensure your pod is running.

    $ oc get pods -w
    NAME                             READY     STATUS      RESTARTS   AGE
    MY_APP_NAME-greeting-1-aaaaa     1/1       Running   0           17s
    MY_APP_NAME-greeting-1-deploy    0/1       Completed 0           22s
    MY_APP_NAME-name-1-aaaaa         1/1       Running   0           14s
    MY_APP_NAME-name-1-deploy        0/1       Completed 0           28s

    Both the MY_APP_NAME-greeting-1-aaaaa and MY_APP_NAME-name-1-aaaaa pods should have a status of Running once they are fully deployed and started. You should also wait for your pods to be ready before proceeding, which is shown in the READY column. For example, MY_APP_NAME-greeting-1-aaaaa is ready when the READY column is 1/1. Your specific pod names will vary. The number in the middle will increase with each new build. The letters at the end are generated when the pod is created.

  6. After your example application is deployed and started, determine its route.

    Example Route Information

    $ oc get routes
    NAME                 HOST/PORT                                                     PATH      SERVICES        PORT      TERMINATION
    MY_APP_NAME-greeting   MY_APP_NAME-greeting-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME            MY_APP_NAME-greeting   8080                    None
    MY_APP_NAME-name       MY_APP_NAME-name-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME            MY_APP_NAME-name       8080                    None

    The route information of a pod gives you the base URL which you use to access it. In the example above, you would use http://MY_APP_NAME-greeting-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.5.4. Deploying the Circuit Breaker example application to Minishift or CDK

Use one of the following options to execute the Circuit Breaker example application locally on Minishift or CDK:

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher provides an automated deployment workflow that executes the oc commands for you.

13.5.4.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

  • The Fabric8 Launcher tool installed, configured, and running.

Procedure

  1. Navigate to the console where you started Minishift or CDK.
  2. Check the console output for the URL and user credentials you can use to access the running Fabric8 Launcher:

    Example Console Output from a Minishift or CDK Startup

    ...
    -- Removing temporary directory ... OK
    -- Server Information ...
       OpenShift server started.
       The server is accessible via web console at:
           https://192.168.42.152:8443
    
       You are logged in as:
           User:     developer
           Password: developer
    
       To login as administrator:
           oc login -u system:admin

13.5.4.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

Procedure

  1. Navigate to the Fabric8 Launcher URL in a browser.
  2. Follow the on-screen instructions to create and launch your example application in Thorntail.

13.5.4.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

Procedure

  1. Navigate to the Minishift or CDK URL in a browser.
  2. Click on the question mark icon in the top right-hand corner of the Web console, next to your user name.
  3. Select Command Line Tools in the drop-down menu.
  4. Copy the oc login command.
  5. Paste the command in a terminal. The command uses your authentication token to authenticate your oc CLI client with your Minishift or CDK account.

    $ oc login OPENSHIFT_URL --token=MYTOKEN

13.5.4.4. Deploying the Circuit Breaker example application using the oc CLI client

Prerequisites

Procedure

  1. Clone your project from GitHub.

    $ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

    Alternatively, if you downloaded a ZIP file of your project, extract it.

    $ unzip MY_PROJECT_NAME.zip
  2. Create a new OpenShift project.

    $ oc new-project MY_PROJECT_NAME
  3. Navigate to the root directory of your application.
  4. Use Maven to start the deployment to OpenShift.

    $ mvn clean fabric8:deploy -Popenshift

    This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to start the pod.

  5. Check the status of your application and ensure your pod is running.

    $ oc get pods -w
    NAME                             READY     STATUS      RESTARTS   AGE
    MY_APP_NAME-greeting-1-aaaaa     1/1       Running   0           17s
    MY_APP_NAME-greeting-1-deploy    0/1       Completed 0           22s
    MY_APP_NAME-name-1-aaaaa         1/1       Running   0           14s
    MY_APP_NAME-name-1-deploy        0/1       Completed 0           28s

    Both the MY_APP_NAME-greeting-1-aaaaa and MY_APP_NAME-name-1-aaaaa pods should have a status of Running once they are fully deployed and started. You should also wait for your pods to be ready before proceeding, which is shown in the READY column. For example, MY_APP_NAME-greeting-1-aaaaa is ready when the READY column is 1/1. Your specific pod names will vary. The number in the middle will increase with each new build. The letters at the end are generated when the pod is created.

  6. After your example application is deployed and started, determine its route.

    Example Route Information

    $ oc get routes
    NAME                 HOST/PORT                                                     PATH      SERVICES        PORT      TERMINATION
    MY_APP_NAME-greeting   MY_APP_NAME-greeting-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME            MY_APP_NAME-greeting   8080                    None
    MY_APP_NAME-name       MY_APP_NAME-name-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME            MY_APP_NAME-name       8080                    None

    The route information of a pod gives you the base URL which you use to access it. In the example above, you would use http://MY_APP_NAME-greeting-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

13.5.5. Deploying the Circuit Breaker example application to OpenShift Container Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar to OpenShift Online:

Prerequisites

Procedure

13.5.6. Interacting with the unmodified Thorntail Circuit Breaker example application

After you have the Thorntail example application deployed, you have the following services running:

MY_APP_NAME-name

Exposes the following endpoints:

  • the /api/name endpoint, which returns a name when this service is working, and an error when this service is set up to demonstrate failure.
  • the /api/state endpoint, which controls the behavior of the /api/name endpoint and determines whether the service works correctly or demonstrates failure.
MY_APP_NAME-greeting

Exposes the following endpoints:

  • the /api/greeting endpoint that you can call to get a personalized greeting response.

    When you call the /api/greeting endpoint, it issues a call against the /api/name endpoint of the MY_APP_NAME-name service as part of processing your request. The call made against the /api/name endpoint is protected by the Circuit Breaker.

    If the remote endpoint is available, the name service responds with an HTTP code 200 (OK) and you receive the following greeting from the /api/greeting endpoint:

    {"content":"Hello, World!"}

    If the remote endpoint is unavailable, the name service responds with an HTTP code 500 (Internal server error) and you receive a predefined fallback response from the /api/greeting endpoint:

    {"content":"Hello, Fallback!"}
  • the /api/cb-state endpoint, which returns the state of the Circuit Breaker. The state can be:

    • open : the circuit breaker is preventing requests from reaching the failed service,
    • closed: the circuit breaker is allowing requests to reach the service.

The following steps demonstrate how to verify the availability of the service, simulate a failure and receive a fallback response.

  1. Use curl to execute a GET request against the MY_APP_NAME-greeting service. You can also use the Invoke button in the web interface to do this.

    $ curl http://MY_APP_NAME-greeting-MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/greeting
    {"content":"Hello, World!"}
  2. To simulate the failure of the MY_APP_NAME-name service you can:

    • use the Toggle button in the web interface.
    • scale the number of replicas of the pod running the MY_APP_NAME-name service down to 0.
    • execute an HTTP PUT request against the /api/state endpoint of the MY_APP_NAME-name service to set its state to fail.

      $ curl -X PUT -H "Content-Type: application/json" -d '{"state": "fail"}' http://MY_APP_NAME-name-MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/state
  3. Invoke the /api/greeting endpoint. When several requests on the /api/name endpoint fail:

    1. the Circuit Breaker opens,
    2. the state indicator in the web interface changes from CLOSED to OPEN,
    3. the Circuit Breaker issues a fallback response when you invoke the /api/greeting endpoint:

      $ curl http://MY_APP_NAME-greeting-MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/greeting
      {"content":"Hello, Fallback!"}
  4. Restore the name MY_APP_NAME-name service to availability. To do this you can:

    • use the Toggle button in the web interface.
    • scale the number of replicas of the pod running the MY_APP_NAME-name service back up to 1.
    • execute an HTTP PUT request against the /api/state endpoint of the MY_APP_NAME-name service to set its state back to ok.

      $ curl -X PUT -H "Content-Type: application/json" -d '{"state": "ok"}' http://MY_APP_NAME-name-MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/state
  5. Invoke the /api/greeting endpoint again. When several requests on the /api/name endpoint succeed:

    1. the Circuit Breaker closes,
    2. the state indicator in the web interface changes from OPEN to CLOSED,
    3. the Circuit Breaker issues a returns the Hello World! greeting when you invoke the /api/greeting endpoint:

      $ curl http://MY_APP_NAME-greeting-MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/greeting
      {"content":"Hello, World!"}

13.5.7. Running the Circuit Breaker example application integration tests

This example application includes a self-contained set of integration tests. When run inside an OpenShift project, the tests:

  • Deploy a test instance of the application to the project.
  • Execute the individual tests on that instance.
  • Remove all instances of the application from the project when the testing is done.
Warning

Executing integration tests removes all existing instances of the example application from the target OpenShift project. To avoid accidentally removing your example application, ensure that you create and select a separate OpenShift project to execute the tests.

Prerequisites

  • The oc client authenticated
  • An empty OpenShift project

Procedure

Execute the following command to run the integration tests:

$ mvn clean verify -Popenshift,openshift-it

13.5.8. Using Hystrix Dashboard to monitor the circuit breaker

Hystrix Dashboard lets you easily monitor the health of your services in real time by aggregating Hystrix metrics data from an event stream and displaying them on one screen.

Prerequisites

  • The application deployed

Procedure

  1. Log in to your Minishift or CDK cluster.

    $ oc login OPENSHIFT_URL --token=MYTOKEN
  2. To access the Web console, use your browser to navigate to your Minishift or CDK URL.
  3. Navigate to the project that contains your Circuit Breaker application.

    $ oc project MY_PROJECT_NAME
  4. Import the YAML template for the Hystrix Dashboard application. You can do this by clicking Add to Project, then selecting the Import YAML / JSON tab, and copying the contents of the YAML file into the text box. Alternatively, you can execute the following command:

    $ oc create -f https://raw.githubusercontent.com/snowdrop/openshift-templates/master/hystrix-dashboard/hystrix-dashboard.yml
  5. Click the Create button to create the Hystrix Dashboard application based on the template. Alternatively, you can execute the following command.

    $ oc new-app --template=hystrix-dashboard
  6. Wait for the pod containing Hystrix Dashboard to deploy.
  7. Obtain the route of your Hystrix Dashboard application.

    $ oc get route hystrix-dashboard
    NAME                HOST/PORT                                                    PATH      SERVICES            PORT      TERMINATION   WILDCARD
    hystrix-dashboard   hystrix-dashboard-MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME                 hystrix-dashboard   <all>                   None
  8. To access the Dashboard, open the Dashboard application route URL in your browser. Alternatively, you can navigate to the Overview screen in the Web console and click the route URL in the header above the pod containing your Hystrix Dashboard application.
  9. To use the Dashboard to monitor the MY_APP_NAME-greeting service, replace the default event stream address with the following address and click the Monitor Stream button.

    http://MY_APP_NAME-greeting/hystrix.stream

Additional resources

13.5.9. Circuit breaker resources

Follow the links below for more background information on the design principles behind the Circuit Breaker pattern

13.6. Secured example application for Thorntail

Important

The following example is not meant to be run in a production environment.

Limitation: Run this example application on a Minishift or CDK. You can also use a manual workflow to deploy this example to OpenShift Online Pro and OpenShift Container Platform. This example is not currently available on OpenShift Online Starter.

Note

The Secured example application in Thorntail requires Red Hat SSO 7.3. Since Red Hat SSO 7.3 is not supported on IBM Z, the Secured example is not available for IBM Z.

Example proficiency level: Advanced.

The Secured example application secures a REST endpoint using Red Hat SSO. (This example expands on the REST API Level 0 example).

Red Hat SSO:

  • Implements the Open ID Connect protocol which is an extension of the OAuth 2.0 specification.
  • Issues access tokens to provide clients with various access rights to secured resources.

Securing an application with SSO enables you to add security to your applications while centralizing the security configuration.

Important

This example comes with Red Hat SSO pre-configured for demonstration purposes, it does not explain its principles, usage, or configuration. Before using this example, ensure that you are familiar with the basic concepts related to Red Hat SSO.

13.6.1. The Secured project structure

The SSO example contains:

  • the sources for the Greeting service, which is the one which we are going to to secure
  • a template file (service.sso.yaml) to deploy the SSO server
  • the Keycloak adapter configuration to secure the service

13.6.2. Red Hat SSO deployment configuration

The service.sso.yaml file in this example contains all OpenShift configuration items to deploy a pre-configured Red Hat SSO server. The SSO server configuration has been simplified for the sake of this exercise and does provide an out-of-the-box configuration, with pre-configured users and security settings. The service.sso.yaml file also contains very long lines, and some text editors, such as gedit, may have issues reading this file.

Warning

It is not recommended to use this SSO configuration in production. Specifically, the simplifications made to the example security configuration impact the ability to use it in a production environment.

Table 13.5. SSO Example Simplifications

ChangeReasonRecommendation

The default configuration includes both public and private keys in the yaml configuration files.

We did this because the end user can deploy Red Hat SSO module and have it in a usable state without needing to know the internals or how to configure Red Hat SSO.

In production, do not store private keys under source control. They should be added by the server administrator.

The configured clients accept any callback url.

To avoid having a custom configuration for each runtime, we avoid the callback verification that is required by the OAuth2 specification.

An application-specific callback URL should be provided with a valid domain name.

Clients do not require SSL/TLS and the secured applications are not exposed over HTTPS.

The examples are simplified by not requiring certificates generated for each runtime.

In production a secure application should use HTTPS rather than plain HTTP.

The token timeout has been increased to 10 minutes from the default of 1 minute.

Provides a better user experience when working with the command line examples

From a security perspective, the window an attacker would have to guess the access token is extended. It is recommended to keep this window short as it makes it much harder for a potential attacker to guess the current token.

13.6.3. Red Hat SSO realm model

The master realm is used to secure this example. There are two pre-configured application client definitions that provide a model for command line clients and the secured REST endpoint.

There are also two pre-configured users in the Red Hat SSO master realm that can be used to validate various authentication and authorization outcomes: admin and alice.

13.6.3.1. Red Hat SSO users

The realm model for the secured examples includes two users:

admin
The admin user has a password of admin and is the realm administrator. This user has full access to the Red Hat SSO administration console, but none of the role mappings that are required to access the secured endpoints. You can use this user to illustrate the behavior of an authenticated, but unauthorized user.
alice

The alice user has a password of password and is the canonical application user. This user will demonstrate successful authenticated and authorized access to the secured endpoints. An example representation of the role mappings is provided in this decoded JWT bearer token:

{
  "jti": "0073cfaa-7ed6-4326-ac07-c108d34b4f82",
  "exp": 1510162193,
  "nbf": 0,
  "iat": 1510161593,
  "iss": "https://secure-sso-sso.LOCAL_OPENSHIFT_HOSTNAME/auth/realms/master", 1
  "aud": "demoapp",
  "sub": "c0175ccb-0892-4b31-829f-dda873815fe8",
  "typ": "Bearer",
  "azp": "demoapp",
  "nonce": "90ff5d1a-ba44-45ae-a413-50b08bf4a242",
  "auth_time": 1510161591,
  "session_state": "98efb95a-b355-43d1-996b-0abcb1304352",
  "acr": "1",
  "client_session": "5962112c-2b19-461e-8aac-84ab512d2a01",
  "allowed-origins": [
    "*"
  ],
  "realm_access": {
    "roles": [ 2
      "example-admin"
    ]
  },
  "resource_access": { 3
    "secured-example-endpoint": {
      "roles": [
        "example-admin" 4
      ]
    },
    "account": {
      "roles": [
        "manage-account",
        "view-profile"
      ]
    }
  },
  "name": "Alice InChains",
  "preferred_username": "alice", 5
  "given_name": "Alice",
  "family_name": "InChains",
  "email": "alice@keycloak.org"
}
1
The iss field corresponds to the Red Hat SSO realm instance URL that issues the token. This must be configured in the secured endpoint deployments in order for the token to be verified.
2
The roles object provides the roles that have been granted to the user at the global realm level. In this case alice has been granted the example-admin role. We will see that the secured endpoint will look to the realm level for authorized roles.
3
The resource_access object contains resource specific role grants. Under this object you will find an object for each of the secured endpoints.
4
The resource_access.secured-example-endpoint.roles object contains the roles granted to alice for the secured-example-endpoint resource.
5
The preferred_username field provides the username that was used to generate the access token.

13.6.3.2. The application clients

The OAuth 2.0 specification allows you to define a role for application clients that access secured resources on behalf of resource owners. The master realm has the following application clients defined:

demoapp
This is a confidential type client with a client secret that is used to obtain an access token. The token contains grants for the alice user which enable alice to access the Thorntail, Eclipse Vert.x, Node.js and Spring Boot based REST example application deployments.
secured-example-endpoint
The secured-example-endpoint is a bearer-only type of client that requires a example-admin role for accessing the associated resources, specifically the Greeting service.

13.6.4. Thorntail SSO adapter configuration

The SSO adapter is the client side, or client to the SSO server, component that enforces security on the web resources. In this specific case, it is the greeting service.

In Thorntail, the security configuration breaks down into two notable assets:

  • The web.xml configuration to enact the security for the service
  • The keycloak.json configuration for the keycloak adapter.

Enacting Security using web.xml

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5">
  <security-constraint>
    <web-resource-collection>
      <url-pattern>/api/greeting</url-pattern> 1
    </web-resource-collection>
    <auth-constraint>
      <role-name>example-admin</role-name> 2
    </auth-constraint>
  </security-constraint>

  <login-config>
    <auth-method>KEYCLOAK</auth-method> 3
  </login-config>

  <security-role>
    <role-name>example-admin</role-name>
  </security-role>
</web-app>

1
The web context that is to be secured.
2
The role needed to access the endpoint.
3
Using keycloak as the security provider.

Enacting Security in Keycloak Adapter using keycloak.json

{
  "realm": "master", 1
  "resource": "secured-example-endpoint", 2
  "realm-public-key": "...", 3
  "auth-server-url": "${sso.auth.server.url}", 4
  "ssl-required": "external",
  "disable-trust-manager": true,
  "bearer-only": true, 5
  "use-resource-role-mappings": true
}

1
The security realm to be used.
2
The actual keycloak client configuration.
3
PEM format of the realm public key. You can obtain this from the administration console.
4
The address of the Red Hat SSO server (Interpolation at build time).
5
If enabled the adapter will not attempt to authenticate users, but only verify bearer tokens.

The web.xml enables keycloak and enforces protection of the Greeting service web resource endpoint. The keycloak.json configures the security adapter to interact with Red Hat SSO.

13.6.5. Deploying the Secured example application to Minishift or CDK

13.6.5.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

  • The Fabric8 Launcher tool installed, configured, and running.

Procedure

  1. Navigate to the console where you started Minishift or CDK.
  2. Check the console output for the URL and user credentials you can use to access the running Fabric8 Launcher:

    Example Console Output from a Minishift or CDK Startup

    ...
    -- Removing temporary directory ... OK
    -- Server Information ...
       OpenShift server started.
       The server is accessible via web console at:
           https://192.168.42.152:8443
    
       You are logged in as:
           User:     developer
           Password: developer
    
       To login as administrator:
           oc login -u system:admin

13.6.5.2. Creating the Secured example application using Fabric8 Launcher

Prerequisites

Procedure

  • Navigate to the Fabric8 Launcher URL in a browser and log in.
  • Follow the on-screen instructions to create your example in Thorntail. When asked about which deployment type, select I will build and run locally.
  • Follow on-screen instructions.

    When done, click the Download as ZIP file button and store the file on your hard drive.

13.6.5.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

Procedure

  1. Navigate to the Minishift or CDK URL in a browser.
  2. Click on the question mark icon in the top right-hand corner of the Web console, next to your user name.
  3. Select Command Line Tools in the drop-down menu.
  4. Copy the oc login command.
  5. Paste the command in a terminal. The command uses your authentication token to authenticate your oc CLI client with your Minishift or CDK account.

    $ oc login OPENSHIFT_URL --token=MYTOKEN

13.6.5.4. Deploying the Secured example application using the oc CLI client

Prerequisites

Procedure

  1. Clone your project from GitHub.

    $ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

    Alternatively, if you downloaded a ZIP file of your project, extract it.

    $ unzip MY_PROJECT_NAME.zip
  2. Create a new OpenShift project.

    $ oc new-project MY_PROJECT_NAME
  3. Navigate to the root directory of your application.
  4. Deploy the Red Hat SSO server using the service.sso.yaml file from your example ZIP file:

    $ oc create -f service.sso.yaml
  5. Use Maven to start the deployment to Minishift or CDK.

    $ mvn clean fabric8:deploy -Popenshift -DskipTests \
          -DSSO_AUTH_SERVER_URL=$(oc get route secure-sso -o jsonpath='{"https://"}{.spec.host}{"/auth\n"}')

    This command uses the Fabric8 Maven Plugin to launch the S2I process on Minishift or CDK and to start the pod.

This process generates the uberjar file as well as the OpenShift resources and deploys them to the current project on your Minishift or CDK server.

13.6.6. Deploying the Secured example application to OpenShift Container Platform

In addition to the Minishift or CDK, you can create and deploy the example on OpenShift Container Platform with only minor differences. The most important difference is that you need to create the example application on Minishift or CDK before you can deploy it with OpenShift Container Platform.

Prerequisites

13.6.6.1. Authenticating the oc CLI client

To work with example applications on OpenShift Container Platform using the oc command-line client, you must authenticate the client using the token provided by the OpenShift Container Platform web interface.

Prerequisites

  • An account at OpenShift Container Platform.

Procedure

  1. Navigate to the OpenShift Container Platform URL in a browser.
  2. Click on the question mark icon in the top right-hand corner of the Web console, next to your user name.
  3. Select Command Line Tools in the drop-down menu.
  4. Copy the oc login command.
  5. Paste the command in a terminal. The command uses your authentication token to authenticate your oc CLI client with your OpenShift Container Platform account.

    $ oc login OPENSHIFT_URL --token=MYTOKEN

13.6.6.2. Deploying the Secured example application using the oc CLI client

Prerequisites

Procedure

  1. Clone your project from GitHub.

    $ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

    Alternatively, if you downloaded a ZIP file of your project, extract it.

    $ unzip MY_PROJECT_NAME.zip
  2. Create a new OpenShift project.

    $ oc new-project MY_PROJECT_NAME
  3. Navigate to the root directory of your application.
  4. Deploy the Red Hat SSO server using the service.sso.yaml file from your example ZIP file:

    $ oc create -f service.sso.yaml
  5. Use Maven to start the deployment to OpenShift Container Platform.

    $ mvn clean fabric8:deploy -Popenshift -DskipTests \
          -DSSO_AUTH_SERVER_URL=$(oc get route secure-sso -o jsonpath='{"https://"}{.spec.host}{"/auth\n"}')

    This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift Container Platform and to start the pod.

This process generates the uberjar file as well as the OpenShift resources and deploys them to the current project on your OpenShift Container Platform server.

13.6.7. Authenticating to the Secured example application API endpoint

The Secured example application provides a default HTTP endpoint that accepts GET requests if the caller is authenticated and authorized. The client first authenticates against the Red Hat SSO server and then performs a GET request against the Secured example application using the access token returned by the authentication step.

13.6.7.1. Getting the Secured example application API endpoint

When using a client to interact with the example, you must specify the Secured example application endpoint, which is the PROJECT_ID service.

Prerequisites

  • The Secured example application deployed and running.
  • The oc client authenticated.

Procedure

  1. In a terminal application, execute the oc get routes command.

    A sample output is shown in the following table:

    Example 13.1. List of Secured endpoints

    NameHost/PortPathServicesPortTermination

    secure-sso

    secure-sso-myproject.LOCAL_OPENSHIFT_HOSTNAME

     

    secure-sso

    <all>

    passthrough

    PROJECT_ID

    PROJECT_ID-myproject.LOCAL_OPENSHIFT_HOSTNAME

     

    PROJECT_ID

    <all>

     

    sso

    sso-myproject.LOCAL_OPENSHIFT_HOSTNAME

     

    sso

    <all>

     

    In the above example, the example endpoint would be http://PROJECT_ID-myproject.LOCAL_OPENSHIFT_HOSTNAME. PROJECT_ID is based on the name you entered when generating your example using developers.redhat.com/launch or the Fabric8 Launcher tool.

13.6.7.2. Authenticating HTTP requests using the command line

Request a token by sending a HTTP POST request to the Red Hat SSO server. In the following example, the jq CLI tool is used to extract the token value from the JSON response.

Prerequisites

Procedure

  1. Request an access token with curl, the credentials, and <SSO_AUTH_SERVER_URL> and extract the token from the response with the jq command:

    curl -sk -X POST https://<SSO_AUTH_SERVER_URL>/auth/realms/master/protocol/openid-connect/token \
      -d grant_type=password \
      -d username=alice\
      -d password=password \
      -d client_id=demoapp \
      -d client_secret=1daa57a2-b60e-468b-a3ac-25bd2dc2eadc \
      | jq -r '.access_token'
    
    eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICJRek1nbXhZMUhrQnpxTnR0SnkwMm5jNTNtMGNiWDQxV1hNSTU1MFo4MGVBIn0.eyJqdGkiOiI0NDA3YTliNC04YWRhLTRlMTctODQ2ZS03YjI5MjMyN2RmYTIiLCJleHAiOjE1MDc3OTM3ODcsIm5iZiI6MCwiaWF0IjoxNTA3NzkzNzI3LCJpc3MiOiJodHRwczovL3NlY3VyZS1zc28tc3NvLWRlbW8uYXBwcy5jYWZlLWJhYmUub3JnL2F1dGgvcmVhbG1zL21hc3RlciIsImF1ZCI6ImRlbW9hcHAiLCJzdWIiOiJjMDE3NWNjYi0wODkyLTRiMzEtODI5Zi1kZGE4NzM4MTVmZTgiLCJ0eXAiOiJCZWFyZXIiLCJhenAiOiJkZW1vYXBwIiwiYXV0aF90aW1lIjowLCJzZXNzaW9uX3N0YXRlIjoiMDFjOTkzNGQtNmZmOS00NWYzLWJkNWUtMTU4NDI5ZDZjNDczIiwiYWNyIjoiMSIsImNsaWVudF9zZXNzaW9uIjoiMzM3Yzk0MTYtYTdlZS00ZWUzLThjZWQtODhlODI0MGJjNTAyIiwiYWxsb3dlZC1vcmlnaW5zIjpbIioiXSwicmVhbG1fYWNjZXNzIjp7InJvbGVzIjpbImJvb3N0ZXItYWRtaW4iXX0sInJlc291cmNlX2FjY2VzcyI6eyJzZWN1cmVkLWJvb3N0ZXItZW5kcG9pbnQiOnsicm9sZXMiOlsiYm9vc3Rlci1hZG1pbiJdfSwiYWNjb3VudCI6eyJyb2xlcyI6WyJtYW5hZ2UtYWNjb3VudCIsInZpZXctcHJvZmlsZSJdfX0sIm5hbWUiOiJBbGljZSBJbkNoYWlucyIsInByZWZlcnJlZF91c2VybmFtZSI6ImFsaWNlIiwiZ2l2ZW5fbmFtZSI6IkFsaWNlIiwiZmFtaWx5X25hbWUiOiJJbkNoYWlucyIsImVtYWlsIjoiYWxpY2VAa2V5Y2xvYWsub3JnIn0.mjmZe37enHpigJv0BGuIitOj-kfMLPNwYzNd3n0Ax4Nga7KpnfytGyuPSvR4KAG8rzkfBNN9klPYdy7pJEeYlfmnFUkM4EDrZYgn4qZAznP1Wzy1RfVRdUFi0-GqFTMPb37o5HRldZZ09QljX_j3GHnoMGXRtYW9RZN4eKkYkcz9hRwgfJoTy2CuwFqeJwZYUyXifrfA-JoTr0UmSUed-0NMksGrtJjjPggUGS-qOn6OgKcmN2vaVAQlxW32y53JqUXctfLQ6DhJzIMYTmOflIPy0sgG1mG7sovQhw1xTg0vTjdx8zQ-EJcexkj7IivRevRZsslKgqRFWs67jQAFQA

    <SSO_AUTH_SERVER_URL> is the url of the secure-sso service.

    The attributes, such as username, password, and client_secret are usually kept secret, but the above command uses the default provided credentials with this example for demonstration purpose.

    If you do not want to use jq to extract the token, you can run just the curl command and manually extract the access token.

    Note

    The -sk option tells curl to ignore failures resulting from self-signed certificates. Do not use this option in a production environment. On macOS, you must have curl version 7.56.1 or greater installed. It must also be built with OpenSSL.

  1. Invoke the Secured service. Attach the access (bearer) token to the HTTP headers:

    $ curl -v -H "Authorization: Bearer <TOKEN>" http://<SERVICE_HOST>/api/greeting
    
    {
        "content": "Hello, World!",
        "id": 2
    }

    Example 13.2. A sample GET Request Headers with an Access (Bearer) Token

    > GET /api/greeting HTTP/1.1
    > Host: <SERVICE_HOST>
    > User-Agent: curl/7.51.0
    > Accept: */*
    > Authorization: Bearer <TOKEN>

    <SERVICE_HOST> is the URL of the secured example endpoint. For more information, see Section 13.6.7.1, “Getting the Secured example application API endpoint”.

  2. Verify the signature of the access token.

    The access token is a JSON Web Token, so you can decode it using the JWT Debugger:

    1. In a web browser, navigate to the JWT Debugger website.
    2. Select RS256 from the Algorithm drop down menu.

      Note

      Make sure the web form has been updated after you made the selection, so it displays the correct RSASHA256(…​) information in the Signature section. If it has not, try switching to HS256 and then back to RS256.

    3. Paste the following content in the topmost text box into the VERIFY SIGNATURE section:

      -----BEGIN PUBLIC KEY-----
      MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAoETnPmN55xBJjRzN/cs30OzJ9olkteLVNRjzdTxFOyRtS2ovDfzdhhO9XzUcTMbIsCOAZtSt8K+6yvBXypOSYvI75EUdypmkcK1KoptqY5KEBQ1KwhWuP7IWQ0fshUwD6jI1QWDfGxfM/h34FvEn/0tJ71xN2P8TI2YanwuDZgosdobx/PAvlGREBGuk4BgmexTOkAdnFxIUQcCkiEZ2C41uCrxiS4CEe5OX91aK9HKZV4ZJX6vnqMHmdDnsMdO+UFtxOBYZio+a1jP4W3d7J5fGeiOaXjQCOpivKnP2yU2DPdWmDMyVb67l8DRA+jh0OJFKZ5H2fNgE3II59vdsRwIDAQAB
      -----END PUBLIC KEY-----
      Note

      This is the master realm public key from the Red Hat SSO server deployment of the Secured example application.

    4. Paste the token output from the client output into the Encoded box.

      The Signature Verified sign is displayed on the debugger page.

13.6.7.3. Authenticating HTTP requests using the web interface

In addition to the HTTP API, the secured endpoint also contains a web interface to interact with.

The following procedure is an exercise for you to see how security is enforced, how you authenticate, and how you work with the authentication token.

Prerequisites

Procedure

  1. In a web browser, navigate to the endpoint URL.
  2. Perform an unauthenticated request:

    1. Click the Invoke button.

      Figure 13.1. Unauthenticated Secured Example Web Interface

      sso main

      The services responds with an HTTP 401 Unauthorized status code.

      Figure 13.2. Unauthenticated Error Message

      sso unauthenticated
  3. Perform an authenticated request as a user:

    1. Click the Login button to authenticate against Red Hat SSO. You will be redirected to the SSO server.
    2. Log in as the Alice user. You will be redirected back to the web interface.

      Note

      You can see the access (bearer) token in the command line output at the bottom of the page.

      Figure 13.3. Authenticated Secured Example Web Interface (as Alice)

      sso alice
    3. Click Invoke again to access the Greeting service.

      Confirm that there is no exception and the JSON response payload is displayed. This means the service accepted your access (bearer) token and you are authorized access to the Greeting service.

      Figure 13.4. The Result of an Authenticated Greeting Request (as Alice)

      sso invoke alice
    4. Log out.
  4. Perform an authenticated request as an admininstrator:

    1. Click the Invoke button.

      Confirm that this sends an unauthenticated request to the Greeting service.

    2. Click the Login button and log in as the admin user.

      Figure 13.5. Authenticated Secured Example Web Interface (as admin)

      sso admin
  5. Click the Invoke button.

    The service responds with an HTTP 403 Forbidden status code because the admin user is not authorized to access the Greeting service.

    Figure 13.6. Unauthorized Error Message

    sso unauthorized

13.6.8. Running the Thorntail Secured example application integration tests

Important

The keycloak-authz-client library for Thorntail is provided as a Technology Preview.

Prerequisites

  • The oc client authenticated.
Procedure

Executing integration tests removes all existing instances of the example application from the target OpenShift project. To avoid accidentally removing your example application, ensure that you create and select a separate OpenShift project to execute the tests.

  1. In a terminal application, navigate to the directory with your project.
  2. Deploy the Red Hat SSO server:

    oc apply -f service.sso.yaml
  3. Wait until the Red Hat SSO server is ready. Go to the Web console or view the output of oc get pods to check if the pod is ready.
  4. Execute the integration tests. Provide the URL of the Red Hat SSO server as a parameter:

    $ mvn clean verify -Popenshift,openshift-it -DSSO_AUTH_SERVER_URL=$(oc get route secure-sso -o jsonpath='{"https://"}{.spec.host}{"/auth\n"}')
  5. Once the tests are finished, remove the Red Hat SSO server:

    oc delete -f service.sso.yaml

13.6.9. Secured SSO resources

Follow the links below for additional information on the principles behind the OAuth2 specification and on securing your applications using Red Hat SSO and Keycloak:

13.7. Cache example for Thorntail

Important

The following example is not meant to be run in a production environment.

Limitation: Run this example application on a Minishift or CDK. You can also use a manual workflow to deploy this example to OpenShift Online Pro and OpenShift Container Platform. This example is not currently available on OpenShift Online Starter.

Example proficiency level: Advanced.

The Cache example demonstrates how to use a cache to increase the response time of applications.

This example shows you how to:

  • Deploy a cache to OpenShift.
  • Use a cache within an application.

13.7.1. How caching works and when you need it

Caches allows you to store information and access it for a given period of time. You can access information in a cache faster or more reliably than repeatedly calling the original service. A disadvantage of using a cache is that the cached information is not up to date. However, that problem can be reduced by setting an expiration or TTL (time to live) on each value stored in the cache.

Example 13.3. Caching example

Assume you have two applications: service1 and service2:

  • Service1 depends on a value from service2.

    • If the value from service2 infrequently changes, service1 could cache the value from service2 for a period of time.
    • Using cached values can also reduce the number of times service2 is called.
  • If it takes service1 500 ms to retrieve the value directly from service2, but 100 ms to retrieve the cached value, service1 would save 400 ms by using the cached value for each cached call.
  • If service1 would make uncached calls to service2 5 times per second, over 10 seconds, that would be 50 calls.
  • If service1 started using a cached value with a TTL of 1 second instead, that would be reduced to 10 calls over 10 seconds.

How the Cache example works

  1. The cache, cute name, and greeting services are deployed and exposed.
  2. User accesses the web frontend of the greeting service.
  3. User invokes the greeting HTTP API using a button on the web frontend.
  4. The greeting service depends on a value from the cute name service.

    • The greeting service first checks if that value is stored in the cache service. If it is, then the cached value is returned.
    • If the value is not cached, the greeting service calls the cute name service, returns the value, and stores the value in the cache service with a TTL of 5 seconds.
  5. The web front end displays the response from the greeting service as well as the total time of the operation.
  6. User invokes the service multiple times to see the difference between cached and uncached operations.

    • Cached operations are significantly faster than uncached operations.
    • User can force the cache to be cleared before the TTL expires.

13.7.2. Deploying the Cache example application to OpenShift Online

Use one of the following options to execute the Cache example application on OpenShift Online.

Although each method uses the same oc commands to deploy your application, using developers.redhat.com/launch provides an automated deployment workflow that executes the oc commands for you.

13.7.2.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

Procedure

  1. Navigate to the developers.redhat.com/launch URL in a browser.
  2. Follow on-screen instructions to create and launch your example application in Thorntail.

13.7.2.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

Procedure

  1. Navigate to the OpenShift Online URL in a browser.
  2. Click on the question mark icon in the top right-hand corner of the Web console, next to your user name.
  3. Select Command Line Tools in the drop-down menu.
  4. Copy the oc login command.
  5. Paste the command in a terminal. The command uses your authentication token to authenticate your oc CLI client with your OpenShift Online account.

    $ oc login OPENSHIFT_URL --token=MYTOKEN

13.7.2.3. Deploying the Cache example application using the oc CLI client

Prerequisites

Procedure

  1. Clone your project from GitHub.

    $ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

    Alternatively, if you downloaded a ZIP file of your project, extract it.

    $ unzip MY_PROJECT_NAME.zip
  2. Create a new project.

    $ oc new-project MY_PROJECT_NAME
  3. Navigate to the root directory of your application.
  4. Deploy the cache service.

    $ oc apply -f service.cache.yml
    Note

    If you are using an architecture other than x86_64, in the YAML file, update the image name of Red Hat Data Grid to its relevant image name in that architecture. For example, for the s390x architecture, update the image name to its IBM Z image name registry.access.redhat.com/jboss-datagrid-7/datagrid73-openj9-11-openshift-rhel8.

  5. Use Maven to start the deployment to OpenShift.

    $ mvn clean fabric8:deploy -Popenshift
  6. Check the status of your application and ensure your pod is running.

    $ oc get pods -w
    NAME                             READY     STATUS      RESTARTS   AGE
    cache-server-123456789-aaaaa             1/1       Running     0          8m
    MY_APP_NAME-cutename-1-bbbbb       1/1       Running     0          4m
    MY_APP_NAME-cutename-s2i-1-build   0/1       Completed   0          7m
    MY_APP_NAME-greeting-1-ccccc       1/1       Running     0          3m
    MY_APP_NAME-greeting-s2i-1-build   0/1       Completed   0          3m

    Your 3 pods should have a status of Running once they are fully deployed and started.

  7. After your example application is deployed and started, determine its route.

    Example Route Information

    $ oc get routes
    NAME                 HOST/PORT                                                     PATH      SERVICES        PORT      TERMINATION
    MY_APP_NAME-cutename   MY_APP_NAME-cutename-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME             MY_APP_NAME-cutename   8080                    None
    MY_APP_NAME-greeting   MY_APP_NAME-greeting-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME             MY_APP_NAME-greeting   8080                    None

    The route information of a pod gives you the base URL which you use to access it. In the example above, you would use http://MY_APP_NAME-greeting-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the greeting service.

13.7.3. Deploying the Cache example application to Minishift or CDK

Use one of the following options to execute the Cache example application locally on Minishift or CDK:

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher provides an automated deployment workflow that executes the oc commands for you.

13.7.3.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

  • The Fabric8 Launcher tool installed, configured, and running.

Procedure

  1. Navigate to the console where you started Minishift or CDK.
  2. Check the console output for the URL and user credentials you can use to access the running Fabric8 Launcher:

    Example Console Output from a Minishift or CDK Startup

    ...
    -- Removing temporary directory ... OK
    -- Server Information ...
       OpenShift server started.
       The server is accessible via web console at:
           https://192.168.42.152:8443
    
       You are logged in as:
           User:     developer
           Password: developer
    
       To login as administrator:
           oc login -u system:admin

13.7.3.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

Procedure

  1. Navigate to the Fabric8 Launcher URL in a browser.
  2. Follow the on-screen instructions to create and launch your example application in Thorntail.

13.7.3.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

Procedure

  1. Navigate to the Minishift or CDK URL in a browser.
  2. Click on the question mark icon in the top right-hand corner of the Web console, next to your user name.
  3. Select Command Line Tools in the drop-down menu.
  4. Copy the oc login command.
  5. Paste the command in a terminal. The command uses your authentication token to authenticate your oc CLI client with your Minishift or CDK account.

    $ oc login OPENSHIFT_URL --token=MYTOKEN

13.7.3.4. Deploying the Cache example application using the oc CLI client

Prerequisites

Procedure

  1. Clone your project from GitHub.

    $ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

    Alternatively, if you downloaded a ZIP file of your project, extract it.

    $ unzip MY_PROJECT_NAME.zip
  2. Create a new project.

    $ oc new-project MY_PROJECT_NAME
  3. Navigate to the root directory of your application.
  4. Deploy the cache service.

    $ oc apply -f service.cache.yml
    Note

    If you are using an architecture other than x86_64, in the YAML file, update the image name of Red Hat Data Grid to its relevant image name in that architecture. For example, for the s390x architecture, update the image name to its IBM Z image name registry.access.redhat.com/jboss-datagrid-7/datagrid73-openj9-11-openshift-rhel8.

  5. Use Maven to start the deployment to OpenShift.

    $ mvn clean fabric8:deploy -Popenshift
  6. Check the status of your application and ensure your pod is running.

    $ oc get pods -w
    NAME                             READY     STATUS      RESTARTS   AGE
    cache-server-123456789-aaaaa             1/1       Running     0          8m
    MY_APP_NAME-cutename-1-bbbbb       1/1       Running     0          4m
    MY_APP_NAME-cutename-s2i-1-build   0/1       Completed   0          7m
    MY_APP_NAME-greeting-1-ccccc       1/1       Running     0          3m
    MY_APP_NAME-greeting-s2i-1-build   0/1       Completed   0          3m

    Your 3 pods should have a status of Running once they are fully deployed and started.

  7. After your example application is deployed and started, determine its route.

    Example Route Information

    $ oc get routes
    NAME                 HOST/PORT                                                     PATH      SERVICES        PORT      TERMINATION
    MY_APP_NAME-cutename   MY_APP_NAME-cutename-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME             MY_APP_NAME-cutename   8080                    None
    MY_APP_NAME-greeting   MY_APP_NAME-greeting-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME             MY_APP_NAME-greeting   8080                    None

    The route information of a pod gives you the base URL which you use to access it. In the example above, you would use http://MY_APP_NAME-greeting-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the greeting service.

13.7.4. Deploying the Cache example application to OpenShift Container Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar to OpenShift Online:

Prerequisites

Procedure

13.7.5. Interacting with the unmodified Cache example application

Prerequisites

  • Your application deployed

Procedure

  1. Navigate to the greeting service using your browser.
  2. Click Invoke the service once.

    Notice the duration value is above 2000. Also notice the cache state has changed form No cached value to A value is cached.

  3. Wait 5 seconds and notice cache state has changed back to No cached value.

    The TTL for the cached value is set to 5 seconds. When the TTL expires, the value is no longer cached.

  4. Click Invoke the service once more to cache the value.
  5. Click Invoke the service a few more times over the course of a few seconds while cache state is A value is cached.

    Notice a significantly lower duration value since it is using a cached value. If you click Clear the cache, the cache is emptied.

13.7.6. Running the Cache example application integration tests

This example application includes a self-contained set of integration tests. When run inside an OpenShift project, the tests:

  • Deploy a test instance of the application to the project.
  • Execute the individual tests on that instance.
  • Remove all instances of the application from the project when the testing is done.
Warning

Executing integration tests removes all existing instances of the example application from the target OpenShift project. To avoid accidentally removing your example application, ensure that you create and select a separate OpenShift project to execute the tests.

Prerequisites

  • The oc client authenticated
  • An empty OpenShift project

Procedure

Execute the following command to run the integration tests:

$ mvn clean verify -Popenshift,openshift-it

13.7.7. Caching resources

More background and related information on caching can be found here: