
Red Hat build of Quarkus 3.2

Service binding

Last Updated: 2024-04-04

Red Hat build of Quarkus 3.2 Service binding

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Explore service binding and workload projection to understand their need for connection to other
services for additional information retrieval.

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. SERVICE BINDING
1.1. WORKLOAD PROJECTION
1.2. INTRODUCTION TO SERVICE BINDING OPERATOR
1.3. SEMI-AUTOMATIC SERVICE BINDING
1.4. GENERATING A SERVICEBINDING CUSTOM RESOURCE BY USING THE SEMI-AUTOMATIC METHOD
1.5. AUTOMATIC SERVICE BINDING

1.5.1. Automatic datasource binding
1.5.1.1. Customizing automatic service binding

3

4
4
5
5
7

12
12
13

Table of Contents

1

Red Hat build of Quarkus 3.2 Service binding

2

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

3

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. SERVICE BINDING
The following chapter provides information about service binding and workload projection that were
added to Red Hat build of Quarkus in version 2.7.5 and are in the state of Technology Preview in version
3.2.

Generally, OpenShift applications and services also referred to as deployable workloads, need to be
connected to other services for retrieving additional information, such as service URLs or credentials.

The Service Binding Operator facilitates retrieval of the necessary information, which is then made
available to applications and service-binding tools like the quarkus-kubernetes-service-binding
extension through environment variables without directly influencing or determining the use of the
extension tool itself.

Quarkus supports the Service binding specification for Kubernetes to bind services to applications.

Specifically, Quarkus implements the workload projection part of the specification, enabling applications
to bind to services like databases or brokers, requiring only minimal configuration.

To enable service binding for the available extensions, include the quarkus-kubernetes-service-
binding extension to the application dependencies.

You can use the following extensions for service binding and for workload projection:

quarkus-jdbc-mariadb

quarkus-jdbc-mssql

quarkus-jdbc-mysql

quarkus-jdbc-postgresql

quarkus-mongo-client - Technology Preview

quarkus-kafka-client

quarkus-smallrye-reactive-messaging-kafka

quarkus-reactive-mssql-client - Technology Preview

quarkus-reactive-mysql-client

quarkus-reactive-pg-client

1.1. WORKLOAD PROJECTION

Workload projection is a process of obtaining the configuration for services from the Kubernetes cluster.
This configuration takes the form of directory structures that follow certain conventions and are
attached to an application or a service as a mounted volume.

The kubernetes-service-binding extension uses this directory structure to create configuration
sources, which allows you to configure additional modules, such as databases or message brokers.

You can use workload projection during application development to connect your application to a
development database or other locally run services without changing the application code or
configuration.

Red Hat build of Quarkus 3.2 Service binding

4

https://access.redhat.com/support/offerings/techpreview/
https://github.com/redhat-developer/service-binding-operator
https://github.com/servicebinding/spec
https://github.com/k8s-service-bindings/spec#workload-projection
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/support/offerings/techpreview/

For an example of a workload projection where the directory structure is included in the test resources
and passed to an integration test, see the Kubernetes Service Binding datasource GitHub repository.

NOTE

The k8s-sb directory is the root of all service bindings.
In this example, only one database called fruit-db is intended to be bound. This
binding database has the type file, which specifies postgresql as the database
type, while the other files in the directory provide the necessary information to
establish the connection.

When your Red Hat build of Quarkus project obtains information from
SERVICE_BINDING_ROOT environment variables that are set by OpenShift
Container Platform, you can locate generated configuration files that are present
in the file system and use them to map the configuration-file values to properties
of certain extensions.

1.2. INTRODUCTION TO SERVICE BINDING OPERATOR

The Service Binding Operator is an Operator that implements the Service Binding Specification for
Kubernetes and is meant to simplify the binding of services to an application.

Containerized applications that support workload projection obtain service binding information in the
form of volume mounts. The Service Binding Operator reads binding service information and mounts it
to the application containers that need it.

The correlation between application and bound services is expressed through the ServiceBinding
resources, which declares the intent of what services are meant to be bound to what application.

The Service Binding Operator watches for ServiceBinding resources, which inform the Operator what
applications are meant to be bound with what services. When a listed application is deployed, the
Service Binding Operator collects all the binding information that must be passed to the application and
then upgrades the application container by attaching a volume mount with the binding information.

The Service Binding Operator completes the following actions:

Observes ServiceBinding resources for workloads bound to a particular service.

Applies the binding information to the workload using volume mounts.

The following chapter describes the automatic and semi-automatic service binding approaches and
their use cases. The kubernetes-service-binding extension generates a ServiceBinding resource with
either approach. With the semi-automatic approach, users must manually provide a configuration for
target services. With the automatic approach, no additional configuration is needed for a limited set of
services generating the ServiceBinding resource.

Additional resources

Workload projection

1.3. SEMI-AUTOMATIC SERVICE BINDING

A service binding process starts with a user specification of required services that will be bound to a
certain application. This expression is summarized in the ServiceBinding resource generated by the
kubernetes-service-binding extension. The use of the kubernetes-service-binding extensions helps

CHAPTER 1. SERVICE BINDING

5

https://github.com/quarkusio/quarkus/tree/3.2/integration-tests/kubernetes-service-binding-jdbc/src/test/resources/k8s-sb
https://github.com/redhat-developer/service-binding-operator
https://github.com/servicebinding/spec
https://github.com/servicebinding/spec#workload-projection

users to generate ServiceBinding resources with minimal configuration, therefore simplifying the
process overall.

The Service Binding Operator responsible for the binding process then reads the information from the
ServiceBinding resource and mounts the required files to a container accordingly.

An example of the ServiceBinding resource:

NOTE

The quarkus-kubernetes-service-binding extension provides a more
compact way of expressing the same information. For example:

After adding the earlier configuration properties inside your application.properties, the quarkus-
kubernetes, in combination with the quarkus-kubernetes-service-binding extension, automatically
generates the ServiceBinding resource.

The earlier mentioned db-demo property-configuration identifier now has a double role and also
completes the following actions:

Correlates and groups api-version and kind properties together.

Defines the name property for the custom resource, which you can edit later if needed. For
example:

Additional resources

apiVersion: binding.operators.coreos.com/v1beta1
kind: ServiceBinding
metadata:
 name: binding-request
 namespace: service-binding-demo
spec:
 application:
 name: java-app
 group: apps
 version: v1
 resource: deployments
 services:
 - group: postgres-operator.crunchydata.com
 version: v1beta1
 kind: Database
 name: db-demo
 id: postgresDB

quarkus.kubernetes-service-binding.services.db-demo.api-
version=postgres-operator.crunchydata.com/v1beta1
quarkus.kubernetes-service-binding.services.db-demo.kind=Database

quarkus.kubernetes-service-binding.services.db-demo.api-version=postgres-
operator.crunchydata.com/v1beta1
quarkus.kubernetes-service-binding.services.db-demo.kind=Database
quarkus.kubernetes-service-binding.services.db-demo.name=my-db

Red Hat build of Quarkus 3.2 Service binding

6

How to use Quarkus with the Service Binding Operator

List of bindable Operators

1.4. GENERATING A SERVICEBINDING CUSTOM RESOURCE BY USING
THE SEMI-AUTOMATIC METHOD

You can generate a ServiceBinding resource semi-automatically. The following procedure shows the
OpenShift Container Platform deployment process, including the installation of operators for
configuring and deploying an application.

In this procedure, you install the Service Binding Operator and the PostgreSQL Operator from Crunchy
Data.

IMPORTANT

PostgreSQL Operator is a third-party component. For PostgreSQL Operator support
policies and terms of use, contact the software vendor Crunchy Data.

Then, the procedure involves creating a PostgreSQL cluster, setting up a straightforward application,
and subsequently deploying and binding it to the provisioned cluster.

Prerequisites

You have created an OpenShift Container Platform 4.11 cluster.

You have administrator access to OperatorHub and OpenShift Container Platform to install
cluster-wide operators from OperatorHub.

You have installed:

The OpenShift, oc, orchestration tool

Maven and Java

Procedure

The steps in the following procedure use the HOME (~) directory as a saving and installation destination.

1. Install the Service Binding Operator version 1.3.3 and higher using the Installing the Service
Binding Operator from the OpenShift Container Platform web UI procedure.

a. Verify the installation:

Proceed to the next step when the phase of the Service Binding Operator is set to
Succeeded.

2. Install the Crunchy PostgreSQL Operator from OperatorHub by using either the web console or
CLI.

a. Verify the installation:

oc get csv -w

oc get csv -w

CHAPTER 1. SERVICE BINDING

7

https://developers.redhat.com/articles/2021/12/22/how-use-quarkus-service-binding-operator#
https://github.com/redhat-developer/service-binding-operator#known-bindable-operators
https://redhat-developer.github.io/service-binding-operator/userguide/intro.html
https://github.com/CrunchyData/postgres-operator
https://operatorhub.io
https://redhat-developer.github.io/service-binding-operator/userguide/getting-started/installing-service-binding.html#installing-the-service-binding-operator-from-the-openshift-container-platform-web-ui
https://github.com/redhat-developer/service-binding-operator
https://catalog.redhat.com/software/operators/detail/630536c762d5aa534af14abe

Proceed to the next step when the operator’s phase is set to Succeeded.

3. Create a PostgreSQL cluster:

a. Create a new OpenShift Container Platform namespace, which will be used for creating a
cluster and deploying your application later. This namespace will be referred to as demo
throughout the procedure.

b. Create the following custom resource and save it as pg-cluster.yml:

NOTE

This YAML has been reused from Service Binding Operator Quickstart.

c. Apply the created custom resource:

NOTE

This command assumes that you saved the pg-cluster.yml file in the HOME
directory.

oc new-project demo

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
spec:
 openshift: true
 image: registry.developers.crunchydata.com/crunchydata/crunchy-postgres:ubi8-14.2-1
 postgresVersion: 14
 instances:
 - name: instance1
 dataVolumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
 backups:
 pgbackrest:
 image: registry.developers.crunchydata.com/crunchydata/crunchy-pgbackrest:ubi8-
2.38-0
 repos:
 - name: repo1
 volume:
 volumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi

oc apply -f ~/pg-cluster.yml

Red Hat build of Quarkus 3.2 Service binding

8

https://redhat-developer.github.io/service-binding-operator/userguide/getting-started/quick-start.html

d. Check the pods to verify the installation:

Wait for the Pods to enter the READY state, indicating the installation is complete.

4. Create a Quarkus application that binds to the PostgreSQL database.
The application you are creating is a basic todo application that connects to PostgreSQL using
Hibernate and Panache.

a. Generate the application:

b. Add all required extensions for connecting to PostgreSQL, generating all required
resources, and building a container image for our application:

c. Create a simple entity, as outlined in the following example:

d. Expose the entity:

oc get pods -n demo

mvn com.redhat.quarkus.platform:quarkus-maven-plugin:3.2.11.Final-redhat-
00001:create \
 -DplatformGroupId=com.redhat.quarkus.platform \
 -DplatformVersion=3.2.11.Final-redhat-00001 \
 -DprojectGroupId=org.acme \
 -DprojectArtifactId=todo-example \
 -DclassName="org.acme.TodoResource" \
 -Dpath="/todo"

./mvnw quarkus:add-extension -Dextensions="resteasy-reactive-jackson,jdbc-
postgresql,hibernate-orm-panache,openshift,kubernetes-service-binding"

package org.acme;

import jakarta.persistence.Column;
import jakarta.persistence.Entity;

import io.quarkus.hibernate.orm.panache.PanacheEntity;

@Entity
public class Todo extends PanacheEntity {

 @Column(length = 40, unique = true)
 public String title;

 public boolean completed;

 public Todo() {
 }

 public Todo(String title, Boolean completed) {
 this.title = title;
 }

}

CHAPTER 1. SERVICE BINDING

9

package org.acme;

import jakarta.transaction.Transactional;
import jakarta.ws.rs.*;
import jakarta.ws.rs.core.Response;
import jakarta.ws.rs.core.Response.Status;
import java.util.List;

 @Path("/todo")
 public class TodoResource {

 @GET
 @Path("/")
 public List<Todo> getAll() {
 return Todo.listAll();
 }

 @GET
 @Path("/{id}")
 public Todo get(@PathParam("id") Long id) {
 Todo entity = Todo.findById(id);
 if (entity == null) {
 throw new WebApplicationException("Todo with id of " + id + " does not exist.",
Status.NOT_FOUND);
 }
 return entity;
 }

 @POST
 @Path("/")
 @Transactional
 public Response create(Todo item) {
 item.persist();
 return Response.status(Status.CREATED).entity(item).build();
 }

 @GET
 @Path("/{id}/complete")
 @Transactional
 public Response complete(@PathParam("id") Long id) {
 Todo entity = Todo.findById(id);
 entity.id = id;
 entity.completed = true;
 return Response.ok(entity).build();
 }

 @DELETE
 @Transactional
 @Path("/{id}")
 public Response delete(@PathParam("id") Long id) {
 Todo entity = Todo.findById(id);
 if (entity == null) {
 throw new WebApplicationException("Todo with id of " + id + " does not exist.",
Status.NOT_FOUND);
 }

Red Hat build of Quarkus 3.2 Service binding

10

5. Bind to the target PostgreSQL cluster by generating a ServiceBinding resource.

a. Provide the service coordinates to generate the binding and configure the data source:

apiVersion: postgres-operator.crunchydata.com/v1beta1

kind: PostgresCluster

name: pg-cluster
This is accomplished by setting a quarkus.kubernetes-service-binding.services.<id>.
prefix, as demonstrated in the example below. The id is used to group properties
together and can be assigned any value.

b. Create an import.sql script with some initial data:

6. Deploy the application, including ServiceBinding, and apply it to the cluster:

Wait for the deployment to finish.

Verification

1. Verify the deployment:

2. Verify the installation:

a. Port forward to the HTTP port locally, and then access the /todo endpoint.

b. Open the following URL in a web browser:

http://localhost:8080/todo

 entity.delete();
 return Response.noContent().build();
 }

 }

quarkus.kubernetes-service-binding.services.my-db.api-version=postgres-
operator.crunchydata.com/v1beta1
quarkus.kubernetes-service-binding.services.my-db.kind=PostgresCluster
quarkus.kubernetes-service-binding.services.my-db.name=hippo

quarkus.datasource.db-kind=postgresql
quarkus.hibernate-orm.database.generation=drop-and-create
quarkus.hibernate-orm.sql-load-script=import.sql

INSERT INTO todo(id, title, completed) VALUES (nextval('hibernate_sequence'), 'Finish
the blog post', false);

mvn clean install -Dquarkus.kubernetes.deploy=true -DskipTests

oc get pods -n demo -w

oc port-forward service/todo-example 8080:80

CHAPTER 1. SERVICE BINDING

11

Additional resources

For more information, see the Service Binding Operator section of the Quick Start guide.

1.5. AUTOMATIC SERVICE BINDING

The quarkus-kubernetes-service-binding extension can automatically generate the ServiceBinding
resource when it detects an application needing access to external services provided by compatible
bindable operators.

NOTE

Automatic service binding can only be generated for a limited set of service types.

In alignment with the established Kubernetes and Quarkus service terminology, this
chapter uses the term "kinds" to refer to these service types.

Table 1.1. Operators that support automatic service binding

Service binding type Operator API version Kind

postgresql CrunchyData Postgres postgres-
operator.crunchydata.co
m/v1beta1

PostgresCluster

mysql Percona XtraDB Cluster pxc.percona.com/v1-9-
0

PerconaXtraDBCluster

mongo Percona MongoDB psmdb.percona.com/v1-
9-0

PerconaServerMongoD
B

IMPORTANT

Red Hat build of Quarkus 3.2 support for MongoDB Operator is provided as a
Technology Preview and applies to the client only.

See the Quarkus application configurator page for a list of supported Panache
extensions in Red Hat build of Quarkus 3.2.

1.5.1. Automatic datasource binding

For traditional databases, automatic binding is initiated whenever a datasource is configured as follows:

The configuration mentioned earlier, in conjunction with the presence of extensions such as quarkus-
datasource, quarkus-jdbc-postgresql, quarkus-kubernetes, and quarkus-kubernetes-service-
binding in the application, leads to the creation of the ServiceBinding resource for the postgresql
database type.

By using the apiVersion and kind properties of the Operator resource, which matches the used

quarkus.datasource.db-kind=postgresql

Red Hat build of Quarkus 3.2 Service binding

12

https://redhat-developer.github.io/service-binding-operator/userguide/getting-started/quick-start.html
https://operatorhub.io/operator/postgresql
https://operatorhub.io/operator/percona-xtradb-cluster-operator
https://operatorhub.io/operator/percona-server-mongodb-operator
https://code.quarkus.redhat.com/?extension-search=redhat-support:supported origin:platform panache

By using the apiVersion and kind properties of the Operator resource, which matches the used
postgresql Operator, the generated ServiceBinding resource binds the service or resource to the
application.

When you do not specify a name for your database service, the value of the db-kind property is used as
the default name.

Specified the name of the datasource as follows:

The service in the generated ServiceBinding then displays as follows:

Similarly, if you use mysql, the name of the datasource can be specified as follows:

The generated service contains the following:

1.5.1.1. Customizing automatic service binding

While the automatic service binding feature was developed to eliminate as much of the manual
configuration as possible, there are scenarios where you might need to modify the generated
ServiceBinding resource manually.

The generation process exclusively relies on information extracted from the application and the
knowledge of the supported Operators, which might not reflect what is deployed in the cluster.

The generated resource is based purely on the knowledge of the supported bindable operators for
popular service kinds and a set of conventions that were developed to prevent possible mismatches,
such as:

The target resource name does not match the datasource name.

A specific Operator needs to be used rather than the default Operator for that service kind.

Version conflicts occur when a user needs to use a version other than the default or the latest.

Conventions:

 services:
 - apiVersion: postgres-operator.crunchydata.com/v1beta1
 kind: PostgresCluster
 name: postgresql

quarkus.datasource.fruits-db.db-kind=postgresql

 services:
 - apiVersion: postgres-operator.crunchydata.com/v1beta1
 kind: PostgresCluster
 name: fruits-db

quarkus.datasource.fruits-db.db-kind=mysql

 services:
 - apiVersion: pxc.percona.com/v1-9-0
 kind: PerconaXtraDBCluster
 name: fruits-db

CHAPTER 1. SERVICE BINDING

13

Target resource coordinates are established according to the Operator type and service kind.

By default, the target resource name aligns with the service kind, such as postgresql, mysql, or
mongo.

In the case of named datasources, the datasource name is used.

The client’s name is used for named mongo clients.

Example 1: Name mismatch

For cases where you need to modify the generated ServiceBinding to fix a name mismatch, use the
quarkus.kubernetes-service-binding.services properties and specify the service’s name as the
service key.

The service key is usually the name of the service, for example, the name of the datasource or the
name of the mongo client. When this value is unavailable, the datasource type, such as postgresql,
mysql, or mongo, is used instead.

To avoid naming conflicts between different types of services, prefix the service key with a specific
datasource type, such as postgresql-<person>.

The following example shows how to customize the apiVersion property of the PostgresCluster
resource:

Example 2: Application of a custom name for a datasource

In Example 1, the service key db-kind (postgresql) was used. In this instance, following the convention,
the datasource name (fruits-db) is used because the datasource is named.

The following example shows that for a named datasource, the datasource name is used as the name of
the target resource:

This has the same effect as the following configuration:

Additional resources

For additional information about the available properties, see the workload projection part of
the Kubernetes service binding specification.

Revised on 2024-04-04 11:42:46 UTC

quarkus.datasource.db-kind=postgresql
quarkus.kubernetes-service-binding.services.postgresql.api-version=postgres-
operator.crunchydata.com/v1beta2

quarkus.datasource.fruits-db.db-kind=postgresql

quarkus.kubernetes-service-binding.services.fruits-db.api-version=postgres-
operator.crunchydata.com/v1beta1
quarkus.kubernetes-service-binding.services.fruits-db.kind=PostgresCluster
quarkus.kubernetes-service-binding.services.fruits-db.name=fruits-db

Red Hat build of Quarkus 3.2 Service binding

14

https://github.com/k8s-service-bindings/spec#workload-projection

CHAPTER 1. SERVICE BINDING

15

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. SERVICE BINDING
	1.1. WORKLOAD PROJECTION
	1.2. INTRODUCTION TO SERVICE BINDING OPERATOR
	1.3. SEMI-AUTOMATIC SERVICE BINDING
	1.4. GENERATING A SERVICEBINDING CUSTOM RESOURCE BY USING THE SEMI-AUTOMATIC METHOD
	1.5. AUTOMATIC SERVICE BINDING
	1.5.1. Automatic datasource binding
	1.5.1.1. Customizing automatic service binding

