
Red Hat build of Quarkus 3.2

Release Notes for Red Hat build of Quarkus 3.2

Last Updated: 2024-04-04

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus
3.2

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Release notes provide information about new features, notable technical changes, features in
technology preview, bug fixes, known issues, and related advisories.

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2
1.1. ABOUT RED HAT BUILD OF QUARKUS
1.2. DIFFERENCES BETWEEN THE RED HAT BUILD OF QUARKUS COMMUNITY VERSION AND RED HAT
BUILD OF QUARKUS
1.3. NEW FEATURES, ENHANCEMENTS, AND TECHNICAL CHANGES

1.3.1. Cloud
1.3.1.1. Cached section capabilities introduced in the Qute templating engine
1.3.1.2. Kubernetes client upgraded to version 6.7.2

1.3.2. Core
1.3.2.1. Build-time analytics (user telemetry) support
1.3.2.2. Infinispan annotation caching support
1.3.2.3. Management Network interface integration
1.3.2.4. Most of the quarkus-cache configurations are now runtime
1.3.2.5. Multiple SMTP mailer support
1.3.2.6. Revamp of the development UI
1.3.2.7. Scheduler programmatic API
1.3.2.8. Update tool integration

1.3.3. Data
1.3.3.1. Hibernate ORM extension now incorporates automated IN clause parameter padding
1.3.3.2. Hibernate ORM upgraded to version 6.2
1.3.3.3. Hibernate Search upgraded to version 6.2
1.3.3.4. Oracle JDBC driver upgraded to version 23.2.0.0
1.3.3.5. Reactive datasources now support CredentialsProvider values

1.3.4. Native
1.3.4.1. Red Had build of Red Hat build of Quarkus Native builder upgraded to version 23

1.3.5. Observability
1.3.5.1. OpenTelemetry SDK autoconfiguration

1.3.6. Security
1.3.6.1. Custom claim types in test dependencies now supported
1.3.6.2. OpenID Connect (OIDC) Front-channel Logout now supported
1.3.6.3. OpenID Connect token verification customization
1.3.6.4. Security annotations can be used as meta-annotations
1.3.6.5. Simplified OIDC multitenancy resolution for static tenants
1.3.6.6. SmallRye configuration properties expansion in @RolesAllowed

1.3.7. Standards
1.3.7.1. Eclipse MicroProfile 6 integration
1.3.7.2. Jakarta EE 10 integration

1.3.8. Tooling
1.3.8.1. Apache Maven version 3.9 supported
1.3.8.2. Deploy tool integration
1.3.8.3. Red Hat build of Quarkus CLI enhancements for building and pushing container images

1.3.8.3.1. Building a container image
1.3.8.3.2. Pushing a container image

1.3.9. Web
1.3.9.1. Federation support for SmallRye GraphQL
1.3.9.2. Filtering by named queries in REST Data with the Panache extension
1.3.9.3. gRPC exception handling
1.3.9.4. gRPC extension migration to Vert.x gRPC
1.3.9.5. Programmatic API to create Reactive REST clients

5

6
6

6
8
8
8
8
8
8
8
9
9
9
9
9
9

10
10
10
10
10
10
11
11
11
11
11
11
11
11
11

12
12
12
12
12
12
12
12
13
13
13
13
13
13
14
14
14

Table of Contents

1

1.3.9.6. RESTEasy Reactive HTTP response headers and status codes can be customized
1.3.9.7. The @Encoded annotation on REST Client Reactive is now supported

1.4. SUPPORT AND COMPATIBILITY
1.4.1. Product updates and support lifecycle policy
1.4.2. Tested and verified environments
1.4.3. Development support

1.4.3.1. Development tools
1.5. DEPRECATED COMPONENTS AND FEATURES

1.5.1. Deprecation of Red Hat build of Quarkus support for Java 11
1.6. TECHNOLOGY PREVIEWS

1.6.1. Enhanced component testing
1.6.2. Hibernate Reactive upgraded to version 2
1.6.3. quarkus-opentelemetry-exporter-otlp merged into quarkus-opentelemetry
1.6.4. Support for storing transaction logs in a database

1.7. CHANGES THAT AFFECT COMPATIBILITY WITH EARLIER VERSIONS
1.7.1. Cloud

1.7.1.1. Upgrade to the Kubernetes client that is included with Red Hat build of Quarkus
1.7.1.2. Improved logic for generating TLS-based container ports
1.7.1.3. Removal of some Kubernetes and OpenShift properties

1.7.2. Core
1.7.2.1. Upgrade to Jandex 3
1.7.2.2. Migration path for users of Jandex API
1.7.2.3. Removal of io.quarkus.arc.config.ConfigProperties annotation
1.7.2.4. Interceptor binding annotations declared on private methods now generate build failures
1.7.2.5. Removal of the @AlternativePriority annotation
1.7.2.6. Testing changes: Fixation of the Mockito subclass mockmaker
1.7.2.7. Update to the minimum supported Maven version
1.7.2.8. Removal of quarkus-bootstrap-maven-plugin
1.7.2.9. Mutiny 2 moves to Java Flow

1.7.3. Data
1.7.3.1. Removal of Hibernate ORM with Panache methods
1.7.3.2. Enhancement in Hibernate ORM: Automated IN clause parameter padding
1.7.3.3. New dependency: Hibernate Reactive 2 and Hibernate ORM 6.2
1.7.3.4. Hibernate Search changes
1.7.3.5. Hibernate Validator - Validation.buildDefaultValidatorFactory() now returns a ValidatorFactory
managed by Quarkus
1.7.3.6. Quartz jobs class name change
1.7.3.7. Deprecation of QuarkusTransaction.run and QuarkusTransaction.call methods
1.7.3.8. Renamed Narayana transaction manager property

1.7.4. Messaging
1.7.4.1. Removal of vertx-kafka-client dependency from SmallRye Reactive Messaging

1.7.5. Native
1.7.5.1. Native compilation - Native executables and .so files
1.7.5.2. Native Compilation - Work around missing CPU features
1.7.5.3. Testing changes: Removal of some annotations

1.7.6. Observability
1.7.6.1. Deprecated OpenTracing driver is replaced by OpenTelemetry
1.7.6.2. Default metrics format in Micrometer now aligned with Prometheus
1.7.6.3. Changes in the OpenTelemetry extension and removal of some sampler-related properties

1.7.7. Security
1.7.7.1. Removal of CORS filter default support for using a wildcard as an origin
1.7.7.2. OpenAPI CORS support change
1.7.7.3. Encryption of OIDC session cookie by default

14
15
15
15
16
17
18
18
18
18
19
19
19
19

20
20
20
21
21
21
21
22
22
22
23
23
24
24
24
24
24
24
25
25

26
26
26
28
28
28
28
28
28
29
29
29
30
30
32
32
33
33

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

2

1.7.7.4. Default SameSite attribute set to Lax for OIDC session cookie
1.7.7.5. The OIDC ID token audience claim is verified by default
1.7.7.6. Removal of default password for the JWT key and keystore

1.7.8. Web
1.7.8.1. Changes to RESTEasy Reactive multipart
1.7.8.2. Enhanced JAXB extension control

1.8. BUG FIXES
1.8.1. Security fixes resolved in Red Hat build of Quarkus 3.2.11
1.8.2. Security fixes resolved in Red Hat build of Quarkus 3.2.10
1.8.3. Security fixes resolved in Red Hat build of Quarkus 3.2.9.SP1
1.8.4. Security fixes resolved in Red Hat build of Quarkus 3.2.9
1.8.5. Security fixes resolved in Red Hat build of Quarkus 3.2.6
1.8.6. Other enhancements and bug fixes

1.9. KNOWN ISSUES
1.9.1. Using CDI interceptors to resolve multitenant OIDC configuration fails due to security fix in version
3.2.9.SP1
1.9.2. Podman 4.6 and later does not work with SELinux and Testcontainers library
1.9.3. Containers spawned by Testcontainers occasionally fail
1.9.4. HTTP/1.1 Upgrades to H2C fail under specific flow control conditions
1.9.5. Reactive Oracle datasource fails with specific Oracle JDBC driver versions
1.9.6. Community artifacts are used for native Vert.x dependencies on specific platforms
1.9.7. Red Hat build of Quarkus Kafka Streams are not supported on Windows due to a missing library
1.9.8. Community artifacts are used for some native dependencies on specific platforms
1.9.9. Dependency on org.apache.maven:maven:pom:3.6.3 might cause proxy issues
1.9.10. Build failure in the starter application generated by JBang with the Red Hat extension registry

1.10. ADVISORIES RELATED TO THIS RELEASE
1.10.1. Red Hat build of Quarkus 3.2.11
1.10.2. Red Hat build of Quarkus 3.2.10
1.10.3. Red Hat build of Quarkus 3.2.9.SP1
1.10.4. Red Hat build of Quarkus 3.2.9
1.10.5. Red Hat build of Quarkus 3.2.6

1.11. ADDITIONAL RESOURCES

34
34
34
34
34
35
37
37
37
37
37
38
38
41

41
41

42
42
42
43
43
43
44
44
44
44
44
45
45
45
45

Table of Contents

3

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF
QUARKUS 3.2

Release notes provide information about new features, notable technical changes, features in
technology preview, bug fixes, known issues, and related advisories for Red Hat build of Quarkus 3.2.

These include the following notable changes:

Jakarta EE 10 integration

Eclipse MicroProfile 6 integration

Hibernate ORM upgraded to version 6.2

Quarkus CLI enhancements for building and pushing container images

Deprecation of Red Hat build of Quarkus support for Java 11

Information about upgrading and backward compatibility is also provided to help you make the transition
from an earlier release.

1.1. ABOUT RED HAT BUILD OF QUARKUS

Red Hat build of Quarkus is a Kubernetes-native Java stack optimized for containers and Red Hat
OpenShift Container Platform. Quarkus is designed to work with popular Java standards, frameworks,
and libraries such as Eclipse MicroProfile, Eclipse Vert.x, Apache Camel, Apache Kafka, Hibernate ORM
with Jakarta Persistence, and RESTEasy Reactive (Jakarta REST).

As a developer, you can choose the Java frameworks you want for your Java applications, which you can
run in Java Virtual Machine (JVM) mode or compile and run in native mode. Quarkus provides a
container-first approach to building Java applications. The container-first approach facilitates the
containerization and efficient execution of microservices and functions. For this reason, Quarkus
applications have a smaller memory footprint and faster startup times.

Quarkus also optimizes the application development process with capabilities such as unified
configuration, automatic provisioning of unconfigured services, live coding, and continuous testing that
gives you instant feedback on your code changes.

1.2. DIFFERENCES BETWEEN THE RED HAT BUILD OF QUARKUS
COMMUNITY VERSION AND RED HAT BUILD OF QUARKUS

As an application developer, you can access two different versions of Quarkus: the Quarkus community
version and the productized version, Red Hat build of Quarkus.

The following table describes the differences between the Quarkus community version and Red Hat
build of Quarkus.

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

6

Feature Quarku
s
commu
nity
version

Red Ha
t build
of
Quarku
s
version

Description

Access to the
latest community
features

Yes No With the Quarkus community version, you can access the latest
feature developments.

Red Hat does not release Red Hat build of Quarkus to
correspond with every version that the community releases. The
cadence of Red Hat build of Quarkus feature releases is
approximately every six months.

Enterprise support
from Red Hat

No Yes Red Hat provides enterprise support for Red Hat build of
Quarkus only. To report issues about the Quarkus community
version, see quarkusio/quarkus - Issues.

Access to long-
term support

No Yes Each feature release of Red Hat build of Quarkus is fully
supported for approximately one year up until the next feature
release. When a feature release is superseded by a new version,
Red Hat continues to provide a further six months of
maintenance support. For more information, see Support and
compatibility.

Common
Vulnerabilities and
Exposures (CVE)
fixes and bug fixes
backported to
earlier releases

No Yes With Red Hat build of Quarkus, selected CVE fixes and bug fixes
are regularly backported to supported streams. In the Quarkus
community version, CVEs, and bug fixes are typically made
available in the latest release only.

Tested and
verified with
Red Hat OpenShift
Container
Platform and
Red Hat Enterprise
Linux (RHEL)

No Yes Red Hat build of Quarkus is built, tested, and verified with
Red Hat OpenShift Container Platform and RHEL. Red Hat
provides both production and development support for
supported configurations and tested integrations according to
your subscription agreement. For more information, see Red Hat
build of Quarkus Supported configurations.

Built from source
using secure build
systems

No Yes In Red Hat build of Quarkus, the core platform and all supported
extensions are provided by Red Hat using secure software
delivery, which means that they are built from source, scanned
for security issues, and with verified license usage.

Access to support
for JDK and
Red Hat build of
Quarkus Native
builder distribution

No Yes Red Hat build of Quarkus supports certified OpenJDK builds
and certified native executable builders. See admonition below.
For more information, see Supported configurations.

IMPORTANT

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

7

https://github.com/quarkusio/quarkus/issues
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/4ea39096-72be-4ccf-a22e-7e42063d29ec#ref_rn-supported-features_quarkus-release-notes
https://access.redhat.com/articles/4966181
https://access.redhat.com/articles/4966181

IMPORTANT

Red Hat build of Quarkus supports the building of native Linux executables by using a
Red Hat build of Quarkus Native builder image, which is based on Mandrel and distributed
by Red Hat.

For more information, see Compiling your Quarkus applications to native executables .
Building native executables by using Oracle GraalVM Community Edition (CE), Mandrel
community edition, or any other distributions of GraalVM is not supported for Red Hat
build of Quarkus.

1.3. NEW FEATURES, ENHANCEMENTS, AND TECHNICAL CHANGES

This section provides an overview of the new features, enhancements, and technical changes introduced
in Red Hat build of Quarkus 3.2.

1.3.1. Cloud

1.3.1.1. Cached section capabilities introduced in the Qute templating engine

In Red Hat build of Quarkus 3.2, the Qute templating engine is enhanced to provide the ability to cache
those parts of a template that rarely change, which can help increase efficiency.

To use the cached sections feature, use the quarkus-cache extension, where CacheSectionHelper is
registered and configured automatically.

For more information, see the Cached section part of the “Qute reference” guide.

1.3.1.2. Kubernetes client upgraded to version 6.7.2

The Kubernetes client included with Red Hat build of Quarkus has been upgraded from version 5.12 to
6.7.2. This upgrade offers enhanced features and improved support for developing cloud-native
applications. For more information, see the Kubernetes client - Migration from 5.x to 6.x guide.

1.3.2. Core

1.3.2.1. Build-time analytics (user telemetry) support

Red Hat build of Quarkus 3.2 introduces a build-time analytics feature. This feature provides usage
information about Red Hat build of Quarkus during the application’s build time, but not during its run
time.

The usage analytics report provides anonymous information, such as which operating systems, JAVA
versions, build systems, and extensions are used. Usage analytics can help Red Hat better understand
how Red Hat build of Quarkus is used and how it can be improved.

To opt-in, run Red Hat build of Quarkus in dev mode. The first time you do so, you are asked if you want
to opt-in to contributing anonymous build-time data to the Quarkus community. This data will NOT be
collected when you run a Red Hat build of Quarkus application in, for example, a production environment.

For more information, see the Quarkus usage analytics guide in the Quarkus community. For more
information about what data is collected, see the Telemetry data collection notice .

1.3.2.2. Infinispan annotation caching support

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

8

https://catalog.redhat.com/software/containers/search?q=Red Hat Build of Quarkus Native builder
https://github.com/graalvm/mandrel
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/2.13/guide/8acbc1ec-17d6-4e5c-9651-6e2c4df33f8a
https://quarkus.io/version/3.2/guides/qute-reference
https://quarkus.io/version/3.2/guides/kubernetes-client
https://github.com/fabric8io/kubernetes-client/blob/master/doc/MIGRATION-v6.md
https://quarkus.io/usage/
https://quarkus.io/usage/policy

The Red Hat build of Quarkus Infinispan extension now supports the declarative caching API, allowing
annotation-based caching control in CDI-managed beans.

1.3.2.3. Management Network interface integration

The Management Network interface is a dedicated channel for managing and monitoring your
applications, including providing endpoints for various management tasks such as health checks and
metrics.

1.3.2.4. Most of the quarkus-cache configurations are now runtime

Most of the quarkus-cache extension configuration has been made runtime, allowing you to define the
cache configuration at application startup. Certain configuration properties can be changed at runtime
through API calls.

1.3.2.5. Multiple SMTP mailer support

Some applications require that emails be sent through different SMTP servers. In Red Hat build of
Quarkus 3.2, you can now configure several mailers and send emails by using multiple SMTP servers.

For more information, see the Multiple mailer configuration section of the "Mailer reference" guide.

1.3.2.6. Revamp of the development UI

Red Hat build of Quarkus 3.2 introduces significant changes and enhancements to the development UI,
including a graphical interface for streamlined management and monitoring of application components
during development. This aids in efficient log navigation, metrics tracking, and endpoint management.

1.3.2.7. Scheduler programmatic API

With the Red Hat build of Quarkus 3.2 release, you can schedule jobs programmatically by using the new
Scheduler programmatic API.

To schedule a job programmatically, you inject io.quarkus.scheduler.Scheduler. You can also remove
jobs that are scheduled programmatically.

For more information, see the Programmatic scheduling section of the Quarkus “Scheduler reference”
guide.

1.3.2.8. Update tool integration

The Red Hat build of Quarkus update tool simplifies the upgrade of your applications by automatically
updating project dependencies, configurations, and code to match the latest Red Hat build of Quarkus
version. It streamlines the migration process, ensuring compatibility and reducing the effort required to
stay up-to-date.

To use the tool, run the quarkus update command in your project directory, following the interactive
prompts to update your application.

IMPORTANT

The Quarkus CLI is intended for dev mode only. Red Hat does not support using the
Quarkus CLI in production environments.

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

9

https://quarkus.io/version/3.2/guides/mailer-reference#multiple-mailer-configurations
https://quarkus.io/version/3.2/guides/scheduler-reference#programmatic_scheduling
https://quarkus.io/version/3.2/guides/cli-tooling

For more information, see the Migrating applications to Red Hat build of Quarkus version 3.2 guide.

1.3.3. Data

1.3.3.1. Hibernate ORM extension now incorporates automated IN clause parameter
padding

With this 3.2 release, the Hibernate Object-Relational Mapping (ORM) extension has been changed to
incorporate automatic IN clause parameter padding as a default setting. This improvement augments
the caching efficiency for queries that incorporate IN clauses.

To revert to the previous functionality and deactivate this feature, you can set the property value of
quarkus.hibernate-orm.query.in-clause-parameter-padding to false.

1.3.3.2. Hibernate ORM upgraded to version 6.2

Red Hat build of Quarkus now includes and supports Hibernate ORM version 6.2, therefore significantly
upgrading the main persistence layer.

Hibernate ORM 6.2 brings many improvements and new features compared with version 5.6, but also
some breaking changes.

For more information, see the following resources:

Changes that affect compatibility with earlier versions

Quarkus Migration Guide 3.0: Hibernate ORM 5 to 6 migration guide

Quarkus Using Hibernate ORM and Jakarta Persistence guide

1.3.3.3. Hibernate Search upgraded to version 6.2

In Red Hat build of Quarkus 3.2, Hibernate Search has been upgraded to version 6.2.

Hibernate Search offers indexing and full-text search capabilities to your Red Hat build of Quarkus
applications. Version 6.2 introduces enhancements, new features, and some notable changes to how
Red Hat build of Quarkus applications handle default values for geo-point fields.

For more details, see Changes that affect compatibility with earlier versions .

To learn more about what is new in Hibernate Search, see the Hibernate Search release notes.

1.3.3.4. Oracle JDBC driver upgraded to version 23.2.0.0

The Oracle JDBC driver has been upgraded to version 23.2. Customers using Oracle DB should note
that older versions of the Oracle JDBC driver are not necessarily compatible with the latest Oracle DB
release.

1.3.3.5. Reactive datasources now support CredentialsProvider values

Reactive datasources can now modify CredentialsProvider values, enhancing security and
configurability. This allows real-time credential updates for authentication, ensuring data access security
while maintaining application availability and minimizing operational disruptions.

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

10

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/8c2d0754-31e2-4d6d-9d5f-9ade55c3b30d
https://hibernate.org/orm/
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/4ea39096-72be-4ccf-a22e-7e42063d29ec#ref_changes-that-affect-backward-compatibility_quarkus-release-notes
https://github.com/quarkusio/quarkus/wiki/Migration-Guide-3.0:-Hibernate-ORM-5-to-6-migration
https://quarkus.io/version/3.2/guides/hibernate-orm
https://hibernate.org/search/
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/4ea39096-72be-4ccf-a22e-7e42063d29ec#ref_changes-that-affect-backward-compatibility_quarkus-release-notes
https://hibernate.org/search/releases/6.2/#whats-new

1.3.4. Native

1.3.4.1. Red Had build of Red Hat build of Quarkus Native builder upgraded to version 23

Besides improved performance, version 23 brings improved generation of debug information, extended
support for Java Flight Recorder (JFR) events, and experimental support for JFR event streams. It also
introduces experimental support for Java Management Extensions (JMX).

Environment variables must now be passed to Mandrel through the new native-image option -E<env-
var-key>[=<env-var-value>].

Red Hat build of Quarkus Native builder now defaults to targeting x86-64-v3, the processor-specific
application binary interface (psABI) on the AMD64 architecture, and introduces support for a new -
march option for compiling to a more compatible native image for older architectures.

For more information, see the Work around missing CPU features article in the Red Hat build of Quarkus
community "Native reference" guide.

1.3.5. Observability

1.3.5.1. OpenTelemetry SDK autoconfiguration

Red Hat build of Quarkus introduces OpenTelemetry SDK autoconfiguration, simplifying the integration
of distributed tracing and observability. It automates OpenTelemetry SDK setup based on Red Hat build
of Quarkus extensions, eliminating manual configuration and optimizing trace and metric collection.

1.3.6. Security

1.3.6.1. Custom claim types in test dependencies now supported

In Red Hat build of Quarkus 3.2, the quarkus-test-security-jwt and quarkus-test-security-oidc test
dependencies are enhanced to support custom claim types.

With this update, you can improve the test coverage of applications that use custom JWT token claims.

1.3.6.2. OpenID Connect (OIDC) Front-channel Logout now supported

The inclusion of OIDC front-channel logout support in Red Hat build of Quarkus complements the
already-supported OIDC back-channel logout , enabling the logout of users across multiple services in a
distributed environment.

1.3.6.3. OpenID Connect token verification customization

Within Red Hat build of Quarkus 3.2, the option to tailor the OIDC token verification process is available.
This customization permits the preprocessing of legacy token headers, commonly issued by OIDC
providers like Microsoft Azure, prior to signature validation.

1.3.6.4. Security annotations can be used as meta-annotations

You can combine @TestSecurity and @JwtSecurity in a meta-annotation; for example:

 @Retention(RetentionPolicy.RUNTIME)
 @Target({ ElementType.METHOD })

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

11

https://quarkus.io/version/3.2/guides/native-reference#work-around-missing-cpu-features
https://openid.net/specs/openid-connect-frontchannel-1_0.html
https://openid.net/specs/openid-connect-backchannel-1_0.html

This combination is useful if the same set of security settings are required in multiple test methods.

1.3.6.5. Simplified OIDC multitenancy resolution for static tenants

In an OIDC multitenancy setup where you set multiple tenant configurations in the
application.properties file, you must specify how the tenant identifier gets resolved by registering the
TenantResolver interface implementation.

Red Hat build of Quarkus 3.2 introduces a convention-based static tenant resolution, where the last
path segment of the current HTTP request URL is used as a tenant identifier. For example, if the request
URL ends with /keycloak, then a static tenant configuration whose tenant ID is keycloak is selected.

By using this option, you can reduce boilerplate code in simple multitenant configurations.

For more information, see the Configuring the application section of the Quarkus “Using OpenID
Connect (OIDC) multitenancy” guide.

1.3.6.6. SmallRye configuration properties expansion in @RolesAllowed

The Red Hat build of Quarkus @RolesAllowed annotation supports dynamic role names through
configuration properties, enhancing access control. This annotation restricts access based on
SecurityIdentity (user roles), offering adaptable and configurable access control without code changes.

1.3.7. Standards

1.3.7.1. Eclipse MicroProfile 6 integration

Red Hat build of Quarkus 3.2 introduces integration of Eclipse MicroProfile 6, which enhances
microservice development with up-to-date specifications for improved observability, OpenAPI, and
JWT.

1.3.7.2. Jakarta EE 10 integration

Red Hat build of Quarkus 3.2 introduces the integration of Jakarta EE 10, which provides developers
with access to the current APIs and specifications.

1.3.8. Tooling

1.3.8.1. Apache Maven version 3.9 supported

Red Hat build of Quarkus 3.2 adds support for Maven version 3.9 so that developers can use the latest
Maven features. Maven version 3.8.6 or later remains supported.

1.3.8.2. Deploy tool integration

 @TestSecurity(user = "userOidc", roles = "viewer")
 @OidcSecurity(introspectionRequired = true,
 introspection = {
 @TokenIntrospection(key = "email", value = "user@gmail.com")
 }
)
 public @interface TestSecurityMetaAnnotation {
 }

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

12

https://quarkus.io/version/3.2/guides/security-openid-connect-multitenancy#configuring-the-application
https://microprofile.io/2023/01/10/microprofile-6-0-release/

The quarkus deploy command in Quarkus facilitates deploying applications to various cloud platforms,
containers, and serverless environments. It generates optimized container images and adapts the
application to the target platform, ensuring efficient and reliable deployment.

To use the tool, run quarkus deploy followed by the desired deployment target and configuration
options, allowing for seamless application deployment without manual configuration.

1.3.8.3. Red Hat build of Quarkus CLI enhancements for building and pushing container
images

In Red Hat build of Quarkus 3.2, it is now easier to build and push container images. For more
information, see the Container images section of the "Building Red Hat build of Quarkus apps with the
quarkus command line interface" guide.

1.3.8.3.1. Building a container image

For example, you no longer need to adjust your pom.xml project configuration to build a docker image
to add or remove container image extensions. Instead, you only need to run the following command:

1.3.8.3.2. Pushing a container image

The image push command is similar to the image build command and provides some basic options to
push images to a target container registry.

IMPORTANT

The Quarkus CLI is intended for dev mode only. Red Hat does not support using the
Quarkus CLI in production environments.

For a detailed list of the Red Hat build of Quarkus CLI image commands and how to use them, see the
following resources:

Building Red Hat build of Quarkus apps with the Red Hat build of Quarkus CLI

Blog: Dev productivity - Red Hat build of Quarkus CLI

1.3.9. Web

1.3.9.1. Federation support for SmallRye GraphQL

Quarkus' SmallRye GraphQL now supports Apollo Federation 2 subgraph exposure, enabling federated
GraphQL schema creation. This empowers unified GraphQL APIs by aggregating data from
independently deployed GraphQL services, simplifying complex application development.

1.3.9.2. Filtering by named queries in REST Data with the Panache extension

Filtering by named queries in Red Hat build of Quarkus' REST Data with Panache extension streamlines

quarkus image build docker

quarkus image push --registry=<image registry> --registry-username=<registry username> --registry-
password-stdin

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

13

https://quarkus.io/version/3.2/guides/cli-tooling#container-images
https://quarkus.io/version/3.2/guides/cli-tooling
https://quarkus.io/version/3.2/guides/cli-tooling#container-images
https://quarkus.io/blog/quarkus-cli/

Filtering by named queries in Red Hat build of Quarkus' REST Data with Panache extension streamlines
data retrieval by applying predefined queries to REST endpoints, enhancing performance and code
maintainability for efficient database interaction through REST APIs.

When listing entities, you can filter by a named query defined in your entity by the @NamedQuery
annotation.

An example of the named query

Next, you can set a query parameter namedQuery when listing the entities using the generated
resource. Use the name of the desired query, such as calling http://localhost:8080/people?
namedQuery=Person.containsInName&name=ter, which would retrieve all persons with names
containing "ter".

1.3.9.3. gRPC exception handling

The gRPC exception handling facilitates more robust error management in gRPC services, enhancing
application reliability and debugging of gRPC-based applications.

This feature enables passing the error message as a trailer. The gRPC client will receive a specific error
message from the server in case of issues rather than a generic "server exception."

1.3.9.4. gRPC extension migration to Vert.x gRPC

The migration of the gRPC extension to Vert.x’s implementation enhances alignment with the Vert.x
ecosystem, offering an efficient way to develop a microservice by using gRPC communication.

This implementation allows a single HTTP server configuration that removes duplicity from your Red Hat
build of Quarkus Security configuration.

1.3.9.5. Programmatic API to create Reactive REST clients

In previous releases, you could only create Reactive REST clients by configuring them in the
application.properties file. This approach might have been problematic if you wanted to create
dynamic clients.

With Red Hat build of Quarkus 3.2, you can now create Reactive REST clients programmatically by using
the new Quarkus-specific API, QuarkusRestClientBuilder.

The QuarkusRestClientBuilder interface programmatically creates Reactive REST clients with
additional configuration options.

For more information, see the Programmatic client creation with QuarkusRestClientBuilder section of
the Quarkus "Using the REST Client" guide.

1.3.9.6. RESTEasy Reactive HTTP response headers and status codes can be customized

In Red Hat build of Quarkus 3.2, the RESTEasy Reactive client is enhanced to provide more flexibility

@Entity
@NamedQuery(name = "Person.containsInName", query = "from Person where name like
CONCAT('%', CONCAT(:name, '%'))")
public class Person extends PanacheEntity {
 String name;
}

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

14

http://localhost:8080/people?namedQuery=Person.containsInName&name=ter
https://quarkus.io/version/3.2/guides/rest-client-reactive#programmatic-client-creation-with-quarkusrestclientbuilder

In Red Hat build of Quarkus 3.2, the RESTEasy Reactive client is enhanced to provide more flexibility
when streaming responses.

With this update, you can customize HTTP headers, HTTP responses, and status codes.

For more information, see the Customizing headers and status section of the Quarkus “Writing REST
services with RESTEasy Reactive” guide.

1.3.9.7. The @Encoded annotation on REST Client Reactive is now supported

Red Hat build of Quarkus 3.2 introduces support for the @Encoded annotation on REST Client
Reactive. With this update, the @Encoded annotation impacts the decoding of parameters, such as the
PATH and QUERY parameters.

For more information, see the following resources:

Jakarta EE Platform API - Annotation Type Encoded

Quarkus Using the REST Client guide

1.4. SUPPORT AND COMPATIBILITY

You can find detailed information about the supported configurations and artifacts that are compatible
with Red Hat build of Quarkus 3.2 and the high-level support lifecycle policy on the Red Hat Customer
Support portal as follows:

For a list of supported configurations, OpenJDK versions, and tested integrations, see Red Hat
build of Quarkus Supported configurations.

For a list of the supported Maven artifacts, extensions, and BOMs for Red Hat build of Quarkus,
see Red Hat build of Quarkus Component details .

For general availability, full support, and maintenance support dates for all Red Hat products,
see Red Hat Application Services Product Update and Support Policy .

1.4.1. Product updates and support lifecycle policy

In Red Hat build of Quarkus, a feature release can be either a major or a minor release that introduces
new features or support. Red Hat build of Quarkus release version numbers are directly aligned with the
Long-Term Support (LTS) versions of the Quarkus community project . The version numbering of a
Red Hat build of Quarkus feature release matches the Quarkus community version that it is based on.
For more information, see the Long-Term Support (LTS) for Quarkus blog post.

IMPORTANT

Red Hat does not release a productized version of Quarkus for every version the
community releases. The cadence of the Red Hat build of Quarkus feature releases is
about every six months.

Red Hat build of Quarkus provides full support for a feature release right up until the release of a
subsequent version. When a feature release is superseded by a new version, Red Hat continues to
provide a further six months of maintenance support for the release, as outlined in the following support
lifecycle chart [Fig. 1].

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

15

https://quarkus.io/version/3.2/guides/resteasy-reactive#customizing-headers-and-status
https://jakarta.ee/specifications/platform/9/apidocs/jakarta/ws/rs/encoded
https://quarkus.io/version/3.2/guides/rest-client-reactive
https://access.redhat.com/articles/4966181
https://access.redhat.com/articles/3348731
https://access.redhat.com/support/policy/updates/jboss_notes/#p_quarkus
https://code.quarkus.io/
https://quarkus.io/blog/lts-releases/

Figure 1. Feature release cadence and support lifecycle of Red Hat build of Quarkus

During the full support phase and maintenance support phase of a release, Red Hat also provides
'service-pack (SP)' updates and 'micro' releases to fix bugs and Common Vulnerabilities and Exposures
(CVE).

New features in subsequent feature releases of Red Hat build of Quarkus can introduce enhancements,
innovations, and changes to dependencies in the underlying technologies or platforms. For a detailed
summary of what is new or changed in a successive feature release, see New features, enhancements,
and technical changes.

While most of the features of Red Hat build of Quarkus continue to work as expected after you upgrade
to the latest release, there might be some specific scenarios where you need to change your existing
applications or do some extra configuration to your environment or dependencies. Therefore, before
upgrading Red Hat build of Quarkus to the latest release, always review the Changes that affect
compatibility with earlier versions and Deprecated components and features sections of the release
notes.

1.4.2. Tested and verified environments

Red Hat build of Quarkus 3.2 is available on the following versions of Red Hat OpenShift Container
Platform and Red Hat Enterprise Linux 8, with the listed supported installation container images.

Please note the Tested and Supported columns for each CPU architecture. To get the support status
of versions in the following table whose deployment environments are not tested, see Support of
Red Hat Middleware products and components on Red Hat OpenShift Container Platform in the
Red Hat Knowledgebase.

The values captured in the following table represent the valid state at the time of release.

Table 1.1. Supported deployment environments for Red Hat build of Quarkus 3.2 on Red Hat
OpenShift Container Platform and Red Hat Enterprise Linux

Platform Architecture Container Image /
JVM

Tested Supported

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

16

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/4ea39096-72be-4ccf-a22e-7e42063d29ec#ref_rn-new-features-changes-and-technical-enhancements_quarkus-release-notes
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/4ea39096-72be-4ccf-a22e-7e42063d29ec#ref_changes-that-affect-backward-compatibility_quarkus-release-notes
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/4ea39096-72be-4ccf-a22e-7e42063d29ec#ref_rn-deprecated-components-and-features_quarkus-release-notes
https://access.redhat.com/articles/5115291

OpenShift
Container
Platform 4.10

AMD64 and Intel
64 (x86_64)

Red Hat build of
OpenJDK 11 & 17

Yes Yes

OpenShift
Container
Platform 4.10

IBM Power
(ppc64le) and IBM
Z (s390x)

Red Hat build of
OpenJDK 11 & 17

No Yes

OpenShift
Container
Platform 4.11

AMD64 and Intel
64 (x86_64)

Red Hat build of
OpenJDK 11 & 17

No Yes - See the
Support article

OpenShift
Container
Platform 4.11

IBM Power
(ppc64le) IBM Z
(s390x)

Red Hat build of
OpenJDK 11 & 17

No Yes - See the
Support article

OpenShift
Container
Platform 4.12

AMD64 and Intel
64 (x86_64)

Red Hat build of
OpenJDK 11 & 17

No Yes - See the
Support article

OpenShift
Container
Platform 4.12

IBM Power
(ppc64le) and IBM
Z (s390x)

Red Hat build of
OpenJDK 11 & 17

No Yes - See the
Support article

OpenShift
Container
Platform 4.13

AMD64 and Intel
64 (x86_64)

Red Hat build of
OpenJDK 11 & 17

Yes Yes

OpenShift
Container
Platform 4.13

IBM Power
(ppc64le) and IBM
Z (s390x)

Red Hat build of
OpenJDK 11 & 17

Yes Yes

Red Hat
Enterprise Linux
8

AMD64 and Intel
64 (x86_64)

Red Hat build of
OpenJDK 11 & 17

Yes Yes

Red Hat
Enterprise Linux
8

AMD64 and Intel
64 (x86_64)

Eclipse Temurin
OpenJDK 11 & 17

Yes Yes

For a list of supported configurations, log in to the Red Hat Customer Portal and see the
Knowledgebase solution Red Hat build of Quarkus Supported configurations .

1.4.3. Development support

Red Hat provides development support for the following Red Hat build of Quarkus features, plugins,
extensions, and dependencies:

Features

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

17

https://access.redhat.com/articles/5115291
https://access.redhat.com/articles/5115291
https://access.redhat.com/articles/5115291
https://access.redhat.com/articles/5115291
https://access.redhat.com/articles/4966181
https://access.redhat.com/support/offerings/developer/soc/

Continuous Testing

Dev Services

Dev UI

Local development mode

Remote development mode

Plugins

Maven Protocol Buffers Plugin

1.4.3.1. Development tools

Red Hat provides development support for using Quarkus development tools, including the Quarkus
CLI and the Maven and Gradle plugins, to prototype, develop, test, and deploy Red Hat build of Quarkus
applications.

Red Hat does not support using Quarkus development tools in production environments. For more
information, see the Red Hat Knowledgebase article Development Support Scope of Coverage.

1.5. DEPRECATED COMPONENTS AND FEATURES

The components and features listed in this section are deprecated with Red Hat build of Quarkus 3.2.
They are included and supported in this release. However, no enhancements will be made to these
components and features, and they might be removed in the future.

For a list of the components and features that are deprecated in this release, log in to the Red Hat
Customer Portal and view the Red Hat build of Quarkus Component details page.

1.5.1. Deprecation of Red Hat build of Quarkus support for Java 11

In Red Hat build of Quarkus 3.2, support for Java 11 is deprecated and is planned to be removed in a
future release. Although Red Hat build of Quarkus 3.2 still supports Java 11 as the minimal version, start
using Java 17 instead.

1.6. TECHNOLOGY PREVIEWS

This section lists features and extensions that are now available as a Technology Preview in Red Hat
build of Quarkus 3.2.

IMPORTANT

Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat recommends that
you do not use them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about Red Hat Technology Preview features, see Technology
Preview Features Scope.

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

18

https://access.redhat.com/support/offerings/developer/
https://access.redhat.com/support/offerings/developer/soc/
https://access.redhat.com/articles/3348731
https://access.redhat.com/support/offerings/techpreview/

1.6.1. Enhanced component testing

Red Hat build of Quarkus 3.2 introduces a JUnit extension named QuarkusComponentTestExtension
as a Technology Preview feature.

This new extension aims to help ease testing of CDI components and mocking of their dependencies
and is available in the quarkus-junit5-component dependency.

For more information, see the Testing components section of the Red Hat build of Quarkus “Testing
your application” guide.

1.6.2. Hibernate Reactive upgraded to version 2

With this 3.2 release, Red Hat build of Quarkus depends on the Hibernate Reactive 2 extension instead
of Hibernate Reactive 1. This change implies several changes in behavior and database schema
expectations that are incompatible with earlier versions. Most of the changes are related to Hibernate
Reactive 2 depending on Hibernate ORM 6.2 instead of Hibernate ORM 5.6.

1.6.3. quarkus-opentelemetry-exporter-otlp merged into quarkus-opentelemetry

The quarkus-opentelemetry-exporter-otlp extension is part of the quarkus-opentelemetry extension.
This unified extension provides OpenTelemetry Protocol (OTLP) exporter functionality without
additional setup, streamlining OTLP exporter usage.

1.6.4. Support for storing transaction logs in a database

With Red Hat build of Quarkus 3.2, for cloud environments where persistent storage is unavailable, such
as when application containers cannot use persistent volumes, you can configure the transaction
management to store transaction logs in a database by using a Java Database Connectivity (JDBC)
datasource.

IMPORTANT

This configuration is only relevant for Jakarta Transactions transactions.

While there are several benefits to using a database to store transaction logs, you might
notice a reduction in performance compared with using the file system to store the logs.

However, in cloud-native apps, it is important to assess transactions after careful evaluation. The
narayana-jta extension, which manages these transactions, requires stable storage, a unique reusable
node identifier, and a steady IP address to work correctly. While the JDBC object store provides stable
storage, users must still plan how to meet the other two requirements.

To store transaction logs by using a JDBC datasource, configure the quarkus.transacion-
manager.object-store.<property> properties, where <property> can be any of the following options:

type (string): Configure this property to jdbc to enable usage of a Red Hat build of Quarkus
JDBC datasource for storing transaction logs. The default value is file-system.

datasource (string): Specify the name of the datasource for the transaction log storage. If no
value is provided for the datasource property, Red Hat build of Quarkus uses the default
datasource.

create-table (boolean): When set to true, the transaction log table gets automatically created if
it does not already exist. The default value is false.

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

19

https://quarkus.io/version/3.2/guides/getting-started-testing#testing-components

drop-table (boolean): When set to true, the tables are dropped on startup if they already exist.
The default value is false.

table-prefix (string): Specify the prefix for a related table name. The default value is quarkus_.

Also consider the following points:

You can manually create the transaction log table during the initial setup by setting the create-
table property to true.

JDBC data sources and ActiveMQ Artemis allow the enlistment and automatic registration of
XAResourceRecovery instances.
However, be aware that the following points are not included in Red Hat build of Quarkus’s
support for storing transaction logs in a database:

JDBC datasources is part of the quarkus-agroal extension and requires that the following
application property is set as shown: quarkus.datasource.jdbc.transactions=XA.

ActiveMQ Artemis (community client) is part of quarkus-pooled-jms extension and
requires that the following application property is set as shown: quarkus.pooled-
jms.transaction=XA.
For more information, see CEQ-4878.

To ensure data protection in case of application crashes or failures, enable the transaction crash
recovery with the quarkus.transaction-manager.enable-recovery=true configuration.

NOTE

To work around the current known issue of Agroal having a different view on running
transaction checks, set the datasource transaction type for the datasource responsible
for writing the transaction logs to disabled:

quarkus.datasource.<TX_LOG>.jdbc.transactions=disabled

This example uses TX_LOG as the datasource name.

1.7. CHANGES THAT AFFECT COMPATIBILITY WITH EARLIER
VERSIONS

This section describes changes in Red Hat build of Quarkus 3.2 that affect the compatibility of
applications built with earlier product versions.

Review these breaking changes and take the steps required to ensure that your applications continue
functioning after you update them to Red Hat build of Quarkus 3.2.

To automate many of these changes, use the quarkus update command to update your projects to the
latest Red Hat build of Quarkus version.

1.7.1. Cloud

1.7.1.1. Upgrade to the Kubernetes client that is included with Red Hat build of Quarkus

The Kubernetes Client has been upgraded from 5.12 to 6.7.2. For more information, see the Kubernetes
Client - Migration from 5.x to 6.x guide.

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

20

https://issues.redhat.com/browse/CEQ-4878
https://issues.redhat.com/browse/AG-209
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/8c2d0754-31e2-4d6d-9d5f-9ade55c3b30d#proc_updating-quarkus_quarkus-release-notes
https://github.com/fabric8io/kubernetes-client/blob/main/doc/MIGRATION-v6.md

1.7.1.2. Improved logic for generating TLS-based container ports

Red Hat build of Quarkus 3.2 introduces changes in how the Kubernetes extension generates TLS-
based container ports.

Earlier versions automatically added a container port named https to generated deployment resources.
This approach posed problems, especially when SSL/TLS was not configured, rendering the port non-
functional.

In 3.2 and later, the Kubernetes extension does not add a container port named https by default. The
container port is only added if you take the following steps:

You specify any relevant quarkus.http.ssl.* properties in your application.properties file.

You set quarkus.kubernetes.ports.https.tls=true in your application.properties file.

1.7.1.3. Removal of some Kubernetes and OpenShift properties

With this 3.2 release, some previously deprecated Kubernetes and OpenShift-related properties have
been removed. Replace them with their new counterparts.

Table 1.2. Removed properties and their new counterparts

Removed property New property

quarkus.kubernetes.expose quarkus.kubernetes.ingress.expose

quarkus.openshift.expose quarkus.openshift.route.expose

quarkus.kubernetes.host quarkus.kubernetes.ingress.host

quarkus.openshift.host quarkus.openshift.route.host

quarkus.kubernetes.group quarkus.kubernetes.part-of

quarkus.openshift.group quarkus.openshift.part-of

Additionally, with this release, properties without the quarkus. prefix are ignored. For example, before
this release, if you added a kubernetes.name property, it was mapped to quarkus.kubernetes.name.
To avoid exceptions like java.lang.ClassCastException when upgrading from 2.16.0.Final to 2.16.1.Final
#30850, this kind of mapping is no longer done.

As you continue your work with Kubernetes and OpenShift in the context of Quarkus, use the new
properties and include the quarkus. prefix where needed.

1.7.2. Core

1.7.2.1. Upgrade to Jandex 3

With this 3.2 release, Jandex becomes part of the SmallRye project, consolidating all Jandex projects
into a single repository: https://github.com/smallrye/jandex/. Consequently, a new release of the
Jandex Maven plugin is delivered alongside the Jandex core.

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

21

https://github.com/quarkusio/quarkus/issues/30850
https://github.com/smallrye/jandex/

This release also changes the Maven coordinates. Replace the old coordinates with the new ones.

Table 1.3. Old coordinates and their new counterparts

Old coordinates New coordinates

org.jboss:jandex io.smallrye:jandex

org.jboss.jandex:jandex-maven-plugin io.smallrye:jandex-maven-plugin

If you use the Maven Enforcer plugin, configure it to ban any dependencies on org.jboss:jandex. An
equivalent plugin is available for Gradle users.

1.7.2.2. Migration path for users of Jandex API

Jandex 3 contains many interesting features and improvements. These changes, unfortunately, required
a few breaking changes. Here is the recommended migration path:

1. Upgrade to Jandex 2.4.3.Final. This version provides replacements for some methods that have
changed in Jandex 3.0.0. For instance, instead of ClassInfo.annotations(), use
annotationsMap(), and replace MethodInfo.parameters() with parameterTypes(). Stop using
any methods that Jandex has marked as deprecated.

2. Ensure you do not use the return value of Indexer.index() or indexClass().

3. If you compile your code against Jandex 2.4.3.Final, it can run against both 2.4.3.Final and 3.0.0.
However, there are exceptions to this. If you implement the IndexView interface or, in some
cases, rely on the UnresolvedTypeVariable class, it is not possible to keep the project
compatible with both Jandex 2.4.3 and Jandex 3.

4. Upgrade to Jandex 3.0.0. If you implement the IndexView interface, ensure you implement the
methods that have been added. And if you extensively use the Jandex Type hierarchy, verify if
you need to handle TypeVariableReference, which is now used to represent recursive type
variables.

Alongside this release, Jandex introduces a new documentation site . While it’s a work in progress, it will
become more comprehensive over time. You can also refer to the improved Jandex Javadoc for further
information.

1.7.2.3. Removal of io.quarkus.arc.config.ConfigProperties annotation

With this 3.2 release, the previously deprecated io.quarkus.arc.config.ConfigProperties annotation
has been removed.

Instead, use the io.smallrye.config.ConfigMapping annotation to inject multiple related configuration
properties.

For more information, see the @ConfigMapping section of the "Mapping configuration to objects" guide.

1.7.2.4. Interceptor binding annotations declared on private methods now generate build
failures

With this 3.2 release, declaring an interceptor binding annotation on a private method is not supported
and triggers a build failure; for example:

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

22

https://smallrye.io/jandex/
https://quarkus.io/version/3.2/guides/config-mappings#config-mappings

jakarta.enterprise.inject.spi.DeploymentException: @Transactional does not affect method
com.acme.MyBean.myMethod() because the method is private. [...]

In earlier releases, declaring an interceptor binding annotation on a private method triggered only a
warning in logs but was otherwise ignored.

This support change aims to prevent unintentional usage of interceptor annotations on private methods
because they do not have any effect and can cause confusion.

To address this change, remove such annotations from private methods. If removing these annotations
is not feasible, you can set the configuration property quarkus.arc.fail-on-intercepted-private-method
to false. This setting reverts the system to its previous behavior, where only a warning is logged.

1.7.2.5. Removal of the @AlternativePriority annotation

This release removes the previously deprecated @AlternativePriority annotation. Replace it with both
the @Alternative and @Priority annotations.

Example: Removed annotation

Example: Replacement annotations

Use jakarta.annotation.Priority with the @Priority annotation instead of io.quarkus.arc.Priority,
which is deprecated and planned for removal in a future release. Both annotations perform identical
functions.

1.7.2.6. Testing changes: Fixation of the Mockito subclass mockmaker

This release updates Mockito version 5.x. Notably, Mockito switched the default mockmaker to inline in
its 5.0.0 release.

However, to preserve the mocking behavior Quarkus users are familiar with since Quarkus 1.x, and to
prevent memory leaks for extensive test suites , Quarkus 3.0 fixes the mockmaker to subclass instead
of inline until the latter is fully supported.

If you want to force the inline mockmaker, follow these steps:

1. Add the following exclusion to your pom.xml:

@AlternativePriority(1)

@Alternative
@Priority(1)

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-junit5-mockito</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-subclass</artifactId>
 </exclusion>
 </exclusions>
<dependency>

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

23

https://github.com/mockito/mockito/releases/tag/v5.0.0
https://github.com/quarkusio/quarkus/issues/31251

2. Add mockito-core to your dependencies.

3. Mockito 5.3 removed the mockito-inline artifact: you can remove it from your dependencies.

1.7.2.7. Update to the minimum supported Maven version

Quarkus has undergone a refactoring of its Maven plugins to support Maven 3.9. As a result, the
minimum Maven version supported by Quarkus has been raised from 3.6.2 to 3.8.6 or later. Ensure your
development environment is updated accordingly to benefit from the latest improvements and features.

1.7.2.8. Removal of quarkus-bootstrap-maven-plugin

With this 3.2 release, the previously-deprecated io.quarkus:quarkus-bootstrap-maven-plugin Maven
plugin has been removed.

This plugin is for Quarkus extension development only. Therefore, if you are developing custom Quarkus
extensions, you must change the artifact ID from io.quarkus:quarkus-bootstrap-maven-plugin to
io.quarkus:quarkus-extension-maven-plugin.

NOTE

This change relates specifically to custom extension development. For standard
application development, you use the quarkus-maven-plugin plugin.

1.7.2.9. Mutiny 2 moves to Java Flow

Mutiny is a reactive programming library, the versions 1.x of which were based on the
org.reactivestream interfaces, whereas version 2 is based on java.util.concurrent.Flow. These APIs are
identical, but the package name has changed.

Mutiny offers adapters to bridge between Mutiny 2 (Flow API) and other libraries with legacy reactive
streams API.

1.7.3. Data

1.7.3.1. Removal of Hibernate ORM with Panache methods

With this 3.2 release, the following previously deprecated methods from Hibernate ORM with Panache
and Hibernate ORM with Panache in Kotlin have been removed:

io.quarkus.hibernate.orm.panache.PanacheRepositoryBase#getEntityManager(Class<?>
clazz)

io.quarkus.hibernate.orm.panache.kotlin.PanacheRepositoryBase#getEntityManager(claz
z: KClass<Any>)

Instead, use the Panache.getEntityManager(Class<?> clazz) method.

1.7.3.2. Enhancement in Hibernate ORM: Automated IN clause parameter padding

With this 3.2 release, the Hibernate Object-Relational Mapping (ORM) extension has been changed to
incorporate automatic IN clause parameter padding as a default setting. This improvement augments
the caching efficiency for queries that incorporate IN clauses.

To revert to the previous functionality and deactivate this feature, you can set the property value of

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

24

To revert to the previous functionality and deactivate this feature, you can set the property value of
quarkus.hibernate-orm.query.in-clause-parameter-padding to false.

1.7.3.3. New dependency: Hibernate Reactive 2 and Hibernate ORM 6.2

With this 3.2 release, Quarkus depends on the Hibernate Reactive 2 extension instead of Hibernate
Reactive 1. This change implies several changes in behavior and database schema expectations that are
incompatible with earlier versions.

Most of the changes are related to Hibernate Reactive 2 depending on Hibernate ORM 6.2 instead of
Hibernate ORM 5.6.

IMPORTANT

The Hibernate Reactive 2 extension is available as a Technology Preview in Red Hat build
of Quarkus 3.2.

For more information, see the following resources:

Migration Guide 3.0: Hibernate Reactive

Hibernate Reactive: 2.0 series

Migration Guide 3.0: Hibernate ORM 5 to 6 migration

1.7.3.4. Hibernate Search changes

Changes in the defaults for projectable and sortable on GeoPoint fields

With this 3.2 release, Hibernate Search 6.2 changes how defaults are handled for GeoPoint fields.

Suppose your Hibernate Search mapping includes GeoPoint fields that use the default value for the
projectable option and either the default value or Sortable.NO for the sortable option. In that case,
Elasticsearch schema validation fails on startup because of missing doc values on those fields.

To prevent that failure, complete either of the following steps:

Revert to the previous defaults by adding projectable = Projectable.NO to the mapping
annotation of relevant GeoPoint fields.

Recreate your Elasticsearch indexes and reindex your database. The easiest way to do so is to
use the MassIndexer with dropAndCreateSchemaOnStart(true).

For more information, see the Data format and schema changes section of the "Hibernate Search
6.2.1.Final: Migration Guide from 6.1".

Deprecated or renamed configuration properties

With this 3.2 release, the quarkus.hibernate-search-orm.automatic-
indexing.synchronization.strategy property is deprecated and is planned for removal in a future
version. Use the quarkus.hibernate-search-orm.indexing.plan.synchronization.strategy property
instead.

Also, the quarkus.hibernate-search-orm.automatic-indexing.enable-dirty-check property is
deprecated and is planned for removal in a future version. There is no alternative to replace it. After the
removal, it is planned that Search will always trigger reindexing after a transaction modifies an object’s

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

25

https://github.com/quarkusio/quarkus/wiki/Migration-Guide-3.0#hibernate-reactive
https://hibernate.org/reactive/releases/2.0/
https://github.com/quarkusio/quarkus/wiki/Migration-Guide-3.0:-Hibernate-ORM-5-to-6-migration
https://docs.jboss.org/hibernate/search/6.2/migration/html_single/#data-format

field. That is, if a transaction makes the fields "dirty."

For more information, see the Configuration changes section of the "Hibernate Search 6.2.1.Final:
Migration Guide from 6.1".

1.7.3.5. Hibernate Validator - Validation.buildDefaultValidatorFactory() now returns a
ValidatorFactory managed by Quarkus

With this 3.2 release, Quarkus doesn’t support the manual creation of ValidatorFactory instances.
Instead, you must use the Validation.buildDefaultValidatorFactory() method, which returns
ValidatorFactory instances managed by Quarkus that you inject through Context and Dependency
Injection (CDI). The main reason for this change is that a ValidatorFactory must be carefully crafted to
work in native executables. Before this release, you could still manually create a ValidatorFactory
instance and handle it yourself if you could make it work. This change aims to improve the compatibility
with components creating their own ValidatorFactory.

For more information, see the following resources:

Hibernate Validator extension and CDI section of the "Validation with Hibernate Validator"
guide.

ValidatorFactory and native executables section of the "Validation with Hibernate Validator"
guide.

Obtaining a Validator instance of the "Hibernate Validator 8.0.0.Final - Jakarta Bean Validation
Reference Implementation: Reference Guide."

1.7.3.6. Quartz jobs class name change

If you are storing jobs for the Quartz extension in a database by using Java Database Connectivity
(JDBC), run the following query to update the job class name in your JOB_DETAILS table:

1.7.3.7. Deprecation of QuarkusTransaction.run and QuarkusTransaction.call methods

The QuarkusTransaction.run and QuarkusTransaction.call methods have been deprecated in favor
of new, more explicit methods.

Update code that relies on these deprecated methods as follows:

Before

After

Before

UPDATE JOB_DETAILS SET JOB_CLASS_NAME =
'io.quarkus.quartz.runtime.QuartzSchedulerImpl$InvokerJob' WHERE JOB_CLASS_NAME =
'io.quarkus.quartz.runtime.QuartzScheduler$InvokerJob';

QuarkusTransaction.run(() -> { ... });
QuarkusTransaction.call(() -> { ... });

QuarkusTransaction.requiringNew().run(() -> { ... });
QuarkusTransaction.requiringNew().call(() -> { ... });

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

26

https://docs.jboss.org/hibernate/search/6.2/migration/html_single/#configuration
https://quarkus.io/version/3.2/guides/validation#hibernate-validator-extension-and-cdi
https://quarkus.io/version/3.2/guides/validation#validatorfactory-and-native-executables
https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/#section-obtaining-validator
https://quarkus.io/version/3.2/guides/quartz

After

Before

After

QuarkusTransaction.run(QuarkusTransaction.runOptions()
 .semantic(RunOptions.Semantic.REQUIRED),
 () -> { ... });
QuarkusTransaction.call(QuarkusTransaction.runOptions()
 .semantic(RunOptions.Semantic.REQUIRED),
 () -> { ... });

QuarkusTransaction.joiningExisting().run(() -> { ... });
QuarkusTransaction.joiningExisting().call(() -> { ... });

QuarkusTransaction.run(QuarkusTransaction.runOptions()
 .timeout(10)
 .exceptionHandler((throwable) -> {
 if (throwable instanceof SomeException) {
 return RunOptions.ExceptionResult.COMMIT;
 }
 return RunOptions.ExceptionResult.ROLLBACK;
 }),
 () -> { ... });
QuarkusTransaction.call(QuarkusTransaction.runOptions()
 .timeout(10)
 .exceptionHandler((throwable) -> {
 if (throwable instanceof SomeException) {
 return RunOptions.ExceptionResult.COMMIT;
 }
 return RunOptions.ExceptionResult.ROLLBACK;
 }),
 () -> { ... });

QuarkusTransaction.requiringNew()
 .timeout(10)
 .exceptionHandler((throwable) -> {
 if (throwable instanceof SomeException) {
 return RunOptions.ExceptionResult.COMMIT;
 }
 return RunOptions.ExceptionResult.ROLLBACK;
 })
 .run(() -> { ... });
QuarkusTransaction.requiringNew()
 .timeout(10)
 .exceptionHandler((throwable) -> {
 if (throwable instanceof SomeException) {
 return RunOptions.ExceptionResult.COMMIT;
 }
 return RunOptions.ExceptionResult.ROLLBACK;
 })
 .call(() -> { ... });

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

27

For more information, see the Programmatic Approach section of the "Using transactions in Quarkus"
guide.

1.7.3.8. Renamed Narayana transaction manager property

With this 3.2 release, the quarkus.transaction-manager.object-store-directory configuration property
is renamed to quarkus.transaction-manager.object-store.directory. Update your configuration by
replacing the old property name with the new one.

1.7.4. Messaging

1.7.4.1. Removal of vertx-kafka-client dependency from SmallRye Reactive Messaging

This release removes the previously deprecated vertx-kafka-client dependency for the smallrye-
reactive-messaging-kafka extension. Although it wasn’t used for client implementations, vertx-kafka-
client provided default Kafka Serialization and Deserialization (SerDes) for io.vertx.core.buffer.Buffer,
io.vertx.core.json.JsonObject, and io.vertx.core.json.JsonArray types from the
io.vertx.kafka.client.serialization package.

If you require this dependency, you can get SerDes for the mentioned types from the
io.quarkus.kafka.client.serialization package.

1.7.5. Native

1.7.5.1. Native compilation - Native executables and .so files

With this 3.2 release, changes in GraalVM/Mandrel affect the use of extensions reliant on .so files, such
as the Java Abstract Window Toolkit (AWT) extension.

When using these extensions, you must add or copy the corresponding .so files to the native container;
for example:

NOTE

In this context, the AWT extension provides headless server-side image processing
capabilities, not GUI capabilities.

1.7.5.2. Native Compilation - Work around missing CPU features

With this 3.2 release, if you build native executables on recent machines and run them on older
machines, you might encounter the following failure when starting the application:

The current machine does not support all of the following CPU features that are required by the
image: [CX8, CMOV, FXSR, MMX, SSE, SSE2, SSE3, SSSE3, SSE4_1, SSE4_2, POPCNT,
LZCNT, AVX, AVX2, BMI1, BMI2, FMA].
Please rebuild the executable with an appropriate setting of the -march option.

This error message means that the native compilation used more advanced instruction sets that are
unsupported by the CPU running the application. To work around that issue, add the following line to
the application.properties file:

COPY --chown=1001:root target/*.so /work/
COPY --chown=1001:root target/*-runner /work/application

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

28

https://quarkus.io/version/3.2/guides/transaction#programmatic-approach

Then, rebuild your native executable. This setting forces the native compilation to use an older
instruction set, increasing the chance of compatibility but decreasing optimization.

To explicitly define the target architecture, run native-image -march=list to get a list of supported
configurations. Then, specify a target architecture; for example:

If you are experiencing this problem with older AMD64 hosts, try -march=x86-64-v2 before using -
march=compatibility.

The GraalVM documentation for Native Image Build Options states that "[the -march parameter
generates] instructions for a specific machine type. [This parameter] defaults to x86-64-v3 on AMD64
and armv8-a on AArch64. Use -march=compatibility for best compatibility, or -march=native for best
performance if a native executable is deployed on the same machine or on a machine with the same
CPU features. To list all available machine types, use -march=list."

NOTE

The -march parameter is available only in GraalVM 23 and later.

1.7.5.3. Testing changes: Removal of some annotations

With this 3.2 release, the previously deprecated @io.quarkus.test.junit.NativeImageTest and
@io.quarkus.test.junit.DisabledOnNativeImageTest annotations have been
rimage::images/ref_changes-that-affect-backward-compatibility-88d2f.png[]. Replace them with their
new counterparts.

Table 1.4. Removed annotations and their new counterparts

Removed annotations New annotations

@io.quarkus.test.junit.NativeImageTest @io.quarkus.test.junit.QuarkusIntegrationTe
st

@io.quarkus.test.junit.DisabledOnNativeIma
geTest

@io.quarkus.test.junit.DisabledOnIntegration
Test

The replacement annotations are functionally equivalent to the removed ones.

1.7.6. Observability

1.7.6.1. Deprecated OpenTracing driver is replaced by OpenTelemetry

With this 3.2 release, support for the OpenTracing driver has been deprecated. Removal of the
OpenTracing driver is planned for a future Quarkus release.

With this 3.2 release, the SmallRye GraphQL extension has replaced its OpenTracing integration with
OpenTelemetry. As a result, when using OpenTracing, the extension no longer generates spans for
GraphQL operations.

quarkus.native.additional-build-args=-march=compatibility

quarkus.native.additional-build-args=-march=x86-64-v4

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

29

https://www.graalvm.org/latest/reference-manual/native-image/overview/BuildOptions/

Also, with this release, the quarkus.smallrye-graphql.tracing.enabled configuration property is
obsolete and has been removed. Instead, the SmallRye GraphQL extension automatically produces
spans when the OpenTelemetry extension is present.

Update your Quarkus applications to use OpenTelemetry so that they remain compatible with future
Quarkus releases.

1.7.6.2. Default metrics format in Micrometer now aligned with Prometheus

With this 3.2 release, the Micrometer extension exports metrics in the application/openmetrics-text
format by default, in line with the Prometheus standard. This change helps make your data easier to
read and interpret.

To you get metrics in the earlier format, you can change the Accept request header to text/plain. For
example, with the `curl command:

1.7.6.3. Changes in the OpenTelemetry extension and removal of some sampler-related
properties

With this 3.2 release, the OpenTelemetry (OTel) extension has significant improvements. Before this
release, the OpenTelemetry SDK (OTel SDK) was created at build time and had limited configuration
options; most notably, it could not be disabled at run time. Now, it offers enhanced flexibility. It can be
disabled at run time by setting quarkus.otel.sdk.disabled=true.

After some preparatory steps at build time, the OTel SDK is configured at run time using the OTel auto-
configuration feature. This feature supports some of the properties defined in the Java OpenTelemetry
SDK. For more information, see the OpenTelemetry SDK Autoconfigure reference.

The OpenTelemetry extension is compatible with earlier versions. Most properties have been
deprecated but still function alongside the new ones until they are removed in a future release. You can
replace the deprecated properties with new ones.

Table 1.5. Deprecated properties and their new counterparts

Deprecated properties New properties

quarkus.opentelemetry.enabled quarkus.otel.enabled

quarkus.opentelemetry.tracer.enabled quarkus.otel.traces.enabled

quarkus.opentelemetry.propagators quarkus.otel.propagators

quarkus.opentelemetry.tracer.suppress-non-
application-uris

quarkus.otel.traces.suppress-non-
application-uris

quarkus.opentelemetry.tracer.include-static-
resources

quarkus.otel.traces.include-static-resources

quarkus.opentelemetry.tracer.sampler quarkus.otel.traces.sampler

curl -H "Accept: text/plain" localhost:8080/q/metrics/

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

30

https://github.com/open-telemetry/opentelemetry-java/blob/v1.25.0/sdk-extensions/autoconfigure/README.md

quarkus.opentelemetry.tracer.sampler.ratio quarkus.otel.traces.sampler.arg

quarkus.opentelemetry.tracer.exporter.otlp.e
nabled

quarkus.otel.exporter.otlp.enabled

quarkus.opentelemetry.tracer.exporter.otlp.h
eaders

quarkus.otel.exporter.otlp.traces.headers

quarkus.opentelemetry.tracer.exporter.otlp.e
ndpoint

quarkus.otel.exporter.otlp.traces.legacy-
endpoint

Deprecated properties New properties

With this 3.2 release, some of the old quarkus.opentelemetry.tracer.sampler-related property values
have been removed.

If the sampler is parent based, there is no need to set the now-dropped
quarkus.opentelemetry.tracer.sampler.parent-based property.

Replace the following quarkus.opentelemetry.tracer.sampler values with new ones:

Table 1.6. Removed sampler property values and their new counterparts

Old value New value New value if parent-based

on always_on parentbased_always_on

off always_off parentbased_always_off

ratio traceidratio parentbased_traceidratio

Many new properties are now available. For more information, see the Quarkus Using OpenTelemetry
guide.

Quarkus allowed the Context and Dependency Injection (CDI) configuration of many classes:
IdGenerator, Resource attributes, Sampler, and SpanProcessor. This is a feature not available in
standard OTel, but it’s still provided here for convenience. However, the CDI creation of the
SpanProcessor through the LateBoundBatchSpanProcessor is now deprecated. If there’s a need to
override or customize it, feedback is appreciated. The processor will continue to be used for supporting
earlier versions, but soon the standard exports bundled with the OTel SDK will be used. This means the
default exporter uses the following configuration:

quarkus.otel.traces.exporter=cdi

As a preview, the stock OTLP exporter is now available by setting:

quarkus.otel.traces.exporter=otlp

Additional configurations of the OTel SDK are now available, using the standard Service Provider
Interface (SPI) hooks for Sampler and SpanExporter. The remaining SPIs are also accessible, although

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

31

https://quarkus.io/version/3.2/guides/opentelemetry

compatibility validation through testing is still required. For more information, see the updated
OpenTelemetry Guide.

OpenTelemetry upgrades

OpenTelemetry (OTel) 1.23.1 introduced breaking changes, including the following items:

HTTP span names are now "{http.method} {http.route}" instead of just "{http.route}".

All methods in all Getter classes in instrumentation-api-semconv have been renamed to use
the get() naming scheme.

Semantic convention changes:

Table 1.7. Deprecated properties and their new counterparts

Deprecated properties New properties

messaging.destination_kind messaging.destination.kind

messaging.destination messaging.destination.name

messaging.consumer_id messaging.consumer.id

messaging.kafka.consumer_group messaging.kafka.consumer.group

JDBC tracing activation

Before this release, to activate Java Database Connectivity (JDBC) tracing, you used the following
configuration:

quarkus.datasource.jdbc.url=jdbc:otel:postgresql://localhost:5432/mydatabase
use the 'OpenTelemetryDriver' instead of the one for your database
quarkus.datasource.jdbc.driver=io.opentelemetry.instrumentation.jdbc.OpenTelemetryDriver

With this 3.2 release, you can use a much simpler configuration:

quarkus.datasource.jdbc.telemetry=true

With this configuration, you do not need to change the database URL or declare a different driver.

1.7.7. Security

1.7.7.1. Removal of CORS filter default support for using a wildcard as an origin

The default behavior of the cross-origin resource sharing (CORS) filter has significantly changed. In
earlier releases, when the CORS filter was enabled, it supported all origins by default. With this 3.2
release, support for all origins is no longer enabled by default. Now, if you want to permit all origins, you
must explicitly configure it to do so.

After a thorough evaluation, if you determine that all origins require support, configure the system in the
following manner:

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

32

https://quarkus.io/version/3.2/guides/opentelemetry

quarkus.http.cors=true
quarkus.http.cors.origins=/.*/

Same-origin requests receive support without needing the quarkus.http.cors.origins configuration.
Therefore, adjusting the quarkus.http.cors.origins becomes essential only when you allow trusted
third-party origin requests. In such situations, enabling all origins might pose unnecessary risks.

WARNING

Use this setting with caution to maintain optimal system security.

1.7.7.2. OpenAPI CORS support change

With this 3.2 release, OpenAPI has changed its cross-origin resource sharing (CORS) settings and no
longer enables wildcard (*) origin support by default. This change helps to prevent potential leakage of
OpenAPI documents, enhancing the overall security of your applications.

Although you can enable wildcard origin support in dev mode , it is crucial to consider the potential
security implications. Avoid enabling all origins in a production environment because it exposes your
applications to security threats. Ensure your CORS settings align with your production environment’s
recommended security best practices.

1.7.7.3. Encryption of OIDC session cookie by default

With this 3.2 release, the OpenID Connect (OIDC) session cookie, created after the completion of an
OIDC Authorization Code Flow, is encrypted by default. In most scenarios, you are unlikely to notice this
change.

However, if the mTLS or private_key_jwt authentication methods - where the OIDC client private key
signs a JSON Web Token (JWT) - are used between Quarkus and the OIDC Provider, an in-memory
encryption key gets generated. This key generation can result in some pods failing to decrypt the
session cookie, especially in applications dealing with many requests. This situation can arise when a pod
attempting to decrypt the cookie isn’t the one that encrypted it.

If such issues occur, register an encryption secret of 32 characters; for example:

quarkus.oidc.token-state-manager.encryption-secret=eUk1p7UB3nFiXZGUXi0uph1Y9p34YhBU

An encrypted session cookie can exceed 4096-bytes, which can cause some browsers to ignore it. If this
occurs, try one or more of the following steps:

Set quarkus.oidc.token-state-manager.split-tokens=true to store ID, access, and refresh
tokens in separate cookies.

Set quarkus.oidc.token-state-manager.strategy=id-refresh-tokens if there’s no need to use
the access token as a source of roles to request UserInfo or propagate it to downstream
services.

Register a custom quarkus.oidc.TokenStateManager Context and Dependency Injection
(CDI) bean with the alternative priority set to 1.

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

33

https://quarkus.io/version/3.2/guides/http-reference#support-all-origins-in-devmode

If application users access the Quarkus application from within a trusted network, disable the session
cookie encryption by applying the following configuration:

quarkus.oidc.token-state-manager.encryption-required=false

1.7.7.4. Default SameSite attribute set to Lax for OIDC session cookie

With this 3.2 release, for the Quarkus OpenID Connect (OIDC) extension, the session cookie SameSite
attribute is set to Lax by default.

In some earlier releases of Quarkus, the OIDC session cookie SameSite attribute was set to Strict by
default. This setting introduced unpredictability in how different browsers handled the session cookie.

1.7.7.5. The OIDC ID token audience claim is verified by default

With this 3.2 release, the OpenID Connect (OIDC) ID token aud (audience) claim is verified by default.
This claim must equal the value of the configured quarkus.oidc.client-id property, as required by the
OIDC specification.

To override the expected ID token audience value, set the quarkus.oidc.token.audience configuration
property. If you deal with a noncompliant OIDC provider that does not set an ID token aud claim, you
can set quarkus.oidc.token.audience to any.

WARNING

Setting quarkus.oidc.token.audience to any reduces the security of your 3.2
application.

1.7.7.6. Removal of default password for the JWT key and keystore

Before this release, Quarkus used password as the default password for the JSON Web Token (JWT)
key and keystore. With this 3.2 release, this default value has been removed.

If you are still using the default password, set a new value to replace password for the following
properties in the application.properties file:

1.7.8. Web

1.7.8.1. Changes to RESTEasy Reactive multipart

With this 3.2 release, the following changes impact multipart support in RESTEasy Reactive:

Before this release, you could catch all file uploads regardless of the parameter name using the
syntax: @RestForm List<FileUpload> all, but this was ambiguous and not intuitive. Now, this
form only fetches parameters named all, just like for every other form element of other types,

quarkus.oidc-client.credentials.jwt.key-store-password=password
quarkus.oidc-client.credentials.jwt.key-password=password

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

34

and you must use the following form to catch every parameter regardless of its name:
@RestForm(FileUpload.ALL) List<FileUpload> all.

Multipart form parameter support has been added to @BeanParam. The @MultipartForm
annotation is now deprecated. Use @BeanParam instead of @MultipartForm.

The @BeanParam is now optional and implicit for any non-annotated method parameter with
fields annotated with any @Rest* or @*Param annotations.

Multipart elements are no longer limited to being encapsulated inside @MultipartForm-
annotated classes: they can be used as method endpoint parameters and endpoint class fields.

Multipart elements now default to the @PartType(MediaType.TEXT_PLAIN) MIME type
unless they are of type FileUpload, Path, File, byte[], or InputStream.

Multipart elements of the MediaType.TEXT_PLAIN MIME type are now deserialized using the
regular ParamConverter infrastructure. Before this release, deserialization used
MessageBodyReader.

Multipart elements of the FileUpload, Path, File, byte[], or InputStream types are special-
cased and deserialized by the RESTEasy Reactive extension, not by the MessageBodyReader
or ParamConverter classes.

Multipart elements of other explicitly set MIME types still use the appropriate
MessageBodyReader infrastructure.

Multipart elements can now be wrapped in List to obtain all values of the part with the same
name.

Any client call that includes the @RestForm or @FormParam parameters defaults to the
MediaType.APPLICATION_FORM_URLENCODED content type unless they are of the File,
Path, Buffer, Multi<Byte>, or byte[] types, in which case it defaults to the
MediaType.MULTIPART_FORM_DATA content type.

Class org.jboss.resteasy.reactive.server.core.multipart.MultipartFormDataOutput has been
moved to org.jboss.resteasy.reactive.server.multipart.MultipartFormDataOutput.

Class org.jboss.resteasy.reactive.server.core.multipart.PartItem has been moved to
org.jboss.resteasy.reactive.server.multipart.PartItem.

Class org.jboss.resteasy.reactive.server.core.multipart.FormData.FormValue has been
moved to org.jboss.resteasy.reactive.server.multipart.FormValue.

The REST Client no longer uses the server-specific MessageBodyReader and
MessageBodyWriter classes associated with Jackson. Before this release, the REST Client
unintentionally used those classes. The result is that applications that use both quarkus-
resteasy-reactive-jackson and quarkus-rest-client-reactive extensions must now include the
quarkus-rest-client-reactive-jackson extension.

1.7.8.2. Enhanced JAXB extension control

The JAXB extension detects classes that use JAXB annotations and registers them into the default
JAXBContext instance. Before this release, any issues or conflicts between the classes and JAXB
triggered a JAXB exception at runtime, providing a detailed description to help troubleshoot the
problem. However, you could preemptively tackle these conflicts during the build stage.

This release adds a feature that can validate the JAXBContext instance at build time so that you can

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

35

This release adds a feature that can validate the JAXBContext instance at build time so that you can
detect and fix JAXB errors early in the development cycle.

For example, as shown in the following code block, binding both classes to the default JAXBContext
instance would inevitably lead to a JAXB exception. This is because the classes share the identical name,
Model, despite existing in different packages. This concurrent naming creates a conflict, leading to the
exception.

To activate this feature, add the following property:

Additionally, this release adds the quarkus.jaxb.exclude-classes property. With this property, you can
specify classes to exclude from binding to the JAXBContext. You can provide a comma-separated list
of fully qualified class names or a list of packages.

For example, to resolve the conflict in the preceding example, you can exclude one or both of the
classes:

package org.acme.one;

import jakarta.xml.bind.annotation.XmlRootElement;

@XmlRootElement
public class Model {
 private String name1;

 public String getName1() {
 return name1;
 }

 public void setName1(String name1) {
 this.name1 = name1;
 }
}

package org.acme.two;

import jakarta.xml.bind.annotation.XmlRootElement;

@XmlRootElement
public class Model {
 private String name2;

 public String getName2() {
 return name2;
 }

 public void setName2(String name2) {
 this.name2 = name2;
 }
}

quarkus.jaxb.validate-jaxb-context=true

quarkus.jaxb.exclude-classes=org.acme.one.Model,org.acme.two.Model

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

36

Or you can exclude all the classes under a package:

1.8. BUG FIXES

Red Hat build of Quarkus 3.2 enhances stability and resolves critical bugs, ensuring optimal performance
and security. To get the latest fixes for Red Hat build of Quarkus, ensure you are using the latest
available version, which is 3.2.11.

1.8.1. Security fixes resolved in Red Hat build of Quarkus 3.2.11

CVE-2024-1597 org.postgresql/postgresql: pgjdbc: PostgreSQL JDBC Driver vulnerability
allows SQL injection with PreferQueryMode=SIMPLE

CVE-2024-1979 io.quarkus/quarkus-kubernetes-deployment: Potential information leakage
via annotations

CVE-2024-1726 io.quarkus.resteasy.reactive/resteasy-reactive: Delayed security checks on
certain inherited endpoints in RESTEasy Reactive could lead to denial of service

CVE-2024-25710 org.apache.commons/commons-compress: Infinite loop denial of service
with corrupted DUMP file

CVE-2024-26308 org.apache.commons/commons-compress: OutOfMemoryError caused
by unpacking a malformed Pack200 file

CVE-2024-1300 io.vertx:vertx-core: Memory leak in TCP servers with TLS and SNI enabled

CVE-2024-1023 io.vertx:vertx-core: Memory leak from Netty FastThreadLocal data structures
usage in Vert.x

1.8.2. Security fixes resolved in Red Hat build of Quarkus 3.2.10

CVE-2023-22102 mysql/mysql-connector-java: Connector/J unspecified vulnerability (CPU
October 2023)

CVE-2023-48795 org.apache.sshd/sshd-core: ssh: Prefix truncation attack on Binary Packet
Protocol (BPP)

CVE-2023-4043 org.eclipse.parsson/parsson: Denial of Service due to large number parsing

1.8.3. Security fixes resolved in Red Hat build of Quarkus 3.2.9.SP1

CVE-2023-5675 io.quarkus.resteasy.reactive/resteasy-reactive: quarkus: Authorization flaw
in Quarkus RestEasy Reactive and Classic when "quarkus.security.jaxrs.deny-unannotated-
endpoints" or "quarkus.security.jaxrs.default-roles-allowed" properties are used

CVE-2023-6267 io.quarkus/quarkus-resteasy: quarkus: JSON payload getting processed
prior to security checks when REST resources are used with annotations

1.8.4. Security fixes resolved in Red Hat build of Quarkus 3.2.9

CVE-2023-43642: snappy-java: Missing upper bound check on chunk length in snappy-java

quarkus.jaxb.exclude-classes=org.acme.*

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

37

https://access.redhat.com/security/cve/CVE-2024-1597
https://access.redhat.com/security/cve/CVE-2024-1979
https://access.redhat.com/security/cve/CVE-2024-1726
https://access.redhat.com/security/cve/CVE-2024-25710
https://access.redhat.com/security/cve/CVE-2024-26308
https://access.redhat.com/security/cve/CVE-2024-1300
https://access.redhat.com/security/cve/CVE-2024-1023
https://access.redhat.com/security/cve/CVE-2023-22102
https://access.redhat.com/security/cve/CVE-2023-48795
https://access.redhat.com/security/cve/CVE-2023-4043
https://access.redhat.com/security/cve/CVE-2023-5675
https://access.redhat.com/security/cve/CVE-2023-6267

CVE-2023-43642: snappy-java: Missing upper bound check on chunk length in snappy-java
can lead to Denial of Service (DoS) impact

CVE-2023-39410: avro: apache-avro: Apache Avro Java SDK: Memory when deserializing
untrusted data in Avro Java SDK

1.8.5. Security fixes resolved in Red Hat build of Quarkus 3.2.6

CVE-2023-33202: bcpkix: bc-java: Out of memory while parsing ASN.1 crafted data in
org.bouncycastle.openssl.PEMParser class

CVE-2023-4853: quarkus-http: quarkus: HTTP security policy bypass

CVE-2023-44487: netty-codec-http2: HTTP/2: Multiple HTTP/2 enabled web servers are
vulnerable to a DDoS attack (Rapid Reset Attack)

1.8.6. Other enhancements and bug fixes

QUARKUS-3964 Fix tracing protocol configuration to only allow GRPC

QUARKUS-3963 Handle generic types for ParamConverter in REST Client

QUARKUS-3962 Never register server-specific providers in REST Client (fixed)

QUARKUS-3960 Register methods of RESTeasy Reactive parameter containers for reflection

QUARKUS-3959 Use an empty string in an SSE event when there is no data

QUARKUS-3958 Update the Infinispan client intelligence section documentation

QUARKUS-3956 Update the keycloak-admin-client extension to recognize the
quarkus.tls.trust-all property

QUARKUS-3955 Always run a JPA password action

QUARKUS-3954 Reactive REST Client: check for ClientRequestFilter when skipping @Provider
auto-discovery

QUARKUS-3950 Fix various minor issues in the quarkus update command

QUARKUS-3949 Fix Panache bytecode enhancement for @Embeddable records

QUARKUS-3948 Save pathParamValues encoded and perform decoding when requested

QUARKUS-3947 Fix != expression in @PreAuthorize check

QUARKUS-3945 Support using commas to add extensions with CLI

QUARKUS-3943 Fixes stork path param resolution in REST Client

QUARKUS-3941 Do not expand config properties for Gradle Workers

QUARKUS-3940 Verify duplicated context handling when caching a Uni

QUARKUS-3939 Always set ssl and alpn for non-plain-text with Vert.x gRPC channel

QUARKUS-3851 Upgrade to Hibernate ORM 6.2.18.Final

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

38

https://access.redhat.com/security/cve/CVE-2023-43642
https://access.redhat.com/security/cve/CVE-2023-39410
https://access.redhat.com/security/cve/CVE-2023-33202
https://access.redhat.com/security/cve/CVE-2023-4853
https://access.redhat.com/security/cve/CVE-2023-44487
https://issues.redhat.com/browse/QUARKUS-3964
https://issues.redhat.com/browse/QUARKUS-3963
https://issues.redhat.com/browse/QUARKUS-3962
https://issues.redhat.com/browse/QUARKUS-3960
https://issues.redhat.com/browse/QUARKUS-3959
https://issues.redhat.com/browse/QUARKUS-3958
https://issues.redhat.com/browse/QUARKUS-3956
https://issues.redhat.com/browse/QUARKUS-3955
https://issues.redhat.com/browse/QUARKUS-3954
https://issues.redhat.com/browse/QUARKUS-3950
https://issues.redhat.com/browse/QUARKUS-3949
https://issues.redhat.com/browse/QUARKUS-3948
https://issues.redhat.com/browse/QUARKUS-3947
https://issues.redhat.com/browse/QUARKUS-3945
https://issues.redhat.com/browse/QUARKUS-3943
https://issues.redhat.com/browse/QUARKUS-3941
https://issues.redhat.com/browse/QUARKUS-3940
https://issues.redhat.com/browse/QUARKUS-3939
https://issues.redhat.com/browse/QUARKUS-3851

QUARKUS-3841 Hibernate issue with @OneToMany mappedBy association(HHH-16593)

QUARKUS-3791 Jandex indexing throws an NPE with the latest Oracle driver

QUARKUS-3779 [GSS](3.2.z) RESTEASY-3380 - Source references exposed in RESTEasy
error response

QUARKUS-3757 Unfiltered traces from the management interface

QUARKUS-3420 Duplicate artifacts brought in by extraneous io.quarkus in ER4

QUARKUS-3273 Duplicated artifacts in Ghost

QUARKUS-3598 Version alignment with Red Hat Build of Apache Camel for Red Hat build of
Quarkus 3.2.0

QUARKUS-3586 Automate step of creating depstobuild.txt

QUARKUS-3476 quarkus-bom-deps-to-build.txt not delivered with 2.13.8.SP3.CR1 and
3.2.9.CR1

QUARKUS-3761 Hibernate Reactive doesn’t work with Red Hat build of Quarkus 3.2.9.CR1 but
works with upstream release

QUARKUS-3759 Missing Sources for mvnpm/importmap in 3.2.9

QUARKUS-3764 Red Hat build of Quarkus 3.2.9.CR1 contains 2 Red Hat build of Quarkus
BOMs, one of them has 555 missing dependencies in Maven repo zip

QUARKUS-3439 Red Hat build of Quarkus create app with gradle causing unresolved netty
dependencies

QUARKUS-1481 Platform source zips contain only quarkus source

QUARKUS-3758 Duplicate Pom for io.github.crac:org-crac and Jboss Threads in 3.2.9

QUARKUS-3377 support quarkus-keycloak-authorization again in 3.2.z

QUARKUS-3597 Productize Red Hat build of Quarkus JOSDK extensions 6.3.3

QUARKUS-3424 Increase in number of duplicate artifacts with no direct dependency lineage to
platform boms/supported extensions

QUARKUS-3582 Red Hat build of Quarkus 3.2: move start-stop metrics and tech empower jobs
to JDK17 in performance labs

QUARKUS-3570 Adding the JUL URL to the Logging guide update

QUARKUS-3571 Make hibernate reactive status clear in docs

QUARKUS-3546 Fix handling of HTTP/2 H2 empty frames in RestEasy Reactive

QUARKUS-3564 Remove update guide from docs yml

QUARKUS-3565 Enhancements to Configuration section of the Logging guide

QUARKUS-3566 Applying the QE feedback for the Logging guide

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

39

https://issues.redhat.com/browse/QUARKUS-3841
https://issues.redhat.com/browse/QUARKUS-3791
https://issues.redhat.com/browse/QUARKUS-3779
https://issues.redhat.com/browse/QUARKUS-3757
https://issues.redhat.com/browse/QUARKUS-3420
https://issues.redhat.com/browse/QUARKUS-3273
https://issues.redhat.com/browse/QUARKUS-3598
https://issues.redhat.com/browse/QUARKUS-3586
https://issues.redhat.com/browse/QUARKUS-3476
https://issues.redhat.com/browse/QUARKUS-3761
https://issues.redhat.com/browse/QUARKUS-3759
https://issues.redhat.com/browse/QUARKUS-3764
https://issues.redhat.com/browse/QUARKUS-3439
https://issues.redhat.com/browse/QUARKUS-1481
https://issues.redhat.com/browse/QUARKUS-3758
https://issues.redhat.com/browse/QUARKUS-3377
https://issues.redhat.com/browse/QUARKUS-3597
https://issues.redhat.com/browse/QUARKUS-3424
https://issues.redhat.com/browse/QUARKUS-3582
https://issues.redhat.com/browse/QUARKUS-3570
https://issues.redhat.com/browse/QUARKUS-3571
https://issues.redhat.com/browse/QUARKUS-3546
https://issues.redhat.com/browse/QUARKUS-3564
https://issues.redhat.com/browse/QUARKUS-3565
https://issues.redhat.com/browse/QUARKUS-3566

QUARKUS-3567 Doc link fixes & enhancements to Bearer token authentication tutorial

QUARKUS-3572 Fix doc link Asciidoc change link to xref where applicable

QUARKUS-3573 Config doc - Avoid processing methods if not @ConfigMapping

QUARKUS-3662 Tiny grammar tweaks for the Authorization of web endpoints guide

QUARKUS-3563 Fix title of upx.adoc

QUARKUS-3569 Remove 'Security vulnerability detection' topic from downstream doc list

QUARKUS-3568 Additional review and application of QE feedback to the Datasource guide

QUARKUS-3339 Vert.x SQL client hangs when it inserts null or empty string into Oracle DB

QUARKUS-3367 HTTP/1.1 upgrade to H2C cannot process fully request entity with a size
greater than the initial window size

QUARKUS-3669 Bump Keycloak version to 22.0.6

QUARKUS-3670 Vert.x: fix NPE in ForwardedProxyHandler

QUARKUS-3668 Fix dead link in infinispan-client-reference.adoc

QUARKUS-3671 Fix quarkus update regression on extensions

QUARKUS-3672 Take @ConstrainedTo into account for interceptors

QUARKUS-3680 Let custom OIDC token propagation filters customize the exchange status

QUARKUS-3679 Update Vert.x version to 4.4.6

QUARKUS-3663 Tiny Vale tweaks for Datasource and Logging guide

QUARKUS-3664 Duplicate Authorization Bearer Header Fix

QUARKUS-3666 Fixing Db2 Driver typo

QUARKUS-3675 Make the ZSTD Substitutions more robust

QUARKUS-3677 Fix deployer detection in quarkus-maven-plugin

QUARKUS-3676 Fix handling of HTTP/2 H2 empty frames in RestEasy Reactive

QUARKUS-3665 More reliable test setup in integration-tests/hibernate-orm-
tenancy/datasource

QUARKUS-3674 QuarkusSecurityTestExtension after each call should not be made for tests
without @TestSecurity

QUARKUS-3673 Dev UI: Fix height in Rest Client

QUARKUS-3667 Fix assertions in Hibernate ORM 5.6 compatibility tests

QUARKUS-3678 ArC: fix PreDestroy callback support for decorators

QUARKUS-3691 Prepare for ORM update

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

40

https://issues.redhat.com/browse/QUARKUS-3567
https://issues.redhat.com/browse/QUARKUS-3572
https://issues.redhat.com/browse/QUARKUS-3573
https://issues.redhat.com/browse/QUARKUS-3662
https://issues.redhat.com/browse/QUARKUS-3563
https://issues.redhat.com/browse/QUARKUS-3569
https://issues.redhat.com/browse/QUARKUS-3568
https://issues.redhat.com/browse/QUARKUS-3339
https://issues.redhat.com/browse/QUARKUS-3367
https://issues.redhat.com/browse/QUARKUS-3669
https://issues.redhat.com/browse/QUARKUS-3670
https://issues.redhat.com/browse/QUARKUS-3668
https://issues.redhat.com/browse/QUARKUS-3671
https://issues.redhat.com/browse/QUARKUS-3672
https://issues.redhat.com/browse/QUARKUS-3680
https://issues.redhat.com/browse/QUARKUS-3679
https://issues.redhat.com/browse/QUARKUS-3663
https://issues.redhat.com/browse/QUARKUS-3664
https://issues.redhat.com/browse/QUARKUS-3666
https://issues.redhat.com/browse/QUARKUS-3675
https://issues.redhat.com/browse/QUARKUS-3677
https://issues.redhat.com/browse/QUARKUS-3676
https://issues.redhat.com/browse/QUARKUS-3665
https://issues.redhat.com/browse/QUARKUS-3674
https://issues.redhat.com/browse/QUARKUS-3673
https://issues.redhat.com/browse/QUARKUS-3667
https://issues.redhat.com/browse/QUARKUS-3678
https://issues.redhat.com/browse/QUARKUS-3691

QUARKUS-3689 Fix issue in Java migration in dev-mode

1.9. KNOWN ISSUES

Review the following known issues for insights into Red Hat build of Quarkus 3.2 limitations and
workarounds.

1.9.1. Using CDI interceptors to resolve multitenant OIDC configuration fails due to
security fix in version 3.2.9.SP1

The security fix implemented in Red Hat build of Quarkus version 3.2.9.SP1 to address CVE-2023-6267
introduced a breaking change.

This breaking change is relevant only when using multiple OIDC providers with RestEasy Classic and
occurs if you use Context and Dependency Injection (CDI) interceptors to programmatically resolve
OIDC tenant configuration identifiers.

Before this fix, CDI interceptors ran before authentication checks. After introducing the fix,
authentication occurs before CDI interceptors are triggered. Therefore, using CDI interceptors to
resolve multiple OIDC provider configuration identifiers no longer works. RestEasy Reactive applications
are not affected.

Workaround: Use the quarkus.oidc.TenantResolver method to resolve the current OIDC configuration
tenant ID.

For more information, see the Resolving tenant identifiers with annotations section of the Quarkus
“Using OpenID Connect (OIDC) multitenancy” guide.

1.9.2. Podman 4.6 and later does not work with SELinux and Testcontainers library

The Ryuk container, which is essential to the testcontainers library used during dev mode, cannot be
started when using Podman 4.6 or later. Specifically, these issues manifest when using SELinux and
prevent the Ryuk container from starting successfully.

Here are the specific issues and corresponding workarounds:

Connection to Docker daemon socket fails: By default, an error occurs stating, Permission
denied while trying to connect to the Docker daemon socket at
unix:///var/run/docker.sock."

Workaround: Update the containers.conf file to include label=false.

SELinux and containers configuration mismatch: If SELinux is enabled on the operating
system but disabled in the containers.conf file, an InternalServerErrorException occurs.

Workaround: Run sudo setenforce 0 to disable SELinux.

Unresolved Oracle Cloud Infrastructure (OCI) permission error: An error message appears
stating, OCI permission denied. This issue has no workaround.

Given these issues, consider the following options:

Refrain from using Ryuk containers until this known issue is resolved.

Use an earlier version of Podman, such as version 4.5.x, that is compatible with Red Hat
Enterprise Linux 8 and later.

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

41

https://issues.redhat.com/browse/QUARKUS-3689
https://access.redhat.com/security/cve/CVE-2023-6267
https://quarkus.io/version/3.2/guides/security-openid-connect-multitenancy#resolving-tenant-identifiers-with-annotations

For more information, see the following resources:

QUARKUS-3451 - Podman 4.6 and newer does not work properly with SELinux and test-
containers

testcontainers/ryuk

GitHub issue #20206: Ryuk container cannot be started on podman 4.6.2

1.9.3. Containers spawned by Testcontainers occasionally fail

Containers spawned by the testcontainers library for dev mode continuous testing occasionally fail with
a Broken pipeline error.

Workaround: To work around the issue, restart dev mode. This issue does not affect production mode.

For more information, see QUARKUS-3448 - Broken pipe when creating containers with Podman .

1.9.4. HTTP/1.1 Upgrades to H2C fail under specific flow control conditions

When upgrading an HTTP/1.1 connection to H2C, the server does not account for inbound HTTP
messages in the H2 flow controller. This results in unprocessed messages when the window size reaches
zero.

A fix for this issue is planned for an upcoming release.

Workaround: No workaround is available at this time. Until this issue has been fixed, refrain from
upgrading HTTP/1.1 connections to H2C if the message payload size exceeds the flow control window
size.

For more information, see the following resources:

Quarkus GitHub issue #35180 - Server fails receiving large data over http/2

Vert.x Pull Request #4802 - HTTP/1.1 upgrade to H2C cannot process fully request entity with
a size greater than the initial window size

CEQ-7160 - CXF - Netty Http2Exception: Flow control window exceeded for stream: 0 when
sending a ~64 KiB attachment

QUARKUS-3367 - HTTP/1.1 upgrade to H2C cannot process fully request entity with a size
greater than the initial window size.

1.9.5. Reactive Oracle datasource fails with specific Oracle JDBC driver versions

The Reactive Oracle datasource relies on Oracle’s Java™ database connectivity (JDBC) driverReactive
extensions. A bug exists in Oracle JDBC driver versions 23.2 and 21.11 that causes the failure of the
application to receive any response under the following conditions:

You use Reactive extensions to run an UPDATE or INSERT query that produces an error such
as a constraint violation.

You enable generated keys retrieval.

NOTE

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

42

https://issues.redhat.com/browse/QUARKUS-3451
https://hub.docker.com/r/testcontainers/ryuk
https://github.com/containers/podman/discussions/20206
https://issues.redhat.com/browse/QUARKUS-3448
https://github.com/quarkusio/quarkus/issues/35180
https://github.com/eclipse-vertx/vert.x/pull/4802
https://issues.redhat.com/browse/CEQ-7160
https://issues.redhat.com/browse/QUARKUS-3367
https://docs.oracle.com/en/database/oracle/oracle-database/23/jjdbc/jdbc-reactive-extensions.html
https://vertx.io/docs/vertx-oracle-client/java/#_retrieving_generated_key_values

NOTE

Oracle might not support using the Oracle JDBC driver v21.10.0.0 with an Oracle 23
database.

Workarounds:

Change the Oracle JDBC driver version in your pom.xml file or equivalent configuration to
com.oracle.database.jdbc:ojdbc11:21.10.0.0.

Avoid running queries that require generated key retrieval. For example, load sequence values
before running INSERT queries.

For more information, see QUARKUS-3339 - Vertx SQL client hangs when it inserts a null or empty
string into Oracle DB.

1.9.6. Community artifacts are used for native Vert.x dependencies on specific
platforms

Applications that use the Vert.x extension on newly supported platforms, such as Linux on aarch64 and
Windows on x86-64, inadvertently download Quarkus community versions of
com.aayushatharva.brotli4j artifacts rather than the ones built and provided by Red Hat. This issue has
no functional impact.

A fix for this issue is planned for an upcoming release.

Workaround: No workaround is available at this time.

For more information, see QUARKUS-3314 - com.aayushatharva.brotli4j:native-linux-aarch64 and
native-windows-x86_64 are not productized.

1.9.7. Red Hat build of Quarkus Kafka Streams are not supported on Windows due to
a missing library

Kafka Streams fails to load RocksDB on Windows operating systems because the librocksdbjni-
win64.dll native library is not in the Red Hat build of Quarkus.

Workaround: There is no workaround for running Quarkus Kafka Streams on Windows. Use non-Windows
operating systems until a fix is available or it is confirmed that this extension will not be supported on
Windows.

NOTE

Kafka Streams is a Technology Preview feature.

For more information, see QUARKUS-3434 - Ghost: Quarkus Kafka Streams not supported on Windows
due to missing librocksdbjni-win64.dll

1.9.8. Community artifacts are used for some native dependencies on specific
platforms

Red Hat build of Quarkus has native libraries for x86_64 architectures for the following components.

io.netty.netty-transport-native-epoll

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

43

https://issues.redhat.com/browse/QUARKUS-3339
https://issues.redhat.com/browse/QUARKUS-3314
https://access.redhat.com/support/offerings/techpreview/
https://issues.redhat.com/browse/QUARKUS-3434

io.netty.netty-transport-native-unix-common

com.aayushatharva.brotli4j

However, Red Hat build of Quarkus lacks native libraries for these components on the ppc64le and
s390x architectures. Instead, it downloads the Quarkus community versions of the artifacts rather than
the ones built and provided by Red Hat. This issue has no functional impact.

Workaround: No workaround is available at this time.

For more information, see the following resources:

QUARKUS-3434 - Ghost: Quarkus Kafka Streams not supported on Windows due to missing
librocksdbjni-win64.dll

1.9.9. Dependency on org.apache.maven:maven:pom:3.6.3 might cause proxy issues

The dependency on org.apache.maven:maven:pom:3.6.3 might be resolved when using certain
Quarkus extensions. This is not specific to the Gradle plugin but impacts any project with
io.smallrye:smallrye-parent:pom:37 in its parent Project Object Model (POM) hierarchy. This
dependency can cause build failures for environments behind a proxy that restricts access to
org.apache.maven artifacts with version 3.6.x. None of the binary packages from Maven 3.6.3 are
downloaded as dependencies of the Quarkus core framework or supported Quarkus extensions.

Workaround: No workaround is available at this time.

For more information, see QUARKUS-1025 - Gradle plugin drags in maven core 3.6.x

1.9.10. Build failure in the starter application generated by JBang with the Red Hat
extension registry

Building the starter application generated by JBang with Red Hat extension registry might result in an
unspecified error when postBuild() runs:

[jbang] [ERROR] Issue running postBuild()
dev.jbang.cli.ExitException: Issue running postBuild()

Red Hat build of Quarkus does not support this JBang scenario or development tooling.

Workaround: No workaround is available at this time.

For more information, see QUARKUS-3371 - Application created with jbang can not be built

1.10. ADVISORIES RELATED TO THIS RELEASE

Before you start using and deploying Red Hat build of Quarkus 3.2.11, review the advisories about
enhancements, bug fixes, and CVE fixes for other technologies and services related to the release.

1.10.1. Red Hat build of Quarkus 3.2.11

RHSA-2024:129589

1.10.2. Red Hat build of Quarkus 3.2.10

Red Hat build of Quarkus 3.2 Release Notes for Red Hat build of Quarkus 3.2

44

https://issues.redhat.com/browse/QUARKUS-3434
https://issues.redhat.com/browse/QUARKUS-1025
https://issues.redhat.com/browse/QUARKUS-3371
https://access.redhat.com/errata/RHSA-2024:129589

RHSA-2024:0722

1.10.3. Red Hat build of Quarkus 3.2.9.SP1

RHSA-2024:0495

1.10.4. Red Hat build of Quarkus 3.2.9

RHEA-2023:7612

1.10.5. Red Hat build of Quarkus 3.2.6

RHEA-2023:5416

1.11. ADDITIONAL RESOURCES

Migrating applications to Red Hat build of Quarkus version 3.2 guide.

Getting Started with Red Hat build of Quarkus

Revised on 2024-04-04 12:02:13 UTC

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2

45

https://access.redhat.com/errata/RHSA-2024:0722
https://access.redhat.com/errata/RHSA-2024:0495
https://access.redhat.com/errata/RHSA-2023:7612
https://access.redhat.com/errata/RHEA-2023:5416
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/8c2d0754-31e2-4d6d-9d5f-9ade55c3b30d
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.2
	1.1. ABOUT RED HAT BUILD OF QUARKUS
	1.2. DIFFERENCES BETWEEN THE RED HAT BUILD OF QUARKUS COMMUNITY VERSION AND RED HAT BUILD OF QUARKUS
	1.3. NEW FEATURES, ENHANCEMENTS, AND TECHNICAL CHANGES
	1.3.1. Cloud
	1.3.1.1. Cached section capabilities introduced in the Qute templating engine
	1.3.1.2. Kubernetes client upgraded to version 6.7.2

	1.3.2. Core
	1.3.2.1. Build-time analytics (user telemetry) support
	1.3.2.2. Infinispan annotation caching support
	1.3.2.3. Management Network interface integration
	1.3.2.4. Most of the quarkus-cache configurations are now runtime
	1.3.2.5. Multiple SMTP mailer support
	1.3.2.6. Revamp of the development UI
	1.3.2.7. Scheduler programmatic API
	1.3.2.8. Update tool integration

	1.3.3. Data
	1.3.3.1. Hibernate ORM extension now incorporates automated IN clause parameter padding
	1.3.3.2. Hibernate ORM upgraded to version 6.2
	1.3.3.3. Hibernate Search upgraded to version 6.2
	1.3.3.4. Oracle JDBC driver upgraded to version 23.2.0.0
	1.3.3.5. Reactive datasources now support CredentialsProvider values

	1.3.4. Native
	1.3.4.1. Red Had build of Red Hat build of Quarkus Native builder upgraded to version 23

	1.3.5. Observability
	1.3.5.1. OpenTelemetry SDK autoconfiguration

	1.3.6. Security
	1.3.6.1. Custom claim types in test dependencies now supported
	1.3.6.2. OpenID Connect (OIDC) Front-channel Logout now supported
	1.3.6.3. OpenID Connect token verification customization
	1.3.6.4. Security annotations can be used as meta-annotations
	1.3.6.5. Simplified OIDC multitenancy resolution for static tenants
	1.3.6.6. SmallRye configuration properties expansion in @RolesAllowed

	1.3.7. Standards
	1.3.7.1. Eclipse MicroProfile 6 integration
	1.3.7.2. Jakarta EE 10 integration

	1.3.8. Tooling
	1.3.8.1. Apache Maven version 3.9 supported
	1.3.8.2. Deploy tool integration
	1.3.8.3. Red Hat build of Quarkus CLI enhancements for building and pushing container images

	1.3.9. Web
	1.3.9.1. Federation support for SmallRye GraphQL
	1.3.9.2. Filtering by named queries in REST Data with the Panache extension
	1.3.9.3. gRPC exception handling
	1.3.9.4. gRPC extension migration to Vert.x gRPC
	1.3.9.5. Programmatic API to create Reactive REST clients
	1.3.9.6. RESTEasy Reactive HTTP response headers and status codes can be customized
	1.3.9.7. The @Encoded annotation on REST Client Reactive is now supported

	1.4. SUPPORT AND COMPATIBILITY
	1.4.1. Product updates and support lifecycle policy
	1.4.2. Tested and verified environments
	1.4.3. Development support
	1.4.3.1. Development tools

	1.5. DEPRECATED COMPONENTS AND FEATURES
	1.5.1. Deprecation of Red Hat build of Quarkus support for Java 11

	1.6. TECHNOLOGY PREVIEWS
	1.6.1. Enhanced component testing
	1.6.2. Hibernate Reactive upgraded to version 2
	1.6.3. quarkus-opentelemetry-exporter-otlp merged into quarkus-opentelemetry
	1.6.4. Support for storing transaction logs in a database

	1.7. CHANGES THAT AFFECT COMPATIBILITY WITH EARLIER VERSIONS
	1.7.1. Cloud
	1.7.1.1. Upgrade to the Kubernetes client that is included with Red Hat build of Quarkus
	1.7.1.2. Improved logic for generating TLS-based container ports
	1.7.1.3. Removal of some Kubernetes and OpenShift properties

	1.7.2. Core
	1.7.2.1. Upgrade to Jandex 3
	1.7.2.2. Migration path for users of Jandex API
	1.7.2.3. Removal of io.quarkus.arc.config.ConfigProperties annotation
	1.7.2.4. Interceptor binding annotations declared on private methods now generate build failures
	1.7.2.5. Removal of the @AlternativePriority annotation
	1.7.2.6. Testing changes: Fixation of the Mockito subclass mockmaker
	1.7.2.7. Update to the minimum supported Maven version
	1.7.2.8. Removal of quarkus-bootstrap-maven-plugin
	1.7.2.9. Mutiny 2 moves to Java Flow

	1.7.3. Data
	1.7.3.1. Removal of Hibernate ORM with Panache methods
	1.7.3.2. Enhancement in Hibernate ORM: Automated IN clause parameter padding
	1.7.3.3. New dependency: Hibernate Reactive 2 and Hibernate ORM 6.2
	1.7.3.4. Hibernate Search changes
	1.7.3.5. Hibernate Validator - Validation.buildDefaultValidatorFactory() now returns a ValidatorFactory managed by Quarkus
	1.7.3.6. Quartz jobs class name change
	1.7.3.7. Deprecation of QuarkusTransaction.run and QuarkusTransaction.call methods
	1.7.3.8. Renamed Narayana transaction manager property

	1.7.4. Messaging
	1.7.4.1. Removal of vertx-kafka-client dependency from SmallRye Reactive Messaging

	1.7.5. Native
	1.7.5.1. Native compilation - Native executables and .so files
	1.7.5.2. Native Compilation - Work around missing CPU features
	1.7.5.3. Testing changes: Removal of some annotations

	1.7.6. Observability
	1.7.6.1. Deprecated OpenTracing driver is replaced by OpenTelemetry
	1.7.6.2. Default metrics format in Micrometer now aligned with Prometheus
	1.7.6.3. Changes in the OpenTelemetry extension and removal of some sampler-related properties

	1.7.7. Security
	1.7.7.1. Removal of CORS filter default support for using a wildcard as an origin
	1.7.7.2. OpenAPI CORS support change
	1.7.7.3. Encryption of OIDC session cookie by default
	1.7.7.4. Default SameSite attribute set to Lax for OIDC session cookie
	1.7.7.5. The OIDC ID token audience claim is verified by default
	1.7.7.6. Removal of default password for the JWT key and keystore

	1.7.8. Web
	1.7.8.1. Changes to RESTEasy Reactive multipart
	1.7.8.2. Enhanced JAXB extension control

	1.8. BUG FIXES
	1.8.1. Security fixes resolved in Red Hat build of Quarkus 3.2.11
	1.8.2. Security fixes resolved in Red Hat build of Quarkus 3.2.10
	1.8.3. Security fixes resolved in Red Hat build of Quarkus 3.2.9.SP1
	1.8.4. Security fixes resolved in Red Hat build of Quarkus 3.2.9
	1.8.5. Security fixes resolved in Red Hat build of Quarkus 3.2.6
	1.8.6. Other enhancements and bug fixes

	1.9. KNOWN ISSUES
	1.9.1. Using CDI interceptors to resolve multitenant OIDC configuration fails due to security fix in version 3.2.9.SP1
	1.9.2. Podman 4.6 and later does not work with SELinux and Testcontainers library
	1.9.3. Containers spawned by Testcontainers occasionally fail
	1.9.4. HTTP/1.1 Upgrades to H2C fail under specific flow control conditions
	1.9.5. Reactive Oracle datasource fails with specific Oracle JDBC driver versions
	1.9.6. Community artifacts are used for native Vert.x dependencies on specific platforms
	1.9.7. Red Hat build of Quarkus Kafka Streams are not supported on Windows due to a missing library
	1.9.8. Community artifacts are used for some native dependencies on specific platforms
	1.9.9. Dependency on org.apache.maven:maven:pom:3.6.3 might cause proxy issues
	1.9.10. Build failure in the starter application generated by JBang with the Red Hat extension registry

	1.10. ADVISORIES RELATED TO THIS RELEASE
	1.10.1. Red Hat build of Quarkus 3.2.11
	1.10.2. Red Hat build of Quarkus 3.2.10
	1.10.3. Red Hat build of Quarkus 3.2.9.SP1
	1.10.4. Red Hat build of Quarkus 3.2.9
	1.10.5. Red Hat build of Quarkus 3.2.6

	1.11. ADDITIONAL RESOURCES

