& RedHat

Red Hat build of Quarkus 3.2

Migrating applications to Red Hat build of
Quarkus 3.2

Last Updated: 2024-04-04

Red Hat build of Quarkus 3.2 Migrating applications to Red Hat build of
Quarkus 3.2

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to migrate applications from earlier versions of Red Hat build of Quarkus
to the current version.

Table of Contents

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ..ttt it e ettt et eaeeeneeeaneenaneennnes, 4
CHAPTER 1. MIGRATING APPLICATIONS TO RED HATBUILD OF QUARKUS 3.2ciiiiiiiiiiie e 5
1.1. UPDATING PROJECTS TO THE LATEST RED HAT BUILD OF QUARKUS VERSION 5
1.1.1. Prerequisites 5
1.1.2. Procedure 5
1.2. CHANGES THAT AFFECT COMPATIBILITY WITH EARLIER VERSIONS 7
1.2.1. Cloud 7
1.2.1.1. Upgrade to the Kubernetes client that is included with Red Hat build of Quarkus 7
1.2.1.2. Improved logic for generating TLS-based container ports 7
1.2.1.3. Removal of some Kubernetes and OpenShift properties 7
1.2.2. Core 8
1.2.2.1. Upgrade to Jandex 3 8
1.2.2.2. Migration path for users of Jandex API 8
1.2.2.3. Removal of io.quarkus.arc.config.ConfigProperties annotation 9
1.2.2.4. Interceptor binding annotations declared on private methods now generate build failures 9
1.2.2.5. Removal of the @AlternativePriority annotation 9
1.2.2.6. Testing changes: Fixation of the Mockito subclass mockmaker 10
1.2.2.7. Update to the minimum supported Maven version 10
1.2.2.8. Removal of quarkus-bootstrap-maven-plugin 10
1.2.2.9. Mutiny 2 moves to Java Flow 10
1.2.3. Data n
1.2.3.1. Removal of Hibernate ORM with Panache methods 1
1.2.3.2. Enhancement in Hibernate ORM: Automated IN clause parameter padding n
1.2.3.3. New dependency: Hibernate Reactive 2 and Hibernate ORM 6.2 1
1.2.3.4. Hibernate Search changes 1
1.2.3.5. Hibernate Validator - Validation.buildDefaultValidatorFactory() now returns a ValidatorFactory
managed by Quarkus 12
1.2.3.6. Quartz jobs class name change 12
1.2.3.7. Deprecation of QuarkusTransaction.run and QuarkusTransaction.call methods 13
1.2.3.8. Renamed Narayana transaction manager property 14
1.2.4. Messaging 14
1.2.4.1. Removal of vertx-kafka-client dependency from SmallRye Reactive Messaging 14
1.2.5. Native 14
1.2.5.1. Native compilation - Native executables and .so files 14
1.2.5.2. Native Compilation - Work around missing CPU features 15
1.2.5.3. Testing changes: Removal of some annotations 15
1.2.6. Observability 16
1.2.6.1. Deprecated OpenTracing driver is replaced by OpenTelemetry 16
1.2.6.2. Default metrics format in Micrometer now aligned with Prometheus 16
1.2.6.3. Changes in the OpenTelemetry extension and removal of some sampler-related properties 16
1.2.7. Security 19
1.2.7.1. Removal of CORS filter default support for using a wildcard as an origin 19
1.2.7.2. OpenAPI CORS support change 19
1.2.7.3. Encryption of OIDC session cookie by default 20
1.2.7.4. Default SameSite attribute set to Lax for OIDC session cookie 20
1.2.7.5. The OIDC ID token audience claim is verified by default 20
1.2.7.6. Removal of default password for the JWT key and keystore 21
1.2.8. Web 21
1.2.8.1. Changes to RESTEasy Reactive multipart 21
1.2.8.2. Enhanced JAXB extension control 22

Red Hat build of Quarkus 3.2 Migrating applications to Red Hat build of Quarkus 3.2

1.3. ADDITIONAL RESOURCES

23

Table of Contents

Red Hat build of Quarkus 3.2 Migrating applications to Red Hat build of Quarkus 3.2

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD OF QUARKUS 3.2

CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD
OF QUARKUS 3.2

As an application developer, you can migrate applications that are based on earlier versions of Red Hat
build of Quarkus to version 3.2 by using the Quarkus CLI's update command.

IMPORTANT

The Quarkus CLlI is intended for dev mode only. Red Hat does not support using the
Quarkus CLIin production environments.

1.1. UPDATING PROJECTS TO THE LATEST RED HAT BUILD OF
QUARKUS VERSION

You can update or upgrade your Red Hat build of Quarkus projects to the latest version by using an
update command.

The update command primarily employs OpenRewrite recipes to automate updates for most project
dependencies, source code, and documentation. Although these recipes perform many migration tasks,
they do not cover all the tasks detailed in the migration guide.

Post-update, if expected updates are missing, consider the following reasons:

® The recipe applied by the update command might not include a migration task that your project
requires.

® Your project might use an extension that is incompatible with the latest Red Hat build of
Quarkus version.

IMPORTANT

For projects that use Hibernate ORM or Hibernate Reactive, review the Hibernate ORM
5 to 6 migration quick reference. The following update command covers only a subset of
this guide.

1.1.1. Prerequisites

® Roughly 30 minutes

e AnIDE

e JDK 1+ installed with JAVA_HOME configured appropriately

® Apache Maven 3.8.6 or later

e Optionally, the Red Hat build of Quarkus CLI if you want to use it

e Optionally Mandrel or GraalVM installed and configured appropriately if you want to build a
native executable (or Docker if you use a native container build)

® A project based on Red Hat build of Quarkus version 2.13 or later.

1.1.2. Procedure

https://quarkus.io/version/3.2/guides/cli-tooling
https://github.com/quarkusio/quarkus/wiki/Migration-Guide-3.0:-Hibernate-ORM-5-to-6-migration

Red Hat build of Quarkus 3.2 Migrating applications to Red Hat build of Quarkus 3.2

Create a working branch for your project by using your version control system.

To use the Red Hat build of Quarkus CLI in the next step, install the latest version of the Red
Hat build of Quarkus CLI. Confirm the version number using quarkus -v.

Configure your extension registry client as described in the Configuring Red Hat build of
Quarkus extension registry client section of the Quarkus "Getting Started" guide.

. To update using the Red Hat build of Quarkus CLI, go to the project directory and update the

project to the latest stream:

I quarkus update

Optional: By default, this command updates to the latest current version. To update to a specific
stream instead of latest current version, add the stream option to this command followed by the
version; for example: --stream=3.2

To update using Maven instead of the Red Hat build of Quarkus CLI, go to the project directory
and update the project to the latest stream:

a. Ensure that the Red Hat build of Quarkus Maven plugin version aligns with the latest
supported Red Hat build of Quarkus version.

b. Configure your project according to the guidelines provided in the Getting started with
Quarkus guide.

mvn com.redhat.quarkus.platform:quarkus-maven-plugin:3.2.11.Final-redhat-
00001:update

Optional: By default, this command updates to the latest current version. To update to a
specific stream instead of latest current version, add the stream option to this command
followed by the version; for example: -Dstream=3.2

Analyze the update command output for potential instructions and perform the suggested
tasks if necessary.

Use a diff tool to inspect all changes.

Review the migration guide for items that were not updated by the update command. If your
project has such items, implement the additional steps advised in these topics.

Ensure the project builds without errors, all tests pass, and the application functions as required
before deploying to production.

. Before deploying your updated Red Hat build of Quarkus application to production, ensure the

following:

® The project builds without errors.
® All tests pass.

® The application functions as required.

https://quarkus.io/version/3.2/guides/cli-tooling#installing-the-cli
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f#proc_configuring-quarkus-extension-registry-client_quarkus-getting-started
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f#con-apache-maven-plug-ins-and-quarkus_quarkus-getting-started

CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD OF QUARKUS 3.2

1.2. CHANGES THAT AFFECT COMPATIBILITY WITH EARLIER
VERSIONS

This section describes changes in Red Hat build of Quarkus 3.2 that affect the compatibility of
applications built with earlier product versions.

Review these breaking changes and take the steps required to ensure that your applications continue
functioning after you update them to Red Hat build of Quarkus 3.2.

To automate many of these changes, use the quarkus update command to update your projects to the
latest Red Hat build of Quarkus version.

1.2.1. Cloud

1.2.1.1. Upgrade to the Kubernetes client that is included with Red Hat build of Quarkus

The Kubernetes Client has been upgraded from 5.12 to 6.7.2. For more information, see the Kubernetes
Client - Migration from 5.x to 6.x guide.

1.2.1.2. Improved logic for generating TLS-based container ports

Red Hat build of Quarkus 3.2 introduces changes in how the Kubernetes extension generates TLS-
based container ports.

Earlier versions automatically added a container port named https to generated deployment resources.
This approach posed problems, especially when SSL/TLS was not configured, rendering the port non-

functional.

In 3.2 and later, the Kubernetes extension does not add a container port named https by default. The
container port is only added if you take the following steps:

® You specify any relevant quarkus.http.ssl.* properties in your application.properties file.

® You set quarkus.kubernetes.ports.https.tis=true in your application.properties file.

1.2.1.3. Removal of some Kubernetes and OpenShift properties

With this 3.2 release, some previously deprecated Kubernetes and OpenShift-related properties have
been removed. Replace them with their new counterparts.

Table 1.1. Removed properties and their new counterparts

Removed property New property

quarkus.kubernetes.expose quarkus.kubernetes.ingress.expose
quarkus.openshift.expose quarkus.openshift.route.expose
quarkus.kubernetes.host quarkus.kubernetes.ingress.host
quarkus.openshift.host quarkus.openshift.route.host

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/8c2d0754-31e2-4d6d-9d5f-9ade55c3b30d#proc_updating-quarkus_migrating-to-quarkus-3
https://github.com/fabric8io/kubernetes-client/blob/main/doc/MIGRATION-v6.md

Red Hat build of Quarkus 3.2 Migrating applications to Red Hat build of Quarkus 3.2

Removed property New property

quarkus.kubernetes.group quarkus.kubernetes.part-of

quarkus.openshift.group quarkus.openshift.part-of

Additionally, with this release, properties without the quarkus. prefix are ignored. For example, before
this release, if you added a kubernetes.name property, it was mapped to quarkus.kubernetes.name.
To avoid exceptions like java.lang.ClassCastException when upgrading from 2.16.0.Final to 2.16.1.Final
#30850, this kind of mapping is no longer done.

As you continue your work with Kubernetes and OpenShift in the context of Quarkus, use the new
properties and include the quarkus. prefix where needed.

1.2.2. Core

1.2.2.1. Upgrade to Jandex 3

With this 3.2 release, Jandex becomes part of the SmallRye project, consolidating all Jandex projects
into a single repository: https://github.com/smallrye/jandex/. Consequently, a new release of the
Jandex Maven plugin is delivered alongside the Jandex core.

This release also changes the Maven coordinates. Replace the old coordinates with the new ones.

Table 1.2. Old coordinates and their new counterparts

Old coordinates New coordinates
org.jboss:jandex io.smallrye:jandex
org.jboss.jandex:jandex-maven-plugin io.smallrye:jandex-maven-plugin

If you use the Maven Enforcer plugin, configure it to ban any dependencies on org.jboss:jandex. An
equivalent plugin is available for Gradle users.

1.2.2.2. Migration path for users of Jandex API

Jandex 3 contains many interesting features and improvements. These changes, unfortunately, required
a few breaking changes. Here is the recommended migration path:

1. Upgrade to Jandex 2.4.3.Final. This version provides replacements for some methods that have
changed in Jandex 3.0.0. For instance, instead of ClassInfo.annotations(), use
annotationsMap(), and replace MethodInfo.parameters() with parameterTypes(). Stop using
any methods that Jandex has marked as deprecated.

2. Ensure you do not use the return value of Indexer.index() or indexClass().

3. If you compile your code against Jandex 2.4.3.Final, it can run against both 2.4.3.Final and 3.0.0.
However, there are exceptions to this. If you implement the IndexView interface or, in some
cases, rely on the UnresolvedTypeVariable class, it is not possible to keep the project
compatible with both Jandex 2.4.3 and Jandex 3.

https://github.com/quarkusio/quarkus/issues/30850
https://github.com/smallrye/jandex/

CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD OF QUARKUS 3.2

4. Upgrade to Jandex 3.0.0. If you implement the IndexView interface, ensure you implement the
methods that have been added. And if you extensively use the Jandex Type hierarchy, verify if
you need to handle TypeVariableReference, which is now used to represent recursive type
variables.

Alongside this release, Jandex introduces a new documentation site. While it's a work in progress, it will
become more comprehensive over time. You can also refer to the improved Jandex Javadoc for further
information.

1.2.2.3. Removal of io.quarkus.arc.config.ConfigProperties annotation

With this 3.2 release, the previously deprecated io.quarkus.arc.config.ConfigProperties annotation
has been removed.

Instead, use the io.smallrye.config.ConfigMapping annotation to inject multiple related configuration
properties.

For more information, see the @ConfigMapping section of the "Mapping configuration to objects” guide.

1.2.2.4. Interceptor binding annotations declared on private methods now generate build
failures

With this 3.2 release, declaring an interceptor binding annotation on a private method is not supported
and triggers a build failure; for example:

jakarta.enterprise.inject.spi.DeploymentException: @Transactional does not affect method
com.acme.MyBean.myMethod() because the method is private. [...]

In earlier releases, declaring an interceptor binding annotation on a private method triggered only a
warning in logs but was otherwise ignored.

This support change aims to prevent unintentional usage of interceptor annotations on private methods
because they do not have any effect and can cause confusion.

To address this change, remove such annotations from private methods. If removing these annotations

is not feasible, you can set the configuration property quarkus.arc.fail-on-intercepted-private-method
to false. This setting reverts the system to its previous behavior, where only a warning is logged.

1.2.2.5. Removal of the @AlternativePriority annotation

This release removes the previously deprecated @AlternativePriority annotation. Replace it with both
the @Alternative and @Priority annotations.

Example: Removed annotation
I @AlternativePriority(1)
Example: Replacement annotations

@Alternative
@Priority(1)

https://smallrye.io/jandex/
https://quarkus.io/version/3.2/guides/config-mappings#config-mappings

Red Hat build of Quarkus 3.2 Migrating applications to Red Hat build of Quarkus 3.2

Use Jakarta.annotation.Priority with the @Priority annotation instead ot i0.quarkus.arc.Priority,
which is deprecated and planned for removal in a future release. Both annotations perform identical
functions.

1.2.2.6. Testing changes: Fixation of the Mockito subclass mockmaker

This release updates Mockito version 5.x. Notably, Mockito switched the default mockmaker to inline in
its 5.0.0 release.

However, to preserve the mocking behavior Quarkus users are familiar with since Quarkus 1x, and to
prevent memory leaks for extensive test suites, Quarkus 3.0 fixes the mockmaker to subclass instead
of inline until the latter is fully supported.

If you want to force the inline mockmaker, follow these steps:

1. Add the following exclusion to your pom.xmil:

<dependency>
<groupld>io.quarkus</groupld>
<artifactld>quarkus-junit5-mockito</artifactld>
<exclusions>
<exclusion>
<groupld>org.mockito</groupld>
<artifactld>mockito-subclass</artifactld>
</exclusion>
</exclusions>
<dependency>

2. Add mockito-core to your dependencies.

3. Mockito 5.3 removed the mockito-inline artifact: you can remove it from your dependencies.

1.2.2.7. Update to the minimum supported Maven version

Quarkus has undergone a refactoring of its Maven plugins to support Maven 3.9. As a result, the
minimum Maven version supported by Quarkus has been raised from 3.6.2 to 3.8.6 or later. Ensure your
development environment is updated accordingly to benefit from the latest improvements and features.

1.2.2.8. Removal of quarkus-bootstrap-maven-plugin

With this 3.2 release, the previously-deprecated io.quarkus:quarkus-bootstrap-maven-plugin Maven
plugin has been removed.

This plugin is for Quarkus extension development only. Therefore, if you are developing custom Quarkus

extensions, you must change the artifact ID from io.quarkus:quarkus-bootstrap-maven-plugin to
io.quarkus:quarkus-extension-maven-plugin.

NOTE

This change relates specifically to custom extension development. For standard
application development, you use the quarkus-maven-plugin plugin.

1.2.2.9. Mutiny 2 moves to Java Flow

10

https://github.com/mockito/mockito/releases/tag/v5.0.0
https://github.com/quarkusio/quarkus/issues/31251

CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD OF QUARKUS 3.2

Mutiny is a reactive programming library, the versions 1.x of which were based on the
org.reactivestream interfaces, whereas version 2 is based on java.util.concurrent.Flow. These APIs are
identical, but the package name has changed.

Mutiny offers adapters to bridge between Mutiny 2 (Flow API) and other libraries with legacy reactive
streams API.

1.2.3. Data

1.2.3.1. Removal of Hibernate ORM with Panache methods

With this 3.2 release, the following previously deprecated methods from Hibernate ORM with Panache
and Hibernate ORM with Panache in Kotlin have been removed:

e jo.quarkus.hibernate.orm.panache.PanacheRepositoryBase#getEntityManager(Class<?>
clazz)

e jo.quarkus.hibernate.orm.panache.kotlin.PanacheRepositoryBase#getEntityManager(claz
z: KClass<Any>)

Instead, use the Panache.getEntityManager(Class<?> clazz) method.

1.2.3.2. Enhancement in Hibernate ORM: Automated IN clause parameter padding

With this 3.2 release, the Hibernate Object-Relational Mapping (ORM) extension has been changed to
incorporate automatic IN clause parameter padding as a default setting. This improvement augments
the caching efficiency for queries that incorporate IN clauses.

To revert to the previous functionality and deactivate this feature, you can set the property value of
quarkus.hibernate-orm.query.in-clause-parameter-padding to false.

1.2.3.3. New dependency: Hibernate Reactive 2 and Hibernate ORM 6.2

With this 3.2 release, Quarkus depends on the Hibernate Reactive 2 extension instead of Hibernate
Reactive 1. This change implies several changes in behavior and database schema expectations that are
incompatible with earlier versions.

Most of the changes are related to Hibernate Reactive 2 depending on Hibernate ORM 6.2 instead of
Hibernate ORM 5.6.

IMPORTANT

The Hibernate Reactive 2 extension is available as a Technology Preview in Red Hat build
of Quarkus 3.2.

For more information, see the following resources:
® Migration Guide 3.0: Hibernate Reactive
® Hibernate Reactive: 2.0 series

® Migration Guide 3.0: Hibernate ORM 5 to 6 migration

1.2.3.4. Hibernate Search changes

1

https://github.com/quarkusio/quarkus/wiki/Migration-Guide-3.0#hibernate-reactive
https://hibernate.org/reactive/releases/2.0/
https://github.com/quarkusio/quarkus/wiki/Migration-Guide-3.0:-Hibernate-ORM-5-to-6-migration

Red Hat build of Quarkus 3.2 Migrating applications to Red Hat build of Quarkus 3.2

Changes in the defaults for projectable and sortable on GeoPoint fields

With this 3.2 release, Hibernate Search 6.2 changes how defaults are handled for GeoPoint fields.

Suppose your Hibernate Search mapping includes GeoPoint fields that use the default value for the
projectable option and either the default value or Sortable.NO for the sortable option. In that case,
Elasticsearch schema validation fails on startup because of missing doc values on those fields.

To prevent that failure, complete either of the following steps:

® Revert to the previous defaults by adding projectable = Projectable.NO to the mapping
annotation of relevant GeoPoint fields.

® Recreate your Elasticsearch indexes and reindex your database. The easiest way to do sois to
use the MassIndexer with dropAndCreateSchemaOnStart(true).

For more information, see the Data format and schema changes section of the "Hibernate Search
6.2.1.Final: Migration Guide from 6.1".

Deprecated or renamed configuration properties

With this 3.2 release, the quarkus.hibernate-search-orm.automatic-
indexing.synchronization.strategy property is deprecated and is planned for removal in a future
version. Use the quarkus.hibernate-search-orm.indexing.plan.synchronization.strategy property
instead.

Also, the quarkus.hibernate-search-orm.automatic-indexing.enable-dirty-check property is
deprecated and is planned for removal in a future version. There is no alternative to replace it. After the
removal, it is planned that Search will always trigger reindexing after a transaction modifies an object’s
field. That is, if a transaction makes the fields "dirty."

For more information, see the Configuration changes section of the "Hibernate Search 6.2.1.Final:
Migration Guide from 6.1".

1.2.3.5. Hibernate Validator - Validation.buildDefaultValidatorFactory() now returns a
ValidatorFactory managed by Quarkus

With this 3.2 release, Quarkus doesn’t support the manual creation of ValidatorFactory instances.
Instead, you must use the Validation.buildDefaultValidatorFactory() method, which returns
ValidatorFactory instances managed by Quarkus that you inject through Context and Dependency
Injection (CDI). The main reason for this change is that a ValidatorFactory must be carefully crafted to
work in native executables. Before this release, you could still manually create a ValidatorFactory
instance and handle it yourself if you could make it work. This change aims to improve the compatibility
with components creating their own ValidatorFactory.

For more information, see the following resources:

® Hibernate Validator extension and CDI section of the "Validation with Hibernate Validator"
guide.

e ValidatorFactory and native executables section of the "Validation with Hibernate Validator"
guide.

® Obtaining a Validator instance of the "Hibernate Validator 8.0.0.Final - Jakarta Bean Validation
Reference Implementation: Reference Guide."

1.2.3.6. Quartz jobs class name change

12

https://docs.jboss.org/hibernate/search/6.2/migration/html_single/#data-format
https://docs.jboss.org/hibernate/search/6.2/migration/html_single/#configuration
https://quarkus.io/version/3.2/guides/validation#hibernate-validator-extension-and-cdi
https://quarkus.io/version/3.2/guides/validation#validatorfactory-and-native-executables
https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/#section-obtaining-validator

CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD OF QUARKUS 3.2

If you are storing jobs for the Quartz extension in a database by using Java Database Connectivity
(JDBC), run the following query to update the job class name in your JOB_DETAILS table:

UPDATE JOB_DETAILS SET JOB_CLASS_NAME =

'io.quarkus.quartz.runtime.QuartzSchedulerimpl$invokerdob' WHERE JOB_CLASS_NAME =

'io.quarkus.quartz.runtime.QuartzScheduler$invokerJob';

1.2.3.7. Deprecation of QuarkusTransaction.run and QuarkusTransaction.call methods

The QuarkusTransaction.run and QuarkusTransaction.call methods have been deprecated in favor

of new, more explicit methods.

Update code that relies on these deprecated methods as follows:

Before

QuarkusTransaction.run(() -> { ... });
QuarkusTransaction.call(() -> { ... });

After

QuarkusTransaction.requiringNew().run(() -> { ... });
QuarkusTransaction.requiringNew().call(() -> { ... }

Before

QuarkusTransaction.run(QuarkusTransaction.runOptions()
.semantic(RunOptions.Semantic. REQUIRED),
0->{..});

QuarkusTransaction.call(QuarkusTransaction.runOptions()
.semantic(RunOptions.Semantic. REQUIRED),

0->{.. 1

After

QuarkusTransaction.joiningExisting().run(() -> { ... });
QuarkusTransaction.joiningExisting().call(() -> { ... });

Before

QuarkusTransaction.run(QuarkusTransaction.runOptions()
timeout(10)
.exceptionHandler((throwable) -> {
if (throwable instanceof SomeException) {
return RunOptions.ExceptionResult. COMMIT;
}
return RunOptions.ExceptionResult. ROLLBACK;
1,
0->{..1;
QuarkusTransaction.call(QuarkusTransaction.runOptions()
timeout(10)
.exceptionHandler((throwable) -> {

13

https://quarkus.io/version/3.2/guides/quartz

Red Hat build of Quarkus 3.2 Migrating applications to Red Hat build of Quarkus 3.2

if (throwable instanceof SomeException) {
return RunOptions.ExceptionResult. COMMIT;

}
return RunOptions.ExceptionResult. ROLLBACK;

After

QuarkusTransaction.requiringNew()
timeout(10)
.exceptionHandler((throwable) -> {
if (throwable instanceof SomeException) {
return RunOptions.ExceptionResult. COMMIT;
}
return RunOptions.ExceptionResult. ROLLBACK;
}
run(()->{... D);

QuarkusTransaction.requiringNew()
timeout(10)
.exceptionHandler((throwable) -> {
if (throwable instanceof SomeException) {
return RunOptions.ExceptionResult. COMMIT;
}
return RunOptions.ExceptionResult. ROLLBACK;
)
call(() ->{ ... });

For more information, see the Programmatic Approach section of the "Using transactions in Quarkus"
guide.
1.2.3.8. Renamed Narayana transaction manager property

With this 3.2 release, the quarkus.transaction-manager.object-store-directory configuration property
is renamed to quarkus.transaction-manager.object-store.directory. Update your configuration by
replacing the old property name with the new one.

1.2.4. Messaging

1.2.4.1. Removal of vertx-kafka-client dependency from SmallRye Reactive Messaging

This release removes the previously deprecated vertx-kafka-client dependency for the smallrye-
reactive-messaging-kafka extension. Although it wasn't used for client implementations, vertx-kafka-
client provided default Kafka Serialization and Deserialization (SerDes) for io.vertx.core.buffer.Buffer,
io.vertx.core.json.JsonObject, and io.vertx.core.json.JsonArray types from the
io.vertx.kafka.client.serialization package.

If you require this dependency, you can get SerDes for the mentioned types from the
io.quarkus.kafka.client.serialization package.

1.2.5. Native

1.2.5.1. Native compilation - Native executables and .so files

14

https://quarkus.io/version/3.2/guides/transaction#programmatic-approach

CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD OF QUARKUS 3.2

With this 3.2 release, changes in GraalVM/Mandrel affect the use of extensions reliant on .so files, such
as the Java Abstract Window Toolkit (AWT) extension.

When using these extensions, you must add or copy the corresponding .so files to the native container;
for example:

COPY --chown=1001:root target/*.so /work/
COPY --chown=1001:root target/*-runner /work/application

NOTE

In this context, the AWT extension provides headless server-side image processing
capabilities, not GUI capabilities.
1.2.5.2. Native Compilation - Work around missing CPU features

With this 3.2 release, if you build native executables on recent machines and run them on older
machines, you might encounter the following failure when starting the application:

The current machine does not support all of the following CPU features that are required by the
image: [CX8, CMOV, FXSR, MMX, SSE, SSE2, SSE3, SSSE3, SSE4_1, SSE4_2, POPCNT,
LZCNT, AVX, AVX2, BMI1, BMI2, FMA].

Please rebuild the executable with an appropriate setting of the -march option.

This error message means that the native compilation used more advanced instruction sets that are
unsupported by the CPU running the application. To work around that issue, add the following line to
the application.properties file:

I quarkus.native.additional-build-args=-march=compatibility

Then, rebuild your native executable. This setting forces the native compilation to use an older
instruction set, increasing the chance of compatibility but decreasing optimization.

To explicitly define the target architecture, run native-image -march=list to get a list of supported
configurations. Then, specify a target architecture; for example:

I quarkus.native.additional-build-args=-march=x86-64-v4

If you are experiencing this problem with older AMD64 hosts, try -march=x86-64-v2 before using -
march=compatibility.

The GraalVM documentation for Native Image Build Options states that "[the -march parameter
generates] instructions for a specific machine type. [This parameter] defaults to x86-64-v3 on AMD64
and armv8-a on AArch64. Use -march=compatibility for best compatibility, or -march=native for best

performance if a native executable is deployed on the same machine or on a machine with the same
CPU features. To list all available machine types, use -march=list."

NOTE

The -march parameter is available only in GraalVM 23 and later.

1.2.5.3. Testing changes: Removal of some annotations

15

https://www.graalvm.org/latest/reference-manual/native-image/overview/BuildOptions/

Red Hat build of Quarkus 3.2 Migrating applications to Red Hat build of Quarkus 3.2

With this 3.2 release, the previously deprecated @io.quarkus.test.junit.NativelmageTest and
@io.quarkus.test.junit.DisabledOnNativelmageTest annotations have been
rimage:images/ref_changes-that-affect-backward-compatibility-88d2f.png[]. Replace them with their
new counterparts.

Table 1.3. Removed annotations and their new counterparts

Removed annotations New annotations

@io.quarkus.test.junit.NativelmageTest @io.quarkus.test.junit.QuarkusintegrationTe
st

@io.quarkus.test.junit.DisabledOnNativelma @io.quarkus.test.junit.DisabledOnintegration
geTest Test

The replacement annotations are functionally equivalent to the removed ones.

1.2.6. Observability

1.2.6.1. Deprecated OpenTracing driver is replaced by OpenTelemetry

With this 3.2 release, support for the OpenTracing driver has been deprecated. Removal of the
OpenTracing driver is planned for a future Quarkus release.

With this 3.2 release, the SmallRye GraphQL extension has replaced its OpenTracing integration with
OpenTelemetry. As a result, when using OpenTracing, the extension no longer generates spans for
GraphQL operations.

Also, with this release, the quarkus.smallrye-graphgl.tracing.enabled configuration property is
obsolete and has been removed. Instead, the SmallRye GraphQL extension automatically produces
spans when the OpenTelemetry extension is present.

Update your Quarkus applications to use OpenTelemetry so that they remain compatible with future
Quarkus releases.
1.2.6.2. Default metrics format in Micrometer now aligned with Prometheus

With this 3.2 release, the Micrometer extension exports metrics in the application/openmetrics-text
format by default, in line with the Prometheus standard. This change helps make your data easier to
read and interpret.

To you get metrics in the earlier format, you can change the Accept request header to text/plain. For
example, with the "curl command:

I curl -H "Accept: text/plain” localhost:8080/g/metrics/

1.2.6.3. Changes in the OpenTelemetry extension and removal of some sampler-related
properties

With this 3.2 release, the OpenTelemetry (OTel) extension has significant improvements. Before this
release, the OpenTelemetry SDK (OTel SDK) was created at build time and had limited configuration
options; most notably, it could not be disabled at run time. Now, it offers enhanced flexibility. It can be

16

CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD OF QUARKUS 3.2

disabled at run time by setting quarkus.otel.sdk.disabled=true.

After some preparatory steps at build time, the OTel SDK is configured at run time using the OTel auto-
configuration feature. This feature supports some of the properties defined in the Java OpenTelemetry
SDK. For more information, see the OpenTelemetry SDK Autoconfigure reference.

The OpenTelemetry extension is compatible with earlier versions. Most properties have been
deprecated but still function alongside the new ones until they are removed in a future release. You can

replace the deprecated properties with new ones.

Table 1.4. Deprecated properties and their new counterparts

Deprecated properties New properties

quarkus.opentelemetry.enabled

quarkus.opentelemetry.tracer.enabled

quarkus.opentelemetry.propagators

quarkus.opentelemetry.tracer.suppress-non-
application-uris

quarkus.opentelemetry.tracer.include-static-
resources

quarkus.opentelemetry.tracer.sampler

quarkus.opentelemetry.tracer.sampler.ratio

quarkus.opentelemetry.tracer.exporter.otlp.e
nabled

quarkus.opentelemetry.tracer.exporter.otip.h
eaders

quarkus.opentelemetry.tracer.exporter.otip.e
ndpoint

quarkus.otel.enabled

quarkus.otel.traces.enabled

quarkus.otel.propagators

quarkus.otel.traces.suppress-non-
application-uris

quarkus.otel.traces.include-static-resources

quarkus.otel.traces.sampler

quarkus.otel.traces.sampler.arg

quarkus.otel.exporter.otlp.enabled

quarkus.otel.exporter.otlp.traces.headers

quarkus.otel.exporter.otlp.traces.legacy-
endpoint

With this 3.2 release, some of the old quarkus.opentelemetry.tracer.sampler-related property values

have been removed.

If the sampler is parent based, there is no need to set the now-dropped
quarkus.opentelemetry.tracer.sampler.parent-based property.

Replace the following quarkus.opentelemetry.tracer.sampler values with new ones:

Table 1.5. Removed sampler property values and their new counterparts

17

https://github.com/open-telemetry/opentelemetry-java/blob/v1.25.0/sdk-extensions/autoconfigure/README.md

Red Hat build of Quarkus 3.2 Migrating applications to Red Hat build of Quarkus 3.2

Old value New value New value if parent-based
on always_on parentbased_always_on
off always_off parentbased_always_off
ratio traceidratio parentbased_traceidratio

Many new properties are now available. For more information, see the Quarkus Using OpenTelemetry
guide.

Quarkus allowed the Context and Dependency Injection (CDI) configuration of many classes:
IdGenerator, Resource attributes, Sampler, and SpanProcessor. This is a feature not available in
standard OTel, but it's still provided here for convenience. However, the CDI creation of the
SpanProcessor through the LateBoundBatchSpanProcessor is now deprecated. If there’s a need to
override or customize it, feedback is appreciated. The processor will continue to be used for supporting
earlier versions, but soon the standard exports bundled with the OTel SDK will be used. This means the
default exporter uses the following configuration:

I quarkus.otel.traces.exporter=cdi

As a preview, the stock OTLP exporter is now available by setting:

I quarkus.otel.traces.exporter=otlp

Additional configurations of the OTel SDK are now available, using the standard Service Provider
Interface (SPI) hooks for Sampler and SpanExporter. The remaining SPIs are also accessible, although
compatibility validation through testing is still required. For more information, see the updated
OpenTelemetry Guide.

OpenTelemetry upgrades

OpenTelemetry (OTel) 1.23.1introduced breaking changes, including the following items:
e HTTP span names are now "{http.method} {http.route}" instead of just "{http.route}".

® All methods in all Getter classes in instrumentation-api-semconv have been renamed to use
the get() naming scheme.

® Semantic convention changes:

Table 1.6. Deprecated properties and their new counterparts

Deprecated properties New properties

messaging.destination_kind messaging.destination.kind
messaging.destination messaging.destination.name
messaging.consumer_id messaging.consumetr.id

18

https://quarkus.io/version/3.2/guides/opentelemetry
https://quarkus.io/version/3.2/guides/opentelemetry

CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD OF QUARKUS 3.2

Deprecated properties New properties

messaging.kafka.consumer_group messaging.kafka.consumer.group

JDBC tracing activation

Before this release, to activate Java Database Connectivity (JDBC) tracing, you used the following
configuration:

quarkus.datasource.jdbc.url=jdbc:otel:postgresql://localhost:5432/mydatabase
use the 'OpenTelemetryDriver' instead of the one for your database
quarkus.datasource.jdbc.driver=io.opentelemetry.instrumentation.jdbc.OpenTelemetryDriver

With this 3.2 release, you can use a much simpler configuration:

I quarkus.datasource.jdbc.telemetry=true

With this configuration, you do not need to change the database URL or declare a different driver.

1.2.7. Security

1.2.7.1. Removal of CORS filter default support for using a wildcard as an origin

The default behavior of the cross-origin resource sharing (CORS) filter has significantly changed. In
earlier releases, when the CORS filter was enabled, it supported all origins by default. With this 3.2
release, support for all origins is no longer enabled by default. Now, if you want to permit all origins, you
must explicitly configure it to do so.

After a thorough evaluation, if you determine that all origins require support, configure the system in the
following manner:

quarkus.http.cors=true
quarkus.http.cors.origins=/.*/

Same-origin requests receive support without needing the quarkus.http.cors.origins configuration.
Therefore, adjusting the quarkus.http.cors.origins becomes essential only when you allow trusted
third-party origin requests. In such situations, enabling all origins might pose unnecessary risks.

' WARNING
A Use this setting with caution to maintain optimal system security.

1.2.7.2. OpenAPI CORS support change

With this 3.2 release, OpenAPI has changed its cross-origin resource sharing (CORS) settings and no
longer enables wildcard (*) origin support by default. This change helps to prevent potential leakage of
OpenAPI documents, enhancing the overall security of your applications.

19

Red Hat build of Quarkus 3.2 Migrating applications to Red Hat build of Quarkus 3.2

Although you can enable wildcard origin support in dev mode , it is crucial to consider the potential
security implications. Avoid enabling all origins in a production environment because it exposes your
applications to security threats. Ensure your CORS settings align with your production environment’s
recommended security best practices.

1.2.7.3. Encryption of OIDC session cookie by default

With this 3.2 release, the OpenID Connect (OIDC) session cookie, created after the completion of an
OIDC Authorization Code Flow, is encrypted by default. In most scenarios, you are unlikely to notice this
change.

However, if the mTLS or private_key_jwt authentication methods - where the OIDC client private key
signs a JSON Web Token (JWT) - are used between Quarkus and the OIDC Provider, an in-memory
encryption key gets generated. This key generation can result in some pods failing to decrypt the
session cookie, especially in applications dealing with many requests. This situation can arise when a pod
attempting to decrypt the cookie isn't the one that encrypted it.

If such issues occur, register an encryption secret of 32 characters; for example:

I quarkus.oidc.token-state-manager.encryption-secret=eUk1p7UB3nFiXZGUXiOuph1Y9p34YhBU

An encrypted session cookie can exceed 4096-bytes, which can cause some browsers to ignore it. If this
occurs, try one or more of the following steps:

e Set quarkus.oidc.token-state-manager.split-tokens=true to store ID, access, and refresh
tokens in separate cookies.

e Set quarkus.oidc.token-state-manager.strategy=id-refresh-tokens if there's no need to use
the access token as a source of roles to request UserInfo or propagate it to downstream

services.

® Register a custom quarkus.oidc.TokenStateManager Context and Dependency Injection
(CDI) bean with the alternative priority set to 1.

If application users access the Quarkus application from within a trusted network, disable the session
cookie encryption by applying the following configuration:

I quarkus.oidc.token-state-manager.encryption-required=false

1.2.7.4. Default SameSite attribute set to Lax for OIDC session cookie

With this 3.2 release, for the Quarkus OpenID Connect (OIDC) extension, the session cookie SameSite
attribute is set to Lax by default.

In some earlier releases of Quarkus, the OIDC session cookie SameSite attribute was set to Strict by
default. This setting introduced unpredictability in how different browsers handled the session cookie.

1.2.7.5. The OIDC ID token audience claim is verified by default

With this 3.2 release, the OpenID Connect (OIDC) ID token aud (audience) claim is verified by default.
This claim must equal the value of the configured quarkus.oidc.client-id property, as required by the
OIDC specification.

20

https://quarkus.io/version/3.2/guides/http-reference#support-all-origins-in-devmode

CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD OF QUARKUS 3.2

1o override the expected ID token audience value, set the quarkus.oidc.token.audience contiguration
property. If you deal with a noncompliant OIDC provider that does not set an ID token aud claim, you
can set quarkus.oidc.token.audience to any.

' WARNING
A Setting quarkus.oidc.token.audience to any reduces the security of your 3.2

application.

1.2.7.6. Removal of default password for the JWT key and keystore

Before this release, Quarkus used password as the default password for the JSON Web Token (JWT)
key and keystore. With this 3.2 release, this default value has been removed.

If you are still using the default password, set a new value to replace password for the following
properties in the application.properties file:

quarkus.oidc-client.credentials.jwt.key-store-password=password
quarkus.oidc-client.credentials.jwt.key-password=password

1.2.8. Web

1.2.8.1. Changes to RESTEasy Reactive multipart

With this 3.2 release, the following changes impact multipart support in RESTEasy Reactive:

® Before this release, you could catch all file uploads regardless of the parameter name using the
syntax: @RestForm List<FileUploads all, but this was ambiguous and not intuitive. Now, this
form only fetches parameters named all, just like for every other form element of other types,
and you must use the following form to catch every parameter regardless of its name:
@RestForm(FileUpload.ALL) List<FileUpload> all.

® Multipart form parameter support has been added to @BeanParam. The @MultipartForm
annotation is now deprecated. Use @BeanParam instead of @MultipartForm.

e The @BeanParam is now optional and implicit for any non-annotated method parameter with
fields annotated with any @Rest* or @*Param annotations.

® Multipart elements are no longer limited to being encapsulated inside @MultipartForm-
annotated classes: they can be used as method endpoint parameters and endpoint class fields.

® Multipart elements now default to the @PartType(MediaType. TEXT_PLAIN) MIME type
unless they are of type FileUpload, Path, File, byte[], or InputStream.

® Multipart elements of the MediaType.TEXT_PLAIN MIME type are now deserialized using the

regular ParamConverter infrastructure. Before this release, deserialization used
MessageBodyReader.

21

Red Hat build of Quarkus 3.2 Migrating applications to Red Hat build of Quarkus 3.2

Multipart elements of the FileUpload, Path, File, byte[], or InputStream types are special-
cased and deserialized by the RESTEasy Reactive extension, not by the MessageBodyReader
or ParamConverter classes.

Multipart elements of other explicitly set MIME types still use the appropriate
MessageBodyReader infrastructure.

Multipart elements can now be wrapped in List to obtain all values of the part with the same
name.

Any client call that includes the @RestForm or @FormParam parameters defaults to the
MediaType.APPLICATION_FORM_URLENCODED content type unless they are of the File,
Path, Buffer, Multi<Byte>, or byte[] types, in which case it defaults to the
MediaType.MULTIPART_FORM_DATA content type.

Class org.jboss.resteasy.reactive.server.core.multipart.MultipartFormDataOutput has been
moved to org.jboss.resteasy.reactive.server.multipart.MultipartFormDataOutput.

Class org.jboss.resteasy.reactive.server.core.multipart.Partltem has been moved to
org.jboss.resteasy.reactive.server.multipart.Partltem.

Class org.jboss.resteasy.reactive.server.core.multipart.FormData.FormValue has been
moved to org.jboss.resteasy.reactive.server.multipart.FormValue.

The REST Client no longer uses the server-specific MessageBodyReader and
MessageBodyWriter classes associated with Jackson. Before this release, the REST Client
unintentionally used those classes. The result is that applications that use both quarkus-
resteasy-reactive-jackson and quarkus-rest-client-reactive extensions must now include the
quarkus-rest-client-reactive-jackson extension.

1.2.8.2. Enhanced JAXB extension control

The JAXB extension detects classes that use JAXB annotations and registers them into the default
JAXBContext instance. Before this release, any issues or conflicts between the classes and JAXB
triggered a JAXB exception at runtime, providing a detailed description to help troubleshoot the
problem. However, you could preemptively tackle these conflicts during the build stage.

This release adds a feature that can validate the JAXBContext instance at build time so that you can
detect and fix JAXB errors early in the development cycle.

For example, as shown in the following code block, binding both classes to the default JAXBContext
instance would inevitably lead to a JAXB exception. This is because the classes share the identical name,
Model, despite existing in different packages. This concurrent naming creates a conflict, leading to the
exception.

22

package org.acme.one;
import jakarta.xml.bind.annotation.XmlRootElement;

@XmIRootElement
public class Model {

private String nameft;

public String getName1() {

}

return namef;

CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD OF QUARKUS 3.2

public void setName1(String name1) {
this.name1 = name1;

}
}

package org.acme.two;

import jakarta.xml.bind.annotation.XmIRootElement;
@XmIRootElement

public class Model {

private String name2;

public String getName2() {
return namez;

}

public void setName2(String name2) {
this.name2 = name2;

}
}

To activate this feature, add the following property:

I quarkus.jaxb.validate-jaxb-context=true

Additionally, this release adds the quarkus.jaxb.exclude-classes property. With this property, you can
specify classes to exclude from binding to the JAXBContext. You can provide a comma-separated list
of fully qualified class names or a list of packages.

For example, to resolve the conflict in the preceding example, you can exclude one or both of the
classes:

I quarkus.jaxb.exclude-classes=org.acme.one.Model,org.acme.two.Model

Or you can exclude all the classes under a package:

I quarkus.jaxb.exclude-classes=org.acme.*

1.3. ADDITIONAL RESOURCES

® Release notes for Red Hat build of Quarkus version 3.2

23

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/4ea39096-72be-4ccf-a22e-7e42063d29ec

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. MIGRATING APPLICATIONS TO RED HAT BUILD OF QUARKUS 3.2
	1.1. UPDATING PROJECTS TO THE LATEST RED HAT BUILD OF QUARKUS VERSION
	1.1.1. Prerequisites
	1.1.2. Procedure

	1.2. CHANGES THAT AFFECT COMPATIBILITY WITH EARLIER VERSIONS
	1.2.1. Cloud
	1.2.1.1. Upgrade to the Kubernetes client that is included with Red Hat build of Quarkus
	1.2.1.2. Improved logic for generating TLS-based container ports
	1.2.1.3. Removal of some Kubernetes and OpenShift properties

	1.2.2. Core
	1.2.2.1. Upgrade to Jandex 3
	1.2.2.2. Migration path for users of Jandex API
	1.2.2.3. Removal of io.quarkus.arc.config.ConfigProperties annotation
	1.2.2.4. Interceptor binding annotations declared on private methods now generate build failures
	1.2.2.5. Removal of the @AlternativePriority annotation
	1.2.2.6. Testing changes: Fixation of the Mockito subclass mockmaker
	1.2.2.7. Update to the minimum supported Maven version
	1.2.2.8. Removal of quarkus-bootstrap-maven-plugin
	1.2.2.9. Mutiny 2 moves to Java Flow

	1.2.3. Data
	1.2.3.1. Removal of Hibernate ORM with Panache methods
	1.2.3.2. Enhancement in Hibernate ORM: Automated IN clause parameter padding
	1.2.3.3. New dependency: Hibernate Reactive 2 and Hibernate ORM 6.2
	1.2.3.4. Hibernate Search changes
	1.2.3.5. Hibernate Validator - Validation.buildDefaultValidatorFactory() now returns a ValidatorFactory managed by Quarkus
	1.2.3.6. Quartz jobs class name change
	1.2.3.7. Deprecation of QuarkusTransaction.run and QuarkusTransaction.call methods
	1.2.3.8. Renamed Narayana transaction manager property

	1.2.4. Messaging
	1.2.4.1. Removal of vertx-kafka-client dependency from SmallRye Reactive Messaging

	1.2.5. Native
	1.2.5.1. Native compilation - Native executables and .so files
	1.2.5.2. Native Compilation - Work around missing CPU features
	1.2.5.3. Testing changes: Removal of some annotations

	1.2.6. Observability
	1.2.6.1. Deprecated OpenTracing driver is replaced by OpenTelemetry
	1.2.6.2. Default metrics format in Micrometer now aligned with Prometheus
	1.2.6.3. Changes in the OpenTelemetry extension and removal of some sampler-related properties

	1.2.7. Security
	1.2.7.1. Removal of CORS filter default support for using a wildcard as an origin
	1.2.7.2. OpenAPI CORS support change
	1.2.7.3. Encryption of OIDC session cookie by default
	1.2.7.4. Default SameSite attribute set to Lax for OIDC session cookie
	1.2.7.5. The OIDC ID token audience claim is verified by default
	1.2.7.6. Removal of default password for the JWT key and keystore

	1.2.8. Web
	1.2.8.1. Changes to RESTEasy Reactive multipart
	1.2.8.2. Enhanced JAXB extension control

	1.3. ADDITIONAL RESOURCES

