
Red Hat build of Quarkus 3.2

Getting started with Red Hat build of Quarkus

Last Updated: 2024-04-04

Red Hat build of Quarkus 3.2 Getting started with Red Hat build of
Quarkus

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to create a simple Quarkus application with Apache Maven.

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF QUARKUS
1.1. ABOUT RED HAT BUILD OF QUARKUS
1.2. PREPARING YOUR ENVIRONMENT

1.2.1. About Red Hat build of Quarkus BOMs
1.2.2. About Apache Maven and Red Hat build of Quarkus
1.2.3. Configuring the Maven settings.xml file for the online repository
1.2.4. Reconfiguring your Maven project to Red Hat build of Quarkus

1.3. CONFIGURING RED HAT BUILD OF QUARKUS DEVELOPER TOOLS
1.3.1. Configuring Red Hat build of Quarkus extension registry client

1.4. CREATING THE GETTING STARTED PROJECT
1.4.1. Creating the Getting Started project by using Apache Maven
1.4.2. Creating the Getting Started project by using code.quarkus.redhat.com

1.4.2.1. Support levels for Red Hat build of Quarkus extensions
1.4.3. Creating the Getting Started project by using the Red Hat build of Quarkus CLI

1.5. COMPILING AND STARTING THE RED HAT BUILD OF QUARKUS GETTING STARTED PROJECT
1.6. USING RED HAT BUILD OF QUARKUS DEPENDENCY INJECTION
1.7. TESTING YOUR RED HAT BUILD OF QUARKUS APPLICATION
1.8. ENABLING AND RUNNING CONTINUOUS TESTING

1.8.1. Commands for controlling continuous testing
1.9. PACKAGING AND RUNNING THE RED HAT BUILD OF QUARKUS GETTING STARTED APPLICATION
1.10. JVM AND NATIVE BUILDING MODES

1.10.1. Compiling an application as a classic JVM application
1.10.2. Compiling an application into a native image

1.11. PACKAGING AND RUNNING THE RED HAT BUILD OF QUARKUS GETTING STARTED APPLICATION IN
NATIVE MODE
1.12. ADDITIONAL RESOURCES

3

4
4
5
5
5
6
7
8
8
8
9

12
15
17
18
19
21
23
26
27
28
28
28

29
31

Table of Contents

1

Red Hat build of Quarkus 3.2 Getting started with Red Hat build of Quarkus

2

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

3

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF
QUARKUS

As an application developer, you can use Red Hat build of Quarkus to create microservices-based
applications written in Java that run on OpenShift environments. Quarkus applications can run on top of
a Java virtual machine (JVM) or be compiled to native executables. Native applications have a smaller
memory footprint and a faster startup time than their JVM counterpart.

You can create a Quarkus application in either of the following ways:

Using Apache Maven and the Quarkus Maven plugin

Using code.quarkus.redhat.com

Using the Quarkus command-line interface (CLI)

You can get started with Quarkus and create, test, package, and run a simple Quarkus project that
exposes a hello HTTP endpoint. To demonstrate dependency injection, the hello HTTP endpoint uses a
greeting bean.

NOTE

For a completed example of the getting started exercise, download the Quarkus
quickstart archive or clone the Quarkus Quickstarts Git repository and go to the getting-
started directory.

1.1. ABOUT RED HAT BUILD OF QUARKUS

Red Hat build of Quarkus is a Kubernetes-native Java stack optimized for containers and Red Hat
OpenShift Container Platform. Quarkus is designed to work with popular Java standards, frameworks,
and libraries such as Eclipse MicroProfile, Eclipse Vert.x, Apache Camel, Apache Kafka, Hibernate ORM
with Jakarta Persistence, and RESTEasy Reactive (Jakarta REST).

As a developer, you can choose the Java frameworks you want for your Java applications, which you can
run in Java Virtual Machine (JVM) mode or compile and run in native mode. Quarkus provides a
container-first approach to building Java applications. The container-first approach facilitates the
containerization and efficient execution of microservices and functions. For this reason, Quarkus
applications have a smaller memory footprint and faster startup times.

Quarkus also optimizes the application development process with capabilities such as unified
configuration, automatic provisioning of unconfigured services, live coding, and continuous testing that
gives you instant feedback on your code changes.

For information about the differences between the Quarkus community version and Red Hat build of
Quarkus, see Differences between the Red Hat build of Quarkus community version and Red Hat build
of Quarkus.

Red Hat build of Quarkus 3.2 Getting started with Red Hat build of Quarkus

4

https://code.quarkus.redhat.com
https://github.com/quarkusio/quarkus-quickstarts/archive/3.2.11.Final.zip
https://github.com/quarkusio/quarkus-quickstarts
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/4ea39096-72be-4ccf-a22e-7e42063d29ec#con_difference-between-rhbq-and-community_quarkus-release-notes

1.2. PREPARING YOUR ENVIRONMENT

Before you start using Quarkus, you must prepare your environment.

Procedure

Confirm the following installations are completed on your system:

You have installed OpenJDK 11 or 17 and set the JAVA_HOME environment variable to
specify the location of the Java SDK.

To download Red Hat build of OpenJDK, log in to the Red Hat Customer Portal and go
to Software Downloads.

You have installed Apache Maven 3.8.6 or later. Apache Maven is available from the Apache
Maven Project website.

Optional: If you want to use the Quarkus command-line interface (CLI), ensure that it is
installed.

For instructions on how to install the Quarkus CLI, refer to the community-specific
information at Quarkus CLI.

IMPORTANT

The Quarkus CLI is intended for dev mode only. Red Hat does not support using the
Quarkus CLI in production environments.

1.2.1. About Red Hat build of Quarkus BOMs

From Red Hat build of Quarkus 2.2, dependency versions of all core Quarkus extensions are managed by
using the com.redhat.quarkus.platform:quarkus-bom file.

The purpose of the Bill of Materials (BOM) file is to manage dependency versions of Quarkus artifacts in
your project so that when you use a BOM in your project, you do not need to specify which dependency
versions work together. Instead, you can import the Quarkus BOM file to the pom.xml configuration file,
where the dependency versions are included in the <dependencyManagement> section. Therefore, you
do not need to list the versions of individual Quarkus dependencies that are managed by the specified
BOM in the pom.xml file.

To view information about supported extension-specific BOMs that are available with Red Hat build of
Quarkus, see Red Hat build of Quarkus Component details .

You only need to import the member-specific BOM for the platform-member extensions that you use in
your application. Therefore, you have fewer dependencies to manage as compared to a monolithic single
BOM. Because every member-specific BOM is a fragment of the universal Quarkus BOM, you can
import the member BOMs in any order without creating a conflict.

1.2.2. About Apache Maven and Red Hat build of Quarkus

Apache Maven is a distributed build automation tool that is used in Java application development to
create, manage, and build software projects. Maven uses standard configuration files called Project
Object Model (POM) files to define projects and manage the build process. POM files describe the
module and component dependencies, build order, and targets for the resulting project packaging and
output by using an XML file, ensuring that the project gets built correctly and uniformly.

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF QUARKUS

5

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=core.service.openjdk&downloadType=distributions
https://maven.apache.org/
https://quarkus.io/version/3.2/guides/cli-tooling
https://quarkus.io/version/3.2/guides/cli-tooling
https://access.redhat.com/articles/3348731

Maven repositories

A Maven repository stores Java libraries, plugins, and other build artifacts. The default public repository
is the Maven 2 Central Repository, but repositories can be private and internal within a company to share
common artifacts among development teams. Repositories are also available from third parties.

You can use the Red Hat-hosted Maven repository with your Quarkus projects, or you can download the
Red Hat build of Quarkus Maven repository.

Maven plugins

Maven plugins are defined parts of a POM file that run one or more tasks. Red Hat build of Quarkus
applications use the following Maven plugins:

Quarkus Maven plugin (quarkus-maven-plugin): Enables Maven to create Quarkus projects,
packages your applications into JAR files, and provides a dev mode.

Maven Surefire plugin (maven-surefire-plugin): When Quarkus enables the test profile, the
Maven Surefire plugin is used during the test phase of the build lifecycle to run unit tests on
your application. The plugin generates text and XML files that contain the test reports.

Additional resources

Configuring your Red Hat build of Quarkus applications

1.2.3. Configuring the Maven settings.xml file for the online repository

To use the Red Hat-hosted Quarkus repository with your Quarkus Maven project, configure the
settings.xml file for your user. Maven settings that are used with a repository manager or a repository
on a shared server offer better control and manageability of projects.

NOTE

When you configure the repository by modifying the Maven settings.xml file, the
changes apply to all of your Maven projects. If you want to apply the configuration to a
specific project only, use the -s option and specify the path to the project-specific
settings.xml file.

Procedure

1. Open the Maven $HOME/.m2/settings.xml file in a text editor or an integrated development
environment (IDE).

NOTE

If no settings.xml file is present in the $HOME/.m2/ directory, copy the
settings.xml file from the $MAVEN_HOME/conf/ directory into the
$HOME/.m2/ directory.

2. Add the following lines to the <profiles> element of the settings.xml file:

<!-- Configure the Red Hat build of Quarkus Maven repository -->
<profile>
 <id>red-hat-enterprise-maven-repository</id>
 <repositories>

Red Hat build of Quarkus 3.2 Getting started with Red Hat build of Quarkus

6

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/a1d0cda2-f94d-49f1-92d6-a6b252fc9915

3. Add the following lines to the <activeProfiles> element of the settings.xml file and save the
file.

1.2.4. Reconfiguring your Maven project to Red Hat build of Quarkus

You can migrate a Quarkus community project to Red Hat build of Quarkus by changing the Maven
configuration in your project POM file.

Prerequisites

You have a Quarkus project built with Maven that depends on Quarkus community artifacts in
the pom.xml file.

Procedure

Change the following values in the <properties> section of the pom.xml file of your project:

Change the value of the <quarkus.platform.group-id> property to
com.redhat.quarkus.platform.

Change the value of the <quarkus.platform.version> property to 3.2.11.Final-redhat-
00001.

pom.xml

 <repository>
 <id>red-hat-enterprise-maven-repository</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>red-hat-enterprise-maven-repository</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
</profile>

<activeProfile>red-hat-enterprise-maven-repository</activeProfile>

<project>
 ...
 <properties>

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF QUARKUS

7

https://quarkus.io/version/3.2/guides/maven-tooling#build-tool-maven

1.3. CONFIGURING RED HAT BUILD OF QUARKUS DEVELOPER TOOLS

By using Quarkus developer tools, you can complete tasks such as:

Creating a Maven project for your application

Adding and configuring an extension to use in your application

Deploying your application on an OpenShift cluster

1.3.1. Configuring Red Hat build of Quarkus extension registry client

The extension registry, registry.quarkus.redhat.com, hosts the Quarkus extensions that Red Hat
provides. You can configure your Quarkus developer tools to access extensions in this registry by adding
the registry to your registry client configuration file. The registry client configuration file is a YAML file
that contains a list of registries.

NOTE

The default Quarkus registry is registry.quarkus.io; typically, you do not need to
configure it. However, if a user provides a custom registry list and
registry.quarkus.io is not on it, then registry.quarkus.io is not enabled.

Ensure that the registry you prefer appears first on the registry list. When
Quarkus developer tools search for registries, they begin at the top of the list.

Procedure

1. Open the config.yaml file that contains your extension registry configuration. When you
configure your extension registries for the first time, you might need to create a config.yaml file
in the <user_home_directory_name>/.quarkus directory on your machine.

2. Add the new registry to the config.yaml file. For example:

config.yaml

1.4. CREATING THE GETTING STARTED PROJECT

By creating a getting-started project, you can get up and running with a simple Quarkus application. You

 ...
 <quarkus.platform.group-id>com.redhat.quarkus.platform</quarkus.platform.group-
id>
 <quarkus.platform.artifact-id>quarkus-bom</quarkus.platform.artifact-id>
 <quarkus.platform.version>3.2.11.Final-redhat-00001</quarkus.platform.version>
 ...
 </properties>
 ...
</project>

registries:
 - registry.quarkus.redhat.com
 - registry.quarkus.io

Red Hat build of Quarkus 3.2 Getting started with Red Hat build of Quarkus

8

By creating a getting-started project, you can get up and running with a simple Quarkus application. You
can create a getting-started project in one of the following ways:

Using Apache Maven and the Quarkus Maven plugin

Using code.quarkus.redhat.com to generate a Quarkus Maven project

Using the Quarkus command-line interface (CLI)

Prerequisites

You have prepared your environment. For more information, see Preparing your environment.

Procedure

Depending on your requirements, select the method you want to use to create your getting-
started project.

1.4.1. Creating the Getting Started project by using Apache Maven

You can create a getting-started project by using Apache Maven and the Quarkus Maven plugin. With
this getting-started project, you can get up and running with a simple Quarkus application.

Prerequisites

You have prepared your environment to use Maven. For more information, see Preparing your
environment.

You have configured your Quarkus Maven repository. To create a Quarkus application with
Maven, use the Red Hat-hosted Quarkus repository. For more information, see Configuring the
Maven settings.xml file for the online repository.

Procedure

1. To verify that Maven is using OpenJDK 11 or 17, that the Maven version is 3.8.6 or later, and that
mvn is accessible from the PATH environment variable, enter the following command:

mvn --version

2. If the preceding command does not return OpenJDK 11 or 17, add the path to OpenJDK 11 or 17
to the PATH environment variable and enter the preceding command again.

3. To generate the project, enter one of the following commands:

If you are using Linux or Apple macOS, enter the following command:

mvn com.redhat.quarkus.platform:quarkus-maven-plugin:3.2.11.Final-redhat-
00001:create \
 -DprojectGroupId=org.acme \
 -DprojectArtifactId=getting-started \
 -DplatformGroupId=com.redhat.quarkus.platform \
 -DplatformVersion=3.2.11.Final-redhat-00001 \
 -DclassName="org.acme.quickstart.GreetingResource" \
 -Dpath="/hello"
cd getting-started

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF QUARKUS

9

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f#proc_preparing-your-environment_quarkus-getting-started
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f#proc_preparing-your-environment_quarkus-getting-started
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f#proc_online-maven_quarkus-getting-started

If you are using the Microsoft Windows command line, enter the following command:

If you are using the Microsoft Windows PowerShell, enter the following command:

These commands create the following elements in the ./getting-started directory:

The Maven project directory structure

An org.acme.quickstart.GreetingResource resource exposed on /hello

Associated unit tests for testing your application in native mode and JVM mode

A landing page that is accessible on http://localhost:8080 after you start the
application

Example Dockerfiles in the src/main/docker directory

The application configuration file

NOTE

Because Mandrel does not support macOS, you can use Oracle GraalVM
to build native executables on this operating system.

You can also build native executables by using Oracle GraalVM directly
on bare metal Linux or Windows distributions. For more information
about this process, see the Oracle GraalVM README and release notes.

For more information about supported configurations, see Red Hat build
of Quarkus Supported configurations.

4. After the directory structure is created, open the pom.xml file in a text editor and examine the
contents of the file:

pom.xml

mvn com.redhat.quarkus.platform:quarkus-maven-plugin:3.2.11.Final-redhat-
00001:create
-DprojectGroupId=org.acme -DprojectArtifactId=getting-started
-DplatformGroupId=com.redhat.quarkus.platform
-DplatformVersion=3.2.11.Final-redhat-00001
-DclassName="org.acme.quickstart.GreetingResource"
-Dpath="/hello"

mvn com.redhat.quarkus.platform:quarkus-maven-plugin:3.2.11.Final-redhat-
00001:create
"-DprojectGroupId=org.acme"
"-DprojectArtifactId=getting-started"
"-DplatformVersion=3.2.11.Final-redhat-00001"
"-DplatformGroupId=com.redhat.quarkus.platform"
"-DclassName=org.acme.quickstart.GreetingResource"
"-Dpath=/hello"

<project>
 ...

Red Hat build of Quarkus 3.2 Getting started with Red Hat build of Quarkus

10

https://access.redhat.com/articles/4966181

The <dependencyManagement> section of the pom.xml file contains the Quarkus BOM.
Therefore, you do not need to list the versions of individual Quarkus dependencies in the
pom.xml file. In this configuration file, you can also find the quarkus-maven-plugin plugin that
is responsible for packaging the application.

5. Review the quarkus-resteasy-reactive dependency in the pom.xml file. This dependency
enables you to develop REST applications:

 <properties>
 ...
 <quarkus.platform.artifact-id>quarkus-bom</quarkus.platform.artifact-id>
 <quarkus.platform.group-id>com.redhat.quarkus.platform</quarkus.platform.group-id>
 <quarkus.platform.version>3.2.11.Final-redhat-00001</quarkus.platform.version>
 ...
 </properties>
 ...
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>${quarkus.platform.group-id}</groupId>
 <artifactId>${quarkus.platform.artifact-id}</artifactId>
 <version>${quarkus.platform.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
 <build>
 ...
 <plugins>
 ...
 <plugin>
 <groupId>${quarkus.platform.group-id}</groupId>
 <artifactId>quarkus-maven-plugin</artifactId>
 <version>${quarkus.platform.version}</version>
 <extensions>true</extensions>
 <executions>
 <execution>
 <goals>
 <goal>build</goal>
 <goal>generate-code</goal>
 <goal>generate-code-tests</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 ...
 </plugins>
 ...
 </build>
 ...
</project>

<dependency>
 <groupId>io.quarkus</groupId>

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF QUARKUS

11

6. Review the src/main/java/org/acme/quickstart/GreetingResource.java file:

This file contains a simple REST endpoint that returns Hello from RESTEasy Reactive as a
response to a request that you send to the /hello endpoint.

NOTE

With Quarkus, the Application class for Jakarta REST (formerly known as JAX-
RS) is supported but not required. In addition, only one instance of the
GreetingResource class is created and not one per request. You can configure
this by using different *Scoped annotations, for example ApplicationScoped,
RequestScoped, and so on.

1.4.2. Creating the Getting Started project by using code.quarkus.redhat.com

As an application developer, you can use code.quarkus.redhat.com to generate a Quarkus Maven project
and automatically add and configure the extensions that you want to use in your application. In addition,
code.quarkus.redhat.com automatically manages the configuration parameters that are required to
compile your project into a native executable.

You can generate a Quarkus Maven project, including the following activities:

Specifying basic details about your application

Choosing the extensions that you want to include in your project

Generating a downloadable archive with your project files

Using custom commands for compiling and starting your application

Prerequisites

You have a web browser.

You have prepared your environment to use Apache Maven. For more information, see
Preparing your environment.

You have configured your Quarkus Maven repository. To create a Quarkus application with

 <artifactId>quarkus-resteasy-reactive</artifactId>
</dependency>

import jakarta.ws.rs.GET;
import jakarta.ws.rs.Path;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.core.MediaType;
@Path("/hello")
public class GreetingResource {

 @GET
 @Produces(MediaType.TEXT_PLAIN)
 public String hello() {
 return "Hello from RESTEasy Reactive";
 }
}

Red Hat build of Quarkus 3.2 Getting started with Red Hat build of Quarkus

12

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f#proc_preparing-your-environment_quarkus-getting-started

You have configured your Quarkus Maven repository. To create a Quarkus application with
Maven, use the Red Hat-hosted Quarkus repository. For more information, see Configuring the
Maven settings.xml file for the online repository.

Optional: You have installed the Quarkus command-line interface (CLI), which is one of the
methods you can use to start Quarkus in dev mode.
For more information, see Installing the Quarkus CLI .

NOTE

The Quarkus CLI is intended for dev mode only. Red Hat does not support using the
Quarkus CLI in production environments.

Procedure

1. On your web browser, navigate to https://code.quarkus.redhat.com.

2. Specify basic details about your project:

a. Enter a group name for your project. The name format follows the Java package naming
convention; for example, org.acme.

b. Enter a name for the Maven artifacts generated by your project, such as code-with-
quarkus.

c. Select the build tool you want to use to compile and start your application. The build tool
that you choose determines the following setups:

The directory structure of your generated project

The format of configuration files that are used in your generated project

The custom build script and command for compiling and starting your application that
code.quarkus.redhat.com displays for you after you generate your project

NOTE

Red Hat provides support for using code.quarkus.redhat.com to create
Quarkus Maven projects only.

3. Specify additional details about your application project:

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF QUARKUS

13

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f#proc_online-maven_quarkus-getting-started
https://quarkus.io/version/3.2/guides/cli-tooling#installing-the-cli
https://quarkus.io/version/3.2/guides/cli-tooling
https://code.quarkus.redhat.com

a. To display the fields that contain further application details, select More options.

b. Enter a version you want to use for artifacts generated by your project. The default value of
this field is 1.0.0-SNAPSHOT. Using semantic versioning is recommended; however, you
can choose to specify a different type of versioning.

c. Select whether you want code.quarkus.redhat.com to add starter code to your project.
When you add extensions that are marked with "STARTER-CODE" to your project, you can
enable this option to automatically create example class and resource files for those
extensions when you generate your project. However, this option does not affect your
generated project if you do not add any extensions that provide an example code.

NOTE

The code.quarkus.redhat.com application automatically uses the latest release of
Red Hat build of Quarkus. However, should you require, it is possible to manually
change to an earlier BOM version in the pom.xml file after you generate your
project, but this is not recommended.

4. Select the extensions that you want to use. The extensions you select are included as
dependencies of your Quarkus application. The Quarkus platform also ensures these extensions
are compatible with future versions.

IMPORTANT

Do not use the RESTEasy and the RESTEasy Reactive extensions in the same
project.

The quark icon () next to an extension indicates that the extension is part of the Red Hat
build of Quarkus platform release. Red Hat recommends using extensions from the same
platform because they are tested and verified together and are therefore easier to use and
upgrade.

You can enable the option to automatically generate starter code for extensions marked with
"STARTER-CODE".

Red Hat build of Quarkus 3.2 Getting started with Red Hat build of Quarkus

14

https://semver.org/

5. To confirm your choices, select Generate your application. The following items are displayed:

A link to download the archive that contains your generated project

A custom command that you can use to compile and start your application

6. To save the archive with the generated project files to your machine, select Download the ZIP.

7. Extract the contents of the archive.

8. Go to the directory that contains your extracted project files:

9. To compile and start your application in dev mode, use one of the following ways:

Using Maven:

./mvnw quarkus:dev

Using the Quarkus CLI:

quarkus dev

1.4.2.1. Support levels for Red Hat build of Quarkus extensions

Red Hat provides different levels of support for extensions that are available on
code.quarkus.redhat.com that you can add to your Quarkus project. Labels next to the name of each
extension indicate the support level.

cd <directory_name>

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF QUARKUS

15

https://access.redhat.com/articles/3348731

NOTE

Red Hat does not support unlabeled extensions for use in production environments.

Red Hat provides the following levels of support for Quarkus extensions:

Table 1.1. Support levels provided by Red Hat for Red Hat build of Quarkus extensions

Support level Description

SUPPORTED Red Hat fully supports extensions for use in enterprise applications in production
environments.

TECH-PREVIEW Red Hat offers limited support to extensions in production environments under the
Technology Preview Features Support Scope.

DEV-SUPPORT Red Hat does not support extensions for use in production environments, but Red Hat
developers support the core functionality that they provide for use in developing new
applications.

DEPRECATED Red Hat plans to replace extensions with more recent technology or implementation
that provides the same functionality.

STARTER-CODE You can automatically generate the example code for extensions.

By clicking the arrow icon (⌄) beside each of the extensions, you can expand the overflow menu to
access further actions for that extension. For example:

Add the extension to an existing project by using the Quarkus Maven plugin on the command
line

Copy an XML snippet to add the extension to a project’s pom.xml file

Obtain the groupId, artifactId, and version of each extension

Open the extension guide

1.4.3. Creating the Getting Started project by using the Red Hat build of Quarkus

Red Hat build of Quarkus 3.2 Getting started with Red Hat build of Quarkus

16

https://access.redhat.com/support/offerings/techpreview

1.4.3. Creating the Getting Started project by using the Red Hat build of Quarkus
CLI

You can create your getting-started project by using the Quarkus command-line interface (CLI).

With the Quarkus CLI, you can create projects, manage extensions, and run build and development
commands.

IMPORTANT

The Quarkus CLI is intended for dev mode only. Red Hat does not support using the
Quarkus CLI in production environments.

Prerequisites

You have the Quarkus CLI installed. For more information, see Preparing your environment.

You have configured your Quarkus developer tools to access extensions in the extension
registry. For more information, see Configuring Red Hat build of Quarkus extension registry
client.

Procedure

1. To generate the project, in a command terminal, enter the following command:

quarkus create && cd code-with-quarkus

NOTE

You can also specify the 'app' subcommand, for example, quarkus create app.
However, it is not mandatory to do so because the 'app' subcommand is implied if
it is not specified.

With this command, the Quarkus project is created in a folder called 'code-with-quarkus' in your
current working directory.

2. By default, the groupId, artifactId, and version attributes are specified with the following
default values:

groupId='org.acme'

artifactId='code-with-quarkus'

version='1.0.0-SNAPSHOT'
To change the values of the groupId, artifactId, and version attributes, issue the quarkus
create command and specify the following syntax on the CLI:

groupId:artifactId:version

For example, quarkus create app mygroupId:myartifactid:version

NOTE

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF QUARKUS

17

https://quarkus.io/version/3.2/guides/cli-tooling
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f#proc_preparing-your-environment_quarkus-getting-started
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f#proc_configuring-quarkus-extension-registry-client_quarkus-getting-started

NOTE

To view information about all the available Quarkus commands, specify the help
parameter:

quarkus --help

3. Review the src/main/java/org/acme/GreetingResource.java file in a text editor:

package org.acme;

import jakarta.ws.rs.GET;
import jakarta.ws.rs.Path;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.core.MediaType;

@Path("/hello")
public class GreetingResource {

 @GET
 @Produces(MediaType.TEXT_PLAIN)
 public String hello() {
 return "Hello from RESTEasy Reactive";
 }
}

This file contains a simple REST endpoint that returns Hello from RESTEasy Reactive as a
response to a request that you send to the /hello endpoint.

Verification

1. Compile and start your application in dev mode. For more information, see Compiling and
starting the Red Hat build of Quarkus Getting Started project.

2. Package and run your Getting Started project from the Quarkus CLI. For more information, see
Packaging and running the Red Hat build of Quarkus Getting Started application .

1.5. COMPILING AND STARTING THE RED HAT BUILD OF QUARKUS
GETTING STARTED PROJECT

After you create the Quarkus Getting Started project, you can compile the Hello application and verify
that the hello endpoint returns "Hello from RESTEasy Reactive.

This procedure uses the Quarkus built-in dev mode, so you can update the application sources and
configurations while your application is running. The changes you make appear in the running
application.

NOTE

The command that you use to compile your Quarkus Hello application depends on the
developer tool that you installed on the machine.

Prerequisites

Red Hat build of Quarkus 3.2 Getting started with Red Hat build of Quarkus

18

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f#proc_quarkus-compiling-project_quarkus-getting-started
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f#proc_quarkus-packaging_quarkus-getting-started

You have created the Quarkus Getting Started project.

Procedure

1. Go to the project directory.

2. To compile the Quarkus Hello application in dev mode, use one of the following methods,
depending on the developer tool that you intend to use:

If you prefer to use Apache Maven, enter the following command:

mvn quarkus:dev

If you prefer to use the Quarkus command-line interface (CLI), enter the following
command:

quarkus dev

If you prefer to use the Maven wrapper, enter the following command:

./mvnw quarkus:dev

Expected output

The following extract shows an example of the expected output:

INFO [io.quarkus] (Quarkus Main Thread) Profile dev activated. Live Coding activated.
INFO [io.quarkus] (Quarkus Main Thread) Installed features: [cdi, resteasy, smallrye-
context-propagation]

Verification

To send a request to the endpoint that is provided by the application, enter the following
command in a new terminal window:

curl -w "\n" http://localhost:8080/hello
Hello from RESTEasy Reactive

NOTE

The "\n" attribute automatically adds a new line before the output of the
command, which prevents your terminal from printing a '%' character or putting
both the result and the next shell prompt on the same line.

1.6. USING RED HAT BUILD OF QUARKUS DEPENDENCY INJECTION

Dependency injection enables a service to be used in a way that is completely independent of any client
consumption. It separates the creation of client dependencies from the client’s behavior, which enables
program designs to be loosely coupled.

Dependency injection in Red Hat build of Quarkus is based on Quarkus ArC, which is a Contexts and
Dependency Injection (CDI)-based build-time oriented dependency injection solution that is tailored for
Quarkus architecture. Because ArC is a transitive dependency of quarkus-resteasy, and because

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF QUARKUS

19

quarkus-resteasy is a dependency of your project, ArC is downloaded already.

Prerequisites

You have created the Quarkus Getting Started project.

Procedure

1. To modify the application and add a companion bean, create the
src/main/java/org/acme/quickstart/GreetingService.java file with the following content:

2. Edit the src/main/java/org/acme/quickstart/GreetingResource.java to inject the
GreetingService and use it to create a new endpoint:

package org.acme.quickstart;

import jakarta.enterprise.context.ApplicationScoped;

@ApplicationScoped
public class GreetingService {

 public String greeting(String name) {
 return "hello " + name;
 }

}

package org.acme.quickstart;

import jakarta.inject.Inject;
import jakarta.ws.rs.GET;
import jakarta.ws.rs.Path;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.core.MediaType;

import org.jboss.resteasy.annotations.jaxrs.PathParam;

@Path("/hello")
public class GreetingResource {

 @Inject
 GreetingService service;

 @GET
 @Produces(MediaType.TEXT_PLAIN)
 @Path("/greeting/{name}")
 public String greeting(@PathParam String name) {
 return service.greeting(name);
 }

 @GET
 @Produces(MediaType.TEXT_PLAIN)
 public String hello() {

Red Hat build of Quarkus 3.2 Getting started with Red Hat build of Quarkus

20

3. If you stopped the application, enter the following command to restart it:

4. To verify that the endpoint returns hello quarkus, enter the following command in a new
terminal window:

1.7. TESTING YOUR RED HAT BUILD OF QUARKUS APPLICATION

After you compile your Quarkus Getting Started project, you can verify that it runs as expected by
testing your application with the JUnit 5 framework.

NOTE

Alternatively, you can enable continuous testing of your Quarkus application. For more
information, see Enabling and running continuous testing.

The Quarkus project generates the following two test dependencies in the pom.xml file:

quarkus-junit5: Required for testing because it provides the @QuarkusTest annotation that
controls the JUnit 5 testing framework.

rest-assured: The rest-assured dependency is not required but, because it provides a
convenient way to test HTTP endpoints, it is integrated. The rest-assured dependency
automatically sets the correct URL, so no configuration is required.

Example pom.xml file:

NOTE

These tests use the REST-Assured framework, but you can use a different library if you
prefer.

Prerequisites

 return "Hello from RESTEasy Reactive";
 }
}

./mvnw quarkus:dev

curl -w "\n" http://localhost:8080/hello/greeting/quarkus
hello quarkus

<dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-junit5</artifactId>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>io.rest-assured</groupId>
 <artifactId>rest-assured</artifactId>
 <scope>test</scope>
</dependency>

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF QUARKUS

21

You have compiled the Quarkus Getting Started project. For more information, see Compiling
and starting the Red Hat build of Quarkus Getting Started project.

Procedure

1. Open the generated pom.xml file and review the contents:

Note the values of the following properties:

The java.util.logging.manager system property is set to ensure that your application uses
the correct log manager for the test.

The maven.home property points to the location of the settings.xml file, in which you can
store the custom Maven configuration that you want to apply to your project.

2. Edit the src/test/java/org/acme/quickstart/GreetingResourceTest.java file to match the
following content:

<plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>${surefire-plugin.version}</version>
 <configuration>
 <systemPropertyVariables>

<java.util.logging.manager>org.jboss.logmanager.LogManager</java.util.logging.manager>
 <maven.home>${maven.home}</maven.home>
 </systemPropertyVariable>
 </configuration>
</plugin>

package org.acme.quickstart;

import io.quarkus.test.junit.QuarkusTest;
import org.junit.jupiter.api.Test;

import java.util.UUID;

import static io.restassured.RestAssured.given;
import static org.hamcrest.CoreMatchers.is;

@QuarkusTest
public class GreetingResourceTest {

 @Test
 public void testHelloEndpoint() {
 given()
 .when().get("/hello")
 .then()
 .statusCode(200)
 .body(is("Hello from RESTEasy Reactive"));
 }

 @Test
 public void testGreetingEndpoint() {
 String uuid = UUID.randomUUID().toString();
 given()

Red Hat build of Quarkus 3.2 Getting started with Red Hat build of Quarkus

22

NOTE

By using the QuarkusTest runner, you instruct JUnit to start the application
before starting the tests.

3. To run the tests from Maven, enter the following command:

NOTE

You can also run the tests from your IDE. If you do this, stop the application first.

By default, tests run on port 8081 so they do not conflict with the running application. In
Quarkus, the RestAssured dependency is configured to use this port.

NOTE

If you want to use a different client, use the @TestHTTPResource annotation to
directly inject the URL of the tested application into a field in the Test class. This
field can be of type String, URL, or URI. You can also enter the test path in the
@TestHTTPResource annotation. For example, to test a servlet that is mapped
to /myservlet, add the following lines to your test:

4. If necessary, specify the test port in the quarkus.http.test-port configuration property.

1.8. ENABLING AND RUNNING CONTINUOUS TESTING

With Red Hat build of Quarkus, you can continuously test your code changes as you develop your
applications. Quarkus provides a continuous testing feature, which you can run immediately after you
make and save a change to the code.

When you run continuous testing, testing is paused after you start the application. You can resume the
testing as soon as the application starts. The Quarkus application determines which tests run so that
tests are run only on code that has changed.

The continuous testing feature of Quarkus is enabled by default. You can choose to disable continuous
testing by setting the quarkus.test.continuous-testing property in the
src/main/resources/application.properties file to disabled.

NOTE

 .pathParam("name", uuid)
 .when().get("/hello/greeting/{name}")
 .then()
 .statusCode(200)
 .body(is("hello " + uuid));
 }

}

./mvnw test

@TestHTTPResource("/myservlet")
URL testUrl;

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF QUARKUS

23

NOTE

If you disabled continuous testing previously and want to enable it again, you must restart
your Quarkus application before you can start testing.

Prerequisites

You have compiled the Quarkus Getting Started application (or any other application). For
more information, see Compiling and starting the Red Hat build of Quarkus Getting Started
project.

Procedure

1. Start your Quarkus application.

If you created your Getting Project project by using the code.quarkus.redhat.com or the
Quarkus CLI, the Maven wrapper is provided when you generate the project. Enter the
following command from your project directory:

./mvnw quarkus:dev

If you created your Getting Project project by using Apache Maven, which is installed on
your machine, enter the following command:

mvn quarkus:dev

If you are running continuous testing in dev mode and are using the Quarkus CLI, enter the
following command:

quarkus dev

2. View details of the testing status in the generated output log.

NOTE

To view the output log, you might need to scroll to the bottom of the screen.

When continuous testing is enabled, the following message is displayed:

Press [e] to edit command line args (currently ''), [r] to re-run, [o] Toggle test output, [:] for
the terminal, [h] for more options>

When continuous testing is paused, the following message is displayed:

Press [e] to edit command line args (currently ''), [r] to resume testing, [o] Toggle test
output, [:] for the terminal, [h] for more options>

NOTE

By default, when continuous testing is enabled, testing is paused after you
start the application. To view the keyboard commands that are available for
controlling how you run your tests, see Commands for controlling continuous
testing.

Red Hat build of Quarkus 3.2 Getting started with Red Hat build of Quarkus

24

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f#proc_quarkus-compiling-project_quarkus-getting-started
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f#ref_commands-for-quarkus-continuous-testing_quarkus-getting-started

3. To start running the tests, press `r ` on your keyboard.

4. View the updated output log to monitor the test status and test results, check test statistics,
and get guidance for follow-up actions. For example:

All 2 tests are passing (0 skipped), 2 tests were run in 2094ms. Tests completed at 14:45:11.
Press [e] to edit command line args (currently ''), [r] to re-run, [o] Toggle test output, [:] for the
terminal, [h] for more options>

Verification

1. Make a code change. For example, in a text editor, open the
src/main/java/org/acme/quickstart/GreetingsResource.java file.

2. Change the "hello" endpoint to return "Hello world" and save the file.

import jakarta.ws.rs.GET;
import jakarta.ws.rs.Path;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.core.MediaType;

@Path("/hello")
public class GreetingResource {

 @GET
 @Produces(MediaType.TEXT_PLAIN)
 public String hello() {
 return "Hello world";
 }
}

3. Verify that Quarkus immediately re-runs the test to test the changed code.

4. View the output log to check the test results. In this example, the test checks whether the
changed string contains the value "Hello from RESTEasy Reactive". The test fails because the
string was changed to "Hello world".

2023-09-08 15:03:45,911 ERROR [io.qua.test] (Test runner thread) Test
GreetingResourceTest#testHelloEndpoint() failed: java.lang.AssertionError: 1 expectation
failed.
Response body doesn't match expectation.
Expected: is "Hello from RESTEasy Reactive"
 Actual: Hello world
 at
io.restassured.internal.ValidatableResponseOptionsImpl.body(ValidatableResponseOptionsImpl
.java:238)
 at
org.acme.quickstart.GreetingResourceTest.testHelloEndpoint(GreetingResourceTest.java:20)

--
1 test failed (1 passing, 0 skipped), 2 tests were run in 2076ms. Tests completed at 15:03:45.
Press [e] to edit command line args (currently ''), [r] to re-run, [o] Toggle test output, [:] for the
terminal, [h] for more options>

5. To exit continuous testing, press Ctrl-C or 'q' on your keyboard.

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF QUARKUS

25

NOTE

If you change the value back to "hello" again, the test automatically runs again.

1.8.1. Commands for controlling continuous testing

You can use hotkey commands on your keyboard to control your options for continuous testing. To view
the full list of commands, press 'h' on your keyboard. The following options are available:

Command Description

r Re-run all tests.

f Re-run all tests that failed.

b Toggle 'broken only' mode. Only the tests that were
failing previously are run, even if other tests are
affected by your code changes. This option might be
useful if you change code that is used by many tests,
but you want to only review the failed tests.

v Print output detailing test failures from the last test
run to the console. This option might be useful if
there was a considerable amount of console output
since the last test run.

p Pause running tests temporarily. This might be useful
if you are making a lot of code changes, but do not
want to get test feedback until you finish making the
changes.

q Exit continuous testing.

o Print test output to the console. This is disabled by
default. When test output is disabled, the output is
filtered and saved, but not displayed on the console.
You can view the test output on the Development UI.

i Toggle instrumentation-based reload. Using this
option does not directly affect testing, but does allow
live reload to occur. This might be useful to avoid a
restart if a change does not affect the structure of a
class.

l Toggle live reload. Using this option does not directly
affect testing, but enables you to turn live reloading
on and off.

Red Hat build of Quarkus 3.2 Getting started with Red Hat build of Quarkus

26

s Force restart. Using this option, you can force a scan
of changed files and a live reload that includes the
changes. Note that even if there are no code
changes and live reload is disabled, the application
still restarts.

Command Description

1.9. PACKAGING AND RUNNING THE RED HAT BUILD OF QUARKUS
GETTING STARTED APPLICATION

After you compile your Quarkus Getting Started project, you can package it in a JAR file and run it from
the command line.

NOTE

The command that you use to package and run your Quarkus Getting Started application
depends on the developer tool that you have installed on the machine.

Prerequisites

You have compiled the Quarkus Getting Started project.

Procedure

1. Go to the getting-started project directory.

2. To package your Quarkus Getting Started project, use one of the following methods, depending
on the developer tool that you intend to use:

If you prefer to use Apache Maven, enter the following command:

mvn package

If you prefer to use the Quarkus command-line interface (CLI), enter the following
command:

quarkus build

If you prefer to use the Maven wrapper, enter the following command:

./mvnw package

This command produces the following JAR files in the /target directory:

getting-started-1.0-0-SNAPSHOT.jar: Contains the classes and resources of the
projects. This is the regular artifact produced by the Maven build.

quarkus-app/quarkus-run.jar: Is an executable JAR file. This file is not an uber-JAR
file. The dependencies are copied into the target/quarkus-app/lib directory.

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF QUARKUS

27

3. To start your application, enter the following command:

java -jar target/quarkus-app/quarkus-run.jar

NOTE

Before running the application, ensure that you stop dev mode, (press
CTRL+C), or you will have a port conflict.

The Class-Path entry of the MANIFEST.MF file from the quarkus-run.jar
file explicitly lists the JAR files from the lib directory. If you want to deploy
your application from another location, you must deploy the whole quarkus-
app directory.

IMPORTANT

Various Red Hat build of Quarkus extensions contribute non-application endpoints that
provide different kinds of information about the application. For example, the quarkus-
smallrye-health, quarkus-smallrye-metrics, and quarkus-smallrye-openapi
extensions.

You can access these non-application endpoints by specifying a /q prefix. For example,
/q/health, /q/metrics, /q/openapi.

For non-application endpoints that might present a security risk, you can choose to
expose those endpoints under a different TCP port by using a dedicated management
interface. For more information, see the Quarkus Management interface reference
guide.

1.10. JVM AND NATIVE BUILDING MODES

The following section describes compiling a classic JVM application and compiling a native application
with Mandrel or GraalVM’s native-image tool.

1.10.1. Compiling an application as a classic JVM application

You can compile your application as a JVM application. This option is based on the
quarkus.package.type configuration property and generates one of the following files:

fast-jar: A JAR file that is optimized for Quarkus and the default configuration option. Results in
slightly faster startup times and slightly reduced memory usage.

legacy-jar: A typical JAR file.

uber-jar: A single standalone JAR file.
These JAR files work on all operating systems and build much faster than native images.

1.10.2. Compiling an application into a native image

You can compile your application into a native image. To do so, you set the quarkus.package.type
configuration property to native.

With this property, you create an executable binary file that is compiled specifically for an operating
system of your choice, such as an .exe file for Windows. These files have faster start times and lesser

Red Hat build of Quarkus 3.2 Getting started with Red Hat build of Quarkus

28

https://quarkus.io/version/3.2/guides/management-interface-reference

RAM consumption than JAVA JAR files, but their compilation takes several minutes. In addition, the
maximum throughput achievable by using a native binary is lower than a regular JVM application
because the profile-guided optimizations are missing.

Using Mandrel
Mandrel is a specialized distribution of GraalVM for Red Hat build of Quarkus and also the
recommended approach for building native executables that target Linux containerized
environments. While the Mandrel approach is perfect for embedding the compilation output in a
containerized environment, only a Linux64 bit native executable is provided. Therefore, an
outcome such as .exe is not an option.

Mandrel users are encouraged to use containers to build their native executables.

To use the official Mandrel image to compile an application into native mode using a local
installation of Docker or Podman, enter the mvn package command with the following
properties:

-Dquarkus.package.type=native
-Dquarkus.native.container-build=true
-Dquarkus.native.builder-image=quay.io/quarkus/ubi-quarkus-mandrel:{MandrelVersion}-
{JDK-ver-other}

For information about how to build a native executable by using Mandrel, see Compiling
your Red Hat build of Quarkus applications to native executables

For a list of available Mandrel images, see Available Mandrel images

Using GraalVM
Because Mandrel does not support macOS, you can use Oracle GraalVM to build native
executables on this operating system.

You can also build native executables by using Oracle GraalVM directly on bare metal Linux or
Windows distributions. For more information about this process, see the Oracle GraalVM
README and release notes.

For information about how to build a native executable by using Oracle GraalVM, see Compiling
your Red Hat build of Quarkus applications to native executables.

Additional resources

For more information about building, compiling, packaging, and debugging a native executable,
see Building a native executable .

For tips to help troubleshoot issues that might occur when attempting to run Java applications
as native executables, see Tips for writing native applications .

1.11. PACKAGING AND RUNNING THE RED HAT BUILD OF QUARKUS
GETTING STARTED APPLICATION IN NATIVE MODE

In native mode, the output from the application builds is a platform-dependent native binary file rather
than a compress or archive JAR file. For more information about how native mode differs from the JVM,
see the JVM and native building modes chapter of the Getting Started guide.

Prerequisites

You have installed OpenJDK 11 or 17 installed and set the JAVA_HOME environment variable to

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF QUARKUS

29

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/6cc71cfa-5659-4681-84f2-2e2f79e76d9a
https://quay.io/repository/quarkus/ubi-quarkus-mandrel?tab=tags
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/6cc71cfa-5659-4681-84f2-2e2f79e76d9a
https://quarkus.io/version/3.2/guides/building-native-image
https://quarkus.io/version/3.2/guides/writing-native-applications-tips
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f#con_difference-between-jvm-and-native-mode_quarkus-getting-started

You have installed OpenJDK 11 or 17 installed and set the JAVA_HOME environment variable to
specify the location of the Java SDK.

You have installed Apache Maven 3.8.6 or later.

You have a working C development environment.

You have a working container runtime, such as Docker or Podman.

Optional: If you want to use the Quarkus command-line interface (CLI), ensure that it is
installed.

For instructions on how to install the Quarkus CLI, refer to the community-specific
information at Quarkus CLI.

You have cloned and compiled the Quarkus Getting Started project.

You have downloaded and installed a community or enterprise edition of GraalVM.

To download and install a community or an enterprise edition of GraalVM, refer to the
official Getting Started with GraalVM documentation.

Alternatively, use platform-specific install tools such as sdkman, homebrew, or scoop.

NOTE

While you can use the community edition of GraalVM to complete all of the procedures in
the Getting Started guide, the community edition of GraalVM is not supported in a
Red Hat build of Quarkus production environment. For more information, see Compiling
your Red Hat build of Quarkus applications to native executables.

Procedure

1. Configure the runtime environment by setting the GRAALVM_HOME environment variable to
the GraalVM installation directory. For example:

On macOS, point the variable to the Home sub-directory:

On Windows, set your environment variables by using the Control Panel.

2. Install the native-image tool:

3. Set the JAVA_HOME environment variable to the GraalVM installation directory:

4. Add the GraalVM bin directory to the path:

export GRAALVM_HOME=$HOME/Development/graalvm/

export GRAALVM_HOME=$HOME/Development/graalvm/Contents/Home/

${GRAALVM_HOME}/bin/gu install native-image

export JAVA_HOME=${GRAALVM_HOME}

export PATH=${GRAALVM_HOME}/bin:$PATH

Red Hat build of Quarkus 3.2 Getting started with Red Hat build of Quarkus

30

https://quarkus.io/version/3.2/guides/building-native-image#configuring-c-development
https://quarkus.io/version/3.2/guides/cli-tooling
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f#proc_quarkus-compiling-project_quarkus-getting-started
https://www.graalvm.org/latest/docs/getting-started/
https://sdkman.io/jdks#Oracle
https://github.com/graalvm/homebrew-tap
https://github.com/ScoopInstaller/Java
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/6cc71cfa-5659-4681-84f2-2e2f79e76d9a

5. Go to the Getting Started project folder:

6. Compile a native image in one of the following ways:

Using Maven:

Using the Quarkus CLI:

Verification

1. Start the application:

2. Observe the log message and verify that it contains the word native:

Additional resources

For additional tips or troubleshooting information, see the Quarkus Building a native executable
guide.

1.12. ADDITIONAL RESOURCES

Deploying your Red Hat build of Quarkus applications to OpenShift Container Platform

Revised on 2024-04-04 11:42:23 UTC

cd getting-started

mvn clean package -Pnative

quarkus build --native

./target/getting-started-1.0.0-SNAPSHOT-runner

2023-08-30 09:51:51,505 INFO [io.quarkus] (main) getting-started 1.0.0-SNAPSHOT native
(powered by Red Hat build of Quarkus 3.2.9.Final) started in 0.043s.
Listening on: http://0.0.0.0:8080

CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF QUARKUS

31

https://quarkus.io/version/3.2/guides/building-native-image
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/85e494b4-4e47-4831-8294-212c4c838c7b

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. GETTING STARTED WITH RED HAT BUILD OF QUARKUS
	1.1. ABOUT RED HAT BUILD OF QUARKUS
	1.2. PREPARING YOUR ENVIRONMENT
	1.2.1. About Red Hat build of Quarkus BOMs
	1.2.2. About Apache Maven and Red Hat build of Quarkus
	1.2.3. Configuring the Maven settings.xml file for the online repository
	1.2.4. Reconfiguring your Maven project to Red Hat build of Quarkus

	1.3. CONFIGURING RED HAT BUILD OF QUARKUS DEVELOPER TOOLS
	1.3.1. Configuring Red Hat build of Quarkus extension registry client

	1.4. CREATING THE GETTING STARTED PROJECT
	1.4.1. Creating the Getting Started project by using Apache Maven
	1.4.2. Creating the Getting Started project by using code.quarkus.redhat.com
	1.4.2.1. Support levels for Red Hat build of Quarkus extensions

	1.4.3. Creating the Getting Started project by using the Red Hat build of Quarkus CLI

	1.5. COMPILING AND STARTING THE RED HAT BUILD OF QUARKUS GETTING STARTED PROJECT
	1.6. USING RED HAT BUILD OF QUARKUS DEPENDENCY INJECTION
	1.7. TESTING YOUR RED HAT BUILD OF QUARKUS APPLICATION
	1.8. ENABLING AND RUNNING CONTINUOUS TESTING
	1.8.1. Commands for controlling continuous testing

	1.9. PACKAGING AND RUNNING THE RED HAT BUILD OF QUARKUS GETTING STARTED APPLICATION
	1.10. JVM AND NATIVE BUILDING MODES
	1.10.1. Compiling an application as a classic JVM application
	1.10.2. Compiling an application into a native image

	1.11. PACKAGING AND RUNNING THE RED HAT BUILD OF QUARKUS GETTING STARTED APPLICATION IN NATIVE MODE
	1.12. ADDITIONAL RESOURCES

