
Red Hat build of Quarkus 3.2

Developing and compiling your Red Hat build
of Quarkus applications with Apache Maven

Last Updated: 2024-04-04

Red Hat build of Quarkus 3.2 Developing and compiling your Red Hat build
of Quarkus applications with Apache Maven

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to develop and compile Red Hat build of Quarkus applications by using
the Apache Maven tool.

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. DEVELOPING AND COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS WITH
APACHE MAVEN

1.1. ABOUT RED HAT BUILD OF QUARKUS
1.2. ABOUT APACHE MAVEN AND RED HAT BUILD OF QUARKUS

1.2.1. Configuring the Maven settings.xml file for the online repository
1.3. CREATING A RED HAT BUILD OF QUARKUS PROJECT ON THE COMMAND LINE
1.4. CREATING A RED HAT BUILD OF QUARKUS PROJECT BY CONFIGURING THE POM.XML FILE
1.5. CREATING THE GETTING STARTED PROJECT BY USING CODE.QUARKUS.REDHAT.COM
1.6. CONFIGURING THE JAVA COMPILER
1.7. INSTALLING AND MANAGING EXTENSIONS
1.8. IMPORTING YOUR PROJECT INTO AN IDE
1.9. CONFIGURING THE RED HAT BUILD OF QUARKUS PROJECT OUTPUT
1.10. TESTING YOUR RED HAT BUILD OF QUARKUS APPLICATION IN JVM MODE WITH A CUSTOM PROFILE

1.11. LOGGING THE RED HAT BUILD OF QUARKUS APPLICATION BUILD CLASSPATH TREE
1.12. PRODUCING A NATIVE EXECUTABLE

1.12.1. Producing a native executable by using an in-container build
1.12.2. Producing a native executable by using a local-host build
1.12.3. Creating a container manually

1.13. TESTING THE NATIVE EXECUTABLE
1.14. USING RED HAT BUILD OF QUARKUS DEVELOPMENT MODE
1.15. DEBUGGING YOUR RED HAT BUILD OF QUARKUS PROJECT
1.16. ADDITIONAL RESOURCES

3

4
4
4
5
6
9
11

14
15
16
18

19
20
21
22
23
24
26
29
30
31

Table of Contents

1

Red Hat build of Quarkus 3.2 Developing and compiling your Red Hat build of Quarkus applications with Apache Maven

2

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

3

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. DEVELOPING AND COMPILING YOUR RED HAT
BUILD OF QUARKUS APPLICATIONS WITH APACHE MAVEN

As an application developer, you can use Red Hat build of Quarkus to create microservices-based
applications written in Java that run on OpenShift Container Platform and serverless environments.
Applications compiled to native executables have small memory footprints and fast startup times.

Use the Quarkus Apache Maven plugin to create a Red Hat build of Quarkus project.

NOTE

Where applicable, alternative instructions for using the Quarkus command-line interface
(CLI) are provided. The Quarkus CLI is intended for dev mode only. Red Hat does not
support using the Quarkus CLI in production environments.

Prerequisites

You have installed OpenJDK 11 or 17.

To download Red Hat build of OpenJDK, log in to the Red Hat Customer Portal and go to
Software Downloads.

You have set the JAVA_HOME environment variable to specify the location of the Java SDK.

You have installed Apache Maven 3.8.6 or later.

To download Maven, go to the Apache Maven Project website.

1.1. ABOUT RED HAT BUILD OF QUARKUS

Red Hat build of Quarkus is a Kubernetes-native Java stack optimized for containers and Red Hat
OpenShift Container Platform. Quarkus is designed to work with popular Java standards, frameworks,
and libraries such as Eclipse MicroProfile, Eclipse Vert.x, Apache Camel, Apache Kafka, Hibernate ORM
with Jakarta Persistence, and RESTEasy Reactive (Jakarta REST).

As a developer, you can choose the Java frameworks you want for your Java applications, which you can
run in Java Virtual Machine (JVM) mode or compile and run in native mode. Quarkus provides a
container-first approach to building Java applications. The container-first approach facilitates the
containerization and efficient execution of microservices and functions. For this reason, Quarkus
applications have a smaller memory footprint and faster startup times.

Quarkus also optimizes the application development process with capabilities such as unified
configuration, automatic provisioning of unconfigured services, live coding, and continuous testing that
gives you instant feedback on your code changes.

For information about the differences between the Quarkus community version and Red Hat build of
Quarkus, see Differences between the Red Hat build of Quarkus community version and Red Hat build
of Quarkus.

1.2. ABOUT APACHE MAVEN AND RED HAT BUILD OF QUARKUS

Apache Maven is a distributed build automation tool that is used in Java application development to
create, manage, and build software projects. Maven uses standard configuration files called Project
Object Model (POM) files to define projects and manage the build process. POM files describe the

Red Hat build of Quarkus 3.2 Developing and compiling your Red Hat build of Quarkus applications with Apache Maven

4

https://quarkus.io/version/3.2/guides/cli-tooling
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=core.service.openjdk&downloadType=distributions
https://maven.apache.org/
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/4ea39096-72be-4ccf-a22e-7e42063d29ec#con_difference-between-rhbq-and-community_quarkus-release-notes

module and component dependencies, build order, and targets for the resulting project packaging and
output by using an XML file, ensuring that the project gets built correctly and uniformly.

Maven repositories

A Maven repository stores Java libraries, plugins, and other build artifacts. The default public repository
is the Maven 2 Central Repository, but repositories can be private and internal within a company to share
common artifacts among development teams. Repositories are also available from third parties.

You can use the Red Hat-hosted Maven repository with your Quarkus projects, or you can download the
Red Hat build of Quarkus Maven repository.

Maven plugins

Maven plugins are defined parts of a POM file that run one or more tasks. Red Hat build of Quarkus
applications use the following Maven plugins:

Quarkus Maven plugin (quarkus-maven-plugin): Enables Maven to create Quarkus projects,
packages your applications into JAR files, and provides a dev mode.

Maven Surefire plugin (maven-surefire-plugin): When Quarkus enables the test profile, the
Maven Surefire plugin is used during the test phase of the build lifecycle to run unit tests on
your application. The plugin generates text and XML files that contain the test reports.

Additional resources

Configuring your Red Hat build of Quarkus applications

1.2.1. Configuring the Maven settings.xml file for the online repository

To use the Red Hat-hosted Quarkus repository with your Quarkus Maven project, configure the
settings.xml file for your user. Maven settings that are used with a repository manager or a repository
on a shared server offer better control and manageability of projects.

NOTE

When you configure the repository by modifying the Maven settings.xml file, the
changes apply to all of your Maven projects. If you want to apply the configuration to a
specific project only, use the -s option and specify the path to the project-specific
settings.xml file.

Procedure

1. Open the Maven $HOME/.m2/settings.xml file in a text editor or an integrated development
environment (IDE).

NOTE

If no settings.xml file is present in the $HOME/.m2/ directory, copy the
settings.xml file from the $MAVEN_HOME/conf/ directory into the
$HOME/.m2/ directory.

2. Add the following lines to the <profiles> element of the settings.xml file:

<!-- Configure the Red Hat build of Quarkus Maven repository -->

CHAPTER 1. DEVELOPING AND COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS WITH APACHE MAVEN

5

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/a1d0cda2-f94d-49f1-92d6-a6b252fc9915

3. Add the following lines to the <activeProfiles> element of the settings.xml file and save the
file.

1.3. CREATING A RED HAT BUILD OF QUARKUS PROJECT ON THE
COMMAND LINE

Use the Red Hat build of Quarkus Maven plugin on the command line to create a Quarkus project by
providing attributes and values on the command line or by using the plugin in interactive mode. You can
also create a Quarkus project by using the Quarkus command-line interface (CLI). The resulting project
includes the following elements:

The Maven structure

An associated unit test

A landing page that is accessible on http://localhost:8080 after you start the application

Example Dockerfile files for JVM and native mode in src/main/docker

The application configuration file

Prerequisites

You have installed OpenJDK 11 or 17.

To download Red Hat build of OpenJDK, log in to the Red Hat Customer Portal and go to

<profile>
 <id>red-hat-enterprise-maven-repository</id>
 <repositories>
 <repository>
 <id>red-hat-enterprise-maven-repository</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>red-hat-enterprise-maven-repository</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
</profile>

<activeProfile>red-hat-enterprise-maven-repository</activeProfile>

Red Hat build of Quarkus 3.2 Developing and compiling your Red Hat build of Quarkus applications with Apache Maven

6

To download Red Hat build of OpenJDK, log in to the Red Hat Customer Portal and go to
Software Downloads.

You have set the JAVA_HOME environment variable to specify the location of the Java SDK.

You have installed Apache Maven 3.8.6 or later.

To download Maven, go to the Apache Maven Project website.

You have installed the Quarkus command-line interface (CLI), which is one of the methods you
can use to create a Quarkus project. For more information, see Installing the Quarkus CLI .

NOTE

The Quarkus CLI is intended for dev mode only. Red Hat does not support using the
Quarkus CLI in production environments.

Procedure

1. In a command terminal, enter the following command to verify that Maven is using OpenJDK 11
or 17 and that the Maven version is 3.8.6 or later:

2. If the preceding command does not return OpenJDK 11 or 17, add the path to OpenJDK 11 or 17
to the PATH environment variable and enter the preceding command again.

3. To use the Quarkus Maven plugin to create a project, use one of the following methods:

Enter the following command:

In this command, replace the following values:

<project_group_id>: A unique identifier of your project

<project_artifact_id>: The name of your project and your project directory

Create the project in interactive mode:

When prompted, enter the required attribute values.

NOTE

mvn --version

mvn com.redhat.quarkus.platform:quarkus-maven-plugin:3.2.11.Final-redhat-
00001:create \
 -DprojectGroupId=<project_group_id> \
 -DprojectArtifactId=<project_artifact_id> \
 -DplatformGroupId=com.redhat.quarkus.platform \
 -DplatformArtifactId=quarkus-bom \
 -DplatformVersion=3.2.11.Final-redhat-00001
 -DpackageName=getting.started

mvn com.redhat.quarkus.platform:quarkus-maven-plugin:3.2.11.Final-redhat-
00001:create

CHAPTER 1. DEVELOPING AND COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS WITH APACHE MAVEN

7

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=core.service.openjdk&downloadType=distributions
https://maven.apache.org/
https://quarkus.io/version/3.2/guides/cli-tooling#installing-the-cli
https://quarkus.io/version/3.2/guides/cli-tooling

NOTE

You can also create your project by using the default values for the project
attributes by entering the following command:

mvn com.redhat.quarkus.platform:quarkus-maven-plugin:3.2.11.Final-
redhat-00001:create -B

Create the project by using the Red Hat build of Quarkus CLI:

You can also get the list of available options with:

The following table lists the attributes that you can define with the create command:

Attribute Default Value Description

projectGroupId org.acme A unique identifier of your project.

projectArtifactId code-with-quarkus The name of your project and
your project directory. If you do
not specify the
projectArtifactId attribute, the
Maven plugin starts the
interactive mode. If the directory
already exists, the generation
fails.

projectVersion 1.0-SNAPSHOT The version of your project.

platformGroupId com.redhat.quarkus.platform The group ID of your platform. All
the existing platforms are
provided by
com.redhat.quarkus.platform
. However, you can change the
default value.

platformArtifactId quarkus-bom The artifact ID of your platform
BOM.

platformVersion The latest platform version, for
example, 3.2.11.Final-redhat-
00001.

The version of the platform you
want to use for your project.
When you provide a version
range, the Maven plugin uses the
latest version.

packageName [] The name of the getting started
package, getting.started.

quarkus create app my-groupId:my-artifactId --package-name=getting.started

quarkus create app --help

Red Hat build of Quarkus 3.2 Developing and compiling your Red Hat build of Quarkus applications with Apache Maven

8

extensions [] The list of extensions you want to
add to your project, separated by
a comma.

Attribute Default Value Description

NOTE

By default, the Quarkus Maven plugin uses the latest quarkus-bom file. The quarkus-
bom file aggregates extensions so that you can reference them from your applications to
align the dependency versions. When you are offline, the Quarkus Maven plugin uses the
latest locally available version of the quarkus-bom file. If Maven finds the quarkus-bom
version 2.0 or earlier, it uses the platform based on the quarkus-bom.

1.4. CREATING A RED HAT BUILD OF QUARKUS PROJECT BY
CONFIGURING THE POM.XML FILE

You can create a Quarkus project by configuring the Maven pom.xml file.

Procedure

1. Open the pom.xml file in a text editor.

2. Add the configuration properties that contain the following items:

The Maven Compiler Plugin version

The Quarkus BOM groupID, artifactID, and version

The Maven Surefire Plugin version

The skipITs property.

3. Add the Quarkus GAV (group, artifact, version) and use the quarkus-bom file to omit the
versions of the different Quarkus dependencies:

<properties>
 <compiler-plugin.version>3.11.0</compiler-plugin.version>
 <quarkus.platform.group-id>com.redhat.quarkus.platform</quarkus.platform.group-id>
 <quarkus.platform.artifact-id>quarkus-bom</quarkus.platform.artifact-id>
 <quarkus.platform.version>3.2.11.Final-redhat-00001</quarkus.platform.version>
 <surefire-plugin.version>3.1.2</surefire-plugin.version>
 <skipITs>true</skipITs>
</properties>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>${quarkus.platform.group-id}</groupId>
 <artifactId>${quarkus.platform.artifact-id}</artifactId>
 <version>${quarkus.platform.version}</version>
 <type>pom</type>

CHAPTER 1. DEVELOPING AND COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS WITH APACHE MAVEN

9

4. Add the Quarkus Maven plugin, the Maven Compiler plugin, and the Maven Surefire plugin:

NOTE

The maven-surefire-plugin runs the unit tests for your application.

5. Optional: To build a native application, add a specific native profile that includes the Maven
Failsafe Plugin:

 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

<build>
 <plugins>
 <plugin>
 <groupId>${quarkus.platform.group-id}</groupId>
 <artifactId>quarkus-maven-plugin</artifactId>
 <version>${quarkus.platform.version}</version>
 <extensions>true</extensions>
 <executions>
 <execution>
 <goals>
 <goal>build</goal>
 <goal>generate-code</goal>
 <goal>generate-code-tests</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>${compiler-plugin.version}</version>
 <configuration>
 <compilerArgs>
 <arg>-parameters</arg>
 </compilerArgs>
 </configuration>
 </plugin>
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>${surefire-plugin.version}</version>
 <configuration>
 <systemPropertyVariables>

<java.util.logging.manager>org.jboss.logmanager.LogManager</java.util.logging.manager>
 <maven.home>${maven.home}</maven.home>
 </systemPropertyVariables>
 </configuration>
 </plugin>
 </plugins>
</build>

Red Hat build of Quarkus 3.2 Developing and compiling your Red Hat build of Quarkus applications with Apache Maven

10

Tests that include IT in their names and contain the @NativeImageTest annotation are run
against the native executable.

For more details about how native mode differs from JVM mode, see Difference between
JVM and native mode in the Quarkus "Getting Started" guide.

1.5. CREATING THE GETTING STARTED PROJECT BY USING
CODE.QUARKUS.REDHAT.COM

As an application developer, you can use code.quarkus.redhat.com to generate a Quarkus Maven project
and automatically add and configure the extensions that you want to use in your application. In addition,
code.quarkus.redhat.com automatically manages the configuration parameters that are required to

<build>
 <plugins>
 ...
 <plugin>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>${surefire-plugin.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 <configuration>
 <systemPropertyVariables>
 <native.image.path>${project.build.directory}/${project.build.finalName}-
runner
 </native.image.path>

<java.util.logging.manager>org.jboss.logmanager.LogManager</java.util.logging.manager>
 <maven.home>${maven.home}</maven.home>
 </systemPropertyVariables>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>
...
<profiles>
 <profile>
 <id>native</id>
 <activation>
 <property>
 <name>native</name>
 </property>
 </activation>
 <properties>
 <skipITs>false</skipITs>
 <quarkus.package.type>native</quarkus.package.type>
 </properties>
 </profile>
</profiles>

CHAPTER 1. DEVELOPING AND COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS WITH APACHE MAVEN

11

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f#con_difference-between-jvm-and-native-mode_quarkus-getting-started

compile your project into a native executable.

You can generate a Quarkus Maven project, including the following activities:

Specifying basic details about your application

Choosing the extensions that you want to include in your project

Generating a downloadable archive with your project files

Using custom commands for compiling and starting your application

Prerequisites

You have a web browser.

You have prepared your environment to use Apache Maven. For more information, see
Preparing your environment.

You have configured your Quarkus Maven repository. To create a Quarkus application with
Maven, use the Red Hat-hosted Quarkus repository. For more information, see Configuring the
Maven settings.xml file for the online repository.

Optional: You have installed the Quarkus command-line interface (CLI), which is one of the
methods you can use to start Quarkus in dev mode.
For more information, see Installing the Quarkus CLI .

NOTE

The Quarkus CLI is intended for dev mode only. Red Hat does not support using the
Quarkus CLI in production environments.

Procedure

1. On your web browser, navigate to https://code.quarkus.redhat.com.

2. Specify basic details about your project:

a. Enter a group name for your project. The name format follows the Java package naming
convention; for example, org.acme.

b. Enter a name for the Maven artifacts generated by your project, such as code-with-

Red Hat build of Quarkus 3.2 Developing and compiling your Red Hat build of Quarkus applications with Apache Maven

12

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/1fb66449-7cb8-4328-8bb6-f11921699056#proc_preparing-your-environment_quarkus-maven
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/1fb66449-7cb8-4328-8bb6-f11921699056#proc_online-maven_quarkus-maven
https://quarkus.io/version/3.2/guides/cli-tooling#installing-the-cli
https://quarkus.io/version/3.2/guides/cli-tooling
https://code.quarkus.redhat.com

b. Enter a name for the Maven artifacts generated by your project, such as code-with-
quarkus.

c. Select the build tool you want to use to compile and start your application. The build tool
that you choose determines the following setups:

The directory structure of your generated project

The format of configuration files that are used in your generated project

The custom build script and command for compiling and starting your application that
code.quarkus.redhat.com displays for you after you generate your project

NOTE

Red Hat provides support for using code.quarkus.redhat.com to create
Quarkus Maven projects only.

3. Specify additional details about your application project:

a. To display the fields that contain further application details, select More options.

b. Enter a version you want to use for artifacts generated by your project. The default value of
this field is 1.0.0-SNAPSHOT. Using semantic versioning is recommended; however, you
can choose to specify a different type of versioning.

c. Select whether you want code.quarkus.redhat.com to add starter code to your project.
When you add extensions that are marked with "STARTER-CODE" to your project, you can
enable this option to automatically create example class and resource files for those
extensions when you generate your project. However, this option does not affect your
generated project if you do not add any extensions that provide an example code.

NOTE

The code.quarkus.redhat.com application automatically uses the latest release of
Red Hat build of Quarkus. However, should you require, it is possible to manually
change to an earlier BOM version in the pom.xml file after you generate your
project, but this is not recommended.

4. Select the extensions that you want to use. The extensions you select are included as
dependencies of your Quarkus application. The Quarkus platform also ensures these extensions
are compatible with future versions.

IMPORTANT

Do not use the RESTEasy and the RESTEasy Reactive extensions in the same
project.

CHAPTER 1. DEVELOPING AND COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS WITH APACHE MAVEN

13

https://semver.org/

The quark icon () next to an extension indicates that the extension is part of the Red Hat
build of Quarkus platform release. Red Hat recommends using extensions from the same
platform because they are tested and verified together and are therefore easier to use and
upgrade.

You can enable the option to automatically generate starter code for extensions marked with
"STARTER-CODE".

5. To confirm your choices, select Generate your application. The following items are displayed:

A link to download the archive that contains your generated project

A custom command that you can use to compile and start your application

6. To save the archive with the generated project files to your machine, select Download the ZIP.

7. Extract the contents of the archive.

8. Go to the directory that contains your extracted project files:

9. To compile and start your application in dev mode, use one of the following ways:

Using Maven:

./mvnw quarkus:dev

Using the Quarkus CLI:

quarkus dev

Additional resources

Support levels for Red Hat build of Quarkus extensions

1.6. CONFIGURING THE JAVA COMPILER

By default, the Quarkus Maven plugin passes compiler flags to javac command from maven-compiler-
plugin.

cd <directory_name>

Red Hat build of Quarkus 3.2 Developing and compiling your Red Hat build of Quarkus applications with Apache Maven

14

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/1fb66449-7cb8-4328-8bb6-f11921699056#ref_extension-support-levels_quarkus-maven

Procedure

To customize the compiler flags used in development mode, add a configuration section to the
plugin block and set the compilerArgs property. You can also set source, target, and
jvmArgs. For example, to pass -verbose to the JVM and javac commands, add the following
configuration:

1.7. INSTALLING AND MANAGING EXTENSIONS

In Red Hat build of Quarkus, you can use extensions to expand your application’s functionality and
configure, boot, and integrate a framework into your application. This procedure shows you how to find
and add extensions to your Quarkus project.

Prerequisites

You have created a Quarkus Maven project.

You have installed the Quarkus command-line interface (CLI), which is one of the methods you
can use to manage your Quarkus extensions. For more information, see Installing the Quarkus
CLI.

NOTE

The Quarkus CLI is intended for dev mode only. Red Hat does not support using the
Quarkus CLI in production environments.

Procedure

1. Navigate to your Quarkus project directory.

2. List all of the available extensions by using one of the following ways:

Using Maven:

Using the Quarkus CLI:

<plugin>
 <groupId>com.redhat.quarkus.platform</groupId>
 <artifactId>quarkus-maven-plugin</artifactId>
 <version>${quarkus.platform.version}</version>

 <configuration>
 <source>${maven.compiler.source}</source>
 <target>${maven.compiler.target}</target>
 <compilerArgs>
 <arg>-verbose</arg>
 </compilerArgs>
 <jvmArgs>-verbose</jvmArgs>
 </configuration>

 ...
</plugin>

./mvnw quarkus:list-extensions

CHAPTER 1. DEVELOPING AND COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS WITH APACHE MAVEN

15

https://quarkus.io/version/3.2/guides/cli-tooling#installing-the-cli
https://quarkus.io/version/3.2/guides/cli-tooling

3. Add an extension to your project by using one of the following ways:

Using Maven, enter the following command where <extension> is the group, artifact, and
version (GAV) of the extension that you want to add:

For example, to add the Agroal extension, enter the following command:

Using the Quarkus CLI, enter the following command where <extension> is the group,
artifact, and version (GAV) of the extension that you want to add:

4. To search for a specific extension, enter the extension name or partial name after -
Dextensions=. The following example searches for extensions that contain the text agroal in
the name:

This command returns the following result:

[SUCCESS] � Extension io.quarkus:quarkus-agroal has been installed

Similarly, with the Quarkus CLI, you might enter:

1.8. IMPORTING YOUR PROJECT INTO AN IDE

Although you can develop your Red Hat build of Quarkus project in a text editor, you might find using an
integrated development environment (IDE) easier. The following instructions show you how to import
your project into specific IDEs.

Prerequisites

You have a Quarkus Maven project.

You have installed the Quarkus command-line interface (CLI), which is required to start your
project in dev mode. For more information, see Installing the Quarkus CLI .

NOTE

The Quarkus CLI is intended for dev mode only. Red Hat does not support using the
Quarkus CLI in production environments.

Procedure

quarkus extension --installable

./mvnw quarkus:add-extension -Dextensions="<extension>"

./mvnw quarkus:add-extension -Dextensions="io.quarkus:quarkus-agroal"

quarkus extension add '<extension>'

./mvnw quarkus:add-extension -Dextensions=agroal

quarkus extension add 'agroal'

Red Hat build of Quarkus 3.2 Developing and compiling your Red Hat build of Quarkus applications with Apache Maven

16

https://quarkus.io/version/3.2/guides/cli-tooling#installing-the-cli
https://quarkus.io/version/3.2/guides/cli-tooling

Complete the required procedure for your IDE.

CodeReady Studio or Eclipse

1. In CodeReady Studio or Eclipse, click File>*Import*.

2. Select Maven → Existing Maven Project.

3. Next, select the root location of the project. A list of the available modules appears.

4. Select the generated project, and click Finish.

5. To compile and start your application, use one of the following ways:

Using Maven:

./mvnw quarkus:dev

Using the Quarkus CLI:

quarkus dev

IntelliJ

1. In IntelliJ, complete one of the following tasks:

Select File > New > Project From Existing Sources.

On the Welcome page, select Import project.

2. Select the project root directory.

3. Select Import project from external model, and then select Maven.

4. Review the options, and then click Next.

5. Click Create.

6. To compile and start your application, use one of the following ways:

Using Maven:

./mvnw quarkus:dev

Using the Quarkus CLI:

quarkus dev

Apache NetBeans

1. Select File > Open Project.

2. Select the project root directory.

3. Click Open Project.

CHAPTER 1. DEVELOPING AND COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS WITH APACHE MAVEN

17

4. To compile and start your application, use one of the following ways:

Using Maven:

./mvnw quarkus:dev

Using the Quarkus CLI:

quarkus dev

Visual Studio Code

1. Install the Java Extension Pack.

2. In Visual Studio Code, open your project directory.

Verification

The project loads as a Maven project.

1.9. CONFIGURING THE RED HAT BUILD OF QUARKUS PROJECT
OUTPUT

Before you build your application, you can control the build command output by changing the default
values of the properties in the application.properties file.

Prerequisites

You have created a Quarkus Maven project.

Procedure

1. Go to the {project}/src/main/resources folder, and open the application.properties file in a
text editor.

2. Edit the values of properties that you want to change and save the file.
The following table lists the properties that you can change:

Property Description Type Default

quarkus.package.main-
class

The entry point of the
application. In most cases, you
must change this value.

string io.quarku
s.runner.
Generate
dMain

quarkus.package.type The requested output type for
the package, which you can set
to 'jar' (uses 'fast-jar'), 'legacy-
jar' for the pre-1.12 default jar
packaging, 'uber-jar', 'native', or
'native-sources'.

string jar

Red Hat build of Quarkus 3.2 Developing and compiling your Red Hat build of Quarkus applications with Apache Maven

18

quarkus.package.manifest.a
dd-implementation-entries

Determines whether the
implementation information
must be included in the runner
JAR file’s MANIFEST.MF file.

boolean true

quarkus.package.user-
configured-ignored-entries

Files that must not be copied to
the output artifact.

string (list)

quarkus.package.runner-
suffix

The suffix that is applied to the
runner JAR file.

string -runner

quarkus.package.output-
directory

The output folder for the
application build. This is resolved
relative to the build system
target directory.

string

quarkus.package.output-
name

The name of the final artifact. string

Property Description Type Default

1.10. TESTING YOUR RED HAT BUILD OF QUARKUS APPLICATION IN
JVM MODE WITH A CUSTOM PROFILE

Similar to any other running mode, configuration values for testing are read from the
src/main/resources/application.properties file.

By default, the test profile is active during testing in JVM mode, meaning that properties prefixed with
%test take precedence. For example, when you run a test with the following configuration, the value
returned for the property message is Test Value.

message=Hello
%test.message=Test Value

If the %test profile is inactive (dev, prod), the value returned for the property message is Hello.

For example, your application might require multiple test profiles to run a set of tests against different
database instances. To do this, you must override the testing profile name, which can be done by setting
the system property quarkus.test.profile when executing Maven. By doing so, you can control which
sets of configuration values are active during the test.

To learn more about standard testing with the 'Starting With Quarkus' example, see Testing your Red
Hat build of Quarkus application with JUnit in the Getting Started guide.

Prerequisites

A Quarkus project created with Apache Maven.

Procedure

CHAPTER 1. DEVELOPING AND COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS WITH APACHE MAVEN

19

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f#proc_quarkus-junit-testing_quarkus-getting-started

When running tests on a Quarkus application, the test configuration profile is set as active by default.
However, you can change the profile to a custom profile by using the quarkus.test.profile system
property.

1. Run the following command to test your application:

mvn test -Dquarkus.test.profile=__<profile-name>__

NOTE

You cannot use a custom test configuration profile in native mode. Native tests always
run under the prod profile.

1.11. LOGGING THE RED HAT BUILD OF QUARKUS APPLICATION BUILD
CLASSPATH TREE

The Quarkus build process adds deployment dependencies of the extensions that you use in the
application to the original application classpath. You can see which dependencies and versions are
included in the build classpath. The quarkus-bootstrap Maven plugin includes the build-tree goal,
which displays the build dependency tree for the application.

Prerequisites

You have created a Quarkus Maven application.

Procedure

To list the build dependency tree of your application, enter the following command:

./mvnw quarkus:dependency-tree

Example output. The exact output you see will differ from this example.

NOTE

[INFO] └─ io.quarkus:quarkus-resteasy-deployment:jar:3.2.11.Final-redhat-00001 (compile)
[INFO] ├─ io.quarkus:quarkus-resteasy-server-common-deployment:jar:3.2.11.Final-
redhat-00001 (compile)
[INFO] │ ├─ io.quarkus:quarkus-resteasy-common-deployment:jar:3.2.11.Final-redhat-
00001 (compile)
[INFO] │ │ ├─ io.quarkus:quarkus-resteasy-common:jar:3.2.11.Final-redhat-00001
(compile)
[INFO] │ │ │ ├─ org.jboss.resteasy:resteasy-core:jar:6.2.4.Final-redhat-00003 (compile)
[INFO] │ │ │ │ ├─ jakarta.xml.bind:jakarta.xml.bind-api:jar:4.0.0.redhat-00008 (compile)
[INFO] │ │ │ │ ├─ org.jboss.resteasy:resteasy-core-spi:jar:6.2.4.Final-redhat-00003
(compile)
[INFO] │ │ │ │ ├─ org.reactivestreams:reactive-streams:jar:1.0.4.redhat-00003
(compile)
[INFO] │ │ │ │ └─ com.ibm.async:asyncutil:jar:0.1.0.redhat-00010 (compile)
...

Red Hat build of Quarkus 3.2 Developing and compiling your Red Hat build of Quarkus applications with Apache Maven

20

NOTE

The mvn dependency:tree command displays only the runtime dependencies of your
application

1.12. PRODUCING A NATIVE EXECUTABLE

A native binary is an executable that is created to run on a specific operating system and CPU
architecture.

The following list outlines some examples of a native executable:

An ELF binary for Linux AMD 64 bits

An EXE binary for Windows AMD 64 bits

An ELF binary for ARM 64 bits

When you build a native executable, one advantage is that your application and dependencies, including
the JVM, are packaged into a single file. The native executable for your application contains the
following items:

The compiled application code.

The required Java libraries.

A reduced version of the Java virtual machine (JVM) for improved application startup times and
minimal disk and memory footprint, which is also tailored for the application code and its
dependencies.

To produce a native executable from your Quarkus application, you can select either an in-container
build or a local-host build. The following table explains the different building options that you can use:

Table 1.1. Building options for producing a native executable

Building option Requires Uses Results in Benefits

In-container build
- Supported

A container
runtime, for
example, Podman
or Docker

The default
registry.access.
redhat.com/qua
rkus/mandrel-
23-rhel8:23.0
builder image

A Linux 64-bit
executable using
the CPU
architecture of the
host

GraalVM does not
need to be set up
locally, which
makes your CI
pipelines run more
efficiently

Local-host build -
Only supported
upstream

A local installation
of GraalVM or
Mandrel

Its local installation
as a default for the
quarkus.native.
builder-image
property

An executable
that has the same
operating system
and CPU
architecture as the
machine on which
the build is
executed

An alternative for
developers that
are not allowed or
do not want to use
tools such as
Docker or
Podman. Overall, it
is faster than the
in-container build
approach.

CHAPTER 1. DEVELOPING AND COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS WITH APACHE MAVEN

21

https://www.redhat.com/en/topics/devops/what-cicd-pipeline

IMPORTANT

Red Hat build of Quarkus 3.2 only supports the building of native Linux
executables by using a Java 17-based Red Hat build of Quarkus Native builder
image, which is a productized distribution of Mandrel. While other images are
available in the community, they are not supported in the product, so you should
not use them for production builds that you want Red Hat to provide support for.

Applications whose source is written based on Java 11, with no Java 12 - 17
features used, can still compile a native executable of that application using the
Java 17-based Mandrel 23.0 base image.

Building native executables by using Oracle GraalVM Community Edition (CE),
Mandrel community edition, or any other distributions of GraalVM is not
supported for Red Hat build of Quarkus.

1.12.1. Producing a native executable by using an in-container build

To create a native executable and run the native image tests, use the native profile that is provided by
Red Hat build of Quarkus for an in-container build.

Prerequisites

Podman or Docker is installed.

The container has access to at least 8GB of memory.

Procedure

1. Open the Getting Started project pom.xml file, and verify that the project includes the native
profile:

2. Build a native executable by using one of the following ways:

Using Maven:

For Docker:

<profiles>
 <profile>
 <id>native</id>
 <activation>
 <property>
 <name>native</name>
 </property>
 </activation>
 <properties>
 <skipITs>false</skipITs>
 <quarkus.package.type>native</quarkus.package.type>
 </properties>
 </profile>
</profiles>

./mvnw package -Dnative -Dquarkus.native.container-build=true

Red Hat build of Quarkus 3.2 Developing and compiling your Red Hat build of Quarkus applications with Apache Maven

22

https://catalog.redhat.com/software/containers/search?q=Red Hat Build of Quarkus Native builder
https://github.com/graalvm/mandrel

For Podman:

Using the Quarkus CLI:

For Docker:

For Podman:

Step results

These commands create a *-runner binary in the target directory, where the following
applies:

The *-runner file is the built native binary produced by Quarkus.

The target directory is a directory that Maven creates when you build a Maven
application.

IMPORTANT

Compiling a Quarkus application to a native executable consumes a large
amount of memory during analysis and optimization. You can limit the
amount of memory used during native compilation by setting the
quarkus.native.native-image-xmx configuration property. Setting low
memory limits might increase the build time.

3. To run the native executable, enter the following command:

Additional resources

Native executable configuration properties

1.12.2. Producing a native executable by using a local-host build

If you are not using Docker or Podman, use the Quarkus local-host build option to create and run a
native executable.

Using the local-host build approach is faster than using containers and is suitable for machines that use
a Linux operating system.

IMPORTANT

./mvnw package -Dnative -Dquarkus.native.container-build=true -
Dquarkus.native.container-runtime=podman

quarkus build --native -Dquarkus.native.container-build=true

quarkus build --native -Dquarkus.native.container-build=true -
Dquarkus.native.container-runtime=podman

./target/*-runner

CHAPTER 1. DEVELOPING AND COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS WITH APACHE MAVEN

23

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/1fb66449-7cb8-4328-8bb6-f11921699056#ref_native-config-properties

IMPORTANT

Using the following procedure in production is not supported by Red Hat build of
Quarkus. Use this method only when testing or as a backup approach when Docker or
Podman is not available.

Prerequisites

A local installation of Mandrel or GraalVm, correctly configured according to the Building a
native executable guide.

Additionally, for a GraalVM installation, native-image must also be installed.

Procedure

1. For GraalVM or Mandrel, build a native executable by using one of the following ways:

Using Maven:

Using the Quarkus CLI:

Step results

These commands create a *-runner binary in the target directory, where the following
applies:

The *-runner file is the built native binary produced by Quarkus.

The target directory is a directory that Maven creates when you build a Maven
application.

NOTE

When you build the native executable, the prod profile is enabled unless
modified in the quarkus.profile property.

2. Run the native executable:

Additional resources

For more information, see the Producing a native executable section of the "Building a native
executable" guide in the Quarkus community.

1.12.3. Creating a container manually

This section shows you how to manually create a container image with your application for Linux AMD64.
When you produce a native image by using the Quarkus Native container, the native image creates an
executable that targets Linux AMD64. If your host operating system is different from Linux AMD64, you
cannot run the binary directly and you need to create a container manually.

./mvnw package -Dnative

quarkus build --native

./target/*-runner

Red Hat build of Quarkus 3.2 Developing and compiling your Red Hat build of Quarkus applications with Apache Maven

24

https://quarkus.io/version/3.2/guides/building-native-image
https://quarkus.io/version/3.2/guides/building-native-image#producing-a-native-executable

Your Quarkus Getting Started project includes a Dockerfile.native in the src/main/docker directory
with the following content:

NOTE

Universal Base Image (UBI)

The following list displays the suitable images for use with Dockerfiles.

Red Hat Universal Base Image 8 (UBI8). This base image is designed and
engineered to be the base layer for all of your containerized applications,
middleware, and utilities.

registry.access.redhat.com/ubi8/ubi:8.8

Red Hat Universal Base Image 8 Minimal (UBI8-minimal). A stripped-down UBI8
image that uses microdnf as a package manager.

registry.access.redhat.com/ubi8/ubi-minimal:8.8

All Red Hat Base images are available on the Container images catalog site.

Procedure

1. Build a native Linux executable by using one of the following methods:

Docker:

Podman:

2. Build the container image by using one of the following methods:

Docker:

Podman

FROM registry.access.redhat.com/ubi8/ubi-minimal:8.8
WORKDIR /work/
RUN chown 1001 /work \
 && chmod "g+rwX" /work \
 && chown 1001:root /work
COPY --chown=1001:root target/*-runner /work/application

EXPOSE 8080
USER 1001

ENTRYPOINT ["./application", "-Dquarkus.http.host=0.0.0.0"]

./mvnw package -Dnative -Dquarkus.native.container-build=true

./mvnw package -Dnative -Dquarkus.native.container-build=true -
Dquarkus.native.container-runtime=podman

docker build -f src/main/docker/Dockerfile.native -t quarkus-quickstart/getting-started .

CHAPTER 1. DEVELOPING AND COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS WITH APACHE MAVEN

25

https://github.com/rpm-software-management/microdnf
https://catalog.redhat.com/software/containers/search?q=UBI&p=1

3. Run the container by using one of the following methods:

Docker:

Podman:

1.13. TESTING THE NATIVE EXECUTABLE

Test the application in native mode to test the functionality of the native executable. Use the
@QuarkusIntegrationTest annotation to build the native executable and run tests against the HTTP
endpoints.

IMPORTANT

The following example shows how to test a native executable with a local installation of
GraalVM or Mandrel. Before you begin, consider the following points:

This scenario is not supported by Red Hat build of Quarkus, as outlined in
Producing a native executable.

The native executable you are testing with here must match the operating
system and architecture of the host. Therefore, this procedure will not work on a
macOS or an in-container build.

Procedure

1. Open the pom.xml file and verify that the build section has the following elements:

podman build -f src/main/docker/Dockerfile.native -t quarkus-quickstart/getting-started .

docker run -i --rm -p 8080:8080 quarkus-quickstart/getting-started

podman run -i --rm -p 8080:8080 quarkus-quickstart/getting-started

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>${surefire-plugin.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 <configuration>
 <systemPropertyVariables>
 <native.image.path>${project.build.directory}/${project.build.finalName}-
runner</native.image.path>

<java.util.logging.manager>org.jboss.logmanager.LogManager</java.util.logging.manager>
 <maven.home>${maven.home}</maven.home>
 </systemPropertyVariables>
 </configuration>

Red Hat build of Quarkus 3.2 Developing and compiling your Red Hat build of Quarkus applications with Apache Maven

26

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/6cc71cfa-5659-4681-84f2-2e2f79e76d9a#proc_producing-native-executable

1

2

The Maven Failsafe plugin (maven-failsafe-plugin) runs the integration test and indicates
the location of the native executable that is generated.

2. Open the src/test/java/org/acme/GreetingResourceIT.java file and verify that it includes the
following content:

Use another test runner that starts the application from the native file before the tests.
The executable is retrieved by using the native.image.path system property configured in
the Maven Failsafe plugin.

This example extends the GreetingResourceTest, but you can also create a new test.

3. Run the test:

The following example shows the output of this command:

 </execution>
 </executions>
</plugin>

package org.acme;

import io.quarkus.test.junit.QuarkusIntegrationTest;

@QuarkusIntegrationTest 1
public class GreetingResourceIT extends GreetingResourceTest { 2

 // Execute the same tests but in native mode.
}

./mvnw verify -Dnative

./mvnw verify -Dnative

....

GraalVM Native Image: Generating 'getting-started-1.0.0-SNAPSHOT-runner' (executable)...
===
===
[1/8] Initializing... (6.6s @ 0.22GB)
 Java version: 17.0.7+7, vendor version: Mandrel-23.0.0.0-Final
 Graal compiler: optimization level: 2, target machine: x86-64-v3
 C compiler: gcc (redhat, x86_64, 13.2.1)
 Garbage collector: Serial GC (max heap size: 80% of RAM)
 2 user-specific feature(s)
 - io.quarkus.runner.Feature: Auto-generated class by Red Hat build of Quarkus from the
existing extensions
 - io.quarkus.runtime.graal.DisableLoggingFeature: Disables INFO logging during the
analysis phase
[2/8] Performing analysis... [******] (40.0s @
2.05GB)
 10,318 (86.40%) of 11,942 types reachable
 15,064 (57.36%) of 26,260 fields reachable
 52,128 (55.75%) of 93,501 methods reachable
 3,298 types, 109 fields, and 2,698 methods registered for reflection

CHAPTER 1. DEVELOPING AND COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS WITH APACHE MAVEN

27

NOTE

 63 types, 68 fields, and 55 methods registered for JNI access
 4 native libraries: dl, pthread, rt, z
[3/8] Building universe... (5.9s @ 1.31GB)
[4/8] Parsing methods... [**] (3.7s @ 2.08GB)
[5/8] Inlining methods... [***] (2.0s @ 1.92GB)
[6/8] Compiling methods... [******] (34.4s @
3.25GB)
[7/8] Layouting methods... [[7/8] Layouting methods... [**]
(4.1s @ 1.78GB)
[8/8] Creating image... [**] (4.5s @ 2.31GB)
 20.93MB (48.43%) for code area: 33,233 compilation units
 21.95MB (50.80%) for image heap: 285,664 objects and 8 resources
 337.06kB (0.76%) for other data
 43.20MB in total

....

[INFO]
[INFO] --- maven-failsafe-plugin:3.0.0-M7:integration-test (default) @ getting-started ---
[INFO] Using auto detected provider
org.apache.maven.surefire.junitplatform.JUnitPlatformProvider
[INFO]
[INFO] ---
[INFO] T E S T S
[INFO] ---
[INFO] Running org.acme.GreetingResourceIT
__ ____ __ _____ ___ __ ____ ______
 --/ __ \/ / / / _ | / _ \/ //_/ / / / __/
 -/ /_/ / /_/ / __ |/ , _/ ,< / /_/ /\ \
--________/_/ |_/_/|_/_/|_|____/___/
2023-08-28 14:04:52,681 INFO [io.quarkus] (main) getting-started 1.0.0-SNAPSHOT native
(powered by Red Hat build of Quarkus 3.2.9.Final) started in 0.038s. Listening on:
http://0.0.0.0:8081
2023-08-28 14:04:52,682 INFO [io.quarkus] (main) Profile prod activated.
2023-08-28 14:04:52,682 INFO [io.quarkus] (main) Installed features: [cdi, resteasy-reactive,
smallrye-context-propagation, vertx]
[INFO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 4.696 s - in
org.acme.GreetingResourceIT
[INFO]
[INFO] Results:
[INFO]
[INFO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0
[INFO]
[INFO]
[INFO] --- maven-failsafe-plugin:3.0.0-M7:verify (default) @ getting-started ---

Red Hat build of Quarkus 3.2 Developing and compiling your Red Hat build of Quarkus applications with Apache Maven

28

NOTE

Quarkus waits 60 seconds for the native image to start before automatically
failing the native tests. You can change this duration by configuring the
quarkus.test.wait-time system property.

You can extend the wait time by using the following command where <duration>
is the wait time in seconds:

./mvnw verify -Dnative -Dquarkus.test.wait-time=<duration>

NOTE

Native tests run using the prod profile by default unless modified in the
quarkus.test.native-image-profile property.

1.14. USING RED HAT BUILD OF QUARKUS DEVELOPMENT MODE

Development mode enables hot deployment with background compilation, which means that when you
modify your Java or resource files and then refresh your browser, the changes automatically take effect.
This also works for resource files such as the configuration property file. You can use either Maven or
the Quarkus command-line interface (CLI) to start Quarkus in development mode.

Prerequisites

You have created a Quarkus Maven application.

You have installed the Quarkus CLI, which is one of the methods you can use to start Quarkus in
development mode. For more information, see Installing the Quarkus CLI .

NOTE

The Quarkus CLI is intended for dev mode only. Red Hat does not support using the
Quarkus CLI in production environments.

Procedure

1. Switch to the directory that contains your Quarkus application pom.xml file.

2. To compile and start your Quarkus application in development mode, use one of the following
methods:

Using Maven:

./mvnw quarkus:dev

Using the Quarkus CLI:

quarkus dev

3. Make changes to your application and save the files.

4. Refresh the browser to trigger a scan of the workspace.

If any changes are detected, the Java files are recompiled and the application is redeployed.

CHAPTER 1. DEVELOPING AND COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS WITH APACHE MAVEN

29

https://quarkus.io/version/3.2/guides/cli-tooling#installing-the-cli
https://quarkus.io/version/3.2/guides/cli-tooling

If any changes are detected, the Java files are recompiled and the application is redeployed.
Your request is then serviced by the redeployed application. If there are any issues with
compilation or deployment, an error page appears.

In development mode, the debugger is activated and listens on port 5005.

5. Optional: To wait for the debugger to attach before running the application, include -
Dsuspend:

./mvnw quarkus:dev -Dsuspend

6. Optional: To prevent the debugger from running, include -Ddebug=false:

./mvnw quarkus:dev -Ddebug=false

1.15. DEBUGGING YOUR RED HAT BUILD OF QUARKUS PROJECT

When Red Hat build of Quarkus starts in development mode, debugging is enabled by default, and the
debugger listens on port 5005 without suspending the JVM. You can enable and configure the
debugging feature of Quarkus from the command line or by configuring the system properties. You can
also use the Quarkus CLI to debug your project.

Prerequisites

You have created a Red Hat build of Quarkus Maven project.

You have installed the Quarkus command-line interface (CLI), which is one of the methods you
can use to compile and debug your project. For more information, see Installing the Quarkus
CLI.

NOTE

The Quarkus CLI is intended for dev mode only. Red Hat does not support using the
Quarkus CLI in production environments.

Procedure

Use one of the following methods to control debugging:

Controlling the debugger by configuring system properties

1. Change one of the following values of the debug system property where PORT is the port that
the debugger is listening on:

false: The JVM starts with debug mode disabled.

true: The JVM starts in debug mode and is listening on port 5005.

client: The JVM starts in client mode and tries to connect to localhost:5005.

PORT: The JVM starts in debug mode and is listening on PORT.

2. To suspend the JVM while running in debug mode, set the value of the suspend system
property to one of the following values:

Red Hat build of Quarkus 3.2 Developing and compiling your Red Hat build of Quarkus applications with Apache Maven

30

https://quarkus.io/version/3.2/guides/cli-tooling#installing-the-cli
https://quarkus.io/version/3.2/guides/cli-tooling

y or true: The debug mode JVM launch suspends.

n or false: The debug mode JVM starts without suspending.

Controlling the debugger from the command line

To compile and start your Quarkus application in debug mode with a suspended JVM, use one of
the following ways

Using Maven:

./mvnw quarkus:dev -Dsuspend

Using the Quarkus CLI:

quarkus dev -Dsuspend

Enabling the debugger for specific host network interfaces

In development mode, by default, for security reasons, Quarkus sets the debug host interface to
localhost.

To enable the debugger for a specific host network interface, you can use the -DdebugHost option by
using one of the following ways:

Using Maven:

./mvnw quarkus:dev -DdebugHost=<host-ip-address>

Using the Quarkus CLI:

quarkus dev -DdebugHost=<host-ip-address>

Where <host-ip-address> is the IP address of the host network interface that you want to enable
debugging on.

NOTE

To enable debugging on all host interfaces, replace <host-ip-address> with the following
value:

0.0.0.0

1.16. ADDITIONAL RESOURCES

Getting Started with Quarkus

Apache Maven project

Revised on 2024-04-04 11:42:33 UTC

CHAPTER 1. DEVELOPING AND COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS WITH APACHE MAVEN

31

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f
https://maven.apache.org/

Red Hat build of Quarkus 3.2 Developing and compiling your Red Hat build of Quarkus applications with Apache Maven

32

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. DEVELOPING AND COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS WITH APACHE MAVEN
	1.1. ABOUT RED HAT BUILD OF QUARKUS
	1.2. ABOUT APACHE MAVEN AND RED HAT BUILD OF QUARKUS
	1.2.1. Configuring the Maven settings.xml file for the online repository

	1.3. CREATING A RED HAT BUILD OF QUARKUS PROJECT ON THE COMMAND LINE
	1.4. CREATING A RED HAT BUILD OF QUARKUS PROJECT BY CONFIGURING THE POM.XML FILE
	1.5. CREATING THE GETTING STARTED PROJECT BY USING CODE.QUARKUS.REDHAT.COM
	1.6. CONFIGURING THE JAVA COMPILER
	1.7. INSTALLING AND MANAGING EXTENSIONS
	1.8. IMPORTING YOUR PROJECT INTO AN IDE
	1.9. CONFIGURING THE RED HAT BUILD OF QUARKUS PROJECT OUTPUT
	1.10. TESTING YOUR RED HAT BUILD OF QUARKUS APPLICATION IN JVM MODE WITH A CUSTOM PROFILE
	1.11. LOGGING THE RED HAT BUILD OF QUARKUS APPLICATION BUILD CLASSPATH TREE
	1.12. PRODUCING A NATIVE EXECUTABLE
	1.12.1. Producing a native executable by using an in-container build
	1.12.2. Producing a native executable by using a local-host build
	1.12.3. Creating a container manually

	1.13. TESTING THE NATIVE EXECUTABLE
	1.14. USING RED HAT BUILD OF QUARKUS DEVELOPMENT MODE
	1.15. DEBUGGING YOUR RED HAT BUILD OF QUARKUS PROJECT
	1.16. ADDITIONAL RESOURCES

