
Red Hat build of Quarkus 3.2

Compiling your Red Hat build of Quarkus
applications to native executables

Last Updated: 2024-04-04

Red Hat build of Quarkus 3.2 Compiling your Red Hat build of Quarkus
applications to native executables

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide shows you how to compile the Red Hat build of Quarkus Getting Started project into a
native executable and how to configure and test the native executable.

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS TO NATIVE EXECUTABLES

1.1. PRODUCING A NATIVE EXECUTABLE
1.1.1. Producing a native executable by using an in-container build
1.1.2. Producing a native executable by using a local-host build

1.2. CREATING A CUSTOM CONTAINER IMAGE
1.2.1. Creating a container manually
1.2.2. Creating a container by using the OpenShift Docker build

1.3. NATIVE EXECUTABLE CONFIGURATION PROPERTIES
1.3.1. Configuring memory consumption for Red Hat build of Quarkus native compilation

1.4. TESTING THE NATIVE EXECUTABLE
1.4.1. Excluding tests when running as a native executable
1.4.2. Testing an existing native executable

1.5. ADDITIONAL RESOURCES

3

4
4
6
7
8
9

10
11

15
15
18
19
19

Table of Contents

1

Red Hat build of Quarkus 3.2 Compiling your Red Hat build of Quarkus applications to native executables

2

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

3

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. COMPILING YOUR RED HAT BUILD OF QUARKUS
APPLICATIONS TO NATIVE EXECUTABLES

As an application developer, you can use Red Hat build of Quarkus 3.2 to create microservices written in
Java that run on OpenShift Container Platform and serverless environments. Quarkus applications can
run as regular Java applications (on top of a Java Virtual Machine), or be compiled into native
executables. Applications compiled to native executables have a smaller memory footprint and faster
startup times than their Java counterpart.

This guide shows you how to compile the Red Hat build of Quarkus 3.2 Getting Started project into a
native executable and how to configure and test the native executable. You will need the application
that you created earlier in Getting started with Red Hat build of Quarkus .

Building a native executable with Red Hat build of Quarkus covers:

Building a native executable with a single command by using a container runtime such as
Podman or Docker

Creating a custom container image using the produced native executable

Creating a container image using the OpenShift Container Platform Docker build strategy

Deploying the Quarkus native application to OpenShift Container Platform

Configuring the native executable

Testing the native executable

Prerequisites

Have OpenJDK 17 installed and the JAVA_HOME environment variable set to specify the
location of the Java SDK.

Log in to the Red Hat Customer Portal to download Red Hat build of OpenJDK from the
Software Downloads page.

An Open Container Initiative (OCI) compatible container runtime, such as Podman or Docker.

A completed Quarkus Getting Started project.

To learn how to build the Quarkus Getting Started project, see Getting started with
Quarkus.

Alternatively, you can download the Quarkus quickstart archive or clone the Quarkus
Quickstarts Git repository. The sample project is in the getting-started directory.

1.1. PRODUCING A NATIVE EXECUTABLE

A native binary is an executable that is created to run on a specific operating system and CPU
architecture.

The following list outlines some examples of a native executable:

An ELF binary for Linux AMD 64 bits

Red Hat build of Quarkus 3.2 Compiling your Red Hat build of Quarkus applications to native executables

4

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=core.service.openjdk&downloadType=distributions
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/00b48021-40c0-40d8-95e6-64292948cf6f
https://github.com/quarkusio/quarkus-quickstarts/archive/3.2.11.Final.zip

An EXE binary for Windows AMD 64 bits

An ELF binary for ARM 64 bits

When you build a native executable, one advantage is that your application and dependencies, including
the JVM, are packaged into a single file. The native executable for your application contains the
following items:

The compiled application code.

The required Java libraries.

A reduced version of the Java virtual machine (JVM) for improved application startup times and
minimal disk and memory footprint, which is also tailored for the application code and its
dependencies.

To produce a native executable from your Quarkus application, you can select either an in-container
build or a local-host build. The following table explains the different building options that you can use:

Table 1.1. Building options for producing a native executable

Building option Requires Uses Results in Benefits

In-container build
- Supported

A container
runtime, for
example, Podman
or Docker

The default
registry.access.
redhat.com/qua
rkus/mandrel-
23-rhel8:23.0
builder image

A Linux 64-bit
executable using
the CPU
architecture of the
host

GraalVM does not
need to be set up
locally, which
makes your CI
pipelines run more
efficiently

Local-host build -
Only supported
upstream

A local installation
of GraalVM or
Mandrel

Its local installation
as a default for the
quarkus.native.
builder-image
property

An executable
that has the same
operating system
and CPU
architecture as the
machine on which
the build is
executed

An alternative for
developers that
are not allowed or
do not want to use
tools such as
Docker or
Podman. Overall, it
is faster than the
in-container build
approach.

IMPORTANT

CHAPTER 1. COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS TO NATIVE EXECUTABLES

5

https://www.redhat.com/en/topics/devops/what-cicd-pipeline

IMPORTANT

Red Hat build of Quarkus 3.2 only supports the building of native Linux
executables by using a Java 17-based Red Hat build of Quarkus Native builder
image, which is a productized distribution of Mandrel. While other images are
available in the community, they are not supported in the product, so you should
not use them for production builds that you want Red Hat to provide support for.

Applications whose source is written based on Java 11, with no Java 12 - 17
features used, can still compile a native executable of that application using the
Java 17-based Mandrel 23.0 base image.

Building native executables by using Oracle GraalVM Community Edition (CE),
Mandrel community edition, or any other distributions of GraalVM is not
supported for Red Hat build of Quarkus.

1.1.1. Producing a native executable by using an in-container build

To create a native executable and run the native image tests, use the native profile that is provided by
Red Hat build of Quarkus for an in-container build.

Prerequisites

Podman or Docker is installed.

The container has access to at least 8GB of memory.

Procedure

1. Open the Getting Started project pom.xml file, and verify that the project includes the native
profile:

2. Build a native executable by using one of the following ways:

Using Maven:

For Docker:

<profiles>
 <profile>
 <id>native</id>
 <activation>
 <property>
 <name>native</name>
 </property>
 </activation>
 <properties>
 <skipITs>false</skipITs>
 <quarkus.package.type>native</quarkus.package.type>
 </properties>
 </profile>
</profiles>

./mvnw package -Dnative -Dquarkus.native.container-build=true

Red Hat build of Quarkus 3.2 Compiling your Red Hat build of Quarkus applications to native executables

6

https://catalog.redhat.com/software/containers/search?q=Red Hat Build of Quarkus Native builder
https://github.com/graalvm/mandrel

For Podman:

Using the Quarkus CLI:

For Docker:

For Podman:

Step results

These commands create a *-runner binary in the target directory, where the following
applies:

The *-runner file is the built native binary produced by Quarkus.

The target directory is a directory that Maven creates when you build a Maven
application.

IMPORTANT

Compiling a Quarkus application to a native executable consumes a large
amount of memory during analysis and optimization. You can limit the
amount of memory used during native compilation by setting the
quarkus.native.native-image-xmx configuration property. Setting low
memory limits might increase the build time.

3. To run the native executable, enter the following command:

Additional resources

Native executable configuration properties

1.1.2. Producing a native executable by using a local-host build

If you are not using Docker or Podman, use the Quarkus local-host build option to create and run a
native executable.

Using the local-host build approach is faster than using containers and is suitable for machines that use
a Linux operating system.

IMPORTANT

./mvnw package -Dnative -Dquarkus.native.container-build=true -
Dquarkus.native.container-runtime=podman

quarkus build --native -Dquarkus.native.container-build=true

quarkus build --native -Dquarkus.native.container-build=true -
Dquarkus.native.container-runtime=podman

./target/*-runner

CHAPTER 1. COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS TO NATIVE EXECUTABLES

7

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/1fb66449-7cb8-4328-8bb6-f11921699056#ref_native-config-properties

IMPORTANT

Using the following procedure in production is not supported by Red Hat build of
Quarkus. Use this method only when testing or as a backup approach when Docker or
Podman is not available.

Prerequisites

A local installation of Mandrel or GraalVm, correctly configured according to the Building a
native executable guide.

Additionally, for a GraalVM installation, native-image must also be installed.

Procedure

1. For GraalVM or Mandrel, build a native executable by using one of the following ways:

Using Maven:

Using the Quarkus CLI:

Step results

These commands create a *-runner binary in the target directory, where the following
applies:

The *-runner file is the built native binary produced by Quarkus.

The target directory is a directory that Maven creates when you build a Maven
application.

NOTE

When you build the native executable, the prod profile is enabled unless
modified in the quarkus.profile property.

2. Run the native executable:

Additional resources

For more information, see the Producing a native executable section of the "Building a native
executable" guide in the Quarkus community.

1.2. CREATING A CUSTOM CONTAINER IMAGE

You can create a container image from your Quarkus application using one of the following methods:

Creating a container manually

./mvnw package -Dnative

quarkus build --native

./target/*-runner

Red Hat build of Quarkus 3.2 Compiling your Red Hat build of Quarkus applications to native executables

8

https://quarkus.io/version/3.2/guides/building-native-image
https://quarkus.io/version/3.2/guides/building-native-image#producing-a-native-executable

Creating a container by using the OpenShift Container Platform Docker build

IMPORTANT

Compiling a Quarkus application to a native executable consumes a large amount of
memory during analysis and optimization. You can limit the amount of memory used
during native compilation by setting the quarkus.native.native-image-xmx
configuration property. Setting low memory limits might increase the build time.

1.2.1. Creating a container manually

This section shows you how to manually create a container image with your application for Linux AMD64.
When you produce a native image by using the Quarkus Native container, the native image creates an
executable that targets Linux AMD64. If your host operating system is different from Linux AMD64, you
cannot run the binary directly and you need to create a container manually.

Your Quarkus Getting Started project includes a Dockerfile.native in the src/main/docker directory
with the following content:

NOTE

Universal Base Image (UBI)

The following list displays the suitable images for use with Dockerfiles.

Red Hat Universal Base Image 8 (UBI8). This base image is designed and
engineered to be the base layer for all of your containerized applications,
middleware, and utilities.

registry.access.redhat.com/ubi8/ubi:8.8

Red Hat Universal Base Image 8 Minimal (UBI8-minimal). A stripped-down UBI8
image that uses microdnf as a package manager.

registry.access.redhat.com/ubi8/ubi-minimal:8.8

All Red Hat Base images are available on the Container images catalog site.

Procedure

1. Build a native Linux executable by using one of the following methods:

Docker:

FROM registry.access.redhat.com/ubi8/ubi-minimal:8.8
WORKDIR /work/
RUN chown 1001 /work \
 && chmod "g+rwX" /work \
 && chown 1001:root /work
COPY --chown=1001:root target/*-runner /work/application

EXPOSE 8080
USER 1001

ENTRYPOINT ["./application", "-Dquarkus.http.host=0.0.0.0"]

CHAPTER 1. COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS TO NATIVE EXECUTABLES

9

https://github.com/rpm-software-management/microdnf
https://catalog.redhat.com/software/containers/search?q=UBI&p=1

Docker:

Podman:

2. Build the container image by using one of the following methods:

Docker:

Podman

3. Run the container by using one of the following methods:

Docker:

Podman:

1.2.2. Creating a container by using the OpenShift Docker build

You can create a container image for your Quarkus application by using the OpenShift Container
Platform Docker build strategy. This strategy creates a container image by using a build configuration in
the cluster.

Prerequisites

You have access to an OpenShift Container Platform cluster and the latest version of the oc
tool installed. For information about installing oc, see Installing the CLI in the Installing and
configuring OpenShift Container Platform clusters guide.

A URL for the OpenShift Container Platform API endpoint.

Procedure

1. Log in to the OpenShift CLI:

2. Create a new project in OpenShift:

./mvnw package -Dnative -Dquarkus.native.container-build=true

./mvnw package -Dnative -Dquarkus.native.container-build=true -
Dquarkus.native.container-runtime=podman

docker build -f src/main/docker/Dockerfile.native -t quarkus-quickstart/getting-started .

podman build -f src/main/docker/Dockerfile.native -t quarkus-quickstart/getting-started .

docker run -i --rm -p 8080:8080 quarkus-quickstart/getting-started

podman run -i --rm -p 8080:8080 quarkus-quickstart/getting-started

oc login -u <username_url>

oc new-project <project_name>

Red Hat build of Quarkus 3.2 Compiling your Red Hat build of Quarkus applications to native executables

10

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/installing/index

3. Create a build config based on the src/main/docker/Dockerfile.native file:

4. Build the project:

5. Deploy the project to OpenShift Container Platform:

6. Expose the services:

1.3. NATIVE EXECUTABLE CONFIGURATION PROPERTIES

Configuration properties define how the native executable is generated. You can configure your
Quarkus application using the application.properties file.

Configuration properties

The following table lists the configuration properties that you can set to define how the native
executable is generated:

Property Description Type Default

quarkus.native.debug.enabled If debug is enabled and debug
symbols are generated, the symbols
are generated in a separate .debug
file.

boolea
n

false

quarkus.native.resources.excl
udes

A comma-separated list of globs to
match resource paths that should
not be added to the native image.

list of
strings

quarkus.native.additional-
build-args

Additional arguments to pass to the
build process.

list of
strings

quarkus.native.enable-http-url-
handler

Enables HTTP URL handler. This
allows you to do
URL.openConnection() for
HTTP URLs.

boolea
n

true

quarkus.native.enable-https-
url-handler

Enables HTTPS URL handler. This
allows you to do
URL.openConnection() for
HTTPS URLs.

boolea
n

false

cat src/main/docker/Dockerfile.native | oc new-build --name <build_name> --strategy=docker
--dockerfile -

oc start-build <build_name> --from-dir .

oc new-app <build_name>

oc expose svc/<build_name>

CHAPTER 1. COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS TO NATIVE EXECUTABLES

11

quarkus.native.enable-all-
security-services

Adds all security services to the
native image.

boolea
n

false

quarkus.native.add-all-
charsets

Adds all character sets to the native
image. This increases the image
size.

boolea
n

false

quarkus.native.graalvm-home Contains the path of the GraalVM
distribution.

string ${GRAALVM_H
OME:}

quarkus.native.java-home Contains the path of the JDK. File ${java.home}

quarkus.native.native-image-
xmx

The maximum Java heap used to
generate the native image.

string

quarkus.native.debug-build-
process

Waits for a debugger to attach to
the build process before running the
native image build. This is an
advanced option for those familiar
with GraalVM internals.

boolea
n

false

quarkus.native.publish-debug-
build-process-port

Publishes the debug port when
building with docker if debug-
build-process is true.

boolea
n

true

quarkus.native.cleanup-server Restarts the native image server. boolea
n

false

quarkus.native.enable-isolates Enables isolates to improve memory
management.

boolea
n

true

quarkus.native.enable-
fallback-images

Creates a JVM-based fallback
image if the native image fails.

boolea
n

false

quarkus.native.enable-server Uses the native image server. This
can speed up compilation but can
result in lost changes due to cache
invalidation issues.

boolea
n

false

quarkus.native.auto-service-
loader-registration

Automatically registers all META-
INF/services entries.

boolea
n

false

quarkus.native.dump-proxies Dumps the bytecode of all proxies
for inspection.

boolea
n

false

quarkus.native.container-build Builds that use a container runtime.
Docker is used by default.

boolea
n

false

Red Hat build of Quarkus 3.2 Compiling your Red Hat build of Quarkus applications to native executables

12

https://docs.oracle.com/javase/8/docs/api/java/io/File.html

quarkus.native.builder-image The docker image to build the
image.

string registry.access.
redhat.com/qua
rkus/mandrel-
23-rhel8:23.0

quarkus.native.container-
runtime

The container runtime used to build
the image. For example, Docker.

string

quarkus.native.container-
runtime-options

Options to pass to the container
runtime.

list of
strings

quarkus.native.enable-vm-
inspection

Enables VM introspection in the
image.

boolea
n

false

quarkus.native.full-stack-
traces

Enables full stack traces in the
image.

boolea
n

true

quarkus.native.enable-reports Generates reports on call paths and
included packages, classes, or
methods.

boolea
n

false

quarkus.native.report-
exception-stack-traces

Reports exceptions with a full stack
trace.

boolea
n

true

quarkus.native.report-errors-
at-runtime

Reports errors at runtime. This
might cause your application to fail
at runtime if you use unsupported
features.

boolea
n

false

CHAPTER 1. COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS TO NATIVE EXECUTABLES

13

quarkus.native.resources.incl
udes

A comma-separated list of globs to
match resource paths that should
be added to the native image. Use a
slash (/) character as a path
separator on all platforms. Globs
must not start with a slash. For
example, if you have
src/main/resources/ignored.pn
g and
src/main/resources/foo/selecte
d.png in your source tree and one
of your dependency JARs contains
a bar/some.txt file, with
quarkus.native.resources.incl
udes set to foo/,bar//*.txt, the
files
src/main/resources/foo/selecte
d.png and bar/some.txt will be
included in the native image, while
src/main/resources/ignored.pn
g will not be included. For more
information, see the following table,
which lists the supported glob
features.

list of
strings

quarkus.native.debug.enabled Enables debugging and generates
debug symbols in a separate
.debug file. When used with
quarkus.native.container-
build, Red Hat build of Quarkus
only supports Red Hat Enterprise
Linux or other Linux distributions as
they contain the binutils package
that installs the objcopy utility that
splits the debug info from the
native image.

boolea
n

false

Supported glob features

The following table lists the supported glob features and descriptions:

Character Feature description

* Matches a possibly-empty sequence of characters that does not contain slash (/).

** Matches a possibly-empty sequence of characters that might contain slash (/).

? Matches one character, but not slash.

[abc] Matches one character specified in the bracket, but not slash.

Red Hat build of Quarkus 3.2 Compiling your Red Hat build of Quarkus applications to native executables

14

[a-z] Matches one character from the range specified in the bracket, but not slash.

[!abc] Matches one character not specified in the bracket; does not match slash.

[!a-z] Matches one character outside the range specified in the bracket; does not match slash.

{one,two,three} Matches any of the alternating tokens separated by commas; the tokens can contain
wildcards, nested alternations, and ranges.

\ The escape character. There are three levels of escaping: application.properties
parser, MicroProfile Config list converter, and Glob parser. All three levels use the
backslash as the escape character.

Additional resources

Configuring your Red Hat build of Quarkus applications

1.3.1. Configuring memory consumption for Red Hat build of Quarkus native
compilation

Compiling a Red Hat build of Quarkus application to a native executable consumes a large amount of
memory during analysis and optimization. You can limit the amount of memory used during native
compilation by setting the quarkus.native.native-image-xmx configuration property. Setting low
memory limits might increase the build time.

Procedure

Use one of the following methods to set a value for the quarkus.native.native-image-xmx
property to limit the memory consumption during the native image build time:

Using the application.properties file:

Setting system properties:

This command builds the native executable with Docker. To use Podman, add the -
Dquarkus.native.container-runtime=podman argument.

NOTE

For example, to set the memory limit to 6 GB, enter quarkus.native.native-image-
xmx=6g. The value must be a multiple of 1024 and greater than 2MB. Append the letter
m or M to indicate megabytes, or g or G to indicate gigabytes.

1.4. TESTING THE NATIVE EXECUTABLE

quarkus.native.native-image-xmx=<maximum_memory>

mvn package -Dnative -Dquarkus.native.container-build=true -Dquarkus.native.native-
image-xmx=<maximum_memory>

CHAPTER 1. COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS TO NATIVE EXECUTABLES

15

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/a1d0cda2-f94d-49f1-92d6-a6b252fc9915

Test the application in native mode to test the functionality of the native executable. Use the
@QuarkusIntegrationTest annotation to build the native executable and run tests against the HTTP
endpoints.

IMPORTANT

The following example shows how to test a native executable with a local installation of
GraalVM or Mandrel. Before you begin, consider the following points:

This scenario is not supported by Red Hat build of Quarkus, as outlined in
Producing a native executable.

The native executable you are testing with here must match the operating
system and architecture of the host. Therefore, this procedure will not work on a
macOS or an in-container build.

Procedure

1. Open the pom.xml file and verify that the build section has the following elements:

The Maven Failsafe plugin (maven-failsafe-plugin) runs the integration test and indicates
the location of the native executable that is generated.

2. Open the src/test/java/org/acme/GreetingResourceIT.java file and verify that it includes the
following content:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>${surefire-plugin.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 <configuration>
 <systemPropertyVariables>
 <native.image.path>${project.build.directory}/${project.build.finalName}-
runner</native.image.path>

<java.util.logging.manager>org.jboss.logmanager.LogManager</java.util.logging.manager>
 <maven.home>${maven.home}</maven.home>
 </systemPropertyVariables>
 </configuration>
 </execution>
 </executions>
</plugin>

package org.acme;

import io.quarkus.test.junit.QuarkusIntegrationTest;

@QuarkusIntegrationTest 1
public class GreetingResourceIT extends GreetingResourceTest { 2

Red Hat build of Quarkus 3.2 Compiling your Red Hat build of Quarkus applications to native executables

16

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/6cc71cfa-5659-4681-84f2-2e2f79e76d9a#proc_producing-native-executable

1

2

Use another test runner that starts the application from the native file before the tests.
The executable is retrieved by using the native.image.path system property configured in
the Maven Failsafe plugin.

This example extends the GreetingResourceTest, but you can also create a new test.

3. Run the test:

The following example shows the output of this command:

 // Execute the same tests but in native mode.
}

./mvnw verify -Dnative

./mvnw verify -Dnative

....

GraalVM Native Image: Generating 'getting-started-1.0.0-SNAPSHOT-runner' (executable)...
===
===
[1/8] Initializing... (6.6s @ 0.22GB)
 Java version: 17.0.7+7, vendor version: Mandrel-23.0.0.0-Final
 Graal compiler: optimization level: 2, target machine: x86-64-v3
 C compiler: gcc (redhat, x86_64, 13.2.1)
 Garbage collector: Serial GC (max heap size: 80% of RAM)
 2 user-specific feature(s)
 - io.quarkus.runner.Feature: Auto-generated class by Red Hat build of Quarkus from the
existing extensions
 - io.quarkus.runtime.graal.DisableLoggingFeature: Disables INFO logging during the
analysis phase
[2/8] Performing analysis... [******] (40.0s @
2.05GB)
 10,318 (86.40%) of 11,942 types reachable
 15,064 (57.36%) of 26,260 fields reachable
 52,128 (55.75%) of 93,501 methods reachable
 3,298 types, 109 fields, and 2,698 methods registered for reflection
 63 types, 68 fields, and 55 methods registered for JNI access
 4 native libraries: dl, pthread, rt, z
[3/8] Building universe... (5.9s @ 1.31GB)
[4/8] Parsing methods... [**] (3.7s @ 2.08GB)
[5/8] Inlining methods... [***] (2.0s @ 1.92GB)
[6/8] Compiling methods... [******] (34.4s @
3.25GB)
[7/8] Layouting methods... [[7/8] Layouting methods... [**]
(4.1s @ 1.78GB)
[8/8] Creating image... [**] (4.5s @ 2.31GB)
 20.93MB (48.43%) for code area: 33,233 compilation units
 21.95MB (50.80%) for image heap: 285,664 objects and 8 resources
 337.06kB (0.76%) for other data
 43.20MB in total

....

CHAPTER 1. COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS TO NATIVE EXECUTABLES

17

NOTE

Quarkus waits 60 seconds for the native image to start before automatically
failing the native tests. You can change this duration by configuring the
quarkus.test.wait-time system property.

You can extend the wait time by using the following command where <duration>
is the wait time in seconds:

./mvnw verify -Dnative -Dquarkus.test.wait-time=<duration>

NOTE

Native tests run using the prod profile by default unless modified in the
quarkus.test.native-image-profile property.

1.4.1. Excluding tests when running as a native executable

When you run tests against your native executable, you can only run black-box testing, for example,
interacting with the HTTP endpoints of your application.

NOTE

[INFO]
[INFO] --- maven-failsafe-plugin:3.0.0-M7:integration-test (default) @ getting-started ---
[INFO] Using auto detected provider
org.apache.maven.surefire.junitplatform.JUnitPlatformProvider
[INFO]
[INFO] ---
[INFO] T E S T S
[INFO] ---
[INFO] Running org.acme.GreetingResourceIT
__ ____ __ _____ ___ __ ____ ______
 --/ __ \/ / / / _ | / _ \/ //_/ / / / __/
 -/ /_/ / /_/ / __ |/ , _/ ,< / /_/ /\ \
--________/_/ |_/_/|_/_/|_|____/___/
2023-08-28 14:04:52,681 INFO [io.quarkus] (main) getting-started 1.0.0-SNAPSHOT native
(powered by Red Hat build of Quarkus 3.2.9.Final) started in 0.038s. Listening on:
http://0.0.0.0:8081
2023-08-28 14:04:52,682 INFO [io.quarkus] (main) Profile prod activated.
2023-08-28 14:04:52,682 INFO [io.quarkus] (main) Installed features: [cdi, resteasy-reactive,
smallrye-context-propagation, vertx]
[INFO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 4.696 s - in
org.acme.GreetingResourceIT
[INFO]
[INFO] Results:
[INFO]
[INFO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0
[INFO]
[INFO]
[INFO] --- maven-failsafe-plugin:3.0.0-M7:verify (default) @ getting-started ---

Red Hat build of Quarkus 3.2 Compiling your Red Hat build of Quarkus applications to native executables

18

NOTE

Black box refers to the hidden internal workings of a product or program, such as in black-
box testing.

Because tests do not run natively, you cannot link against your application’s code like you do when
running tests on the JVM. Therefore, in your native tests, you cannot inject beans.

You can share your test class between your JVM and native executions and exclude certain tests using
the @DisabledOnNativeImage annotation to run tests only on the JVM.

1.4.2. Testing an existing native executable

By using the Failsafe Maven plugin, you can test against the existing executable build. You can run
multiple sets of tests in stages on the binary after it is built.

NOTE

To test the native executable that you produced with Quarkus, use the available Maven
commands. There are no equivalent Quarkus CLI commands to complete this task by
using the command line.

Procedure

Run a test against a native executable that is already built:

This command runs the test against the existing native image by using the Failsafe Maven
plugin.

Alternatively, you can specify the path to the native executable with the following command
where <path> is the native image path:

1.5. ADDITIONAL RESOURCES

Deploying your Red Hat build of Quarkus applications to OpenShift Container Platform

Developing and compiling your Red Hat build of Quarkus applications with Apache Maven

Quarkus community: Building a native executable

Apache Maven Project

The UBI Image Page

The UBI-minimal Image Page

The List of UBI-minimal Tags

Revised on 2024-04-04 11:41:47 UTC

./mvnw test-compile failsafe:integration-test

./mvnw test-compile failsafe:integration-test -Dnative.image.path=<path>

CHAPTER 1. COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS TO NATIVE EXECUTABLES

19

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/85e494b4-4e47-4831-8294-212c4c838c7b
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/3.2/guide/1fb66449-7cb8-4328-8bb6-f11921699056
https://quarkus.io/version/3.2/guides/building-native-image
https://maven.apache.org/
https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/ubi8/ubi
https://access.redhat.com/containers/#/registry.access.redhat.com/ubi8/ubi-minimal
https://access.redhat.com/containers/?tab=tags#/registry.access.redhat.com/ubi8/ubi-minimal

Red Hat build of Quarkus 3.2 Compiling your Red Hat build of Quarkus applications to native executables

20

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. COMPILING YOUR RED HAT BUILD OF QUARKUS APPLICATIONS TO NATIVE EXECUTABLES
	1.1. PRODUCING A NATIVE EXECUTABLE
	1.1.1. Producing a native executable by using an in-container build
	1.1.2. Producing a native executable by using a local-host build

	1.2. CREATING A CUSTOM CONTAINER IMAGE
	1.2.1. Creating a container manually
	1.2.2. Creating a container by using the OpenShift Docker build

	1.3. NATIVE EXECUTABLE CONFIGURATION PROPERTIES
	1.3.1. Configuring memory consumption for Red Hat build of Quarkus native compilation

	1.4. TESTING THE NATIVE EXECUTABLE
	1.4.1. Excluding tests when running as a native executable
	1.4.2. Testing an existing native executable

	1.5. ADDITIONAL RESOURCES

