
Red Hat build of MicroShift 4.15

Networking

Configuring and managing cluster networking

Last Updated: 2024-04-08

Red Hat build of MicroShift 4.15 Networking

Configuring and managing cluster networking

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and managing your MicroShift cluster network,
including DNS, ingress, and the Pod network.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN
1.1. MICROSHIFT NETWORKING CUSTOMIZATION MATRIX

1.1.1. Default settings
1.2. NETWORK FEATURES
1.3. IP FORWARD
1.4. NETWORK PERFORMANCE OPTIMIZATIONS
1.5. MICROSHIFT NETWORKING COMPONENTS AND SERVICES
1.6. BRIDGE MAPPINGS
1.7. NETWORK TOPOLOGY

1.7.1. Description of the OVN logical components of the virtualized network
1.7.2. Description of the connections in the network topology figure

CHAPTER 2. UNDERSTANDING NETWORKING SETTINGS
2.1. CREATING AN OVN-KUBERNETES CONFIGURATION FILE
2.2. RESTARTING THE OVNKUBE-MASTER POD
2.3. DEPLOYING MICROSHIFT BEHIND AN HTTP OR HTTPS PROXY
2.4. USING THE RPM-OSTREE HTTP OR HTTPS PROXY
2.5. USING A PROXY IN THE CRI-O CONTAINER RUNTIME
2.6. GETTING A SNAPSHOT OF OVS INTERFACES FROM A RUNNING CLUSTER
2.7. DEPLOYING A LOAD BALANCER FOR A WORKLOAD
2.8. BLOCKING EXTERNAL ACCESS TO THE NODEPORT SERVICE ON A SPECIFIC HOST INTERFACE
2.9. THE MULTICAST DNS PROTOCOL
2.10. AUDITING EXPOSED NETWORK PORTS

2.10.1. hostNetwork
2.10.2. hostPort
2.10.3. NodePort and LoadBalancer service

CHAPTER 3. NETWORK POLICIES
3.1. ABOUT NETWORK POLICIES

3.1.1. How network policy works in MicroShift
3.1.2. Optimizations for network policy with OVN-Kubernetes network plugin

3.2. CREATING NETWORK POLICIES
3.2.1. Example NetworkPolicy object
3.2.2. Creating a network policy using the CLI
3.2.3. Creating a default deny all network policy
3.2.4. Creating a network policy to allow traffic from external clients
3.2.5. Creating a network policy allowing traffic to an application from all namespaces
3.2.6. Creating a network policy allowing traffic to an application from a namespace

3.3. EDITING A NETWORK POLICY
3.3.1. Editing a network policy
3.3.2. Example NetworkPolicy object

3.4. DELETING A NETWORK POLICY
3.4.1. Deleting a network policy using the CLI

3.5. VIEWING A NETWORK POLICY
3.5.1. Viewing network policies using the CLI

CHAPTER 4. USING A FIREWALL
4.1. ABOUT NETWORK TRAFFIC THROUGH THE FIREWALL
4.2. INSTALLING THE FIREWALLD SERVICE
4.3. REQUIRED FIREWALL SETTINGS
4.4. USING OPTIONAL PORT SETTINGS
4.5. ADDING SERVICES TO OPEN PORTS

4
4
5
6
7
7
7
8
8
9

10

11
11

12
12
13
13
14
15
18
19
19
19

20
20

22
22
22
24
26
26
27
28
29
30
32
34
34
35
36
36
36
37

38
38
38
39
39
40

Table of Contents

1

. .

4.6. ALLOWING NETWORK TRAFFIC THROUGH THE FIREWALL
4.6.1. Applying firewall settings

4.7. VERIFYING FIREWALL SETTINGS
4.8. OVERVIEW OF FIREWALL PORTS WHEN A SERVICE IS EXPOSED
4.9. ADDITIONAL RESOURCES
4.10. KNOWN FIREWALL ISSUE

CHAPTER 5. CONFIGURING NETWORK SETTINGS FOR FULLY DISCONNECTED HOSTS
5.1. PREPARING NETWORKING FOR FULLY DISCONNECTED HOSTS

5.1.1. Procedure summary
5.2. RESTORING MICROSHIFT NETWORKING SETTINGS TO DEFAULT
5.3. CONFIGURING THE NETWORKING SETTINGS FOR FULLY DISCONNECTED HOSTS

41
41
41

42
42
42

43
43
43
44
44

Red Hat build of MicroShift 4.15 Networking

2

Table of Contents

3

CHAPTER 1. ABOUT THE OVN-KUBERNETES NETWORK
PLUGIN

The OVN-Kubernetes Container Network Interface (CNI) plugin is the default networking solution for
MicroShift clusters. OVN-Kubernetes is a virtualized network for pods and services that is based on
Open Virtual Network (OVN).

Default network configuration and connections are applied automatically in MicroShift with the
microshift-networking RPM during installation.

A cluster that uses the OVN-Kubernetes network plugin also runs Open vSwitch (OVS) on the
node.

OVN-K configures OVS on the node to implement the declared network configuration.

Host physical interfaces are not bound by default to the OVN-K gateway bridge, br-ex. You can
use standard tools on the host for managing the default gateway, such as the Network Manager
CLI (nmcli).

Changing the CNI is not supported on MicroShift.

Using configuration files or custom scripts, you can configure the following networking settings:

You can use subnet CIDR ranges to allocate IP addresses to pods.

You can change the maximum transmission unit (MTU) value.

You can configure firewall ingress and egress.

You can define network policies in the MicroShift cluster, including ingress and egress rules.

1.1. MICROSHIFT NETWORKING CUSTOMIZATION MATRIX

The following table summarizes the status of networking features and capabilities that are either
present as defaults, supported for configuration, or not available with the MicroShift service:

Table 1.1. MicroShift networking capabilities and customization status

Network feature Availability Customization supported

Advertise address Yes Yes [1]

Kubernetes network policy Yes Yes

Kubernetes network policy logs Not available N/A

Load balancing Yes Yes

Multicast DNS Yes Yes [2]

Network proxies Yes [3] CRI-O

Red Hat build of MicroShift 4.15 Networking

4

Network performance Yes MTU configuration

Egress IPs Not available N/A

Egress firewall Not available N/A

Egress router Not available N/A

Firewall No [4] Yes

Hardware offloading Not available N/A

Hybrid networking Not available N/A

IPsec encryption for intra-cluster communication Not available N/A

IPv6 Not available [5] N/A

Network feature Availability Customization supported

1. If unset, the default value is set to the next immediate subnet after the service network. For
example, when the service network is 10.43.0.0/16, the advertiseAddress is set to 10.44.0.0/32.

2. You can use the multicast DNS protocol (mDNS) to allow name resolution and service discovery
within a Local Area Network (LAN) using multicast exposed on the 5353/UDP port.

3. There is no built-in transparent proxying of egress traffic in MicroShift. Egress must be manually
configured.

4. Setting up the firewalld service is supported by RHEL for Edge.

5. IPv6 is not available in any configuration.

1.1.1. Default settings

If you do not create a config.yaml file, default values are used. The following example shows the default
configuration settings.

To see the default values, run the following command:

Default values example output in YAML form

$ microshift show-config

dns:
 baseDomain: microshift.example.com 1
network:
 clusterNetwork:
 - 10.42.0.0/16 2
 serviceNetwork:

CHAPTER 1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN

5

1

2

3

4

5

6

7

8

9

Base domain of the cluster. All managed DNS records will be subdomains of this base.

A block of IP addresses from which Pod IP addresses are allocated.

A block of virtual IP addresses for Kubernetes services.

The port range allowed for Kubernetes services of type NodePort.

The name of the node. The default value is the hostname.

The IP address of the node. The default value is the IP address of the default route.

A string that specifies the IP address from which the API server is advertised to members
of the cluster. The default value is calculated based on the address of the service network.

Subject Alternative Names for API server certificates.

Log verbosity. Valid values for this field are Normal, Debug, Trace, or TraceAll.

1.2. NETWORK FEATURES

Networking features available with MicroShift 4.15 include:

Kubernetes network policy

Dynamic node IP

Custom gateway interface

Second gateway interface

Cluster network on specified host interface

Blocking external access to NodePort service on specific host interfaces

Networking features not available with MicroShift 4.15:

Egress IP/firewall/QoS: disabled

Hybrid networking: not supported

IPsec: not supported

Hardware offload: not supported

 - 10.43.0.0/16 3
 serviceNodePortRange: 30000-32767 4
node:
 hostnameOverride: "" 5
 nodeIP: "" 6
apiServer:
 advertiseAddress: 10.44.0.0/32 7
 subjectAltNames: [] 8
debugging:
 logLevel: "Normal" 9

Red Hat build of MicroShift 4.15 Networking

6

Additional resources

Using a YAML configuration file

Understanding networking settings

1.3. IP FORWARD

The host network sysctl net.ipv4.ip_forward kernel parameter is automatically enabled by the
ovnkube-master container when started. This is required to forward incoming traffic to the CNI. For
example, accessing the NodePort service from outside of a cluster fails if ip_forward is disabled.

1.4. NETWORK PERFORMANCE OPTIMIZATIONS

By default, three performance optimizations are applied to OVS services to minimize resource
consumption:

CPU affinity to ovs-vswitchd.service and ovsdb-server.service

no-mlockall to openvswitch.service

Limit handler and revalidator threads to ovs-vswitchd.service

1.5. MICROSHIFT NETWORKING COMPONENTS AND SERVICES

This brief overview describes networking components and their operation in MicroShift. The microshift-
networking RPM is a package that automatically pulls in any networking-related dependencies and
systemd services to initialize networking, for example, the microshift-ovs-init systemd service.

NetworkManager

NetworkManager is required to set up the initial gateway bridge on the MicroShift node. The
NetworkManager and NetworkManager-ovs RPM packages are installed as dependencies to the
microshift-networking RPM package, which contains the necessary configuration files.
NetworkManager in MicroShift uses the keyfile plugin and is restarted after installation of the
microshift-networking RPM package.

microshift-ovs-init

The microshift-ovs-init.service is installed by the microshift-networking RPM package as a
dependent systemd service to microshift.service. It is responsible for setting up the OVS gateway
bridge.

OVN containers

Two OVN-Kubernetes daemon sets are rendered and applied by MicroShift.

ovnkube-master Includes the northd, nbdb, sbdb and ovnkube-master containers.

ovnkube-node The ovnkube-node includes the OVN-Controller container.
After MicroShift starts, the OVN-Kubernetes daemon sets are deployed in the openshift-
ovn-kubernetes namespace.

Packaging

OVN-Kubernetes manifests and startup logic are built into MicroShift. The systemd services and
configurations included in the microshift-networking RPM are:

/etc/NetworkManager/conf.d/microshift-nm.conf for NetworkManager.service

CHAPTER 1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN

7

https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/configuring/#microshift-using-config-tools_microshift-config-yaml

/etc/systemd/system/ovs-vswitchd.service.d/microshift-cpuaffinity.conf for ovs-
vswitchd.service

/etc/systemd/system/ovsdb-server.service.d/microshift-cpuaffinity.conf for ovs-
server.service

/usr/bin/configure-ovs-microshift.sh for microshift-ovs-init.service

/usr/bin/configure-ovs.sh for microshift-ovs-init.service

/etc/crio/crio.conf.d/microshift-ovn.conf for the CRI-O service

1.6. BRIDGE MAPPINGS

Bridge mappings allow provider network traffic to reach the physical network. Traffic leaves the
provider network and arrives at the br-int bridge. A patch port between br-int and br-ex then allows the
traffic to traverse to and from the provider network and the edge network. Kubernetes pods are
connected to the br-int bridge through virtual ethernet pair: one end of the virtual ethernet pair is
attached to the pod namespace, and the other end is attached to the br-int bridge.

1.7. NETWORK TOPOLOGY

OVN-Kubernetes provides an overlay-based networking implementation. This overlay includes an OVS-
based implementation of Service and NetworkPolicy. The overlay network uses the Geneve (Generic
Network Virtualization Encapsulation) tunnel protocol. The pod maximum transmission unit (MTU) for
the Geneve tunnel is set to the default route MTU if it is not configured.

To configure the MTU, you must set an equal-to or less-than value than the MTU of the physical
interface on the host. A less-than value for the MTU makes room for the required information that is
added to the tunnel header before it is transmitted.

OVS runs as a systemd service on the MicroShift node. The OVS RPM package is installed as a
dependency to the microshift-networking RPM package. OVS is started immediately when the
microshift-networking RPM is installed.

Red Hat build of MicroShift network topology

Red Hat build of MicroShift 4.15 Networking

8

1.7.1. Description of the OVN logical components of the virtualized network

OVN node switch

A virtual switch named <node-name>. The OVN node switch is named according to the hostname of
the node.

In this example, the node-name is microshift-dev.

OVN cluster router

A virtual router named ovn_cluster_router, also known as the distributed router.

In this example, the cluster network is 10.42.0.0/16.

OVN join switch

A virtual switch named join.

CHAPTER 1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN

9

OVN gateway router

A virtual router named GR_<node-name>, also known as the external gateway router.

OVN external switch

A virtual switch named ext_<node-name>.

1.7.2. Description of the connections in the network topology figure

The north-south traffic between the network service and the OVN external switch
ext_microshift-dev is provided through the host kernel by the gateway bridge br-ex.

The OVN gateway router GR_microshift-dev is connected to the external network switch
ext_microshift-dev through the logical router port 4. Port 4 is attached with the node IP
address 192.168.122.14.

The join switch join connects the OVN gateway router GR_microshift-dev to the OVN cluster
router ovn_cluster_router. The IP address range is 100.62.0.0/16.

The OVN gateway router GR_microshift-dev connects to the OVN join switch join through
the logical router port 3. Port 3 attaches with the internal IP address 100.64.0.2.

The OVN cluster router ovn_cluster_router connects to the join switch join through the
logical router port 2. Port 2 attaches with the internal IP address 100.64.0.1.

The OVN cluster router ovn_cluster_router connects to the node switch microshift-dev
through the logical router port 1. Port 1 is attached with the OVN cluster network IP address
10.42.0.1.

The east-west traffic between the pods and the network service is provided by the OVN cluster
router ovn_cluster_router and the node switch microshift-dev. The IP address range is
10.42.0.0/24.

The east-west traffic between pods is provided by the node switch microshift-dev without
network address translation (NAT).

The north-south traffic between the pods and the external network is provided by the OVN
cluster router ovn_cluster_router and the host network. This router is connected through the
ovn-kubernetes management port ovn-k8s-mp0, with the IP address 10.42.0.2.

All the pods are connected to the OVN node switch through their interfaces.

In this example, Pod 1 and Pod 2 are connected to the node switch through Interface 1 and
Interface 2.

Red Hat build of MicroShift 4.15 Networking

10

CHAPTER 2. UNDERSTANDING NETWORKING SETTINGS
Learn how to apply networking customization and default settings to MicroShift deployments. Each
node is contained to a single machine and single MicroShift, so each deployment requires individual
configuration, pods, and settings.

Cluster Administrators have several options for exposing applications that run inside a cluster to
external traffic and securing network connections:

A service such as NodePort

API resources, such as Ingress and Route

By default, Kubernetes allocates each pod an internal IP address for applications running within the pod.
Pods and their containers can have traffic between them, but clients outside the cluster do not have
direct network access to pods except when exposed with a service such as NodePort.

NOTE

To troubleshoot connection problems with the NodePort service, read about the known
issue in the Release Notes.

2.1. CREATING AN OVN-KUBERNETES CONFIGURATION FILE

MicroShift uses built-in default OVN-Kubernetes values if an OVN-Kubernetes configuration file is not
created. You can write an OVN-Kubernetes configuration file to /etc/microshift/ovn.yaml. An example
file is provided for your configuration.

Procedure

1. To create your ovn.yaml file, run the following command:

2. To list the contents of the configuration file you created, run the following command:

Example YAML file with default maximum transmission unit (MTU) value

3. To customize your configuration, you can change the MTU value. The table that follows
provides details:

Table 2.1. Supported optional OVN-Kubernetes configurations for MicroShift

Field Type Default Description Example

mtu uint32 auto MTU value used
for the pods

1300

IMPORTANT

$ sudo cp /etc/microshift/ovn.yaml.default /etc/microshift/ovn.yaml

$ cat /etc/microshift/ovn.yaml

mtu: 1400

CHAPTER 2. UNDERSTANDING NETWORKING SETTINGS

11

IMPORTANT

If you change the mtu configuration value in the ovn.yaml file, you must restart
the host that Red Hat build of MicroShift is running on to apply the updated
setting.

Example custom ovn.yaml configuration file

2.2. RESTARTING THE OVNKUBE-MASTER POD

The following procedure restarts the ovnkube-master pod.

Prerequisites

The OpenShift CLI (oc) is installed.

Access to the cluster as a user with the cluster-admin role.

A cluster installed on infrastructure configured with the OVN-Kubernetes network plugin.

The KUBECONFIG environment variable is set.

Procedure

Use the following steps to restart the ovnkube-master pod.

1. Access the remote cluster by running the following command:

2. Find the name of the ovnkube-master pod that you want to restart by running the following
command:

3. Delete the ovnkube-master pod by running the following command:

4. Confirm that a new ovnkube-master pod is running by using the following command:

The listing of the running pods shows a new ovnkube-master pod name and age.

2.3. DEPLOYING MICROSHIFT BEHIND AN HTTP OR HTTPS PROXY

Deploy a MicroShift cluster behind an HTTP or HTTPS proxy when you want to add basic anonymity and
security measures to your pods.

You must configure the host operating system to use the proxy service with all components initiating

mtu: 1300

$ export KUBECONFIG=$PWD/kubeconfig

$ pod=$(oc get pods -n openshift-ovn-kubernetes | awk -F " " '/ovnkube-master/{print $1}')

$ oc -n openshift-ovn-kubernetes delete pod $pod

$ oc get pods -n openshift-ovn-kubernetes

Red Hat build of MicroShift 4.15 Networking

12

You must configure the host operating system to use the proxy service with all components initiating
HTTP or HTTPS requests when deploying MicroShift behind a proxy.

All the user-specific workloads or pods with egress traffic, such as accessing cloud services, must be
configured to use the proxy. There is no built-in transparent proxying of egress traffic in MicroShift.

2.4. USING THE RPM-OSTREE HTTP OR HTTPS PROXY

To use the HTTP or HTTPS proxy in RPM-OStree, you must add a Service section to the configuration
file and set the http_proxy environment variable for the rpm-ostreed service.

Procedure

1. Add this setting to the /etc/systemd/system/rpm-ostreed.service.d/00-proxy.conf file:

2. Next, reload the configuration settings and restart the service to apply your changes.

a. Reload the configuration settings by running the following command:

b. Restart the rpm-ostreed service by running the following command:

2.5. USING A PROXY IN THE CRI-O CONTAINER RUNTIME

To use an HTTP or HTTPS proxy in CRI-O, you must add a Service section to the configuration file and
set the HTTP_PROXY and HTTPS_PROXY environment variables. You can also set the NO_PROXY
variable to exclude a list of hosts from being proxied.

Procedure

1. Create the directory for the configuration file if it does not exist:

2. Add the following settings to the /etc/systemd/system/crio.service.d/00-proxy.conf file:

IMPORTANT

[Service]
Environment="http_proxy=http://$PROXY_USER:$PROXY_PASSWORD@$PROXY_SERVE
R:$PROXY_PORT/"

$ sudo systemctl daemon-reload

$ sudo systemctl restart rpm-ostreed.service

$ sudo mkdir /etc/systemd/system/crio.service.d/

[Service]
Environment=NO_PROXY="localhost,127.0.0.1"
Environment=HTTP_PROXY="http://$PROXY_USER:$PROXY_PASSWORD@$PROXY_SE
RVER:$PROXY_PORT/"
Environment=HTTPS_PROXY="http://$PROXY_USER:$PROXY_PASSWORD@$PROXY_S
ERVER:$PROXY_PORT/"

CHAPTER 2. UNDERSTANDING NETWORKING SETTINGS

13

IMPORTANT

You must define the Service section of the configuration file for the
environment variables or the proxy settings fail to apply.

3. Reload the configuration settings:

4. Restart the CRI-O service:

5. Restart the MicroShift service to apply the settings:

Verification

1. Verify that pods are started by running the following command and examining the output:

2. Verify that MicroShift is able to pull container images by running the following command and
examining the output:

2.6. GETTING A SNAPSHOT OF OVS INTERFACES FROM A RUNNING
CLUSTER

A snapshot represents the state and data of OVS interfaces at a specific point in time.

Procedure

To see a snapshot of OVS interfaces from a running MicroShift cluster, use the following
command:

Example OVS interfaces in a running cluster

$ sudo systemctl daemon-reload

$ sudo systemctl restart crio

$ sudo systemctl restart microshift

$ oc get all -A

$ sudo crictl images

$ sudo ovs-vsctl show

9d9f5ea2-9d9d-4e34-bbd2-dbac154fdc93
 Bridge br-ex
 Port br-ex
 Interface br-ex
 type: internal
 Port patch-br-ex_localhost.localdomain-to-br-int 1
 Interface patch-br-ex_localhost.localdomain-to-br-int
 type: patch
 options: {peer=patch-br-int-to-br-ex_localhost.localdomain} 2

Red Hat build of MicroShift 4.15 Networking

14

1

2

3

4

5

6

The patch-br-ex_localhost.localdomain-to-br-int and patch-br-int-to-br-
ex_localhost.localdomain are OVS patch ports that connect br-ex and br-int.

The patch-br-ex_localhost.localdomain-to-br-int and patch-br-int-to-br-
ex_localhost.localdomain are OVS patch ports that connect br-ex and br-int.

The pod interface eebee1ce5568761 is named with the first 15 bits of the pod sandbox ID
and is plugged into the br-int bridge.

The pod interface b47b1995ada84f4 is named with the first 15 bits of the pod sandbox ID
and is plugged into the br-int bridge.

The pod interface 3031f43d67c167f is named with the first 15 bits of the pod sandbox ID
and is plugged into the br-int bridge.

The OVS internal port for hairpin traffic,ovn-k8s-mp0 is created by the ovnkube-master
container.

2.7. DEPLOYING A LOAD BALANCER FOR A WORKLOAD

MicroShift has a built-in implementation of network load balancers. The following example procedure
uses the node IP address as the external IP address for the LoadBalancer service configuration file.
You can use this example as guidance for how to deploy load balancers for your workloads.

Prerequisites

The OpenShift CLI (oc) is installed.

You have access to the cluster as a user with the cluster administration role.

You installed a cluster on an infrastructure configured with the OVN-Kubernetes network
plugin.

 Bridge br-int
 fail_mode: secure
 datapath_type: system
 Port patch-br-int-to-br-ex_localhost.localdomain
 Interface patch-br-int-to-br-ex_localhost.localdomain
 type: patch
 options: {peer=patch-br-ex_localhost.localdomain-to-br-int}
 Port eebee1ce5568761
 Interface eebee1ce5568761 3
 Port b47b1995ada84f4
 Interface b47b1995ada84f4 4
 Port "3031f43d67c167f"
 Interface "3031f43d67c167f" 5
 Port br-int
 Interface br-int
 type: internal
 Port ovn-k8s-mp0 6
 Interface ovn-k8s-mp0
 type: internal
 ovs_version: "2.17.3"

CHAPTER 2. UNDERSTANDING NETWORKING SETTINGS

15

The KUBECONFIG environment variable is set.

Procedure

1. Verify that your pods are running by running the following command:

2. Create the example namespace by running the following commands:

3. The following example deploys three replicas of the test nginx application in your namespace:

$ oc get pods -A

$ NAMESPACE=nginx-lb-test

$ oc create ns $NAMESPACE

$ oc apply -n $NAMESPACE -f - <<EOF
apiVersion: v1
kind: ConfigMap
metadata:
 name: nginx
data:
 headers.conf: |
 add_header X-Server-IP \$server_addr always;

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: quay.io/packit/nginx-unprivileged
 imagePullPolicy: Always
 name: nginx
 ports:
 - containerPort: 8080
 volumeMounts:
 - name: nginx-configs
 subPath: headers.conf
 mountPath: /etc/nginx/conf.d/headers.conf
 securityContext:
 allowPrivilegeEscalation: false
 seccompProfile:
 type: RuntimeDefault
 capabilities:

Red Hat build of MicroShift 4.15 Networking

16

4. You can verify that the three sample replicas started successfully by running the following
command:

5. Create a LoadBalancer service for the nginx test application with the following sample
commands:

NOTE

You must ensure that the port parameter is a host port that is not occupied by
other LoadBalancer services or Red Hat build of MicroShift components.

6. Verify that the service file exists, that the external IP address is properly assigned, and that the
external IP is identical to the node IP by running the following command:

Example output

Verification

The following command forms five connections to the example nginx application using the
external IP address of the LoadBalancer service configuration. The result of the command is a
list of those server IP addresses. Verify that the load balancer sends requests to all the running

 drop: ["ALL"]
 runAsNonRoot: true
 volumes:
 - name: nginx-configs
 configMap:
 name: nginx
 items:
 - key: headers.conf
 path: headers.conf
EOF

$ oc get pods -n $NAMESPACE

$ oc create -n $NAMESPACE -f - <<EOF
apiVersion: v1
kind: Service
metadata:
 name: nginx
spec:
 ports:
 - port: 81
 targetPort: 8080
 selector:
 app: nginx
 type: LoadBalancer
EOF

$ oc get svc -n $NAMESPACE

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx LoadBalancer 10.43.183.104 192.168.1.241 81:32434/TCP 2m

CHAPTER 2. UNDERSTANDING NETWORKING SETTINGS

17

applications with the following command:

The output of the previous command contains different IP addresses if the load balancer is
successfully distributing the traffic to the applications, for example:

Example output

2.8. BLOCKING EXTERNAL ACCESS TO THE NODEPORT SERVICE ON
A SPECIFIC HOST INTERFACE

OVN-Kubernetes does not restrict the host interface where a NodePort service can be accessed from
outside a Red Hat build of MicroShift node. The following procedure explains how to block the
NodePort service on a specific host interface and restrict external access.

Prerequisites

You must have an account with root privileges.

Procedure

1. Change the NODEPORT variable to the host port number assigned to your Kubernetes
NodePort service by running the following command:

2. Change the INTERFACE_IP value to the IP address from the host interface that you want to
block. For example:

3. Insert a new rule in the nat table PREROUTING chain to drop all packets that match the
destination port and IP address. For example:

4. List the new rule by running the following command:

EXTERNAL_IP=192.168.1.241
seq 5 | xargs -Iz curl -s -I http://$EXTERNAL_IP:81 | grep X-Server-IP

X-Server-IP: 10.42.0.41
X-Server-IP: 10.42.0.41
X-Server-IP: 10.42.0.43
X-Server-IP: 10.42.0.41
X-Server-IP: 10.42.0.43

export NODEPORT=30700

export INTERFACE_IP=192.168.150.33

$ sudo nft -a insert rule ip nat PREROUTING tcp dport $NODEPORT ip daddr
$INTERFACE_IP drop

$ sudo nft -a list chain ip nat PREROUTING
table ip nat {
 chain PREROUTING { # handle 1
 type nat hook prerouting priority dstnat; policy accept;
 tcp dport 30700 ip daddr 192.168.150.33 drop # handle 134

Red Hat build of MicroShift 4.15 Networking

18

NOTE

Note the handle number of the newly added rule. You need to remove the
handle number in the following step.

5. Remove the custom rule with the following sample command:

2.9. THE MULTICAST DNS PROTOCOL

You can use the multicast DNS protocol (mDNS) to allow name resolution and service discovery within a
Local Area Network (LAN) using multicast exposed on the 5353/UDP port.

MicroShift includes an embedded mDNS server for deployment scenarios in which the authoritative
DNS server cannot be reconfigured to point clients to services on MicroShift. The embedded DNS
server allows .local domains exposed by MicroShift to be discovered by other elements on the LAN.

2.10. AUDITING EXPOSED NETWORK PORTS

On MicroShift, the host port can be opened by a workload in the following cases. You can check logs to
view the network services.

2.10.1. hostNetwork

When a pod is configured with the hostNetwork:true setting, the pod is running in the host network
namespace. This configuration can independently open host ports. MicroShift component logs cannot
be used to track this case, the ports are subject to firewalld rules. If the port opens in firewalld, you can
view the port opening in the firewalld debug log.

Prerequisites

You have root user access to your build host.

Procedure

1. Optional: You can check that the hostNetwork:true parameter is set in your ovnkube-node pod
by using the following example command:

2. Enable debug in the firewalld log by running the following command:

 counter packets 108 bytes 18074 jump OVN-KUBE-ETP # handle 116
 counter packets 108 bytes 18074 jump OVN-KUBE-EXTERNALIP # handle 114
 counter packets 108 bytes 18074 jump OVN-KUBE-NODEPORT # handle 112
 }
}

$ sudo nft -a delete rule ip nat PREROUTING handle 134

$ sudo oc get pod -n openshift-ovn-kubernetes <ovnkube-node-pod-name> -o json | jq -r
'.spec.hostNetwork' true

$ sudo vi /etc/sysconfig/firewalld
FIREWALLD_ARGS=--debug=10

CHAPTER 2. UNDERSTANDING NETWORKING SETTINGS

19

3. Restart the firewalld service:

4. To verify that the debug option was added properly, run the following command:

The firewalld debug log is stored in the /var/log/firewalld path.

Example logs for when the port open rule is added:

Example logs for when the port open rule is removed:

2.10.2. hostPort

You can access the hostPort setting logs in MicroShift. The following logs are examples for the hostPort
setting:

Procedure

You can access the logs by running the following command:

Example CRI-O logs when the host port is opened:

Example CRI-O logs when the host port is closed:

2.10.3. NodePort and LoadBalancer service

OVN-Kubernetes opens host ports for NodePort and LoadBalancer service types. These services add

$ sudo systemctl restart firewalld.service

$ sudo systemd-cgls -u firewalld.service

2023-06-28 10:46:37 DEBUG1: config.getZoneByName('public')
2023-06-28 10:46:37 DEBUG1: config.zone.7.addPort('8080', 'tcp')
2023-06-28 10:46:37 DEBUG1: config.zone.7.getSettings()
2023-06-28 10:46:37 DEBUG1: config.zone.7.update('...')
2023-06-28 10:46:37 DEBUG1: config.zone.7.Updated('public')

2023-06-28 10:47:57 DEBUG1: config.getZoneByName('public')
2023-06-28 10:47:57 DEBUG2: config.zone.7.Introspect()
2023-06-28 10:47:57 DEBUG1: config.zone.7.removePort('8080', 'tcp')
2023-06-28 10:47:57 DEBUG1: config.zone.7.getSettings()
2023-06-28 10:47:57 DEBUG1: config.zone.7.update('...')
2023-06-28 10:47:57 DEBUG1: config.zone.7.Updated('public')

$ journalctl -u crio | grep "local port"

$ Jun 25 16:27:37 rhel92 crio[77216]: time="2023-06-25 16:27:37.033003098+08:00"
level=info msg="Opened local port tcp:443"

$ Jun 25 16:24:11 rhel92 crio[77216]: time="2023-06-25 16:24:11.342088450+08:00"
level=info msg="Closing host port tcp:443"

Red Hat build of MicroShift 4.15 Networking

20

OVN-Kubernetes opens host ports for NodePort and LoadBalancer service types. These services add
iptables rules that take the ingress traffic from the host port and forwards it to the clusterIP. Logs for
the NodePort and LoadBalancer services are presented in the following examples:

Procedure

1. To access the name of your ovnkube-master pods, run the following command:

Example ovnkube-master pod name

2. You can access the NodePort and LoadBalancer services logs using your ovnkube-master
pod and running the following example command:

NodePort service:

Example logs in the ovnkube-master container of the ovnkube-master pod when a
host port is open:

Example logs in the ovnkube-master container of the ovnkube-master pod when a
host port is closed:

LoadBalancer service:

Example logs in the ovnkube-master container of the ovnkube-master pod when a
host port is open:

Example logs in the ovnkube-master container of the ovnkube-master pod when a
host port is closed:

$ oc get pods -n openshift-ovn-kubernetes | awk '/ovnkube-master/{print $1}'

ovnkube-master-n2shv

$ oc logs -n openshift-ovn-kubernetes <ovnkube-master-pod-name> ovnkube-master | grep -
E "OVN-KUBE-NODEPORT|OVN-KUBE-EXTERNALIP"

$ I0625 09:07:00.992980 2118395 iptables.go:27] Adding rule in table: nat, chain: OVN-
KUBE-NODEPORT with args: "-p TCP -m addrtype --dst-type LOCAL --dport 32718 -j DNAT
--to-destination 10.96.178.142:8081" for protocol: 0

$ Deleting rule in table: nat, chain: OVN-KUBE-NODEPORT with args: "-p TCP -m addrtype -
-dst-type LOCAL --dport 32718 -j DNAT --to-destination 10.96.178.142:8081" for protocol: 0

$ I0625 09:34:10.406067 128902 iptables.go:27] Adding rule in table: nat, chain: OVN-
KUBE-EXTERNALIP with args: "-p TCP -d 172.16.47.129 --dport 8081 -j DNAT --to-
destination 10.43.114.94:8081" for protocol: 0

$ I0625 09:37:00.976953 128902 iptables.go:63] Deleting rule in table: nat, chain: OVN-
KUBE-EXTERNALIP with args: "-p TCP -d 172.16.47.129 --dport 8081 -j DNAT --to-
destination 10.43.114.94:8081" for protocol: 0

CHAPTER 2. UNDERSTANDING NETWORKING SETTINGS

21

CHAPTER 3. NETWORK POLICIES

3.1. ABOUT NETWORK POLICIES

Learn how network policies work for MicroShift to restrict or allow network traffic to pods in your cluster.

3.1.1. How network policy works in MicroShift

In a cluster using the default OVN-Kubernetes Container Network Interface (CNI) plugin for MicroShift,
network isolation is controlled by both firewalld, which is configured on the host, and by NetworkPolicy
objects created within MicroShift. Simultaneous use of firewalld and NetworkPolicy is supported.

Network policies work only within boundaries of OVN-Kubernetes-controlled traffic, so they can
apply to every situation except for hostPort/hostNetwork enabled pods.

Firewalld settings also do not apply to hostPort/hostNetwork enabled pods.

NOTE

Firewalld rules run before any NetworkPolicy is enforced.

WARNING

Network policy does not apply to the host network namespace. Pods with host
networking enabled are unaffected by network policy rules. However, pods
connecting to the host-networked pods might be affected by the network policy
rules.

Network policies cannot block traffic from localhost.

By default, all pods in a MicroShift node are accessible from other pods and network endpoints. To
isolate one or more pods in a cluster, you can create NetworkPolicy objects to indicate allowed
incoming connections. You can create and delete NetworkPolicy objects.

If a pod is matched by selectors in one or more NetworkPolicy objects, then the pod accepts only
connections that are allowed by at least one of those NetworkPolicy objects. A pod that is not selected
by any NetworkPolicy objects is fully accessible.

A network policy applies to only the TCP, UDP, ICMP, and SCTP protocols. Other protocols are not
affected.

The following example NetworkPolicy objects demonstrate supporting different scenarios:

Deny all traffic:
To make a project deny by default, add a NetworkPolicy object that matches all pods but
accepts no traffic:



kind: NetworkPolicy
apiVersion: networking.k8s.io/v1

Red Hat build of MicroShift 4.15 Networking

22

Allow connections from the default router, which is the ingress in MicroShift:
To allow connections from the MicroShift default router, add the following NetworkPolicy
object:

Only accept connections from pods within the same namespace:
To make pods accept connections from other pods in the same namespace, but reject all other
connections from pods in other namespaces, add the following NetworkPolicy object:

Only allow HTTP and HTTPS traffic based on pod labels:
To enable only HTTP and HTTPS access to the pods with a specific label (role=frontend in
following example), add a NetworkPolicy object similar to the following:

metadata:
 name: deny-by-default
spec:
 podSelector: {}
 ingress: []

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-ingress
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default
 podSelector: {}
 policyTypes:
 - Ingress

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector: {}

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-http-and-https
spec:
 podSelector:
 matchLabels:
 role: frontend
 ingress:
 - ports:
 - protocol: TCP

CHAPTER 3. NETWORK POLICIES

23

Accept connections by using both namespace and pod selectors:
To match network traffic by combining namespace and pod selectors, you can use a
NetworkPolicy object similar to the following:

NetworkPolicy objects are additive, which means you can combine multiple NetworkPolicy objects
together to satisfy complex network requirements.

For example, for the NetworkPolicy objects defined in previous examples, you can define both allow-
same-namespace and allow-http-and-https policies. That configuration allows the pods with the label
role=frontend to accept any connection allowed by each policy. That is, connections on any port from
pods in the same namespace, and connections on ports 80 and 443 from pods in any namespace.

3.1.2. Optimizations for network policy with OVN-Kubernetes network plugin

When designing your network policy, refer to the following guidelines:

For network policies with the same spec.podSelector spec, it is more efficient to use one
network policy with multiple ingress or egress rules, than multiple network policies with subsets
of ingress or egress rules.

Every ingress or egress rule based on the podSelector or namespaceSelector spec
generates the number of OVS flows proportional to number of pods selected by network
policy + number of pods selected by ingress or egress rule. Therefore, it is preferable to use
the podSelector or namespaceSelector spec that can select as many pods as you need in one
rule, instead of creating individual rules for every pod.
For example, the following policy contains two rules:

 port: 80
 - protocol: TCP
 port: 443

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-pod-and-namespace-both
spec:
 podSelector:
 matchLabels:
 name: test-pods
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 project: project_name
 podSelector:
 matchLabels:
 name: test-pods

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: test-network-policy
spec:
 podSelector: {}
 ingress:

Red Hat build of MicroShift 4.15 Networking

24

The following policy expresses those same two rules as one:

The same guideline applies to the spec.podSelector spec. If you have the same ingress or
egress rules for different network policies, it might be more efficient to create one network
policy with a common spec.podSelector spec. For example, the following two policies have
different rules:

 - from:
 - podSelector:
 matchLabels:
 role: frontend
 - from:
 - podSelector:
 matchLabels:
 role: backend

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: test-network-policy
spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector:
 matchExpressions:
 - {key: role, operator: In, values: [frontend, backend]}

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: policy1
spec:
 podSelector:
 matchLabels:
 role: db
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: frontend

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: policy2
spec:
 podSelector:
 matchLabels:
 role: client
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: frontend

CHAPTER 3. NETWORK POLICIES

25

1

2

3

4

The following network policy expresses those same two rules as one:

You can apply this optimization when only multiple selectors are expressed as one. In cases
where selectors are based on different labels, it may not be possible to apply this optimization. In
those cases, consider applying some new labels for network policy optimization specifically.

3.2. CREATING NETWORK POLICIES

You can create a network policy for a namespace.

3.2.1. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

A list of one or more destination ports on which to accept traffic.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: policy3
spec:
 podSelector:
 matchExpressions:
 - {key: role, operator: In, values: [db, client]}
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: frontend

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-27107 1
spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:
 - podSelector: 3
 matchLabels:
 app: app
 ports: 4
 - protocol: TCP
 port: 27017

Red Hat build of MicroShift 4.15 Networking

26

3.2.2. Creating a network policy using the CLI

To define granular rules describing ingress or egress network traffic allowed for namespaces in your
cluster, you can create a network policy.

Prerequisites

You installed the OpenShift CLI (oc).

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy rule:

a. Create a <policy_name>.yaml file:

where:

<policy_name>

Specifies the network policy file name.

b. Define a network policy in the file that you just created, such as in the following examples:

Deny ingress from all pods in all namespaces

This is a fundamental policy, blocking all cross-pod networking other than cross-pod traffic
allowed by the configuration of other Network Policies.

Allow ingress from all pods in the same namespace

$ touch <policy_name>.yaml

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default
spec:
 podSelector: {}
 policyTypes:
 - Ingress
 ingress: []

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector:
 ingress:
 - from:
 - podSelector: {}

CHAPTER 3. NETWORK POLICIES

27

Allow ingress traffic to one pod from a particular namespace

This policy allows traffic to pods labelled pod-a from pods running in namespace-y.

2. To create the network policy object, enter the following command:

where:

<policy_name>

Specifies the network policy file name.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

3.2.3. Creating a default deny all network policy

This is a fundamental policy, blocking all cross-pod networking other than network traffic allowed by the
configuration of other deployed network policies. This procedure enforces a default deny-by-default
policy.

Prerequisites

You installed the OpenShift CLI (oc).

You are working in the namespace that the network policy applies to.

Procedure

1. Create the following YAML that defines a deny-by-default policy to deny ingress from all pods
in all namespaces. Save the YAML in the deny-by-default.yaml file:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-traffic-pod
spec:
 podSelector:
 matchLabels:
 pod: pod-a
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: namespace-y

$ oc apply -f <policy_name>.yaml -n <namespace>

networkpolicy.networking.k8s.io/deny-by-default created

Red Hat build of MicroShift 4.15 Networking

28

1

2

3

namespace: default deploys this policy to the default namespace.

podSelector: is empty, this means it matches all the pods. Therefore, the policy applies to
all pods in the default namespace.

There are no ingress rules specified. This causes incoming traffic to be dropped to all
pods.

2. Apply the policy by entering the following command:

Example output

3.2.4. Creating a network policy to allow traffic from external clients

With the deny-by-default policy in place you can proceed to configure a policy that allows traffic from
external clients to a pod with the label app=web.

NOTE

Firewalld rules run before any NetworkPolicy is enforced.

Follow this procedure to configure a policy that allows external service from the public Internet directly
or by using a Load Balancer to access the pod. Traffic is only allowed to a pod with the label app=web.

Prerequisites

You installed the OpenShift CLI (oc).

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy that allows traffic from the public Internet directly or by using a load balancer to
access the pod. Save the YAML in the web-allow-external.yaml file:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default
 namespace: default 1
spec:
 podSelector: {} 2
 ingress: [] 3

$ oc apply -f deny-by-default.yaml

networkpolicy.networking.k8s.io/deny-by-default created

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

CHAPTER 3. NETWORK POLICIES

29

1

2. Apply the policy by entering the following command:

Example output

3.2.5. Creating a network policy allowing traffic to an application from all
namespaces

Follow this procedure to configure a policy that allows traffic from all pods in all namespaces to a
particular application.

Prerequisites

You installed the OpenShift CLI (oc).

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy that allows traffic from all pods in all namespaces to a particular application.
Save the YAML in the web-allow-all-namespaces.yaml file:

Applies the policy only to app:web pods in default namespace.

 name: web-allow-external
 namespace: default
spec:
 policyTypes:
 - Ingress
 podSelector:
 matchLabels:
 app: web
 ingress:
 - {}

$ oc apply -f web-allow-external.yaml

networkpolicy.networking.k8s.io/web-allow-external created

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: web-allow-all-namespaces
 namespace: default
spec:
 podSelector:
 matchLabels:
 app: web 1
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector: {} 2

Red Hat build of MicroShift 4.15 Networking

30

2 Selects all pods in all namespaces.

NOTE

By default, if you omit specifying a namespaceSelector it does not select any
namespaces, which means the policy allows traffic only from the namespace the
network policy is deployed to.

2. Apply the policy by entering the following command:

Example output

Verification

1. Start a web service in the default namespace by entering the following command:

2. Run the following command to deploy an alpine image in the secondary namespace and to
start a shell:

3. Run the following command in the shell and observe that the request is allowed:

Expected output

$ oc apply -f web-allow-all-namespaces.yaml

networkpolicy.networking.k8s.io/web-allow-all-namespaces created

$ oc run web --namespace=default --image=nginx --labels="app=web" --expose --port=80

$ oc run test-$RANDOM --namespace=secondary --rm -i -t --image=alpine -- sh

wget -qO- --timeout=2 http://web.default

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at

CHAPTER 3. NETWORK POLICIES

31

1

2

3.2.6. Creating a network policy allowing traffic to an application from a namespace

Follow this procedure to configure a policy that allows traffic to a pod with the label app=web from a
particular namespace. You might want to do this to:

Restrict traffic to a production database only to namespaces where production workloads are
deployed.

Enable monitoring tools deployed to a particular namespace to scrape metrics from the current
namespace.

Prerequisites

You installed the OpenShift CLI (oc).

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy that allows traffic from all pods in a particular namespaces with a label
purpose=production. Save the YAML in the web-allow-prod.yaml file:

Applies the policy only to app:web pods in the default namespace.

Restricts traffic to only pods in namespaces that have the label purpose=production.

2. Apply the policy by entering the following command:

nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: web-allow-prod
 namespace: default
spec:
 podSelector:
 matchLabels:
 app: web 1
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 purpose: production 2

$ oc apply -f web-allow-prod.yaml

Red Hat build of MicroShift 4.15 Networking

32

Example output

Verification

1. Start a web service in the default namespace by entering the following command:

2. Run the following command to create the prod namespace:

3. Run the following command to label the prod namespace:

4. Run the following command to create the dev namespace:

5. Run the following command to label the dev namespace:

6. Run the following command to deploy an alpine image in the dev namespace and to start a
shell:

7. Run the following command in the shell and observe that the request is blocked:

Expected output

8. Run the following command to deploy an alpine image in the prod namespace and start a shell:

9. Run the following command in the shell and observe that the request is allowed:

Expected output

networkpolicy.networking.k8s.io/web-allow-prod created

$ oc run web --namespace=default --image=nginx --labels="app=web" --expose --port=80

$ oc create namespace prod

$ oc label namespace/prod purpose=production

$ oc create namespace dev

$ oc label namespace/dev purpose=testing

$ oc run test-$RANDOM --namespace=dev --rm -i -t --image=alpine -- sh

wget -qO- --timeout=2 http://web.default

wget: download timed out

$ oc run test-$RANDOM --namespace=prod --rm -i -t --image=alpine -- sh

wget -qO- --timeout=2 http://web.default

<!DOCTYPE html>

CHAPTER 3. NETWORK POLICIES

33

3.3. EDITING A NETWORK POLICY

You can edit an existing network policy for a namespace. Typical edits might include changes to the
pods to which the policy applies, allowed ingress traffic, and the destination ports on which to accept
traffic. The apiVersion, kind, and name fields must not be changed when editing NetworkPolicy
objects, as these define the resource itself.

3.3.1. Editing a network policy

You can edit a network policy in a namespace.

Prerequisites

You installed the OpenShift CLI (oc).

You are working in the namespace where the network policy exists.

Procedure

1. Optional: To list the network policy objects in a namespace, enter the following command:

where:

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

2. Edit the network policy object.

If you saved the network policy definition in a file, edit the file and make any necessary

<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

$ oc get networkpolicy

Red Hat build of MicroShift 4.15 Networking

34

If you saved the network policy definition in a file, edit the file and make any necessary
changes, and then enter the following command.

where:

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

<policy_file>

Specifies the name of the file containing the network policy.

If you need to update the network policy object directly, enter the following command:

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

3. Confirm that the network policy object is updated.

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

3.3.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

$ oc apply -n <namespace> -f <policy_file>.yaml

$ oc edit networkpolicy <policy_name> -n <namespace>

$ oc describe networkpolicy <policy_name> -n <namespace>

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-27107 1
spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:
 - podSelector: 3

CHAPTER 3. NETWORK POLICIES

35

1

2

3

4

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

A list of one or more destination ports on which to accept traffic.

3.4. DELETING A NETWORK POLICY

You can delete a network policy from a namespace.

3.4.1. Deleting a network policy using the CLI

You can delete a network policy in a namespace.

Prerequisites

You installed the OpenShift CLI (oc).

You are working in the namespace where the network policy exists.

Procedure

To delete a network policy object, enter the following command:

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

3.5. VIEWING A NETWORK POLICY

Use the following procedure to view a network policy for a namespace.

 matchLabels:
 app: app
 ports: 4
 - protocol: TCP
 port: 27017

$ oc delete networkpolicy <policy_name> -n <namespace>

networkpolicy.networking.k8s.io/default-deny deleted

Red Hat build of MicroShift 4.15 Networking

36

3.5.1. Viewing network policies using the CLI

You can examine the network policies in a namespace.

Prerequisites

You installed the OpenShift CLI (oc).

You are working in the namespace where the network policy exists.

Procedure

List network policies in a namespace:

To view network policy objects defined in a namespace, enter the following command:

Optional: To examine a specific network policy, enter the following command:

where:

<policy_name>

Specifies the name of the network policy to inspect.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

For example:

Output for oc describe command

$ oc get networkpolicy

$ oc describe networkpolicy <policy_name> -n <namespace>

$ oc describe networkpolicy allow-same-namespace

Name: allow-same-namespace
Namespace: ns1
Created on: 2021-05-24 22:28:56 -0400 EDT
Labels: <none>
Annotations: <none>
Spec:
 PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
 Allowing ingress traffic:
 To Port: <any> (traffic allowed to all ports)
 From:
 PodSelector: <none>
 Not affecting egress traffic
 Policy Types: Ingress

CHAPTER 3. NETWORK POLICIES

37

CHAPTER 4. USING A FIREWALL
Firewalls are not required in MicroShift, but using a firewall can prevent undesired access to the
MicroShift API.

4.1. ABOUT NETWORK TRAFFIC THROUGH THE FIREWALL

Firewalld is a networking service that runs in the background and responds to connection requests,
creating a dynamic customizable host-based firewall. If you are using Red Hat Enterprise Linux for Edge
(RHEL for Edge) with MicroShift, firewalld should already be installed and you just need to configure it.
Details are provided in procedures that follow. Overall, you must explicitly allow the following OVN-
Kubernetes traffic when the firewalld service is running:

CNI pod to CNI pod

CNI pod to Host-Network pod Host-Network pod to Host-Network pod

CNI pod

The Kubernetes pod that uses the CNI network

Host-Network pod

The Kubernetes pod that uses host network You can configure the firewalld service by using the
following procedures. In most cases, firewalld is part of RHEL for Edge installations. If you do not have
firewalld, you can install it with the simple procedure in this section.

IMPORTANT

MicroShift pods must have access to the internal CoreDNS component and API servers.

Additional resources

Required firewall settings

Allowing network traffic through the firewall

4.2. INSTALLING THE FIREWALLD SERVICE

If you are using RHEL for Edge, firewalld should be installed. To use the service, you can simply
configure it. The following procedure can be used if you do not have firewalld, but want to use it.

Install and run the firewalld service for MicroShift by using the following steps.

Procedure

1. Optional: Check for firewalld on your system by running the following command:

2. If the firewalld service is not installed, run the following command:

3. To start the firewall, run the following command:

$ rpm -q firewalld

$ sudo dnf install -y firewalld

Red Hat build of MicroShift 4.15 Networking

38

4.3. REQUIRED FIREWALL SETTINGS

An IP address range for the cluster network must be enabled during firewall configuration. You can use
the default values or customize the IP address range. If you choose to customize the cluster network IP
address range from the default 10.42.0.0/16 setting, you must also use the same custom range in the
firewall configuration.

Table 4.1. Firewall IP address settings

IP Range Firewall rule required Description

10.42.0.0/16 No Host network pod access to other
pods

169.254.169.1 Yes Host network pod access to Red
Hat build of MicroShift API server

The following are examples of commands for settings that are mandatory for firewall configuration:

Example commands

Configure host network pod access to other pods:

Configure host network pod access to services backed by Host endpoints, such as the Red Hat
build of MicroShift API:

4.4. USING OPTIONAL PORT SETTINGS

The MicroShift firewall service allows optional port settings.

Procedure

To add customized ports to your firewall configuration, use the following command syntax:

Table 4.2. Optional ports

Port(s) Protocol(s) Description

80 TCP HTTP port used to serve
applications through the
OpenShift Container Platform
router.

$ sudo systemctl enable firewalld --now

$ sudo firewall-cmd --permanent --zone=trusted --add-source=10.42.0.0/16

$ sudo firewall-cmd --permanent --zone=trusted --add-source=169.254.169.1

$ sudo firewall-cmd --permanent --zone=public --add-port=<port number>/<port protocol>

CHAPTER 4. USING A FIREWALL

39

443 TCP HTTPS port used to serve
applications through the
OpenShift Container Platform
router.

5353 UDP mDNS service to respond for
OpenShift Container Platform
route mDNS hosts.

30000-32767 TCP Port range reserved for
NodePort services; can be
used to expose applications on
the LAN.

30000-32767 UDP Port range reserved for
NodePort services; can be
used to expose applications on
the LAN.

6443 TCP HTTPS API port for the Red
Hat build of MicroShift API.

Port(s) Protocol(s) Description

The following are examples of commands used when requiring external access through the firewall to
services running on MicroShift, such as port 6443 for the API server, for example, ports 80 and 443 for
applications exposed through the router.

Example command

Configuring a port for the MicroShift API server:

To close unnecessary ports in your MicroShift instance, follow the procedure in "Closing unused or
unnecessary ports to enhance network security".

Additional resources

Closing unused or unnecessary ports to enhance network security

4.5. ADDING SERVICES TO OPEN PORTS

On a MicroShift instance, you can open services on ports by using the firewall-cmd command.

Procedure

1. Optional: You can view all predefined services in firewalld by running the following command

$ sudo firewall-cmd --permanent --zone=public --add-port=6443/tcp

$ sudo firewall-cmd --get-services

Red Hat build of MicroShift 4.15 Networking

40

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_networking/using-and-configuring-firewalld_configuring-and-managing-networking#closing-unused-or-unnecessary-ports-to-enhance-network-security_controlling-network-traffic-using-firewalld

2. To open a service that you want on a default port, run the following example command:

4.6. ALLOWING NETWORK TRAFFIC THROUGH THE FIREWALL

You can allow network traffic through the firewall by configuring the IP address range and inserting the
DNS server to allow internal traffic from pods through the network gateway.

Procedure

1. Use one of the following commands to set the IP address range:

a. Configure the IP address range with default values by running the following command:

b. Configure the IP address range with custom values by running the following command:

2. To allow internal traffic from pods through the network gateway, run the following command:

4.6.1. Applying firewall settings

To apply firewall settings, use the following one-step procedure:

Procedure

After you have finished configuring network access through the firewall, run the following
command to restart the firewall and apply the settings:

4.7. VERIFYING FIREWALL SETTINGS

After you have restarted the firewall, you can verify your settings by listing them.

Procedure

To verify rules added in the default public zone, such as ports-related rules, run the following
command:

To verify rules added in the trusted zone, such as IP-range related rules, run the following
command:

$ sudo firewall-cmd --add-service=mdns

$ sudo firewall-offline-cmd --permanent --zone=trusted --add-source=10.42.0.0/16

$ sudo firewall-offline-cmd --permanent --zone=trusted --add-source=<custom IP range>

$ sudo firewall-offline-cmd --permanent --zone=trusted --add-source=169.254.169.1

$ sudo firewall-cmd --reload

$ sudo firewall-cmd --list-all

$ sudo firewall-cmd --zone=trusted --list-all

CHAPTER 4. USING A FIREWALL

41

4.8. OVERVIEW OF FIREWALL PORTS WHEN A SERVICE IS EXPOSED

Firewalld is often active when you run services on MicroShift. This can disrupt certain services on
MicroShift because traffic to the ports might be blocked by the firewall. You must ensure that the
necessary firewall ports are open if you want certain services to be accessible from outside the host.
There are several options for opening your ports:

Services of the NodePort and LoadBalancer type are automatically available with OVN-
Kubernetes.
In these cases, OVN-Kubernetes adds iptables rules so the traffic to the node IP address is
delivered to the relevant ports. This is done using the PREROUTING rule chain and is then
forwarded to the OVN-K to bypass the firewalld rules for local host ports and services. Iptables
and firewalld are backed by nftables in RHEL 9. The nftables rules, which the iptables generates,
always have priority over the rules that the firewalld generates.

Pods with the HostPort parameter settings are automatically available. This also includes the
router-default pod, which uses ports 80 and 443.
For HostPort pods, the CRI-O config sets up iptables DNAT (Destination Network Address
Translation) to the pod’s IP address and port.

These methods function for clients whether they are on the same host or on a remote host. The iptables
rules, which are added by OVN-Kubernetes and CRI-O, attach to the PREROUTING and OUTPUT
chains. The local traffic goes through the OUTPUT chain with the interface set to the lo type. The
DNAT runs before it hits filler rules in the INPUT chain.

Because the MicroShift API server does not run in CRI-O, it is subject to the firewall configurations. You
can open port 6443 in the firewall to access the API server in your MicroShift cluster.

4.9. ADDITIONAL RESOURCES

RHEL: Using and configuring firewalld

RHEL: Viewing the current status of firewalld

4.10. KNOWN FIREWALL ISSUE

To avoid breaking traffic flows with a firewall reload or restart, execute firewall commands
before starting RHEL. The CNI driver in MicroShift makes use of iptable rules for some traffic
flows, such as those using the NodePort service. The iptable rules are generated and inserted by
the CNI driver, but are deleted when the firewall reloads or restarts. The absence of the iptable
rules breaks traffic flows. If firewall commands have to be executed after MicroShift is running,
manually restart ovnkube-master pod in the openshift-ovn-kubernetes namespace to reset
the rules controlled by the CNI driver.

Red Hat build of MicroShift 4.15 Networking

42

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_firewalls_and_packet_filters/using-and-configuring-firewalld_firewall-packet-filters
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_firewalls_and_packet_filters/using-and-configuring-firewalld_firewall-packet-filters#viewing-the-current-status-and-settings-of-firewalld_using-and-configuring-firewalld

CHAPTER 5. CONFIGURING NETWORK SETTINGS FOR FULLY
DISCONNECTED HOSTS

Learn how to apply networking customization and settings to run MicroShift on fully disconnected
hosts. A disconnected host should be the Red Hat Enterprise Linux (RHEL) operating system, versions
9.0+, whether real or virtual, that runs without network connectivity.

5.1. PREPARING NETWORKING FOR FULLY DISCONNECTED HOSTS

Use the procedure that follows to start and run MicroShift clusters on devices running fully
disconnected operating systems. A MicroShift host is considered fully disconnected if it has no external
network connectivity.

Typically this means that the device does not have an attached network interface controller (NIC) to
provide a subnet. These steps can also be completed on a host with a NIC that is removed after setup.
You can also automate these steps on a host that does not have a NIC by using the %post phase of a
Kickstart file.

IMPORTANT

Configuring networking settings for disconnected environments is necessary because
MicroShift requires a network device to support cluster communication. To meet this
requirement, you must configure MicroShift networking settings to use the "fake" IP
address you assign to the system loopback device during setup.

5.1.1. Procedure summary

To run MicroShift on a disconnected host, the following steps are required:

Prepare the host

Stop MicroShift if it is currently running and clean up changes the service has made to the
network.

Set a persistent hostname.

Add a “fake” IP address on the loopback interface.

Configure DNS to use the fake IP as local name server.

Add an entry for the hostname to /etc/hosts.

Update the MicroShift configuration

Define the nodeIP parameter as the new loopback IP address.

Set the .node.hostnameOverride parameter to the persistent hostname.

For the changes to take effect

Disable the default NIC if attached.

Restart the host or device.

CHAPTER 5. CONFIGURING NETWORK SETTINGS FOR FULLY DISCONNECTED HOSTS

43

After starting, MicroShift runs using the loopback device for within-cluster communication.

5.2. RESTORING MICROSHIFT NETWORKING SETTINGS TO DEFAULT

You can remove networking customizations and return the network to default settings by stopping
MicroShift and running a clean-up script.

Prerequisites

RHEL 9 or newer.

MicroShift 4.14 or newer.

Access to the host CLI.

Procedure

1. Stop the MicroShift service by running the following command:

2. Stop the kubepods.slice systemd unit by running the following command:

3. MicroShift installs a helper script to undo network changes made by OVN-K. Run the cleanup
script by entering the following command:

5.3. CONFIGURING THE NETWORKING SETTINGS FOR FULLY
DISCONNECTED HOSTS

To configure the networking settings for running MicroShift on a fully disconnected host, you must
prepare the host, update the networking configuration, then restart to apply the new settings. All
commands are executed from the host CLI.

Prerequisites

RHEL 9 or newer.

MicroShift 4.14 or newer.

Access to the host CLI.

A valid IP address chosen to avoid both internal and potential future external IP conflicts when
running MicroShift.

MicroShift networking settings are set to defaults.

IMPORTANT

$ sudo systemctl stop microshift

$ sudo systemctl stop kubepods.slice

$ sudo /usr/bin/microshift-cleanup-data --ovn

Red Hat build of MicroShift 4.15 Networking

44

1

IMPORTANT

The following procedure is for use cases in which access to the MicroShift cluster is not
required after devices are deployed in the field. There is no remote cluster access after
the network connection is removed.

Procedure

1. Add a fake IP address to the loopback interface by running the following command:

The fake IP address used in this example is “10.44.0.1”.

NOTE

Any valid IP works if it avoids both internal MicroShift and potential future
external IP conflicts. This can be any subnet that does not collide with the
MicroShift node subnet or is be accessed by other services on the device.

2. Configure the DNS interface to use the local name server by setting modifying the settings to
ignore automatic DNS and reset it to the local name server:

a. Bypass the automatic DNS by running the following command:

b. Point the DNS interface to use the local name server:

3. Get the hostname of the device by running the following command:

4. Add an entry for the hostname of the node in the /etc/hosts file by running the following
command:

5. Update the MicroShift configuration file by adding the following YAML snippet to
/etc/microshift/config.yaml:

6. MicroShift is now ready to use the loopback device for cluster communications. Finish preparing
the device for offline use.

$ IP="10.44.0.1" 1
$ sudo nmcli con add type loopback con-name stable-microshift ifname lo ip4 ${IP}/32

$ sudo nmcli conn modify stable-microshift ipv4.ignore-auto-dns yes

$ sudo nmcli conn modify stable-microshift ipv4.dns "10.44.1.1"

$ NAME="$(hostnamectl hostname)"

$ echo "$IP $NAME" | sudo tee -a /etc/hosts >/dev/null

sudo tee /etc/microshift/config.yaml > /dev/null <<EOF
node:
 hostnameOverride: hostnameOverride: $(echo $NAME)
 nodeIP: $(echo $IP)
EOF

CHAPTER 5. CONFIGURING NETWORK SETTINGS FOR FULLY DISCONNECTED HOSTS

45

1

a. If the device currently has a NIC attached, disconnect the device from the network.

b. Shut down the device and disconnect the NIC.

c. Restart the device for the offline configuration to take effect.

7. Restart the MicroShift host to apply the configuration changes by running the following
command:

This step restarts the cluster. Wait for the greenboot health check to report the system
healthy before implementing verification.

Verification

At this point, network access to the MicroShift host has been severed. If you have access to the host
terminal, you can use the host CLI to verify that the cluster has started in a stable state.

1. Verify that the MicroShift cluster is running by entering the following command:

Example output

$ sudo systemctl reboot 1

$ export KUBECONFIG=/var/lib/microshift/resources/kubeadmin/kubeconfig
$ sudo -E oc get pods -A

NAMESPACE NAME READY STATUS RESTARTS
AGE
kube-system csi-snapshot-controller-74d566564f-66n2f 1/1 Running 0
1m
kube-system csi-snapshot-webhook-69bdff8879-xs6mb 1/1 Running 0
1m
openshift-dns dns-default-dxglm 2/2 Running 0 1m
openshift-dns node-resolver-dbf5v 1/1 Running 0 1m
openshift-ingress router-default-8575d888d8-xmq9p 1/1 Running 0
1m
openshift-ovn-kubernetes ovnkube-master-gcsx8 4/4 Running 1 1m
openshift-ovn-kubernetes ovnkube-node-757mf 1/1 Running 1 1m
openshift-service-ca service-ca-7d7c579f54-68jt4 1/1 Running 0 1m
openshift-storage topolvm-controller-6d777f795b-bx22r 5/5 Running 0
1m
openshift-storage topolvm-node-fcf8l 4/4 Running 0 1m

Red Hat build of MicroShift 4.15 Networking

46

	Table of Contents
	CHAPTER 1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN
	1.1. MICROSHIFT NETWORKING CUSTOMIZATION MATRIX
	1.1.1. Default settings

	1.2. NETWORK FEATURES
	1.3. IP FORWARD
	1.4. NETWORK PERFORMANCE OPTIMIZATIONS
	1.5. MICROSHIFT NETWORKING COMPONENTS AND SERVICES
	1.6. BRIDGE MAPPINGS
	1.7. NETWORK TOPOLOGY
	1.7.1. Description of the OVN logical components of the virtualized network
	1.7.2. Description of the connections in the network topology figure

	CHAPTER 2. UNDERSTANDING NETWORKING SETTINGS
	2.1. CREATING AN OVN-KUBERNETES CONFIGURATION FILE
	2.2. RESTARTING THE OVNKUBE-MASTER POD
	2.3. DEPLOYING MICROSHIFT BEHIND AN HTTP OR HTTPS PROXY
	2.4. USING THE RPM-OSTREE HTTP OR HTTPS PROXY
	2.5. USING A PROXY IN THE CRI-O CONTAINER RUNTIME
	2.6. GETTING A SNAPSHOT OF OVS INTERFACES FROM A RUNNING CLUSTER
	2.7. DEPLOYING A LOAD BALANCER FOR A WORKLOAD
	2.8. BLOCKING EXTERNAL ACCESS TO THE NODEPORT SERVICE ON A SPECIFIC HOST INTERFACE
	2.9. THE MULTICAST DNS PROTOCOL
	2.10. AUDITING EXPOSED NETWORK PORTS
	2.10.1. hostNetwork
	2.10.2. hostPort
	2.10.3. NodePort and LoadBalancer service

	CHAPTER 3. NETWORK POLICIES
	3.1. ABOUT NETWORK POLICIES
	3.1.1. How network policy works in MicroShift
	3.1.2. Optimizations for network policy with OVN-Kubernetes network plugin

	3.2. CREATING NETWORK POLICIES
	3.2.1. Example NetworkPolicy object
	3.2.2. Creating a network policy using the CLI
	3.2.3. Creating a default deny all network policy
	3.2.4. Creating a network policy to allow traffic from external clients
	3.2.5. Creating a network policy allowing traffic to an application from all namespaces
	3.2.6. Creating a network policy allowing traffic to an application from a namespace

	3.3. EDITING A NETWORK POLICY
	3.3.1. Editing a network policy
	3.3.2. Example NetworkPolicy object

	3.4. DELETING A NETWORK POLICY
	3.4.1. Deleting a network policy using the CLI

	3.5. VIEWING A NETWORK POLICY
	3.5.1. Viewing network policies using the CLI

	CHAPTER 4. USING A FIREWALL
	4.1. ABOUT NETWORK TRAFFIC THROUGH THE FIREWALL
	4.2. INSTALLING THE FIREWALLD SERVICE
	4.3. REQUIRED FIREWALL SETTINGS
	4.4. USING OPTIONAL PORT SETTINGS
	4.5. ADDING SERVICES TO OPEN PORTS
	4.6. ALLOWING NETWORK TRAFFIC THROUGH THE FIREWALL
	4.6.1. Applying firewall settings

	4.7. VERIFYING FIREWALL SETTINGS
	4.8. OVERVIEW OF FIREWALL PORTS WHEN A SERVICE IS EXPOSED
	4.9. ADDITIONAL RESOURCES
	4.10. KNOWN FIREWALL ISSUE

	CHAPTER 5. CONFIGURING NETWORK SETTINGS FOR FULLY DISCONNECTED HOSTS
	5.1. PREPARING NETWORKING FOR FULLY DISCONNECTED HOSTS
	5.1.1. Procedure summary

	5.2. RESTORING MICROSHIFT NETWORKING SETTINGS TO DEFAULT
	5.3. CONFIGURING THE NETWORKING SETTINGS FOR FULLY DISCONNECTED HOSTS

