
Red Hat build of MicroShift 4.15

Configuring

Configuring MicroShift

Last Updated: 2024-03-15

Red Hat build of MicroShift 4.15 Configuring

Configuring MicroShift

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring MicroShift.

. .

. .

. .

Table of Contents

CHAPTER 1. HOW CONFIGURATION TOOLS WORK
1.1. DEFAULT SETTINGS
1.2. USING A YAML CONFIGURATION FILE

1.2.1. Custom settings
1.2.2. Configuring the advertise address network flag
1.2.3. Extending the port range for NodePort services

1.3. ADDITIONAL RESOURCES

CHAPTER 2. CLUSTER ACCESS WITH KUBECONFIG
2.1. KUBECONFIG FILES FOR CONFIGURING CLUSTER ACCESS
2.2. LOCAL ACCESS KUBECONFIG FILE

2.2.1. Accessing the MicroShift cluster locally
2.3. REMOTE ACCESS KUBECONFIG FILES

2.3.1. Remote access customization
2.4. GENERATING ADDITIONAL KUBECONFIG FILES FOR REMOTE ACCESS

2.4.1. Opening the firewall for remote access to the MicroShift cluster
2.4.2. Accessing the MicroShift cluster remotely

CHAPTER 3. CHECKING GREENBOOT SCRIPTS STATUS
3.1. CHECKING THE STATUS OF GREENBOOT HEALTH CHECKS

3
3
4
4
4
4
5

6
6
6
7
7
8
8
9

10

12
12

Table of Contents

1

Red Hat build of MicroShift 4.15 Configuring

2

1

2

3

4

5

6

7

CHAPTER 1. HOW CONFIGURATION TOOLS WORK
A YAML file customizes MicroShift instances with your preferences, settings, and parameters.

NOTE

If you want to make configuration changes or deploy applications through the MicroShift
API with tools other than kustomize manifests, you must wait until the Greenboot health
checks have finished. This ensures that your changes are not lost if Greenboot rolls your
rpm-ostree system back to an earlier state.

1.1. DEFAULT SETTINGS

If you do not create a config.yaml file, default values are used. The following example shows the default
configuration settings.

To see the default values, run the following command:

Default values example output in YAML form

Base domain of the cluster. All managed DNS records will be subdomains of this base.

A block of IP addresses from which Pod IP addresses are allocated.

A block of virtual IP addresses for Kubernetes services.

The port range allowed for Kubernetes services of type NodePort.

The name of the node. The default value is the hostname.

The IP address of the node. The default value is the IP address of the default route.

A string that specifies the IP address from which the API server is advertised to members
of the cluster. The default value is calculated based on the address of the service network.

$ microshift show-config

dns:
 baseDomain: microshift.example.com 1
network:
 clusterNetwork:
 - 10.42.0.0/16 2
 serviceNetwork:
 - 10.43.0.0/16 3
 serviceNodePortRange: 30000-32767 4
node:
 hostnameOverride: "" 5
 nodeIP: "" 6
apiServer:
 advertiseAddress: 10.44.0.0/32 7
 subjectAltNames: [] 8
debugging:
 logLevel: "Normal" 9

CHAPTER 1. HOW CONFIGURATION TOOLS WORK

3

8

9

Subject Alternative Names for API server certificates.

Log verbosity. Valid values for this field are Normal, Debug, Trace, or TraceAll.

1.2. USING A YAML CONFIGURATION FILE

On start up, MicroShift searches the system-wide /etc/microshift/ directory for a configuration file
named config.yaml. To use custom configurations, you must create the configuration file and specify
any settings that are expected to override the defaults before starting MicroShift.

1.2.1. Custom settings

To create custom configurations, you must create a config.yaml file in the /etc/microshift/ directory,
and then change any settings that are expected to override the defaults before starting or restarting
MicroShift.

IMPORTANT

Restart MicroShift after changing any configuration settings to have them take effect.
The config.yaml file is read only when MicroShift starts.

1.2.2. Configuring the advertise address network flag

The apiserver.advertiseAddress flag specifies the IP address on which to advertise the API server to
members of the cluster. This address must be reachable by the cluster. You can set a custom IP address
here, but you must also add the IP address to a host interface. Customizing this parameter preempts
MicroShift from adding a default IP address to the br-ex network interface.

IMPORTANT

If you customize the advertiseAddress IP address, make sure it is reachable by the
cluster when MicroShift starts by adding the IP address to a host interface.

If unset, the default value is set to the next immediate subnet after the service network. For example,
when the service network is 10.43.0.0/16, the advertiseAddress is set to 10.44.0.0/32.

1.2.3. Extending the port range for NodePort services

The serviceNodePortRange setting extends the port range available to NodePort services. This option
is useful when specific standard ports under the 30000-32767 range need to be exposed. For example, if
your device needs to expose the 1883/tcp MQ Telemetry Transport (MQTT) port on the network
because client devices cannot use a different port.

IMPORTANT

NodePorts can overlap with system ports, causing a malfunction of the system or
MicroShift.

Consider the following when configuring the NodePort service ranges:

Do not create any NodePort service without an explicit nodePort selection. When an explicit

Red Hat build of MicroShift 4.15 Configuring

4

Do not create any NodePort service without an explicit nodePort selection. When an explicit
nodePort is not specified, the port is assigned randomly by the kube-apiserver and cannot be
predicted.

Do not create any NodePort service for any system service port, MicroShift port, or other
services you expose on your device HostNetwork.

Table one specifies ports to avoid when extending the port range:

Table 1.1. Ports to avoid.

Port Description

22/tcp SSH port

80/tcp OpenShift Router HTTP endpoint

443/tcp OpenShift Router HTTPS endpoint

1936/tcp Metrics service for the openshift-router, not
exposed today

2379/tcp etcd port

2380/tcp etcd port

6443 kubernetes API

8445/tcp openshift-route-controller-manager

9537/tcp cri-o metrics

10250/tcp kubelet

10248/tcp kubelet healthz port

10259/tcp kube scheduler

1.3. ADDITIONAL RESOURCES

Checking Greenboot status

CHAPTER 1. HOW CONFIGURATION TOOLS WORK

5

1

2

3

4

CHAPTER 2. CLUSTER ACCESS WITH KUBECONFIG
Learn about how kubeconfig files are used with MicroShift deployments. CLI tools use kubeconfig
files to communicate with the API server of a cluster. These files provide cluster details, IP addresses,
and other information needed for authentication.

2.1. KUBECONFIG FILES FOR CONFIGURING CLUSTER ACCESS

The two categories of kubeconfig files used in MicroShift are local access and remote access. Every
time MicroShift starts, a set of kubeconfig files for local and remote access to the API server are
generated. These files are generated in the /var/lib/microshift/resources/kubeadmin/ directory using
preexisting configuration information.

Each access type requires a different authentication certificate signed by different Certificate
Authorities (CAs). The generation of multiple kubeconfig files accommodates this need.

You can use the appropriate kubeconfig file for the access type needed in each case to provide
authentication details. The contents of MicroShift kubeconfig files are determined by either default
built-in values or a config.yaml file.

NOTE

A kubeconfig file must exist for the cluster to be accessible. The values are applied from
built-in default values or a config.yaml, if one was created.

Example contents of the kubeconfig files

Local host name. The main IP address of the host is always the default.

Subject Alternative Names for API server certificates.

DNS name.

MicroShift host name.

2.2. LOCAL ACCESS KUBECONFIG FILE

The local access kubeconfig file is written to /var/lib/microshift/resources/kubeadmin/kubeconfig.
This kubeconfig file provides access to the API server using localhost. Choose this file when you are
connecting the cluster locally.

Example contents of kubeconfig for local access

/var/lib/microshift/resources/kubeadmin/
├── kubeconfig 1
├── alt-name-1 2
│ └── kubeconfig
├── 1.2.3.4 3
│ └── kubeconfig
└── microshift-rhel9 4
 └── kubeconfig

Red Hat build of MicroShift 4.15 Configuring

6

The localhost kubeconfig file can only be used from a client connecting to the API server from the
same host. The certificates in the file do not work for remote connections.

2.2.1. Accessing the MicroShift cluster locally

Use the following procedure to access the MicroShift cluster locally by using a kubeconfig file.

Prerequisites

You have installed the oc binary.

Procedure

1. Optional: to create a ~/.kube/ folder if your RHEL machine does not have one, run the following
command:

2. Copy the generated local access kubeconfig file to the ~/.kube/ directory by running the
following command:

3. Update the permissions on your ~/.kube/config file by running the following command:

Verification

Verify that MicroShift is running by entering the following command:

2.3. REMOTE ACCESS KUBECONFIG FILES

When a MicroShift cluster connects to the API server from an external source, a certificate with all of the
alternative names in the SAN field is used for validation. MicroShift generates a default kubeconfig for
external access using the hostname value. The defaults are set in the <node.hostnameOverride>,
<node.nodeIP> and api.<dns.baseDomain> parameter values of the default kubeconfig file.

The /var/lib/microshift/resources/kubeadmin/<hostname>/kubeconfig file uses the hostname of the
machine, or node.hostnameOverride if that option is set, to reach the API server. The CA of the
kubeconfig file is able to validate certificates when accessed externally.

Example contents of a default kubeconfig file for remote access

clusters:
- cluster:
 certificate-authority-data: <base64 CA>
 server: https://localhost:6443

$ mkdir -p ~/.kube/

$ sudo cat /var/lib/microshift/resources/kubeadmin/kubeconfig > ~/.kube/config

$ chmod go-r ~/.kube/config

$ oc get all -A

clusters:

CHAPTER 2. CLUSTER ACCESS WITH KUBECONFIG

7

2.3.1. Remote access customization

Multiple remote access kubeconfig file values can be generated for accessing the cluster with different
IP addresses or host names. An additional kubeconfig file generates for each entry in the
apiServer.subjectAltNames parameter. You can copy remote access kubeconfig files from the host
during times of IP connectivity and then use them to access the API server from other workstations.

2.4. GENERATING ADDITIONAL KUBECONFIG FILES FOR REMOTE
ACCESS

You can generate additional kubeconfig files to use if you need more host names or IP addresses than
the default remote access file provides.

IMPORTANT

You must restart MicroShift for configuration changes to be implemented.

Prerequisites

You have created a config.yaml for MicroShift.

Procedure

1. Optional: You can show the contents of the config.yaml. Run the following command:

2. Optional: You can show the contents of the remote-access kubeconfig file. Run the following
command:

IMPORTANT

Additional remote access kubeconfig files must include one of the server names
listed in the Red Hat build of MicroShift config.yaml file. Additional kubeconfig
files must also use the same CA for validation.

3. To generate additional kubeconfig files for additional DNS names SANs or external IP
addresses, add the entries you need to the apiServer.subjectAltNames field. In the following
example, the DNS name used is alt-name-1 and the IP address is 1.2.3.4.

Example config.yaml with additional authentication values

- cluster:
 certificate-authority-data: <base64 CA>
 server: https://microshift-rhel9:6443

$ cat /etc/microshift/config.yaml

$ cat /var/lib/microshift/resources/kubeadmin/<hostname>/kubeconfig

dns:
 baseDomain: example.com
node:
 hostnameOverride: "microshift-rhel9" 1

Red Hat build of MicroShift 4.15 Configuring

8

1

2

3

1

Hostname

DNS name

IP address or range

4. Restart MicroShift to apply configuration changes and auto-generate the kubeconfig files you
need by running the following command:

5. To check the contents of additional remote-access kubeconfig files, insert the name or IP
address as listed in the config.yaml into the cat command. For example, alt-name-1 is used in
the following example command:

6. Choose the kubeconfig file to use that contains the SAN or IP address you want to use to
connect your cluster. In this example, the kubeconfig containing`alt-name-1` in the
cluster.server field is the correct file.

Example contents of an additional kubeconfig file

The /var/lib/microshift/resources/kubeadmin/alt-name-1/kubeconfig file values are
from the apiServer.subjectAltNames configuration values.

NOTE

All of these parameters are included as common names (CN) and subject alternative
names (SAN) in the external serving certificates for the API server.

2.4.1. Opening the firewall for remote access to the MicroShift cluster

Use the following procedure to open the firewall so that a remote user can access the MicroShift
cluster. This procedure must be completed before a workstation user can access the cluster remotely.

For this procedure, user@microshift is the user on the MicroShift host machine and is responsible for
setting up that machine so that it can be accessed by a remote user on a separate workstation.

Prerequisites

 nodeIP: 10.0.0.1
apiServer:
 subjectAltNames:
 - alt-name-1 2
 - 1.2.3.4 3

$ sudo systemctl restart microshift

$ cat /var/lib/microshift/resources/kubeadmin/alt-name-1/kubeconfig

clusters:
- cluster:
 certificate-authority-data: <base64 CA>
 server: https://alt-name-1:6443 1

CHAPTER 2. CLUSTER ACCESS WITH KUBECONFIG

9

You have installed the oc binary.

Your account has cluster administration privileges.

Procedure

As user@microshift on the MicroShift host, open the firewall port for the Kubernetes API
server (6443/tcp) by running the following command:

Verification

As user@microshift, verify that MicroShift is running by entering the following command:

2.4.2. Accessing the MicroShift cluster remotely

Use the following procedure to access the MicroShift cluster from a remote workstation by using a
kubeconfig file.

The user@workstation login is used to access the host machine remotely. The <user> value in the
procedure is the name of the user that user@workstation logs in with to the MicroShift host.

Prerequisites

You have installed the oc binary.

The user@microshift has opened the firewall from the local host.

Procedure

1. As user@workstation, create a ~/.kube/ folder if your RHEL machine does not have one by
running the following command:

2. As user@workstation, set a variable for the hostname of your MicroShift host by running the
following command:

3. As user@workstation, copy the generated kubeconfig file that contains the host name or IP
address you want to connect with from the RHEL machine running MicroShift to your local
machine by running the following command:

NOTE

[user@microshift]$ sudo firewall-cmd --permanent --zone=public --add-port=6443/tcp &&
sudo firewall-cmd --reload

[user@microshift]$ oc get all -A

[user@workstation]$ mkdir -p ~/.kube/

[user@workstation]$ MICROSHIFT_MACHINE=<name or IP address of MicroShift machine>

[user@workstation]$ ssh <user>@$MICROSHIFT_MACHINE "sudo cat
/var/lib/microshift/resources/kubeadmin/$MICROSHIFT_MACHINE/kubeconfig" >
~/.kube/config

Red Hat build of MicroShift 4.15 Configuring

10

NOTE

To generate kubeconfig files for this step, see the "Generating additional kubeconfig
files for remote access" link in the additional resources section.

1. As user@workstation, update the permissions on your ~/.kube/config file by running the
following command:

Verification

As user@workstation, verify that MicroShift is running by entering the following command:

$ chmod go-r ~/.kube/config

[user@workstation]$ oc get all -A

CHAPTER 2. CLUSTER ACCESS WITH KUBECONFIG

11

CHAPTER 3. CHECKING GREENBOOT SCRIPTS STATUS
To deploy applications or make other changes through the MicroShift API with tools other than
kustomize manifests, you must wait until the Greenboot health checks have finished. This ensures that
your changes are not lost if Greenboot rolls your rpm-ostree system back to an earlier state.

The greenboot-healthcheck service runs one time and then exits. After Greenboot has exited and the
system is in a healthy state, you can proceed with configuration changes and deployments.

3.1. CHECKING THE STATUS OF GREENBOOT HEALTH CHECKS

Check the status of Greenboot health checks before making changes to the system or during
troubleshooting. You can use any of the following commands to help you ensure that Greenboot scripts
have finished running.

Procedure

To see a report of health check status, use the following command:

An output of start means that Greenboot checks are still running.

An output of exited means that checks have passed and Greenboot has exited. Greenboot
runs the scripts in the green.d directory when the system is a healthy state.

An output of failed means that checks have not passed. Greenboot runs the scripts in red.d
directory when the system is in this state and might restart the system.

To see a report showing the numerical exit code of the service where 0 means success and non-
zero values mean a failure occurred, use the following command:

To see a report showing a message about boot status, such as Boot Status is GREEN - Health
Check SUCCESS, use the following command:

$ systemctl show --property=SubState --value greenboot-healthcheck.service

$ systemctl show --property=ExecMainStatus --value greenboot-healthcheck.service

$ cat /run/motd.d/boot-status

Red Hat build of MicroShift 4.15 Configuring

12

	Table of Contents
	CHAPTER 1. HOW CONFIGURATION TOOLS WORK
	1.1. DEFAULT SETTINGS
	1.2. USING A YAML CONFIGURATION FILE
	1.2.1. Custom settings
	1.2.2. Configuring the advertise address network flag
	1.2.3. Extending the port range for NodePort services

	1.3. ADDITIONAL RESOURCES

	CHAPTER 2. CLUSTER ACCESS WITH KUBECONFIG
	2.1. KUBECONFIG FILES FOR CONFIGURING CLUSTER ACCESS
	2.2. LOCAL ACCESS KUBECONFIG FILE
	2.2.1. Accessing the MicroShift cluster locally

	2.3. REMOTE ACCESS KUBECONFIG FILES
	2.3.1. Remote access customization

	2.4. GENERATING ADDITIONAL KUBECONFIG FILES FOR REMOTE ACCESS
	2.4.1. Opening the firewall for remote access to the MicroShift cluster
	2.4.2. Accessing the MicroShift cluster remotely

	CHAPTER 3. CHECKING GREENBOOT SCRIPTS STATUS
	3.1. CHECKING THE STATUS OF GREENBOOT HEALTH CHECKS

