& RedHat

Red Hat build of Eclipse Vert.x 4.3

Getting started with Eclipse Vert.x

For use with Eclipse Vert.x 4.3.7

Last Updated: 2023-02-16

Red Hat build of Eclipse Vert.x 4.3 Getting started with Eclipse Vert.x

For use with Eclipse Vert.x 4.3.7

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to create a simple Eclipse Vert.x application with Apache Maven.

Table of Contents

Table of Contents

CHAPTER 1. PREREQUISITES TO GETSTARTED ... i i 3
CHAPTER 2. OVERVIEW OF ECLIPSE VERT . X .. i i et 4
2.1.KEY CONCEPTS OF ECLIPSE VERT.X 4
CHAPTER 3. CREATING AN ECLIPSE VERT.XPROJECTWITHAPOMFILEo, 6
CHAPTER 4. TESTING YOUR ECLIPSE VERT. X APPLICATIONWITHJUNIT, 10
CHAPTER 5. OTHER WAYS TO CREATE ECLIPSE VERT.XPROJECTSt 12
5.1. CREATING A ECLIPSE VERT.X PROJECT ON THE COMMAND LINE 12
5.2. CREATING A ECLIPSE VERT.X PROJECT USING THE COMMUNITY VERT.X STARTER 15

CHAPTER 6. CONFIGURING THE APACHE MAVEN REPOSITORY FOR YOUR ECLIPSE VERT.X PROJECTS ..

18
6.1. CONFIGURING THE MAVEN SETTINGS. XML FILE FOR THE ONLINE REPOSITORY 18
6.2. DOWNLOADING AND CONFIGURING THE ECLIPSE VERT.X MAVEN REPOSITORY 19

CHAPTER 7. ADDITIONAL RESOURCES ... i i e e it et 21

Red Hat build of Eclipse Vert.x 4.3 Getting started with Eclipse Vert.x

CHAPTER 1. PREREQUISITES TO GET STARTED

CHAPTER 1. PREREQUISITES TO GET STARTED

This guide covers concepts as well as practical details needed by developers to use the Eclipse Vert.x
runtime.

As an application developer, you can use Eclipse Vert.x to create microservices-based applications
written in Java that run in OpenShift environments.

This guide shows you how to create, package, run and test a simple Eclipse Vert.x project.

Prerequisites

® OpendDK 8 or OpendDK 11is installed and the JAVA_HOME environment variable specifies the
location of the Java SDK. Log in to the Red Hat Customer Portal to download Red Hat build of
Open JDK from the Software Downloads.

® Apache Maven 3.6.0 or higher is installed. You can download Maven from the Apache Maven
Project website.

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html
https://maven.apache.org/

Red Hat build of Eclipse Vert.x 4.3 Getting started with Eclipse Vert.x

CHAPTER 2. OVERVIEW OF ECLIPSE VERT.X

Eclipse Vert.x is a toolkit used for creating reactive, non-blocking, and asynchronous applications that
run on the Java Virtual Machine (JVM).

Eclipse Vert.x is designed to be cloud-native. It allows applications to use very few threads. This avoids
the overhead caused when new threads are created. This enables Eclipse Vert.x applications and services
to effectively use their memory as well as CPU quotas in cloud environments.

Using the Eclipse Vert.x runtime in OpenShift makes it simpler and easier to build reactive systems. The
OpenShift platform features, such as, rolling updates, service discovery, and canary deployments, are
also available. With OpenShift, you can implement microservice patterns, such as externalized
configuration, health check, circuit breaker, and failover, in your applications.

2.1. KEY CONCEPTS OF ECLIPSE VERT.X

This section describes some key concepts associated with the Eclipse Vert.x runtime. It also provides a
brief overview of reactive systems.

Cloud and Container-Native Applications

Cloud-native applications are typically built using microservices. They are designed to form distributed
systems of decoupled components. These components usually run inside containers, on top of clusters
that contain a large number of nodes. These applications are expected to be resistant to the failure of
individual components, and may be updated without requiring any service downtime. Systems based on
cloud-native applications rely on automated deployment, scaling, and administrative and maintenance
tasks provided by an underlying cloud platform, such as, OpenShift. Management and administration
tasks are carried out at the cluster level using off-the-shelf management and orchestration tools, rather
than on the level of individual machines.

Reactive Systems

A reactive system, as defined in the reactive manifesto, is a distributed systems with the following
characteristics:

Elastic

The system remains responsive under varying workload, with individual components scaled and load-
balanced as necessary to accommodate the differences in workload. Elastic applications deliver the
same quality of service regardless of the number of requests they receive at the same time.

Resilient

The system remains responsive even if any of its individual components fail. In the system, the
components are isolated from each other. This helps individual components to recover quickly in
case of failure. Failure of a single component should never affect the functioning of other
components. This prevents cascading failure, where the failure of an isolated component causes
other components to become blocked and gradually fail.

Responsive

Responsive systems are designed to always respond to requests in a reasonable amount of time to
ensure a consistent quality of service. To maintain responsiveness, the communication channel
between the applications must never be blocked.

Message-Driven

The individual components of an application use asynchronous message-passing to communicate
with each other. If an event takes place, such as a mouse click or a search query on a service, the
service sends a message on the common channel, that is, the event bus. The messages are in turn
caught and handled by the respective component.

https://reactivemanifesto.org

CHAPTER 2. OVERVIEW OF ECLIPSE VERT.X

Reactive Systems are distributed systems. They are designed so that their asynchronous properties can
be used for application development.

Reactive Programming

While the concept of reactive systems describes the architecture of a distributed system, reactive
programming refers to practices that make applications reactive at the code level. Reactive
programming is a development model to write asynchronous and event-driven applications. In reactive
applications, the code reacts to events or messages.

There are several implementations of reactive programming. For example, simple implementations using
callbacks, complex implementations using Reactive Extensions (Rx), and coroutines.

The Reactive Extensions (Rx) is one of the most mature forms of reactive programming in Java. It uses
the RxJava library.

Red Hat build of Eclipse Vert.x 4.3 Getting started with Eclipse Vert.x

CHAPTER 3. CREATING AN ECLIPSE VERT.X PROJECT WITH
APOMFILE

When you develop a basic Eclipse Vert.x application, you should create the following artifacts. We will
create these artifacts in our first getting-started Eclipse Vert.x project.

® A Java class containing Eclipse Vert.x methods.
e A pom.xml file containing information required by Maven to build the application.

The following procedure creates a simple Greeting application that returns Greetings! as response.

NOTE
Eclipse Vert.x supports builder images based on OpenJDK 8 and OpenJDK 11 for building

and deploying your applications to OpenShift. Oracle JDK and OpenJDK 9 builder images
are not supported.

Prerequisites
® OpendDK 8 or OpendDK 11is installed.

® Maven is installed.

Procedure

1. Create a new directory getting-started, and navigate to it.

$ mkdir getting-started
$ cd getting-started

This is the root directory for the application.

2. Create a directory structure src/main/java/com/example/ in the root directory, and navigate to
it.

$ mkdir -p src/main/java/com/example/
$ cd src/main/java/com/example/

3. Create a Java class file MyApp.java containing the application code.

package com.example;

import io.vertx.core.AbstractVerticle;
import io.vertx.core.Promise;

public class MyApp extends AbstractVerticle {

@Override
public void start(Promise<Void> promise) {
vertx
.createHttpServer()
.requestHandler(r ->
r.response().end("Greetings!"))

CHAPTER 3. CREATING AN ECLIPSE VERT.X PROJECT WITH APOM FILE

listen(8080, result -> {
if (result.succeeded()) {
promise.complete();
}else {
promise.fail(result.cause());

D;
}
}

The application starts an HTTP Server on port 8080. When you send a request, it returns
Greetings! message.

4. Create a pom.xml file in the application root directory getting-started with the following
content:

In the <dependencyManagements section, add the io.vertx:vertx-dependencies artifact.
Specify the type as pom and scope as import.

In the <projects section, under <propertiess, specify the versions of Eclipse Vert.x and the
Eclipse Vert.x Maven Plugin.

NOTE

Properties can be used to set values that change in every release. For
example, versions of product or plugins.

In the <project> section, under <plugin>, specify vertx-maven-plugin. The Eclipse Vert.x
Maven Plugin is used to package your application.

Include repositories and pluginRepositories to specify the repositories that contain the
artifacts and plugins to build your application.
The pom.xml contains the following artifacts:

<?xml version="1.0" encoding="UTF-8"7>
<project xmIns="http://maven.apache.org/POM/4.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupld>com.example</groupld>
<artifactld>my-app</artifactid>
<version>1.0.0-SNAPSHOT </version>
<packaging>jar</packaging>

<name>My Application</name>
<description>Example application using Vert.x</description>

<properties>
<vertx.version>4.3.7.redhat-00002</vertx.version>
<vertx-maven-plugin.version>1.0.24</vertx-maven-plugin.version>
<vertx.verticle>com.example.MyApp</vertx.verticle>

Red Hat build of Eclipse Vert.x 4.3 Getting started with Eclipse Vert.x

<maven.compiler.source>1.8</maven.compiler.source>

<maven.compiler.target>1.8</maven.compiler.target>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
</properties>

<!-- Import dependencies from the Vert.x BOM. -->
<dependencyManagement>
<dependencies>
<dependency>
<groupld>io.vertx</groupld>
<artifactld>vertx-dependencies</artifactld>
<version>${vertx.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<!I-- Specify the Vert.x artifacts that your application depends on. -->
<dependencies>
<dependency>
<groupld>io.vertx</groupld>
<artifactld>vertx-core</artifactld>
</dependency>
<dependency>
<groupld>io.vertx</groupld>
<artifactld>vertx-web</artifactld>
</dependency>

<!I-- Test dependencies -->

<dependency>
<groupld>io.vertx</groupld>
<artifactld>vertx-junits</artifactld>
<scope>test</scope>

</dependency>

<dependency>
<groupld>org.junit.jupiter</groupld>
<artifactld>junit-jupiter-engine</artifactld>
<version>5.4.0</version>
<scope>test</scope>

</dependency>

</dependencies>

<!I-- Specify the repositories containing Vert.x artifacts. -->
<repositories>
<repository>
<id>redhat-ga</id>
<name>Red Hat GA Repository</name>
<url>https://maven.repository.redhat.com/ga/</url>
</repository>
</repositories>

<!I-- Specify the version of the Maven Surefire plugin. -->
<build>

CHAPTER 3. CREATING AN ECLIPSE VERT.X PROJECT WITH APOM FILE

<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupld>
<artifactld>maven-surefire-plugin</artifactid>
<version>3.0.0-Mb5</version>
</plugin>
<plugin>

<!I-- Configure your application to be packaged using the Vert.x Maven Plugin. -->
<groupld>io.reactiverse</groupld>
<artifactld>vertx-maven-plugin</artifactid>
<version>${vertx-maven-plugin.version}</version>
<executions>
<execution>
<id>vmp</id>
<goals>
<goal>initialize</goal>
<goal>package</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

5. Build the application using Maven from the root directory of the application.
I mvn vertx:run

6. Verify that the application is running.
Use curl or your browser to verify if your application is running at http://localhost:8080 and
returns "Greetings!" as response.

$ curl http://localhost:8080
Greetings!

http://localhost:8080

Red Hat build of Eclipse Vert.x 4.3 Getting started with Eclipse Vert.x

CHAPTER 4. TESTING YOUR ECLIPSE VERT.X APPLICATION
WITH JUNIT

After you build your Eclipse Vert.x application in the getting-started project, test your application with
the JUnit 5 framework to ensure that it runs as expected. The following two dependencies in the Eclipse
Vert.x pom.xml file are used for JUnit 5 testing:

<dependency>

<groupld>io.vertx</groupld>
<artifactld>vertx-junits</artifactld>
<scope>test</scope>

</dependency>

<dependency>
<groupld>org.junit.jupiter</groupld>
<artifactld>junit-jupiter-engine</artifactld>
<version>5.4.0</version>
<scope>test</scope>

</dependency>

® The vertx-junit5 dependency is required for testing. JUnit 5 provides various annotations, such
as, @Test, @BeforeEach, @DisplayName, and so on which are used to request asynchronous
injection of Vertx and VertxTestContext instances.

® The junit-jupiter-engine dependency is required for execution of tests at runtime.

Prerequisites

® You have built the Eclipse Vert.x getting-started project using the pom.xml file.

Procedure

1. Open the generated pom.xml file and set the version of the Surefire Maven plug-in:
<plugin>
<groupld>org.apache.maven.plugins</groupld>
<artifactld>maven-surefire-plugin</artifactid>

<version>3.0.0-M5</version>
</plugin>

2. Create a directory structure src/test/java/com/example/ in the root directory, and navigate to
it.

$ mkdir -p src/test/java/com/example/
$ cd src/test/java/com/example/

3. Create a Java class file MyTestApp.java containing the application code.
package com.example;
import static org.junit.jupiter.api.Assertions.assertEquals;
import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.DisplayName;

10

CHAPTER 4. TESTING YOUR ECLIPSE VERT.X APPLICATION WITH JUNIT

import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;

import io.vertx.core.Vertx;

import io.vertx.core.http.HttpMethod;
import io.vertx.junit5.VertxExtension;
import io.vertx.junit5.VertxTestContext;

@ExtendWith(VertxExtension.class)
class MyAppTest {

@BeforeEach
void prepare(Vertx vertx, VertxTestContext testContext) {
// Deploy the verticle
vertx.deployVerticle(new MyApp())
.onSuccess(ok -> testContext.completeNow())
.onFailure(failure -> testContext.failNow(failure));

}

@Test
@DisplayName("Smoke test: check that the HTTP server responds”)
void smokeTest(Vertx vertx, VertxTestContext testContext) {
// Issue an HTTP request
vertx.createHttpClient()
.request(HttpMethod.GET, 8080, "127.0.0.1", "/")
.compose(request -> request.send())
.compose(response -> response.body())
.onSuccess(body -> testContext.verify(() -> {
// Check the response
assertEquals("Greetings!", body.toString());
testContext.completeNow();
)
.onFailure(failure -> testContext.failNow(failure));
}
}

4. To run the JUnit test on my application using Maven run the following command from the root
directory of the application.

I mvn clean verify

You can check the test results in the target/surefire-reports. The
com.example.MyAppTest.txt file contains the test results.

1

Red Hat build of Eclipse Vert.x 4.3 Getting started with Eclipse Vert.x

CHAPTER 5. OTHER WAYS TO CREATE ECLIPSE VERT.X

PROJECTS

This section shows the different ways in which you can create Eclipse Vert.x projects.

5.1. CREATING A ECLIPSE VERT.X PROJECT ON THE COMMAND LINE

You can use the Eclipse Vert.x Maven plug-in on the command line to create a Eclipse Vert.x project.
You can specify the attributes and values on the command line.

Prerequisites

OpenJDK 8 or OpendDK 11is installed.
Maven 3 or higher is installed.
A text editor or IDE is available.

Curl or HTTPie or a browser to perform HTTP requests is available.

Procedure

12

1.

In a command terminal, enter the following command to verify that Maven is using OpenJDK 8
or OpendJDK 11 and the Maven version is 3.6.0 or higher:

I mvn --version

If the preceding command does not return OpenJDK 8 or OpenJDK 11, add the path to
OpenJDK 8 or OpendDK 11 to the PATH environment variable and enter the command again.

Create a directory and go to the directory location.

I mkdir getting-started && cd getting-started

Use the following command to create a new project using the Eclipse Vert.x Maven plug-in.

mvn io.reactiverse:vertx-maven-plugin:${vertx-maven-plugin-version}:setup -
DvertxBom=vertx-dependencies \

-DvertxVersion=${vertx_version} \

-DprojectGroupld= ${project_group_id} \

-DprojectArtifactld= ${project_artifact_id} \
-DprojectVersion=${project-version} \

-Dverticle=${verticle_class} \

-Ddependencies=${dependency_names}

The following example shows you how you can create an Eclipse Vert.x application using the
command explained.

mvn io.reactiverse:vertx-maven-plugin:1.0.24:setup -DvertxBom=vertx-dependencies \
-DvertxVersion=4.3.7.redhat-00002 \

-DprojectGroupld=io.vertx.myapp \

-DprojectArtifactld=my-new-project \

-DprojectVersion=1.0-SNAPSHOT \

CHAPTER 5. OTHER WAYS TO CREATE ECLIPSE VERT.X PROJECTS

-DvertxVersion=4.3.7.redhat-00002 \
-Dverticle=io.vertx.myapp.MainVerticle \
-Ddependencies=web

The following table lists the attributes that you can define with the setup command:

Attribute Default Value Description

vertx_version The version of Eclipse Vert.x. The version of Eclipse Vert.x
you want to use in your project.

project_group_id io.vertx.example A unique identifier of your
project.
project_artifact_id my-vertx-project The name of your project and

your project directory. If you
do not specify the
project_artifact_id, the
Maven plug-in starts the
interactive mode. If the
directory already exists, the
generation fails.

project-version 1.0-SNAPSHOT The version of your project.
verticle_class io.vertx.example.MainVerti The new verticle class file
cle created by the verticle
parameter.

13

Red Hat build of Eclipse Vert.x 4.3 Getting started with Eclipse Vert.x

14

Attribute Default Value Description

dependency_names Optional parameter The list of dependencies you
want to add to your project
separated by comma. You can
also use the following syntax to
configure the dependencies:

groupld:artifactld:version:
classifier

For example:

- To inherit the version from
BOM use the following syntax:

io.vertx:vertxcodetrans

- To specify dependency use
the following syntax:

commons-io:commons-
io:2.5

- To specify dependency with
a classifier use the following
syntax:
io.vertx:vertx-template-
engines:3.4.1:shaded
The command creates an empty Eclipse Vert.x project with the following artifacts in the getting-
started directory:

® The Maven build descriptor pom.xml configured to build and run your application

® Example verticle in the src/main/java folder

. In the pom.xml file, specify the repositories that contain the Eclipse Vert.x artifacts to build

your application.

<repositories>
<repository>
<id>redhat-ga</id>
<name>Red Hat GA Repository</name>
<url>https://maven.repository.redhat.com/ga/</url>
</repository>
</repositories>

Alternatively, you can configure the Maven repository to specify the build artifacts in the
settings.xml file. See the section Configuring the Apache Maven repository for your Eclipse
Vert.x projects, for more information.

6. Use the Eclipse Vert.x project as a template to create your own application.

https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/4.3/html-single/eclipse_vert.x_runtime_guide/configuring-apache-maven-repo_other-ways-create-eclipse-vertx-project

7.

8.

CHAPTER 5. OTHER WAYS TO CREATE ECLIPSE VERT.X PROJECTS

Build the application using Maven from the root directory of the application.
I mvn package
Run the application using Maven from the root directory of the application.

I mvn vertx:run

5.2. CREATING A ECLIPSE VERT.X PROJECT USING THE COMMUNITY
VERT.X STARTER

You can use the community Vert.x starter to create a Eclipse Vert.x project. The starter creates a
community project. You will have to convert the community project to a Red Hat build of Eclipse Vert.x

project.

Prerequisites

OpenJDK 8 or OpendDK 11is installed.
Maven 3 or higher is installed.
A text editor or IDE is available.

Curl or HTTPie or a browser to perform HTTP requests is available.

Procedure

1.

In a command terminal, enter the following command to verify that Maven is using OpenJDK 8
or OpendJDK 11 and the Maven version is 3.6.0 or higher:

I mvn --version

If the preceding command does not return OpenJDK 8 or OpenJDK 11, add the path to
OpenJDK 8 or OpendDK 11 to the PATH environment variable and enter the command again.

Go to Vert.x Starter.

Select the Version of Eclipse Vert.x.
Select Java as the language.

Select Maven as the build tool.

Enter a Group Id, which is a unique identifier of your project. For this procedure, keep the
default, com.example.

Enter an Artifact Id, which is the name of your project and your project directory. For this
procedure, keep the default, starter.

Specify the dependencies you want to add to your project. For this procedure, add Vert.x Web

dependency either by typing it in the Dependenciestext box or select from the list of Depen-
dencies.

15

https://start.vertx.io/

Red Hat build of Eclipse Vert.x 4.3 Getting started with Eclipse Vert.x

16

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

Click Advanced options to select the OpenJDK version. For this procedure, keep the default,
JDK .

Click Generate Project. The starter.zip file containing the artifacts for Eclipse Vert.x project is
downloaded.

Create a directory getting-started.

Extract the contents of the ZIP file to the getting-started folder. The Vert.x Starter creates an
Eclipse Vert.x project with the following artifacts:

® Maven build descriptor pom.xml file. The file has configurations to build and run your appli-
cation.

® Example verticle in the src/main/java folder.

® Sample test using JUnit 5 in the src/test/java folder.
e Editor configuration to enforce code style.

® Git configuration to ignore files.

To convert the community project to a Red Hat build of Eclipse Vert.x project, replace the
following values in pom.xml file:

e vertx.version - Specify the Eclipse Vert.x version you want to use. For example, if you want
to use Eclipse Vert.x 4.3.7 version, specify the version as 4.3.7.redhat-00002.

e vertx-stack-depchain - Replace this dependency with vertx-dependencies.

Specify the repositories that contain the Eclipse Vert.x artifacts to build your application in the
pom.xml file.

<repositories>
<repository>
<id>redhat-ga</id>
<name>Red Hat GA Repository</name>
<url>https://maven.repository.redhat.com/ga/</url>
</repository>
</repositories>

Alternatively, you can configure the Maven repository to specify the build artifacts in the
settings.xml file. See the section Configuring the Apache Maven repository for your Eclipse
Vert.x projects, for more information.

Use the Eclipse Vert.x project as a template to create your own application.

Build the application using Maven from the root directory of the application.

I mvn package

Run the application using Maven from the root directory of the application.

I mvn exec:java

Verify that the application is running.

https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/4.3/html-single/eclipse_vert.x_runtime_guide/configuring-apache-maven-repo_other-ways-create-eclipse-vertx-project

CHAPTER 5. OTHER WAYS TO CREATE ECLIPSE VERT.X PROJECTS

Use curl or your browser to verify if your application is running at http://localhost:8888 and
returns "Hello from Vert.x!" as response.

$ curl http://localhost:8888
Hello from Vert.x!

17

http://localhost:8888

Red Hat build of Eclipse Vert.x 4.3 Getting started with Eclipse Vert.x

CHAPTER 6. CONFIGURING THE APACHE MAVEN
REPOSITORY FOR YOUR ECLIPSE VERT.X PROJECTS

Apache Maven is a distributed build automation tool used in Java application development to create,
manage, and build software projects. Maven uses standard configuration files called Project Object
Model (POM) files to define projects and manage the build process. POM files describe the module and
component dependencies, build order, and targets for the resulting project packaging and output using
an XML file. This ensures that the project is built in a correct and uniform manner.

Maven plug-ins

Maven plug-ins are defined parts of a POM file that achieve one or more goals. Eclipse Vert.x
applications use the following Maven plug-ins:

® Eclipse Vert.x Maven plug-in (vertx-maven-plugin): Enables Maven to create Eclipse Vert.x
projects, supports the generation of uber-JAR files, and provides a development mode.

® Maven Surefire plug-in (maven-surefire-plugin): Used during the test phase of the build life
cycle to execute unit tests on your application. The plug-in generates text and XML files that
contain the test reports.

Maven repositories

A Maven repository stores Java libraries, plug-ins, and other build artifacts. The default public
repository is the Maven 2 Central Repository, but repositories can be private and internal within a
company to share common artifacts among development teams. Repositories are also available from
third-parties.

With your Eclipse Vert.x projects, you can use:
® Online Maven repository

® Download the Eclipse Vert.x Maven repository

6.1. CONFIGURING THE MAVENSsETTINGS. XML FILE FOR THE ONLINE
REPOSITORY

You can use the online Eclipse Vert.x repository with your Eclipse Vert.x Maven project by configuring
your user settings.xml file. This is the recommended approach. Maven settings used with a repository
manager or repository on a shared server provide better control and manageability of projects.

NOTE

When you configure the repository by modifying the Maven settings.xml file, the
changes apply to all of your Maven projects.

Procedure

1. Open the Maven ~/.m2/settings.xml file in a text editor or integrated development
environment (IDE).

18

CHAPTER 6. CONFIGURING THE APACHE MAVEN REPOSITORY FOR YOUR ECLIPSE VERT.X PROJECTS

NOTE

If the settings.xml file is not available in the ~/.m2/directory, copy the
settings.xml file from the $SMAVEN_HOME/.m2/conf/ directory into the ~/.m2/
directory.

2. Add the following lines to the <profiles> element of the settings.xml file:

<!I-- Configure the Maven repository -->
<profile>
<id>red-hat-enterprise-maven-repository</id>
<repositories>
<repository>
<id>red-hat-enterprise-maven-repository</id>
<url>https://maven.repository.redhat.com/ga/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</profile>

3. Add the following lines to the <activeProfiles> element of the settings.xml file and save the
file.

I <activeProfile>red-hat-enterprise-maven-repository</activeProfile>

6.2. DOWNLOADING AND CONFIGURING THE ECLIPSE VERT.X
MAVEN REPOSITORY

If you do not want to use the online Maven repository, you can download and configure the Eclipse
Vert.x Maven repository to create a Eclipse Vert.x application with Maven. The Eclipse Vert.x Maven
repository contains many of the requirements that Java developers typically use to build their
applications. This procedure describes how to edit the settings.xml file to configure the Eclipse Vert.x
Maven repository.

NOTE

When you configure the repository by modifying the Maven settings.xml file, the
changes apply to all of your Maven projects.

Procedure

1. Download the Eclipse Vert.x Maven repository ZIP file from the Software Downloads page of
the Red Hat Customer Portal. To download the software, you must log in to the portal.

2. Expand the downloaded archive.

3. Change directory to the ~/.m2/ directory and open the Maven settings.xml file in a text editor
or integrated development environment (IDE).

19

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

Red Hat build of Eclipse Vert.x 4.3 Getting started with Eclipse Vert.x

4. Add the following lines to the <profiles> element of the settings.xml file, where
MAVEN_REPOSITORY is the path of the Eclipse Vert.x Maven repository that you
downloaded. The format of MAVEN_REPOSITORY must be file://$PATH, for example
file:///home/userX/rhb-vertx-4.1.5.SP1-maven-repository/maven-repository.

<!I-- Configure the Maven repository -->
<profile>
<id>red-hat-enterprise-maven-repository</id>
<repositories>
<repository>
<id>red-hat-enterprise-maven-repository</id>
<url>MAVEN_REPOQOSITORY</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</profile>

5. Add the following lines to the <activeProfiles> element of the settings.xml file and save the
file.

I <activeProfile>red-hat-enterprise-maven-repository</activeProfile>

IMPORTANT

If your Maven repository contains outdated artifacts, you might get one of the following
Maven error messages when you build or deploy your project, where ARTIFACT_NAME is
the name of a missing artifact and PROJECT_NAME is the name of the project you are
trying to build:

e Missing artifact PROJECT_NAME

e [ERROR] Failed to execute goal on project ARTIFACT_NAME; Could not
resolve dependencies for PROJECT_NAME

To resolve the issue, delete the cached version of your local repository located in the
~/.m2/repository directory to force a download of the latest Maven artifacts.

20

CHAPTER 7. ADDITIONAL RESOURCES

CHAPTER 7. ADDITIONAL RESOURCES

® For more information about the Maven Surefire plug-in, see the Apache Maven Project website.

e Forinformation about the JUnit 5 testing framework, see the JUnit 5 website.

21

https://maven.apache.org/
https://junit.org/junit5/

	Table of Contents
	CHAPTER 1. PREREQUISITES TO GET STARTED
	CHAPTER 2. OVERVIEW OF ECLIPSE VERT.X
	2.1. KEY CONCEPTS OF ECLIPSE VERT.X

	CHAPTER 3. CREATING AN ECLIPSE VERT.X PROJECT WITH A POM FILE
	CHAPTER 4. TESTING YOUR ECLIPSE VERT.X APPLICATION WITH JUNIT
	CHAPTER 5. OTHER WAYS TO CREATE ECLIPSE VERT.X PROJECTS
	5.1. CREATING A ECLIPSE VERT.X PROJECT ON THE COMMAND LINE
	5.2. CREATING A ECLIPSE VERT.X PROJECT USING THE COMMUNITY VERT.X STARTER

	CHAPTER 6. CONFIGURING THE APACHE MAVEN REPOSITORY FOR YOUR ECLIPSE VERT.X PROJECTS
	6.1. CONFIGURING THE MAVEN SETTINGS.XML FILE FOR THE ONLINE REPOSITORY
	6.2. DOWNLOADING AND CONFIGURING THE ECLIPSE VERT.X MAVEN REPOSITORY

	CHAPTER 7. ADDITIONAL RESOURCES

