
Red Hat Ansible Automation Platform
2.4

Creating and Consuming Execution
Environments

Create and use execution environments with Ansible Builder

Last Updated: 2024-04-19

Red Hat Ansible Automation Platform 2.4 Creating and Consuming
Execution Environments

Create and use execution environments with Ansible Builder

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide shows how to create consistent and reproducible automation execution environments
for your Red Hat Ansible Automation Platform.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. INTRODUCTION TO AUTOMATION EXECUTION ENVIRONMENTS
1.1. ABOUT AUTOMATION EXECUTION ENVIRONMENTS

1.1.1. Why use automation execution environments?

CHAPTER 2. USING ANSIBLE BUILDER
2.1. WHY USE ANSIBLE BUILDER?
2.2. INSTALLING ANSIBLE BUILDER
2.3. BUILDING A DEFINITION FILE
2.4. BUILDING THE AUTOMATION EXECUTION ENVIRONMENT IMAGE
2.5. BREAKDOWN OF DEFINITION FILE CONTENT

2.5.1. Build args and base image
2.5.1.1. Galaxy
2.5.1.2. Python
2.5.1.3. System

2.5.2. Images
2.5.3. Additional build files
2.5.4. Additional custom build steps
2.5.5. Additional resources

2.6. OPTIONAL BUILD COMMAND ARGUMENTS
2.7. CONTAINERFILE
2.8. CREATING A CONTAINERFILE WITHOUT BUILDING AN IMAGE

CHAPTER 3. COMMON AUTOMATION EXECUTION ENVIRONMENT SCENARIOS
3.1. UPDATING THE AUTOMATION HUB CA CERTIFICATE
3.2. USING AUTOMATION HUB AUTHENTICATION DETAILS WHEN BUILDING AUTOMATION EXECUTION
ENVIRONMENTS
3.3. ADDITIONAL RESOURCES

CHAPTER 4. PUBLISHING AN AUTOMATION EXECUTION ENVIRONMENT
4.1. CUSTOMIZING AN EXISTING AUTOMATION EXECUTION ENVIRONMENTS IMAGE
4.2. ADDITIONAL RESOURCES (OR NEXT STEPS)

CHAPTER 5. POPULATING YOUR PRIVATE AUTOMATION HUB CONTAINER REGISTRY
5.1. PULLING IMAGES FOR USE IN AUTOMATION HUB
5.2. TAGGING IMAGES FOR USE IN AUTOMATION HUB
5.3. PUSHING A CONTAINER IMAGE TO PRIVATE AUTOMATION HUB

CHAPTER 6. SETTING UP YOUR CONTAINER REPOSITORY
6.1. PREREQUISITES TO SETTING UP YOUR CONTAINER REGISTRY
6.2. ADDING A README TO YOUR CONTAINER REPOSITORY
6.3. PROVIDING ACCESS TO YOUR CONTAINER REPOSITORY
6.4. TAGGING CONTAINER IMAGES
6.5. CREATING A CREDENTIAL IN AUTOMATION CONTROLLER

CHAPTER 7. PULLING IMAGES FROM A CONTAINER REPOSITORY
7.1. PULLING AN IMAGE
7.2. SYNCING IMAGES FROM A CONTAINER REPOSITORY

4

5

6

7
7
7

8
8
8
8

10
10
10
11
11

12
12
13
13
14
14
15
15

16
16

16
17

18
18

20

21
21
22
22

24
24
24
24
25
25

27
27
27

Table of Contents

1

. .APPENDIX A. AUTOMATION EXECUTION ENVIRONMENTS PRECEDENCE 29

Red Hat Ansible Automation Platform 2.4 Creating and Consuming Execution Environments

2

Table of Contents

3

PREFACE
Use Ansible Builder to create consistent and reproducible automation execution environments for your
Red Hat Ansible Automation Platform needs.

Red Hat Ansible Automation Platform 2.4 Creating and Consuming Execution Environments

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
If you have a suggestion to improve this documentation, or find an error, please contact technical
support at https://access.redhat.com to create an issue on the Ansible Automation Platform Jira
project using the docs-product component.

Red Hat Ansible Automation Platform 2.4 Creating and Consuming Execution Environments

6

https://access.redhat.com

CHAPTER 1. INTRODUCTION TO AUTOMATION EXECUTION
ENVIRONMENTS

Using Ansible content that depends on non-default dependencies can be complicated because the
packages must be installed on each node, interact with other software installed on the host system, and
be kept in sync.

Automation execution environments help simplify this process and can easily be created with Ansible
Builder.

1.1. ABOUT AUTOMATION EXECUTION ENVIRONMENTS

All automation in Red Hat Ansible Automation Platform runs on container images called automation
execution environments. Automation execution environments create a common language for
communicating automation dependencies, and offer a standard way to build and distribute the
automation environment.

An automation execution environment should contain the following:

Ansible 2.9 or Ansible Core 2.11-2.15

Python 3.8-3.11

Ansible Runner

Ansible content collections and their dependencies

System dependencies

1.1.1. Why use automation execution environments?

With automation execution environments, Red Hat Ansible Automation Platform has transitioned to a
distributed architecture by separating the control plane from the execution plane. Keeping automation
execution independent of the control plane results in faster development cycles and improves
scalability, reliability, and portability across environments. Red Hat Ansible Automation Platform also
includes access to Ansible content tools, making it easy to build and manage automation execution
environments.

In addition to speed, portability, and flexibility, automation execution environments provide the
following benefits:

They ensure that automation runs consistently across multiple platforms and make it possible to
incorporate system-level dependencies and collection-based content.

They give Red Hat Ansible Automation Platform administrators the ability to provide and
manage automation environments to meet the needs of different teams.

They allow automation to be easily scaled and shared between teams by providing a standard
way of building and distributing the automation environment.

They enable automation teams to define, build, and update their automation environments
themselves.

Automation execution environments provide a common language to communicate automation
dependencies.

CHAPTER 1. INTRODUCTION TO AUTOMATION EXECUTION ENVIRONMENTS

7

CHAPTER 2. USING ANSIBLE BUILDER
Ansible Builder is a command line tool that automates the process of building automation execution
environments by using metadata defined in various Ansible Collections or created by the user.

2.1. WHY USE ANSIBLE BUILDER?

Before Ansible Builder was developed, Red Hat Ansible Automation Platform users could run into
dependency issues and errors when creating custom virtual environments or containers that included all
of the required dependencies installed.

Now, with Ansible Builder, you can easily create a customizable automation execution environments
definition file that specifies the content you want included in your automation execution environments
such as Ansible Core, Python, Collections, third-party Python requirements, and system level packages.
This allows you to fulfill all of the necessary requirements and dependencies to get jobs running.

2.2. INSTALLING ANSIBLE BUILDER

Prerequisites

You have installed the Podman container runtime.

You have valid subscriptions attached on the host. Doing so allows you to access the
subscription-only resources needed to install ansible-builder, and ensures that the necessary
repository for ansible-builder is automatically enabled. See Attaching your Red Hat Ansible
Automation Platform subscription for more information.

Procedure

1. In your terminal, run the following command to activate your Ansible Automation Platform repo:

dnf install --enablerepo=ansible-automation-platform-2.4-for-rhel-9-x86_64-rpms ansible-
builder

2.3. BUILDING A DEFINITION FILE

After you install Ansible Builder, you can create a definition file that Ansible Builder uses to create your
automation execution environment image. Ansible Builder makes an automation execution environment
image by reading and validating your definition file, then creating a Containerfile, and finally passing the
Containerfile to Podman, which then packages and creates your automation execution environment
image. The definition file that you create must be in yaml format and contain different sections. The
default definition filename, if not provided, is execution-environment.yml. For more information on the
parts of a definition file, see Breakdown of definition file content .

The following is an example of a version 3 definition file. Each definition file must specify the major
version number of the Ansible Builder feature set it uses. If not specified, Ansible Builder defaults to
version 1, making most new features and definition keywords unavailable.

Example 2.1. Definition file example

version: 3

build_arg_defaults: 1

Red Hat Ansible Automation Platform 2.4 Creating and Consuming Execution Environments

8

https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.4/html-single/red_hat_ansible_automation_platform_planning_guide/index#proc-attaching-subscriptions_planning

1

2

3

4

5

 ANSIBLE_GALAXY_CLI_COLLECTION_OPTS: '--pre'

dependencies: 2
 galaxy: requirements.yml
 python:
 - six
 - psutil
 system: bindep.txt

images: 3
 base_image:
 name: registry.redhat.io/ansible-automation-platform-24/ee-minimal-rhel9:latest

Custom package manager path for the RHEL based images
 options: 4
 package_manager_path: /usr/bin/microdnf

additional_build_steps: 5
 prepend_base:
 - RUN echo This is a prepend base command!

 prepend_galaxy:
 # Environment variables used for Galaxy client configurations
 - ENV ANSIBLE_GALAXY_SERVER_LIST=automation_hub
 - ENV
ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_URL=https://console.redhat.com/api/automati
on-hub/content/xxxxxxx-synclist/
 - ENV
ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_AUTH_URL=https://sso.redhat.com/auth/real
ms/redhat-external/protocol/openid-connect/token
 # define a custom build arg env passthru - we still also have to pass
 # `--build-arg ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_TOKEN` to get it to pick it
up from the env
 - ARG ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_TOKEN

 prepend_final: |
 RUN whoami
 RUN cat /etc/os-release
 append_final:
 - RUN echo This is a post-install command!
 - RUN ls -la /etc

Lists default values for build arguments.

Specifies the location of various requirements files.

Specifies the base image to be used. Red Hat support is only provided for the redhat.registry.io
base image.

Specifies options that can affect builder runtime functionality.

Commands for additional custom build steps.

Additional resources

CHAPTER 2. USING ANSIBLE BUILDER

9

Additional resources

For more information about the definition file content, see Breakdown of definition file content .

To read more about the differences between Ansible Builder versions 2 and 3, see the Ansible 3
Porting Guide.

2.4. BUILDING THE AUTOMATION EXECUTION ENVIRONMENT IMAGE

After you create a definition file, you can proceed to build an automation execution environment image.

Prerequisites

You have created a definition file.

Procedure

To build an automation execution environment image, run the following from the command line:

$ ansible-builder build

By default, Ansible Builder looks for a definition file named execution-environment.yml but a different
file path can be specified as an argument with the -f flag:

$ ansible-builder build -f definition-file-name.yml

where definition-file-name specifies the name of your definition file.

2.5. BREAKDOWN OF DEFINITION FILE CONTENT

A definition file is required for building automation execution environments with Ansible Builder,
because it specifies the content that is included in the automation execution environment container
image.

The following sections breaks down the different parts of a definition file.

2.5.1. Build args and base image

The build_arg_defaults section of the definition file is a dictionary whose keys can provide default
values for arguments to Ansible Builder. See the following table for a list of values that can be used in
build_arg_defaults:

Value Description

ANSIBLE_GALAXY_CLI_COLLECTION_OPT
S

Allows the user to pass arbitrary arguments to the
ansible-galaxy CLI during the collection installation
phase. For example, the –pre flag to enable the
installation of pre-release collections, or -c to disable
verification of the server’s SSL certificate.

ANSIBLE_GALAXY_CLI_ROLE_OPTS Allows the user to pass any flags, such as –no-deps,
to the role installation.

Red Hat Ansible Automation Platform 2.4 Creating and Consuming Execution Environments

10

https://docs.ansible.com/ansible/latest/porting_guides/porting_guide_3.html

The values given inside build_arg_defaults will be hard-coded into the Containerfile, so these values
will persist if podman build is called manually.

NOTE

If the same variable is specified in the CLI --build-arg flag, the CLI value will take higher
precedence.

You can include dependencies that must be installed into the final image in the dependencies section of
your definition file.

To avoid issues with your automation execution environment image, make sure that the entries for
Galaxy, Python, and system point to a valid requirements file, or are valid content for their respective file
types.

2.5.1.1. Galaxy

The galaxy entry points to a valid requirements file or includes inline content for the ansible-galaxy
collection install -r … command.

The entry requirements.yml can be a relative path from the directory of the automation execution
environment definition’s folder, or an absolute path.

The content might look like the following:

Example 2.2. Galaxy entry

collections:
 - community.aws
 - kubernetes.core

2.5.1.2. Python

The python entry in the definition file points to a valid requirements file or to an inline list of Python
requirements in PEP508 format for the pip install -r … command.

The entry requirements.txt is a file that installs extra Python requirements on top of what the
Collections already list as their Python dependencies. It may be listed as a relative path from the
directory of the automation execution environment definition’s folder, or an absolute path. The contents
of a requirements.txt file should be formatted like the following example, similar to the standard output
from a pip freeze command:

Example 2.3. Python entry

boto>=2.49.0
botocore>=1.12.249
pytz
python-dateutil>=2.7.0
awxkit
packaging
requests>=2.4.2
xmltodict
azure-cli-core==2.11.1

CHAPTER 2. USING ANSIBLE BUILDER

11

openshift>=0.6.2
requests-oauthlib
openstacksdk>=0.13
ovirt-engine-sdk-python>=4.4.10

2.5.1.3. System

The system entry in the definition points to a bindep requirements file or to an inline list of bindep
entries, which install system-level dependencies that are outside of what the collections already include
as their dependencies. It can be listed as a relative path from the directory of the automation execution
environment definition’s folder, or as an absolute path. At a minimum, the the collection(s) must specify
necessary requirements for [platform:rpm].

To demonstrate this, the following is an example bindep.txt file that adds the libxml2 and subversion
packages to a container:

Example 2.4. System entry

libxml2-devel [platform:rpm]
subversion [platform:rpm]

Entries from multiple collections are combined into a single file. This is processed by bindep and then
passed to dnf. Only requirements with no profiles or no runtime requirements will be installed to the
image.

2.5.2. Images

The images section of the definition file identifies the base image. Verification of signed container
images is supported with the podman container runtime.

See the following table for a list of values that you can use in images:

Value Description

base_image Specifies the parent image for the automation
execution environment which enables a new image
to be built that is based on an existing image. This is
typically a supported execution environment base
image such as ee-minimal or ee-supported, but it can
also be an execution environment image that you
have created and want to customize further.

A name key is required for the container image to
use. Specify the signature _original_name key if
the image is mirrored within your repository, but is
signed with the image’s original signature key. Image
names must contain a tag, such as :latest.

The default image is registry.redhat.io/ansible-
automation-platform-24/ee-minimal-
rhel8:latest.

Red Hat Ansible Automation Platform 2.4 Creating and Consuming Execution Environments

12

https://docs.opendev.org/opendev/bindep/latest/readme.html

NOTE

If the same variable is specified in the CLI --build-arg flag, the CLI value will take higher
precedence.

2.5.3. Additional build files

You can add any external file to the build context directory by referring or copying them to the
additional_build_steps section of the definition file. The format is a list of dictionary values, each with a
src and dest key and value.

Each list item must be a dictionary containing the following required keys:

src

Specifies the source files to copy into the build context directory. This can be an absolute path (for
example, /home/user/.ansible.cfg), or a path that is relative to the execution environment file.
Relative paths can be glob expressions matching one or more files (for example, files/*.cfg).

NOTE

Absolute paths can not include a regular expression. If src is a directory, the entire
contents of that directory are copied to dest.

dest

Specifies a subdirectory path underneath the _build subdirectory of the build context directory that
contains the source files (for example, files/configs). This can not be an absolute path or contain ..
within the path. Ansible Builder creates this directory for you if it does not already exist.

2.5.4. Additional custom build steps

You can specify custom build commands for any build phase in the additional_build_steps section of
the definition file. This allows fine-grained control over the build phases.

Use the prepend_ and append_ commands to add directives to the Containerfile that run either
before or after the main build steps are executed. The commands must conform to any rules required
for the runtime system.

See the following table for a list of values that can be used in additional_build_steps:

Value Description

prepend_base Allows you to insert commands before building the
base image.

append_base Allows you to insert commands after building the
base image.

prepend_galaxy Allows you to insert before building the galaxy image.

append_galaxy Allows you to insert after building the galaxy image.

CHAPTER 2. USING ANSIBLE BUILDER

13

prepend_builder Allows you to insert commands before building the
Python builder image.

append_builder Allows you to insert commands after building the
Python builder image.

prepend_final Allows you to insert before building the final image.

append_final Allows you to insert after building the final image.

Value Description

The syntax for additional_build_steps supports both multi-line strings and lists. See the following
examples:

Example 2.5. A multi-line string entry

prepend_final: |
 RUN whoami
 RUN cat /etc/os-release

Example 2.6. A list entry

append_final:
- RUN echo This is a post-install command!
- RUN ls -la /etc

2.5.5. Additional resources

For example definition files for common scenarios, see the Common scenarios section of the
Ansible Builder Documentation

2.6. OPTIONAL BUILD COMMAND ARGUMENTS

The -t flag will tag your automation execution environment image with a specific name. For example, the
following command will build an image named my_first_ee_image:

$ ansible-builder build -t my_first_ee_image

NOTE

If you do not use -t with build, an image called ansible-execution-env is created and
loaded into the local container registry.

If you have multiple definition files, you can specify which one to use by including the -f flag:

Red Hat Ansible Automation Platform 2.4 Creating and Consuming Execution Environments

14

https://ansible.readthedocs.io/projects/builder/en/latest/scenario_guides/scenario_copy/

$ ansible-builder build -f another-definition-file.yml -t another_ee_image

In this example, Ansible Builder will use the specifications provided in the file named another-definition-
file.yml instead of the default execution-environment.yml to build an automation execution
environment image named another_ee_image.

For other specifications and flags that you can use with the build command, enter ansible-builder
build --help to see a list of additional options.

2.7. CONTAINERFILE

After your definition file is created, Ansible Builder reads and validates it, creates a Containerfile and
container build context, and optionally passes these to Podman to build your automation execution
environment image. The container build occurs in several distinct stages: base , galaxy, builder, and
final. The image build steps (along with any corresponding custom prepend_ and append_ steps
defined in additional_build_steps) are:

1. During the base build stage, the specified base image is (optionally) customized with
components required by other build stages, including Python, pip, ansible-core, and ansible-
runner. The resulting image is then validated to ensure that the required components are
available (as they may have already been present in the base image). Ephemeral copies of the
resulting customized base image are used as the base for all other build stages.

2. During the galaxy build stage, collections specified by the definition file are downloaded and
stored for later installation during the final build stage. Python and system dependencies
declared by the collections, if any, are also collected for later analysis.

3. During the builder build stage, Python dependencies declared by collections are merged with
those listed in the definition file. This final set of Python dependencies is downloaded and built
as Python wheels and stored for later installation during the final build stage.

4. During the final build stage, the previously-downloaded collections are installed, along with
system packages and any previously-built Python packages that were declared as dependencies
by the collections or listed in the definition file.

2.8. CREATING A CONTAINERFILE WITHOUT BUILDING AN IMAGE

If you are required to use shared container images built in sandboxed environments for security reasons,
you can create a shareable Containerfile.

$ ansible-builder create

CHAPTER 2. USING ANSIBLE BUILDER

15

CHAPTER 3. COMMON AUTOMATION EXECUTION
ENVIRONMENT SCENARIOS

Use the following example definition files to address common configuration scenarios.

3.1. UPDATING THE AUTOMATION HUB CA CERTIFICATE

Use this example to customize the default definition file to include a CA certificate to the additional-
build-files section, move the file to the appropriate directory and, finally, run the command to update
the dynamic configuration of CA certificates to allow the system to trust this CA certificate.

Prerequisites

A custom CA certificate, for example rootCA.crt.

NOTE

Customizing the CA certificate using prepend_base means that the resulting CA
configuration appears in all other build stages and the final image, because all other build
stages inherit from the base image.

additional_build_files:
 # copy the CA public key into the build context, we will copy and use it in the base image later
 - src: files/rootCA.crt
 dest: configs

additional_build_steps:
 prepend_base:
 # copy a custom CA cert into the base image and recompute the trust database
 # because this is in "base", all stages will inherit (including the final EE)
 - COPY _build/configs/rootCA.crt /usr/share/pki/ca-trust-source/anchors
 - RUN update-ca-trust

options:
 package_manager_path: /usr/bin/microdnf # downstream images use non-standard package
manager

[galaxy]
server_list = automation_hub

3.2. USING AUTOMATION HUB AUTHENTICATION DETAILS WHEN
BUILDING AUTOMATION EXECUTION ENVIRONMENTS

Use the following example to customize the default definition file to pass automation hub
authentication details into the automation execution environment build without exposing them in the
final automation execution environment image.

Prerequisites

You have created an automation hub API token and stored it in a secure location, for example in
a file named token.txt.

Red Hat Ansible Automation Platform 2.4 Creating and Consuming Execution Environments

16

https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.4/html/getting_started_with_automation_hub/hub-create-api-token

Define a build argument that gets populated with the automation hub API token:

export ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_TOKEN=$(cat <token.txt>)

additional_build_steps:
 prepend_galaxy:
 # define a custom build arg env passthru- we still also have to pass
 # `--build-arg ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_TOKEN` to get it to pick it up
from the host env
 - ARG ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_TOKEN
 - ENV ANSIBLE_GALAXY_SERVER_LIST=automation_hub
 - ENV
ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_URL=https://console.redhat.com/api/automation-
hub/content/<yourhuburl>-synclist/
 - ENV
ANSIBLE_GALAXY_SERVER_AUTOMATION_HUB_AUTH_URL=https://sso.redhat.com/auth/realms/
redhat-external/protocol/openid-connect/token

3.3. ADDITIONAL RESOURCES

For information regarding the different parts of an automation execution environment
definition file, see Breakdown of definition file content .

For additional example definition files for common scenarios, see Common scenarios section of
the Ansible Builder Documentation

CHAPTER 3. COMMON AUTOMATION EXECUTION ENVIRONMENT SCENARIOS

17

https://ansible.readthedocs.io/projects/builder/en/latest/scenario_guides/scenario_copy/

CHAPTER 4. PUBLISHING AN AUTOMATION EXECUTION
ENVIRONMENT

4.1. CUSTOMIZING AN EXISTING AUTOMATION EXECUTION
ENVIRONMENTS IMAGE

Ansible Controller includes three default execution environments:

Ansible 2.9 - Includes Controller modules only

Minimal - Includes the latest Ansible 2.15 release along with Ansible Runner, but does not
include collections or other content

EE Supported - Minimal, plus all Red Hat-supported collections and dependencies

While these environments cover many automation use cases, you can add additional items to customize
these containers for your specific needs. The following procedure adds the kubernetes.core collection
to the ee-minimal default image:

Procedure

1. Log in to registry.redhat.io via Podman:

$ podman login -u="[username]" -p="[token/hash]" registry.redhat.io

2. Ensure that you can pull the required automation execution environment base image:

podman pull registry.redhat.io/ansible-automation-platform-24/ee-minimal-rhel8:latest

3. Configure your Ansible Builder files to specify the required base image and any additional
content to add to the new execution environment image.

a. For example, to add the Kubernetes Core Collection from Galaxy to the image, use the
Galaxy entry:

collections:
 - kubernetes.core

b. For more information about definition files and their content, see the definition file
breakdown section.

4. In the execution environment definition file, specify the original ee-minimal container’s URL
and tag in the EE_BASE_IMAGE field. In doing so, your final execution-environment.yml file
will look like the following:

Example 4.1. A customized execution-environment.yml file

version: 3

images:
 base_image: 'registry.redhat.io/ansible-automation-platform-24/ee-minimal-rhel9:latest'

dependencies:

Red Hat Ansible Automation Platform 2.4 Creating and Consuming Execution Environments

18

https://galaxy.ansible.com/kubernetes/core

 galaxy:
 collections:
 - kubernetes.core

NOTE

Since this example uses the community version of kubernetes.core and not a
certified collection from automation hub, we do not need to create an
ansible.cfg file or reference that in our definition file.

5. Build the new execution environment image by using the following command:

$ ansible-builder build -t [username]/new-ee

where [username] specifies your username, and new-ee specifies the name of your new
container image.

NOTE

If you do not use -t with build, an image called ansible-execution-env is created
and loaded into the local container registry.

Use the podman images command to confirm that your new container image is in that list:

Example 4.2. Output of a podman images command with the image new-ee

REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/new-ee latest f5509587efbb 3 minutes ago 769 MB

6. Verify that the collection is installed:

$ podman run [username]/new-ee ansible-doc -l kubernetes.core

7. Tag the image for use in your automation hub:

$ podman tag [username]/new-ee [automation-hub-IP-address]/[username]/new-ee

8. Log in to your automation hub using Podman:

NOTE

You must have admin or appropriate container repository permissions for
automation hub to push a container. For more information, see the Manage
containers in private automation hub section in Managing content in automation
hub.

$ podman login -u="[username]" -p="[token/hash]" [automation-hub-IP-address]

9. Push your image to the container registry in automation hub:

CHAPTER 4. PUBLISHING AN AUTOMATION EXECUTION ENVIRONMENT

19

https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.4/html-single/managing_content_in_automation_hub/index#managing-containers-hub

$ podman push [automation-hub-IP-address]/[username]/new-ee

10. Pull your new image into your automation controller instance:

a. Go to automation controller.

b. From the navigation panel, click Administration → Execution Environments.

c. Click Add.

d. Enter the appropriate information then click Save to pull in the new image.

NOTE

If your instance of automation hub is password or token protected, ensure
that you have the appropriate container registry credential set up.

4.2. ADDITIONAL RESOURCES (OR NEXT STEPS)

For more details on customizing {ExecEnvNameShort} based on common scenarios, see the following
topics in the Ansible Builder Documentation :

Copying arbitratory files to an execution enviornment

Building execution environments with environment variables

Building execution environments with environment variables and ansible.cfg

Red Hat Ansible Automation Platform 2.4 Creating and Consuming Execution Environments

20

https://ansible.readthedocs.io/projects/builder/en/latest/scenario_guides/scenario_copy/
https://ansible.readthedocs.io/projects/builder/en/latest/scenario_guides/scenario_using_env/
https://ansible.readthedocs.io/projects/builder/en/latest/scenario_guides/scenario_custom/

CHAPTER 5. POPULATING YOUR PRIVATE AUTOMATION
HUB CONTAINER REGISTRY

By default, private automation hub does not include container images. To populate your container
registry, you must push a container image to it.

You must follow a specific workflow to populate your private automation hub container registry:

Pull images from the Red Hat Ecosystem Catalog (registry.redhat.io)

Tag them

Push them to your private automation hub container registry

IMPORTANT

Image manifests and filesystem blobs were both originally served directly from
registry.redhat.io and registry.access.redhat.com. As of 1 May 2023, filesystem blobs
are served from quay.io instead. To avoid problems pulling container images, enable
outbound connections to the following hostnames:

cdn.quay.io

cdn01.quay.io

cdn02.quay.io

cdn03.quay.io

Make this change to any firewall configuration that specifically enables outbound
connections to registry.redhat.io or registry.access.redhat.com.

Use the hostnames instead of IP addresses when configuring firewall rules.

After making this change you can continue to pull images from registry.redhat.io and
registry.access.redhat.com. You do not require a quay.io login, or need to interact with
the quay.io registry directly in any way to continue pulling Red Hat container images.

5.1. PULLING IMAGES FOR USE IN AUTOMATION HUB

Before you can push container images to your private automation hub, you must first pull them from an
existing registry and tag them for use. The following example details how to pull an image from the Red
Hat Ecosystem Catalog (registry.redhat.io).

Prerequisites

You have permissions to pull images from registry.redhat.io.

Procedure

1. Log in to Podman by using your registry.redhat.io credentials:

$ podman login registry.redhat.io

CHAPTER 5. POPULATING YOUR PRIVATE AUTOMATION HUB CONTAINER REGISTRY

21

2. Enter your username and password.

3. Pull a container image:

$ podman pull registry.redhat.io/<container_image_name>:<tag>

Verification

To verify that the image you recently pulled is contained in the list, take these steps:

1. List the images in local storage:

$ podman images

2. Check the image name, and verify that the tag is correct.

Additional resources

See Red Hat Ecosystem Catalog Help for information on registering and getting images.

5.2. TAGGING IMAGES FOR USE IN AUTOMATION HUB

After you pull images from a registry, tag them for use in your private automation hub container registry.

Prerequisites

You have pulled a container image from an external registry.

You have the FQDN or IP address of the automation hub instance.

Procedure

Tag a local image with the automation hub container repository:

$ podman tag registry.redhat.io/<container_image_name>:<tag>
<automation_hub_hostname>/<container_image_name>

Verification

1. List the images in local storage:

$ podman images

2. Verify that the image you recently tagged with your automation hub information is contained in
the list.

5.3. PUSHING A CONTAINER IMAGE TO PRIVATE AUTOMATION HUB

You can push tagged container images to private automation hub to create new containers and
populate the container registry.

Prerequisites

Red Hat Ansible Automation Platform 2.4 Creating and Consuming Execution Environments

22

https://redhat-connect.gitbook.io/catalog-help/

You have permissions to create new containers.

You have the FQDN or IP address of the automation hub instance.

Procedure

1. Log in to Podman using your automation hub location and credentials:

$ podman login -u=<username> -p=<password> <automation_hub_url>

2. Push your container image to your automation hub container registry:

$ podman push <automation_hub_url>/<container_image_name>

Troubleshooting

The push operation re-compresses image layers during the upload, which is not guaranteed to be
reproducible and is client-implementation dependent. This may lead to image-layer digest changes and
a failed push operation, resulting in Error: Copying this image requires changing layer
representation, which is not possible (image is signed or the destination specifies a digest).

Verification

1. Log in to your automation hub.

2. Navigate to Container Registry.

3. Locate the container in the container repository list.

CHAPTER 5. POPULATING YOUR PRIVATE AUTOMATION HUB CONTAINER REGISTRY

23

CHAPTER 6. SETTING UP YOUR CONTAINER REPOSITORY
When you set up your container repository, you must add a description, include a README, add groups
that can access the repository, and tag images.

6.1. PREREQUISITES TO SETTING UP YOUR CONTAINER REGISTRY

You are logged in to a private automation hub.

You have permissions to change the repository.

6.2. ADDING A README TO YOUR CONTAINER REPOSITORY

Add a README to your container repository to provide instructions to your users on how to work with
the container. Automation hub container repositories support Markdown for creating a README. By
default, the README is empty.

Prerequisites

You have permissions to change containers.

Procedure

1. From the navigation panel, select Execution Environments → Execution Environments.

2. Select your container repository.

3. On the Detail tab, click Add.

4. In the Raw Markdown text field, enter your README text in Markdown.

5. Click Save when you are finished.

After you add a README, you can edit it at any time by clicking Edit and repeating steps 4 and 5.

6.3. PROVIDING ACCESS TO YOUR CONTAINER REPOSITORY

Provide access to your container repository for users who need to work with the images. Adding a group
allows you to modify the permissions the group can have to the container repository. You can use this
option to extend or restrict permissions based on what the group is assigned.

Prerequisites

You have change container namespace permissions.

Procedure

1. From the navigation panel, select Execution Environments → Execution Environments.

2. Select your container repository.

3. From the Access tab, click Select a group.

4. Select the group or groups to which you want to grant access and click Next.

Red Hat Ansible Automation Platform 2.4 Creating and Consuming Execution Environments

24

5. Select the roles that you want to add to this execution environment and click Next.

6. Click Add.

6.4. TAGGING CONTAINER IMAGES

Tag images to add an additional name to images stored in your automation hub container repository. If
no tag is added to an image, automation hub defaults to latest for the name.

Prerequisites

You have change image tags permissions.

Procedure

1. From the navigation panel, select Execution Environments → Execution Environments.

2. Select your container repository.

3. Click the Images tab.

4. Click the More Actions icon ⋮, and click Manage tags.

5. Add a new tag in the text field and click Add.

6. Optional: Remove current tags by clicking x on any of the tags for that image.

7. Click Save.

Verification

Click the Activity tab and review the latest changes.

6.5. CREATING A CREDENTIAL IN AUTOMATION CONTROLLER

To pull container images from a password or token-protected registry, you must create a credential in
automation controller.

In earlier versions of Ansible Automation Platform, you were required to deploy a registry to store
execution environment images. On Ansible Automation Platform 2.0 and later, the system operates as if
you already have a container registry up and running. To store execution environment images, add the
credentials of only your selected container registries.

Procedure

1. Navigate to automation controller.

2. From the navigation panel, select Resources → Credentials.

3. Click Add to create a new credential.

4. Enter an authorization Name, Description, and Organization.

5. Select the Credential Type.

CHAPTER 6. SETTING UP YOUR CONTAINER REPOSITORY

25

6. Enter the Authentication URL. This is the container registry address.

7. Enter the Username and Password or Token required to log in to the container registry.

8. Optional: To enable SSL verification, select Verify SSL.

9. Click Save.

Red Hat Ansible Automation Platform 2.4 Creating and Consuming Execution Environments

26

CHAPTER 7. PULLING IMAGES FROM A CONTAINER
REPOSITORY

Pull images from the automation hub container registry to make a copy to your local machine.
Automation hub provides the podman pull command for each latest image in the container repository.
You can copy and paste this command into your terminal, or use podman pull to copy an image based
on an image tag.

7.1. PULLING AN IMAGE

You can pull images from the automation hub container registry to make a copy to your local machine.

Prerequisites

You must have permission to view and pull from a private container repository.

Procedure

1. If are pulling container images from a password or token-protected registry, create a credential
in automation controller before pulling the image.

2. From the navigation panel, select Execution Environments → Execution Environments.

3. Select your container repository.

4. In the Pull this image entry, click Copy to clipboard.

5. Paste and run the command in your terminal.

Verification

Run podman images to view images on your local machine.

7.2. SYNCING IMAGES FROM A CONTAINER REPOSITORY

You can pull images from the automation hub container registry to sync an image to your local machine.
To sync an image from a remote container registry, you must first configure a remote registry.

Prerequisites

You must have permission to view and pull from a private container repository.

Procedure

1. From the navigation panel, select Execution Environments → Remote Registries.

2. Add https://registry.redhat.io to the registry.

3. Add any required credentials to authenticate.

NOTE

CHAPTER 7. PULLING IMAGES FROM A CONTAINER REPOSITORY

27

https://registry.redhat.io

NOTE

Some container registries are aggressive with rate limiting. Set a rate limit under
Advanced Options.

4. From the navigation panel, select Execution Environments → Execution Environments.

5. Click Add execution environment in the page header.

6. Select the registry you want to pull from. The Name field displays the name of the image
displayed on your local registry.

NOTE

The Upstream name field is the name of the image on the remote server. For
example, if the upstream name is set to "alpine" and the Name field is
"local/alpine", the alpine image is downloaded from the remote and renamed to
"local/alpine".

7. Set a list of tags to include or exclude. Syncing images with a large number of tags is time
consuming and uses a lot of disk space.

Additional resources

See Red Hat Container Registry Authentication for a list of registries.

See the What is Podman? documentation for options to use when pulling images.

Red Hat Ansible Automation Platform 2.4 Creating and Consuming Execution Environments

28

https://access.redhat.com/RegistryAuthentication
http://docs.podman.io/en/latest/index.html

APPENDIX A. AUTOMATION EXECUTION ENVIRONMENTS
PRECEDENCE

Project updates will always use the control plane automation execution environments by default,
however, jobs will use the first available automation execution environments as follows:

1. The execution_environment defined on the template (job template or inventory source) that
created the job.

2. The default_environment defined on the project that the job uses.

3. The default_environment defined on the organization of the job.

4. The default_environment defined on the organization of the inventory the job uses.

5. The current DEFAULT_EXECUTION_ENVIRONMENT setting (configurable at
api/v2/settings/jobs/)

6. Any image from the GLOBAL_JOB_EXECUTION_ENVIRONMENTS setting.

7. Any other global execution environment.

NOTE

If more than one execution environment fits a criteria (applies for 6 and 7), the most
recently created one is used.

APPENDIX A. AUTOMATION EXECUTION ENVIRONMENTS PRECEDENCE

29

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION TO AUTOMATION EXECUTION ENVIRONMENTS
	1.1. ABOUT AUTOMATION EXECUTION ENVIRONMENTS
	1.1.1. Why use automation execution environments?

	CHAPTER 2. USING ANSIBLE BUILDER
	2.1. WHY USE ANSIBLE BUILDER?
	2.2. INSTALLING ANSIBLE BUILDER
	2.3. BUILDING A DEFINITION FILE
	2.4. BUILDING THE AUTOMATION EXECUTION ENVIRONMENT IMAGE
	2.5. BREAKDOWN OF DEFINITION FILE CONTENT
	2.5.1. Build args and base image
	2.5.1.1. Galaxy
	2.5.1.2. Python
	2.5.1.3. System

	2.5.2. Images
	2.5.3. Additional build files
	2.5.4. Additional custom build steps
	2.5.5. Additional resources

	2.6. OPTIONAL BUILD COMMAND ARGUMENTS
	2.7. CONTAINERFILE
	2.8. CREATING A CONTAINERFILE WITHOUT BUILDING AN IMAGE

	CHAPTER 3. COMMON AUTOMATION EXECUTION ENVIRONMENT SCENARIOS
	3.1. UPDATING THE AUTOMATION HUB CA CERTIFICATE
	3.2. USING AUTOMATION HUB AUTHENTICATION DETAILS WHEN BUILDING AUTOMATION EXECUTION ENVIRONMENTS
	3.3. ADDITIONAL RESOURCES

	CHAPTER 4. PUBLISHING AN AUTOMATION EXECUTION ENVIRONMENT
	4.1. CUSTOMIZING AN EXISTING AUTOMATION EXECUTION ENVIRONMENTS IMAGE
	4.2. ADDITIONAL RESOURCES (OR NEXT STEPS)

	CHAPTER 5. POPULATING YOUR PRIVATE AUTOMATION HUB CONTAINER REGISTRY
	5.1. PULLING IMAGES FOR USE IN AUTOMATION HUB
	5.2. TAGGING IMAGES FOR USE IN AUTOMATION HUB
	5.3. PUSHING A CONTAINER IMAGE TO PRIVATE AUTOMATION HUB

	CHAPTER 6. SETTING UP YOUR CONTAINER REPOSITORY
	6.1. PREREQUISITES TO SETTING UP YOUR CONTAINER REGISTRY
	6.2. ADDING A README TO YOUR CONTAINER REPOSITORY
	6.3. PROVIDING ACCESS TO YOUR CONTAINER REPOSITORY
	6.4. TAGGING CONTAINER IMAGES
	6.5. CREATING A CREDENTIAL IN AUTOMATION CONTROLLER

	CHAPTER 7. PULLING IMAGES FROM A CONTAINER REPOSITORY
	7.1. PULLING AN IMAGE
	7.2. SYNCING IMAGES FROM A CONTAINER REPOSITORY

	APPENDIX A. AUTOMATION EXECUTION ENVIRONMENTS PRECEDENCE

