
Red Hat AMQ Streams 2.6

Release Notes for AMQ Streams 2.6 on
OpenShift

Highlights of what's new and what's changed with this release of AMQ Streams on
OpenShift Container Platform

Last Updated: 2023-12-19

Red Hat AMQ Streams 2.6 Release Notes for AMQ Streams 2.6 on
OpenShift

Highlights of what's new and what's changed with this release of AMQ Streams on OpenShift
Container Platform

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The release notes summarize the new features, enhancements, and fixes introduced in the AMQ
Streams 2.6 release.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. FEATURES
1.1. OPENSHIFT CONTAINER PLATFORM SUPPORT
1.2. KAFKA 3.6.0 SUPPORT
1.3. SUPPORTING THE V1BETA2 API VERSION

1.3.1. Upgrading custom resources to v1beta2
1.4. STABLECONNECTIDENTITIES FEATURE GATE IS NOW ENABLED BY DEFAULT
1.5. BLOCK OR SKIP SCALE-DOWN OPERATIONS IF REPLICAS PRESENT
1.6. SUPPORT FOR STOPPING CONNECTORS FROM RUNNING
1.7. RUN PARALLEL ZOOKEEPER-BASED AND KRAFT-BASED KAFKA CLUSTERS

CHAPTER 2. ENHANCEMENTS
2.1. KAFKA 3.6.0 ENHANCEMENTS
2.2. PAUSE RECONCILIATION OF KAFKATOPIC RESOURCES IN UNIDIRECTIONAL MODE
2.3. UNIDIRECTIONAL TOPIC OPERATOR METRICS
2.4. SUPPORT FOR MANUAL ROLLING UPDATE OF KAFKA CONNECT AND KAFKA MIRRORMAKER 2 PODS

2.5. INFINITE AUTOMATIC RESTARTS OF CONNECTORS
2.6. CPU CAPACITY CONFIGURATION LOGIC IN CRUISE CONTROL
2.7. OAUTH 2.0 ACCEPT HEADER EXCLUDE OPTION
2.8. ENHANCED FIPS SUPPORT
2.9. ENHANCED SUPPORT FOR RUNNING RED HAT OPENSHIFT CONTAINER PLATFORM IN
DISCONNECTED ENVIRONMENTS

CHAPTER 3. TECHNOLOGY PREVIEWS
3.1. KAFKANODEPOOLS FEATURE GATE
3.2. UNIDIRECTIONALTOPICOPERATOR FEATURE GATE
3.3. KAFKA STATIC QUOTA PLUGIN CONFIGURATION

CHAPTER 4. DEVELOPER PREVIEWS
4.1. USEKRAFT FEATURE GATE

CHAPTER 5. KAFKA BREAKING CHANGES
5.1. USING KAFKA’S EXAMPLE FILE CONNECTORS

CHAPTER 6. DEPRECATED FEATURES
6.1. ENVIRONMENT VARIABLE CONFIGURATION PROVIDER IS DEPRECATED
6.2. LISTENER STATUS TYPE PROPERTY REPLACED WITH NAME PROPERTY
6.3. PAUSE PROPERTY OF THE KAFKACONNECTORSPEC SCHEMA
6.4. STATEFULSET SUPPORT REMOVED
6.5. JAVA 8 SUPPORT REMOVED IN AMQ STREAMS 2.4.0
6.6. OPENTRACING
6.7. ACL RULE CONFIGURATION
6.8. KAFKA MIRRORMAKER 2 IDENTITY REPLICATION POLICY
6.9. KAFKA MIRRORMAKER 1
6.10. LISTENERSTATUS TYPE PROPERTY
6.11. CRUISE CONTROL TLS SIDECAR PROPERTIES
6.12. CRUISE CONTROL CAPACITY CONFIGURATION

CHAPTER 7. FIXED ISSUES

CHAPTER 8. KNOWN ISSUES
8.1. STOPPING MIRRORMAKER 2 CONNECTORS

4

5
5
5
5
6
6
6
7
8

10
10
10
10

10
11
11

12
12

12

13
13
13
14

15
15

17
17

18
18
18
19
19
19
19

20
20
20
21
21
21

22

24
24

Table of Contents

1

. .

. .

. .

8.2. KAFKA BRIDGE SENDING MESSAGES WITH CORS ENABLED
8.3. AMQ STREAMS CLUSTER OPERATOR ON IPV6 CLUSTERS
8.4. CRUISE CONTROL CPU UTILIZATION ESTIMATION
8.5. JMX AUTHENTICATION WHEN RUNNING IN FIPS MODE

CHAPTER 9. SUPPORTED CONFIGURATIONS
9.1. SUPPORTED PLATFORMS
9.2. SUPPORTED CLIENTS
9.3. SUPPORTED APACHE KAFKA ECOSYSTEM
9.4. ADDITIONAL SUPPORTED FEATURES
9.5. STORAGE REQUIREMENTS

CHAPTER 10. COMPONENT DETAILS

CHAPTER 11. SUPPORTED INTEGRATION WITH RED HAT PRODUCTS
11.1. RED HAT SINGLE SIGN-ON
11.2. RED HAT 3SCALE API MANAGEMENT
11.3. RED HAT BUILD OF DEBEZIUM FOR CHANGE DATA CAPTURE
11.4. RED HAT BUILD OF APICURIO REGISTRY FOR SCHEMA VALIDATION
11.5. RED HAT BUILD OF APACHE CAMEL K

24
24
26
27

28
28
28
29
29
30

31

33
33
33
33
34
34

Red Hat AMQ Streams 2.6 Release Notes for AMQ Streams 2.6 on OpenShift

2

Table of Contents

3

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat AMQ Streams 2.6 Release Notes for AMQ Streams 2.6 on OpenShift

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. FEATURES
AMQ Streams 2.6 introduces the features described in this section.

AMQ Streams 2.6 on OpenShift is based on Apache Kafka 3.6.0 and Strimzi 0.38.x.

NOTE

To view all the enhancements and bugs that are resolved in this release, see the AMQ
Streams Jira project.

1.1. OPENSHIFT CONTAINER PLATFORM SUPPORT

AMQ Streams 2.6 is supported on OpenShift Container Platform 4.11 to 4.14.

For more information, see Chapter 9, Supported Configurations .

1.2. KAFKA 3.6.0 SUPPORT

AMQ Streams now supports and uses Apache Kafka version 3.6.0. Only Kafka distributions built by Red
Hat are supported.

You must upgrade the Cluster Operator to AMQ Streams version 2.6 before you can upgrade brokers
and client applications to Kafka 3.6.0. For upgrade instructions, see Upgrading AMQ Streams .

Refer to the Kafka 3.6.0 Release Notes for additional information.

Kafka 3.5.x is supported only for the purpose of upgrading to AMQ Streams 2.6.

NOTE

Kafka 3.6.0 provides access to KRaft mode, where Kafka runs without ZooKeeper by
utilizing the Raft protocol. KRaft mode is available as a Developer Preview.

1.3. SUPPORTING THE V1BETA2 API VERSION

The v1beta2 API version for all custom resources was introduced with AMQ Streams 1.7. For AMQ
Streams 1.8, v1alpha1 and v1beta1 API versions were removed from all AMQ Streams custom
resources apart from KafkaTopic and KafkaUser.

Upgrade of the custom resources to v1beta2 prepares AMQ Streams for a move to Kubernetes CRD
v1, which is required for Kubernetes 1.22.

If you are upgrading from an AMQ Streams version prior to version 1.7:

1. Upgrade to AMQ Streams 1.7

2. Convert the custom resources to v1beta2

3. Upgrade to AMQ Streams 1.8

IMPORTANT

CHAPTER 1. FEATURES

5

https://issues.redhat.com/issues/?filter=12420776
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#assembly-upgrade-str
https://archive.apache.org/dist/kafka/3.6.0/RELEASE_NOTES.html

IMPORTANT

You must upgrade your custom resources to use API version v1beta2 before upgrading
to AMQ Streams version 2.6.

1.3.1. Upgrading custom resources to v1beta2

To support the upgrade of custom resources to v1beta2, AMQ Streams provides an API conversion tool,
which you can download from the AMQ Streams 1.8 software downloads page .

You perform the custom resources upgrades in two steps.

Step one: Convert the format of custom resources

Using the API conversion tool, you can convert the format of your custom resources into a format
applicable to v1beta2 in one of two ways:

Converting the YAML files that describe the configuration for AMQ Streams custom resources

Converting AMQ Streams custom resources directly in the cluster

Alternatively, you can manually convert each custom resource into a format applicable to v1beta2.
Instructions for manually converting custom resources are included in the documentation.

Step two: Upgrade CRDs to v1beta2

Next, using the API conversion tool with the crd-upgrade command, you must set v1beta2 as the
storage API version in your CRDs. You cannot perform this step manually.

For more information, see Upgrading from an AMQ Streams version earlier than 1.7 .

1.4. STABLECONNECTIDENTITIES FEATURE GATE IS NOW ENABLED BY
DEFAULT

The StableConnectIdentities feature gate moves to a beta level of maturity and is now enabled by
default.

The feature allows you to use StrimziPodSet resources to manage Kafka Connect and Kafka
MirrorMaker 2 pods instead of using Deployment resources. This helps to minimize the number of
rebalances of connector tasks.

To disable the StableConnectIdentities feature gate, specify -StableConnectIdentities as a value for
the STRIMZI_FEATURE_GATES environment variable in the Cluster Operator configuration.

Disabling the StableConnectIdentities feature gate

See StableConnectIdentities feature gate.

1.5. BLOCK OR SKIP SCALE-DOWN OPERATIONS IF REPLICAS
PRESENT

env:
 - name: STRIMZI_FEATURE_GATES
 value: -StableConnectIdentities

Red Hat AMQ Streams 2.6 Release Notes for AMQ Streams 2.6 on OpenShift

6

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams&version=1.8.0
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#con-upgrade-paths-earlier-versions-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#ref-operator-stable-connect-identities-feature-gate-str

AMQ Streams now prevents scale-down of a cluster if brokers are still in use. By default, AMQ Streams
performs a check to ensure that there are no partition replicas on a broker before initiating a scale-down
operation on a Kafka cluster. If scale-down is blocked, you must either revert the operation or move the
residual partitions as quickly as possible so that the Cluster Operator can continue to manage the
cluster.

However, there may be scenarios where you want to bypass this blocking mechanism. For example, it
might be useful to disable the check on busy clusters. To do this, you annotate the Kafka resource by
setting strimzi.io/skip-broker-scaledown-check="true".

See Skipping checks on scale-down operations .

1.6. SUPPORT FOR STOPPING CONNECTORS FROM RUNNING

You can now stop a Kafka Connect or Kafka MirrorMaker 2 connector from running. Compared to the
paused state, where the connector and tasks stay instantiated, when stopped only the configuration of
the connector is kept but nothing is actually running. Stopping a connector from running might be better
suited for longer durations than just pausing. A paused connector is quicker to resume, but a stopped
connector can free up memory and resources.

The pause property of the KafkaConnectorSpec schema and KafkaMirrorMaker2ConnectorSpec
schema has been deprecated. Instead, both schemas now include a new state property. The state
property allows you to configure one of the following values: running, paused, and stopped.

NOTE

Support for MirrorMaker 2 has a known issue . The issue will be fixed in the next release of
AMQ Streams.

For example, if you want to stop a Kafka Connect connector resource, you change state to stopped in
the configuration.

Example configuration for stopping a Kafka Connect connector

Example configuration for stopping a Kafka MirrorMaker 2 connector

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-source-connector
 labels:
 strimzi.io/cluster: my-connect-cluster
spec:
 class: org.apache.kafka.connect.file.FileStreamSourceConnector
 tasksMax: 2
 config:
 file: "/opt/kafka/LICENSE"
 topic: my-topic
 state: stopped
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:

CHAPTER 1. FEATURES

7

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#con-skipping-scale-down-checks-str

NOTE

This feature requires at least Kafka 3.5.x to work. Only the pause operation works with
older versions of Kafka.

Stop and pause operations are also supported by the Kafka Connect REST API (when the
KafkaConnector operator is not enabled) using the following REST endpoints:

PUT /connectors/<connector_name>/stop

PUT /connectors/<connector_name>/pause

A PUT /connectors/<connector_name>/resume request restarts stopped and paused connectors.

See KafkaConnectorSpec schema reference and KafkaMirrorMaker2ConnectorSpec schema
reference.

1.7. RUN PARALLEL ZOOKEEPER-BASED AND KRAFT-BASED KAFKA
CLUSTERS

You can now run parallel Kafka clusters that operate in KRaft mode (using Kafka Raft metadata) or use
ZooKeeper for cluster management.

As KRaft mode is a developer preview, to be able to use a cluster in KRaft mode, you must do the
following:

1. Enable the UseKRaft and KafkaNodePool feature gates.

2. Ensure that the Kafka custom resource using KRaft mode has the annotation strimzi.io/kraft:
enabled

When the UseKRaft feature gate is enabled and the annotation is set, the Kafka cluster is deployed
without ZooKeeper and operates in KRaft mode. If you don’t apply these settings, the Cluster Operator
manages the Kafka resource as a ZooKeeper-based cluster.

To deploy a Kafka cluster in KRaft mode, you must now enable the UseKRaft and KafkaNodePools
feature gates. As previews, both of these features are not intended for production. KRaft mode is
supported only by using KafkaNodePool resources to manage the configuration of Kafka nodes. If you

 name: my-mirror-maker2
spec:
 version: 3.6.0
 replicas: 3
 connectCluster: "my-cluster-target"
 clusters:
 # ...
 mirrors:
 - sourceCluster: "my-cluster-source"
 targetCluster: "my-cluster-target"
 sourceConnector:
 tasksMax: 10
 autoRestart:
 enabled: true
 state: stopped
 # ...

Red Hat AMQ Streams 2.6 Release Notes for AMQ Streams 2.6 on OpenShift

8

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/amq_streams_api_reference/index#type-KafkaConnectorSpec-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/amq_streams_api_reference/index#type-KafkaMirrorMaker2ConnectorSpec-reference

are using KRaft mode, you can specify roles for all nodes in a node pool to operate as brokers,
controllers, or both. If you are using ZooKeeper, you can still use node pools, but nodes must be set as
brokers only.

See Section 4.1, “UseKRaft feature gate” .

CHAPTER 1. FEATURES

9

CHAPTER 2. ENHANCEMENTS
AMQ Streams 2.6 adds a number of enhancements.

2.1. KAFKA 3.6.0 ENHANCEMENTS

For an overview of the enhancements introduced with Kafka 3.6.0, refer to the Kafka 3.6.0 Release
Notes.

2.2. PAUSE RECONCILIATION OF KAFKATOPIC RESOURCES IN
UNIDIRECTIONAL MODE

It is now possible to pause reconciliation of KafkaTopic resources when the Topic Operator is operating
in unidirectional mode (developer preview). To pause the reconciliation, you annotate the KafkaTopic
resource with strimzi.io/pause-reconciliation="true".

See Pausing reconciliation of custom resources .

2.3. UNIDIRECTIONAL TOPIC OPERATOR METRICS

Metrics are now available for the Topic Operator running in unidirectional mode (technology preview).
Strimzi operators automatically expose Prometheus metrics by default.

In addition to the standard JVM metrics, we provide the following custom metrics:

strimzi.resources (gauge): Number of custom resources the operator sees

strimzi.reconciliations (counter): Number of reconciliations done by the operator for individual
resources

strimzi.reconciliations.failed (counter): Number of reconciliations done by the operator for
individual resources which failed

strimzi.reconciliations.successful (counter): Number of reconciliations done by the operator
for individual resources which were successful

strimzi.reconciliations.duration (timer): The time the reconciliation takes to complete

strimzi.reconciliations.paused (gauge): Number of custom resources the operator sees but
does not reconcile due to paused reconciliations

strimzi.reconciliations.locked (counter): Number of reconciliations skipped because another
reconciliation for the same resource was still running

strimzi.reconciliations.max.queue.size (gauge): Max size recorded for the shared event
queue

strimzi.reconciliations.max.batch.size (gauge): Max size recorded for a single event batch

See Introducing metrics.

2.4. SUPPORT FOR MANUAL ROLLING UPDATE OF KAFKA CONNECT
AND KAFKA MIRRORMAKER 2 PODS

Red Hat AMQ Streams 2.6 Release Notes for AMQ Streams 2.6 on OpenShift

10

https://archive.apache.org/dist/kafka/3.6.0/RELEASE_NOTES.html
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-pausing-reconciliation-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#assembly-metrics-str

With the StableConnectIdentities feature gate enabled, you can now trigger manual rolling updates of
Kafka Connect and Kafka MirrorMaker 2 pods.

You can annotate the StrimziPodSet resource that manages the pods you want to manually update
with strimzi.io/manual-rolling-update=true to perform the rolling update:

Annotating a StrimziPodSet resource

Or you can update the actual Pod resource:

Annotating a Pod resource

See Performing a rolling update using a pod management annotation and Performing a rolling update
using a pod annotation.

2.5. INFINITE AUTOMATIC RESTARTS OF CONNECTORS

When the auto-restart feature is enabled in KafkaConnector or KafkaMirrorMaker2 custom resources,
it now continues to restart the connectors indefinitely rather than stopping after 7 restarts, as
previously.

If you want to use the original behavior, use the .spec.autoRestart.maxRestarts option to configure
the maximum number of restarts.

Limiting the number of connector restarts

See Deploying KafkaConnector resources and Configuring Kafka MirrorMaker 2.

2.6. CPU CAPACITY CONFIGURATION LOGIC IN CRUISE CONTROL

CPU capacity in Cruise Control is now determined using configuration values in the following order of

oc annotate strimzipodset <cluster_name>-connect strimzi.io/manual-rolling-update=true

oc annotate strimzipodset <cluster_name>-mirrormaker2 strimzi.io/manual-rolling-update=true

oc annotate pod <cluster_name>-connect-<index_number> strimzi.io/manual-rolling-update=true

oc annotate pod <cluster_name>-mirrormaker2-<index_number> strimzi.io/manual-rolling-
update=true

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-source-connector
 labels:
 strimzi.io/cluster: my-connect-cluster
spec:
 class: org.apache.kafka.connect.file.FileStreamSourceConnector
 tasksMax: 2
 autoRestart:
 enabled: true
 maxRestarts: 7
 # ...

CHAPTER 2. ENHANCEMENTS

11

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-manual-rolling-update-strimzipodset-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-manual-rolling-update-strimzipodset-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-deploying-kafkaconnector-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#con-config-mirrormaker2-str

CPU capacity in Cruise Control is now determined using configuration values in the following order of
precedence, with the highest priority first:

1. Kafka.spec.cruiseControl.brokerCapacity.overrides.cpu that define custom CPU capacity
limits for individual brokers

2. Kafka.cruiseControl.brokerCapacity.cpu that defines custom CPU capacity limits for all
brokers in the kafka cluster

3. Kafka.spec.kafka.resources.requests.cpu that defines the CPU resources that are reserved
for each broker in the Kafka cluster.

4. Kafka.spec.kafka.resources.limits.cpu that defines the maximum CPU resources that can be
consumed by each broker in the Kafka cluster.

This order of precedence is the sequence in which different configuration values are considered when
determining the actual capacity limit for a Kafka broker. For example, broker-specific overrides take
precedence over capacity limits for all brokers. If none of the CPU capacity configurations are specified,
the default CPU capacity for a Kafka broker is set to 1 CPU core.

See CruiseControlSpec schema reference.

2.7. OAUTH 2.0 ACCEPT HEADER EXCLUDE OPTION

The includeAcceptHeader configuration property has been added as an OAuth 2.0 server-side and
client-side configuration option. Some authorization servers have issues with clients sending Accept:
application/json headers. By setting includeAcceptHeader: false, the header is not sent. The default
setting is true.

See Configuring OAuth 2.0 support for Kafka brokers , Configuring OAuth 2.0 for Kafka components ,
and Configuring OAuth 2.0 authorization support .

2.8. ENHANCED FIPS SUPPORT

FIPS is now supported on the ppc64le (IBM Power) and s390x (IBM Z and IBM® LinuxONE)
architectures.

2.9. ENHANCED SUPPORT FOR RUNNING RED HAT OPENSHIFT
CONTAINER PLATFORM IN DISCONNECTED ENVIRONMENTS

You can now run Red Hat OpenShift Container Platform in disconnected environments on the ppc64le
(IBM Power) and s390x (IBM Z and IBM® LinuxONE) architectures.

Red Hat AMQ Streams 2.6 Release Notes for AMQ Streams 2.6 on OpenShift

12

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/amq_streams_api_reference/index#type-CruiseControlSpec-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-oauth-authentication-broker-config-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-oauth-kafka-config-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-oauth-authorization-broker-config-str

CHAPTER 3. TECHNOLOGY PREVIEWS
Technology Preview features included with AMQ Streams 2.6.

IMPORTANT

Technology Preview features are not supported with Red Hat production service-level
agreements (SLAs) and might not be functionally complete; therefore, Red Hat does not
recommend implementing any Technology Preview features in production environments.
This Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about the support scope, see Technology Preview Features
Support Scope.

3.1. KAFKANODEPOOLS FEATURE GATE

The KafkaNodePools feature gate and the new KafkaNodePool custom resource enables the
configuration of different pools of Apache Kafka nodes. This feature gate is at an alpha level of maturity,
which means that it is disabled by default, and should be treated as a technology preview.

A node pool refers to a distinct group of Kafka nodes within a Kafka cluster. The KafkaNodePool
custom resource represents the configuration for nodes only in the node pool. Each pool has its own
unique configuration, which includes mandatory settings such as the number of replicas, storage
configuration, and a list of assigned roles. As you can assign roles to the nodes in a node pool, you can
try the feature with a Kafka cluster that uses ZooKeeper for cluster management or KRaft mode.

To enable the KafkaNodePools feature gate, specify +KafkaNodePools in the
STRIMZI_FEATURE_GATES environment variable in the Cluster Operator configuration.

Enabling the KafkaNodePools feature gate

NOTE

Drain Cleaner is not supported for the node pools feature.

See Configuring node pools .

3.2. UNIDIRECTIONALTOPICOPERATOR FEATURE GATE

The UnidirectionalTopicOperator feature gate introduces a unidirectional topic management mode.
With unidirectional mode, you create Kafka topics using the KafkaTopic resource, which are then
managed by the Topic Operator. This feature gate is at an alpha level of maturity, and should be treated
as a technology preview.

To enable the UnidirectionalTopicOperator feature gate, specify +UnidirectionalTopicOperator in
the STRIMZI_FEATURE_GATES environment variable in the Cluster Operator configuration.

Enabling the UnidirectionalTopicOperator feature gate

env:
 - name: STRIMZI_FEATURE_GATES
 value: +KafkaNodePools

CHAPTER 3. TECHNOLOGY PREVIEWS

13

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#config-node-pools-str

Up to this release, the only way to use the Topic Operator to manage topics was in bidirectional mode,
which is compatible with using ZooKeeper for cluster management. Unidirectional mode does not
require ZooKeeper for cluster management, which is an important development as Kafka moves to using
KRaft mode for managing clusters.

See Using the Topic Operator .

3.3. KAFKA STATIC QUOTA PLUGIN CONFIGURATION

Use the technology preview of the Kafka Static Quota plugin to set throughput and storage limits on
brokers in your Kafka cluster. You enable the plugin and set limits by configuring the Kafka resource.
You can set a byte-rate threshold and storage quotas to put limits on the clients interacting with your
brokers.

Example Kafka Static Quota plugin configuration

See Setting limits on brokers using the Kafka Static Quota plugin .

env:
 - name: STRIMZI_FEATURE_GATES
 value: +UnidirectionalTopicOperator

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 config:
 client.quota.callback.class: io.strimzi.kafka.quotas.StaticQuotaCallback
 client.quota.callback.static.produce: 1000000
 client.quota.callback.static.fetch: 1000000
 client.quota.callback.static.storage.soft: 400000000000
 client.quota.callback.static.storage.hard: 500000000000
 client.quota.callback.static.storage.check-interval: 5

Red Hat AMQ Streams 2.6 Release Notes for AMQ Streams 2.6 on OpenShift

14

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#using-the-topic-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-setting-broker-limits-str

CHAPTER 4. DEVELOPER PREVIEWS
Developer preview features included with AMQ Streams 2.6.

As a Kafka cluster administrator, you can toggle a subset of features on and off using feature gates in
the Cluster Operator deployment configuration. The feature gates available as developer previews are
at an alpha level of maturity and disabled by default.

IMPORTANT

Developer Preview features are not supported with Red Hat production service-level
agreements (SLAs) and might not be functionally complete; therefore, Red Hat does not
recommend implementing any Developer Preview features in production environments.
This Developer Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about the support scope, see Developer Preview Support Scope.

4.1. USEKRAFT FEATURE GATE

Apache Kafka is in the process of phasing out the need for ZooKeeper. With the UseKRaft feature gate
enabled, you can try deploying a Kafka cluster in KRaft (Kafka Raft metadata) mode without ZooKeeper.

CAUTION

This feature gate is experimental, intended only for development and testing, and must not be enabled
for a production environment.

To use KRaft mode, you must also use KafkaNodePool resources to manage the configuration of
groups of nodes. To enable the UseKRaft feature gate, specify +UseKRaft,+KafkaNodePools as
values for the STRIMZI_FEATURE_GATES environment variable in the Cluster Operator configuration.

Enabling the UseKRaft feature gate

Currently, the KRaft mode in AMQ Streams has the following major limitations:

Moving from Kafka clusters with ZooKeeper to KRaft clusters or the other way around is not
supported.

Controller-only nodes cannot undergo rolling updates or be updated individually.

Upgrades and downgrades of Apache Kafka versions or the Strimzi operator are not supported.
Users might need to delete the cluster, upgrade the operator and deploy a new Kafka cluster.

Only the Unidirectional Topic Operator is supported in KRaft mode. You can enable it using the
UnidirectionalTopicOperator feature gate. The Bidirectional Topic Operator is not supported
and when the UnidirectionalTopicOperator feature gate is not enabled, the
spec.entityOperator.topicOperator property must be removed from the Kafka custom
resource.

JBOD storage is not supported. The type: jbod storage can be used, but the JBOD array can

env:
 - name: STRIMZI_FEATURE_GATES
 value: +UseKRaft,+KafkaNodePools

CHAPTER 4. DEVELOPER PREVIEWS

15

https://access.redhat.com/support/offerings/devpreview/

JBOD storage is not supported. The type: jbod storage can be used, but the JBOD array can
contain only one disk.

See UseKRaft feature gate and Feature gate releases.

Red Hat AMQ Streams 2.6 Release Notes for AMQ Streams 2.6 on OpenShift

16

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#ref-operator-use-kraft-feature-gate-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#ref-operator-cluster-feature-gate-releases-str

CHAPTER 5. KAFKA BREAKING CHANGES
This section describes any changes to Kafka that required a corresponding change to AMQ Streams to
continue to work.

5.1. USING KAFKA’S EXAMPLE FILE CONNECTORS

Kafka no longer includes the example file connectors FileStreamSourceConnector and
FileStreamSinkConnector in its CLASSPATH and plugin.path by default. AMQ Streams has been
updated so that you can still use these example connectors. The examples now have to be added to the
plugin path like any connector.

AMQ Streams provides an example connector configuration file with the configuration required to
deploy the file connectors as KafkaConnector resources:

examples/connect/source-connector.yaml

See Deploying example KafkaConnector resources and Extending Kafka Connect with connector
plugins.

CHAPTER 5. KAFKA BREAKING CHANGES

17

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-deploying-kafkaconnector-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#using-kafka-connect-with-plug-ins-str

CHAPTER 6. DEPRECATED FEATURES
The features deprecated in this release, and that were supported in previous releases of AMQ Streams,
are outlined below.

6.1. ENVIRONMENT VARIABLE CONFIGURATION PROVIDER IS
DEPRECATED

You can use configuration providers to load configuration data from external sources for all Kafka
components, including producers and consumers.

Previously, you could enable the secrets.io.strimzi.kafka.EnvVarConfigProvider environment variable
configuration provider using the config.providers properties in the spec configuration of a component.
However, this provider is now deprecated and will be removed in the future. Therefore, it is
recommended to update your implementation to use Kafka’s own environment variable configuration
provider (org.apache.kafka.common.config.provider.EnvVarConfigProvider) to provide
configuration properties as environment variables.

Example configuration to enable the environment variable configuration provider

6.2. LISTENER STATUS TYPE PROPERTY REPLACED WITH NAME
PROPERTY

The type property in the ListenerStatus schema has been deprecated and is no longer used. It has been
replaced with the name property. The name property provides the name of a listener in the status of a
Kafka resource.

Example Kafka status showing the name of a listener

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
 annotations:
 strimzi.io/use-connector-resources: "true"
spec:
 # ...
 config:
 # ...
 config.providers: env
 config.providers.env.class: org.apache.kafka.common.config.provider.EnvVarConfigProvider
 # ...

status:
 clusterId: Y_RJQDGKRXmNF7fEcWldJQ
 conditions:
 - lastTransitionTime: '2023-11-29T14:59:37.113630Z'
 status: 'True'
 type: Ready
 kafkaVersion: 3.6.0
 listeners:
 # ...
 - addresses:

Red Hat AMQ Streams 2.6 Release Notes for AMQ Streams 2.6 on OpenShift

18

6.3. PAUSE PROPERTY OF THE KAFKACONNECTORSPEC SCHEMA

The pause property of the KafkaConnectorSpec schema is now deprecated. Instead, a new state
property allows you to choose a state value.

See Section 1.6, “Support for stopping connectors from running” .

6.4. STATEFULSET SUPPORT REMOVED

The UseStrimziPodSets feature gate is now permanently enabled and cannot be disabled. For this
reason, support for StatefulSet resources to manage pods is no longer available.

The StatefulSet template properties in the Kafka custom resource
(.spec.zookeeper.template.statefulSet and .spec.kafka.template.statefulSet) are deprecated and
ignored. You should remove them from your custom resources.

6.5. JAVA 8 SUPPORT REMOVED IN AMQ STREAMS 2.4.0

Support for Java 8 was deprecated in Kafka 3.0.0 and AMQ Streams 2.0. Support for Java 8 was
removed in AMQ Streams 2.4.0. This applies to all AMQ Streams components, including clients.

AMQ Streams supports Java 11 and Java 17. Use Java 11 or 17 when developing new applications. Plan to
migrate any applications that currently use Java 8 to Java 11 or 17.

If you want to continue using Java 8 for the time being, AMQ Streams 2.2 provides Long Term Support
(LTS). For information on the LTS terms and dates, see the AMQ Streams LTS Support Policy .

6.6. OPENTRACING

Support for type: jaeger tracing is now removed.

The Jaeger clients are now retired and the OpenTracing project archived. As such, we cannot guarantee
their support for future Kafka versions.

OpenTelemetry has replaced OpenTracing for distributed tracing.

See Introducing distributed tracing.

 - host: >-
 a8d4a6fb363bf44...
 port: 9094
 bootstrapServers: >-
 a8d4a6fb363bf447fb6e475...
 certificates:
 - |
 -----BEGIN CERTIFICATE-----

 -----END CERTIFICATE-----
 name: external3
 observedGeneration: 2
 operatorLastSuccessfulVersion: 2.6
 # ...

CHAPTER 6. DEPRECATED FEATURES

19

https://access.redhat.com/articles/6975608
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#assembly-distributed-tracing-str

6.7. ACL RULE CONFIGURATION

The operation property for configuring operations for ACL rules is deprecated. A new, more-
streamlined configuration format using the operations property is now available.

New format for configuring ACL rules

The operation property for the old configuration format is deprecated, but still supported.

6.8. KAFKA MIRRORMAKER 2 IDENTITY REPLICATION POLICY

Identity replication policy is a feature used with MirrorMaker 2 to override the automatic renaming of
remote topics. Instead of prepending the name with the source cluster’s name, the topic retains its
original name. This setting is particularly useful for active/passive backups and data migration scenarios.

To implement an identity replication policy, you must specify a replication policy class
(replication.policy.class) in the MirrorMaker 2 configuration. Previously, you could specify the
io.strimzi.kafka.connect.mirror.IdentityReplicationPolicy class included with the AMQ Streams
mirror-maker-2-extensions component. However, this component is now deprecated and will be
removed in the future. Therefore, it is recommended to update your implementation to use Kafka’s own
replication policy class (org.apache.kafka.connect.mirror.IdentityReplicationPolicy).

See Configuring Kafka MirrorMaker 2.

6.9. KAFKA MIRRORMAKER 1

Kafka MirrorMaker replicates data between two or more active Kafka clusters, within or across data
centers. Kafka MirrorMaker 1 was deprecated in Kafka 3.0.0 and will be removed in Kafka 4.0.0.
MirrorMaker 2 will be the only version available. MirrorMaker 2 is based on the Kafka Connect
framework, connectors managing the transfer of data between clusters.

As a consequence, the AMQ Streams KafkaMirrorMaker custom resource which is used to deploy Kafka
MirrorMaker 1 has been deprecated. The KafkaMirrorMaker resource will be removed from AMQ
Streams when Kafka 4.0.0 is adopted.

If you are using MirrorMaker 1 (referred to as just MirrorMaker in the AMQ Streams documentation), use
the KafkaMirrorMaker2 custom resource with the IdentityReplicationPolicy class. MirrorMaker 2
renames topics replicated to a target cluster. IdentityReplicationPolicy configuration overrides the
automatic renaming. Use it to produce the same active/passive unidirectional replication as MirrorMaker
1.

See Configuring Kafka MirrorMaker 2.

authorization:
 type: simple
 acls:
 - resource:
 type: topic
 name: my-topic
 operations:
 - Read
 - Describe
 - Create
 - Write

Red Hat AMQ Streams 2.6 Release Notes for AMQ Streams 2.6 on OpenShift

20

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#assembly-mirrormaker-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#assembly-mirrormaker-str

6.10. LISTENERSTATUS TYPE PROPERTY

The type property of ListenerStatus has been deprecated and will be removed in the future.
ListenerStatus is used to specify the addresses of internal and external listeners. Instead of using the
type, the addresses are now specified by name.

See ListenerStatus schema reference.

6.11. CRUISE CONTROL TLS SIDECAR PROPERTIES

The Cruise Control TLS sidecar has been removed. As a result, the .spec.cruiseControl.tlsSidecar and
.spec.cruiseControl.template.tlsSidecar properties are now deprecated. The properties are ignored
and will be removed in the future.

6.12. CRUISE CONTROL CAPACITY CONFIGURATION

The Cruise Control disk and cpuUtilization capacity configuration properties have been deprecated,
are ignored, and will be removed in the future. The properties were used in setting capacity limits in
optimization proposals to determine if resource-based optimization goals are being broken. Disk and
CPU capacity limits are now automatically generated by AMQ Streams.

See Configuring and deploying Cruise Control with Kafka .

CHAPTER 6. DEPRECATED FEATURES

21

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/amq_streams_api_reference/index#type-ListenerStatus-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-configuring-deploying-cruise-control-str

CHAPTER 7. FIXED ISSUES
The issues fixed in AMQ Streams 2.6 on OpenShift.

For details of the issues fixed in Kafka 3.6.0, refer to the Kafka 3.5.0 Release Notes.

Table 7.1. Fixed issues

Issue Number Description

ENTMQST-4708 Recreate watcher when closed with an exception

ENTMQST-4932 Improve CPU estimation in the Cruise Control capacity configuration

ENTMQST-5132 Cluster Operator allows multiple JBOD disks for KRaft with node pools

ENTMQST-5133 Delete ClusterRoleBinding when MirrorMaker 2 with rack awareness is deleted

ENTMQST-5197 Allow use of default user quota while User Operator is enabled

ENTMQST-5333 Missing pause reconciliation for Unidirectional Topic Operator

ENTMQST-5341 Cluster Operator allows multiple JBOD disks for KRaft with node pools

ENTMQST-5372 Fix missing CO replicaset and pod YAMLs in report.sh

ENTMQST-5394 UTO NPE with missing partitions and/or replicas

ENTMQST-5575 BackPort fix of ZOOKEEPER-4708 to AMQ Streams

Table 7.2. Fixed common vulnerabilities and exposures (CVEs)

Issue Number Description

ENTMQST-4990 jackson-databind: denial of service via cylic dependencies

ENTMQST-4999 CVE-2023-33201 bouncycastle: potential blind LDAP injection attack using a self-
signed certificate

ENTMQST-5023 netty: io.netty:netty-handler: SniHandler 16MB allocation

ENTMQST-5047 CVE-2023-2976 guava: insecure temporary directory creation

ENTMQST-5385 CVE-2023-44981 [2.6] CVE-2023-44981 zookeeper: zookeeper: Authorization Bypass
in Apache ZooKeeper

ENTMQST-5139 CVE-2023-20873 spring-boot: Security Bypass With Wildcard Pattern Matching on
Cloud Foundry

Red Hat AMQ Streams 2.6 Release Notes for AMQ Streams 2.6 on OpenShift

22

https://archive.apache.org/dist/kafka/3.5.0/RELEASE_NOTES.html
https://issues.redhat.com/browse/ENTMQST-4708
https://issues.redhat.com/browse/ENTMQST-4932
https://issues.redhat.com/browse/ENTMQST-5132
https://issues.redhat.com/browse/ENTMQST-5133
https://issues.redhat.com/browse/ENTMQST-5197
https://issues.redhat.com/browse/ENTMQST-5333
https://issues.redhat.com/browse/ENTMQST-5341
https://issues.redhat.com/browse/ENTMQST-5372
https://issues.redhat.com/browse/ENTMQST-5394
https://issues.redhat.com/browse/ENTMQST-5575
https://issues.redhat.com/browse/ENTMQST-4990
https://issues.redhat.com/browse/ENTMQST-4999
https://issues.redhat.com/browse/ENTMQST-5023
https://issues.redhat.com/browse/ENTMQST-5047
https://issues.redhat.com/browse/ENTMQST-5385
https://issues.redhat.com/browse/ENTMQST-5139

ENTMQST-5160 CVE-2022-46751 apache-ivy: XML External Entity vulnerability

ENTMQST-5173 CVE-2023-41080 tomcat: Open Redirect vulnerability in FORM authentication

ENTMQST-5293 CVE-2023-40167 jetty-http: jetty: Improper validation of HTTP/1 content-length

ENTMQST-5352 CVE-2023-42445 gradle: Possible local text file exfiltration by XML External entity
injection

ENTMQST-5353 CVE-2023-44387 gradle: Incorrect permission assignment for symlinked files used in
copy or archiving operations

ENTMQST-5398 CVE-2023-44981 zookeeper: Authorization Bypass in Apache ZooKeeper

ENTMQST-5427 CVE-2023-31582 jose4j: Insecure iteration count setting

ENTMQST-5437 CVE-2023-5072 in cruise-control

Issue Number Description

CHAPTER 7. FIXED ISSUES

23

https://issues.redhat.com/browse/ENTMQST-5160
https://issues.redhat.com/browse/ENTMQST-5173
https://issues.redhat.com/browse/ENTMQST-5293
https://issues.redhat.com/browse/ENTMQST-5352
https://issues.redhat.com/browse/ENTMQST-5353
https://issues.redhat.com/browse/ENTMQST-5398
https://issues.redhat.com/browse/ENTMQST-5427
https://issues.redhat.com/browse/ENTMQST-5437

CHAPTER 8. KNOWN ISSUES
This section lists the known issues for AMQ Streams 2.6 on OpenShift.

8.1. STOPPING MIRRORMAKER 2 CONNECTORS

The new support for stopping connectors does not work in MirrorMaker 2 because the state is not
passed to the connector operator. This will be fixed in the next release of AMQ Streams.

8.2. KAFKA BRIDGE SENDING MESSAGES WITH CORS ENABLED

If Cross-Origin Resource Sharing (CORS) is enabled for the Kafka Bridge, a 400 bad request error is
returned when sending a HTTP request to produce messages.

Workaround

To avoid this error, disable CORS in the Kafka Bridge configuration. HTTP requests to produce
messages must have CORS disabled in the Kafka Bridge. This issue will be fixed in a future release of
AMQ Streams.

To use CORS, you can deploy Red Hat 3scale for the Kafka Bridge.

For information on deploying 3scale see, Using 3scale API Management with the AMQ Streams
Kafka Bridge.

For information on CORS request handling by 3scale, see Administering the API Gateway.

8.3. AMQ STREAMS CLUSTER OPERATOR ON IPV6 CLUSTERS

The AMQ Streams Cluster Operator does not start on Internet Protocol version 6 (IPv6) clusters.

Workaround

There are two workarounds for this issue.

Workaround one: Set the KUBERNETES_MASTER environment variable

1. Display the address of the Kubernetes master node of your OpenShift Container Platform
cluster:

Copy the address of the master node.

2. List all Operator subscriptions:

3. Edit the Subscription resource for AMQ Streams:

4. In spec.config.env, add the KUBERNETES_MASTER environment variable, set to the address

oc cluster-info
Kubernetes master is running at <master_address>
...

oc get subs -n <operator_namespace>

oc edit sub amq-streams -n <operator_namespace>

Red Hat AMQ Streams 2.6 Release Notes for AMQ Streams 2.6 on OpenShift

24

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/administering_the_api_gateway/index

4. In spec.config.env, add the KUBERNETES_MASTER environment variable, set to the address
of the Kubernetes master node. For example:

5. Save and exit the editor.

6. Check that the Subscription was updated:

7. Check that the Cluster Operator Deployment was updated to use the new environment
variable:

Workaround two: Disable hostname verification

1. List all Operator subscriptions:

2. Edit the Subscription resource for AMQ Streams:

3. In spec.config.env, add the KUBERNETES_DISABLE_HOSTNAME_VERIFICATION
environment variable, set to true. For example:

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: amq-streams
 namespace: <operator_namespace>
spec:
 channel: amq-streams-1.8.x
 installPlanApproval: Automatic
 name: amq-streams
 source: mirror-amq-streams
 sourceNamespace: openshift-marketplace
 config:
 env:
 - name: KUBERNETES_MASTER
 value: MASTER-ADDRESS

oc get sub amq-streams -n <operator_namespace>

oc get deployment <cluster_operator_deployment_name>

oc get subs -n <operator_namespace>

oc edit sub amq-streams -n <operator_namespace>

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: amq-streams
 namespace: <operator_namespace>
spec:
 channel: amq-streams-1.8.x
 installPlanApproval: Automatic
 name: amq-streams
 source: mirror-amq-streams
 sourceNamespace: openshift-marketplace

CHAPTER 8. KNOWN ISSUES

25

4. Save and exit the editor.

5. Check that the Subscription was updated:

6. Check that the Cluster Operator Deployment was updated to use the new environment
variable:

8.4. CRUISE CONTROL CPU UTILIZATION ESTIMATION

Cruise Control for AMQ Streams has a known issue that relates to the calculation of CPU utilization
estimation. CPU utilization is calculated as a percentage of the defined capacity of a broker pod. The
issue occurs when running Kafka brokers across nodes with varying CPU cores. For example, node1
might have 2 CPU cores and node2 might have 4 CPU cores. In this situation, Cruise Control can
underestimate and overestimate CPU load of brokers The issue can prevent cluster rebalances when
the pod is under heavy load.

There are two workarounds for this issue.

Workaround one: Equal CPU requests and limits

You can set CPU requests equal to CPU limits in Kafka.spec.kafka.resources. That way, all CPU
resources are reserved upfront and are always available. This configuration allows Cruise Control to
properly evaluate the CPU utilization when preparing the rebalance proposals based on CPU goals.

Workaround two: Exclude CPU goals

You can exclude CPU goals from the hard and default goals specified in the Cruise Control
configuration.

Example Cruise Control configuration without CPU goals

 config:
 env:
 - name: KUBERNETES_DISABLE_HOSTNAME_VERIFICATION
 value: "true"

oc get sub amq-streams -n <operator_namespace>

oc get deployment <cluster_operator_deployment_name>

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 topicOperator: {}
 userOperator: {}
 cruiseControl:
 brokerCapacity:
 inboundNetwork: 10000KB/s

Red Hat AMQ Streams 2.6 Release Notes for AMQ Streams 2.6 on OpenShift

26

For more information, see Insufficient CPU capacity.

8.5. JMX AUTHENTICATION WHEN RUNNING IN FIPS MODE

When running AMQ Streams in FIPS mode with JMX authentication enabled, clients may fail
authentication. To work around this issue, do not enable JMX authentication while running in FIPS
mode. We are investigating the issue and working to resolve it in a future release.

 outboundNetwork: 10000KB/s
 config:
 hard.goals: >
 com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.MinTopicLeadersPerBrokerGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal
 default.goals: >
 com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.MinTopicLeadersPerBrokerGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaDistributionGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.PotentialNwOutGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskUsageDistributionGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundUsageDistributionGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundUsageDistributionGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.TopicReplicaDistributionGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.LeaderReplicaDistributionGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.LeaderBytesInDistributionGoal

CHAPTER 8. KNOWN ISSUES

27

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-generating-optimization-proposals-str

CHAPTER 9. SUPPORTED CONFIGURATIONS
Supported configurations for the AMQ Streams 2.6 release.

9.1. SUPPORTED PLATFORMS

The following platforms are tested for AMQ Streams 2.6 running with Kafka on the version of OpenShift
stated.

Platform Version Architecture

Red Hat OpenShift Container Platform
(including disconnected environments)

4.11 to 4.14 x86_64, ppc64le (IBM Power), s390x
(IBM Z and IBM® LinuxONE), aarch64
(64-bit ARM)

Red Hat OpenShift Dedicated Latest x86_64

Microsoft Azure Red Hat OpenShift Latest x86_64

Red Hat OpenShift Service on AWS Latest x86_64

Red Hat MicroShift Latest x86_64

Red Hat OpenShift Local 2.10-2.12 (OCP
4.11), 2.13-2.19
(OCP 4.12), 2.20-
2.28 (OCP 4.13),
2.29 and newer
(OCP 4.14)

x86_64

OpenShift Local is a limited version of Red Hat OpenShift Container Platform (OCP). Use only for
development and evaluation on the understanding that some features may be unavailable.

Unsupported features

Red Hat MicroShift does not support Kafka Connect’s build configuration for building container
images with connectors.

IBM Z and IBM® LinuxONE s390x architecture does not support AMQ Streams OPA integration.

FIPS compliance

Red Hat OpenShift Container Platform is designed for FIPS. When running on RHEL or RHEL CoreOS
booted in FIPS mode, OpenShift Container Platform core components use the RHEL cryptographic
libraries submitted to NIST for FIPS validation on only the x86_64, ppc64le (IBM Power), s390x (IBM
Z), and aarch64 (64-bit ARM) architectures. For more information about the NIST validation program,
see Cryptographic Module Validation Program . For the latest NIST status for the individual versions of
the RHEL cryptographic libraries submitted for validation, see Compliance Activities and Government
Standards.

9.2. SUPPORTED CLIENTS

Red Hat AMQ Streams 2.6 Release Notes for AMQ Streams 2.6 on OpenShift

28

https://csrc.nist.gov/Projects/cryptographic-module-validation-program/validated-modules
https://access.redhat.com/articles/2918071#fips-140-2-and-fips-140-3-2

Only client libraries built by Red Hat are supported for AMQ Streams. Currently, AMQ Streams only
provides a Java client library. Clients are supported for use with AMQ Streams 2.6 on the following
operating systems and architectures:

Operating System Architecture JVM

RHEL and UBI 7 x86, amd64 Java 11

RHEL and UBI 8
and 9

x86, amd64, ppc64le (IBM Power), s390x
(IBM Z and IBM® LinuxONE), aarch64
(64-bit ARM)

Java 11 and Java 17

Clients are tested with Open JDK 11 and 17. The IBM JDK is supported but not regularly tested against
during each release. Open JDK 8, Oracle JDK 8 & 11, and IBM JDK 8 are not supported.

NOTE

Support for Red Hat Universal Base Image (UBI) versions correspond to the same RHEL
version.

9.3. SUPPORTED APACHE KAFKA ECOSYSTEM

In AMQ Streams, only the following components released directly from the Apache Software
Foundation are supported:

Apache Kafka Broker

Apache Kafka Connect

Apache MirrorMaker

Apache MirrorMaker 2

Apache Kafka Java Producer, Consumer, Management clients, and Kafka Streams

Apache ZooKeeper

NOTE

Apache ZooKeeper is supported solely as an implementation detail of Apache Kafka and
should not be modified for other purposes. Additionally, the cores or vCPU allocated to
ZooKeeper nodes are not included in subscription compliance calculations. In other
words, ZooKeeper nodes do not count towards a customer’s subscription.

9.4. ADDITIONAL SUPPORTED FEATURES

Kafka Bridge

Drain Cleaner

Cruise Control

Distributed Tracing

CHAPTER 9. SUPPORTED CONFIGURATIONS

29

See also, Chapter 11, Supported integration with Red Hat products .

9.5. STORAGE REQUIREMENTS

Kafka requires block storage; file storage options like NFS are not compatible.

Additional resources

For information on the supported configurations for the AMQ Streams 2.5 LTS release, see the AMQ
Streams 2.5 Release Notes.

Red Hat AMQ Streams 2.6 Release Notes for AMQ Streams 2.6 on OpenShift

30

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/release_notes_for_amq_streams_2.5_on_openshift/index

CHAPTER 10. COMPONENT DETAILS
The following table shows the component versions for each AMQ Streams release.

AMQ Streams Apache Kafka Strimzi
Operators

Kafka Bridge Oauth Cruise Control

2.6.0 3.6.0 0.38.0 0.27 0.14.0 2.5.128

2.5.1 3.5.0 0.36.0 0.26 0.13.0 2.5.123

2.5.0 3.5.0 0.36.0 0.26 0.13.0 2.5.123

2.4.0 3.4.0 0.34.0 0.25.0 0.12.0 2.5.112

2.3.0 3.3.1 0.32.0 0.22.3 0.11.0 2.5.103

2.2.2 3.2.3 0.29.0 0.21.5 0.10.0 2.5.103

2.2.1 3.2.3 0.29.0 0.21.5 0.10.0 2.5.103

2.2.0 3.2.3 0.29.0 0.21.5 0.10.0 2.5.89

2.1.0 3.1.0 0.28.0 0.21.4 0.10.0 2.5.82

2.0.1 3.0.0 0.26.0 0.20.3 0.9.0 2.5.73

2.0.0 3.0.0 0.26.0 0.20.3 0.9.0 2.5.73

1.8.4 2.8.0 0.24.0 0.20.1 0.8.1 2.5.59

1.8.0 2.8.0 0.24.0 0.20.1 0.8.1 2.5.59

1.7.0 2.7.0 0.22.1 0.19.0 0.7.1 2.5.37

1.6.7 2.6.3 0.20.1 0.19.0 0.6.1 2.5.11

1.6.6 2.6.3 0.20.1 0.19.0 0.6.1 2.5.11

1.6.5 2.6.2 0.20.1 0.19.0 0.6.1 2.5.11

1.6.4 2.6.2 0.20.1 0.19.0 0.6.1 2.5.11

1.6.0 2.6.0 0.20.0 0.19.0 0.6.1 2.5.11

1.5.0 2.5.0 0.18.0 0.16.0 0.5.0 -

CHAPTER 10. COMPONENT DETAILS

31

1.4.1 2.4.0 0.17.0 0.15.2 0.3.0 -

1.4.0 2.4.0 0.17.0 0.15.2 0.3.0 -

1.3.0 2.3.0 0.14.0 0.14.0 0.1.0 -

1.2.0 2.2.1 0.12.1 0.12.2 - -

1.1.1 2.1.1 0.11.4 - - -

1.1.0 2.1.1 0.11.1 - - -

1.0 2.0.0 0.8.1 - - -

AMQ Streams Apache Kafka Strimzi
Operators

Kafka Bridge Oauth Cruise Control

NOTE

Strimzi 0.26.0 contains a Log4j vulnerability. The version included in the product has been
updated to depend on versions that do not contain the vulnerability.

Red Hat AMQ Streams 2.6 Release Notes for AMQ Streams 2.6 on OpenShift

32

CHAPTER 11. SUPPORTED INTEGRATION WITH RED HAT
PRODUCTS

AMQ Streams 2.6 supports integration with the following Red Hat products:

Red Hat Single Sign-On

Provides OAuth 2.0 authentication and OAuth 2.0 authorization.

Red Hat 3scale API Management

Secures the Kafka Bridge and provides additional API management features.

Red Hat build of Debezium

Monitors databases and creates event streams.

Red Hat build of Apicurio Registry

Provides a centralized store of service schemas for data streaming.

Red Hat build of Apache Camel K

Provides a lightweight integration framework.

For information on the functionality these products can introduce to your AMQ Streams deployment,
refer to the product documentation.

11.1. RED HAT SINGLE SIGN-ON

AMQ Streams supports the use of OAuth 2.0 token-based authorization through Red Hat Single Sign-
On Authorization Services, which allows you to manage security policies and permissions centrally.

11.2. RED HAT 3SCALE API MANAGEMENT

If you deployed the Kafka Bridge on OpenShift Container Platform, you can use it with 3scale. 3scale API
Management can secure the Kafka Bridge with TLS, and provide authentication and authorization.
Integration with 3scale also means that additional features like metrics, rate limiting and billing are
available.

For information on deploying 3scale, see Using 3scale API Management with the AMQ Streams Kafka
Bridge.

11.3. RED HAT BUILD OF DEBEZIUM FOR CHANGE DATA CAPTURE

The Red Hat build of Debezium is a distributed change data capture platform. It captures row-level
changes in databases, creates change event records, and streams the records to Kafka topics.
Debezium is built on Apache Kafka. You can deploy and integrate the Red Hat build of Debezium with
AMQ Streams. Following a deployment of AMQ Streams, you deploy Debezium as a connector
configuration through Kafka Connect. Debezium passes change event records to AMQ Streams on
OpenShift. Applications can read these change event streams and access the change events in the
order in which they occurred.

Debezium has multiple uses, including:

Data replication

Updating caches and search indexes

Simplifying monolithic applications

CHAPTER 11. SUPPORTED INTEGRATION WITH RED HAT PRODUCTS

33

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/

Data integration

Enabling streaming queries

Debezium provides connectors (based on Kafka Connect) for the following common databases:

Db2

MongoDB

MySQL

PostgreSQL

SQL Server

For more information on deploying Debezium with AMQ Streams, refer to the product documentation
for the Red Hat build of Debezium .

11.4. RED HAT BUILD OF APICURIO REGISTRY FOR SCHEMA
VALIDATION

You can use the Red Hat build of Apicurio Registry as a centralized store of service schemas for data
streaming. For Kafka, you can use the Red Hat build of Apicurio Registry to store Apache Avro or JSON
schema.

Apicurio Registry provides a REST API and a Java REST client to register and query the schemas from
client applications through server-side endpoints.

Using Apicurio Registry decouples the process of managing schemas from the configuration of client
applications. You enable an application to use a schema from the registry by specifying its URL in the
client code.

For example, the schemas to serialize and deserialize messages can be stored in the registry, which are
then referenced from the applications that use them to ensure that the messages that they send and
receive are compatible with those schemas.

Kafka client applications can push or pull their schemas from Apicurio Registry at runtime.

For more information on using the Red Hat build of Apicurio Registry with AMQ Streams, refer to the
product documentation for the Red Hat build of Apicurio Registry .

11.5. RED HAT BUILD OF APACHE CAMEL K

The Red Hat build of Apache Camel K is a lightweight integration framework built from Apache Camel K
that runs natively in the cloud on OpenShift. Camel K supports serverless integration, which allows for
development and deployment of integration tasks without the need to manage the underlying
infrastructure. You can use Camel K to build and integrate event-driven applications with your AMQ
Streams environment. For scenarios requiring real-time data synchronization between different systems
or databases, Camel K can be used to capture and transform change in events and send them to AMQ
Streams for distribution to other systems.

For more information on using the Camel K with AMQ Streams, refer to the product documentation for
the Red Hat build of Apache Camel K .

Red Hat AMQ Streams 2.6 Release Notes for AMQ Streams 2.6 on OpenShift

34

https://access.redhat.com/documentation/en-us/red_hat_build_of_debezium
https://access.redhat.com/documentation/en-us/red_hat_build_of_apicurio_registry
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel_k

Additional resources

Red Hat Single Sign-On Supported Configurations

Red Hat 3scale API Management Supported Configurations

Red Hat build of Debezium Supported Configurations

Red Hat build of Apicurio Registry Supported Configurations

Red Hat build of Apache Camel K Supported Configurations

Revised on 2023-12-19 17:46:51 UTC

CHAPTER 11. SUPPORTED INTEGRATION WITH RED HAT PRODUCTS

35

https://access.redhat.com/articles/2342861
https://access.redhat.com/articles/2798521
https://access.redhat.com/articles/4938181
https://access.redhat.com/articles/5208571
https://access.redhat.com/articles/6241991

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. FEATURES
	1.1. OPENSHIFT CONTAINER PLATFORM SUPPORT
	1.2. KAFKA 3.6.0 SUPPORT
	1.3. SUPPORTING THE V1BETA2 API VERSION
	1.3.1. Upgrading custom resources to v1beta2

	1.4. STABLECONNECTIDENTITIES FEATURE GATE IS NOW ENABLED BY DEFAULT
	1.5. BLOCK OR SKIP SCALE-DOWN OPERATIONS IF REPLICAS PRESENT
	1.6. SUPPORT FOR STOPPING CONNECTORS FROM RUNNING
	1.7. RUN PARALLEL ZOOKEEPER-BASED AND KRAFT-BASED KAFKA CLUSTERS

	CHAPTER 2. ENHANCEMENTS
	2.1. KAFKA 3.6.0 ENHANCEMENTS
	2.2. PAUSE RECONCILIATION OF KAFKATOPIC RESOURCES IN UNIDIRECTIONAL MODE
	2.3. UNIDIRECTIONAL TOPIC OPERATOR METRICS
	2.4. SUPPORT FOR MANUAL ROLLING UPDATE OF KAFKA CONNECT AND KAFKA MIRRORMAKER 2 PODS
	2.5. INFINITE AUTOMATIC RESTARTS OF CONNECTORS
	2.6. CPU CAPACITY CONFIGURATION LOGIC IN CRUISE CONTROL
	2.7. OAUTH 2.0 ACCEPT HEADER EXCLUDE OPTION
	2.8. ENHANCED FIPS SUPPORT
	2.9. ENHANCED SUPPORT FOR RUNNING RED HAT OPENSHIFT CONTAINER PLATFORM IN DISCONNECTED ENVIRONMENTS

	CHAPTER 3. TECHNOLOGY PREVIEWS
	3.1. KAFKANODEPOOLS FEATURE GATE
	3.2. UNIDIRECTIONALTOPICOPERATOR FEATURE GATE
	3.3. KAFKA STATIC QUOTA PLUGIN CONFIGURATION

	CHAPTER 4. DEVELOPER PREVIEWS
	4.1. USEKRAFT FEATURE GATE

	CHAPTER 5. KAFKA BREAKING CHANGES
	5.1. USING KAFKA’S EXAMPLE FILE CONNECTORS

	CHAPTER 6. DEPRECATED FEATURES
	6.1. ENVIRONMENT VARIABLE CONFIGURATION PROVIDER IS DEPRECATED
	6.2. LISTENER STATUS TYPE PROPERTY REPLACED WITH NAME PROPERTY
	6.3. PAUSE PROPERTY OF THE KAFKACONNECTORSPEC SCHEMA
	6.4. STATEFULSET SUPPORT REMOVED
	6.5. JAVA 8 SUPPORT REMOVED IN AMQ STREAMS 2.4.0
	6.6. OPENTRACING
	6.7. ACL RULE CONFIGURATION
	6.8. KAFKA MIRRORMAKER 2 IDENTITY REPLICATION POLICY
	6.9. KAFKA MIRRORMAKER 1
	6.10. LISTENERSTATUS TYPE PROPERTY
	6.11. CRUISE CONTROL TLS SIDECAR PROPERTIES
	6.12. CRUISE CONTROL CAPACITY CONFIGURATION

	CHAPTER 7. FIXED ISSUES
	CHAPTER 8. KNOWN ISSUES
	8.1. STOPPING MIRRORMAKER 2 CONNECTORS
	8.2. KAFKA BRIDGE SENDING MESSAGES WITH CORS ENABLED
	8.3. AMQ STREAMS CLUSTER OPERATOR ON IPV6 CLUSTERS
	8.4. CRUISE CONTROL CPU UTILIZATION ESTIMATION
	8.5. JMX AUTHENTICATION WHEN RUNNING IN FIPS MODE

	CHAPTER 9. SUPPORTED CONFIGURATIONS
	9.1. SUPPORTED PLATFORMS
	9.2. SUPPORTED CLIENTS
	9.3. SUPPORTED APACHE KAFKA ECOSYSTEM
	9.4. ADDITIONAL SUPPORTED FEATURES
	9.5. STORAGE REQUIREMENTS

	CHAPTER 10. COMPONENT DETAILS
	CHAPTER 11. SUPPORTED INTEGRATION WITH RED HAT PRODUCTS
	11.1. RED HAT SINGLE SIGN-ON
	11.2. RED HAT 3SCALE API MANAGEMENT
	11.3. RED HAT BUILD OF DEBEZIUM FOR CHANGE DATA CAPTURE
	11.4. RED HAT BUILD OF APICURIO REGISTRY FOR SCHEMA VALIDATION
	11.5. RED HAT BUILD OF APACHE CAMEL K

