
Red Hat AMQ Streams 2.6

Kafka configuration tuning

Use Kafka configuration properties to optimize the streaming of data

Last Updated: 2023-12-06

Red Hat AMQ Streams 2.6 Kafka configuration tuning

Use Kafka configuration properties to optimize the streaming of data

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Fine-tune the operation of Kafka brokers, producers, and consumers using Kafka configuration
properties.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. KAFKA TUNING OVERVIEW
1.1. MAPPING PROPERTIES AND VALUES
1.2. TOOLS THAT HELP WITH TUNING

CHAPTER 2. MANAGED BROKER CONFIGURATION

CHAPTER 3. KAFKA BROKER CONFIGURATION TUNING
3.1. BASIC BROKER CONFIGURATION
3.2. REPLICATING TOPICS FOR HIGH AVAILABILITY
3.3. INTERNAL TOPIC SETTINGS FOR TRANSACTIONS AND COMMITS
3.4. IMPROVING REQUEST HANDLING THROUGHPUT BY INCREASING I/O THREADS
3.5. INCREASING BANDWIDTH FOR HIGH LATENCY CONNECTIONS
3.6. MANAGING KAFKA LOGS WITH DELETE AND COMPACT POLICIES
3.7. MANAGING EFFICIENT DISK UTILIZATION FOR COMPACTION
3.8. HANDLING LARGE MESSAGE SIZES
3.9. CONTROLLING THE LOG FLUSH OF MESSAGE DATA
3.10. PARTITION REBALANCING FOR AVAILABILITY
3.11. UNCLEAN LEADER ELECTION
3.12. AVOIDING UNNECESSARY CONSUMER GROUP REBALANCES

CHAPTER 4. KAFKA CONSUMER CONFIGURATION TUNING
4.1. BASIC CONSUMER CONFIGURATION
4.2. SCALING DATA CONSUMPTION USING CONSUMER GROUPS
4.3. MESSAGE ORDERING GUARANTEES
4.4. OPTIMIZING CONSUMERS FOR THROUGHPUT AND LATENCY
4.5. AVOIDING DATA LOSS OR DUPLICATION WHEN COMMITTING OFFSETS

4.5.1. Controlling transactional messages
4.6. RECOVERING FROM FAILURE TO AVOID DATA LOSS
4.7. MANAGING OFFSET POLICY
4.8. MINIMIZING THE IMPACT OF REBALANCES

CHAPTER 5. KAFKA PRODUCER CONFIGURATION TUNING
5.1. BASIC PRODUCER CONFIGURATION
5.2. DATA DURABILITY
5.3. ORDERED DELIVERY
5.4. RELIABILITY GUARANTEES
5.5. OPTIMIZING PRODUCERS FOR THROUGHPUT AND LATENCY

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing Your Account
Activating a Subscription
Downloading Zip and Tar Files
Installing packages with DNF

3

4
4
4

5

6
6
6
7
7
9
9

13
13
15
16
17
17

18
18
18
19
19

20
21
21
22
22

24
24
24
26
26
27

30
30
30
30
30

Table of Contents

1

Red Hat AMQ Streams 2.6 Kafka configuration tuning

2

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

3

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. KAFKA TUNING OVERVIEW
Use configuration properties to optimize the performance of Kafka brokers, producers and consumers.
You can specify configuration properties for AMQ Streams on OCP and RHEL.

A minimum set of configuration properties is required, but you can add or adjust properties to change
how producers and consumers interact with Kafka brokers. For example, you can tune latency and
throughput of messages so that clients can respond to data in real time.

You might start by analyzing metrics to gauge where to make your initial configurations, then make
incremental changes and further comparisons of metrics until you have the configuration you need.

For more information about Apache Kafka configuration properties, see the Apache Kafka
documentation.

1.1. MAPPING PROPERTIES AND VALUES

How you specify configuration properties depends on the type of deployment. If you deployed AMQ
Streams on OCP, you can use the Kafka resource to add configuration for Kafka brokers through the
config property. With AMQ Streams on RHEL, you add the configuration to a properties file as
environment variables.

When you add config properties to custom resources, you use a colon (':') to map the property and
value.

Example configuration in a custom resource

When you add the properties as environment variables, you use an equal sign ('=') to map the property
and value.

Example configuration as an environment variable

1.2. TOOLS THAT HELP WITH TUNING

The following tools help with Kafka tuning:

Cruise Control generates optimization proposals that you can use to assess and implement a
cluster rebalance

Kafka Static Quota plugin sets limits on brokers

Rack configuration spreads broker partitions across racks and allows consumers to fetch data
from the nearest replica

For more information on these tools, see the following guides:

Configuring AMQ Streams on OpenShift

Using AMQ Streams on RHEL

num.partitions:1

num.partitions=1

Red Hat AMQ Streams 2.6 Kafka configuration tuning

4

https://kafka.apache.org/documentation/
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/amq_streams_api_reference/index
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/using_amq_streams_on_rhel/index

CHAPTER 2. MANAGED BROKER CONFIGURATION
When you deploy AMQ Streams on OpenShift, you specify broker configuration through the config
property of the Kafka custom resource. However, certain broker configuration options are managed
directly by AMQ Streams.

As such, if you are using AMQ Streams on OpenShift, you cannot configure the following options:

broker.id to specify the ID of the Kafka broker

log.dirs directories for log data

zookeeper.connect configuration to connect Kafka with ZooKeeper

listeners to expose the Kafka cluster to clients

authorization mechanisms to allow or decline actions executed by users

authentication mechanisms to prove the identity of users requiring access to Kafka

Broker IDs start from 0 (zero) and correspond to the number of broker replicas. Log directories are
mounted to /var/lib/kafka/data/kafka-logIDX based on the spec.kafka.storage configuration in the
Kafka custom resource. IDX is the Kafka broker pod index.

For a list of exclusions, see the KafkaClusterSpec schema reference.

These exclusions don’t apply when using AMQ Streams on RHEL. In this case, you need to add these
properties in your basic broker configuration to identify your brokers and provide secure access.

Example broker configuration for AMQ Streams on RHEL

Additional resources

Configuring Kafka on OCP

Configuring Kafka on RHEL

...
broker.id = 1
log.dirs = /var/lib/kafka
zookeeper.connect = zoo1.my-domain.com:2181,zoo2.my-domain.com:2181,zoo3.my-
domain.com:2181
listeners = internal-1://:9092
authorizer.class.name = kafka.security.auth.SimpleAclAuthorizer
ssl.truststore.location = /path/to/truststore.jks
ssl.truststore.password = 123456
ssl.client.auth = required
...

CHAPTER 2. MANAGED BROKER CONFIGURATION

5

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/amq_streams_api_reference/index#type-KafkaClusterSpec-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/amq_streams_api_reference/index#proc-config-kafka-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/using_amq_streams_on_rhel/index#configuring_kafka

CHAPTER 3. KAFKA BROKER CONFIGURATION TUNING
Use configuration properties to optimize the performance of Kafka brokers. You can use standard Kafka
broker configuration options, except for properties managed directly by AMQ Streams.

3.1. BASIC BROKER CONFIGURATION

A typical broker configuration will include settings for properties related to topics, threads and logs.

Basic broker configuration properties

3.2. REPLICATING TOPICS FOR HIGH AVAILABILITY

Basic topic properties set the default number of partitions and replication factor for topics, which will
apply to topics that are created without these properties being explicitly set, including when topics are
created automatically.

For high availability environments, it is advisable to increase the replication factor to at least 3 for topics
and set the minimum number of in-sync replicas required to 1 less than the replication factor.

The auto.create.topics.enable property is enabled by default so that topics that do not already exist
are created automatically when needed by producers and consumers. If you are using automatic topic
creation, you can set the default number of partitions for topics using num.partitions. Generally,
however, this property is disabled so that more control is provided over topics through explicit topic
creation.

For data durability, you should also set min.insync.replicas in your topic configuration and message

...
num.partitions=1
default.replication.factor=3
offsets.topic.replication.factor=3
transaction.state.log.replication.factor=3
transaction.state.log.min.isr=2
log.retention.hours=168
log.segment.bytes=1073741824
log.retention.check.interval.ms=300000
num.network.threads=3
num.io.threads=8
num.recovery.threads.per.data.dir=1
socket.send.buffer.bytes=102400
socket.receive.buffer.bytes=102400
socket.request.max.bytes=104857600
group.initial.rebalance.delay.ms=0
zookeeper.connection.timeout.ms=6000
...

...
num.partitions=1
auto.create.topics.enable=false
default.replication.factor=3
min.insync.replicas=2
replica.fetch.max.bytes=1048576
...

Red Hat AMQ Streams 2.6 Kafka configuration tuning

6

For data durability, you should also set min.insync.replicas in your topic configuration and message
delivery acknowledgments using acks=all in your producer configuration.

Use replica.fetch.max.bytes to set the maximum size, in bytes, of messages fetched by each follower
that replicates the leader partition. Change this value according to the average message size and
throughput. When considering the total memory allocation required for read/write buffering, the
memory available must also be able to accommodate the maximum replicated message size when
multiplied by all followers.

The delete.topic.enable property is enabled by default to allow topics to be deleted. In a production
environment, you should disable this property to avoid accidental topic deletion, resulting in data loss.
You can, however, temporarily enable it and delete topics and then disable it again.

NOTE

When running AMQ Streams on OpenShift, the Topic Operator can provide operator-
style topic management. You can use the KafkaTopic resource to create topics. For
topics created using the KafkaTopic resource, the replication factor is set using
spec.replicas. If delete.topic.enable is enabled, you can also delete topics using the
KafkaTopic resource.

3.3. INTERNAL TOPIC SETTINGS FOR TRANSACTIONS AND COMMITS

If you are using transactions to enable atomic writes to partitions from producers, the state of the
transactions is stored in the internal __transaction_state topic. By default, the brokers are configured
with a replication factor of 3 and a minimum of 2 in-sync replicas for this topic, which means that a
minimum of three brokers are required in your Kafka cluster.

Similarly, the internal __consumer_offsets topic, which stores consumer state, has default settings for
the number of partitions and replication factor.

Do not reduce these settings in production. You can increase the settings in a production
environment. As an exception, you might want to reduce the settings in a single-broker test
environment.

3.4. IMPROVING REQUEST HANDLING THROUGHPUT BY INCREASING
I/O THREADS

...
auto.create.topics.enable=false
delete.topic.enable=true
...

...
transaction.state.log.replication.factor=3
transaction.state.log.min.isr=2
...

...
offsets.topic.num.partitions=50
offsets.topic.replication.factor=3
...

CHAPTER 3. KAFKA BROKER CONFIGURATION TUNING

7

1

2

3

4

Network threads handle requests to the Kafka cluster, such as produce and fetch requests from client
applications. Produce requests are placed in a request queue. Responses are placed in a response queue.

The number of network threads per listener should reflect the replication factor and the levels of activity
from client producers and consumers interacting with the Kafka cluster. If you are going to have a lot of
requests, you can increase the number of threads, using the amount of time threads are idle to
determine when to add more threads.

To reduce congestion and regulate the request traffic, you can limit the number of requests allowed in
the request queue. When the request queue is full, all incoming traffic is blocked.

I/O threads pick up requests from the request queue to process them. Adding more threads can
improve throughput, but the number of CPU cores and disk bandwidth imposes a practical upper limit.
At a minimum, the number of I/O threads should equal the number of storage volumes.

The number of network threads for the Kafka cluster.

The number of requests allowed in the request queue.

The number of I/O threads for a Kafka broker.

The number of threads used for log loading at startup and flushing at shutdown. Try setting to a
value of at least the number of cores.

Configuration updates to the thread pools for all brokers might occur dynamically at the cluster level.
These updates are restricted to between half the current size and twice the current size.

TIP

The following Kafka broker metrics can help with working out the number of threads required:

kafka.network:type=SocketServer,name=NetworkProcessorAvgIdlePercent provides
metrics on the average time network threads are idle as a percentage.

kafka.server:type=KafkaRequestHandlerPool,name=RequestHandlerAvgIdlePercent
provides metrics on the average time I/O threads are idle as a percentage.

If there is 0% idle time, all resources are in use, which means that adding more threads might be
beneficial. When idle time goes below 30%, performance may start to suffer.

If threads are slow or limited due to the number of disks, you can try increasing the size of the buffers for
network requests to improve throughput:

...
num.network.threads=3 1
queued.max.requests=500 2
num.io.threads=8 3
num.recovery.threads.per.data.dir=4 4
...

...
replica.socket.receive.buffer.bytes=65536
...

Red Hat AMQ Streams 2.6 Kafka configuration tuning

8

And also increase the maximum number of bytes Kafka can receive:

3.5. INCREASING BANDWIDTH FOR HIGH LATENCY CONNECTIONS

Kafka batches data to achieve reasonable throughput over high-latency connections from Kafka to
clients, such as connections between datacenters. However, if high latency is a problem, you can
increase the size of the buffers for sending and receiving messages.

You can estimate the optimal size of your buffers using a bandwidth-delay product calculation, which
multiplies the maximum bandwidth of the link (in bytes/s) with the round-trip delay (in seconds) to give
an estimate of how large a buffer is required to sustain maximum throughput.

3.6. MANAGING KAFKA LOGS WITH DELETE AND COMPACT POLICIES

Kafka relies on logs to store message data. A log consists of a series of segments, where each segment
is associated with offset-based and timestamp-based indexes. New messages are written to an active
segment and are never subsequently modified. When serving fetch requests from consumers, the
segments are read. Periodically, the active segment is rolled to become read-only, and a new active
segment is created to replace it. There is only one active segment per topic-partition per broker. Older
segments are retained until they become eligible for deletion.

Configuration at the broker level determines the maximum size in bytes of a log segment and the time
in milliseconds before an active segment is rolled:

These settings can be overridden at the topic level using segment.bytes and segment.ms. The choice
to lower or raise these values depends on the policy for segment deletion. A larger size means the active
segment contains more messages and is rolled less often. Segments also become eligible for deletion
less frequently.

In Kafka, log cleanup policies determine how log data is managed. In most cases, you won’t need to
change the default configuration at the cluster level, which specifies the delete cleanup policy and
enables the log cleaner used by the compact cleanup policy:

Delete cleanup policy

...
socket.request.max.bytes=104857600
...

...
socket.send.buffer.bytes=1048576
socket.receive.buffer.bytes=1048576
...

...
log.segment.bytes=1073741824
log.roll.ms=604800000
...

...
log.cleanup.policy=delete
log.cleaner.enable=true
...

CHAPTER 3. KAFKA BROKER CONFIGURATION TUNING

9

Delete cleanup policy is the default cluster-wide policy for all topics. The policy is applied to topics
that do not have a specific topic-level policy configured. Kafka removes older segments based on
time-based or size-based log retention limits.

Compact cleanup policy

Compact cleanup policy is generally configured as a topic-level policy (cleanup.policy=compact).
Kafka’s log cleaner applies compaction on specific topics, retaining only the most recent value for a
key in the topic. You can also configure topics to use both policies
(cleanup.policy=compact,delete).

Setting up retention limits for the delete policy

Delete cleanup policy corresponds to managing logs with data retention. The policy is suitable when
data does not need to be retained forever. You can establish time-based or size-based log retention
and cleanup policies to keep logs bounded.

When log retention policies are employed, non-active log segments are removed when retention limits
are reached. Deletion of old segments helps to prevent exceeding disk capacity.

For time-based log retention, you set a retention period based on hours, minutes, or milliseconds:

The retention period is based on the time messages were appended to the segment. Kafka uses the
timestamp of the latest message within a segment to determine if that segment has expired or not. The
milliseconds configuration has priority over minutes, which has priority over hours. The minutes and
milliseconds configurations are null by default, but the three options provide a substantial level of
control over the data you wish to retain. Preference should be given to the milliseconds configuration, as
it is the only one of the three properties that is dynamically updateable.

If log.retention.ms is set to -1, no time limit is applied to log retention, and all logs are retained.
However, this setting is not generally recommended as it can lead to issues with full disks that are
difficult to rectify.

For size-based log retention, you specify a minimum log size (in bytes):

This means that Kafka will ensure there is always at least the specified amount of log data available.

For example, if you set log.retention.bytes to 1000 and log.segment.bytes to 300, Kafka will keep 4
segments plus the active segment, ensuring a minimum of 1000 bytes are available. When the active
segment becomes full and a new segment is created, the oldest segment is deleted. At this point, the
size on disk may exceed the specified 1000 bytes, potentially ranging between 1200 and 1500 bytes
(excluding index files).

A potential issue with using a log size is that it does not take into account the time messages were
appended to a segment. You can use time-based and size-based log retention for your cleanup policy
to get the balance you need. Whichever threshold is reached first triggers the cleanup.

To add a time delay before a segment file is deleted from the system, you can use
log.segment.delete.delay.ms at the broker level for all topics:

...
log.retention.ms=1680000
...

...
log.retention.bytes=1073741824
...

Red Hat AMQ Streams 2.6 Kafka configuration tuning

10

Or configure file.delete.delay.ms at the topic level.

You set the frequency at which the log is checked for cleanup in milliseconds:

Adjust the log retention check interval in relation to the log retention settings. Smaller retention sizes
might require more frequent checks. The frequency of cleanup should be often enough to manage the
disk space but not so often it affects performance on a broker.

Retaining the most recent messages using compact policy

When you enable log compaction for a topic by setting cleanup.policy=compact, Kafka uses the log
cleaner as a background thread to perform the compaction. The compact policy guarantees that the
most recent message for each message key is retained, effectively cleaning up older versions of records.
The policy is suitable when message values are changeable, and you want to retain the latest update.

If a cleanup policy is set for log compaction, the head of the log operates as a standard Kafka log, with
writes for new messages appended in order. In the tail of a compacted log, where the log cleaner
operates, records are deleted if another record with the same key occurs later in the log. Messages with
null values are also deleted. To use compaction, you must have keys to identify related messages
because Kafka guarantees that the latest messages for each key will be retained, but it does not
guarantee that the whole compacted log will not contain duplicates.

Figure 3.1. Log showing key value writes with offset positions before compaction

Using keys to identify messages, Kafka compaction keeps the latest message (with the highest offset)
that is present in the log tail for a specific message key, eventually discarding earlier messages that have
the same key. The message in its latest state is always available, and any out-of-date records of that
particular message are eventually removed when the log cleaner runs. You can restore a message back
to a previous state. Records retain their original offsets even when surrounding records get deleted.
Consequently, the tail can have non-contiguous offsets. When consuming an offset that’s no longer
available in the tail, the record with the next higher offset is found.

Figure 3.2. Log after compaction

...
log.segment.delete.delay.ms=60000
...

...
log.retention.check.interval.ms=300000
...

CHAPTER 3. KAFKA BROKER CONFIGURATION TUNING

11

Figure 3.2. Log after compaction

If appropriate, you can add a delay to the compaction process:

The deleted data retention period gives time to notice the data is gone before it is irretrievably deleted.

To delete all messages related to a specific key, a producer can send a tombstone message. A
tombstone has a null value and acts as a marker to inform consumers that the corresponding message
for that key has been deleted. After some time, only the tombstone marker is retained. Assuming new
messages continue to come in, the marker is retained for a duration specified by
log.cleaner.delete.retention.ms to allow consumers enough time to recognize the deletion.

You can also set a time in milliseconds to put the cleaner on standby if there are no logs to clean:

Using combined compact and delete policies

If you choose only a compact policy, your log can still become arbitrarily large. In such cases, you can set
the cleanup policy for a topic to compact and delete logs. Kafka applies log compaction, removing older
versions of records and retaining only the latest version of each key. Kafka also deletes records based on
the specified time-based or size-based log retention settings.

For example, in the following diagram only the latest message (with the highest offset) for a specific
message key is retained up to the compaction point. If there are any records remaining up to the
retention point they are deleted. In this case, the compaction process would remove all duplicates.

Figure 3.3. Log retention point and compaction point

...
log.cleaner.delete.retention.ms=86400000
...

...
log.cleaner.backoff.ms=15000
...

Red Hat AMQ Streams 2.6 Kafka configuration tuning

12

3.7. MANAGING EFFICIENT DISK UTILIZATION FOR COMPACTION

When employing the compact policy and log cleaner to handle topic logs in Kafka, consider optimizing
memory allocation.

You can fine-tune memory allocation using the deduplication property (dedupe.buffer.size), which
determines the total memory allocated for cleanup tasks across all log cleaner threads. Additionally, you
can establish a maximum memory usage limit by defining a percentage through the buffer.load.factor
property.

Each log entry uses exactly 24 bytes, so you can work out how many log entries the buffer can handle in
a single run and adjust the setting accordingly.

If possible, consider increasing the number of log cleaner threads if you are looking to reduce the log
cleaning time:

If you are experiencing issues with 100% disk bandwidth usage, you can throttle the log cleaner I/O so
that the sum of the read/write operations is less than a specified double value based on the capabilities
of the disks performing the operations:

3.8. HANDLING LARGE MESSAGE SIZES

The default batch size for messages is 1MB, which is optimal for maximum throughput in most use cases.
Kafka can accommodate larger batches at a reduced throughput, assuming adequate disk capacity.

Large message sizes are handled in four ways:

1. Producer-side message compression writes compressed messages to the log.

2. Reference-based messaging sends only a reference to data stored in some other system in the
message’s value.

3. Inline messaging splits messages into chunks that use the same key, which are then combined
on output using a stream-processor like Kafka Streams.

4. Broker and producer/consumer client application configuration built to handle larger message
sizes.

The reference-based messaging and message compression options are recommended and cover most
situations. With any of these options, care must be take to avoid introducing performance issues.

...
log.cleaner.dedupe.buffer.size=134217728
log.cleaner.io.buffer.load.factor=0.9
...

...
log.cleaner.threads=8
...

...
log.cleaner.io.max.bytes.per.second=1.7976931348623157E308
...

CHAPTER 3. KAFKA BROKER CONFIGURATION TUNING

13

Producer-side compression

For producer configuration, you specify a compression.type, such as Gzip, which is then applied to
batches of data generated by the producer. Using the broker configuration
compression.type=producer, the broker retains whatever compression the producer used. Whenever
producer and topic compression do not match, the broker has to compress batches again prior to
appending them to the log, which impacts broker performance.

Compression also adds additional processing overhead on the producer and decompression overhead
on the consumer, but includes more data in a batch, so is often beneficial to throughput when message
data compresses well.

Combine producer-side compression with fine-tuning of the batch size to facilitate optimum
throughput. Using metrics helps to gauge the average batch size needed.

Reference-based messaging

Reference-based messaging is useful for data replication when you do not know how big a message will
be. The external data store must be fast, durable, and highly available for this configuration to work. Data
is written to the data store and a reference to the data is returned. The producer sends a message
containing the reference to Kafka. The consumer gets the reference from the message and uses it to
fetch the data from the data store.

Figure 3.4. Reference-based messaging flow

As the message passing requires more trips, end-to-end latency will increase. Another significant
drawback of this approach is there is no automatic clean up of the data in the external system when the
Kafka message gets cleaned up. A hybrid approach would be to only send large messages to the data
store and process standard-sized messages directly.

Inline messaging

Inline messaging is complex, but it does not have the overhead of depending on external systems like
reference-based messaging.

The producing client application has to serialize and then chunk the data if the message is too big. The
producer then uses the Kafka ByteArraySerializer or similar to serialize each chunk again before
sending it. The consumer tracks messages and buffers chunks until it has a complete message. The
consuming client application receives the chunks, which are assembled before deserialization. Complete
messages are delivered to the rest of the consuming application in order according to the offset of the
first or last chunk for each set of chunked messages. Successful delivery of the complete message is
checked against offset metadata to avoid duplicates during a rebalance.

Figure 3.5. Inline messaging flow

Red Hat AMQ Streams 2.6 Kafka configuration tuning

14

Figure 3.5. Inline messaging flow

Inline messaging has a performance overhead on the consumer side because of the buffering required,
particularly when handling a series of large messages in parallel. The chunks of large messages can
become interleaved, so that it is not always possible to commit when all the chunks of a message have
been consumed if the chunks of another large message in the buffer are incomplete. For this reason, the
buffering is usually supported by persisting message chunks or by implementing commit logic.

Configuration to handle larger messages

If larger messages cannot be avoided, and to avoid blocks at any point of the message flow, you can
increase message limits. To do this, configure message.max.bytes at the topic level to set the
maximum record batch size for individual topics. If you set message.max.bytes at the broker level,
larger messages are allowed for all topics.

The broker will reject any message that is greater than the limit set with message.max.bytes. The
buffer size for the producers (max.request.size) and consumers (message.max.bytes) must be able
to accommodate the larger messages.

3.9. CONTROLLING THE LOG FLUSH OF MESSAGE DATA

Generally, the recommendation is to not set explicit flush thresholds and let the operating system
perform background flush using its default settings. Partition replication provides greater data durability
than writes to any single disk, as a failed broker can recover from its in-sync replicas.

Log flush properties control the periodic writes of cached message data to disk. The scheduler specifies
the frequency of checks on the log cache in milliseconds:

You can control the frequency of the flush based on the maximum amount of time that a message is
kept in-memory and the maximum number of messages in the log before writing to disk:

The wait between flushes includes the time to make the check and the specified interval before the
flush is carried out. Increasing the frequency of flushes can affect throughput.

If you are using application flush management, setting lower flush thresholds might be appropriate if you

...
log.flush.scheduler.interval.ms=2000
...

...
log.flush.interval.ms=50000
log.flush.interval.messages=100000
...

CHAPTER 3. KAFKA BROKER CONFIGURATION TUNING

15

If you are using application flush management, setting lower flush thresholds might be appropriate if you
are using faster disks.

3.10. PARTITION REBALANCING FOR AVAILABILITY

Partitions can be replicated across brokers for fault tolerance. For a given partition, one broker is
elected leader and handles all produce requests (writes to the log). Partition followers on other brokers
replicate the partition data of the partition leader for data reliability in the event of the leader failing.

Followers do not normally serve clients, though rack configuration allows a consumer to consume
messages from the closest replica when a Kafka cluster spans multiple datacenters. Followers operate
only to replicate messages from the partition leader and allow recovery should the leader fail. Recovery
requires an in-sync follower. Followers stay in sync by sending fetch requests to the leader, which
returns messages to the follower in order. The follower is considered to be in sync if it has caught up
with the most recently committed message on the leader. The leader checks this by looking at the last
offset requested by the follower. An out-of-sync follower is usually not eligible as a leader should the
current leader fail, unless unclean leader election is allowed.

You can adjust the lag time before a follower is considered out of sync:

Lag time puts an upper limit on the time to replicate a message to all in-sync replicas and how long a
producer has to wait for an acknowledgment. If a follower fails to make a fetch request and catch up with
the latest message within the specified lag time, it is removed from in-sync replicas. You can reduce the
lag time to detect failed replicas sooner, but by doing so you might increase the number of followers
that fall out of sync needlessly. The right lag time value depends on both network latency and broker
disk bandwidth.

When a leader partition is no longer available, one of the in-sync replicas is chosen as the new leader.
The first broker in a partition’s list of replicas is known as the preferred leader. By default, Kafka is
enabled for automatic partition leader rebalancing based on a periodic check of leader distribution. That
is, Kafka checks to see if the preferred leader is the current leader. A rebalance ensures that leaders are
evenly distributed across brokers and brokers are not overloaded.

You can use Cruise Control for AMQ Streams to figure out replica assignments to brokers that balance
load evenly across the cluster. Its calculation takes into account the differing load experienced by
leaders and followers. A failed leader affects the balance of a Kafka cluster because the remaining
brokers get the extra work of leading additional partitions.

For the assignment found by Cruise Control to actually be balanced it is necessary that partitions are
lead by the preferred leader. Kafka can automatically ensure that the preferred leader is being used
(where possible), changing the current leader if necessary. This ensures that the cluster remains in the
balanced state found by Cruise Control.

You can control the frequency, in seconds, of the rebalance check and the maximum percentage of
imbalance allowed for a broker before a rebalance is triggered.

...
replica.lag.time.max.ms=30000
...

#...
auto.leader.rebalance.enable=true
leader.imbalance.check.interval.seconds=300
leader.imbalance.per.broker.percentage=10
#...

Red Hat AMQ Streams 2.6 Kafka configuration tuning

16

The percentage leader imbalance for a broker is the ratio between the current number of partitions for
which the broker is the current leader and the number of partitions for which it is the preferred leader.
You can set the percentage to zero to ensure that preferred leaders are always elected, assuming they
are in sync.

If the checks for rebalances need more control, you can disable automated rebalances. You can then
choose when to trigger a rebalance using the kafka-leader-election.sh command line tool.

NOTE

The Grafana dashboards provided with AMQ Streams show metrics for under-replicated
partitions and partitions that do not have an active leader.

3.11. UNCLEAN LEADER ELECTION

Leader election to an in-sync replica is considered clean because it guarantees no loss of data. And this
is what happens by default. But what if there is no in-sync replica to take on leadership? Perhaps the ISR
(in-sync replica) only contained the leader when the leader’s disk died. If a minimum number of in-sync
replicas is not set, and there are no followers in sync with the partition leader when its hard drive fails
irrevocably, data is already lost. Not only that, but a new leader cannot be elected because there are no
in-sync followers.

You can configure how Kafka handles leader failure:

Unclean leader election is disabled by default, which means that out-of-sync replicas cannot become
leaders. With clean leader election, if no other broker was in the ISR when the old leader was lost, Kafka
waits until that leader is back online before messages can be written or read. Unclean leader election
means out-of-sync replicas can become leaders, but you risk losing messages. The choice you make
depends on whether your requirements favor availability or durability.

You can override the default configuration for specific topics at the topic level. If you cannot afford the
risk of data loss, then leave the default configuration.

3.12. AVOIDING UNNECESSARY CONSUMER GROUP REBALANCES

For consumers joining a new consumer group, you can add a delay so that unnecessary rebalances to
the broker are avoided:

The delay is the amount of time that the coordinator waits for members to join. The longer the delay,
the more likely it is that all the members will join in time and avoid a rebalance. But the delay also
prevents the group from consuming until the period has ended.

...
unclean.leader.election.enable=false
...

...
group.initial.rebalance.delay.ms=3000
...

CHAPTER 3. KAFKA BROKER CONFIGURATION TUNING

17

1

2

3

4

5

CHAPTER 4. KAFKA CONSUMER CONFIGURATION TUNING
Use a basic consumer configuration with optional properties that are tailored to specific use cases.

When tuning your consumers your primary concern will be ensuring that they cope efficiently with the
amount of data ingested. As with the producer tuning, be prepared to make incremental changes until
the consumers operate as expected.

4.1. BASIC CONSUMER CONFIGURATION

Connection and deserializer properties are required for every consumer. Generally, it is good practice to
add a client id for tracking.

In a consumer configuration, irrespective of any subsequent configuration:

The consumer fetches from a given offset and consumes the messages in order, unless the
offset is changed to skip or re-read messages.

The broker does not know if the consumer processed the responses, even when committing
offsets to Kafka, because the offsets might be sent to a different broker in the cluster.

Basic consumer configuration properties

(Required) Tells the consumer to connect to a Kafka cluster using a host:port bootstrap server
address for a Kafka broker. The consumer uses the address to discover and connect to all brokers
in the cluster. Use a comma-separated list to specify two or three addresses in case a server is
down, but it is not necessary to provide a list of all the brokers in the cluster. If you are using a
loadbalancer service to expose the Kafka cluster, you only need the address for the service
because the availability is handled by the loadbalancer.

(Required) Deserializer to transform the bytes fetched from the Kafka broker into message keys.

(Required) Deserializer to transform the bytes fetched from the Kafka broker into message values.

(Optional) The logical name for the client, which is used in logs and metrics to identify the source
of a request. The id can also be used to throttle consumers based on processing time quotas.

(Conditional) A group id is required for a consumer to be able to join a consumer group.

4.2. SCALING DATA CONSUMPTION USING CONSUMER GROUPS

Consumer groups share a typically large data stream generated by one or multiple producers from a
given topic. Consumers are grouped using a group.id property, allowing messages to be spread across
the members. One of the consumers in the group is elected leader and decides how the partitions are
assigned to the consumers in the group. Each partition can only be assigned to a single consumer.

...
bootstrap.servers=localhost:9092 1
key.deserializer=org.apache.kafka.common.serialization.StringDeserializer 2
value.deserializer=org.apache.kafka.common.serialization.StringDeserializer 3
client.id=my-client 4
group.id=my-group-id 5
...

Red Hat AMQ Streams 2.6 Kafka configuration tuning

18

1

If you do not already have as many consumers as partitions, you can scale data consumption by adding
more consumer instances with the same group.id. Adding more consumers to a group than there are
partitions will not help throughput, but it does mean that there are consumers on standby should one
stop functioning. If you can meet throughput goals with fewer consumers, you save on resources.

Consumers within the same consumer group send offset commits and heartbeats to the same broker.
So the greater the number of consumers in the group, the higher the request load on the broker.

Add a consumer to a consumer group using a group id.

4.3. MESSAGE ORDERING GUARANTEES

Kafka brokers receive fetch requests from consumers that ask the broker to send messages from a list
of topics, partitions and offset positions.

A consumer observes messages in a single partition in the same order that they were committed to the
broker, which means that Kafka only provides ordering guarantees for messages in a single partition.
Conversely, if a consumer is consuming messages from multiple partitions, the order of messages in
different partitions as observed by the consumer does not necessarily reflect the order in which they
were sent.

If you want a strict ordering of messages from one topic, use one partition per consumer.

4.4. OPTIMIZING CONSUMERS FOR THROUGHPUT AND LATENCY

Control the number of messages returned when your client application calls KafkaConsumer.poll().

Use the fetch.max.wait.ms and fetch.min.bytes properties to increase the minimum amount of data
fetched by the consumer from the Kafka broker. Time-based batching is configured using
fetch.max.wait.ms, and size-based batching is configured using fetch.min.bytes.

If CPU utilization in the consumer or broker is high, it might be because there are too many requests
from the consumer. You can adjust fetch.max.wait.ms and fetch.min.bytes properties higher so that
there are fewer requests and messages are delivered in bigger batches. By adjusting higher, throughput
is improved with some cost to latency. You can also adjust higher if the amount of data being produced
is low.

For example, if you set fetch.max.wait.ms to 500ms and fetch.min.bytes to 16384 bytes, when Kafka
receives a fetch request from the consumer it will respond when the first of either threshold is reached.

Conversely, you can adjust the fetch.max.wait.ms and fetch.min.bytes properties lower to improve
end-to-end latency.

The maximum time in milliseconds the broker will wait before completing fetch requests. The

...
group.id=my-group-id 1
...

...
fetch.max.wait.ms=500 1
fetch.min.bytes=16384 2
...

CHAPTER 4. KAFKA CONSUMER CONFIGURATION TUNING

19

1

2

1

2

The maximum time in milliseconds the broker will wait before completing fetch requests. The
default is 500 milliseconds.

If a minimum batch size in bytes is used, a request is sent when the minimum is reached, or
messages have been queued for longer than fetch.max.wait.ms (whichever comes sooner).
Adding the delay allows batches to accumulate messages up to the batch size.

Lowering latency by increasing the fetch request size

Use the fetch.max.bytes and max.partition.fetch.bytes properties to increase the maximum amount
of data fetched by the consumer from the Kafka broker.

The fetch.max.bytes property sets a maximum limit in bytes on the amount of data fetched from the
broker at one time.

The max.partition.fetch.bytes sets a maximum limit in bytes on how much data is returned for each
partition, which must always be larger than the number of bytes set in the broker or topic configuration
for max.message.bytes.

The maximum amount of memory a client can consume is calculated approximately as:

If memory usage can accommodate it, you can increase the values of these two properties. By allowing
more data in each request, latency is improved as there are fewer fetch requests.

The maximum amount of data in bytes returned for a fetch request.

The maximum amount of data in bytes returned for each partition.

4.5. AVOIDING DATA LOSS OR DUPLICATION WHEN COMMITTING
OFFSETS

The Kafka auto-commit mechanism allows a consumer to commit the offsets of messages automatically.
If enabled, the consumer will commit offsets received from polling the broker at 5000ms intervals.

The auto-commit mechanism is convenient, but it introduces a risk of data loss and duplication. If a
consumer has fetched and transformed a number of messages, but the system crashes with processed
messages in the consumer buffer when performing an auto-commit, that data is lost. If the system
crashes after processing the messages, but before performing the auto-commit, the data is duplicated
on another consumer instance after rebalancing.

Auto-committing can avoid data loss only when all messages are processed before the next poll to the
broker, or the consumer closes.

To minimize the likelihood of data loss or duplication, you can set enable.auto.commit to false and

NUMBER-OF-BROKERS * fetch.max.bytes and NUMBER-OF-PARTITIONS *
max.partition.fetch.bytes

...
fetch.max.bytes=52428800 1
max.partition.fetch.bytes=1048576 2
...

Red Hat AMQ Streams 2.6 Kafka configuration tuning

20

1

1

To minimize the likelihood of data loss or duplication, you can set enable.auto.commit to false and
develop your client application to have more control over committing offsets. Or you can use
auto.commit.interval.ms to decrease the intervals between commits.

Auto commit is set to false to provide more control over committing offsets.

By setting to enable.auto.commit to false, you can commit offsets after all processing has been
performed and the message has been consumed. For example, you can set up your application to call
the Kafka commitSync and commitAsync commit APIs.

The commitSync API commits the offsets in a message batch returned from polling. You call the API
when you are finished processing all the messages in the batch. If you use the commitSync API, the
application will not poll for new messages until the last offset in the batch is committed. If this negatively
affects throughput, you can commit less frequently, or you can use the commitAsync API. The
commitAsync API does not wait for the broker to respond to a commit request, but risks creating more
duplicates when rebalancing. A common approach is to combine both commit APIs in an application,
with the commitSync API used just before shutting the consumer down or rebalancing to make sure the
final commit is successful.

4.5.1. Controlling transactional messages

Consider using transactional ids and enabling idempotence (enable.idempotence=true) on the
producer side to guarantee exactly-once delivery. On the consumer side, you can then use the
isolation.level property to control how transactional messages are read by the consumer.

The isolation.level property has two valid values:

read_committed

read_uncommitted (default)

Use read_committed to ensure that only transactional messages that have been committed are read by
the consumer. However, this will cause an increase in end-to-end latency, because the consumer will not
be able to return a message until the brokers have written the transaction markers that record the result
of the transaction (committed or aborted).

Set to read_committed so that only committed messages are read by the consumer.

4.6. RECOVERING FROM FAILURE TO AVOID DATA LOSS

Use the session.timeout.ms and heartbeat.interval.ms properties to configure the time taken to
check and recover from consumer failure within a consumer group.

The session.timeout.ms property specifies the maximum amount of time in milliseconds a consumer

...
enable.auto.commit=false 1
...

...
enable.auto.commit=false
isolation.level=read_committed 1
...

CHAPTER 4. KAFKA CONSUMER CONFIGURATION TUNING

21

1

2

3

within a consumer group can be out of contact with a broker before being considered inactive and a
rebalancing is triggered between the active consumers in the group. When the group rebalances, the
partitions are reassigned to the members of the group.

The heartbeat.interval.ms property specifies the interval in milliseconds between heartbeat checks to
the consumer group coordinator to indicate that the consumer is active and connected. The heartbeat
interval must be lower, usually by a third, than the session timeout interval.

If you set the session.timeout.ms property lower, failing consumers are detected earlier, and
rebalancing can take place quicker. However, take care not to set the timeout so low that the broker
fails to receive a heartbeat in time and triggers an unnecessary rebalance.

Decreasing the heartbeat interval reduces the chance of accidental rebalancing, but more frequent
heartbeats increases the overhead on broker resources.

4.7. MANAGING OFFSET POLICY

Use the auto.offset.reset property to control how a consumer behaves when no offsets have been
committed, or a committed offset is no longer valid or deleted.

Suppose you deploy a consumer application for the first time, and it reads messages from an existing
topic. Because this is the first time the group.id is used, the __consumer_offsets topic does not
contain any offset information for this application. The new application can start processing all existing
messages from the start of the log or only new messages. The default reset value is latest, which starts
at the end of the partition, and consequently means some messages are missed. To avoid data loss, but
increase the amount of processing, set auto.offset.reset to earliest to start at the beginning of the
partition.

Also consider using the earliest option to avoid messages being lost when the offsets retention period
(offsets.retention.minutes) configured for a broker has ended. If a consumer group or standalone
consumer is inactive and commits no offsets during the retention period, previously committed offsets
are deleted from __consumer_offsets.

Adjust the heartbeat interval lower according to anticipated rebalances.

If no heartbeats are received by the Kafka broker before the timeout duration expires, the
consumer is removed from the consumer group and a rebalance is initiated. If the broker
configuration has a group.min.session.timeout.ms and group.max.session.timeout.ms, the
session timeout value must be within that range.

Set to earliest to return to the start of a partition and avoid data loss if offsets were not
committed.

If the amount of data returned in a single fetch request is large, a timeout might occur before the
consumer has processed it. In this case, you can lower max.partition.fetch.bytes or increase
session.timeout.ms.

4.8. MINIMIZING THE IMPACT OF REBALANCES

...
heartbeat.interval.ms=3000 1
session.timeout.ms=45000 2
auto.offset.reset=earliest 3
...

Red Hat AMQ Streams 2.6 Kafka configuration tuning

22

1

2

3

The rebalancing of a partition between active consumers in a group is the time it takes for:

Consumers to commit their offsets

The new consumer group to be formed

The group leader to assign partitions to group members

The consumers in the group to receive their assignments and start fetching

Clearly, the process increases the downtime of a service, particularly when it happens repeatedly during
a rolling restart of a consumer group cluster.

In this situation, you can use the concept of static membership to reduce the number of rebalances.
Rebalancing assigns topic partitions evenly among consumer group members. Static membership uses
persistence so that a consumer instance is recognized during a restart after a session timeout.

The consumer group coordinator can identify a new consumer instance using a unique id that is
specified using the group.instance.id property. During a restart, the consumer is assigned a new
member id, but as a static member it continues with the same instance id, and the same assignment of
topic partitions is made.

If the consumer application does not make a call to poll at least every max.poll.interval.ms
milliseconds, the consumer is considered to be failed, causing a rebalance. If the application cannot
process all the records returned from poll in time, you can avoid a rebalance by using the
max.poll.interval.ms property to specify the interval in milliseconds between polls for new messages
from a consumer. Or you can use the max.poll.records property to set a maximum limit on the number
of records returned from the consumer buffer, allowing your application to process fewer records within
the max.poll.interval.ms limit.

The unique instance id ensures that a new consumer instance receives the same assignment of
topic partitions.

Set the interval to check the consumer is continuing to process messages.

Sets the number of processed records returned from the consumer.

...
group.instance.id=UNIQUE-ID 1
max.poll.interval.ms=300000 2
max.poll.records=500 3
...

CHAPTER 4. KAFKA CONSUMER CONFIGURATION TUNING

23

1

2

3

4

5

CHAPTER 5. KAFKA PRODUCER CONFIGURATION TUNING
Use a basic producer configuration with optional properties that are tailored to specific use cases.

Adjusting your configuration to maximize throughput might increase latency or vice versa. You will need
to experiment and tune your producer configuration to get the balance you need.

5.1. BASIC PRODUCER CONFIGURATION

Connection and serializer properties are required for every producer. Generally, it is good practice to
add a client id for tracking, and use compression on the producer to reduce batch sizes in requests.

In a basic producer configuration:

The order of messages in a partition is not guaranteed.

The acknowledgment of messages reaching the broker does not guarantee durability.

Basic producer configuration properties

(Required) Tells the producer to connect to a Kafka cluster using a host:port bootstrap server
address for a Kafka broker. The producer uses the address to discover and connect to all brokers in
the cluster. Use a comma-separated list to specify two or three addresses in case a server is down,
but it’s not necessary to provide a list of all the brokers in the cluster.

(Required) Serializer to transform the key of each message to bytes prior to them being sent to a
broker.

(Required) Serializer to transform the value of each message to bytes prior to them being sent to a
broker.

(Optional) The logical name for the client, which is used in logs and metrics to identify the source
of a request.

(Optional) The codec for compressing messages, which are sent and might be stored in
compressed format and then decompressed when reaching a consumer. Compression is useful for
improving throughput and reducing the load on storage, but might not be suitable for low latency
applications where the cost of compression or decompression could be prohibitive.

5.2. DATA DURABILITY

Message delivery acknowledgments minimize the likelihood that messages are lost. Acknowledgments
are enabled by default with the acks property set at acks=all.

Acknowledging message delivery

...
bootstrap.servers=localhost:9092 1
key.serializer=org.apache.kafka.common.serialization.StringSerializer 2
value.serializer=org.apache.kafka.common.serialization.StringSerializer 3
client.id=my-client 4
compression.type=gzip 5
...

Red Hat AMQ Streams 2.6 Kafka configuration tuning

24

1 acks=all forces a leader replica to replicate messages to a certain number of followers before
acknowledging that the message request was successfully received.

The acks=all setting offers the strongest guarantee of delivery, but it will increase the latency between
the producer sending a message and receiving acknowledgment. If you don’t require such strong
guarantees, a setting of acks=0 or acks=1 provides either no delivery guarantees or only
acknowledgment that the leader replica has written the record to its log.

With acks=all, the leader waits for all in-sync replicas to acknowledge message delivery. A topic’s
min.insync.replicas configuration sets the minimum required number of in-sync replica
acknowledgements. The number of acknowledgements include that of the leader and followers.

A typical starting point is to use the following configuration:

Producer configuration:

acks=all (default)

Broker configuration for topic replication:

default.replication.factor=3 (default = 1)

min.insync.replicas=2 (default = 1)

When you create a topic, you can override the default replication factor. You can also override
min.insync.replicas at the topic level in the topic configuration.

AMQ Streams uses this configuration in the example configuration files for multi-node deployment of
Kafka.

The following table describes how this configuration operates depending on the availability of followers
that replicate the leader replica.

Table 5.1. Follower availability

Number of followers
available and in-sync

Acknowledgements Producer can send
messages?

2 The leader waits for 2 follower
acknowledgements

Yes

1 The leader waits for 1 follower
acknowledgement

Yes

0 The leader raises an exception No

A topic replication factor of 3 creates one leader replica and two followers. In this configuration, the
producer can continue if a single follower is unavailable. Some delay can occur whilst removing a failed
broker from the in-sync replicas or a creating a new leader. If the second follower is also unavailable,

...
acks=all 1
...

CHAPTER 5. KAFKA PRODUCER CONFIGURATION TUNING

25

1

2

3

4

1

2

message delivery will not be successful. Instead of acknowledging successful message delivery, the
leader sends an error (not enough replicas) to the producer. The producer raises an equivalent
exception. With retries configuration, the producer can resend the failed message request.

NOTE

If the system fails, there is a risk of unsent data in the buffer being lost.

5.3. ORDERED DELIVERY

Idempotent producers avoid duplicates as messages are delivered exactly once. IDs and sequence
numbers are assigned to messages to ensure the order of delivery, even in the event of failure. If you are
using acks=all for data consistency, using idempotency makes sense for ordered delivery. Idempotency
is enabled for producers by default. With idempotency enabled, you can set the number of concurrent
in-flight requests to a maximum of 5 for message ordering to be preserved.

Ordered delivery with idempotency

Set to true to enable the idempotent producer.

With idempotent delivery the number of in-flight requests may be greater than 1 while still
providing the message ordering guarantee. The default is 5 in-flight requests.

Set acks to all.

Set the number of attempts to resend a failed message request.

If you choose not to use acks=all and disable idempotency because of the performance cost, set the
number of in-flight (unacknowledged) requests to 1 to preserve ordering. Otherwise, a situation is
possible where Message-A fails only to succeed after Message-B was already written to the broker.

Ordered delivery without idempotency

Set to false to disable the idempotent producer.

Set the number of in-flight requests to exactly 1.

5.4. RELIABILITY GUARANTEES

...
enable.idempotence=true 1
max.in.flight.requests.per.connection=5 2
acks=all 3
retries=2147483647 4
...

...
enable.idempotence=false 1
max.in.flight.requests.per.connection=1 2
retries=2147483647
...

Red Hat AMQ Streams 2.6 Kafka configuration tuning

26

1

2

Idempotence is useful for exactly once writes to a single partition. Transactions, when used with
idempotence, allow exactly once writes across multiple partitions.

Transactions guarantee that messages using the same transactional ID are produced once, and either all
are successfully written to the respective logs or none of them are.

Specify a unique transactional ID.

Set the maximum allowed time for transactions in milliseconds before a timeout error is returned.
The default is 900000 or 15 minutes.

The choice of transactional.id is important in order that the transactional guarantee is maintained. Each
transactional id should be used for a unique set of topic partitions. For example, this can be achieved
using an external mapping of topic partition names to transactional ids, or by computing the
transactional id from the topic partition names using a function that avoids collisions.

5.5. OPTIMIZING PRODUCERS FOR THROUGHPUT AND LATENCY

Usually, the requirement of a system is to satisfy a particular throughput target for a proportion of
messages within a given latency. For example, targeting 500,000 messages per second with 95% of
messages being acknowledged within 2 seconds.

It’s likely that the messaging semantics (message ordering and durability) of your producer are defined
by the requirements for your application. For instance, it’s possible that you don’t have the option of
using acks=0 or acks=1 without breaking some important property or guarantee provided by your
application.

Broker restarts have a significant impact on high percentile statistics. For example, over a long period
the 99th percentile latency is dominated by behavior around broker restarts. This is worth considering
when designing benchmarks or comparing performance numbers from benchmarking with performance
numbers seen in production.

Depending on your objective, Kafka offers a number of configuration parameters and techniques for
tuning producer performance for throughput and latency.

Message batching (linger.ms and batch.size)

Message batching delays sending messages in the hope that more messages destined for the same
broker will be sent, allowing them to be batched into a single produce request. Batching is a
compromise between higher latency in return for higher throughput. Time-based batching is
configured using linger.ms, and size-based batching is configured using batch.size.

Compression (compression.type)

Message compression adds latency in the producer (CPU time spent compressing the messages),
but makes requests (and potentially disk writes) smaller, which can increase throughput. Whether
compression is worthwhile, and the best compression to use, will depend on the messages being sent.

...
enable.idempotence=true
max.in.flight.requests.per.connection=5
acks=all
retries=2147483647
transactional.id=UNIQUE-ID 1
transaction.timeout.ms=900000 2
...

CHAPTER 5. KAFKA PRODUCER CONFIGURATION TUNING

27

1

2

Compression happens on the thread which calls KafkaProducer.send(), so if the latency of this
method matters for your application you should consider using more threads.

Pipelining (max.in.flight.requests.per.connection)

Pipelining means sending more requests before the response to a previous request has been
received. In general more pipelining means better throughput, up to a threshold at which other
effects, such as worse batching, start to counteract the effect on throughput.

Lowering latency

When your application calls KafkaProducer.send() the messages are:

Processed by any interceptors

Serialized

Assigned to a partition

Compressed

Added to a batch of messages in a per-partition queue

At which point the send() method returns. So the time send() is blocked is determined by:

The time spent in the interceptors, serializers and partitioner

The compression algorithm used

The time spent waiting for a buffer to use for compression

Batches will remain in the queue until one of the following occurs:

The batch is full (according to batch.size)

The delay introduced by linger.ms has passed

The sender is about to send message batches for other partitions to the same broker, and it is
possible to add this batch too

The producer is being flushed or closed

Look at the configuration for batching and buffering to mitigate the impact of send() blocking on
latency.

The linger property adds a delay in milliseconds so that larger batches of messages are
accumulated and sent in a request. The default is 0'.

If a maximum batch.size in bytes is used, a request is sent when the maximum is reached, or
messages have been queued for longer than linger.ms (whichever comes sooner). Adding the
delay allows batches to accumulate messages up to the batch size.

...
linger.ms=100 1
batch.size=16384 2
buffer.memory=33554432 3
...

Red Hat AMQ Streams 2.6 Kafka configuration tuning

28

3

1

2

The buffer size must be at least as big as the batch size, and be able to accommodate buffering,
compression and in-flight requests.

Increasing throughput

Improve throughput of your message requests by adjusting the maximum time to wait before a message
is delivered and completes a send request.

You can also direct messages to a specified partition by writing a custom partitioner to replace the
default.

The maximum time in milliseconds to wait for a complete send request. You can set the value to
MAX_LONG to delegate to Kafka an indefinite number of retries. The default is 120000 or 2
minutes.

Specify the class name of the custom partitioner.

...
delivery.timeout.ms=120000 1
partitioner.class=my-custom-partitioner 2

...

CHAPTER 5. KAFKA PRODUCER CONFIGURATION TUNING

29

APPENDIX A. USING YOUR SUBSCRIPTION
AMQ Streams is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing Your Account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a Subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading Zip and Tar Files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using
RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the AMQ Streams for Apache Kafka entries in the INTEGRATION AND
AUTOMATION category.

3. Select the desired AMQ Streams product. The Software Downloads page opens.

4. Click the Download link for your component.

Installing packages with DNF
To install a package and all the package dependencies, use:

To install a previously-downloaded package from a local directory, use:

Revised on 2023-12-06 17:40:09 UTC

dnf install <package_name>

dnf install <path_to_download_package>

Red Hat AMQ Streams 2.6 Kafka configuration tuning

30

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. KAFKA TUNING OVERVIEW
	1.1. MAPPING PROPERTIES AND VALUES
	1.2. TOOLS THAT HELP WITH TUNING

	CHAPTER 2. MANAGED BROKER CONFIGURATION
	CHAPTER 3. KAFKA BROKER CONFIGURATION TUNING
	3.1. BASIC BROKER CONFIGURATION
	3.2. REPLICATING TOPICS FOR HIGH AVAILABILITY
	3.3. INTERNAL TOPIC SETTINGS FOR TRANSACTIONS AND COMMITS
	3.4. IMPROVING REQUEST HANDLING THROUGHPUT BY INCREASING I/O THREADS
	3.5. INCREASING BANDWIDTH FOR HIGH LATENCY CONNECTIONS
	3.6. MANAGING KAFKA LOGS WITH DELETE AND COMPACT POLICIES
	3.7. MANAGING EFFICIENT DISK UTILIZATION FOR COMPACTION
	3.8. HANDLING LARGE MESSAGE SIZES
	3.9. CONTROLLING THE LOG FLUSH OF MESSAGE DATA
	3.10. PARTITION REBALANCING FOR AVAILABILITY
	3.11. UNCLEAN LEADER ELECTION
	3.12. AVOIDING UNNECESSARY CONSUMER GROUP REBALANCES

	CHAPTER 4. KAFKA CONSUMER CONFIGURATION TUNING
	4.1. BASIC CONSUMER CONFIGURATION
	4.2. SCALING DATA CONSUMPTION USING CONSUMER GROUPS
	4.3. MESSAGE ORDERING GUARANTEES
	4.4. OPTIMIZING CONSUMERS FOR THROUGHPUT AND LATENCY
	4.5. AVOIDING DATA LOSS OR DUPLICATION WHEN COMMITTING OFFSETS
	4.5.1. Controlling transactional messages

	4.6. RECOVERING FROM FAILURE TO AVOID DATA LOSS
	4.7. MANAGING OFFSET POLICY
	4.8. MINIMIZING THE IMPACT OF REBALANCES

	CHAPTER 5. KAFKA PRODUCER CONFIGURATION TUNING
	5.1. BASIC PRODUCER CONFIGURATION
	5.2. DATA DURABILITY
	5.3. ORDERED DELIVERY
	5.4. RELIABILITY GUARANTEES
	5.5. OPTIMIZING PRODUCERS FOR THROUGHPUT AND LATENCY

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing Your Account
	Activating a Subscription
	Downloading Zip and Tar Files
	Installing packages with DNF

